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ABSTRACT 

The last two decades have witnessed the increasing instrumentalization of viruses, which 

have progressively evolved into highly potent gene transfer vehicles for a wide spectrum of 

applications. In the context of the central nervous system (CNS), their unique gene delivery 

features and targeting specificities have been exploited not only to improve our 

understanding of basic neurobiology, but also to investigate diseases or deliver therapeutic 

candidates. As a result, we have started moving away from the opportunistic use of 

recombinant vectors that are derived from naturally existing viruses towards the rational 

engineering of tailored lentivirus (LV) and adeno-associated virus (AAV) vectors for specific 

use in the CNS.  
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Highlights 

• AAV and LV vectors for gene delivery in the central nervous system 

• Gene therapy as a major driver for viral vector development 

• Treatment of neurodegenerative diseases with gene therapies 

• Viral vector-based modeling of diseases in animals 

• Cell-type specific transgene expression  

• Drug-inducible and optogenetic switches for spatial and temporal gene 

expression 
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VIRAL VECTORS 

Virus-mediated gene delivery applications include fundamental neurobiological 

investigation [1], disease modeling [2], and gene therapy [3], each requiring a unique set 

of features: i.e. tropism, transduction efficiency, safety, and packaging capacity [4]. This 

has led to the investigation of more than a dozen viral species from various families [5]. 

Vectors derived from lentivirus and adeno-associated viruses are currently the most 

frequently used for rodent and primate CNS research and in gene therapy clinical trials 

[5,6].  

 

Adeno-associated viral (AAV) vectors  

AAVs are non-pathogenic, single stranded DNA viruses from the Dependovirus 

genus of the Parvoviridae that require helper virus infection for successful replication [7]. 

Viruses of this genus are non-enveloped and transduce dividing and non-dividing cells. A 

complete review of AAV biology is beyond the scope of this article but has been reviewed 

thoroughly elsewhere [8]. After transduction, the 4.7 kb viral genome remains 

predominantly episomal, providing long-term gene expression in non-dividing cells. The 

viral capsid is composed of three capsid proteins (VP1, VP2, and VP3) and the amino 

acids of the common VP region compose the protein domains that are exposed on the 

surface of the assembled capsid. They are responsible for surface topology and determine 

tropism and specificity [9]. Artificial AAV serotypes with new characteristics and tropisms 

have been produced by altering the cap genes [10]. The ease with which it is possible to 

alter AAV enables the development of large vector libraries (Figure 1) to screen and 

identify vectors with specific features that are tailored for specific applications [11].  

 

Lentiviral vectors (LV)  

Lentiviruses belong to the family of Retroviridae. The most extensively studied 

lentivirus is HIV-1 which possesses two copies of a positive sense RNA genome of 
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approximately 9 kb [12]. In contrast to gamma retroviruses, LV retroviruses have the 

unique ability to translocate across the nuclear membrane and infect non-dividing cells. 

The genome contains nine genes from which only the gag, pol, and rev genes are co-

expressed for viral vector production in HEK293T host cells [13,14]. In this system, all 

virulence factors have been deleted to generate non-pathogenic and replication-deficient 

LV vectors [14]. The envelope gene of HIV-1 is, in most cases, replaced by a heterologous 

gene to alter tropism and specificity [15]. The most commonly used envelope is the 

vesicular stomatitis virus glycoprotein (VSV-G). LVs pseudotyped with the VSV-G 

efficiently transduce neurons (Figure 1) and are highly mechanically resistant, facilitating 

their concentration and purification [14].  

 

APPLICATION OF AAV AND LV VECTORS FOR GENE THERAPY 
 

The field of gene therapy has been the major driver for the research and 

development of viral vector technologies. The efforts are reflected by the 2356 clinical 

trials that have been conducted to date. Only 43 of these trials have targeted brain 

diseases (February 2016, http://www.wiley.com/legacy/wileychi/genmed/clinical/). The low 

number of CNS trials relative to other indications (cancer or immunodeficiency) highlights 

the difficulty of vector delivery to the CNS but also our only partial understanding of these 

diseases. The blood-brain barrier (BBB) limits entry of molecules to the brain. Thus, 

vectors are delivered directly to their site of action, most commonly via intracranial or 

intrathecal injection. Specific viral vectors are capable of crossing the BBB, but 

intravenous injection exposes the vectors to circulating antibodies, leads to widespread 

transduction of various tissues, and therefore requires very high doses of vector [16-18].  

Due to the increased need of vectors for translating gene therapy applications into 

the clinic, the development of new protocols for viral vector production is becoming central 

as manufacturing protocols must be compliant with good manufacturing practice (GMP) 
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and suitable for the production and qualification of large batches. For a detailed review on 

this topic, please refer to the following publications [19,20]. 

 Most clinical trials for treatments of neurodegenerative diseases used AAV or LV 

vectors (http://www.wiley.com/legacy/wileychi/genmed/clinical/). This includes AAV gene 

therapy for Canavan disease, a pediatric leukodystrophy [21], Parkinson’s and Alzheimer’s 

disease [22] [23], AADC deficiency [24] , and LV gene therapy for X-linked 

Adrenoleukodystrophy [25] and Metachromatic Leukodystrophy [26]. For a detailed review 

on gene therapy and clinical trials, refer to Choudhury et al. [3]. The therapeutic effects 

observed for most early clinical trials were limited, but more recent trials have shown very 

encouraging results [27]. The demonstration of safety, including the absence adverse 

effects resulting from insertional mutagenesis, has been an important finding [28], in 

addition to the therapeutic outcome. These early studies with first generation vectors were 

definitely a milestone, but they have also highlighted shortcomings and challenges, which 

have to be addressed to create improved vectors for future applications [27].  

 

NEXT GENERATION OF VIRAL VECTOR-BASED GENE DELIVERY 
 

The tropism and transduction pattern of a vector depends on multiple parameters, 

including its diffusion properties, the expression of receptors on target cells, the affinity of 

capsid or envelope proteins for the receptors, and intracellular factors. LV has a diameter 

of 100 nm and the transduced area in the parenchyma is limited to a few millimeters [29], 

whereas the diffusion of AAV (20 nm diameter) is highly dependent on each serotype [30-

32]. Recent studies have focused on evaluating new AAV serotypes or pseudotyped LV 

vectors to identify the most potent vectors and take advantage of retrograde transport 

properties. Various AAV serotypes are capable of retrograde transport to distal neuronal 

projection sites (Figure 2) [33,34]. Retrograde transport of LV is obtained using specific 

envelopes of the Rhabdoviridae family [35,36] further increasing the versatility of these 

vectors in the CNS (Figure 1 and 2) (for comprehensive reviews see [12,37]).  
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Advances in vector technology are clearly critical for basic studies of the CNS as 

well as clinical development of therapeutic strategies, but other hurdles need to be 

overcome to fully translate basic research into the clinic. Applying vectors to targeting the 

brain in the CNS presents a considerable challenge regarding scale-up, as the human 

brain is approximately 3000 times larger than that of a mouse, the most commonly used 

animal model in research. This becomes especially problematic when the aim is to deliver 

the transgene to large regions of the CNS for therapies targeting Alzheimer’s disease, 

lysosomal storage disorders, or Parkinson’s disease [38]. Gene transfer via intra-

parenchymal injections translates into a large number of injection tracts due to a diffusion 

distance of millimeters to a few centimeters in the brain parenchyma [39]. Convection-

enhanced delivery of vectors to the brain parenchyma is one promising strategy to 

improve vector diffusion [40,41]. This technique has been frequently applied in studies on 

non-human primates [42] as well as recent clinical trials, and improves diffusion 

throughout the brain by maintaining the injection pressure at a level sufficient to overcome 

the hydrostatic pressure of the interstitial fluid [41,43].  

Intravascular (IV) administration may be a very attractive alternative strategy. IV 

injection is non-invasive and could allow transduction of the entire brain due to the high 

capillary density of the CNS [44]. Potential disadvantages of this approach are possible 

clearance by circulating antibodies and inefficient penetration of the CNS through the BBB 

[18]. A compromise between IV- and IC-based approaches is the administration of vectors 

into the cerebrospinal fluid (CSF), which maximizes CNS exposure [38]. Studies in non-

human primates have reported stronger transgene expression throughout the cortex and 

cerebellum after injection of an AAV9 vector into the cisterna magna relative to IV injection 

[18].  

A strategy that utilizes a therapeutic gene that is secreted from the transduced cells 

combined with the above-described methods for administration could result in highly 

pervasive distribution throughout the CNS for a global therapeutic effect [45]. Transduction 
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of ependymal cells lining the ventricles after CSF injection for the expression of a factor in 

the CNS is one example of how this strategy could be applied [45]. 

In contrast to strategies that aim for global delivery to the CNS and make use of 

ubiquitous promoters for high transgene expression, some clinical studies, as well as 

disease modeling and fundamental studies, require controlled transgene expression, 

limited to just one specific cell-type, to investigate its function within a complex neuronal 

network or its relevance in pathology (Figure 1 and 2). Current efforts use cell-type specific 

promoters, microRNA target (miRT) sequences, and highly specific vectors (Figure 2) 

[32,46,47]. The miRNA belongs to the group of non-coding RNAs, which play a 

fundamental role in processes such as chromatin remodeling, gene expression, and 

transcript processing. The international ENCODE Consortium is currently cataloging 

functional DNA elements in the human genome in various cell types and tissues to shed 

light on regulation of gene expression [48,49]. Insights from this line of research will 

ultimately make it possible to precisely control gene expression in target cells after viral 

vector transduction. Such control of gene expression is important for studying the basic 

biology of the CNS and also to increase the safety of future therapeutic applications [32]. 

Currently, inducible promoters, or a combination of cell-type specific promoters coupled 

with inducible elements, allow good spatial and temporal control of transgene expression 

[50]. Drawbacks of drug inducible systems are leakiness, induction kinetics, and immune 

responses which have precluded clinical implementation of these systems [51]. 

 Precise spatial and temporal resolutions are required to monitor neurobiological 

functions and to investigate synaptic connections of neuronal subpopulations in specific 

compartments of the CNS. Recent optogenetic approaches that couple viral vectors, light 

inducible proteins, and promoters specific for a neuronal phenotype are a powerful tool in 

neurosciences [52]. This approach allows precise spatial, temporal, and phenotype 

specific transgene expression after light induction at a given wavelength using optical 

fibers, and has been increasingly applied to CNS studies. 
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Altogether, the combination of the vector features, delivery strategies, neuronal 

circuitry, properties of the therapeutic candidates (secreted vs intracellular), and 

technologies to control transgene expression offer numerous opportunities for next 

generation gene delivery. 

 

PERSPECTIVES  

A viral vector toolkit with improved vectors that are tailored to specific applications 

is becoming increasingly realistic and is taking shape due to interdisciplinary research and 

the development of enabling technologies in the fields of virology, molecular biology, 

neurosciences, medicine, and engineering. Coupled with these new and powerful 

technologies, such as optogenetics and genome editing, viral vector based gene delivery 

will enable us to further increase our understanding of neurobiology. Furthermore, it 

facilitates the investigation of the molecular basis of pathologies and allows accurate 

modeling of neurological diseases. More refined viral vectors and transgenes will 

ultimately lead to a deeper understanding of the CNS and its diseases, which will allow the 

successful treatment, not only of neurodegenerative diseases, but also other indications 

associated with the CNS.  
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FIGURES  

 

 

Figure 1 

Cell-type specific targeting of CNS cells with various AAV serotypes and lentiviral 

vectors.  

The scheme illustrates the large collection of AAV and lentiviral vectors available for CNS 

applications. Transduction of subpopulations of cells is made possible (neurons, astrocytes, 

microglial cells, plexus choroïd, progenitor cells, etc.) by modifying the capsids (AAV) or 

envelopes (LV), or by integrating specific regulatory elements (promoter, microRNA-based 

detargeting strategies).  
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Figure 2 

Scheme illustrating how retrograde transport properties and specific regulatory 

elements could be used to maximize gene transfer and/or target specific 

subpopulations of neurons in the brain. 

 LV vectors peusdotyped with envelopes of the Rhabdoviridae family infect cells at the 

injection site and are retrogradely transported to distal projection sites. The scheme 

illustrates a scenario in which transgene expression is cell-type specific. After transport to 

the cortex (Projection site A), the transgene exhibits expression of the yellow marker, 

whereas the expression of the red marker is limited to neurons in the substancia nigra 

(Projection site B). 
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