
  

Serveur Académique Lausannois SERVAL serval.unil.ch 

Author Manuscript 
Faculty of Biology and Medicine Publication 

This paper has been peer-reviewed but dos not include the final publisher 

proof-corrections or journal pagination. 

Published in final edited form as:  

 

In the absence of a copyright statement, users should assume that standard copyright protection applies, unless the article contains 

an explicit statement to the contrary. In case of doubt, contact the journal publisher to verify the copyright status of an article. 
 

Title: Identification of Rare High-Avidity, Tumor-Reactive CD8+ T Cells 

by Monomeric TCR-Ligand Off-Rates Measurements on Living Cells. 

Authors: Hebeisen M, Schmidt J, Guillaume P, Baumgaertner P, 

Speiser DE, Luescher I, Rufer N 

Journal: Cancer research 

Year: 2015 May 15 

Volume: 75 

Issue: 10 

Pages: 1983-91 

DOI: 10.1158/0008-5472.CAN-14-3516 

 

http://dx.doi.org/10.1158/0008-5472.CAN-14-3516


  Hebeisen et al., v20150203 

Identification of rare high avidity, tumor reactive CD8+ T cells by monomeric 

TCR-ligand off-rates measurements on living cells 

 

Michael Hebeisen1,*, Julien Schmidt2,3,*, Philippe Guillaume2,3, Petra Baumgaertner2, Daniel E. 

Speiser1,2, Immanuel Luescher1,2,3 and Nathalie Rufer1,2 

1Department of Oncology, Lausanne University Hospital Center and University of Lausanne, 

Lausanne, Switzerland 

2Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland 

3TCMetrix Sàrl., 1066 Epalinges, Switzerland 

* These authors contributed equally to this work 

 

Corresponding author: Nathalie Rufer, PhD, MD, Department of Oncology, Lausanne 

University Hospital Center, Avenue Pierre-Decker 4, 1011 Lausanne, Switzerland. Phone: 0041-

21-314-0199. Fax: 0041-21-314-7477. E-mail: Nathalie.Rufer@unil.ch  

Running title: NTAmers predict tumor-specific T cell responses 

Word counts: 5000 

Keywords: human, melanoma, CD8+ T cells, tumor-specific, TCR, pMHC, reversible 

NTAmers, flow cytometry, monomeric off-rates, koff, avidity, calcium flux, target cell killing 

Abbreviations: TCR, T cell receptor; MHC, peptide-major histocompatibility complex; A2, 

HLA-A*0201; NTA, nitrilotriacetic acid; SPR, surface plasmon resonance; PBMC, peripheral 

blood mononuclear cells 

 1 

mailto:Nathalie.Rufer@unil.ch


  Hebeisen et al., v20150203 

AUTHOR CONTRIBUTIONS 

Conception and design: M. Hebeisen, J. Schmidt, I. Luescher, N. Rufer  

Development of methodology: M. Hebeisen, J. Schmidt, P. Guillaume, I Luescher, N. Rufer 

Acquisition of data (provided animals, acquired and managed patients, provided facilities, 

etc.): M. Hebeisen, J. Schmidt, P. Baumgaertner 

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational 

analysis): M. Hebeisen, N Rufer 

Writing, review and/or revision of the manuscript: M. Hebeisen, J. Schmidt, D.E. Speiser, I. 

Luescher, N. Rufer 

Study supervision: N. Rufer 

 

DISCLOSURE OF POTENTIAL CONFLICTS OF INTEREST 

No potential conflicts of interest were disclosed.  

 2 



  Hebeisen et al., v20150203 

ABSTRACT 

The avidity of the T cell receptor (TCR) for antigenic peptides presented by the major 

histocompatibility complex (pMHC) on cells is a key parameter for cell-mediated immunity. Yet 

a fundamental feature of most tumor antigen-specific CD8+ T cells is that this avidity is low. In 

this study, we addressed the need to identify and select tumor-specific CD8+ T cells of highest 

avidity, which are of the greatest interest for adoptive cell therapy in cancer patients. To identify 

these rare cells, we developed a peptide-MHC multimer technology, which uses reversible Ni2+-

nitrilotriacetic acid histidine tags (NTAmers). NTAmers are highly stable but upon imidazole 

addition they decay rapidly to pMHC monomers, allowing flow cytometry-based measurements 

of monomeric TCR-pMHC dissociation rates of living CD8+ T cells on a wide avidity spectrum. 

We documented strong correlations between NTAmer kinetic results and those obtained by 

surface plasmon resonance (SPR). Using NTAmers that were deficient for CD8 binding to 

pMHC, we found that CD8 itself stabilized the TCR-pMHC complex, prolonging the 

dissociation half-life several-fold. Notably, our NTAmer technology accurately predicted the 

function of large panels of tumor-specific T cells that were isolated prospectively from cancer 

patients. Overall, our results demonstrated that NTAmers are effective tools to isolate rare high-

avidity cytotoxic T cells from patients for use in adoptive therapies for cancer treatment. 
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INTRODUCTION 

Binding of TCR to peptide-MHC (pMHC) complex is the key step for T cell activation and 

cellular immune responses (1). Efficient triggering of T cell responses critically depends on the 

strength of TCR-mediated antigen recognition, namely it has been shown that strong binding to 

pMHC confers superior effector function than weak interactions (2-7). This is of particular 

interest for immunotherapy based on adoptive T cell transfer, aiming to convey immune 

reactivity against tumor-associated antigens, for which endogenous T cell responses are usually 

weak. Many tumor antigens are in fact self-antigens that are expressed in the thymus, and 

accordingly, most tumor-reactive T cells of high avidity become negatively selected, in contrast 

to pathogen-specific T cells (8). Therefore, there is a need for a robust technology that allows 

rapid identification and isolation of CD8+ T cells expressing TCRs capable to efficiently activate 

and enhance T cell function against malignant cells. 

TCR-pMHC binding parameters are typically assessed by SPR, which requires laborious and 

expensive production of soluble TCRs and ignores the TCR-pMHC avidity effects related to 

CD8 co-receptor binding. On the other hand, kinetic measurements using pMHC tetramers or 

multimers have been extensively studied on the surface of antigen-specific CD8+ T cells, but due 

to the multivalent and heterogeneous composition of these multimers, this approach does not 

allow to accurately determine TCR-pMHC dissociation rates (9). Binding and dissociation 

measurements should ideally be performed using monomeric pMHC complexes. Because TCR-

pMHC interactions typically exhibit weak affinities and fast dissociation rates, this has long 

precluded conclusive measurements with monomeric pMHCs (10).  

Nauerth et al. (11) recently measured monomeric TCR-pMHC dissociation kinetics using 

reversible Streptamers and reported that virus-specific CD8+ T cells with longer half-lives (low 
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koff rates) conferred increased functional avidity and better in vivo protection than T cells 

exhibiting shorter t1/2 (high koff rates). However, the Streptamer assay (11) needs a significant 

lag time until monomeric TCR-pMHC dissociation starts to become detectable, limiting thereby 

off-rate analyses to antigen-specific T cells of relative long half-lives, typically found in immune 

responses against pathogens. Moreover, accurate measurements of TCR-pMHC binding 

parameters on living T cells (11-14) require specialized equipment, which is currently not 

available for the high-throughput screen of antigen-specific T cell populations. 

To overcome these limitations, we here applied pMHC multimers built on reversible chelate 

complexes of Ni2+-nitriloacetic acid (NTA) with oligohistidines (15) allowing the efficient and 

direct cytometry-based assessment of monomeric TCR-pMHC dissociation kinetics on the 

surface of (self) tumor-specific CD8+ T cells. We found that the NTAmer technology accurately 

predicted T cell biological responses within a large panel of tumor-specific T cell clones, 

providing novel means for the direct isolation of rare functionally relevant CD8+ T cells for 

adoptive cell transfer therapy.   
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MATERIALS AND METHODS 

Ethics statement 

The three HLA-A*0201-positive patients had stage III/IV metastatic melanoma and were included 

in immunotherapy studies (patient LAU 50, NCT00112242; patient LAU 155, NCT00002669; and 

patient LAU 618, NCT00112229; www.clinicaltrials.gov). The studies were designed and 

conducted according to the relevant regulatory standards, upon approval by the ethical commissions 

and regulatory agency of Switzerland. Patient recruitment, study procedures, and blood withdrawal 

were done upon written informed consent. 

Primary bulk CD8+ T cells and generation of tumor-specific CD8+ T cell clones  

Human primary HLA-A*0201pos CD8+ T lymphocytes were obtained following positive 

enrichment using anti-CD8-coated magnetic microbeads (Miltenyi Biotec), and cultured in 

RPMI supplemented with 8% human serum (HS) and 150 U/ml recombinant human IL-2. HLA-

A*0201-NTAmerpos (NY-ESO-1157-165 -specific or Melan-AMART-1-26-35 -specific) T cells from 

melanoma patient LAU 50 and LAU 618, respectively, were sorted by flow cytometry, cloned by 

limiting dilution and expanded in RPMI 1640 medium supplemented with 8% HS, 150 U/ml 

recombinant human IL-2, 1 µg/ml phytohemagglutinin (PHA) (Oxoid) and irradiated (30 Gy) 

allogeneic PBMCs as feeder cells. For patient LAU 155, twenty HLA-A*0201/NY-ESO-1157-165 

-specific T cell clones expressing dominant TCR BV1, BV8 and BV13 clonotypes and a non-

dominant TCR BV2 clonotype were selected from our previously generated database of T cell 

clones (16), thawed and in vitro expanded before further use. Primary bulk CD8+ T cells and 

tumor-specific T cell clones were expanded by periodic restimulation with 30-Gy irradiated 

allogeneic PBMCs and 1 µg/ml PHA. 
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Lentiviral production and cell transduction 

Full-length codon-optimized TCR AV23.1 and TCR BV13.1 chain sequences of a dominant HLA-

A*0201/NY-ESO-1157–165 specific T cell clone of patient LAU 155 (16) were cloned in the pRRL 

third generation lentiviral vectors as an hPGK-AV23.1-IRES-BV13.1 construct  and structure-based 

amino acid substitutions were introduced into the WT TCR sequence as described previously (5). 

Lentiviral production was performed using the calcium-phosphate method and concentrated 

supernatant of lentiviral-transfected 293T cells was used to infect TCR-α knockout CD8+ SUP-T1 

cells (ATCC number CRL-1942, mycoplasma-free), CD8-null Jurkat T cells (ATCC number TIB-

152; mycoplasma-free), or primary CD8+ T cells overnight. Levels of transduced TCR expression 

on SUP-T1, Jurkat cells and primary bulk CD8+ T cells were monitored with PE-labeled HLA-

A*0201/NY-ESO-1157-165 specific multimers (TCMetrix Sàrl) and FITC-conjugated BV13.1 

antibody (Beckman Coulter). 

NTAmer production and staining 

NTAmers were synthetized by TCMetrix Sàrl (www.tcmetrix.ch) as described in (15). NTAmers 

are composed of Streptavidin-Phycoerythrin (SA-PE, Invitrogen) complexed with biotinylated 

peptides carrying four Ni2+-nitrilotriacetic acid (NTA4) moieties and non-covalently bound to His-

tagged HLA-A*0201 monomers containing β2m or a Cy5-labeled β2m. Monomers were obtained 

by refolding of the HLA-A*0201 heavy chain in the presence of β2m or Cy5-labeled β2m 

containing the S88C mutation with Cy-5-maleimide (GE Healthcare) and the analog NY-ESO-1157-

165 [SLLMWITQA] or Melan-AMART-1
26-35 [ELAGIGILTV] tumor antigenic peptide, optimized for 

enhanced HLA-A*0201 binding. After purification on a Superdex S75 column, pMHC monomers 

were mixed at a 10-fold ratio with SA-PE-NTA4 in the presence of Ni2+ as described in (15). The 

same procedure was used to prepare CD8-binding deficient HLA-A*0201 monomers bearing the 
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D227K/T228A mutations in the HLA-α3 domain (17). Dually labeled NTAmers containing SA-PE 

and Cy5-labeled monomers were used for dissociation kinetic measurements as described below. 

Single labeled NTAmers containing SA-PE and unlabeled monomers were used for flow cytometry-

based sorting of tumor-specific T cells. Once sorted, tumor-specific T cells were treated with 100 

mM imidazole at 4oC, allowing the rapid dissociation of the SA-PE-NTA4 scaffold and pMHC 

monomers before in vitro T cell cloning by limiting dilution.     

Dissociation kinetic measurements 

TCR-transduced CD8+ SUP-T1 or CD8- Jurkat cells (5x105 cells) and tumor-specific CD8+ T cell 

clones (2x105 cells) derived from patients LAU 155, LAU 50 and LAU 618 were incubated for 40 

min at 4°C with HLA-A*0201/NY-ESO-1157-165 or HLA-A*0201/ Melan-AMART-1
26-35 NTAmers 

containing streptavidin (SA)-phycoerythrin (PE) and Cy5-labeled monomers in 50 μl FACS buffer 

(PBS supplemented with 0.5% BSA, 15 mM HEPES and 0.02% NaN3). After a washing step, cells 

were suspended in 500 µl FACS buffer at 15°C (for SUP-T1 and Jurkat cells) or 200 µl FACS 

buffer at 4°C (for primary T cell clones from melanoma patients) and cell surface-associated mean 

fluorescence was measured under constant temperature using a thermostat device (15oC for SUP-T1 

and Jurkat cells and 4oC for primary T cell clones) on a SORP-LSR II flow cytometer (BD 

Biosciences) following gating on living cells. PE-NTA4 and Cy5-pMHC monomer fluorescence 

was measured before (between 30s to 1 min; baseline) and during 5 to 10 minutes after the addition 

of imidazole (100 mM). High-resolution microscopy flow analysis was performed on an Amnis 

ImageStreamx Mark II instrument (Merck Millipore) using a 40x objective. Staining was performed 

as described above for SUP-T1 cells. PE-NTA4 and Cy5-pMHC monomer fluorescence was 

measured before (t = 0) and during 5 minutes upon the addition of imidazole (100 mM) at 20oC.  A 
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60 seconds lag time due to the automated handling of cell suspension by the Amnis instrument 

precluded earlier time-point measurements.  

Dissociation kinetic data analysis 

Flow cytometry-based data were processed using the FlowJo software (v.9.6, Tree Star, Inc.). After 

gating on living cells, PE or Cy5 mean fluorescence intensity was derived using the kinetic module 

of the FlowJo software. Gates of 6 seconds period were created following addition of imidazole at 

the following time-points; 15s, 30s, 45s, 60s, 90s, 120s and then every minute for 10 minutes. 

Geometric MFI was measured at each time-points after gating on HLA-A*0201/NY-ESO-1157-165- 

or HLA-A*0201/ Melan-AMART-1
26-35-specific staining. Irrelevant Flu-specific gMFI values were 

systematically subtracted at the various time-points. Corrected gMFI values were plotted and 

analyzed using the GraphPad Prism software (v.6, GraphPad). 

Calcium mobilization assays 

5×104 TCR- transduced SUP-T1 or primary bulk CD8+ T cells were loaded with 2 μM Indo 1-

AM (Sigma-Aldrich, Switzerland) for 45 minutes at 37°C. Cells were washed and resuspended 

in 250 μl pre-warmed RPMI containing 2% FCS. Baseline was recorded for 30 seconds before 1 

μg/ml of undissociated HLA-A*0201/NY-ESO-1157-165 NTAmers (for SUP-T1) or 1 μg/ml 

HLA-A*0201/NY-ESO-1157-165-specific multimers (for primary CD8+ T cells) were added to the 

cells allowing specific stimulation. Intracellular Ca2+ flux was assessed over 5 minutes under UV 

excitation and constant temperature of 37°C using a thermostat device on a LSR II SORP (BD 

Biosciences) flow cytometer. Indo-1 (violet)/Indo-1 (blue) 405/525 nm emission ratio was 

analyzed by FlowJo kinetics module software (TreeStar). 

Chromium release and tumor recognition assays  
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The functional avidity of antigen recognition was analyzed in a 4-hour 51Cr-release assay using 

TAP-/- deficient T2 (HLA-A*0201pos) target cells pulsed with serial dilutions of the natural NY–

ESO-1157-165 peptide [SLLMWITQC] for tumor-specific T cell clones derived from patient LAU 

155 and LAU 50 or the natural Melan-AMART-1
26-35 peptide [EAAGIGILTV] for tumor-specific T 

cell clones derived from patient LAU 618. The NY-ESO-1 peptide was preincubated for 1 hour 

at room temperature with the disulfide-reducing agent Tris [2-carboxyethyl] phosphine (TCEP; 2 

mM, Pierce Biotechnology) before functional assays. The percentage of specific lysis was 

calculated as follows: 100 × (experimental − spontaneous release)/ (total − spontaneous release). 

For T cell clones of defined TCR αβ clonotypes previously derived from patient LAU 155 (16),  

antigen-specific recognition and lytic activity was further assessed against the melanoma cell 

lines Me 275 (HLA-A2pos/NY-ESO-1pos) and NA8 (HLA-A2pos/NY-ESO-1neg).  

Statistics 

Statistical analyses were done with the GraphPad Prism software. A minimum of three 

independent experiments were performed to ensure a statistical power of 100% at α = 0.05 (Fig. 

2 and 3), and a sample size ≥ 23 to ensure a statistical power of 80% at α = 0.05 (Fig. 5). 

Correlation analyses were performed using Pearson (Fig. 2 to 4) or Spearman (Fig. 5) coefficient 

r. The associated p value (two-tailed, α = 0.05) quantifies the likelihood that the correlation is 

due to random sampling. Two different investigators performed each TCR-pMHC dissociation 

kinetic experiment independently, and experiments described in Figure 5 were performed 

blinded for both sample allocation and outcome assessment.  
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RESULTS 

Direct measurements of monomeric TCR-pMHC dissociation kinetics by NTAmers 

We previously developed a method for the isolation and analysis of antigen-specific cytotoxic T 

cells by reversible NTAmers (10, 15). Upon addition of imidazole at low, non-toxic 

concentration, the SA-PE-NTA4 moieties rapidly decay (average dissociation half-life of 2.5 

sec), thereby releasing the pMHC monomers bound at the cell surface. Consequently, NTAmers 

allow FACS-sorting of CD8+ T cells without inducing adverse effects on the cell integrity (e.g. 

activation-induced cell death) (10, 15). Taking advantage of the fact that NTAmers can be 

switched from stable binding to rapid dissociation, a two-color NTAmer was engineered to 

assess monomeric TCR-pMHC dissociation kinetics directly on living CD8+ T cells (Fig. 1A).  

We first evaluated this novel approach by direct visualization of the dissociation process on 

individual human CD8+ SUP-T1 cells expressing TCRs of increasing affinities for the HLA-

A*0201-restricted tumor epitope NY-ESO-1157-165 (18), using a flow cytometer generating 

simultaneous high resolution microscopy imaging (ImageStreamX MarkII) (Fig. 1B). As 

predicted, we observed strongest and most sustained fluorescence levels for T cells of very high 

TCR affinities (e.g. QMα and wtc51m). Because of a 60 sec lag time due to the automated 

handling of cells following the addition of imidazole, the imaging approach precluded the 

visualization of labeled monomeric pMHC dissociation for T cells expressing TCRs ranging 

within the physiological range (e.g. V49I, wild-type and DMβ). To solve this issue, we used a 

conventional flow cytometer (LSRII-SORP) equipped with a thermostat, which drastically 

reduced the lagging time to less than 5 sec (Fig. 1C), thereby allowing the accurate assessment of 

monomeric pMHC dissociation kinetics on the surface of CD8+ T cells across a wide TCR 

affinity spectrum (Fig. 1D, Supplementary Fig. S1A). To validate the NTAmer technology, we 
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next compared these dissociation values with SPR kinetics data obtained with the corresponding 

soluble TCRs (Table 1). Robust correlations were found between NTAmer-based cell surface 

monomeric pMHC dissociation kinetics (half-live t1/2 and koff), with both koff rates and affinities 

measured by SPR, contrasting with the weaker correlations obtained with pMHC tetramers (Fig. 

2A, Supplementary Fig. S2A).  

 

CD8 co-receptor stabilized the TCR-pMHC complex by prolonging the dissociation half-life by 

a factor of 3 to 4-fold  

To precisely quantify the contribution of CD8 co-receptor to monomeric TCR-pMHC 

dissociation, we generated NTAmer227-228 variants containing the HLA-A*0201 D227K/T228A 

mutations in the MHC α3 domain that abolish CD8 binding to pMHC (17). Using the same panel 

of TCR transduced CD8+ SUP-T1 cells we show that abrogating CD8-MHC binding drastically 

diminished dissociation half-lives (t1/2) over the whole spectrum of TCR affinities (Fig. 2B, 

Supplementary Fig. S1B and C). Monomeric off-rate (koff and t1/2) correlations between 

NTAmers227-228 and SPR were highly significant (Fig. 2A, Supplementary Fig. S2A). 

Comparison between wild-type and CD8-binding deficient NTAmer-based half-lives revealed 

that CD8 stabilized by a factor of 3 to 4-fold the interaction between tumor-specific TCRs and 

HLA-A*0201/NY-ESO-1 irrespectively of the TCR affinity (Fig. 2B). A similar effect of CD8 

binding to pMHC was observed when using TCR transduced Jurkat T cells that lack CD8 

expression (Fig. 2C and D; Supplementary Fig. S2B) with koff and t1/2 values that were highly 

comparable to those found by NTAmers227-228 or by SPR on CD8+ T cells (Table 1). Altogether, 

the NTAmer technology permits (i) the precise measurements of monomeric TCR-pMHC 

dissociation kinetics directly on living T cells expressing a wide TCR affinity range, including 

 12 



  Hebeisen et al., v20150203 

those typically found within the self/tumor-specific repertoires, and (ii) the quantification of the 

contribution of CD8 binding on the TCR-pMHC complex stability, which is not possible in SPR 

measurements.   

 

Monomeric TCR-pMHC dissociation kinetics correlate with enhanced T cell responsiveness   

Next we compared koff rates obtained using NTAmers and the intracellular calcium mobilization 

on CD8+ SUP-T1 cells (Fig. 3A and B) and primary CD8+ T cells (Fig. 3D and E) expressing 

the panel of affinity-optimized TCRs against NY-ESO-1 tumor antigen. In line with our previous 

reports (19, 20), the Ca2+ flux was enhanced with increasing TCR affinity, up to reaching a 

plateau, while further affinity increase (KD < 1 µM) resulted in reduced calcium signaling. 

Within the physiological TCR-pMHC affinity range, however, both SUP-T1 cells and primary T 

cells exhibited strong correlations between dissociation rates and Ca2+ mobilization (Fig. 3C and 

F); there was an enhanced Ca2+ flux in T cells of longer half-lives (low koff), contrasting with the 

reduced signaling observed in T cells of shorter t1/2 (high koff). An overall reduction in Ca2+ flux 

was observed when using mutant multimer/HLA-A*0201227-228 for specific stimulation, but this 

effect was less stringent for T cells expressing very high TCR affinities (e.g. TMα, QMα and 

wtc51m) (Fig. 3A and B). As previously reported (20-22), these data indicate that the degree of 

CD8 dependence for T cell activation inversely depends on the affinity and dissociation half-life 

of the TCR-pMHC interaction. 

We extended these observations to a clinically relevant setting, and characterized koff rates and 

functional avidity of T cells obtained from a large set of HLA-A*0201/NY-ESO-1157-165-specific 

CD8+ T cell clones expressing well-defined TCRαβ clonotypes derived from LAU 155, a 
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melanoma patient with long lasting anti-tumor T cell responses (16). The dissociation rates of 

those cytotoxic T cell clones clustered within a narrow range (Fig. 4A, Supplementary Fig. S3A), 

and strongly correlated with EC50 target cell killing (50% maximal lysis; Fig. 4C) and tumor cell 

recognition (Fig. 4E), with TCR clonotypes having long half-lives (low koff) exhibiting increased 

T cell cytotoxicity (Fig. 4B and D). Conversely, NY-ESO-1-specific TCR clonotypes with short 

half-lives (high koff) showed reduced T cell killing capacities.  

 

Identification of rare high avidity, tumor-specific CD8+ T cells by monomeric TCR-pMHC 

dissociation kinetic measurements 

To find out whether NTAmers allow direct identification of tumor-specific CD8+ T cells with 

high tumor killing capacity, we derived 147 tumor-specific T cell clones from two other 

melanoma patients with detectable ex vivo T cell responses against the HLA-A*0201 restricted 

tumor antigens NY-ESO-1157-165 and Melan-AMART-1
26-35, respectively, and screened them for 

monomeric dissociation rates (Fig. 5A and D; Supplementary Fig. S3B and C). Tumor-specific T 

cell clones were distributed according to their TCR Vβ family expression using monoclonal 

antibodies and koff rate analyses revealed large differences in half-lives between specific TCRs 

(Supplementary Fig. S4). Next, we performed killing assays with 57 clones selected for 

relatively low or high koff values (Fig. 5B and E). We observed, for both antigenic specificities, a 

robust correlation between off-rates and the functional avidity (EC50) determined with the 

cytotoxicity assay (Fig. 5C and F), demonstrating that NTAmers allow reliable assessment of 

surface-based TCR-pMHC dissociation kinetics and rapid selection of highly potent tumor-

specific T cell clones derived from different cancer patients.  
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DISCUSSION 

Identifying antigen-specific T cells that confer efficient effector function is critical for successful 

adoptive cell therapy. The stability of TCR binding for the peptide-MHC complex is a key 

determinant for T cell activation. Several lines of evidence argue for a close relationship between 

cell surface dissociation kinetics (koff) and functional T cell responses (5, 23-26). Yet, rapid and 

accurate screening methods to measure TCR-pMHC binding kinetics are still needed to isolate 

antigen-specific T-cells expressing TCRs of high binding avidity. Recently, we developed a 

novel approach combining reversible peptide-MHC multimers (NTAmers; (15)) and real-time 

flow cytometry (Fig. 1). Using SPR, we had previously determined the TCR-pMHC binding 

strength of sequence-optimized HLA-A*0201/NY-ESO-1157-165 specific TCRs with increasing 

affinity of up to 150-fold from the wild-type receptor, including two outliers, a very low- and a 

very high-affinity TCR (5, 20). This TCR panel provides a unique model for validating 

monomeric TCR-pMHC dissociation kinetics at the surface of T cells by NTAmers. Here, we 

demonstrate that NTAmer-based off-rates (koff, t1/2) followed the same TCR-pMHC binding 

hierarchy than previously established (20), in excellent agreement to both binding parameters, 

koff and the dissociation constant KD, obtained by SPR (Fig. 2; Table 1). 

Due to their switch ability i.e. high stability and rapid reversibility (< 5 sec), NTAmers allowed 

accurate determination of dissociation rates, even for weak TCR-pMHC interactions, i.e. fast off-

rates, such as those found for (self) tumor-specific CD8+ T cell repertoires (Fig. 4). Notably, the 

NTAmer approach differs from the Streptamer one, which is mostly limited to the detection of 

CD8+ T cells of high avidity such as virus-specific cells, as it requires a significant lag time (60 

sec) before monomeric TCR-pMHC dissociation becomes detectable (11).  Moreover, the 

NTAmer-based assay represents a rapid and straightforward approach for the quantitative 
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assessment of monomeric koff rates on a large set of cloned antigen-specific CD8+ T cells 

derived from different patients and tumor epitopes (HLA-A*0201/NY-ESO-1157-165 and HLA-

A*0201/Melan-AMART-1
26-35) (Fig. 5). Importantly, we demonstrate robust correlations between 

dissociation off-rates and the biological responses (e.g calcium flux and target cell killing) on a 

large panel of CD8+ T cell clones specific for two distinct tumor antigens, indicating that TCR-

ligand koff rate is a reliable predictor of T cell function (Fig. 3-5).  

Interactions between TCRs and pMHC are usually measured by SPR or pMHC tetramer or 

multimer staining, which requires one binding partner in soluble form. Both approaches have 

caveats. Due to their incomplete dissociation and multivalent nature, accurate off-rates data from 

pMHC tetramer/multimer staining measurements are imprecise. Conversely, monomeric 

dissociation koff rates measured by the NTAmer technology were within the range of seconds to 

minutes, spanning a broad range (2-logs), as compared to a narrow range of minutes observed 

when using pMHC tetramers. Moreover, SPR fails to take into account rapid rebinding of the 

TCR to the same pMHC, because one of the two binding partners is constantly moving in the 

fluid phase, which impacts on the binding kinetics. Increased kon rates have been shown to allow 

rapid rebinding after TCR-ligand dissociation, resulting in enhanced effective dissociation half-

life of the TCR-pMHC interaction (25, 27). This may explain our observation that TCR variants 

with faster kon (e.g. TMα and QMα) showed prolonged NTAmer-based dissociation half-lives 

compared to soluble monomeric off-rates measured by SPR (Table 1, Supplementary Fig. S5). 

The NTAmer-based approach further deviates from SPR measurements, as it provides data on 

living cells and includes contributions of CD8 to TCR-pMHC interactions. The CD8 co-receptor 

enhances antigen recognition and T cell activation by stabilizing TCR-pMHC interaction at the 

cell surface (28-31) and recruiting p56lck to TCR/CD3 complex promoting cell signaling (32, 33). 
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Here we demonstrate that CD8 strengthened the TCR-pMHC binding mainly by decreasing the 

TCR-pMHC dissociation by a factor of 3 to 4-fold (Fig. 2), as anticipated by previous tetramer 

dissociation assays (22, 30). Interestingly, the CD8 stabilization factor was independent of the 

TCR-pMHC affinity, in contrast to the CD8 dependence for T cell activation, which can be 

directly linked to the affinity (3, 20, 22), and allows tuning the sensitivity and specificity of T 

cell responses (34).  

We recently provided new evidence that T cell signaling and activation are optimal within a 

given TCR-pMHC affinity window (20), controlled through TCR affinity-mediated regulatory 

molecules, involving the inhibitory receptor PD-1 and SHP-1 phosphatase (19). Furthermore, 

while high avidity T cells have been shown to control tumor growth, they become preferentially 

tolerized in the tumor microenvironment (35) or can target normal tissues expressing the cognate 

antigen (36, 37). Therefore, tumor-specific T cells of high avidity may not always be 

functionally better, and it remains to be fully determined to which degree intermediate or high 

avidity T cells contribute to protective immunity. In this regard, NTAmers constitute a highly 

valuable tool for assessing the TCR-pMHC avidity and its relation to cell activation, signaling 

and function in naturally- or therapeutically-induced tumor-specific T cell responses, with TCR-

pMHC affinities spanning within the physiological range.  

In summary, NTAmer technology enables efficient and direct interrogation of monomeric TCR-

pMHC dissociation kinetics on a large set of living antigen-specific T cells by flow cytometry, 

and provides novel perspectives for rapid identification of rare functionally relevant tumor-

reactive CD8+ T cells . Our approach may also be applicable to the analysis of other weak 

protein-protein interactions. Precise and wide-spread characterization of TCR-pMHC avidities 

will likely improve the development of T cell based immunotherapies in cancer patients.    
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Table 1. Kinetic characteristics of HLA-A*0201/NY-ESO-1157-165-specific TCR variants 

 
(a) Wild-type TCR (BC1; AV23.1/BV13.1) was isolated from melanoma patient LAU 155 (16) and a panel of TCR variants of 

progressive increasing affinities against HLA-A*0201/NY-ESO-1157-165 was established as described in (20). 

(b) TCR-pMHC affinity, koff and kon values were previously measured by SPR as reported in (20). 

(c) CD8+ T cells, TCR-transduced SUP-T1 cells; CD8- T cells, TCR-transduced Jurkat cells. 

n.a, not applicable; n.d, not done.  

 

 
 

 

 

 

  

 SPR TCR-pMHC kinetics (b) NTAmer dissociation kinetics NTAmer227-228 dissociation kinetics 
 Soluble TCRs CD8+ (c) CD8- (c) CD8+ (c) CD8- (c) 

TCR variants (a) 
KD 
μM 

 

kon 
M-1s-1 
x104 

koff  
s-1 

x10-2 

t1/2  
s 
 

koff 
s-1 

x10-2 

t1/2 
s 
 

koff 
s-1 

x10-2 

t1/2  
s 
 

koff 
s-1 

x10-2 

t1/2 
s 
 

koff  
s-1 

x10-2 

t1/2 
s 
 

V49I n.a n.a n.a n.a 21.21 3 n.a n.a n.a n.a n.a n.a 
Wild-type 21.4 1.1 23.0 3 4.08 17 10.2 7 11.2 6 15.4 5 
G50A  4.62 1.5 6.9 10 1.47 47 n.d n.d 5.28 13 n.d n.d 
A97L  2.69 2.3 6.1 11 1.60 44 n.d n.d 4.70 15 n.d n.d 
DMβ  1.91 2.4 4.5 15 0.78 90 2.76 25 3.02 23 3.15 22 
TMβ  0.91 1.4 1.3 53 0.28 247 1.03 67 0.87 79 0.97 72 
TMα 0.40 12.1 4.8 14 0.44 158 n.d n.d 1.76 40 n.d n.d 
QMα 0.14 10.9 1.5 46 0.21 341 0.80 87 0.74 94 0.75 92 
Wtc51m 0.015 8.5 0.13 533 0.05 1505 0.14 497 0.15 475 0.14 496 
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FIGURE LEGENDS 

Figure 1. Assessment of monomeric dissociation kinetics by reversible NTAmers. (A) Basic 

illustration of the off-rate (koff) dissociation assay. Human CD8+ antigen-specific T cells were 

first stained with HLA-A*0201/tumor antigen-specific NTAmers containing PE-labeled 

backbone (green) and Cy5-labeled monomers (red) carrying imidazole-sensitive Ni2+-NTA4 

moieties. Upon addition of imidazole, the NTAmer multimeric complex rapidly dissociated into 

Cy5-labeled pMHC monomers releasing the SA-PE NTA4 molecules. Decay of Cy5 

fluorescence was visualized by high-resolution microscopy flow cytometry (B) or conventional 

flow cytometry over time (C) using SUP-T1 cells engineered with TCRs of incremental affinity 

for the tumor antigen A2/ NY-ESO-1157-165 (20) (Table 1). (B) Differential interference contrast 

(DIC), PE, Cy5 and PE/Cy5 composite images are shown at the indicated time-points. (C) 

Representative dot plots from FACS-based dissociation curves (Cy5-labeled pMHC monomers) 

from TCR-transduced SUP-T1 cells. Decay of PE-labeled NTA4 scaffold moieties is depicted 

alongside.  (D) Temperature-controlled (15oC) TCR-pMHC monomeric dissociation off-rates 

(Cy5-monomers, blue circles) were assessed upon addition of imidazole (t = 0) within the entire 

panel of TCR-transduced SUP-T1 cells. Data best fitted a one-phase exponential decay equation 

after subtraction of non-specific background and are expressed as % of maximal binding, 

normalized to 100% and plotted over time. Decay of SA-PE-NTA4 fluorescence (white circles) 

from NTAmers occurred within the first 2-3 seconds upon imidazole addition and was 

independent TCR-pMHC affinity. Time for half maximal binding (t1/2) was determined and 

average half-life value (t1/2) of  > 3 independent experiments is depicted in second (s) for each 

TCR engineered SUP-T1 cell variant. Untransduced SUP-T1 cells; no TCR. N/A; not applicable. 
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Figure 2. Contribution of CD8 binding to TCR-pMHC dissociation kinetics. (A) Positive 

correlations (Pearson coefficient r and p value) obtained between surface-based monomeric half-

lives (t1/2) with wild-type NTAmers (monomer, blue line) or CD8-binding deficient NTAmers227-

228 (monomer227-228, red line) on CD8+ TCR-transduced SUP-T1 cells, and monomeric half-lives 

(t1/2) and affinities (equilibrium dissociation constant KD) as measured by SPR on soluble TCRs. 

Weaker correlations were found when assessing half-lives using a pure grade tetramer assay 

(opened circles). (B) Direct comparison of wild-type (blue circles) and CD8-binding deficient 

(red diamonds) monomeric dissociation half-lives by NTAmers (> 3 independent experiments). 

The impact of CD8 binding is shown as fold change (grey histograms) for each TCR-transduced 

SUP-T1 variant. (C) Representative first order monomeric TCR-pMHC dissociation curves 

detected upon addition of imidazole at 15oC (t = 0) for CD8-null Jurkat T cells engineered with 

the indicated TCR variants (expressed as % of maximal binding over time) and labeled with 

wild-type NTAmers (monomer, blue circles) or CD8-binding deficient NTAmers227-228 

(monomer227-228, red circles). Decay of PE-NTA4 fluorescence (white circles) is also represented. 

Average dissociation half-life value (of 3 independent experiments) with wild-type NTAmers or 

NTAmers227-228 is shown for each TCR-transduced Jurkat T cell variant. (D) Positive correlations 

(Pearson coefficient r and p values) between surface-based monomeric half-lives (t1/2) with wild-

type NTAmer (monomer, blue line) or CD8-binding deficient NTAmer227-228 (monomer227-228, 

red line) on TCR-transduced CD8-null Jurkat T cells, and monomeric half-lives (t1/2) by SPR on 

soluble TCR variants. 

 

Figure 3. Relationship between cell-surface monomeric dissociation kinetics and calcium 

flux. (A-C) Intracellular calcium mobilization of CD8+ SUP-T1 cells expressing TCRs of 
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incremental affinities for pMHC before (baseline) and over time after stimulation with 1µg/ml 

A2/NY-ESO-1157-165-specific multimers (blue circles) or 1 µg/ml CD8-binding deficient A2/NY-

ESO-1157-165-specific multimers227-228 (red diamonds). A representative kinetic analysis of 

calcium mobilization is depicted in (A) and the mean calcium flux values of 4 independent 

experiments are plotted as Ca2+ peak MFI (x104) in (B) together with maximal calcium flux 

induced after ionomycin stimulation. (C) Correlation (Pearson coefficient r and p value) between 

calcium flux peak MFI and dissociation koff rates for SUP-T1 cells expressing TCRs within the 

physiological affinity range (blue circles). Calcium flux values for SUP-T1 cells expressing 

supraphysiological affinity TCRs (TMα, QMα and wtc51m) (blue stars), and those obtained 

after stimulation with CD8-binding deficient multimers227-228 (red diamonds) are shown, but 

were not included in the correlative analysis. (D) A representative kinetic analysis of calcium 

mobilization in primary TCR-transduced CD8+ T cells before (no antigen-presenting cells; APC) 

and after stimulation with T2 cells pulsed with graded concentration of the analog NY-ESO-1157-

165 peptide (SLLMWITQA) or ionomycin as positive control. (E) The mean calcium flux values 

were plotted as Ca2+ peak MFI with varying peptide concentration for each primary CD8+ TCR-

transduced T cell variant. No calcium flux was detected upon stimulation of wild-type (WT) NY-

ESO-1-transduced T cells with Flu-specific peptide (Flu) or no APCs. (F) Correlation (Pearson 

coefficient r and p value) between half-maximal calcium mobilization capacity (Ca2+ EC50) and 

NTAmer-based dissociation koff values for T cells expressing TCRs within the physiological 

affinity range (gray circles). Calcium flux values obtained for CD8+ T cells expressing TCRs of 

supraphysiological affinities (TMα, QMα and wtc51m) are shown (blue stars), but were not 

included in the correlative analysis. 
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Figure 4. Relationship between cell-surface monomeric dissociation kinetics and target cell 

killing. Experiments were performed on A2/NY-ESO-1157-165-specific CD8+ T cell clones (n = 

20) expressing eight well-defined TCRαβ clonotypes, derived from melanoma patient LAU 155 

as previously described (16). (A) Representative first-order monomeric dissociation curves 

obtained upon addition of imidazole at 4oC  (t = 0) for tumor-specific T cell clones stained with 

A2/NY-ESO-1157-165-specific-NTAmers. Average half-lives (t1/2) determined from each distinct 

TCRαβ clonotypes (n = 2 to 3 independent sister T cell clones) are indicated and were highly 

reproducible in two independent experiments (data not shown). (B) The relative functional 

avidity of tumor-specific T cell clones expressing distinct TCRαβ clonotypes was assessed by 

measuring their lytic capacity for T2 target cells (A2pos; TAPneg/neg) pulsed with graded 

concentration of the natural NY-ESO-1157-165 peptide (SLLMWITQC). (C) Correlations (Pearson 

coefficient r and p value) between relative functional avidity (EC50, peptide concentration used 

to achieve 50% of maximal lysis) and monomeric TCR-pMHC dissociation koff values. Mean 

EC50 values of 3 independent experiments. (D) Tumor reactivity by tumor-specific T cell 

clonotypes for the melanoma cell line Me275 (A2pos/NY-ESO-1157-165
pos) at the indicated 

effector:target (E:T) ratio. (E) Correlations (Pearson coefficient r and p value) between 

melanoma cell killing (mean % of specific lysis at the E:T ratio of 10:1 from 2 independent 

experiments) and monomeric TCR-pMHC dissociation koff values. 

 

Figure 5. High-throughput screen of functionally relevant tumor-specific CD8+ T cells by 

NTAmers. Relationship between functional avidity and monomeric TCR-pMHC koff rates of a 

large panel of tumor-specific CD8+ T cell clones specific for A2/NY-ESO-1157-165 (A-C) or 

A2/Melan-AMART-1
26-35 (D-F) tumor antigen and derived from melanoma patient LAU 50 and 
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LAU 618 respectively. (A, D) Representative first order dissociation curves obtained after 

addition of imidazole at 4oC for CD8+ A2/NY-ESO-1157-165-specific T cell clones (LAU 50; n = 

67) and A2/Melan-AMART-1
26-35-specific T cell clones (LAU 618, n = 80) respectively, stained 

with specific NTAmers and arbitrarily separated into short (white circles) or long (black squares) 

half-lives according to their t1/2 values. (B, E) Relative functional avidity on a selection of 

A2/NY-ESO-1157-165-specific T cell clones (n = 23) or A2/ Melan-AMART-1
26-35-specific T cell 

clones (n = 34) of short or long half-lives using T2 target cells pulsed with graded concentration 

of natural NY-ESO-1157-165- or Melan-AMART-1
26-35-specific peptide. (C, F) Positive correlations 

(Spearman coefficient r and p value) obtained between relative functional avidity by EC50 (50% 

of maximal target cell killing) and monomeric TCR-pMHC dissociation koff values. Each data-

point represents the result of an individual tumor-specific T cell clone, averaged from 2 

independent experiments. 
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SUPPLEMENTARY FIGURE LEGENDS 

Supplementary Figure S1. Determination of TCR-ligand off-rates on a panel of 

CD8+ T cells engineered with TCRs of incremental affinities against the A2/NY-

ESO-1 tumor antigen. (A and B) FACS-based TCR-pMHC dissociation curves for 

each TCR-transduced SUP-T1 cell variant are depicted after staining with wild-type 

HLA-A*0201/NY-ESO-1157-165 -specific NTAmers (A) or CD8 binding-deficient 

HLA-A*0201/ NY-ESO-1157-165 -specific NTAmers227-228 (B). Imidazole (100 mM) 

was added after 1 minute of baseline recording and monomeric pMHC dissociation 

was followed in the Cy5 channel during 10 to 15 minutes at constant temperature 

(15oC). (C) Monomeric TCR-pMHC dissociation rates, following reversible wild-

type NTAmer (monomer, blue circles) or CD8-binding-deficient NTAmer227-228 

(monomer227-228, red diamonds) staining, were analyzed in Prism and best fitted a first 

order monomeric decay function after subtraction of non-specific background. 

Average half-life values (in second, s) of > 3 independent experiments are depicted 

for each TCR-transduced SUP-T1 cell variant and were highly reproducible between 

two different investigators (data not shown). Of note, no NTAmer staining was 

detected in untransduced SUP-T1 cells (no TCR). N/A; not applicable.  

 

Supplementary Figure S2. Relationship between monomeric off-rates by 

reversible NTAmers and monomeric off-rates and affinity by SPR. (A) 

Correlations (Pearson coefficient r and p value) between surface-based TCR-pMHC 

off-rates (koff) with A2/NY-ESO-1157-165 -specific NTAmers (monomer, blue circles), 

CD8-binding deficient NTAmers227-228 (monomer227-228, red diamonds) or pure grade 

tetramers (white circles) on CD8+ TCR-transduced SUP-T1 cells, and monomeric 

off-rates (koff) (left panel) and affinities (equilibrium dissociation constant KD) (right 

panel) values as measured by SPR on soluble TCR variants. (B) Correlations (Pearson 

coefficient r and p value) between surface-based TCR-pMHC off-rates (koff) with 

A2/NY-ESO-1157-165 -specific NTAmers (monomer, blue circles) or CD8-binding 

deficient NTAmers227-228 (monomer227-228, red diamonds) on CD8- TCR-transduced 

Jurkat T cells, and monomeric off-rates (koff) and affinities (KD) values as measured 

by SPR on soluble TCR variants. Of note, similar correlations were obtained between 

NTAmers and NTAmers227-228 on TCR-transduced Jurkat T cells lacking CD8 
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expression (B) and were highly similar to those found by NTAmers227-228 on 

CD8+ SUP-T1 cells (A).  

 

Supplementary Figure S3. Monomeric dissociation half-lives of naturally 

occurring or vaccine-induced tumor-specific CD8+ T cell clones from three 

melanoma patients. (A) Representative examples of NTAmer-based dissociation 

kinetics of A2/NY-ESO-1157-165-specific CD8+ T cell clones expressing well-defined 

TCRαβ clonotypes isolated from melanoma patient LAU 155 as described in (1). (B) 

Representative examples of NTAmer-based dissociation kinetics of a large panel of 

A2/NY-ESO-1157-165 CD8+ T cell clones from melanoma patient LAU 50 with 

naturally occurring anti-tumor CD8+ T cell responses. (C) Representative examples 

of NTAmer-based dissociation kinetics of A2/Melan-AMART-1
26-35-specific CD8+ T 

cell clones from melanoma patient LAU 618 following Melan-AMART-1
26-35 peptide 

vaccination and CpG oligodeoxynucleotide 7909 as adjuvant. Imidazole was added 

after 1 minute (A) or 30 seconds (B and C) of baseline recording and monomeric 

dissociation was followed in the Cy5 channel at constant temperature (4oC) during 3 

to 5 minutes. (A-C) Data are expressed as % of maximal binding after subtraction of 

non-specific background, normalized to 100% and plotted over time (in seconds). 

Monomeric TCR-pMHC dissociation rates were analyzed in Prism and best fitted a 

first order monomeric decay function.  

 

Supplementary Figure S4. Monomeric TCR-pMHC kinetics of tumor-specific 

CD8+ T cell subpopulations according to the TRBV repertoire usage. NTAmer-

based dissociation half-lives were assessed on A2/NY-ESO-1157-165-specific CD8+ T 

cell clones derived from melanoma patient LAU 50 (n = 50) (A) and A2/Melan-

AMART-1
26-35-specific CD8+ T cell clones (n = 70) from melanoma patient LAU 618 

(B) and distributed according to the expression of TCR Vβ family usage by using 

anti-BV monoclonal antibodies (mAb) and flow cytometry. Of note, a convenient 

feature of the anti-BV13 and anti-BV17 mAb reactivity allowed us to clearly 

discriminate between bright/high and dim tumor-specific T cells. 
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Supplementary Figure S5. Impact of rapid association on-rates on cell surface 

dissociation kinetics by reversible NTAmers. Comparison of first order monomeric 

TCR-pMHC dissociation kinetics obtained with NY-ESO-1157-165-specific NTAmers 

(monomer, blue symbols) or CD8-binding deficient NTAmers227-228 (monomer227-228, 

red symbols) between two pairs of TCR variants among the panel of CD8+ SUP-T1 

cells, DMβ/TMα (top) and TMβ/QMα (bottom). These pairs express TCRs differing 

solely for αS53W, a TCR-alpha chain mutation known to significantly increase the 

association kon rates (TMα, 12.1x104 and QMα, 10.9x104 M-1s-1) while sharing 

similar dissociation koff rates by SPR(2) (see Table 1). The impact of αS53W 

mutation between each TCR pair on the dissociation half-lives by NTAmers and 

NTAmers227-228 is indicated as average fold difference from 3 independent 

experiments. Of note, rapid kon rates have been proposed to allow rapid rebinding of 

the TCR to the same pMHC without complete dissociation, thus prolonging effective 

dissociation half-lives when kon surpasses a threshold rate of 4.5 to 6x104 M-1s-1 as 

measured by SPR(3). This phenomenon of rapid rebinding is referred as the 

“confinement time” of a TCR-pMHC interaction and clarifies the role of kon in T cell 

activation(4). The differential experimental settings between NTAmer-based (cell 

surface of living cells) and molecular SPR-based measurements (plate bound with 

microflow system) may explain our observation that TCR variants with faster kon 

showed prolonged dissociation half-lives by NTAmers. Similar data were found when 

using CD8-binding deficient NTAmers227-228, suggesting that enhanced effective 

dissociation half-life is independent of the CD8-pMHC binding interaction. 
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