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Chapter 1

Introduction

The purpose of the work presented in this dissertation is to develop a robust

and efficient parametric estimation method for univariate discrete distri-

butions. Discrete data arise in various research fields, typically when the

observations are count data. In biological research for example, one is often

concerned with plant or animal counts obtained for each of a set of equal

units of space or time. In other experiments, one can be interested in the

number of animals carrying a mutation after being exposed to a certain dose

of a chemical (see example 8.1 in chapter 8). Another situation where the

data are discrete is the analysis of the length of hospital stays, measured in

days (see example 8.2 in chapter 8).

Robust estimation of discrete distributions has received some attention

in the literature, principally in the framework of minimum disparity esti-

mation. This type of procedures estimates the parameters of a distribution

by minimizing a certain disparity between the observed distribution and the

model. This method is particularly suited to the discrete framework, which

offers the possibility of direct comparison of the observed and the expected

5



6 CHAPTER 1. INTRODUCTION

frequencies at each of the sample space elements.1 A pioneering work by

Beran (1977) showed that by using minimim Hellinger distance estimators

one could obtain robustness properties together with full asymptotic effi-

ciency (first order efficiency). His approach to robustness contrasted with

the M-estimation approach, where the robustness is attained at some sac-

rifice of asymptotic efficiency (Hampel, Ronchetti, Rousseeuw, and Stahel,

1986). Mathematically, this must occur if one adheres to the notion that

the influence function carries most of the critical information about the ro-

bustness of a procedure. If one insists, for example, that it be bounded,

then it will generally not equal the influence function of the fully efficient

maximum likelihood estimator (MLE). However, many authors (e.g. Beran

(1977) and Lindsay (1994)) have discussed the limitations of the influence

function approach in measuring the robustness of minimum disparity esti-

mators (MDEs). We shall see in section 3.4 that a whole class of MDEs has

very attractive robustness properties, both in terms of breakdown point and

of contamination bias, while having the same influence function as the MLE.

Further investigation in the line of Beran (1977) came from Tamura and

Boos (1986) and Simpson (1987), who provided an appealing justification

of the robustness of the minimum Hellinger distance estimator. Cressie and

Read (1984) introduced a family of divergences, indexed by a single index λ,

which includes many important density-based divergences such as Pearson’s

and Neyman’s chi-squares, Hellinger distance, Kullback-Leibler divergence,

as well as the likelihood disparity, whose minimization yields the maximum

likelihood estimator. Lindsay (1994) introduced a larger class of disparities,

which contains the Cressie-Read disparities, and proposed some new alter-

natives to the members of the Cressie-Read family. In addition, he studied

extensively the efficiency and robustness properties of MDEs in great gen-

1In the continuous case, the implementation of such methods is made more complicated

by the fact that one has to calculate a disparity between a discrete distribution (the

empirical distribution) and a continuous one (the model).
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erality. Notably, he showed that in the discrete setting, all MDEs are first

order efficient. He showed that a trade-off between efficiency and robustness

nevertheless existed in this context, taking place between resistance to out-

liers and second order efficiency as defined by Rao (1961), and he provided a

criterion to control this trade-off. Low second order efficiency estimators can

be substantially poor compared to the maximum likelihood estimator when

the sample size is small. Thus, due to the trade-off, some of the most robust

members of the Cressie-Read family can have quite low efficiencies in small

samples. The poor performances of these highly robust estimators in small

samples have also been noted by Harris and Basu (1994); Basu and Sarkar

(1994); Basu et al. (1996), and the presence of potentially important bias in

small samples has been recognized by Basu, Basu, and Chaudhuri (1997).

Apart form the MDE approach, some authors (e.g. Cadigan and Chen

(2001); Marazzi and Yohai (2010)) developed M-estimating methods appli-

cable to discrete distribution estimation. These estimators are generally not

asymptotically fully efficient. They have a robustness-efficiency trade-off,

regulated by a scalar parameter, which can be set by fixing a desired asymp-

totic efficiency.

Our approach to the problem is to build a two-phase estimation proce-

dure, of the type introduced by Marazzi and Ruffieux (1999), Gervini and

Yohai (2002) and Marazzi and Yohai (2004). These authors propose to start

with a very robust - but not necessarily efficient - estimator (the initial es-

timator), and to use it to identify the outliers. Then, the outliers are either

removed or given low weights, and a weighted maximum likelihood estimator

is computed. (This second (final) estimator is defined in such a way as to be

consistent when the data follow the model.) Generally, the final estimator

keeps the breakdown point of the initial one, while being more efficient. The

weights can even be defined in an adaptive way, so that asymptotically, when

the data follow the model, no observations are removed or downweighted.

This generally gives rise to a first order efficient final estimator.
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Under these lines, and with robustness as the main goal, it is tempting

to start with some of the most robust minimum disparity estimators, in

spite of their possible shortcomings, in order to end up with a highly robust

and efficient final estimator. However, it appears that the trade-off in the

MDEs between robustness on one hand and bias and efficiency on the other

hand, is somewhat transferred to the final estimator. To better explore the

situation, we considered as initial estimators a selection of MDEs covering

a certain range of the robustness-efficiency trade-off. The result is that the

most performing MDEs, those with the best balance between robustness

and efficiency, give rise to the most performing final estimators, although the

differences in performance are much smaller between the final estimators than

between the corresponding initial ones. In nearly all investigated situations,

the final estimator outperforms the initial one.

We could have considered starting with an M-estimator, but the MDE

approach seems more natural in the discrete setting. Moreover, MDEs need

not compromise asymptotic efficiency to acquire robustness. Finally, MDEs

seem to be more outlier-resistant in terms of contamination bias than M-

estimators.2

We first considered a procedure directly inspired by the methods of

Marazzi and Yohai (2004), who define an adaptive cut-off point and remove

all observations that are beyond the cut-off. The cut-off is adaptive in that,

at the model, it tends to infinity, so that asymptotically no observations are

suppressed. This procedure, which we refer to as truncated maximum likeli-

hood (TML), gave some promising results, but it was outperformed by some

MDEs presenting a particularly good balance in robustness and efficiency.

In other words, when the mentioned MDEs are used as initial estimators,

the final estimator has weaker performances than the initial one, both in the

2In section 8.2 we apply MDEs to lengths of hospital stays data previously analyzed by

Marazzi and Yohai (2010) with an 80% efficient M-estimator, and it is visible in that ex-

ample that the MDEs are less influenced by the presence of outliers than the M-estimator.
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presence of contamination and at the uncontaminated model.

The key idea in the present work is a modified version of the method

by Marazzi and Yohai (2004), where each sample space element is given

an adaptive downweighting factor, independently of a cut-off point. The

downweighting factors are adaptive in the sense that, at the model, they

all converge to 1 in probability, and thus asymptotically no observation is

downweighted. This method allows to downweight specifically the positions

suffering contamination, without removing all larger positions at the same

time, thus reducing the efficiency loss. At the same time this procedure

allows to reduce the influence of outliers at any position, which was more

difficult with the cut-off method. We call this method the weighted maximum

likelihood (WML). The WML performs better than all the MDEs we used

as initial estimates, including the ones which outperformed the TML. The

WML is particularly natural in the discrete setting, yet it could be extended

to the continuous case, for which a procedure is sketched in section 10.1.

While most of this thesis is formulated in terms of a general family of

probability densities on the sample space X = {0, 1, 2, . . .}, a specific focus is

put on the negative binomial (NB) family. NB is a flexible general framework

to model discrete data. It is flexible in the sense that it allows for the

modeling of over-dispersion, i.e. it can handle situations where the variance

is greater than the mean, thus offering a wider scope than the widely used

Poisson model, for which the mean is equal to the variance. More specifically,

the NB is a generalization of Poisson, which it admits as a limiting case. Let

us refer again to the biological research problem of modeling plant or animal

counts obtained for each of a set of equal units of space or time. If the

individuals are uniformly and independently distributed in space or time the

distribution of the counts will be Poisson. Over-dispersion in the counts

will arise (somewhat counter-intuitively) if the organisms are “clustered”

(meaning that “it is easier for an individual to establish itself close to another

individual than further from it” (Clapham, 1936)). If the individuals are
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clustered in such a way that that the numbers of individuals in the clusters are

distributed independently with a logarithmic distribution, the distribution of

the counts will be NB (Anscombe, 1950). There are several other ways in

which a NB distribution can be obtained, see Anscombe (1950) for a detailed

presentation.

While the general results in this thesis are valid in a wide scope of discrete

models, some stronger results have been demonstrated in the framework of

the negative binomial model. Also, at the time of writing, programs have

been developed for the specific case of estimation of the negative binomial

parameters, and all examples of application are taken from the NB family.

This thesis is organized as follows: chapter 2 gives a review of the nega-

tive binomial model. Chapter 3 considers different candidates for the initial

estimator, including two different pairs of location-scales estimators. This ap-

proach is attempted because the procedure proposed by Marazzi and Ruffieux

(1999) started with location-scale estimators. However they considered con-

tinuous density estimation, and different shortcomings of this method in the

discrete setting lead us to abandon it. The rest of the chapter concentrates

on MDEs, for which we present some known results and establish some new

ones. Also, we propose a new MDE which offers a good compromise between

robustness and efficiency. Chapter 4 presents the outlier rejection methods

and the final estimator. Chapter 5 establishes that the breakdown point

(bdp) of the WML is at least as high as the bdp of the initial estimator.

In chapter 6 we analyze the asymptotic behavior of the WML. We show

that it has the same influence function as the MLE at the model, which

strongly suggests that it is asymptotically fully efficient. We also explore its

asymptotic bias under contamination, and compare it with the MDEs and

the TML. In chapter 7 we give simulation results, both in contaminated and

uncontaminated situation. Again, we compare the WML with the MDEs

and the TML. Chapter 8 presents two examples of application of the WML
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to real data. Chapter 9 concerns the computation of the estimates. Chapter

10 concludes this dissertation and presents a possible method for applying

the WML to continuous data.
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Chapter 2

The negative binomial model

2.1 Distribution

NB is a two parameter family of discrete probability densities, whose sample

space is the set of non-negative integers (including 0). Various parametriza-

tions are possible. We chose the following one: the probability that a variable

Y , following a NB distribution with parameters m and α, takes the value y

is

NBm,α(x) =
Γ (y + α−1)

y!Γ (α−1)

(
αm

1 + αm

)y

(1 + αm)−1/α , (2.1)

where m,α ∈ R
∗
+ and Γ(y) =

∫∞
0

ty−1e−tdt is the Gamma function.

The expected value of Y is E(Y ) = m and its variance is Var(Y ) = m+

αm2. Due to the form of the variance, the parameter α is called the dispersion

parameter. The variance is always larger than the mean, so that the NB

model is specifically suited for overdispersed data. From the expression for

the variance, we see that if α = 0 the variance becomes equal to the mean,

like in the Poisson model. And indeed, letting α → 0 in (2.1) yields the

Poisson distribution of mean m.

This parametrization is convenient firstly because m is the mean of the

distribution, thus having an immediate interpretation. A parametrization

13



14 CHAPTER 2. THE NEGATIVE BINOMIAL MODEL

using m and α−1 is also possible, but the use of α is much more convenient

for estimation, as noted by Ross and Preece (1985), Clark and Perry (1989)

and Piegorsch (1990). Indeed, using α−1 is problematic for various methods of

estimation, including the maximum likelihood, and the method-of-moments

(Clark and Perry, 1989). In the case of maximum likelihood, we get infinite

values of the estimate of α−1 as soon as the sample mean exceeds the sample

variance, so that the expected value of the estimator is infinite (see next

section).

2.2 Maximum likelihood

Since the estimation method we propose (the WML) is a modification of the

maximum likelihood (MLE) estimator, we briefly present the MLE in the

NB model. The log-likelihood corresponding to distribution (2.1) (up to a

constant in (m,α)) is

l(y,m, α) = log

[
Γ (y + α−1)

Γ (α−1)

]
+ y log(αm)− (y + α−1

)
log(1 + αm). (2.2)

Following Lawless (1987) and Piegorsch (1990), we use the following prop-

erty of the gamma function:

Γ(y + 1) = yΓ(y).

Thus we obtain

Γ (y + α−1)

Γ (α−1)
=

{
1 if xi = 0∏y−1

ν=0 (ν + α−1) if xi > 0,

which inserted into (2.2) yields

l(y,m, α) = Q(y, α) + y log(m)− (y + α−1
)
log(1 + αm), (2.3)

where

Q(y, α) =

{
0 if y = 0∑y−1

ν=0 log (1 + αν) if y > 0.
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The advantage of using the log-likelihood in form (2.3) is that it no longer

contains gamma functions, which simplifies numerical computations (the

gamma function grows extremely fast and would often reach the compu-

tational limit).

Differentiation of (2.3) with respect to m and α yields the following score

functions:

sm(y,m, α) =
y

m
− 1 + αy

1 + αm
, (2.4)

sα(y,m, α) =
∂Q

∂α
(x, α) + α−2 log(1 + αm)− m (y + α−1)

1 + αm
, (2.5)

where
∂Q

∂α
(y, α) =

{
0 if y = 0∑y−1

ν=0
ν

1+αν
if y > 0.

Let us consider a sample {y1, . . . , yn} of i.i.d. observations. Setting∑n
i=1 sm(yi, m̂, α̂) = 0 yields m̂ = ȳ.1 Then, solving

n∑
i=1

sα(yi, m̂, α̂) = 0 (2.6)

for α̂ gives the maximum likelihood estimate of α.

It should be mentioned that equation (2.6) does not always have a positive

solution. Anscombe (1950) identified that this happens when the sample

mean is superior to the sample variance. However, he also established that

in such cases the value of α which maximizes the sample likelihood at m = ȳ,∑n
i=1 l(yi, ȳ, α), over R+, is 0, i.e. we get a Poisson distribution2. Thus, the

1The MLE for m is just the arithmetic mean, which is known to be very non-robust.

We shall see in sections 6.2.2 and 7.2 that the MLE for α is also non-robust.
2Some authors (Ross and Preece, 1985; Piegorsch, 1990) suggest that negative values of

estimates of α should be allowed, indicating underdispersion compared to Poisson. These

values would arise precisely when the sample mean is superior to the sample variance. But

then the density would be positive only for x = 0, 1, . . . , i, where i is the largest integer

less than −1/α, and thus the sample space would change (in some cases, one would get a

“positive” binomial distribution). Here, we decide to restrict to positive values of α.
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MLE of α is defined as the solution of (2.6) if it is positive, and zero otherwise

(and it is now clear why the estimation in terms of α−1 is more problematic).

The MLEs for m and α are asymptotically independent, and Fisher’s

information matrix is given by

i(m,α) =

(
1

m+αm2 0

0 E
(
s2α(Y,m, α)

) ) .

2.3 Notations

To simplify notations, when no confusion is possible, the same symbol NBm,α

will be used to denote

• a random variable with a negative binomial distribution of parameters

m and α,

• the cumulative distribution function (cdf) of that variable

• the probability density function of that variable.



Chapter 3

The initial estimator

3.1 Notations and general considerations

Let us start with some notations and definitions. We shall consider the

following setup: Let X = {0, 1, 2, ...} be the sample space of a family of

probability densities mβ(x), indexed by the parameter β ∈ Θ ⊆ R
p. We

will assume that mβ(x) > 0 ∀x ∈ X, ∀β ∈ Θ. Let x = {x1, . . . , xn} be an

observed sample and define the function d(x) to be equal to the proportion

of observations which had value x.1 Unless otherwise noted, the symbol “
∑

”

will denote summation on variable x over X.

Several candidates for the initial estimator have been considered. One

possible approach, applicable to families with a bi-dimensional parameter, is

to calculate robust location and scale measures of the observations (Marazzi

and Ruffieux, 1999; Marazzi and Barbati, 2003); the initial estimates are

then the parameters corresponding to the model whose functional forms of

the measures are equal to the observed measures. One difficulty with this ap-

proach in the discrete distribution setting is that discrete distribution families

1Sometimes, e.g. when considering asymptotic situations, d(x) will be defined without

an explicit reference to a sample. It should then be considered simply as a function on the

sample space.

17



18 CHAPTER 3. THE INITIAL ESTIMATOR

on a fixed sample space can never be location-scale families2. For location-

scale families the model parameters are uniquely determined by any pair of

location and scale measures (see Appendix A for a proof). This property

is not present in the discrete setting, and this method will often suffer an

identification problem. Moreover, the problem of finding the initial estimates

given the location and scale measures does not reduce to solving the problem

for a standard member of the family.

Another approach, more popular in the discrete setting (see the Introduc-

tion), is to estimate the model parameters directly, by minimizing a disparity

between the model and the observed distribution. Estimators of this type

are called minimum disparity estimators (MDEs).

The first two estimators presented in this section follow the lines of the

first approach described above, by first computing location and scale mea-

sures and then finding the corresponding model mβ . These two candidates

are presented mainly because they are used in related estimation procedures

in the continuous setting (Marazzi and Ruffieux, 1999; Marazzi and Barbati,

2003). They are however quickly discarded because of different shortcomings

specific to the discrete setting.

The rest of this section concentrates on MDEs.

3.2 Median, median absolute deviation

A possibility is to start with the median and the median absolute deviation

(to the median) of the sample, which are known to be very robust location

and scale estimators (e.g. Maronna, Martin, and Yohai (2006)).

Let x = (x1, . . . , xn) be a sample of observations. The median and the

2If F is a family of random variables on Ω, with Ω a discrete subset of R, X ∈ F and

a ∈ R, then aX /∈ F unless a = 1.
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median absolute deviation are given by, respectively,

Med(x) =

{
x((n+1)/2) if n is odd
x(n/2)+x((n+1)/2)

2
if n is even

(3.1)

MAD(x) = Med(|x−Med(x)|), (3.2)

where x(i) is the ith order statistic.

Consider a variable Y on the sample space X = {0, 1, 2, ...}, distri-

buted according to the model mβ with cdf Mβ(x), x ∈ X, where β is a

bi-dimensional parameter βt = (β1, β2) ∈ Θ ⊆ R
2. The median and the

MAD of Y are given by the functionals

Med(mβ) = min{x : Mβ(x) ≥ 0.5} (3.3)

MAD(mβ) = min{y : Gβ(x) ≥ 0.5}, (3.4)

where Gβ, the cdf of Z = |Y −Med(Mβ)|, is given by

Gβ(x) = Mβ

(
Med(Mβ) + x

)−Mβ

(
Med(Mβ)− x

)
+ P

(
Z = Med(Mβ)− x

)
.

The initial estimate β1 of β is then defined as the solution of the system{
Med(x) = Med(mβ1)

MAD(x) = MAD(mβ1).
(3.5)

An immediate shortcoming of this method is that β1 is not uniquely deter-

mined by system (3.5).

Indeed, as a consequence of definitions (3.3) and (3.4), the quantities

a = Med(mβ1) and b = MAD(mβ1) are non-negative integers and thus the

set A of all possible values of the vector (a, b) is countable. One the other

hand, β1 and β2 are real numbers, so the set B of all possible values of the

vector (β1, β2) is not countable. Consequently, no 1-1 application from A to

B exists and the solution of (3.5) is in general an infinite subset of B.

One could try to solve this issue by using a trimmed mean and a trimmed

(mean) absolute deviation instead of the median and the MAD, however
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Figure 3.1: Tukey’s biweight function with k = 2.

an identifiability problem will still be present, regardless of the trimming

proportion, for similar reasons to the Med-MAD case.

Consequently, we do not consider this candidate any further.

3.3 S-estimators of location and scale

Another possible choice of location and scale measures is the S-estimator.

Let again x = (x1, . . . , xn) be a sample of observations. Define the dispersion

measure S(M), for a given value of k, as the solution of

1

n

n∑
i=1

ρk

(xi −M

S(M)

)
= 0.5,

where

ρk(x) =

{
1− [1− (x/k)2]

3
if |x| ≤ k

1 if |x| > k
(3.6)

is Tukey’s biweight function (see Figure 3.1).

The S-estimates of location and scale, respectively μS(x) and σS(x), are

defined as follows:
μS(x) = argmin

M
S(M)

σS(x) = S(μS(x)).
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For a distribution F , define μS(F ) and σS(F ) as the asymptotic values of,

respectively, μS(x) and σS(x), where x is generated according to F .

The initial estimate β1 of the bi-dimensional parameter β, is then defined

by {
μS(x) = μS(mβ1)

σS(x) = σS(mβ1).
(3.7)

There are at least two drawbacks to this method. One is that the sytem (3.7)

does not always have a solution. Numerical investigation in the NB model

shows that there is a lower bound b(μS(x)) such that when σS(x) < b(μS(x))

there is no solution to (3.7). Such a situation has been observed for up to

2.5% of the samples in simulations with small (n < 20) sample sizes.

The second drawback is that we have an identifiability problem again,

due to the fact that S-estimates “collapse” when more than half of the data

have the same value. Indeed, if more than n/2 observations are equal to a

certain value x, then

μS(x) = x and σS(x) = 0.

In the negative binomial family, a whole subset of models have

P (NBm,α = 0) > 0.5.

More precisely, P (NBm,α = 0) = (1 + αm)−1/α is an increasing function of

α which tends to 1 for α → ∞, for any fixed finite value of m. This implies

that there exists a function αl(m) such that

P (NBm,α = 0) > 0.5 ∀α > αl(m).

Moreover, since

lim
α→0

P (NBm,α = 0) = exp(−m).

and since, for fixed α, P (NBm,α = 0) is a decreasing function of m, we have

that

P (NBm,α = 0) > 0.5 ∀(m,α) ∈ (0, log(2))× R+.
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In count data, situations where we have a high proportion of zero counts are

not rare. For instance, in section (8.2) we model chemical mutagenicity data

in drosophila, and the proportion of zero counts in that example is nearly

70%. These data could not have been analyzed with the method described

in this section.

Thus, again, we decide not to consider this method any further.

3.4 Minimum disparity estimators

Yet another approach is to estimate directly the model parameters by mini-

mizing a disparity measure between the observed distribution and the model.

This seems to be the most natural approach in the discrete setting (and also

the most popular in the literature, see the Introduction). In this section we

present in some details different properties of the minimum disparity esti-

mators (MDEs), such as their breakdown point, their asymptotic bias under

contamination, their efficiency. We also establish some new results, valid in

the negative binomial setting, showing that in that framework some MDEs

resist to extremely high proportions of outliers. In section 3.4.3 we introduce

a new disparity measure, called the linearized negative exponential disparity,

which will be seen to have nice robustness and efficiency properties.

We shall consider a general class of disparities introduced by Lindsay

(1994). Define the Pearson residual function δ(x) as

δ(x) =
d(x)−mβ(x)

mβ(x)
,

and define the disparity measure between the probability densities mβ(x) and

d(x) as

ρ(d,mβ) =
∑

mβ(x)G
(
δ(x)

)
, (3.8)

where G is a real-valued thrice-differentiable strictly convex function on

[−1,∞) with G(0) = 0. Applying Jensen’s inequality to ρ shows that it
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is non-negative (for any pair of densities) and an argument by Csiszár (1963)

shows that it is zero only when d(x) = mβ(x) ∀x ∈ X. Therefore, the

estimator of β defined as

T (d) = argmin
β

ρ(d,mβ), (3.9)

is Fisher-consistent. We call T a minimum disparity estimator (MDE).

3.4.1 Breakdown point

We need a criterion to measure outlyingness in the framework of discrete

distributions. The Pearson residual

δ(x) =
d(x)

mβ(x)
− 1 (3.10)

offers a natural measure of how surprising the proportion of observations at

x is with respect to a given model. More precisely, if the observed frequency

d(x) is too large compared to the prediction of the model mβ(x), the Pearson

residual will be large. Accordingly, in the remainder of this thesis, the term

outlier will denote an element of the sample space - not a single observation -

with a large Pearson residual. Note that this definition is model dependent.

Lindsay (1994) carried out a thorough investigation of MDE’s. Notably,

he proved an important result about the breakdown properties of certain

MDEs, which we expose hereafter, before we give some extensions.

For ε ∈ [0, 1) and the data d(x), define the ε-contaminated data dj(x) as

dj(x) = (1− ε)d(x) + εχxj
, (3.11)

where χxj
(x) is is the indicator function for xj . Let

d∗ε(x) = (1− ε)d(x),

let T be a MDE and ρ be the corresponding disparity.
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Assumption 1. G(−1) is finite and limδ→∞ G(δ)/δ = 0.

Assumption 2. ρ(dj, mβ) and ρ(d∗ε , mβ) are continuous in β, with the latter

having unique absolute minimum at T (d∗ε) = b∗.

Consider a sequence {xj : j = 1, 2, . . .} of elements of the sample space

X.

Definition 3. {xj} constitutes an outlier sequence for the model mβ(x) and

the data d(x) if mβ(xj) → 0 and d(xj) → 0 as j → ∞.

Note that definition 3 is equivalent to requiring d(xj) → 0 and δj(xj) →
∞ as j → ∞, where δj(x) is the Pearson residual corresponding to the ε-

contaminated data

dj(x) = (1− ε)d(x) + εχxj
(x)

and the modelmβ(x). Thus the elements of an outlier sequence will get larger

and larger Pearson residuals if a finite mass is placed on them, in accordance

with our definition of outliers at the beginning of this section.

Remark A. In our sample space X = {0, 1, 2, . . .}, the requirement that

mβ(x) > 0 ∀β ∈ Θ, ∀x ∈ X, implies that ∀d(x) and ∀mβ(x), {xj} is an

outlier sequence iff limj→∞ xj = ∞.

Now consider the following asymptotic situation: let mβ0 be an element

of the family of models mβ , let {xj} be an outlier sequence, and consider the

ε-contaminated model

mβ0j(x) = (1− ε)mβ0(x) + εχxj
(x).

Lindsay’s result: under Assumptions 1 and 2 (with mβ0j instead of dj and

m∗
β0ε

= (1−ε)mβ0 instead of d∗ε) and some mild assumptions about the model

mβ, it holds that

lim
j→∞

T (mβ0j) = β0
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as soon as ε < 0.5. (See Bhandari, Basu, and Sarkar (2006) for an analogous

result for continuous distributions.)

Lindsay’s result shows that some MDE’s are asymptotically unaffected

by extreme outliers up to a proportion as large as 0.5.

Proposition 4. Lindsay’s result remains valid if the contamination is a finite

sum of outlier sequences, i.e. at the model

mβ0Sj
(x) = (1− ε)mβ0(x) + εSj(x),

where Sj(x) =
∑n

i=1
εi
ε
χxj+ai(x), with n finite, ai ∈ N, εi ∈ [0, ε],

∑n
i=1 εi =

ε and {xj} an outlier sequence. (All the sequences {xj + ai} are outlier

sequences as soon as {xj} is, see Remark A.)

Proof. Simply proceed as in Lindsay (1994) (proofs of his Proposition 12

and Lemma 20), by doing the summations separately on the contaminated

and uncontaminated parts of the sample space, the only difference being

that in Lindsay (1994) the contaminated part consists of one sample space

element and here it consists of at most n elements (n if all ai are different).

If we set mβ = NBm,α, Lindsay’s result can be extended.

Theorem 5. Let mβ = NBm,α, let d(x) be the observed data and

dSj
(x) = (1− ε)d(x) + εSj(x)

with Sj as in Proposition 4. Then under Assumptions 1 and 2, it holds that

lim
j→∞

T (dSj
) = b∗,

with b∗ as in Assumption 2, for any ε ∈ [0, 1).

The proof is given in Appendix B.
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Remark B. A complete determination of the breakdown point of MDEs

would require to investigate the behavior of the estimates under contam-

ination of the model with any probability density. In this thesis, we will

concentrate on the effect of large outliers, and henceforth the term “break-

down point” (bdp) will refer to the minimum value of ε for which there can

be a breakdown in the presence of a contamination Sj as in proposition 4,

when j → ∞.

Theorem 5 shows that in the framework of estimation in the negative

binomial family, some MDEs resist to the presence of extreme outliers re-

gardless of their proportion in the sample. This may seem surprising, as

usually the highest possible (and sensible) value for a bdp is 0.5. For higher

values the estimator is not fitting the majority of the data anymore, and one

may question whether this is a desirable property. Well, in the framework of

density estimation it may be. Imagine we know from previous investigation

that a certain phenomenon we are interested in has a certain typical shape.

In the presence of highly corrupted data, an estimator with a very high bdp

is able to recognize that shape and fit it even if it is followed by less than

half the observations.

To gain some insight into the mechanism that causes the bdp to be that

high, recall from the proof of theorem 5 that this property is linked to the

uniform convergence

NBm,α(xj) → 0 as xj → ∞

over the whole parameter space. In other words, no model in the negative

binomial family can nicely accommodate observations going to infinity.

Let us stress that this result is valid for contamination of any sample

d with finite T (d∗ε), not only asymptotically like Lindsay’s general result.

Moreover Lemma 21 in Lindsay (1994) shows that if d is a model density

mβ0 then

b∗ = β0
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so the bias due to contamination tends to zero as j → ∞.

Finally, let us mention that Theorem 5 is also valid if the model is the

Poisson density or the geometric density, as these are particular cases of the

negative binomial family.

3.4.2 Bias under contamination

It will be useful, for what follows, to formulate the minimization problem

(3.9) in terms of estimating equations. Under differentiability of the model,

minimizing the disparity (3.8) is equivalent to solving the equations∑
A(δ(x))∇mβ(x) = 0, (3.12)

where ∇ denotes differentiation with respect to β,

A(δ) =
Ã(δ)− Ã(0)

Ã′(0)
(3.13)

for Ã(δ) given by

Ã(δ) = (1 + δ)G′(δ)−G(δ).

It is easy to see from the requirements on G and from (3.13) that A is a

strictly increasing twice-differentiable function on [−1,∞) with A(0) = 0

and A′(0) = 1. Lindsay (1994) called such a function a residual adjustment

function (RAF). As indicated by (3.12), for a given model, many of the

properties of the estimator are determined by A. An important special case

is obtained with A(δ) = δ, which yields the maximum likelihood estimator

(MLE).

The formulation (3.12) provides some insight into the mechanism that

gives robustness to certain MDEs. In (3.12), it appears that a disparity for

which A(δ) < δ for large δ gives a lower weight to the contributions of outliers

than the likelihood disparity. This property can have direct bearing on the

robustness properties of the corresponding estimators. Let us look at some

examples of disparities to illustrate this point.
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An important class of disparities, the Cressie-Read family of

power-divergence measures (Cressie and Read, 1984; Read and Cressie, 1988),

is obtained by using

Gλ

(
δ(x)

)
=

(
1 + δ(x)

)λ+1 − 1

λ(λ+ 1)

for G
(
δ(x)

)
in (3.8). The corresponding RAFs are given by

Aλ(δ) =
(1 + δ)λ+1 − 1

λ+ 1
.

Many well known measures are obtained for specific values of λ:

• λ = 1: Pearson’s chi-squared (divided by 2)

1

2

∑(
d(x)−mβ(x)

)2
mβ(x)

• λ = 0: Likelihood disparity∑
d(x)

[
log
(
d(x)

)− log
(
mβ(x)

)]
• λ = −1

2
: Squared Hellinger distance (multiplied by 2)

2
∑[√

d(x)−
√
mβ(x)

]2
• λ = −1: Kullback-Leibler divergence∑

mβ(x)
[
log
(
mβ(x)

)− log
(
d(x)

)]
• λ = −2: Neyman’s chi-squared (divided by 2)

1

2

∑(
d(x)−mβ(x)

)2
d(x)
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Figure 3.2: The RAF’s of various disparities

Another important disparity, the negative exponential disparity measure (NE)

(Lindsay, 1994), is obtained by using

GNE(δ) = e−δ − 1

or the RAF

ANE(δ) = 2− (2 + δ)e−δ.

Figure 3.2 shows the RAF’s of the disparities mentioned above, as well as

the one obtained from the Cressie-Read family with λ = −3. On figure

3.2, it appears that in the Cressie-Read family, as soon as λ < 0, the con-

tributions of outliers are given a lower weight in the estimating equations
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than with maximum likelihood estimation. Moreover, the lower λ, the more

those contributions are downweigthed. In relation to the bdp, it is easily

checked that the Cressie-Read disparities with −1 < λ < 0 and the negative

exponential disparity satisfy Assumption 1, and thus give rise to high bdp

estimators. The Cressie-Read disparities with λ ≤ −1 can also be shown to

yield high bdp estimators, even though they do not satisfy Assumption 1,

since Gλ(−1) = ∞ if λ ≤ −1.3

Let us show how the downweigthing of outliers influences the bias under

point contamination. Figures 3.3 and 3.4 show the asymptotic biases of a

selection of MDEs in the contaminated NB model

NBm,α j(x) = (1− ε)NBm,α(x) + εχxj
(x),

for a wide range of contamination positions xj , the two models (m,α) =

(5, 2/3) and (m,α) = (7, 1.5), and different values of ε. In addition to the

already defined MDEs, a MDE called linNEG, to be defined below, is also

plotted. It is readily seen that the downweighting of outliers has direct

bearing on the bias curves. It also appears that, as predicted, even with a

proportion of outliers larger than 0.5 the bias tends to zero as the outliers

go to infinity, except in the case of the MLE, which diverges. Finally, let us

mention that the largest bias generally occurs for a contamination at 0. For

better readability of the graphs, these biases are not shown on Figures 3.3

and 3.4. The bias at zero of the MDEs is of comparable size to that of the

MLE.

3.4.3 Trade-off between robustness and efficiency

If we consider Figures 3.3 and 3.4, it seems appropriate to choose a very low

negative value of λ in the Cressie-Read family, in order to get a very robust

3δ(x) = −1 occurs when d(x) = 0, i.e. if the cell at x is empty. Thus, in the present

form, the disparities with λ ≤ −1 are not defined as soon as there is an empty cell. A

modified definition is proposed a bit further, for which a proof of high bdp is given.
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of model NB5, 2
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initial estimator.

However, the shape of the RAF has other important implications than

robustness properties. In what follows we report a few important points,

most of which are developed in Lindsay (1994).

• All MDEs are asymptotically fully efficient, having the same influence

function as the MLE at the model4. This shows the limitations of using

the influence function as a measure of robustness, as some MDEs are

highly robust both in terms of breakdown point and in terms of bias

under contamination, as was shown in the course of this section.

• A2 = A′′(0), the second derivative of the RAF at 0, provides a (some-

what questioned, see Basu and Sarkar (1994)) trade-off between the

robustness and the efficiency of MDEs in finite samples (see also Basu

and Lindsay (1994)). A2 is linked to the second-order efficiency of the

estimator in the sense of Rao (1961, 1962) (itself subject to some con-

troversy, see Berkson (1980)). The lower the absolute value of A2, the

higher the second-order efficiency. If A2 = 0 the estimator has the

same second-order efficiency as the MLE, which is optimal under this

criterion. In the Cressie-Read family, A2 = λ. Therefore the higher re-

sistance to outliers of the low λmembers of the Cressie-Read family can

be disturbed by their lower efficiency and show poorer performances in

terms of mean square error.

• Harris and Basu (1994), Basu, Harris, and Basu (1996) and Basu and

Basu (1998) noted that the more robust MDEs in the Cressie-Read

family can show poor performances (in terms of efficiency) when the

sample size is small. They linked this fact to the shortcomings of those

estimators in the treatment of inliers, i.e. cells with a lower observed

4This is linked to the fact that all RAFs have, by definition, the same first order Taylor

expansion A(δ) ≈ δ.
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frequency than expected under the model (this was also noted by Lind-

say (1994)). Indeed, it is clear from Figure 3.2 that the MDEs in the

Cressie-Read family with negative values of λ give higher weight to

inliers than does the MLE.

In the NB model, there appears to be one more shortcoming of the lower λ

MDEs from the Cressie-Read family, which is the presence of an important

bias under the uncontaminated model, when the sample size is small. This

is likely to be caused by the treatment of inliers again, as this problem does

not affect the minimum NE, the minimum linNE or the maximum likelihood

estimators. As will be illustrated with simulations in Chapter 7, this can

lead to “reverse effects” of contamination of the model with outliers: when

the bias under the model is negative, the presence of a contamination can

reduce the bias.

The above considerations seem to point out the negative exponential dis-

parity as a good choice: it shows important downweighting of large outliers,

it is second order efficient (A2 = 0) and it also downweigths the contributions

of inliers, compared to the likelihood disparity. However, our main focus in

this thesis is to build a good outlier resistant estimator; the problem of inliers

is not our direct concern here.

Accordingly, we define a new disparity, whose RAF is equal to the RAF of

the MLE for −1 < δ ≤ 0 and to the RAF of the NE for δ > 0. This disparity

is designed to have the same desirable properties as the NE - outlier down-

weighting, second order efficiency - while being similar to the MLE in the

treatment of inliers. We call this new disparity the linearized negative expo-

nential disparity (linNE). The RAF of the linNE satisfies the corresponding

requirements, in particular it is twice differentiable, since the NE is second

order efficient. As noted, the linNE is also second order efficient. As can be

seen on Figures 3.3 and 3.4, the asymptotic bias under point contamination

for linNE is quite similar to the bias for NE (it is slightly lower at the highest

contamination rate).
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In light of the foregoing, we decide to keep five different initial estimators

for further investigation (in chapters 6 and 7):

• Three members of the Cressie-Read family: the minimum Hellinger

distance estimator, as it has been pointed out by Lindsay (1994) as

presenting a nice balance between robustness and efficiency, and two

more robust estimators, the minimum Neyman’s chi-squared estimator

and the MDE with λ = −3, as efficiency is not our main target for the

initial estimator. A lack in efficiency could be fixed in the second phase

of the estimation process.

• The minimum negative exponential disparity estimator

• The minimum linearized negative exponential disparity estimator, ob-

tained from the RAF

AlinNE(δ) =

{
δ if − 1 ≤ δ ≤ 0

2− (2 + δ)e−δ if δ > 0

3.4.4 Cressie-Read disparities with λ ≤ −1

As noted before, the disparities in the Cressie-Read family with λ ≤ −1

are not defined as soon as there is an empty cell with d(x) = 0, as then

δ(x) = −1 which causes Gλ(x) to become infinite and Aλ(x) to go to −∞. An

immediate remedy for this issue is to exclude empty cells from the definition

of the disparities, thus summing only over XF = {x ∈ X : d(x) �= 0} in (3.8),

i.e. minimizing

ρXF
(d,mβ) =

∑
XF

mβ(x)G
(
δ(x)

)
, (3.14)

over β to find the estimate. However, if we do so, then applying Jensen’s

inequality to the disparity does not provide us with a 0 lower bound but

rather with the lower bound

Gλ

(
1∑

XF
mβ(x)

− 1

)∑
XF

mβ(x),
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which is zero only if
∑

XF
mβ(x) = 1 and is negative otherwise, since Gλ

is decreasing if λ < 0, and Gλ(0) = 0. It then becomes unclear what the

minimum over β is, but as long as
∑

XF
mβ(x) �= 1, i.e. on any finite sample,

it cannot correspond tomβ(x) = d(x) ∀x ∈ XF, as this situation is impossible

since
∑

XF
d(x) = 1. Moreover, It can be seen from (3.14) that if mβ(x)

goes to 0 all over XF the disparity goes to 0, as limδ→∞ Gλ(δ)/δ = 0 if

λ < 0. Depending on d(x), this can cause the minimum of the disparity to

correspond to a model for which
∑

XF
mβ(x) is small i.e. a model lying away

from the observations. To prevent this type of behavior, we can minimize

the disparity calculated with the conditioned model

m̃β(x) =
mβ(x)∑
XF

mβ(x)
.

Then the disparity cannot be made small by making the model small all over

XF, since
∑

XF
m̃β(x) = 1, and applying Jensen’s inequality to it yields 0 as

lower bound. This lower bound is attained if m̃β(x) = d(x) ∀x ∈ XF, which

asymptotically becomes equivalent to mβ(x) = d(x) ∀x ∈ X.

In many cases this is a good cure, yet there can be another problem. It

may happen that the conditioned model reaches a limiting distribution on

XF when certain components of β go to infinity. If that distribution is similar

to the observed distribution, the MDE can diverge. To solve this issue, we

propose to add a “departure penalty” to the disparity, which will penalize

the models that lie apart from the observations, i.e. for which SXF
(β) =∑

XF
mβ(x) is small. We suggest to minimize the following expression:

ρp(d,mβ) =
∑
XF

m̃β(x)G
(
δ̃(x)

)
+ P (SXF

(β)), (3.15)

where δ̃(x) =
d(x)−m̃β (x)

m̃β(x)
and P (SXF

(β)) =
1−SXF

(β)

SXF
(β)

. Figure 3.5 shows the

shape of the penalty P (SXF
(β)). Let us emphasize that asymptotically there

are no empty cells, and so expression (3.15) becomes equivalent to the stan-

dard disparity (3.8) and the influence function of the estimator at the model

is still the same as the influence function of the MLE.
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Figure 3.5: The “departure penalty”.

Figure 3.6 shows two examples of situations where the above adjustments

are necessary to prevent the estimates from taking extreme values, in the

NBβ model, with β = (m,α). The two represented samples were obtained by

generation of 50 (upper panel) and 40 (lower panel) pseudo-random numbers

from the model NB4,1.5. The three following estimates were computed on

each of the two samples:

• βXF
= argmin

β
ρXF

(d,NBβ)

• β̃XF
= argmin

β
ρXF

(d, ÑBβ)

• βp = argmin
β

ρp(d, ÑBβ)

where ÑBβ(x) =
NBβ(x)∑
XF

NBβ(x)
and we have used the Cressie-Read disparity

with λ = −2, corresponding to Neyman’s chi-squared. It may be seen that

both βXF
and β̃XF

are way too large in parameterm, the latter even diverging

in the second example (the actual minimum is probably reached for m = ∞).

On both graphs, we also plotted the distribution corresponding to ÑBβ̃, which

is indeed quite close to the data in both cases. In both examples, the model

NBβp is seen to be in good agreement with the data.
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Figure 3.6: Two examples of the necessity for adjustments when λ < −1. The

vertical bars are the relative frequencies of pseudo-random numbers generated

from NB4,1.5.

In the remainder of this thesis, MDEs from the Cressie-Read family with

λ ≤ −1 will be calculated by minimizing (3.15). In the NB model, the

MDEs with λ ≤ −1 defined in this way resist to outliers going to infinity

independently of their proportion in the sample, like the MDEs with −1 <

λ < 0. A proof is given in Appendix C.



Chapter 4

The final estimator

4.1 Outlier rejection rules

We suppose that β1(d) is a consistent high bdp initial estimate of the model

parameters. In what follows we consider two outlier rejection methods, based

on the initial estimate. Once outliers have been removed (or downweighted)

a corrected maximum likelihood estimator (the final estimator) is computed

with the remaining observations. This final estimator is presented in the next

section.

The first rejection method calculates an adaptive cut-off and rejects ob-

servations larger than the cut-off, so that outlier sequences end up being

removed from the sample. This method is based on a proposal by Marazzi

and Yohai (2004). At the model, for increasing sample sizes, the cut-off tends

to infinity, and so asymptotically no observations are removed. We call the

final estimator based on this method the cut-off weighted maximum likelihood

estimator (WMLc). This approach is presented mainly for comparison pur-

poses with the second method, which yields a final estimator that generally

outperforms the WMLc.

The second method calculates adaptive weights for each element of the

sample space. The weights are based on standardized differences between the

39
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expected frequencies under the initial model and the observed frequencies;

too large differences being downweighted. This way, not only are outlier

sequences eventually removed from the sample, but the influence of too large

observed frequencies at any place is lowered, causing the final estimator to

have very low bias under contamination. At the model, for increasing sample

sizes, all the weights tend to 1 and so asymptotically no observations are

removed or downweighted. We call the final estimator based on this method

the weighted maximum likelihood estimator (WML).

4.1.1 Adaptive cut-off

In the context of regression with asymmetric errors, Marazzi and Yohai

(2004) propose a method to determine an adaptive cut-off based on the dis-

tribution of the negative log-likelihood of the residuals calculated with the

initial estimate, and to reject observations with a lower likelihood than the

cut-off value. They used the log-likelihood so that the correction of the fi-

nal estimator is independent from the distribution of the covariates. In the

framework of density estimation this is not an issue and one can apply the

method directly to the distribution of the data, and reject the observations

which are larger than the cut-off1. Start with a fixed cut-off η, defined as a

large quantile of the initial model, and let Fn be the empirical cdf and Fβ1

be the cdf of the initial model. The adaptive cut-off tn is determined by

comparing the tails of Fn and Fβ1. Let Fn,t denote Fn truncated at t, i.e.

Fn,t(x) =

{
Fn(x)/Fn(t) if x ≤ t,

1 otherwise.
(4.1)

1One could nevertheless choose to impose a cut-off on negative log-likelihoods. This

would then correspond to a lower and an upper cut-off on the observations, thus protecting

against low outliers as well as large ones. This represents only a small modification of the

method exposed hereafter, which concentrates on large outliers. The second rejection

method also protects against low outliers.
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tn is the largest t for which Fn,t(x) ≥ Fβ1(x) for all x ≥ η, i.e.

tn = sup{ t | Fn,t(x) ≥ Fβ1(x) for all x ≥ η}.

Note that tn is always greater or equal to η, and one could consider

defining the cut-off independently of η, i.e. using

t∗n = sup{ t | Fn,t(x) ≥ Fβ1(x) for all x > 0}

instead of tn. However, Marazzi and Yohai (2004) report simulation results

with a cut-off defined analogously to t∗n, indicating that the value of the

cut-off was often too low for “clean” samples. They advised to keep the

parameter η in the definition of the cut-off to ensure high efficiency in small

samples.

On the other hand, this has the drawback that contaminations at po-

sitions lower than η cannot be eliminated. The method proposed in the

next section allows to do so, without lessening the small sample efficiency of

the final estimator. Figure 4.1 illustrates the determination of the adaptive

cut-off.

Once the cut-off has been determined, we define weights

ωd(x) = I(x ≤ tn)

where I(x ≤ tn) is the indicator function for the set {x : x ≤ tn}, and we

reject the observations such that ωd(x) = 0.

In the context of regression with asymmetric errors, Marazzi and Yohai

(2004) proved that this method yields a cut-off which is asymptotically infi-

nite at the model, so that no observations are removed. They also show that

the bdp of the final estimator calculated with the remaining observations is

not less than the bdp of the initial estimator. Finally they show that the

influence function (IF) at the model is equal to the IF of the MLE, which

strongly suggests full asymptotic efficiency. We conjecture that these proper-

ties also hold in the discrete density estimation setting. Simulations support
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this conjecture. We do not give proofs for this estimator (the WMLc), which

we consider mainly for comparison with the WML, based on the outlier re-

jection method presented in the next section.
0.
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Figure 4.1: Illustration of the adaptive cut-off method, with point contam-

ination at x = 16. η corresponds to the 0.9 quantile of mβ1 . We see that

tn = 15 correctly eliminates the outlier. t∗n = 8 is too low and eliminates

many observations which are in good agreement with the model.

4.1.2 Adaptive weights

The outlier rejection method we propose attributes an adaptive downweight-

ing factor to each sample space element. Like the adaptive cut-off, the adap-

tive weights are determined by comparing the empirical distribution to the
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distribution under the initial model. However, each sample space element is

considered individually, and attributed a downweighting factor ωd(x), which

we propose to define in the following way:

ωd(x) = W (A(x, n, d)) , (4.2)

where

A(x, n, d) = f(n)
d(x)−mβ1(d)(x)√

mβ1(d)(x)(1−mβ1(d)(x))
, (4.3)

W is a decreasing function with W (x) = 1 if x ≤ a for some a ≥ 0 and

W (x) = 0 if x > b for some b ≥ a, n is the sample size and f is a bounded

positive increasing function.

The idea behind the form of A(x, n, d) is that if f(n) =
√
n and if β1(d)

is consistent, then A(x, n, d) has an approximate N (0, 1) distribution for

large n at the model, which provides a benchmark to set the constants a

and b. However, we want to build adaptive weights, i.e. weights which

are asymptotically equal to 1 at the model, so that we do not reject or

downweight any observation. This is why the function f has to be bounded:

if β1 converges to β in probability, which we suppose to be the case, then,

under continuity of the model in β, A(x, n, d) converges to 0 in probability,

and hence the weights converge to 1. We therefore propose to define f as

follows:

f(n) =

{ √
n if n ≤ nmax√

nmax if n > nmax

(4.4)

for some maximum sample size nmax.

The constants a, b and nmax provide a trade-off between robustness and

finite sample efficiency of the final estimator. In fact, they regulate the

threshold on the standardized difference
d(x)−mβ1(d)

(x)√
mβ1(d)

(x)(1−mβ1(d)
(x))

, above which

the contribution of a sample space element x gets downweighted or removed

in the calculation of the final estimator. The lower the threshold, the higher

the robustness and the lower the efficiency, and conversely.
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The choice of these constants can be simplified by using “hard” rejection

weights, i.e. imposing a = b, so that sample space elements are either kept

or removed completely. The value of a = b has a quantile interpretation,

which provides a natural guide for its choice. As to the choice of nmax, it is

done by numerical investigation and asymptotic bias analysis in the model

of interest. In chapters 6, 7 and 8, we show that the choice a = b = 3.5 and

nmax = 200 provides very satisfactory results in the NB model, in terms of

asymptotic robustness, finite sample mean square error and in applications.

The case a �= b has not been investigated, yet we show with an example in

section 8.2 that it has some promising properties.

Finally lets us comment the shape of the weight function W . Firstly, it

ranges between 0 and 1, in order to get more easily interpretable weights

ωd(x). Indeed, these weights provide a diagnostic of outlyingness of the

proportion of observations at x. Secondly, W (x) = 1 ∀x < 0, which implies

that only positions with an excessive proportion of observations compared

to the initial model can be downweighted. With this definition, we can be

protected only against outliers, not against inliers, but as already mentioned

in section 3 our main focus in this thesis is resistance against outliers; adding

resistance against inliers would be at the price of sacrificing some more finite

sample efficiency.

4.2 The final estimator

Suppose the weights ωd(x) have been calculated with either of the two me-

thods exposed in the previous section. In this section we define a method to

reduce the influence of the outliers in the maximum likelihood equations. Let

si(x, β) =
∂

∂βi logmβ(x), i = 1, . . . , p, be the score functions corresponding to

the model mβ , where p is the dimensionality of β. The maximum likelihood

equations are ∑
d(x)si(x, β) = 0, i = 1, . . . , p. (4.5)
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We propose to consider instead the following weighted likelihood equations:∑(
d(x)∑

d(x)ωd(x)
− mβ(x)∑

mβ(x)ωd(x)

)
ωd(x)si(x, β) = 0, i = 1, . . . , p.

(4.6)

If the data are generated by a model mβ0 , then all the weights are asymptot-

ically equal to 1 and (4.6) becomes equivalent to (4.5), so that the estimator

is asymptotically equal to the MLE and thus Fisher-consistent. If the data

follow a contaminated model

mβ0j(x) = (1− ε)mβ0(x) + εχxj
(x),

and that ωmβ0j
(xj), the asymptotic weight at x = xj, is zero, then the solution

to (4.6) is asymptotically β0, so the asymptotic bias at the contaminated

model is also zero. Of course, the same is true in the presence of a multiple

contamination as in Proposition 4 if the weights of all contaminated positions

are zero asymptotically.

Another feature which makes equations (4.6) appealing is their asymp-

totic correspondence with the maximum likelihood equations of a conditioned

model. Let us write ω∞(x) for the asymptotic weights. Suppose again we are

in a situation where the weights of all contaminated positions - if any - are

asymptotically zero. Then the equations (4.6) are asymptotically equivalent

to the ML equations of the uncontaminated conditioned model

m̌β(x) =
ω∞(x)mβ(x)∑
ω∞(x)mβ(x)

,

where the weights ω∞(x) are fixed. Indeed, the β-dependent terms of the

corresponding log-likelihood are

logmβ(x)− log
(∑

ω∞(x)mβ(x)
)
,

and so the asymptotic value of the log-likelihood for an i.i.d. sample gener-

ated with m̌β0 , for some parameter value β0, is∑
ω∞(x)mβ0(x) logmβ(x)∑

ω∞(x)mβ0(x)
− log

(∑
ω∞(x)mβ(x)

)
. (4.7)
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It is easy to check that differentiating (4.7) with respect to β yields equa-

tions (4.6) with ω∞ instead of ωd and mβ0 instead of d. This asymptotic

correspondence will be useful in the next chapter for the demonstration of a

statement about the asymptotic bdp of the final estimator.

Now, although the correspondence is valid only asymptotically (and if all

contaminated positions have 0 asymptotic weights), the differentiation of∑
ωd(x)d(x) logmβ(x)∑

ωd(x)d(x)
− log

(∑
ωd(x)mβ(x)

)
(4.8)

with respect to β yields equations (4.6), regardless of the weights and of the

contamination. This provides a criterion to choose the right solution in case

(4.6) has multiple roots. Thus, we define our final estimate as the value of

β that maximizes (4.8), or equivalently that minimizes the negative weighted

log-likelihood2

wl(d,mβ) = log
(∑

ωd(x)mβ(x)
)
−
∑

ωd(x)d(x) log(mβ(x))∑
ωd(x)d(x)

. (4.9)

When the weights are obtained with the “adaptive weights” method de-

scribed in section 4.1.2, we call the estimator the weighted maximum likeli-

hood estimator (WML). When they are defined via the “cut-off” method, we

call the estimator the WMLc.

In the following chapters, we concentrate on the WML. In chapter 5, we

show that the WML has a breakdown point at least as high as the bdp of the

2It is interesting to note that if we use “hard truncation” weights, i.e. weights that can

be either 0 or 1, so that we are just removing some observations and keeping the others,

then minimizing (4.9) actually corresponds to fitting the model

m̆β(x) =
ωd(x)mβ(x)∑
ωd(x)mβ(x)

to the remaining observations by maximum likelihood (with the weights ωd(x) fixed). This

property will be used in the next chapter to prove a statement about the finite sample

bdp of the final estimator.
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initial estimator. In section 6.1, we show that its influence function (IF) at

the model is the same as the IF of the MLE, and give some arguments which

suggest that it is asymptotically normal. In section 6.2, we show with several

examples that it has a low asymptotic bias under point contamination. We

also show that the bias is generally much lower than the bias on the MDEs

at the same contamination rate (actually, it is exactly zero as soon as the

rate exceeds a certain model dependent threshold). In chapter 7, we present

simulation results which show that the WML has a much lower root mean

square error under contamination than all the considered initial estimators,

and that the same is true at the “clean” model for 4 initial estimators out of

5. In section 6.2 and in chapter 7, we also present the results for the WMLc,

for comparison.

When the weights are obtained with the “adaptive cut-off” method of

section 4.1.1, it appears (see chapter 7) that the final estimator (the WMLc)

has quite weak performances when a contamination is present close to τ , the

quantile of mβ of the same level as η for mβ1 (see section 4.1.1). In that case,

the performances can be enhanced by solving analogous estimating equations

to (4.6), but where we replace β by β1 in the second term, thus solving∑ d(x)∑
d(x)ωd(x)

ωd(x)si(x, β) =
∑ mβ1(x)∑

mβ1(x)ωd(x)
ωd(x)si(x, β1), (4.10)

i = 1, . . . , p.

for β. This seems to mitigate the effect of outliers at positions lower than τ ,

by reducing the flexibility of the estimator with a fixed right hand side in the

equations. We call the estimator obtained by solving (4.10) the truncated

maximum likelihood estimator (TML). Nevertheless, the TML still shows

rather poor performances under this type of contaminations, and this is also

visible on the asymptotic bias curves in section 6.2.2.

In the absence of contamination, the TML is Fisher-consistent, since the

initial estimator is. In that situation, the TML generally improves the per-
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formances of the initial estimators (it fails to do so for one of them, like the

WML). But again, is outperformed by the WML.

The problem with the TML (and the WMLc) is that it acts on the whole

tail of the distribution at once. If an outlier is present close to η, but at a

larger position, then all observations which are larger than the outlier are

removed, even if their proportion is not too large relative to the model. This

results in a greater loss in efficiency than would be necessary to get rid of

the outlier. Conversely, if an outlier is present at a lower position than η, it

is not removed, as the adaptive cut-off can never be lower than η. Hence the

bad performances of the TML under this kind of contaminations.

The discrete setting offers quite naturally the possibility to act on each

sample space element separately, thus getting a more flexible outlier rejec-

tion procedure which allows to reduce the influence of departures from the

model at any position, without rejecting abusively observations which are in

agreement with the model.

Remark C. If the distribution is continuous and we want to define adaptive

weights, we have to group the data into categories, and there could be several

ways to do it. A proposal is sketched in section 10.1.



Chapter 5

Breakdown point

In this chapter, we establish that the breakdown point of the WML is at

least as high as the the bdp of the initial estimator, under some conditions

on the model and the weight function. As in chapter 3, the term “breakdown

point” refers to the quantity defined in Remark B. All proofs are given for

the case of contamination with one single outlier sequence. The extension of

the results to contaminations as in Proposition 4 is then straightforward.

Section 5.1 addresses the asymptotic bdb, and section 5.2 concerns the

finite sample bdp. In both cases, a stronger result is established for the NB

model.

As presented in section 4.2, the WML is obtained by minimization of the

quantity

wl(d,mβ) = log
(∑

ωd(x)mβ(x)
)
−
∑

ωd(x)d(x) log(mβ(x))∑
ωd(x)d(x)

, (5.1)

where the weights ωd(x) are calculated from the initial estimate β1(d) as

ωd(x) = W

(
f(n)

d(x)−mβ1(d)(x)√
mβ1(d)(x)(1−mβ1(d)(x))

)
,

where W is a decreasing function with W (x) = 1 if x ≤ a for some a ≥ 0

49
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and W (x) = 0 if x > b for some b ≥ a, n is the sample size and f is given by

f(n) =

{ √
n if n ≤ nmax√

nmax if n > nmax

for some maximum sample size nmax.

5.1 Asymptotic breakdown point

Let mβ0(x) be a member of the considered family of probability densities,

and let

mβ0j(x) = (1− ε)mβ0(x) + εχxj
(x)

be the corresponding contaminated model with {xj} an outlier sequence and

χxj
the indicator function for xj . Let ωj(x) be the weights defined from mβ0j.

Let ε1 be the asymptotic bdp of the initial estimator and impose ε < ε1.

Assumption 6. supβ∈B mβ(x) → 0 as x → ∞ for any compact set of pa-

rameter values B.

This corresponds to an intuitive assumption on the model structure that,

as x gets large, it becomes less and less likely to have arisen from a model

distribution with β close to any finite value ν (see Lindsay (1994)). Now

consider

ωj(xj) = W

⎛⎝√
nmax

(1− ε)mβ0(xj) + ε−mβ1(mβ0j
)(xj)√

mβ1(mβ0j
)(xj)(1−mβ1(mβ0j

)(xj))

⎞⎠ . (5.2)

Since ε < ε1, the sequence {|β1(mβ0j)|}, j = 1, 2, . . ., is bounded and thus

Assumption 6 and the fact that W (x) = 0 for x > b imply that

∃ x0 such that ωj(xj) = 0 ∀ xj > x0. (5.3)

Theorem 7. Let εWML be the asymptotic bdp of the WML. Under Assump-

tion 6, εWML ≥ ε1. Moreover, if ε < ε1, then limxj→∞WML(mβ0j) = β0.
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Proof. As soon as xj > x0, the solution of the minimization problem

is β = β0. Indeed, if ωj(xj) = 0, the asymptotic negative weighted log-

likelihood becomes

wl(mβ0j , mβ) = log
(∑

ωj(x)mβ(x)
)
−
∑

ωj(x)mβ0(x) log(mβ(x))∑
ωj(x)mβ0(x)

,

which is exactly equal to the asymptotic negative log-likelihood for the family

of distributions

m̆β(x) =
ωj(x)mβ(x)∑
ωj(x)mβ(x)

at the uncontaminated model m̆β0(x) =
ωj(x)mβ0

(x)
∑

ωj(x)mβ0
(x)

, where the weights ωj

are considered fixed (see section 4.2). Since the log-likelihood function of the

model m̆β(x),

l̆(x; β) = log(mβ(x))− log
(∑

ωj(x)mβ(x)
)
,

satisfies

Eβ̇(∇βl(x; β̇)) = 0

for any parameter value β̇, the corresponding maximum likelihood estimator

is Fisher-consistent and so the minimum of wl(mβ0j, mβ) is attained at β =

β0.

In the case of the NB model, a stronger statement can be proved.

Theorem 8. In the NB model, the asymptotic bdp of the WML is equal to

1 as soon as the asymptotic bdp of the initial estimator is non-zero.

Proof. Consider the argument of the weight function in (5.2)

A(xj , n,mβ0j) =
√
nmax

(1− ε)mβ0(xj) + ε−mβ1(mβ0j
)(xj)√

mβ1(mβ0j
)(xj)(1−mβ1(mβ0j

)(xj))
. (5.4)
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ωj(xj) will be 0 if A(xj , n,mβ0j) > b, so equation (5.4) implies that if the

contamination rate ε is larger than the upper limit

B(xj , ε, β0) =
1

1−mβ0(xj)

[ b√
nmax

√
mβ1(mβ0j

)(xj)(1−mβ1(mβ0j
)(xj))

+mβ1(mβ0j
)(xj)−mβ0(xj)

]
, (5.5)

the contribution of xj will be suppressed. (Note that B depends on ε through

β1(mβ0j).)

Since in the NB model we have that

sup
β∈Θ

mβ(xj) → 0 as xj → ∞ (5.6)

uniformly in β over the whole parameter space Θ (see the proof of Theorem

5 in Appendix B), we have

B(xj , ε, β) → 0 as xj → ∞ (5.7)

uniformly in β, regardless of ε.

From Theorem 7, we have that εWML ≥ ε1, so if ε < ε1 no breakdown

occurs for xj → ∞. If ε ≥ ε1, (5.7) implies that

∃ x̃ such that ∀xj > x̃, ∀β0, B(xj , ε1, β0) < ε1.

As soon as xj > x̃, we have ωj(xj) = 0, and then, from the proof of Theorem

7, the WML is equal to β0, so that again no breakdown occurs for xj → ∞.

5.2 Finite sample breakdown point

Let x = {x1, x2, . . . , xn} be an observed sample and let d(x) be the proportion

of observations equal to x. Define dj(x) as

dj(x) = (1− ε)d(x) + εχxj
,
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where {xj} is an outlier sequence. Let xM = max(x) < ∞.

Let ε∗1 be the finite sample bdp of the initial estimator and impose ε < ε∗1.

Analogous statements as in the asymptotic case can be proved in the

finite sample case, but two additional assumptions are needed.

Assumption 9. The weight function W (x) is a “step function”

W (x) = I(x ≤ b) (5.8)

where I(x ≤ b) is the indicator function for the set {x : x ≤ b}. This

corresponds to setting a = b in the definition of the weight function, and the

obtained weights are referred to as “hard” weights.

Assumption 10. Let ω(x) be a function from the sample space into the

two-element set {0, 1}. Let y = {y1, y2, . . . , yn} be a finite sample such that

max(y) is finite. Then the maximum likelihood estimate of β in the model

m̌β(x) =
ω(x)mβ(x)∑
ω(x)mβ(x)

,

calculated with the observations in y for which ω(yi) �= 0 is finite.

This assumption is reasonable since the sample y does not contain large

outliers.

Theorem 11. Let ε∗WML be the finite sample bdp of the WML. Under As-

sumptions 6, 9 and 10, ε∗WML ≥ ε∗1.

Proof. Assumption 6 and similar arguments as in the asymptotic case

imply that

∃ x∗
0 such that ωdj (xj) = 0 ∀ xj > x∗

0. (5.9)

As soon as xj > x∗
0, we have

wl(dj, mβ) = log
(∑

ωdj (x)mβ(x)
)
−
∑

ωdj (x)d(x) log(mβ(x))∑
ωdj (x)d(x)

,
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which in the case of hard weights is exactly equal to the negative log-

likelihood of the model

m̌β(x) =
ωdj(x)mβ(x)∑
ωdj(x)mβ(x)

at the sample consisting of the observations in x for which ωdj (x) �= 0, with

the weights ωdj (x) considered fixed (see footnote 2 in section 4.2)). Since

max(x) = xM is finite, the theorem is proved.

Again, a stronger statement can be proved in the case of the NB model.

Theorem 12. Under Assumptions 9 and 10, in the NB model, the finite

sample bdp of the WML is equal to 1 as soon as the finite sample bdp of the

initial estimator is non zero.

Proof. The proof is completely analogous to the proof of Theorem 8.

Note that Assumption 6 is no longer needed as the property (5.6) of the NB

model is stronger.



Chapter 6

Asymptotic behavior

6.1 Influence function

We denote by IF (x0, Z, g) the influence function at x0 of a functional Z(g)

when the data are distributed according to the probability distribution g, and

we use the abbreviation IgZ for IF (x0, Z, g). Consider as usual a model mβ .

The WML estimate of parameter β is noted β̂ and its value at distribution

g is noted β̂g, and the latter convention is applied to all other functionals of

the probability distribution.

Theorem 13. The influence function of the WML is given by

IF (x0, β̂, g) = M−1c(x0), (6.1)

where

M =
1

S2
m

[
Sm

∑
s(x, β̂g)s(x, β̂g)

tωg(x)mβg(x)−
∑

Tg(x, β̂g)ωg(x)mβg(x)
]

−
∑(

g(x)

Sg
− mβ̂g

(x)

Sm

)
ωg(x)H(x, β̂g),

55
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where

Sm =
∑

ωg(x)mβ̂g
(x),

Sg =
∑

ωg(x)g(x),

s(x, ·) is the score function for model mβ(x),

H(x, ·) is the Hessian matrix of logmβ(x),

Tg(x, β) = ug(β)s(x, β)
t, with ug(β) =

∑
∇mβ(x)ωg(x),

and

c(x0) =
1

S2
g

(
Sgωg(x0)s(x0, β̂g)− ωg(x0)

∑
g(x)ωg(x)s(x, β̂g)

)
− 1

S2
g

(∑
d(x)ωg(x)s(x, β̂g)

)∑
d(x)Igω(x)

+
1

S2
m

(∑
mβ̂g

(x)ωg(x)s(x, β̂g)
)∑

mβ̂g
(x)Igω(x)

+
∑(

g(x)

Sg

− mβ̂g
(x)

Sm

)
Igω(x)s(x, β̂g).

The influence function of the weight function ω·(x) is given by

IF (x0, ω·(x), g) =
W ′
(
f(n)

g(x)−mβ1(g)
(x)√

mβ1(g)
(x)(1−mβ1(g)

(x))

)
f(n)√

mβ1(g)(x)(1−mβ1(g)(x))[
∇mβ1(g)(x) · Igβ1

(
1

2
(2mβ1(x)− 1)(g(x)−mβ1(x))− 1

)

+χx0(x)− g(x)

]
,

If we are using a MDE as initial estimator β1, its influence function Igβ1
can

be found in Lindsay (1994).

Proof. The proof is straightforward (but lengthy) differentiation of the

estimating equations (4.6).



6.1. INFLUENCE FUNCTION 57

If the distribution g is a model point mβ , then the consistency of the

initial estimator and of the WML imply that βg = β1 = β, wg(x) ≡ 1,

mβg(x) ≡ g(x), and then (6.1) becomes equal to

i(β)−1s(x0, β),

where i(β) = E
(
s(X, β)s(X, β)t

)
is the Fisher information matrix, with X

distributed according tomβ. Thus, the WML has the same influence function

as the MLE at the model, which strongly suggests full asymptotic efficiency.

A proof of asymptotic normality is still lacking, but simulations support this

conjecture. Moreover, a theorem by Rao (1961) (his Lemma 3 p.539) states

that in the multinomial model with a finite number of cells, any estimator

which has the same influence function as the MLE is asymptotically normal

(and therefore fully efficient). Finally, if we use “hard rejection weights”,

then footnote 2 p.46 shows that the WML is closely related to a maximum

likelihood estimator, which strengthens our confidence that it is asymptoti-

cally normal.

If we suppose that the WML is asymptotically normal, its asymptotic

covariance matrix at the model mβ is given by (Hampel et al., 1986)∑
IF (x, β,mβ)IF (x, β,mβ)

t mβ(x).

In practice, the covariance matrix of the WML can be estimated either by

1

n

∑
IF (x, β̂d, mβ̂d

)IF (x, β̂d, mβ̂d
)t mβ̂d

(x) (6.2)

or by
1

n

∑
IF (x, β̂d, d)IF (x, β̂d, d)

t d(x), (6.3)

where the observed frequencies are given by d(x) and n is the sample size.

We shall see with two examples in chapter 8 that formula (6.2) works well

for the WML and the more efficient MDEs (NE, linNE, Hellinger) already
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for moderate sample sizes, but that it underestimates the variance of the less

efficient MDEs (Neyman, “λ = 3”).1

Finally, note that if we use “hard rejection weights”, IF (x0, ω·(x), g) ≡
0 ∀g and c(x0) simplifies to

c(x0) =
1

S2
g

(
Sgωg(x0)s(x0, β̂g)− ωg(x0)

∑
g(x)ωg(x)s(x, β̂g)

)
.

6.2 Asymptotic bias under contamination

In this chapter we investigate the asymptotic bias of the WML under point

contamination, in the NB model. We consider different contamination po-

sitions, excluding contaminations at 0 for the following reasons: In the NB

model, there are typically two ways an estimator of the parameters can be

caused to breakdown: observations going to infinity and observations accu-

mulating at zero. While both are well handled by the MDEs, the TML and

the WML in terms of breakdown point, which is 1 in both cases, the latter is

still an issue in terms of bias. As noted in section 3.4.2, for a given contamina-

tion level ε, the largest bias of the MDEs is often observed for contamination

at zero, where the MDEs do not do better than the MLE. Naturally, this

shortcoming is transfered to the WML if it is based on a MDE. Thus, in

cases where a strong contamination at 0, and only there, is expected, the

methods proposed in this thesis are not preferable to the MLE. If one wishes

to find a good model for the other data, which is the robust philosophy we

are following, one should probably fit a zero-truncated model to the non zero

observations, and then our methods are again advisable. In what follows we

only consider contaminations at positions different from zero.

Remark D. An asymptotic bias investigation in the NB model, of the type

1As noted in section 3.4.3, Lindsay (1994) showed that the MDEs also have the same

IF as the MLE at the model, and so their covariance matrix can also be estimated with

formula (6.2), with the corresponding estimate of β instead of β̂d.
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presented in this chapter, together with a numerical investigation as in chap-

ter 7, led to the choice b = 3.5 and nmax = 200 for the tuning constants of

the weight function and its argument (see (4.2) and (4.4)). The examples

presented in this chapter and in chapters 7 and 8 use this choice.

6.2.1 Maximum asymptotic bias

In this section we consider the maximum bias that can be induced on the

WML estimates of the parameters of the negative binomial model by a con-

tamination at position xj . We show that this bias is quite low, due to the

fact that the maximum contamination rate that will not be suppressed by

the WML itself low.

Consider the contaminated model

mβ0j(x) = (1− ε)mβ0(x) + εχxj
(x),

where χxj
is the indicator function for xj .

In what follows we takemβ0 in the NB model and consider MBWML(xj , β0),

the maximum asymptotic bias that can be caused to the WML by a contam-

ination at position xj .

As noted in the proof of Theorem 8, ωmβ0j
(xj), the weight at the contam-

ination position, is zero as soon as

ε > B(xj , ε, β0)., (6.4)

where the upper limit B(xj , ε, β0) is given by

B(xj , ε, β0) =
1

1−mβ0(xj)

[ b√
nmax

√
mβ1(mβ0j

)(xj)(1−mβ1(mβ0j
)(xj))

+mβ1(mβ0j
)(xj)−mβ0(xj)

]
, (6.5)

which depends on ε through mβ0j . Thus, a contamination at xj will con-

tribute to the estimating equation only if

ε ≤ B(xj , ε, β0). (6.6)
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In the NB model, with a MDE as initial estimator, it seems that ε∗(xj , β0),

the largest value of ε for which (6.6) holds, is quite low for all positions xj

(except 0) for the choice b = 3.5 and nmax = 200. A low ε∗(xj , β0) generally

causes MBWML(xj , β0), the maximum asymptotic bias under contamination

at position xj , to be quite low as well.

Figure 6.1 shows the maximum bias on each of the parameters as a func-

tion of the contamination position, in different NB models. In these examples,

the initial estimator is the minimum negative exponential estimator. The re-

sults were very similar with each of the other MDEs we chose to consider in

section 3.4.3. In Figure 6.1 it can be seen that in our examples the maximum

relative bias under point contamination at xj �= 0 almost never exceeds 10%

and is generally much lower, which indicates that our choice of b and nmax is

reasonable in terms of asymptotic robustness.

For comparison purposes, consider the bias bMDE(xj , ε, β0) caused to a

MDE by a contamination at xj with rate ε, and consider the limit ε → 1

in the NB model. In that case all considered MDE estimates (mMDE, αMDE)

tend to (xj , 0), and the same is true for the corresponding TMLs, regardless

of β0.
2 The corresponding biases are plotted in Figure 6.1 only for parameter

m, and appear as almost vertical lines. The equivalent for α would be a

horizontal line at −α (outside the plotting region). Note that the bias of

the WML in the limit ε → 1 is zero in all these examples, as the maximum

ε that will not be cut by the WML is much lower than 1. This maximal

contamination rate is plotted as a function of contamination position in the

third column of Figure 6.1. The largest contamination proportion to ever go

2For the MDEs, recall that in the NB model the maximum over β = (m,α) ofmβ(xj) is

attained at the limit β → (xj , 0) for all xj �= 0 (see the proof of Theorem 5 in Appendix B).

It is easy to check that if d(xj) → 1 the minimum disparity, for all disparities considered,

is attained by maximizing mβ(xj). For the TML, supposing the contamination at xj is

not rejected (which is reasonable since it corresponds to the mode of the initial model), we

arrive to the same conclusions, again with the arguments exposed in the proof of Theorem

5.
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through in our examples is 0.13.

6.2.2 Asymptotic bias for fixed ε

In Figures 6.2, 6.3 and 6.4, we give “standard” asymptotic bias curves for

two different NB models, (m,α) = (5, 2/3) and (m,α) = (7, 1.5), and differ-

ent contamination rates ε, for point contamination from xj = 1 to xj = 75.

As the plots are all quite similar in shape, we chose two very different con-

tamination rates, ε = 0.1 and ε = 0.5, and 3 different initial estimators, the

minimum Hellinger distance (Figure 6.2), the minimum NE (Figure 6.3) and

the minimum Cressie-Read disparity with λ = −3 (Figure 6.4). These initial

estimators span the range of resistance to contamination among the 5 we

chose to investigate (see Figures 3.3 and 3.4). Again, we used a = b = 3.5

and nmax = 200. All graphs share the following common characteristics:

• The TML and the WMLc have the same asymptotic bias as the MLE

up to the point where the contamination position gets larger than the

adaptive cut-off, thus having large biases for low contamination posi-

tions.

• When the cut-off is reached, the bias of the WMLc drops directly to

zero, as expected (an estimator that minimizes the negative weighted

log-likelihood (4.9) has zero asymptotic bias if all contaminated posi-

tions get a zero weight). This is not the case for the TML, which is

still influenced by the bias of the initial estimate.

• As we move on from a more biased initial estimate (Hellinger) to a

more robust one (“λ = −3”), the point where the “drop down” occurs

gets lower, and this is the main difference, as far as asymptotic bias is

concerned.

• The bias of the WML is exactly zero as soon as the contamination

gets cut. In our examples the only situation were this is not the case
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Figure 6.1: The maximum bias that can be caused to the WML estimates of

m and α in the NB model, as a function of contamination position, the 0 po-

sition being excluded (first two columns). The third column shows the corre-

sponding rates of contamination, which are the maximum rates for which the

contamination at the corresponding position is not removed in the calcula-

tion of the WML. All examples with weight function parameters a = b = 3.5,

nmax = 200. In red, the analogous curves for the MDEs and the TMLs. In

the case of α these curves lie outside the plotting region.
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is for contamination at xj = 1 or xj = 2 with ε = 0.1 at the model

(m,α) = (5, 2/3). In all other cases, the contamination rate is above

the upper limit (6.5), consistently with the third column of Figure 6.1.

• In our examples, a change of initial estimator makes almost no differ-

ence for the WML. (The only difference is that with the more robust

“λ = −3” initial estimator, the contamination at xj = 2 gets cut.)

• Finally, note that although the graphs for ε = 0.1 and ε = 0.5 look very

similar, there is a big difference in scale.

Coming back to our discussion of section 3.4.3 about the best choice for

the initial estimator, we see that the differences in robustness among the

MDEs have rather small influence on the robustness of the final estimators,

particularly for the WML. Thus, the decisive argument for this choice will

be the performances of the estimators in finite samples, to be presented in

chapter 7, to which we postpone this question.
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Figure 6.2: Asymptotic bias plots. The initial estimate is minimum Hellinger

distance.
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Figure 6.3: Asymptotic bias plots. The initial estimate is minimum NE.
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Figure 6.4: Asymptotic bias plots. The initial estimate is minimum Cressie-

Read disparity with λ = −3.



Chapter 7

Empirical results

We did some simulations in order to explore the finite sample behavior of the

different estimators. We are interested in the following aspects:

• Efficiency in terms of mean square error (MSE efficiency), relative to

the MLE, at the model. To explore this point for different sample sizes,

we have run simulations at increasing sample sizes from 100 to 2000,

by steps of 100. The results are presented on Figures D.1, D.2 and D.3

in Appendix D. The MSE efficiency of an estimator β̂ of a parameter

β is defined as

MSE(βML)

MSE(β̂)
,

where βML is the maximum likelihood estimator for β.

• “Standard” efficiency at the model for increasing sample sizes. Effi-

ciency is defined as

Var(βML)

Var(β̂)
.

The corresponding results (based on the same simulations as for the

previous point) are presented on Figures D.4 and D.5 in Appendix D.

67



68 CHAPTER 7. EMPIRICAL RESULTS

• Bias at the model for increasing samples sizes. The corresponding

results (again based on the same simulations as for the first point) are

presented on Figures D.6 and D.7 in Appendix D.

• Behavior in contaminated samples. To explore this point we have run

simulations at point contaminated models for contamination position

ranging from 1 to 50, by steps of 1.1 Different aspects of the corre-

sponding results are presented on Figures D.8, D.9, D.10, D.11 and

D.12 in Appendix D.

All simulations have been performed on the two NB models (m,α) = (5, 2/3)

and (m,α) = (7, 1.5), with 500 replications, using the pseudo-random number

generator provided by the R software. In all cases, we have calculated the

five initial estimators we consider and the corresponding TMLs, WMLc’s

and WMLs. As the number of simulations is quite high and it would be very

time consuming to check all results for possible numerical problems, all the

quantities mentioned in this section (MSEs, biases, ...) are in fact trimmed

versions, where the most extreme values have been removed2.

We now comment these results, using the following conventions:

• The MDEs are referred to as NE, linNE, Hellinger, Neyman and “λ =

−3”.

• These denominations are extended to the corresponding final estima-

tors, when no confusion is possible.

1contaminations at zero have not been considered, for already exposed reasons (see the

comment at the beginning of section 6.2).
2The values exceeding the whiskers of a box-plot have been suppressed before calcula-

tion of each of the quantities of interest. The lower whisker is defined as the first quartile

minus 1.5 times the interquartile range (IC), and the upper whisker as the third quartile

plus 1.5 times the IC.
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7.1 Simulations at the model

Although all considered estimators are asymptotically equivalent at the model,

they show very different performances in finite samples. Figures D.1 and D.2

show the MSE efficiencies of the estimators. On the two upper panels of both

figures, we see that except in the case of the NE, the WMLs show better per-

formances than the MDEs on which they are based. In addition, their MSE

efficiencies are very close to each other, compared to the efficiencies of the

MDEs. This is in fact a general pattern that will also appear in contaminated

sample situations: the choice of the initial estimator does not seem to have

a strong influence on the performances of the WML. However, the ordering

of the estimators is preserved: for both the MDEs and the WMLs the best

estimator is NE, followed by linNE, Hellinger, Neyman and “λ = −3”. This

also is a general pattern which is observed on most of our figures.

This calls for some comments on the MDEs. It appears that the most

robust MDEs are the ones that show the weakest performances in finite sam-

ples of the sizes considered. This is a consequence of the robustness-efficiency

trade-off which we mentioned in section 3.4.3. The Cressie-Read disparities

with the lowest values of λ, Neyman and “λ = −3”, have higher finite sample

variance and bias, as predicted by their lower second order efficiency and their

shortcomings in the treatment of inliers. However, the poor performances of

Hellinger are to be explained solely by the inlier problem, which seems to

cause bias. In particular, on Figures D.4 and D.5, it is seen to be the most

efficient of all our estimators (even more than the MLE). This contradicts

the prediction made by second order efficiency, as the MLE, the linNE and

the NE are second order efficient and have higher variances. This type of

behavior was also noted by Basu and Sarkar (1994). Moreover, the linNE,

designed to be closer to the MLE while keeping the outlier downweighting

properties of the NE, has weaker performances than the NE in terms of MSE,

although its efficiency is slightly higher (see Figures D.4 and D.5). Thus the
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NE appears to present an excellent balance for what concerns second order

efficiency and the treatment of inliers; indeed, it is often the best estimator

in our examples. We shall see that it also does very well in the presence of

contamination, but then it is outperformed by the WML.

One more remark on the MDEs: some of them (“λ = −3”, Neyman,

Hellinger) do not seem to show a convergence of the MSE efficiency to 1.

This is probably due to their important finite sample bias (see Figures D.6

and D.7). This phenomenon slows up the convergence. On Figures D.4 and

D.5 we see that in terms of “standard” efficiency, the convergence is more

visible.

As a matter of fact, finite sample bias seems to be the main drawback of

MDE - and of WML - estimation. The bias is particularly large for Hellinger

at the smallest sample sizes represented in Figures D.6 and D.7, but in fact

all MDEs have large biases as the sample size gets small, and this effect is

stronger for more over-dispersed models (i.e. models with a larger α). The

WML makes the situation better3 , yet it can still have important biases; like

for the MDEs, this shortcoming gets stronger as α increases. For example,

a simulation with 500 replications for sample size n = 50 at the models

(m,α) = (5, 2/3) and (m,α) = (7, 1.5) yielded biases on the WML (based on

NE) as high as 5% on m and 10% on α for the former model and 13% on m

and 17% on α for the latter. (Let us mention however that the biases on the

Hellinger MDE were between two and three times larger).

This phenomenon has also been noted, for MDEs, by Basu, Basu, and

Chaudhuri (1997), in the context of estimation of the Poisson model. These

authors explore the Cressie-Read family in the range λ ∈ (−1, 0), i.e. between

The Kullback-Leibler divergence and the MLE, and propose to minimize

“penalized” versions of the disparities, where the impact of the empty cells

3sometimes much better, e.g. Hellinger, upper left panel of Figure D.6, at a sample

size of 100, where the MDE’s bias is about 12% of the parameter value (m = 5), and the

WML’s is about 4.5%.
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is reduced. They show in their Table 3 p.23 that the penalized disparities

have lower - and more stable over λ - values of the mean square error in a

simulation at the Poisson model with mean 5 and a sample size of 20. In

particular, Hellinger has an MSE of 0.3250 and its penalized version has an

MSE of 0.2781; a MDE with λ = −0.8 (corresponding to their α = 0.2) has

an MSE of 0.5272 while its penalized version has 0.2949. In a simulation

in the same conditions we obtain 0.2952 for Hellinger and 0.2723 for the

corresponding WML, and for λ = −0.8 we get 0.4852 for the MDE and

0.2966 for the WML, so we see that the same kind of MSE reduction and

stabilization over λ is offered by the WML in this situation4. A second remark

is that the same simulation for the NE yields an MSE of 0.2811, which is

very similar to the MSE of the penalized Hellinger, and yet the NE offers

stronger large outlier downweighting than Hellinger (see Figures 3.2, 3.3 and

3.4). This points out, once more, the NE as a very performing estimator. In

passing, the WML based on the NE in the previous simulation had an MSE

of 0.2835, i.e. almost the same as the NE.

Coming back to the problem of the small sample bias, we see that, at

least in the Poisson case, the penalized estimators of Basu et al. (1997) do

not perform better than the WML or the NE; we do not know whether they

would offer an improvement in a markedly over-dispersed situation, where

our estimators can suffer important bias. Anyway an alternative method

should be developed for estimation in that type of situation. Note that in the

NB model, a value of α around 1 can already imply much over-dispersion,

depending on the value of m (recall the variance equals m + m2α). Let

us point out, however, that in the case of low over-dispersion, the WML

performs very well in quite small samples, as we shall see in the next chapter

with two examples with real data.

Finally, some comments about the TML and the WMLc. The influence of

4We estimated a NB model on Poisson data, as the programs have for the time being

been developed only for NB. We see that this does not cause a large efficiency loss.
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the initial estimator is much stronger on those estimators than on the WML,

as can be seen on the lower panels of figures D.1 and D.2. In that case, for

visibility reasons, we show the curves only for the NE and the “λ = −3”.

Again, the above ordering is respected, but the differences are much larger

than for the WML, and no shrinkage is visible in the considered range of

sample sizes. The TML is seen to be superior to the WMLc, and this will be

the case in all our examples.

On Figure D.3, we have plotted the NE, which is the best estimator in

terms of MSE efficiency, as well as the corresponding WML and TML. The

WML shows comparable, yet slightly weaker, performances than the NE.

However, it is superior to the TML, and this is the case in all our examples.

7.2 Simulations at contaminated models

All simulations have been done with a contamination rate of 10%, apart from

the ones presented on Figure D.9 where the rate is 20%.

The main result is shown on Figure D.8, which presents the root mean

square errors (RMSE) of the MDEs and the corresponding WMLs, as a

function of contamination position. In almost all cases, the RMSE of the

WML is globally lower than the RMSE of the MDE. Thus the WML is seen

to improve the initial estimate both at the model and in the presence of

contamination.

The only MDE which is sometimes better than the WML is the NE,

but even then, its RMSE is larger than the RMSE of the WML by a factor

as large as 1.5 for certain contamination positions. Moreover, when the

contamination rate is 20% the WML is globally better than the NE over

the whole range of tested contamination positions, improving it by factors

sometimes close to 2 (see Figure D.9).

Figures D.10, D.11 and D.12 show different aspects of the simulations

with 10% contamination. On Figure D.10, we plotted all MDEs and the
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most extreme WMLs: the NE and the “λ = −3”. All the WML curves are

inside the envelope formed by the NE and the “λ = −3” (filled in lightgrey on

the plots). Again the differences between the MDEs are much larger than the

differences between the WMLs, showing the limited influence of the choice

of the MDE on the performances of the WML.

Thus, our choice of the tuning constants b = 3.5 and nmax = 200 is ap-

propriate. As noted in section 4.1.2, b and nmax control the threshold (on the

standardized difference between the observed and the predicted frequencies)

above which a sample space element gets a zero weight. Here this threshold

is large enough so that in the absence of contamination not too many ob-

servations are removed (even if the initial estimator is biased), thus allowing

high efficiency, and yet small enough for contaminations rates of 10% to be

successfully suppressed.

One point that might seem surprising when considering the MDE curves

on Figure D.10 is that they sometimes show very different patterns, some

having local minima where some others have local maxima. This is again

imputable to the strong bias which affects some MDEs in finite clean samples

(hereafter: the “base bias”). Figure D.11 shows the respective contributions

of bias and standard deviation to the RMSE curves of the MDEs, for the

m parameter at the contaminated model (m,α) = (5, 2/3). The two lower

graphs have the same scale, to allow visual comparison of the curves therein.

We see that the patterns of the RMSE curves are mainly dictated by the bias

patterns. These bias patterns are similar, but differently positioned with

respect to 0, which implies quite different patterns for the RMSEs. (For

example Hellinger’s “base bias” is such that its bias under contamination

ends up being zero at the point where the outlier has the largest influence.)

Finally, Figure D.12 shows the respective performances of the linNEG and

the corresponding TML, WMLc, and WML. The situation is very similar for

the other MDEs. We see that the WMLc is again weaker than the TML,

which in turn is weaker than the WML. The WMLc and the TML curves
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show the same shortcoming which was already noted on the asymptotic bias

curves (Figures 6.2, 6.3, 6.4), and anticipated in chapter 4.2: for low contam-

ination positions, they follow the MLE curve (generally doing worse) up to

the point where the contamination starts being eliminated by the adaptive

cut-off procedure. The reason why they do worse than the MLE before the

drop down is the following: the fact that the contamination is not eliminated

does not mean that no observations are removed. Depending on the sample,

the adaptive cut-off can have a value not far above the contamination posi-

tion, resulting in an important loss of information and thus an increase in

variability.

In the case of the linNE, the WMLc and the TML show worse perfor-

mances than the MDE on which they are based. The same is true for the

NE. For Hellinger, Neyman and “λ = −3”, they do a little better for large

contamination positions. But they never do better than the WML.

Coming back once again to our discussion about the choice of the initial

estimator, we see that the most robust members of the Cressie-Read family

are ruled out by their finite sample shortcomings, even in the presence of

contamination. The WML based on these MDEs offers a large improvement

of their performances, yet the WMLs based on MDEs which are more efficient

and less biased in clean samples are better. Therefore we advise to start with

either the NE or the linNE.



Chapter 8

Illustration with real data

We present two examples of application of the WML.

8.1 Chemical mutagenicity data

In the sex-linked recessive lethal test in drosophila (fruit flies), male flies

are exposed to different doses of a chemical to be screened. Each male is

then mated with unexposed females. One observes the number of daughter

flies carrying a recessive lethal mutation on the X chromosome. Details of

the experimental protocol can be found in Woodruff, Mason, Valencia, and

Zimmering (1984). These data were previously analyzed by Simpson (1987).

A striking feature of these data is the occasional occurrence of exceptionally

large counts. Woodruff et al. (1984) referred to these exceptional counts

as “clusters”. They conjectured that, unlike the majority of the recessive

lethals, which result from mutations during meiosis, a cluster results “from a

single spontaneous premeiotic event” (p. 195). Consequently, they advocated

the exclusion of observations identified as clusters.

Table 8.1 reports the observed frequencies of daughters with lethal muta-

tion in one such experiment, and we note the presence of a very large outlier

(having value 91).
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Table 8.1: Observed distribution of the number of daughters carrying a re-

cessive lethal mutation on the X chromosome.

Number of daughters 0 1 2 91

Frequency 23 7 3 1
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Figure 8.1: The weight function of the WML in the drosophila example.

We considered a NB fit to these data. We computed the 5 MDEs (NE,

linNE, Hellinger, Neyman, “λ = −3”) and the corresponding WMLs, as

well as the MLE and the MLE after removal of the outlier (MLE*). In

this example, we used smooth weights in the computation of the WML, for

reasons to be clarified further. In (4.2), we used

W (x) =

{
1 if x ≤ 0

1− ρk(x) if x > 0,
(8.1)

where

ρk(x) =

{
1− [1− (x/k)2]

3
if |x| ≤ k

1 if |x| > k
(8.2)

is Tukey’s biweight function. We used the value k = 2, and nmax = 200 in

(4.4). See the shape of W (x) on Figure 8.1.



8.1. CHEMICAL MUTAGENICITY DATA 77

Table 8.2: Estimates of the NB parameters for the drosophila data.

Estimator m sd(m) sd(m) α sd(α) sd(α)

(as. approx.)(bootstrap) (as. approx.)(bootstrap)

NE MDE 0.40 0.12 0.11 0.38 0.81 0.93

WML 0.37 0.11 0.11 0.18 0.77 0.42

linNE MDE 0.39 0.11 0.11 0.24 0.76 0.62

WML 0.36 0.11 0.10 0.15 0.77 0.39

Hellinger MDE 0.36 0.10 0.10 0.00 0.15 0.68

WML 0.33 0.10 0.11 0.01 0.75 0.21

Neyman MDE 0.39 0.12 0.11 0.47 0.87 1.27

WML 0.37 0.11 0.11 0.16 0.77 0.31

“λ = −3”MDE 0.46 0.14 0.13 0.93 0.99 1.72

WML 0.38 0.11 0.11 0.22 0.76 0.43

MLE* 0.39 0.11 0.11 0.25 0.76 0.84

MLE 3.06 2.43 2.62 9.97 4.08 6.42

The results are presented in Table 8.2. Except for the MLE, all esti-

mates are rather similar in value, but a greater similarity is noted amongst

the WMLs than amongst the MDEs. The variation amongst the different

estimates is more important for parameter α than for m, yet this has little

influence on the predicted frequencies, which are all very much alike (see

Figure 8.2).

The standard errors of the estimates were estimated with the asymp-

totic formula (6.2) and also via a bootstrap procedure, using the empirical

distribution function1. As can be seen in Figure 8.2, for parameter m, the

asymptotic approximations coincide very well with the bootstrap values (ex-

cept for the MLE, as one could expect), and all estimates in Figure 8.2 have

1We generated 1000 pseudo-random samples of size 34, according to the empirical

distribution function. (This took about 5 minutes per MDE-WML couple.)
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Figure 8.2: Observed and predicted frequencies for drosophila data. The

boxes show the observed frequencies (calculated without the outlier in order

to correctly assess the fits to the “good” data). Coloured lines show the

MDEs (dashed) and the WMLs (solid). The two central black lines show the

MLE* (dotted) and the MLE (solid).

about the same variability (which also corresponds quite well to the jackknife

estimate of standard error (with value 0.10) given by Simpson (1987), who

fitted a Poisson model to these data with minimum Hellinger distance). For

parameter α, the asymptotic approximation is rather close to the bootstrap

result for the more efficient MDEs (NE, linNE) and for the MLE*, and un-

derestimates the sd of the less efficient MDEs (Neyman, “λ = −3”). For the

Hellinger MDE, the asymptotic approximation also underestimates the sd

relative to the bootstrap, but the value of the estimate is extremely close to

the lower limit of the parameter set, so that one can expect the asymptotic

approximation not to work well. For the WMLs, the sd as estimated by

bootstrap is systematically lower than the asymptotic approximation. Here,

the WMLs work better than the MDEs and also than the MLE*.

Actually, this feature is linked to the use of smooth weights. Attempts

with “hard” weights were not satisfactory in this case, a fact for which we

give the following interpretation: as can be seen in Figure 8.2, the frequency



8.2. LENGTHS OF HOSPITAL STAYS 79

of zeros is very high in the considered situation. For small sample sizes,

samples with even higher proportions of zeros will often arise, and this is the

source of much instability in the estimates of the α parameter, which will

have very large values in such samples. To face this situation, we need to

downweight the influence of position 0 in the estimating equations, without

removing it completely, as then we would be discarding the great majority

of the data, also resulting in a poor efficiency.

Thus, for situations with a high proportion of zeros and a rather small

sample size, the WML can be preferable to the MLE even in uncontaminated

situations.

Finally, it is visible in Table 8.2 and in Figure 8.2 that the MLE is badly

corrupted by the presence of the outlier.

8.2 Lengths of hospital stays

In the second example we consider lengths of hospital stays (LOS). In mod-

ern hospital management, stays are often classified into “diagnosis related

groups” (DRGs), and LOS is used as a cost indicator. The mean LOS of

several hundred DRGs are then used for budgeting purposes and to compare

the economic efficiency of different hospitals. LOS distributions often con-

tain outliers whose value and frequency fluctuate from year to year. Thus,

robustness is an important issue if one wishes to obtain stable summaries.

Since many DRGs must routinely be inspected each year, automatic outlier

detection is important in this field.

Table 8.3 shows an example of 32 stays in a Swiss hospital in 1988, classi-

fied into DRG “disorders of the nervous system”. A simple visual inspection

of this particular DRG identifies three outliers: 115, 198, 374. We consi-

dered a NB fit to these data, which were previously analyzed by Marazzi

and Ruffieux (1999), who considered a Weibull fit, and Marazzi and Yohai

(2010), who also considered a NB fit.
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Table 8.3: Lengths of stay of 32 hospital patients.

LOS 1 2 3 4 5 6 7 8 9 16 115 198 374

frequency 2 6 5 5 4 2 2 1 1 1 1 1 1

Negative binomial fits of LOS data are quite frequent in the literature,

see for example UCLA (2010), the examples in Hilbe (2007), or Marazzi and

Yohai (2010). See Bithell (1969) for a mathematical justification of the NB

model for LOS modeling.

Like Marazzi and Yohai (2010), we modeled the distribution of LOS-1

with a NB distribution. Like in the previous example, we computed the five

MDEs and the corresponding WMLs, as well as the MLE and the MLE*.

Here, the MLE* is the maximum likelihood estimate of the data without

the four largest observations (16, 115, 198, 374). Indeed, the maximum pre-

dicted frequency for LOS=16 amongst the 10 robust fits we have computed

is 0.00015, which points it out as a clear outlier in a sample of size 32.

Here we have used “hard” weights in the computation of the WML, with

b = 3.5 and nmax = 200. (An attempt with smooth weights as given by (8.1)

with k = 3.5 yielded an estimate with a slightly larger variability than with

hard weights.)

Again, the standard deviations of the estimates were estimated with the

asymptotic formula (6.2) and by bootstrap2. Like for the drosophila data,

all robust estimates were very close in value; actually, all WMLs were exactly

equal (all of them remove just the four outliers). In Table 8.4, we present

the results for the NE, the corresponding WML, the MLE and the MLE*.

The corresponding fits are shown in Figure 8.3, where all distributions are

conditioned on the interval [0, 14], in order to correctly assess the fits to the

“good” data. The MDE, the WML and the MLE* fit the data well, but the

2We generated 1000 pseudo-random samples of size 32, according to the empirical

distribution function. (This took about 10 minutes per MDE-WML couple.)
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Table 8.4: Estimates of the NB parameters for the LOS data.

Estimator m sd(m) sd(m) α sd(α) sd(α)

(as. approx.)(bootstrap) (as. approx.)(bootstrap)

NE MDE 3.04 0.40 0.42 0.16 0.14 0.12

WML 3.00 0.39 0.43 0.15 0.13 0.11

MLE* 3.00 0.39 0.38 0.14 0.13 0.11

MLE 24.47 19.38 12.54 3.08 0.87 0.80
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Figure 8.3: Observed and predicted frequencies for LOS data. The boxes

show the observed frequencies.
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MLE is badly corrupted by the outliers.

In Table 8.4 we see that, except for the MLE, the standard errors of

the different estimates are quite similar, and in good agreement with the

value given by the asymptotic formula. Moreover, they are smaller than the

standard errors obtained by Marazzi and Ruffieux (1999) for estimation of

the mean of the same data, with truncated means (a procedure similar to

our TML, but with a fixed cut-off) and the Weibull model: their standard

deviations range from 0.57 to 2.65, depending on the initial estimator (in

Table 8.4, the largest standard error on m (excluding the MLE) is 0.43).

If we compare our estimated values to the ones obtained by Marazzi and

Yohai (2010), we see that their most robust estimator (an M-estimator with

80% asymptotic relative efficiency) yields the values 3.58 and 0.44 for m and

α, which are markedly larger than the 3.00 and 0.15 yielded by the WML

(the latter are much closer to the MLE*). A visual comparison of the fits

in Figure 8.3 and in Figure 1 in Marazzi and Yohai (2010) shows that the

WML fit is better.

Finally, in this example, the standard deviations of the MDE and the

WML are almost equal. Note however that with less efficient initial estima-

tors (Neyman and “λ = −3”), the WML provided a substantial improvement

(and the asymptotic formula underestimated the standard deviation of the

MDEs, like in the drosophila example).



Chapter 9

Computation

Programs to compute the estimates have been developed using the R pro-

gramming language. At the time of writing, these programs have been devel-

oped for the specific case of estimation of the negative binomial parameters.

The programs are available from the website of the Statistical Unit of the In-

stitute for Social and Preventive Medicine, Centre Hospitalier Universitaire

Vaudois, Lausanne, Switzerland:

http://www.iumsp.ch/Unites/us/msp_us.htm.

These programs use the built-in optimizing function optim to minimize

the disparities (eq. (3.8)) and the weighted likelihood (eq. (4.9)). optim

needs to be given a starting point (mstart, αstart) for the minimization. It

is important that this starting point be robust to avoid convergence of the

algorithm to a wrong local minimum in the presence of outliers. We use the

estimates of the NB parameters obtained via the S-estimates, presented in

section 3.3. An ad-hoc programme has been developed to solve system (3.7)

which relates the S-estimates of location and scale to the NB parameters.1

1In section 3.3, we pointed out that the S-estimators of location and scale “collapsed”

when more than half the data have the same value, and that the system (3.7) did not always

have a solution. When one of these situations arises, more specific rules are applied to

find the starting point in a robust way.
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A help file to use the software can also be found at the same url.



Chapter 10

Conclusion and perspectives

We have developed a two-step estimation procedure for discrete distributions

which combines interesting robustness and efficiency properties. Like the

minimum disparity estimators, it offers a high breakdown point together with

full asymptotic efficiency. However while the finite sample performances of

different MDEs can be very different, the performances of the corresponding

WMLs are much closer to each other. In a large variety of situations, these

performances - in terms of mean square error - are better than those of the

MDE used as initial estimator. This effect is particularly important in the

presence of contamination in the data: the influence of a contamination on

the WMLs is generally much weaker than its influence on the MDEs.

The stability of the WML with respect to change of the initial estimator

attenuates the importance of the choice of that estimator, however it ap-

pears in simulations that the best performances of the WML are obtained by

starting with the minimum negative exponential estimator, which presents a

particularly good balance in terms of robustness, efficiency and small sample

bias.

The idea of using an initial estimator as a tool for outlier detection and

rejection was already present in Marazzi and Ruffieux (1999); Gervini and

Yohai (2002); Marazzi and Yohai (2004). However, these authors considered

85



86 CHAPTER 10. CONCLUSION AND PERSPECTIVES

rejecting - or downweighting - the whole tails of a distribution starting from

an observation-dependent cut-off, determined from the initial estimator. The

procedure proposed in this thesis, particularly natural in the discrete setting,

allows to downweight more specifically the observations which are in contra-

diction with the initial model. This feature has two positive consequences:

• Outliers can be downweighted regardless of their position in the sample

• Efficiency losses are reduced by the possibility of eliminating outliers

more specifically, without removing too many “good” observations.

This procedure offers some flexibility with two constants, b and nmax,

which regulate the robustness-efficiency trade-off. The constant b is inter-

preted as a quantile of a standard normal distribution, which facilitates its

choice. The choice of nmax relies on numerical investigation and exploration

of the asymptotic bias under contamination in the model of interest. This

investigation has been carried out by the author in the negative binomial

model, and the values b = 3.5 and nmax = 200 have been shown to provide

highly performing estimators of the NB parameters, in terms of finite sample

mean square error, both in the presence and in the absence of contamination,

and in terms of asymptotic bias under contamination.

However, in chapter 7, we mentioned the fact that a drawback of the

proposed procedure is a possibly important small sample bias in markedly

over-dispersed models. This is not just an effect of the bias of the initial

estimator; the WML does have some intrinsic small sample bias in such

models. This drawback should be explored more precisely, in order to better

determine the appropriate domain of application of the WML.

When the data are too much over-dispersed, another procedure should

be used. Possible alternatives are M-estimation procedures as in Marazzi

and Yohai (2010) or Cadigan and Chen (2001). However, to the author’s

knowledge, no precise statement has been made about the breakdown point

or the contamination bias of these methods.
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Coming back to the WML, future work could also include computing

its second order efficiency, which might be an interesting tool to better un-

derstand its finite sample efficiency properties. However, recall that second

order efficiency is not always an adequate measure of finite sample efficiency:

in our simulations the most efficient MDE is Hellinger, which is not second

order efficient, while NE is and has a lower finite sample efficiency. This was

also noted by by Basu and Sarkar (1994) in an empirical study at the normal

model.

In this thesis we considered principally “hard” weights, i.e. the observa-

tions are either removed or kept, but not downweighted by a factor in (0,1).

This was done so mainly for simplicity of exploration, so that the issue of the

shape of the weight function is avoided (we are just left with two constants

to set). Another advantage is that with hard weights, the WML has an in-

terpretation as the maximum likelihood estimator of a conditioned model,

calculated on the remaining observations1. This correspondence is useful in

the proof that the finite sample bdp of the WML is not lower than the finite

sample bdp of the initial estimator.

However, we conjecture that this statement holds for a more general class

of weight functions. Simulations support this conjecture, and moreover the

statement holds for the asymptotic bdp (see section 5.1). We have seen in

the drosophila example (section 8.2) that continuous weights can be of great

interest in situations where we want to reduce the influence of a certain po-

sition without removing it completely. Another situation where continuous

weights would probably be of interest is in the presence of spread contamina-

tion. In fact, in our numerical study, we considered only point contamination

1Note that this does not make the WML a real MLE. It would be so if the remaining

observations really followed the conditioned model based on the initial estimator, which

is not true. Positions which get a zero weight were not “doomed” to be discarded: the

probability, before we draw the data, that a remaining observation has that value is not

zero. Thus the conditioned model does not correspond to the distribution of the remaining

data, even if the sample is generated by the corresponding global (unconditioned) model.
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at varying positions. While this kind of contaminations is not unrealistic in

the discrete setting, and provides a good picture of the contamination bias

pattern of an estimator, it would be interesting to study the behavior of

the WML under more spread contaminations. The WML with hard weights

could suffer an important efficiency loss in such a situation, if it eliminates

numerous positions from the calculation of the final estimator. Working with

smooth weight could then improve its performances.

10.1 Perspectives

Possible future developments include the extension of the WML to the con-

tinuous distribution setting. The discrete setting offers a natural framework

for the WML, as it automatically provides categories - the sample space el-

ements - to define the weights; in the continuous setting, no such natural

categorization exists. In what follows, we sketch a possible method to apply

the WML to continuous distributions.

To start with, we suppose that we have computed a robust and consistent

initial estimate β1 of the parameters of the continuous model gβ in consider-

ation. This initial estimator could be a MDE, methods to apply this kind of

estimators in the continuous framework exist (see e.g. Simpson (1987), Basu

and Lindsay (1994)). These methods generally imply comparing the model

with a nonparametric density estimate based on the sample.

Let x = {x1, x2, . . . , xn} be an observed sample and gβ1 be the initial

model. Here is a possible procedure:

• Define a fixed width h(σ1), where σ1 is a dispersion measure of fβ1 and

h is some increasing function.

• For each observation xi, consider the interval [xi−h(σ1)/2, xi+h(σ1)/2]

and calculate pi, the probability associated to that interval under the

initial model. Define di as the proportion of observations in the interval.
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• Similarly as in section 4.1.2, define a weight for each observation as

ωi = W

(
f(n)

di − pi√
pi(1− pi)

)
, (10.1)

with f(n) as in (4.4). Let us consider hard weights for simplicity:

W (x) = I(x < b)

for some positive value b.

• Let x(i) denote the ith smallest observation and ω(i) its associated

weight. Define the function ω(x) to be equal to ω(i) when x = x(i)

and, between two consecutive observations x(i) and x(i+1), to be equal

to 1 if ω(i) = ω(i+1) = 1, to 0 if ω(i) = ω(i+1) = 0 and to be 0 on the

first half of the interval [x(i), x(i+1)] and 1 on the second half if ω(i) = 0

and ω(i+1) = 1, and conversely if ω(i) = 1 and ω(i+1) = 0. Define ω(x)

in the tails in an analogous manner.

• Analogously to (4.9), define the WML estimate of β as the value that

minimizes

log

(∫
ω(x)gβ(x)dx

)
− 1∑n

i=1 ωi

n∑
i=1

ωi log gβ(xi).

Note that no density estimation is necessary for this procedure.

The above procedure could represent an alternative to the adaptive cut-off

method applied to regression with asymmetric errors in Marazzi and Yohai

(2004).
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Appendix A

Identifiability in location-scale

families

Let Fμ,σ be a location-scale family of distributions and Ω a set of distributions

containing Fμ,σ. Let m : Ω → R and s : Ω → R+ be respectively a location

and a scale measure on Ω.

Notation: the distribution of a random variable Z is denoted FZ .

LetX1 ∼ Fμ1,σ1 andX2 ∼ Fμ2,σ2 . Ifm(Fμ1,σ1) = m(Fμ2,σ2) and s(Fμ1,σ1) =

s(Fμ2,σ2), then

μ1 = μ2 and σ1 = σ2.

Proof. Let m(Fμ1,σ1) = m(Fμ2,σ2) = mX and s(Fμ1,σ1) = s(Fμ2,σ2) = sX

and consider the variable A = X1−μ1

σ1
σ2 + m2. Since Fμ,σ is a location-scale

family, we have that FA = Fμ2,σ2 and so

m(FA) = mX and s(FA) = sX . (A.1)

But since m and s are location and a scale measures, we have

m(FA) =
mX − μ1

σ1
σ2 + μ2 and s(FA) =

sX
σ1

σ2. (A.2)

Combining (A.1) and (A.2) yields the conclusion.
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Appendix B

Proof of Theorem 5

We shall refer to the proofs given in Lindsay (1994) (his Proposition 12 and

Lemma 20). The central point of Lindsay’s proof is the convergence

lim
j→∞

ρ(dj, mβ) = ρ(d∗ε , mβ), (B.1)

which he shows to hold under Assumption 1 for any ε ∈ [0, 1). Then, Lindsay

assumes that the convergence (B.1) is uniform in β inside any compact set

B of parameter values containing b∗. The uniformity of the convergence,

together with Assumption 2, implies that any sequence {bj} of values of β

that minimize ρ(dj , mβ) over β in B converges to b∗. Finally, Lindsay builds

a lower bound on ρ(dj , mβ) for β /∈ B and determines the values of ε for

which b∗ is eventually the global minimum when j → ∞.

In what follows, we prove that if mβ = NBm,α we do not need the lower

bound, because the convergence (B.1) is uniform in β in the whole parameter

space Θ.

From the proof of (B.1) given by Lindsay, it appears that the convergence

will be uniform inside parameter set B if

sup
β∈B

mβ(xj) → 0 as j → ∞, (B.2)
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and so we have to prove that

sup
(m,α)∈R 2

+

NBm,α(xj) → 0 as xj → ∞ (B.3)

(note that from Remark A, we have that xj is an outlier sequence iff

limj→∞ xj = ∞). The bdp result can then be extended to the multiple

outlier sequence contamination of Proposition 4 in an elementary fashion.

Let m̂ and α̂ be the maximum likelihood estimates for the sample com-

posed of the single observation xj . By definition,

NBm,α(xj) ≤ NBm̂,α̂(xj) ∀(m,α) ∈ R
2
+, ∀xj ∈ {1, 2, . . .}.

In the NB model, the maximum likelihood estimate for parameter m is the

sample mean, and so m̂ = xj . Now we observe that:

• A sample consisting of one single non zero observation has sample mean

superior to sample variance.

• When the sample mean is superior to the sample variance, the value

of α which maximizes the likelihood in R+ is 0, i.e. we get a Poisson

distribution (Anscombe, 1950).

Thus, NBm̂,α̂ = Pxj
, where Pxj

is the Poisson distribution with mean xj, and

so

NBm,α(xj) ≤ Pxj
(xj) = e−xj

x
xj

j

xj !
∀(m,α) ∈ R

2
+, ∀xj ∈ {1, 2, . . .}.

Now from Stirling’s formula (Abramowitz and Stegun, 1964)

lim
n→∞

n!√
2πn(n/e)n

= 1,

we get that

lim
xj→∞

Pxj
(xj) = 0

and (B.3) follows.



Appendix C

Breakdown point of MDEs

from the Cressie-Read family

with λ ≤ −1

In what follows we prove that the finite sample bdp of the MDEs from the

Cressie-Read disparity with λ ≤ −1 is 1 in the NB model. We give the

proof for the case of contamination of the sample with one single outlier

sequence. The result is then easily extended to the multiple outlier sequence

contamination of Proposition 4 (see also Remark B).

Let d(x) be the observed frequencies. Like in section 3.4.4, define XF =

{x ∈ X : d(x) �= 0}, m̃β(x) =
mβ(x)∑
XF

mβ(x)
, δ̃(x) =

d(x)−m̃β (x)

m̃β(x)
, SXF

(β) =∑
XF

mβ(x), P (SXF
(β)) =

1−SXF
(β)

SXF
(β)

and consider the estimator defined as

the minimum over β of the penalized disparity

ρp(d,mβ) =
∑
XF

m̃β(x)G
(
δ̃(x)

)
+ P (SXF

(β)).

Next consider the ε-contaminated data

dj(x) = (1− ε)d(x) + εχxj
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and define XFj
= {x ∈ X : dj(x) �= 0} and d∗ε(x) = (1 − ε)d(x). In an

analogous approach to what is done in Lindsay (1994) and in Appendix B,

we assume that ρp(d
∗
ε , mβ) has unique absolute minimum at some point b∗ of

the parameter space.

In what follows we show that ∀ ε ∈ [0, 1), ρp(dj, mβ) → ρp(d
∗
ε , mβ) as

xj → ∞ uniformly in β for β inside some parameter subset B such that

• b∗ ∈ B

• ∃ x0 such that ∀xj > x0, ∀β /∈ B, it holds that ρp(d
∗
ε , mb∗) < ρp(dj, mβ).

The uniformity of convergence and the continuity of ρp(d,mβ) in β then

imply that the absolute minimum of ρp(dj, mβ) is eventually b∗ and thus the

estimator does not breakdown.

Define B as B = {β :
∑

XF
mβ(x) ≥ γ} for some yet to be chosen γ < 1

and note that since d(x) corresponds to a finite sample, XF and {xj} are

disjoint if xj is large enough. Choose such an xj and write

ρp(dj, mβ) = Aj + Bj + Cj

where

Aj =
∑
XF

m̃j
β(x)G

(
d∗ε (x)

m̃j
β(x)

− 1

)
,

Bj = m̃j
β(xj)G

(
d∗ε(xj) + ε

m̃j
β(xj)

− 1

)
,

Cj = P (SXFj
(β))

=
1∑

XF
mβ(x) +mβ(xj)

− 1,

where

m̃j
β(x) =

mβ(x)∑
XF

mβ(x) +mβ(xj)
.
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The first goal is to prove that

lim
xj→∞

Aj =
∑
XF

m̃β(x)G

(
d∗ε(x)
m̃β(x)

− 1

)
, (C.1)

lim
xj→∞

Bj = 0, (C.2)

lim
xj→∞

Cj = P (SXF
(β)) =

1∑
XF

mβ(x)
− 1, (C.3)

uniformly in β for β ∈ B. Since Aj is a continuous function of m̃j
β(x), to

prove (C.1) it suffices to show that

lim
xj→∞

m̃j
β(x) = m̃β(x) ∀x ∈ XF (C.4)

uniformly in β for β ∈ B. Since Gλ with λ < 0 satisfies limδ→∞ G(δ)/δ = 0,

to prove (C.2) it suffices to show that

lim
xj→∞

m̃j
β(xj) = 0, (C.5)

uniformly in β for β ∈ B. Both proofs, as well as the proof of (C.3), follow

the same lines and only the proof of (C.4) is given.

Proof of (C.4)

We need to show that ∀ζ > 0, ∃ x1 such that ∀xj > x1, ∀β ∈ B,

Dj = |m̃j
β(x)− m̃β(x)| < ζ.

We have

Dj =

∣∣∣∣∣ mβ(x)∑
XF

mβ(x) +mβ(xj)
− mβ(x)∑

XF
mβ(x)

∣∣∣∣∣
=

∣∣∣∣∣ mβ(x)mβ(xj)(∑
XF

mβ(x) +mβ(xj)
)∑

XF
mβ(x)

∣∣∣∣∣
≤ mβ(xj)(∑

XF
mβ(x)

)2
≤ mβ(xj)

γ2
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Now since in the NB model we have that

lim
xj→∞

mβ(xj) = 0

uniformly in β over the whole parameter space Θ (see the proof of Theorem 5

in Appendix B), it holds that ∀ζ > 0, ∀γ2, ∃ x1 such that ∀xj > x1, ∀β ∈ B,

mβ(xj) < ζγ2

and so

Dj < ζ.

Thus we have proved that ∀ ε ∈ [0, 1), ρp(dj , mβ) → ρp(d
∗
ε , mβ) as xj → ∞

uniformly in β for β ∈ B. Now we just need to show that we can always

choose γ in such a way that b∗ ∈ B and that ∃ x0 such that ∀xj > x0, ∀β /∈ B,

we have ρp(d
∗
ε , mb∗) < ρp(dj, mβ).

Chose κ ∈ (0, 1) and take γ as the solution of

P (γ + κ) = ρp(d
∗
ε , mb∗)

=
∑
XF

m̃b∗(x)G
(
δ̃∗(x)

)
+ P (SXF

(b∗)),

where δ̃∗(x) = d∗ε (x)−m̃b∗ (x)
m̃b∗ (x)

. From Jensen’s inequality, we get that∑
XF

m̃∗
b(x)G

(
δ̃∗(x)

) ≥ G(−ε) which is a positive lower bound1. Since P

is a decreasing function, we then have SXF
(b∗) > γ+κ > γ and thus b∗ ∈ B.

1It is easily checked that Gλ(δ) is a decreasing function for λ < 0. In addition, recall

that Gλ(0) = 0.
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Next consider, for β /∈ B,

ρp(dj, mβ) =
∑
XFj

m̃j
β(x)G

(
δ̃j(x)

)
+ P (SXFj

(β))

=
∑
XFj

m̃j
β(x)G

(
δ̃j(x)

)
+ P (SXF

(β) +mβ(xj))

≥ P (SXF
(β) +mβ(xj)) (C.6)

≥ P (γ +mβ(xj)).

For (C.6), note that from Jensen’s inequality we have
∑

XFj
m̃j

β(x)G
(
δ̃j(x)

) ≥
G(0) = 0. Now using again the uniform convergence to 0 of mβ(xj) as

xj → ∞ in the NB model, we get that ∃ x0 such that ∀xj > x0, ∀β ∈ B,

mβ(xj) < κ

and so

ρp(dj, mβ) > P (γ + κ) = ρp(d
∗
ε , mb∗).
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Appendix D

Simulation results
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Figure D.1: MSE efficiencies. Simulations at the model (m,α) = (5, 2/3),

for increasing sample sizes. A simulation with 500 replications was run for

each size between 100 and 2000 by steps of 100.
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Figure D.2: MSE efficiencies. Simulations at the model (m,α) = (7, 1.5), for

increasing sample sizes. A simulation with 500 replications was run for each

size between 100 and 2000 by steps of 100.



104 APPENDIX D. SIMULATION RESULTS

500
1000

1500
2000

0.70 0.80 0.90 1.00

B
est estim

ators for m
 =

 5, α
 =

 2/3

MSE efficiency for m

500
1000

1500
2000

0.70 0.80 0.90 1.00

B
est estim

ators for m
 =

 5, α
 =

 2/3

MSE efficiency for α

500
1000

1500
2000

0.6 0.7 0.8 0.9 1.0

B
est estim

ators for m
 =

 7, α
 =

 1.5

S
am

ple size

MSE efficiency for m

500
1000

1500
2000

0.75 0.80 0.85 0.90 0.95

B
est estim

ators for m
 =

 7, α
 =

 1.5

S
am

ple size

MSE efficiency for α

N
E

W
M

L
T

M
L

Figure D.3: MSE efficiencies for the best estimators: NE and the corre-

sponding WML and TML. Simulations at the models (m,α) = (5, 2/3) and

(m,α) = (7, 1.5), for increasing sample sizes. A simulation with 500 replica-

tions was run for each size between 100 and 2000 by steps of 100.
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Figure D.4: “Standard” efficiencies. Simulations at the model (m,α) =

(5, 2/3), for increasing sample sizes. A simulation with 500 replications was

run for each size between 100 and 2000 by steps of 100.
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Figure D.5: “Standard” efficiencies. Simulations at the model (m,α) =

(7, 1.5), for increasing sample sizes. A simulation with 500 replications was

run for each size between 100 and 2000 by steps of 100.



107

500
1000

1500
2000

−0.6 −0.4 −0.2 0.0

M
D

E
 (d

ash
ed

) an
d

 W
M

L
 (so

lid
)

Bias on m

500
1000

1500
2000

−0.12 −0.08 −0.04 0.00

M
D

E
 (d

ash
ed

) an
d

 W
M

L
 (so

lid
)

Bias on α

500
1000

1500
2000

−0.3 −0.2 −0.1 0.0

T
M

L
 (d

o
tted

) an
d

 W
M

L
c (d

o
td

ash
ed

)

S
am

ple size

Bias on m

500
1000

1500
2000

−0.08 −0.04 0.00

T
M

L
 (d

o
tted

) an
d

 W
M

L
c (d

o
td

ash
ed

)

S
am

ple size

Bias on α

C
olor codes:

N
E

linN
E

H
ellinger

N
eym

an
λ =

 −
3

Figure D.6: Bias. Simulations at the model (m,α) = (5, 2/3), for increasing

sample sizes. A simulation with 500 replications was run for each size between

100 and 2000 by steps of 100.
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Figure D.7: Bias. Simulations at the model (m,α) = (7, 1.5), for increasing

sample sizes. A simulation with 500 replications was run for each size between

100 and 2000 by steps of 100.
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Figure D.8: RMSE of MDEs (dashed) and the corresponding WMLs (solid).

Simulations at the point contaminated models (m,α) = (5, 2/3) and (m,α) =

(7, 1.5). Contamination rate ε = 0.1. A simulation with 500 replications was

run for each contamination position between 1 and 50 by steps of 1.
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Figure D.9: RMSE of NE and the corresponding WML. Simulations at the

point contaminated models (m,α) = (5, 2/3) and (m,α) = (7, 1.5). Contam-

ination rate ε = 0.2. A simulation with 500 replications was run for each

contamination position between 1 and 50 by steps of 1.
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Figure D.10: RMSE of MDEs and WMLs. Simulations at the point contam-

inated models (m,α) = (5, 2/3) and (m,α) = (7, 1.5). Contamination rate

ε = 0.1. A simulation with 500 replications was run for each contamination

position between 1 and 50 by steps of 1. The grey zone contains the curves

of all WMLs.
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Figure D.11: RMSE, bias and standard deviation of the MDEs for the m

parameter. Simulations at the point contaminated model (m,α) = (5, 2/3).

Contamination rate ε = 0.1. A simulation with 500 replications was run for

each contamination position between 1 and 50 by steps of 1.
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Figure D.12: RMSE of linNE and the corresponding WMLc, TML andWML.

Simulations at the point contaminated models (m,α) = (5, 2/3) and (m,α) =

(7, 1.5). Contamination rate ε = 0.1. A simulation with 500 replications was

run for each contamination position between 1 and 50 by steps of 1.
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