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A B S T R A C T

Artificial intelligence (AI) makes decisions impacting our daily lives in an increasingly autonomous manner.
Their actions might cause accidents, harm, or, more generally, violate regulations. Determining whether an
AI caused a specific event and, if so, what triggered the AI’s action, are key forensic questions. We provide a
conceptualization of the problems and strategies for forensic investigation. We focus on AI that is potentially
‘‘malicious by design’’ and gray box analysis. Our evaluation using convolutional neural networks illustrates
challenges and ideas for identifying malicious AI.
. Introduction

Today AI is ultimately controlled by humans, but it is already
apable of conducting tasks autonomously by learning from examples
hich makes them superior to traditional computer programs in two
ays: performance and ease-of-engineering. Deep learning (DL), the
ey AI technology and therefore the focus of this paper, has dramat-
cally improved prior systems, e.g., in computer vision and speech
ecognition. Access to AI is often simple since standard DL models
an be trained with little human engineering by uploading data to a
loud platform like Google CloudML. The progress of AI technology is
lso driven by open-source initiatives of both datasets and ready-to-
se models. Consequently, AI provides novel opportunities for abuse:
t may be easier to build or manipulate AI to perform malicious acts
han to engineer a system otherwise. For instance, altering training
bjectives or choosing training data instead of building native software
ikely requires less time and leads to better-performing systems. This
osters the paradigm that a system is ‘malicious by design’, i.e., it has
een trained, designed, or changed to exhibit malicious behavior. An
xample of ‘malicious by design’ is shown in Fig. 1 and also in Fig. 2,
here an investigative question could be: Has the AI system been built

o cause the incident?.
This work provides the first directions to answer such questions,

hich is tricky since AI is often seen as a ‘black box’ that adapts through
earning. Understanding AI is notoriously difficult, as witnessed by a
arge body of works on explainable AI (XAI). This paper contributes
s follows: (i) We conceptualize ‘malicious by design’ and AI forensics;
ii) We provide two methods for investigation using case studies based
n convolutional neural networks (CNNs). Specifically, we elaborate on
ray box analysis, i.e., activation patterns of features.

∗ Corresponding author.
E-mail address: johannes.schneider@uni.li (J. Schneider).

2. Related work

One can differentiate between ‘AI for digital forensics’ and ‘digi-
tal forensics for AI’ (short: AI Forensics). In the former case, digital
forensics has benefited from AI [1] in some areas such as Multimedia
forensics (copy-move forgery [2] or deep-fake video detection [3]), or
facial age estimation [4]; a comprehensive overview is provided by [5].
While relevant, this is not the focus of our work. On the other hand,
AI Forensics can be treated as a sub-discipline of digital forensics as
defined by [6]. The authors provide a brief high-level conceptualization
focusing on AI safety, i.e., incidents due to failures of AIs built with
‘‘good intentions’’. In contrast, we discuss actual forensic work for
systems designed for a malicious act.

Security threats and defensive techniques from a data perspective
are surveyed in [7] focusing on adversarial examples. The general
question ‘Can machine learning (ML) be secure?’ was discussed in [8],
where the authors present different types of attacks on ML techniques
and possible defenses. Involving an expert, i.e., an investigator in our
case, is not uncommon, e.g., for fake reviews [9,10].

Our work touches on the emerging field of reverse-engineering DL
models. Weight extraction is the focus of [11–13]. [11,14] identify DL
architectures and [15] approximates a confidential model. We identify
(incident-related) data to which a model reacts. All works except [11]
discuss black box models. [11] showed that even when using data
encryption, architectural information and weights might be obtainable
using memory access patterns. XAI and other analytics techniques [16–
20], specifically for CNNs [21], are valuable tools for AI forensics. Many
works deal with model introspection relying on fine-grained access
vailable online 7 June 2023
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Fig. 1. Left: Drone almost hitting Austrian skier Marcel Hirscher during race; Right: Generic incidents, suspects, and components influencing AI.
Fig. 2. Steps to conduct an attack with an AI system.
to variables. For example, iterative optimization using full model ac-
cess, i.e., gradients, can reveal inputs that maximize feature activation
(see [22] for a seminal work). In this work, we elaborate on the general
process for AI forensics, questions of specific interest in forensics, and
gray-box analysis. We also use ideas from XAI, such as explained by
samples and analyzing layer activations [23].

3. Malicious by design

AI can be defined as the ‘‘ability to learn from data and to use those
learnings to achieve specific goals’’ [24]. An AI system is a union of
components out of which at least one contains AI (we shall use the
term ‘‘AI’’ denoting AI systems and AI components if its meaning is clear
in context). A system is ‘‘malicious by design’’ if trained, designed, or
changed to exhibit malicious behavior, which means that an attacker
alters or builds a system to be used as a tool to perform a malicious act.
An AI component can trigger a malicious action or provide deceptive
information, so the system is tricked into acting maliciously.

This work focuses on attacks on a subset of AI techniques [25],
i.e., deep learning [26]. Manipulations for attacks to those can be
based on the training data, inputs to the AI system, the AI’s objective,
the model, or the AI’s (self-)learning mechanism. For attacks based on
training data, an attacker can create or alter a dataset and use it to
train or alter a model, e.g., using transfer learning. Attacks based on
(adversarial) inputs might trick the AI into making incorrect predic-
tions. An attacker aims to identify inputs being misclassified without
altering a non-malicious system. The field of adversarial attacks is
well-researched [27–30] and not considered in this work.

An attacker might employ (and train) an unmodified, general-
purpose AI component within the malicious system. The attacker
might also build, alter or trick an AI, e.g., by architectural changes of
a DL model. A malicious system might originate from a non-malicious
AI system by exchanging the AI with a manipulated version. For
example, a drone’s vision system might be altered to drop a parcel
not only once it recognizes a dedicated landing zone but also once it
recognizes a specific person.

Zero-day malicious AI systems are malicious systems based on
substantially novel ideas. The system’s design is highly innovative, or
it appears at least very unusual. For example, the first application of a
recurrent neural network, mainly used for sequence data such as text,
to image recognition constitutes a zero-day system. Zero-day systems
2

require expertise and effort. Non-zero-day designs constitute (variations
of) standard architectures.

Generic steps in the malicious design of the AI are illustrated in
Fig. 2. First, an AI has to be acquired or built. Then it is tampered with,
e.g., by re-training on a dataset of the attacker. Finally, the AI conducts
the attack. Steps can vary, e.g., a step can involve counter forensics
to obstruct the forensic investigation.

4. AI forensics

Forensic investigators collect, preserve, and analyze evidence,
which refers to digital information such as data, models, and (software)
systems [31]. While the forensic process involving classical (traditional)
software is well-understood, investigating AI systems from a forensics
perspective is novel. Traits highly relevant for forensic work, such as
computation flow or storage of knowledge related to behavior differ
considerably between AI systems and traditional software. AI learns
features and complex behavior from collected experience. While AI
can uncover features automatically from domain knowledge given
training data, they have to be defined by domain experts in classi-
cal engineering. DL models typically follow a well-defined modular
(layered) structure. A layer is an instance of one of the relatively
few types. In contrast, classical software with comparable functionality
often comprises hand-crafted, domain-specific algorithms and data
structures. For example, in a fully-connected network, in each layer,
the input is multiplied with a weight (or parameter) matrix to which
another matrix is added (aggregation) and passed through an activation
function. Each entry in a weight matrix typically corresponds to a
parameter of a neuron.

Control flow and data access patterns are typically simpler for
AI and, in the case of DL, more easily predictable than for classical
software. Computation in DL is often characterized by many relatively
simple units, i.e., neurons that operate in parallel in a well-defined
order and standardized data structures.

Both AI models and classical software might be complex, and diffi-
cult to understand, where complexity arises for DL primarily due to
the interaction of many simple units [16] and for classical software due
to complex, problem-dependent control flow.

The characteristics of AI influence the types of evidence, as well
as the investigation of AI systems, which can be summarized as (i)
Analyzing system internals is more tangible for AI systems due to the
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Table 1
Evidence typology.

Evidence Types of availability

Training data Available, Unavailable
Testing/Observational data Available, Unavailable
Access to suspect system Available, Available to similar system, Unavailable
System internals White box, Gray box, Black box

more tractable control flow and (ii) Training data is highly important
in understanding the AI’s behavior.

Types of Evidence: We focus on evidence that is AI-specific: the AI
ystem itself, any data the system was exposed to as well as its reac-
ions. We exclude any form of direct identification information such as
P or MAC address. The evidence typology is summarized in Table 1.
raining data of the model is all data that contributed to learning or

updating the model parameters. In contrast, for testing and observational
data, the model only computes outputs, but model internals remain
unaltered. Testing data consists of inputs and outputs that the model
should produce. Observational data consists of inputs and, possibly,
outputs the model produced. Observational data often includes data
from an incident. We differentiate between access to the model (suspect
AI is accessible) or just a similar version thereof (e.g., the drone type
was identified, which allows investigators to acquire an identical type).
In terms of system internals, we distinguish between white-box access
source code is available), gray box (a compiled model that allows
bserving interactions with resources such as memory), and black box
only outputs are accessible for arbitrary inputs).

.1. Investigative questions

From a forensics perspective, the ultimate questions to be answered
re: Did the AI system cause an incident? and Why?. Such questions
emand an understanding of AI as well as forensics, and, as for any
riminal case, answers might not be a simple yes or no. For example,
iven a set of observed actions or decisions by the perpetrator during
he incident, we need to answer ‘what is the likelihood of a given
I suspect performing these decisions compared to those of other
odels?’ and ‘what triggers the action?’ Often (only) circumstantial

vidence might be produced by answering questions like ‘is the AI
uspect reacting to objects related to the incident more strongly than
ther models?’ Given multiple AI suspects, the first question helping
o prioritize which AI to investigate more closely might be: ‘is the AI
uspect behaving normally?’. These questions are discussed as part of
ur case studies.

.2. Strategies and techniques for investigation

Strategies can focus on each component that determines behavior,
ainly model, model objective, and data.

Data analysis plays a key role. Since training data determines model
ehavior and operational data reflect model behavior, data on its own
ight be sufficient to determine malicious intent. An investigator can

earch for samples in the training data that are malicious or abnormal
or any non-malicious system. For instance, the training data for a
elf-driving car should not contain images showing a human on a
treet crossing with the label ‘‘accelerate’’. A large amount of data
alls for data mining techniques, e.g., filtering relevant data. Technical
hallenges to determine the relevance of data include quantifying relat-
dness to the incident. Domain experts might be needed to investigate
filtered data and ultimately decide whether an AI suspect caused the
ncident and what information triggered the action. In the absence of
odel access, training data can be used to reconstruct an ‘approximate
odel’ used for analysis.

Model analysis might use abstract reasoning based on model defini-
ions (e.g., as found in static software verification). Models could also
3

be analyzed through empirical investigation (input-responses) in two
ways:

1. Investigate the input–output relationship of a model: The model can
be treated as a black box. The analysis relies on investigating
model behavior based on its decisions. For example, data from
the incident can be used to see if the system triggers actions
causing the incident. An investigator might also aim to generate
or search for samples that trigger malicious actions.

2. Investigate the reaction of model internals to inputs: This strategy
requires white or gray-box access. For example, DL activations
of neurons can be investigated.

AI forensics techniques still need to be developed. Techniques from
emerging areas in AI such as reverse engineering [11–13], explain-
ability (XAI) [16,32], adversarial analysis [33], testing [30] and data
mining play an integral part in the investigation. Additional algorithmic
work is possibly needed since none of these areas is yet mature.
Furthermore, AI forensics comes with its particularities, as shown in
our case studies. For example, XAI does not cover analysis of gray-
box models or the possibility that an investigator does not have access
to any samples that cause malicious behavior but only to samples
that share similarities with such samples. Testing aims primarily at
verifying given requirements or specifications, whereas AI forensics
seeks to uncover requirements and specifications built into an AI (by
an attacker). Reverse engineering aims at turning a black-box model
into a white-box model, e.g., using memory access patterns, but it does
not answer any investigative question.

5. Gray box analysis

We focus on gray box analysis for two reasons: (i) It is particularly
interesting for forensics since often an investigator has access to a sys-
tem but not to its source code, and (ii) ‘gray boxes’ are not well-studied,
e.g., techniques for XAI either assume black-box access or white-box
access. We focus on data-driven attacks as they are appealing from
an attacker’s perspective: They can leverage the AI’s strength to learn
from samples rather than being forced to explicitly code ‘‘malicious
behavior’’.

Gray box access to system internals: For the gray box model, acti-
vations of neurons can be obtained for multiple layers at once for a
given input. We assume a coarse understanding of the model, i.e., it is
a layered architecture consisting of common layers like convolutional,
relu, and batchnorm layers. We assume that we can interpret memory
cells as values. This might be possible since memory cells typically
only hold a few standard data types, such as float32 and float64. We
assume that the memory location of inputs and outputs of a neuron,
i.e., a feature, remains fixed. Lastly, memory cells can be assigned to a
lower or upper layer. This is reasonable since data is processed using
a fixed set of operations in a fixed order (in DL one layer after the
other is evaluated). To access outputs of layer 𝑖 for input 𝑋, we access
a set of memory cells 𝑀 , yielding a set of activation values 𝑀(𝑋).
The number of values |𝑀| is the same for each 𝑋 and are indexed
as 𝑀𝑗 (𝑋) with 𝑗 ∈ [0, |𝑀| − 1]. These values appear to be a random
permutation of outputs of three consecutive layers, including layer 𝑖,
which is of interest. Memory access patterns have also been used in
reverse engineering of DL [11].

Access to training and test data: We proclaim three datasets: The
unknown and non-accessible labeled dataset  = {𝑇𝑖} used by the
attacker to train the malicious drone, the unlabeled dataset  = {𝑈𝑖},
and the labeled dataset  = {𝐿𝑖}. A label gives the output a network
should produce. 𝑇𝑖, 𝑈𝑖 and 𝐿𝑖 denote sets of samples, so that all samples
in a set share some commonalities, in particular for the labeled dataset
𝐿𝑌 corresponds to all samples of class 𝑌 , i.e., it consists of images
with the corresponding outputs of a non-malicious system. The dataset
 might be public and used to develop and test a drone, e.g., for
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Table 2
Summary of the two specific case studies based on conceptualization.
Domain Characteristic Case 1: Sports filming drone Case 2: Parcel delivery drone

Malicious system

Role of AI Object detection and recognition Object recognition
Unmodified, altered, built, tricked AI? Altered AI Retrained AI
Attack based on Training data Training data
Zero-day? non-zero, variations of CNN non-zero, standard CNN
Counter forensics Yes (for some architecture variants) Yes (based on training data)

Available evidence
Access to suspect system Gray box Gray box
Access to training data None Unlabeled data similar to training data
Observational data? Yes, incident related data Yes, incident related data

Investigation Investigative questions Are suspicious concepts learnt? Do concepts trigger actions they should not?
Techniques Own algorithms, XAI, data mining, reverse engineering
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industrial or research purposes. The set  comprises inputs without
labels, e.g., images related to the incident. At least one of  and  is
available for forensic investigation. The forensic investigator can label
inputs, i.e., they can determine what output an input should trigger.
But human labeling is costly.

5.1. Scenarios

We have provided three cases. Two cases are more specific and
illustrative, while the third is more general. We selected two illus-
trative, exemplary scenarios (summarized in Table 2 using our prior
conceptualization), i.e., two image recognition systems part of drones,
where CNNs are commonly used [34,35]. The goal is to assess if a
system is likely involved in the incident and manipulated. Models
are assumed to be based on a standard, layered CNN architecture,
but details are unknown to the investigator. We assume manipulation
through training data and gray box access to the suspect system.

The choice of drones is for illustrative purposes only, since drones
are an easily accessible consumer product, well-known to a wide au-
dience. However, similar image recognition technologies are also used
in many other systems, such as self-driving cars, healthcare, or indus-
trial manufacturing. Drones also allow for many potential malicious
scenarios (see the right panel in Fig. 1). They are frequently used
to capture sports events where incidents have already happened, as
depicted in the left panel of Fig. 1. Soccer is one of the most prominent
sports. Soccer games have been subject to numerous bribery scandals
from professional to amateur leagues in multiple countries such as
Germany,1 and assaults on players occurred with fatal consequences.2
Thus, malicious acts have already taken place.

The third case presents a different approach to identifying if a
classifier was trained to identify specific concepts related to a class
and if the investigative data covers all concepts of the actual training
data. It seeks to answer these questions in a more general framing, also
evaluated with two classifiers and two datasets. However, this case is
less graspable and concrete.

5.2. Case 1: Drone sports filming

Drones frequently capture sports events where incidents have al-
ready happened (see Fig. 1). Our case is based on actual drone footage,
where a non-malicious, human-controlled drone moves along the side-
line. We assume an autonomous drone with a simplified architecture
shown in Fig. 3. A non-malicious drone tracks the referee in the center
of the camera. The referee is supposedly near the main action of the
game. A maliciously designed drone attacks a specific player recognized
by its jersey number by dropping on her once she is close to the
sideline to make it look like an accident. An image from the drone’s

1 https://en.wikipedia.org/wiki/2005_German_football_match-fixing_
candal

2 see Andrés Escobar, https://en.wikipedia.org/wiki/Andr%C3%A9s_
scobar
4
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camera is processed as follows: A standard object detector provides a
rough categorization and bounding boxes for objects on the image. We
used Faster-RCNN [36] trained on the COCO dataset. Objects from the
category ‘‘person’’ are further classified using a custom CNN designed
by an attacker. The custom CNN is fed one (sub)image showing a
detected object after the other. (More design options and information
on data are in Appendix.)

Forensic Goals and Evidence: The investigator wants to understand
the custom CNN: ‘‘Is the drone’s vision system detecting non-expected,
incident-related classes?’’. Analyzing non-AI-based control logic is not
part of this study. The investigator knows that the system tracks the
referee or assumes so based on statements from witnesses. They also
know that the victim should not be tracked. The investigator has only
access to an unlabeled dataset  made of similar footage as captured
by the drone camera during the incident. It might be gathered by
asking players to reenact the situation of the incident or, more easily,
at the next game between teams. The investigator correctly assumes
that an object detector followed by a CNN has been employed. Since
the CNN is difficult to separate from the remaining system, one does
not know what and how many classes the custom CNN outputs. Also,
disguise layers (Fig. 3) might be used and evaluated lastly, so that
the layers lastly computed might not be the actual output. Thus, the
investigator cannot directly provide inputs to the custom CNN nor
obtain its outputs or directly access the detected objects 𝑂 identified
by the object detector. The investigator can feed arbitrary raw images
𝑋𝑅 to the system, e.g., replacing the drone’s camera. For raw input 𝑋𝑅
ne obtains for each detected object 𝑜 ∈ 𝑂 and layer 𝑖 of the CNN a

superset of activations 𝑀 𝑖(𝑜), including those of layer 𝑖.

Forensic Investigation: The strategy is to determine if and what char-
acteristics the system encodes specific to the incident but not to normal
operation. For instance, if the drone crashes on a player, characteristics
such as her face or jersey number are of interest. The procedure has four
steps:

(1) Identifying detected objects and getting their activations: For a single
raw-image 𝑋𝑅 the system detects potentially many objects 𝑂. The
investigator obtains a set 𝑆(𝑋𝑅) = {𝑀 𝑖(𝑜)|𝑜 ∈ 𝑂} of activations without
a mapping to objects on the image 𝑋𝑅. Investigators can run their
own standard object detector on the image 𝑋𝑅 to identify all relevant
objects and potentially more. They get objects 𝑂′ ⊇ 𝑂. They replace one
etected object 𝑜′ ∈ 𝑂′ in 𝑋𝑅 to get image 𝑋′

𝑅, e.g., erasing it using
image in-painting. If activations 𝑆(𝑋′

𝑅) remain unchanged due to the
emoval of object 𝑜′, i.e., 𝑆(𝑋′

𝑅) = 𝑆(𝑋𝑟), the object is not detected.
therwise, they obtain activations 𝑀 𝑖(𝑜′) for the replaced object 𝑜′

sing 𝑀 𝑖(𝑜′) = 𝑆(𝑋𝑟) ⧵ 𝑆(𝑋′
𝑅).

2) Reduce activations through clustering: The number of activations
𝑀 𝑖(𝑜)| for a sample 𝑜 of layer 𝑖 can be large, i.e. |𝑀 𝑖(𝑜)| ∝ 𝐼𝑛𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠×
𝑢𝑡𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠×𝑊 𝑖𝑑𝑡ℎ×𝐻𝑒𝑖𝑔ℎ𝑡. All locations are treated as independent

or a feature map since we do not know the beginning, end, and layout
f a feature map in memory. To reduce the number of activations, we
roup them into clusters 𝐺 and investigate a representative 𝑚𝑙 for each

luster 𝐺𝑙 ∈ 𝐺. This is justified since nearby locations (such as pixels

https://en.wikipedia.org/wiki/2005_German_football_match-fixing_scandal
https://en.wikipedia.org/wiki/2005_German_football_match-fixing_scandal
https://en.wikipedia.org/wiki/Andr%C3%A9s_Escobar
https://en.wikipedia.org/wiki/Andr%C3%A9s_Escobar
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Fig. 3. Drone control system including data. Our focus is on custom AI components, i.e., a custom CNN with potential disguise layers.
Fig. 4. Left: Five most activating samples for two features with consistency; Right: Pseudocode for Case 1.
in the inputs) are highly correlated. Thus, clustering helps remove
redundancy. We cluster using 𝑘-Means into 𝑘 = |𝐺| = 500 clusters. The
number of clusters 𝑘 is a parameter that trades off time to investigate
and the risk of misjudging a malicious AI as non-suspicious. To cluster,
for each 𝑚 ∈ 𝑀 , we compute activations of all samples  and use the
resulting concatenated vector of size | | as a datapoint for clustering.
For each cluster center 𝐺𝑙, the representative 𝑚𝑙 is the point closest to
the center of 𝐺𝑙. That is, 𝑚𝑙 corresponds to all activations of samples
in  of a specific location of a feature map. Pseudocode for steps (ii)
and (iii) is shown in Fig. 4.

(3) Computing top activating samples per cluster representative: For each
cluster 𝐺𝑙 ∈ 𝐺, we compute the top activating samples 𝑇𝑙 ⊂  ,
e.g., 𝑛 = |𝑇𝑙| = 6. The 𝑛-top activating samples 𝑇𝑙 are those inputs that
yield the 𝑛-largest entries, i.e., activations, in the representative 𝑚𝑙. For
each 𝐺𝑙, the samples 𝑇𝑙 are then presented to the investigator for visual
inspection.

(4) Manual investigation: An investigator assesses for each group 𝐺𝑙
whether all top images 𝑇𝑙 share one or more characteristics relevant
to the incident. The challenge is that samples might be grouped due
to other irrelevant shared characteristics. Using a larger number of
top samples 𝑛 = |𝑇𝑙| increases the confidence in the analysis, i.e., in-
creases true positives at the expense of false negatives and more time
to investigate. For example, assume a feature activates for the color
‘‘orange’’. The most activating samples could be 3 samples, all showing
the same player. Suppose more samples |𝑇𝑙| are used for investigation.
In that case, the likelihood decreases that the same player is shown for
a feature if the feature is similarly prevalent for other players’ images,
i.e., if pictures of other players also contain orange. Visual inspection is
fast, i.e., one can mostly assess within seconds for samples 𝑇𝑙 whether
images share one or more characteristics and, if so, to what extent
they are relevant. The question of what exactly to look for is incident-
specific. Implications can be case-dependent, e.g., whether the findings
serve as proof or merely as circumstantial evidence.

5.3. Case 2: Drone parcel delivery

A (non-tampered) drone is supposed to deliver parcels and drop
them onto a dedicated area like a helipad. The outputs of the vision
5

system directly trigger actions. The attacker wants to drop off the parcel
on a person, i.e., action 𝐴 should be triggered given the image of a
specific person’s face. Other actions are not of interest for manipulation.
The tampered drone performs these actions similar to a non-tampered
drone. The drone is trained with the unknown dataset  , which shares
similarities with the public dataset . It is of interest to the attacker to
choose training data  similar to  so that the drone behavior appears
‘‘typical’’. Therefore, if not stated differently, we assume that training
samples 𝑖 triggering action 𝑖 bear similarity to those in the public
training data 𝑖. We discuss three scenarios for choosing the training
data  : (i) No Tampering (NT): Baseline that has not been tampered
with. It is trained using dataset  𝑁𝑇 .

(ii) Replacement Tampering (RT): The attacker replaces the subset 𝐴
of  𝑁𝑇 with 𝑆𝐴 yielding dataset  𝑅𝑇 . That is, the (malicious) action
𝐴 is triggered for samples 𝑆𝐴, i.e.,  𝑅𝑇

𝐴 = 𝑆𝐴. Samples 𝑆𝐴 differ,
though possibly in a subtle manner, from those in the public samples
𝐴 that trigger 𝐴 for appropriate inputs in contexts where action 𝐴 is
non-malicious.

(iii) Enhancement Tampering (ET): The attacker uses a dataset  𝐸𝑇 ,
where action 𝐴 is triggered for  𝐸𝑇

𝐴 ∶= 𝑆𝑂 ∪ 𝑆𝐴. This ensures that
the AI reacts to the targets that should trigger an action for a non-
tampered drone as well as to samples that are needed for malicious
behavior chosen by the attacker. That is, the set 𝑆𝑂 is similar to those
a normal non-tampered drone would be trained on to trigger action 𝐴,
i.e., 𝑆𝑂 is similar to 𝐴. The motivation is to hamper forensics.

Forensic Goals and Evidence: The investigator has access to the
public data  and a set  of unlabeled items. The latter consists of sets
of related items, i.e.,  ∶= {𝜁𝑖}, where each category 𝜁𝑖 is composed
of a set of related samples. Relatedness refers to some form of visual
similarity. For example, sets of samples are available for many real-
world categories, such as humans, cars, etc. Sets might consist of images
related to the incident, like images of the victim or any other images
that the drone might encounter before or during the incident. The
investigative goal is to decide if a suspicious AI system is subject to
𝑁𝑇 , 𝑅𝑇 , or 𝐸𝑇 .

Investigation: Abnormal AI? RT? We first assess whether the suspect
system deviates from expected or normal behavior. The aim is to detect
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Fig. 5. Investigation of a tampered system 𝐸𝑇 using samples  ∶= {𝜁𝑂 , 𝜁𝐴 , 𝜁𝑅}.
replacement tampering (RT), where training data triggering a specific
action has been replaced. In this case, the system is not processing
inputs like a non-tampered system. RT implies a large error 𝑒𝑟𝑟(𝐴) for
samples 𝐴 of some class 𝐴 from the public training data compared to
a baseline obtained from the public training data.

Investigation: NT or ET? An attacker anticipating an investigation
might counteract by enhancement tampering 𝐸𝑇 . Thus, the system
treats a set of pre-defined inputs according to the specification, but it
acts maliciously for other unknown inputs related to the incident. Given
a large set of unlabeled samples  we aim to identify and analyze
those inputs related to malicious behavior 𝑆𝐴. That is, input samples
 can be partitioned into three disjoint sets {𝜁𝑂 , 𝜁𝐴, 𝜁𝑅}, i.e.  ∶=
⋃

𝜁∈{𝜁𝑂 ,𝜁𝐴 ,𝜁𝑅} 𝜁 , so that 𝜁𝐴 bears similarity with 𝑆𝐴, 𝜁𝑂 with 𝑆𝑂 and
𝜁𝑅 with neither 𝑆𝐴 nor 𝑆𝑂. The sets are illustrated in Fig. 5. The
categorization into sets {𝜁𝑂 , 𝜁𝐴, 𝜁𝑅} is unknown to the investigator, par-
ticularly the set 𝜁𝐴. Thus, in its most simplified form, the investigator’s
goal is to identify 𝜁𝐴 out of three unlabeled sets in  . We do so by
identifying 𝜁𝑅 first and then distinguishing 𝜁𝑂 from 𝜁𝐴 (and 𝜁𝑅), leaving
us with the desired attacker set 𝜁𝐴. We assume that 𝜁𝑂 is similar to
the public data 𝐴 that triggers action 𝐴 in appropriate contexts. The
method consists of two steps:

(i) Identify 𝜁𝑅 using misclassification analysis: We first eliminate samples
𝜁𝑅 that do not trigger 𝐴. We use the rank 𝑅𝑘(𝜁, 𝐴) indicating the
position of the class 𝐴, if classes are sorted depending on the fraction of
samples in 𝜁 classified as 𝐴. 𝜁𝑅 should have a significantly higher rank
than 𝜁𝑂 and 𝜁𝐴. Computation of 𝑅𝑘(𝜁, 𝐴) is as follows (1) Compute the
class of each sample in 𝜁 ; (2) For each class 𝑗 count how many samples
𝑁𝑗 were predicted to be of class 𝑗; (3) Sort classes using count 𝑁𝑗 in
descending order. The rank 𝑅𝑘(𝜁, 𝐴) is the position of class 𝐴 in that
ordering.

(ii) Separate 𝜁𝑂 and 𝜁𝐴 using feature-based analysis: So far, we have as-
sumed that we have unlabeled data triggering action 𝐴. The unlabeled
set 𝜁𝐴 ∈  might bear some similarity with objects 𝑆𝐴, but it might
be insufficient to trigger a mis-classification commonly. For example, a
malicious system might trigger an action if an image shows the victim
and no potential witnesses, i.e., no other people. However, if the set
𝜁𝐴 available to the investigator as part of  only shows the victim
with other people, action 𝐴 will never be triggered. We propose a
feature-based analysis that is more fine-grained than considering inputs
as a whole. It allows identifying features associated with action 𝐴 even
if the samples with such features do not trigger action 𝐴. A feature-
level analysis requires investigating model internals, i.e., activations of
layers 𝑀 . We identify characteristics/features that are relevant to 𝐴,
i.e., features 𝐹𝐴

that activate more often for samples from 𝐴 (and
likely also for samples 𝑆𝑂) than for other samples. Say samples from 𝜁
activate features 𝐹 . If there are features that are only in 𝐹 but not in
6

𝜁 𝜁
Table 3
VGG-6 [37] variant used for case
study 1. C is a convolutional layer
and FC a dense layer; A BatchNorm
and ReLU layer followed each C
layer; MP denotes MaxPooling.
Type/Stride Filter shape

C/s1 3×3×3×32
C/s1 3×3×32×32
MP/s2 2×2
C/s1 3×3×32×64
MP/s2 2×2
C/s1 3×3×64×64
MP/s2 2×2
C/s1 3×3×64×128
MP/s2 2×2
C/s1 3×3×128×256
Dropout 0.25
FC/s1 256× nClasses
SoftMax/s1 Classifier

𝐹𝐴
then 𝐹𝜁 ⧵ 𝐹𝐴

is non-empty. This indicates that samples 𝜁 contain
images that exhibit characteristics associated with action 𝐴 that are not
found in the public training data 𝐴 for 𝐴. We say that a feature 𝑚 ∈ 𝑀
is activated for a set 𝜁 if the mean of all activations of set 𝜁 is larger
than the mean of all activations of the entire data  plus the standard
deviation.

6. Evaluation

We discuss each case study separately following the same structure:
We provide details of the setup followed by results and a discussion.

6.1. Evaluation Case 1

We used Pytorch’s pre-trained Faster-RCNN [36], trained on the
COCO dataset. We trained the custom CNN being a VGG [37] variant (
Table 3) on our labeled dataset for 100 epochs with data augmentation
(rotation, random crop, and horizontal flipping) and L2 weight regu-
larization factor of 0.003. The batch size was 64. We used stochastic
gradient descent with learning rate decay starting from 0.1, decaying
by a factor of 10 after 50 and 80 epochs.

We assess 3 distinct groups, each consisting of 3 layers, i.e., lower
(around 2nd lowest conv layer), upper (around 2nd highest conv layer),
and top layers (including last layer) for a malicious and non-malicious
VGG-style CNN network. We labeled about 2000 objects from the drone
footage identified via a Faster-RCNN restricted to heights of [80,128]
pixels to train the networks. 60% of samples of each class became
training data for the custom CNN. 40% (but without labels) constitute
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Fig. 6. Each row in the left and right panel shows top activating samples for a cluster representative 𝑚𝑙 . Left: For the malicious network concept ‘10’ is common among top
activating samples. Right: For the non-malicious net, concept ‘10’ is uncommon.
the unlabeled dataset used by the investigator. Labels of this 40% were
used to compute evaluation metrics. The dataset with the number of
samples per class is shown in Fig. 3. We considered two scenarios each
with different datasets, i.e.  , and  ′,  ′. Both  and  ′ (as well
as  and  ′) had the same images but differed in their labeling. The
dataset RefTrack for non-malicious networks consists of two classes (ref-
eree and any other object). The RefTrack corresponds to our described
scenario. For the second dataset, AllTrack attack objects and other
detection objects are very similar. It consists of nine classes (all classes
except the jersey number of the subject to attack). A malicious dataset
has one more output class than a non-malicious dataset. The extra class
is one of the five jersey numbers, e.g., 10, 11, 90, 4, 20. The AllTrack
dataset is designed to be more difficult for forensic investigation.

For non-malicious networks, the images of attack classes were as-
signed to either #ℎ𝑜𝑚𝑒𝐴𝑤𝑎𝑦 or #𝑜𝑡ℎ𝑒𝑟𝐴𝑤𝑎𝑦. We trained with image
augmentation and class-weighing, yielding test accuracies consistently
above 90%. The confusion matrix showed that all classes were learned
well. For each hyperparameter setting, we trained three models.

For quantitative assessment, we introduce a measure denoted fea-
ture consistency 𝐹𝑐 . It allows capturing to what extent a feature is
associated with a suspicious concept (or class) only. We expect that ma-
licious networks exhibit more features with high feature consistency for
suspicious concepts than non-malicious networks. Feature consistency
𝐹𝑐 is computed on representatives 𝑚𝑗 ∈ 𝐺𝑗 as the ratio of the number
of samples 𝑆 ⊆ 𝑇𝑗 that activate a particular feature or concept out of
all samples 𝑇𝑗 . It is expressed as a percentage, i.e., 𝐹𝑐 (𝑚𝑗 ) ∶=

100|𝑆|
|𝑇𝑗 |

. A
suspicious concept is any of the jersey numbers 10, 11, 4, 90, and 20
(see classes in Fig. 3). Fig. 4 illustrates most activating test samples for
three features from 𝐺𝑗 and their feature consistencies 𝐹𝑐 . Thus, if for
multiple groups 𝐺𝑗 feature consistency is large, the network is likely
sensitive to the suspicious concept and, thereby, possibly malicious.

Results: A qualitative assessment can be done using Fig. 6 for the
dataset RefTrack. The figure shows the most activating, i.e., top 𝑛 = 6
samples, for a subset of all 500 cluster representatives for a malicious
and non-malicious network trained with jersey number ‘‘10 home’’ as
attack samples. Each row contains 6 samples 𝑇𝑗 for a specific 𝑚𝑗 . An
investigator checks each set of samples 𝑇𝑗 whether they consistently
show the same suspicious characteristic, e.g., a jersey number. Some
sets 𝑇𝑗 in Fig. 6 for the malicious network show indeed consistent
features that resemble the attack class, i.e., images with jersey number
10. In Fig. 6 for the non-malicious network, no such sets can be
identified.

For quantitative assessment, Table 4 shows the average feature
consistencies across all attack classes. An investigator aims to dis-
tinguish malicious from non-malicious networks. Malicious networks
show higher feature consistencies for attack classes than non-malicious
networks. Thus, they can be separated. Suppose an investigator looks
at the top activating samples for the groups 𝐺𝑗 identified by our
algorithm and illustrated in Figs. 4 and 6. In that case, one will find
7

groups where all samples share a malicious concept more often for
malicious networks. The effectiveness depends on the chosen layer
and the similarity of attack objects and non-attack objects. For a non-
malicious network, feature consistency is 0 for all layers, indicating
no features exist corresponding to attack objects, i.e., suspicious jersey
numbers. This holds although the training data consisted of objects of
the incident (showing jersey numbers). But the suspicious concepts,
i.e., jersey numbers, were not needed or beneficial for the task at
hand, i.e., distinguishing between the referee and players. Thus, an
investigator will not detect a suspicious concept in a group stemming
from the non-malicious network. In contrast, malicious network results
depend on the layer. There are no groups with a high feature consis-
tency for lower layers. For other layers, a few percent of all features
have a feature consistency of 1, indicating that the network learns
features related to the incident. The top layers encode semantically rich
information, and the lower layers are more basic, generic information
common in many classes. Thus, the outcome is aligned with existing
knowledge on DL. An investigator looking into all groups will detect
such a group. One can be confident that the network was specifically
trained to detect a suspicious concept.

6.2. Results for the second dataset for Case 1

Feature consistencies are stated in Table 4. In the paper we dis-
cussed results for RefTrack, showing that malicious networks are easy
to identify. The situation is more intricate for the dataset AllTrack
when attack classes and non-attack classes bear more similarities. More
precisely, similar concepts are used to distinguish between classes of
non-attack objects and attack and non-attack objects. In our case, jersey
numbers are needed to distinguish among non-attack classes, and a
jersey number (though a different one) is needed to identify the attack
class. Such an overlap raises challenges, i.e., we observe that also
the non-malicious networks contain some features with large feature
consistencies. The malicious network still contains significantly more
(A t-test gave a 𝑝-value <0.001). Malicious and non-malicious networks
must discriminate between very similar classes, i.e., both have multiple
classes focusing on jersey numbers. Thus, the investigation becomes
more difficult if the attack objects are very similar to the classes that the
network should detect. It is not sufficient to detect a group where all top
samples share a suspicious concept. An investigator must compare the
outcome of a potentially ‘‘malicious’’ system to an adequate reference,
e.g., to a non-malicious system.

Thus, our method allows distinguishing malicious from non-
malicious networks. Investigators can use the proposed method to
identify groups from unlabeled data. They can compare the top samples
and identify shared relevant concepts for the incident, i.e., if top
samples share a suspicious concept, the network is likely malicious
(see Fig. 6). While the method is widely applicable, as a limitation,
it requires data related to the incident and manual work.
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Table 4
Feature consistency 𝐹𝑐 for non- and malicious nets.

Top layers Upper layers Lower layers

Non-Ma. Malic. Non-Ma. Malic. Non-Ma. Malic.

RefTrack 0.0± 0.0 5.0± 1.8 0.0± 0.0 3.0± 0.7 0.0± 0.0 0.0± 0.0
AllTrack 0.4± 0.4 1.3± 0.6 0.6± 0.5 1.3± 0.5 0.0± 0.0 0.0± 0.1

Table 5
VGG-10 [37] variant used for case
study 2. C is a convolutional layer
and FC a dense layer; A BatchNorm
and ReLU layer followed each C
layer; MP denotes MaxPooling.
Type/Stride Filter shape

C/s1 3×3×3×32
MP/s2 2×2
C/s1 3×3×32×64
C/s1 3×3×64×64
MP/s2 2×2
C/s1 3×3×64×128
C/s1 3×3×128×128
MP/s2 2×2
C/s1 3×3×128×256
C/s1 3×3×256×256
MP/s2 2×2
C/s1 3×3×256×512
C/s1 1×1×512×512
FC/s1 512× nClasses
SoftMax/s1 Classifier

6.3. Discussion Case 1

On the technical side, the evaluation showed that malicious net-
works could be identified using visual investigation if different fea-
tures are required to distinguish between non-attack objects and attack
objects from non-attack objects. For the dataset RefTrack the non-
malicious network did not learn any features related to jersey numbers.
However, they were shown in the training data, and they would,
in principle, have proven helpful to distinguish the referee from the
players. In contrast, for the dataset AllTrack the non-malicious network
learned such features since it had to distinguish between different
jersey numbers. In the latter case, simply identifying a shared suspi-
cious concept is not sufficient. Once a concept is identified, it must be
shown that it is more frequent than in a non-malicious reference. This
increases the investigator’s effort since a reference is not readily avail-
able. An investigator might follow our evaluative process, including
data labeling, training a malicious and non-malicious classifier (serving
as reference), and comparing feature consistencies between networks as
in Table 4. Furthermore, it is not necessarily evident what constitutes
a suspicious concept. The op samples of a group might share multiple
similarities. It depends on the investigator to identify those relevant to
the incident. Thus, the investigator’s judgment remains highly relevant.

6.4. Evaluation Case 2

We trained a VGG [37] variant (Table 5) for 30 epochs without
data augmentation with L2 weight regularization factor of 0.0005 with
a batch size of 128 leading to test accuracies of about 45%. Note
that better-performing models would be to our advantage, i.e., to
that of an investigator. Low accuracy might be used as a means to
disguise. The reason is that low accuracy relates to noisy classifica-
tions making differences used for investigation between models (and
features) less profound. For k-Means we used Python’s sklearn library.
We used stochastic gradient with learning rate decay starting from 0.12,
decaying by a factor of 10 after epochs 20 and 30.

We trained on the Cifar-100 dataset. For 𝑁𝑇 , 𝑅𝑇 , and 𝐸𝑇 , we
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choose distinct sets of samples 𝑆𝑂 and 𝑆𝐴, each corresponding to those
Table 6
Accuracy for different tampering attempts.

Method 𝑒𝑟𝑟() 𝑒𝑟𝑟(𝐴) 𝐶(𝜁𝐴 , 𝐴)

𝑁𝑇 0.443±0.01 0.401±0.18 0.991±0.01
𝑅𝑇 0.438±0.01 0.993±0.01 0.403±0.18
𝐸𝑇 0.44±0.01 0.421±0.17 0.432±0.16

Table 7
Median rank for action 𝐴 for 𝜁 ∈  ; Mean # features in intersection with 𝐴.
𝑅𝑘(𝜁𝑂 , 𝐴) 𝑅𝑘(𝜁𝑅 , 𝐴) 𝑅𝑘(𝜁𝐴 , 𝐴) |𝐹𝜁𝐴 ∩ 𝐹𝐴

| |𝐹𝜁𝑂 ∩ 𝐹𝐴
|

2.0±6.61 12.0±17.15 4.0±9.58 2.14 0.10

of a random class. Cifar-100 consists of 100 classes summarized by 20
more general categories, e.g., ‘people’ contains baby, boy, girl, man,
and woman. For the three classes  ∶= {𝜁𝑂 , 𝜁𝐴, 𝜁𝑅} we use for 𝜁𝐴
samples of a class from the same category as 𝑆𝐴, for 𝜁𝑂 samples from
the same category as 𝑆𝑂 and for 𝜁𝑅 samples of a class not in any
category of 𝑆𝑂 or 𝑆𝐴. We train the networks without the three classes
 . They are used for evaluation. We train 30 networks for each 𝑁𝑇 ,
𝑅𝑇 , and 𝐸𝑇 . For each network, we randomly choose the sets  .

Results: Abnormal AI? RT? The overall error 𝑒𝑟𝑟() in Table 6 is
similar for 𝑁𝑇 , 𝑅𝑇 , and 𝐸𝑇 , indicating that manipulations do not
distort overall performance. This is expected since only 1% of training
data differs for 𝑁𝑇 , 𝑅𝑇 , and 𝐸𝑇 . For individual classes, as expected,
for 𝑁𝑇 and 𝐸𝑇 about 40% of samples from 𝐴 are classified as 𝐴,
which means its error 𝑒𝑟𝑟(𝐴) is roughly the error of the model 𝑒𝑟𝑟()
across all classes. Thus, both appear to be non-tampered. For 𝜁𝐴 the
error is large, indicating that for a non-tampered drone action 𝐴 is not
triggered by the attacker’s samples 𝑆𝐴. On contrary, for 𝑅𝑇 samples 𝜁𝐴
cause 𝐴, but 𝐴 do not. Consequently, the tampering is easy to identify
due to large error (similar to guessing) of 𝐴. Still, it is unknown what
objects were used for tampering, i.e., set 𝑆𝐴.

Results: NT or ET? Identify 𝜁𝑅 using misclassification analysis:
Table 7 shows the output for assessing unlabeled samples  . As

expected, samples from 𝜁𝑂 and 𝜁𝐴 have a lower rank and lower error
than random. However, the rank of the random class seems fairly low,
i.e., under the assumption that on average a random class should have
the mean rank of all classes, which is 48.5 (we trained using 97 classes).
The reason is that class 𝐴 is trained with 𝐴 ∶= 𝑆𝐴 ∪ 𝑆𝑂, covering
different concepts and being larger than any set 𝑖 for any other class
𝑖. Thus, there are more concepts associated with class 𝐴. This makes
it more likely that random samples 𝜁𝑅 are classified as 𝐴. Standard
deviations seem fairly large. This follows from the Cifar-100 dataset.
Sub-classes in some categories exhibit limited similarity, while other
categories overlap, e.g., ‘streetcar’ and ‘pick-up truck’ are in different
categories, whereas ‘clock’ and ‘keyboard’ are in the same category.
Still, overall differences are significant (a t-test gave 𝑝-value < 0.0001).

Separate 𝜁𝑂 and 𝜁𝐴 using feature-based analysis: Table 7 shows the
ntersection of features of the two unlabeled datasets 𝜁𝐴 and 𝜁𝑂 with
he features 𝐹𝐴

obtained for 𝐴 that is supposed to trigger 𝐴. It can
e seen that while samples from 𝜁𝐴 share many features with 𝐴, set
𝑂 does not. Thus, we can distinguish 𝜁𝑂 from 𝜁𝐴, leaving us with the
ttacker samples 𝜁𝐴 that we aimed to identify.

.5. Discussion Case 2

Our evaluation highlighted that an attacker could easily associate
n output with different stimuli, e.g., in our scenario, an attacker
an trigger dropping a parcel on a person rather than on a heliport.
owever, this can also be identified. In practice, the evaluation is
ore intricate since there are likely more than three sets of samples.
owever, they all fall into one of the three considered types. Thus,

his should not hinder the application of our method. An adversary has
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Fig. 7. General questions with respect to training data.

multiple means for counter forensics, possibly at the price of making
the attacks ‘‘less targeted’’. For example, the tampered system might
be trained only briefly or with very few samples of the attack class.
This could cause the system to only occasionally trigger the malicious
action, although the attacker would want it to always trigger in this
situation. But, in turn, detection is much more difficult, i.e., notable
differences between the attacker dataset and other sets become more
subtle.

7. Case 3: Generalized setting

Forensic Goals and Evidence: The aim is to answer two general
questions:

(i) Was the network trained to detect a specific set of samples sharing
similarities, e.g., constituting a class?

(ii) Does the investigative data contain all classes used for training a
classifier?

We assume that the investigator has access to data  ⊆ ( ∩ ).
In particular,  contains some sets that are similar or even identical
to some sets used for training the model  . The two questions are
illustrated in Fig. 7.

For Question (i) the investigator wants to assess if a network was
trained to identify samples 𝐷 ∈  as a class, i.e., if the network was
trained specifically to treat samples 𝐷 as belonging to one class 𝑌 . For
example, a drone might be trained to identify a heliport for dropping
cargo and a general class constituting obstacles. Still, it might not be
trained specifically to identify humans, let alone specific individuals.
Knowing whether the network recognizes a specific person can help
judge a network as suspicious. In the prior section, we employed a semi-
automatic approach that identified samples leading to the strongest
activations for each neuron. Here, we present another methodology that
relies on assessing mean activations of samples of a class, specifically,
whether a network contains features that activate primarily for that
class.
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Question (ii) is motivated by the observation that an investigator
certainly does not want to miss relevant classes in her investigative
data. If so, it is not fully known to what the network reacts and a
network cannot be reliably judged as being (non-)malicious.

Investigation: A network learns features that allow discrimination
among classes. While lower layers encode characteristics that are often
common for many classes, upper layers contain more specific features
that are typically characteristic for one (or at most a few) classes. A
feature 𝑗 ∈ [0, |𝑀| − 1] is characteristic of a set 𝐷 if activations 𝑀𝑗 (𝑋)
for 𝑋 ∈ 𝐷 are frequently considerably larger than those of other sets
𝐷′. To capture this intuition we compute averages and compare them.
We define the average activation for samples 𝐷 and feature 𝑗 as:

𝑀𝑗 (𝐷) ∶=
∑

𝑋∈𝐷 𝑀𝑗 (𝑋)
|𝐷|

(1)

The standard deviation s

𝑠𝑑(𝑀𝑗 (𝐷)) ∶=

√

∑

𝑋∈𝐷(𝑀𝑗 (𝑋) −𝑀𝑗 (𝐷))2

|𝐷|

(2)

To address Question (i), let 𝐷𝑎𝑙𝑙 ∶= ∪𝑆∈𝑆 be the union of all
samples used for investigation. We say a feature 𝑗 is characteristic for
samples 𝐷, if

𝑀𝑗 (𝐷) > 𝑀𝑗 (𝐷𝑎𝑙𝑙) + 𝑐1 ⋅ 𝑠𝑑(𝑀𝑗 (𝐷𝑎𝑙𝑙)), (3)

where 𝑐1 is a fixed constant, i.e., we shall use 1.5. We define the number
of characteristic features 𝑁(𝐷) as:

𝑁(𝐷) ∶=|{𝑖|𝑖 ∈ [0, |𝑀| − 1],𝑀𝑗 (𝐷) > 𝑀𝑗 (𝐷𝑎𝑙𝑙) (4)

+ 𝑐1 ⋅ 𝑠𝑑(𝑀𝑗 (𝐷𝑎𝑙𝑙))}| (5)

A set of samples 𝐷 was not used for training if there are fewer
characteristic features 𝑁(𝐷) than for sets that are known to be used for
training (or are very similar to such sets) 𝑁(𝐷′). The average number
of activated features for sets  is:

𝑁() ∶=
∑

𝑆∈ 𝑁(𝑆)
||

(6)

The standard deviation is

𝑠𝑑(𝑁()) ∶=

√

∑

𝑆∈(𝑁(𝑆) −𝑁())2

||

(7)

We say that samples 𝐷 have not been used for training if 𝑁(𝐷) +
𝑐2 ⋅ 𝑠𝑑(𝑁()) < 𝑁(), where 𝑐2 is a constant, i.e., we used 𝑐2 = 1.5. We
discuss finding the thresholds in our evaluation.

To address Question (ii), the idea is to assess if the network con-
tains features that never strongly activate for any of the sets of the
investigative data. This question is more challenging than Question
(i) since average activations of two features can vary strongly, even
when using the actual training data  since some features (or patterns)
tend to be more common among samples in general than others. Thus,
detection tends to be more brittle. We aim to identify features that are
not activated for any of the sets in the investigative data. We compute
the maximum mean activation of a feature across all sets 𝐷 ∈ ,
i.e., 𝑀𝑗,𝑚𝑎𝑥() = max𝐷∈ 𝑀𝑗 (𝐷). We consider a feature as non-activated
(for all sets) if it is below a threshold 𝑐3. We assessed two values of 𝑐3,
i.e., 0.025 and 0.05. We discuss finding the thresholds in the evaluation.
The number of non-activated features for the investigative data is as
follows: 𝑁𝐴() ∶= {𝑗|𝑀𝑗,𝑚𝑎𝑥() < 𝑐3}.

We say that the investigative data  misses at least a set 𝐷 ∈  , if
𝑁𝐴() > 𝑐4, where 𝑐4 = 3 is a threshold.

7.1. Evaluation Case 3

Setup. We used two classifiers, i.e., VGG-11 (V11), and ResNet-10
(R10). We employed two datasets, namely Fashion-MNIST and Cifar-10.
Fashion-MNIST consists of 70k 28 × 28 images of clothing stemming
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Fig. 8. Mean activations and their standard deviations of features for different classes for V11 and Cifar-10. In panel 𝑖, only class 𝑖 (red) was left out, i.e., not used for training.
Classes not used for training have few or no features with large mean activation. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
from 10 classes. As data preprocessing for Fashion-MNIST, we scaled
all images to 32 × 32 and performed standardization. We assume that
activations 𝑀(𝑋) stem from the second last layer before the linear
layer, i.e., consisting of 512 neurons. We also investigated using three
layers, i.e., the fifth last layer up to the second last layer, but we do
not include detailed results but discuss their differences qualitatively.
To investigate Question (i) we train a classifier on  ′ =  ⧵𝐷, i.e., with
all but one class 𝐷 ∈  . We assume investigative data  =  . Thus,
our method correctly detects the non-trained class corresponding to
samples 𝐷, if (a) it says the classifier was not trained on samples 𝐷
and it says that the classifier was trained on all other classes  ′.

In our evaluation, we leave out each class 𝐷 ∈  and train per
left-out class three classifiers of each classifier type, i.e., V11 and R10.
That is, we trained a total of 60 classifiers for the 10 classes. We
report the mean detection accuracy and the standard deviation as well
as the model accuracy and standard deviation though this is not a
primary concern. Figures Fig. 8 and Fig. 8 illustrates mean actiations
(and standard deviations). To investigate Question (ii) we could train
using all classes  . However, to get more diversity in outcomes and
show that our method works robustly, we reuse more diverse training
data, i.e., we reuse the same classifiers as for Question (i), i.e., trained
on  ′ =  ⧵ 𝐷. The investigative data lacks one additional class 𝐷′,
i.e.,  =  ′ ⧵ 𝐷′ with 𝐷′ ∈  ′. We let each class 𝐷′ ∈  ′ be missing
once and say that the non-completeness of  was correctly detected,
if 𝑁𝐴() > 𝑐4, i.e., the algorithm outputs that the investigative data
lacks a class  and it outputs that actual training data  ′ does not lack
a class.

Results Question (i): The threshold constants 𝑐1 and 𝑐2 can be identi-
fied through exploratory analysis, i.e., doing plots like Fig. 9 shown in
our results for different values for 𝑐1 and coloring activated and non-
activated features, i.e., increasing 𝑐1 so that only features with large
means are characteristic for a class.3 Note, we do not use any informa-
tion on the set 𝐷 we aim to assess for that purpose. Qualitatively, in
Fig. 9 it becomes apparent that if a class is left out from training, few or
no mean activations of features tend to be large. In Table 8 we can see
that we can correctly detect the non-trained class (among all classes)
in the majority of cases — even using the same parameters 𝑐1 and 𝑐2.
This procedure works well also in the scenario, where activations 𝑀
consist of three (different) layers. If activations of multiple layer types
are merged, it generally suffices to focus on neurons with large mean
activations, which tend to be those after batchnorm, i.e., means of conv-
layer tend to be near 0. If neurons of different layers are approximately
of the same magnitude, they do not have to be distinguished and can
be analyzed jointly.

Results Question (ii): To find thresholds 𝑐3 and 𝑐4, we performed a
plot like in Fig. 9, but intentionally leaving out a set 𝐷′ ⧵ . If the
number of features with very low activations increased significantly,

3 One might also apply a threshold directly on the mean for a feature by
looking at the plot.
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Table 8
Model accuracy and detection accuracy for a non-trained class.
Network Dataset Model Acc. Detect Acc.

R10 Cifar-10 0.88±0.01 1.0±0.0
R10 FashionMNIST 0.94±0.011 1.0±0.0
V11 Cifar-10 0.81±0.014 0.9±0.3
V11 FashionMNIST 0.93±0.013 0.7±0.458

i.e., among the lowest activating features, the majority intersects with
activated features of set 𝐷′ (see Fig. 9) then it can be concluded that
the investigative data is complete. If only a small fraction, i.e., less than
1/2, of the lowest activating features stem from the left 𝐷′ then many
other features have not been activated for the investigative data. The
challenge is that some features can have low mean activation for all
classes. Thus, among the lowest activating features there can be some
features that are activating for a set in , but the activation is small.

In our analysis, we aim to distinguish between the case that the
dataset  is complete, i.e., it is equal to the training data, or at least
one set 𝐷′ ∈  is missing. A set is missing if the number of non-
activated features is above a threshold 𝑐4 that captures the number
of anticipated ‘‘outliers’’, i.e., features that have very low activation
although they are part of the data . As can be seen in Fig. 9, this
approach works well if we have access to activations of a specific layer,
but noise significantly increases if we assume that activations stem
from multiple layers. The separation of activating and non-activating
features based on means is a challenge. The good thing is that means
of features of different layers of a conv-layer, ReLU, and a batchnorm
layer tend to differ. The problem is that there is still overlap making a
simple separation difficult. Under the assumption that activations are
randomly permuted, this is non-trivial.

As can be seen in Fig. 9, the mean activations fluctuate depending
on the missing class. Still, for all left-out classes during training, there
are multiple non-activated features below the threshold (blue dots)
in the resulting networks. If we train on all data (violet dots), we
can see that in particular, towards the lower end, there are clear
differences between the blue dots. Furthermore, while some features
that strongly activate for the missing class (black dots) also yield fairly
strong activations for other classes, most features remain non-activated
if the mean is large for some other class. Quantitatively, Table 9 shows
that accuracy tends to be high across classifiers, but they are sensitive
to the threshold 𝑐3.

7.2. General discussion and future work

Our conceptualization provides a rich set of options to investigate.
Still, this set of options is by no means comprehensive, and it can-
not be so since forensics and attackers are both constantly evolving.
Additional questions for research include ‘‘How can suspects based on
other AI techniques such as reinforcement learning, other scenarios (see
Fig. 1) and other deep learning network architectures such as LSTMs be
identified?’’, ‘‘How can explainability methods be leveraged (modified)
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Fig. 9. Mean activations sorted for all data and data missing a class for V-11 and Cifar-10. In panel 𝑗 class 𝑗 with samples 𝑇 is not part of the investigative data (𝐷 = 𝐶 ⧵ 𝑇 ). For
𝐷 there tends to be more features that have very low mean activations (compared to the full data 𝐶). For the class 𝑇 only few features show large mean activations.
Table 9
Model accuracy and detection accuracy for a (sample) set contained in
training but missing from investigative data.
Net. Dataset Thres. 𝑐3 Model Acc. Detect Acc

R10 Cifar-10 0.05 0.88±0.011 0.8±0.4
R10 Cifar-10 0.025 0.88±0.011 0.46±0.217
R10 FashionMNIST 0.025 0.94±0.011 0.87±0.34
R10 FashionMNIST 0.05 0.94±0.011 0.33±0.471
V11 Cifar-10 0.05 0.81±0.014 0.92±0.121
V11 Cifar-10 0.025 0.81±0.014 0.13±0.11
V11 FashionMNIST 0.05 0.93±0.013 1.0±0.0
V11 FashionMNIST 0.025 0.93±0.013 0.91±0.078

to support analysis of gray-box models ?’’, ‘‘How can data mining
techniques, e.g., to identify anomalous decisions be leveraged ?’’, ‘‘How
can other types of evidence such as operational data be used?’’.

Our work is only a first step towards AI forensics. We demonstrated
that perpetrators could often be identified in the given attack scenario.
We showed how properties of AI systems, e.g., memory access patterns
of deep learning and knowledge of alleged behavior (encoded via
a public dataset), can be leveraged for forensics. Our case studies
are just a small selection of countless options. Furthermore, various
design decisions must also be made for these options. This naturally
raises questions with respect to generalizability. We believe that our
techniques are widely applicable since systems for very different appli-
cations use the same deep learning technology, e.g., object detection
is used in self-driving cars, manufacturing, healthcare, etc. Most effort
for investigation might not be related to applying our methods but to
collecting adequate data, which holds true for many machine learning
projects. For example, an investigator might rely on data similar to
what the system observed during the incident to understand what
caused the AI to act in a certain way. However, getting such data might
be difficult and costly. Even if data is acquired, it might differ from the
incident in subtle but important ways. That is, the acquired data might
not trigger malicious actions during the incident due to differences in
data. To this end, evaluating more DL architectures on more datasets
might be beneficial, but this alone is not sufficient given the many
decisions to be made for any case study. More foundations are needed
in deep learning in general, and more studies are needed that are only
dedicated to a specific forensic case or question.

Our work is not without limitations. For once, both our image
classification networks seem fairly inaccurate. Note that our proposed
techniques for forensic investigation become more reliable given higher
accuracy since this reduces noise. As of today, in safety-critical appli-
cations like self-driving cars, outputs of computer vision components
are used in conjunction with other sensors. Thus, an attack on a real
system might be more complex than just retraining a single classifier.
Still, modifying a classifier like a computer vision component seems an
important step. Furthermore, one might question whether an attacker
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would attempt to manipulate an AI rather than just perform physical
modifications to a device or adjust control logic in other ways. To this
end, there is no definitive answer yet. We believe there are multiple
decisive factors: (i) Maturity of AI forensics. The availability of methods
to identify attacks is making attacks less attractive. On the contrary,
if law enforcement is not prepared to investigate an AI, it becomes
more attractive for attackers to manipulate AI; (ii) The evolution of
AI. AI is likely to become easier to use, more autonomous, and cover
more applications. We believe that this will make it more attractive
to manipulate AI. (iii) Regulation of AI. If AI systems are regulated to
follow specific design guidelines (that also ease forensic investigation),
this might make AI more difficult to abuse. In summary, for some time
to come, AI might not be designed to be malicious, but the risk for this
to eventually happen is large, and, thus, forensic work should start now
to be one step ahead of attackers.

The overarching approach of our methods was to identify data
samples that trigger malicious actions and present data samples having
similar activations to the investigator. Our methods emphasize that the
role of the digital forensic investigator remains highly important. In
particular, for our first case study, a forensic investigator must identify
concepts related to the incident, label data, etc. While some of these
tasks might be further automated, we believe that the black-box nature
of AI combined with its novelty makes the role of forensic investigators
more difficult and more relevant in the context of AI.

Rather than working on data samples, one might also work with fea-
tures, e.g., reconstructing features of a neural network. There is a rich
set of explainability methods [16,19] that might be leveraged as part of
the investigative process. Many common explainability methods such as
LIME or SHAP that compute proxy models assuming black-box access
or methods that require gradients such as GRAD-CAM can be helpful.
However, methods for black-box models might not give the best results
for gray-box models, since they do not leverage internal information.
Furthermore, outputs (used by the system) might not always be easy to
access, e.g., due to disguise layers as shown in the architecture for one
of our case studies. Methods for white-box models cannot be applied
directly since they often require internal information, e.g., gradients
that cannot be computed. Still, adjusting XAI methods to the gray-box
model might be helpful. For example, [23] proposed to decode layer
activations. Potentially, this might allow identifying concepts of the
input a classifier reacts to without the need for gradients. Since this
method was developed assuming access to a single layer, more work
is needed to clarify whether this or other techniques work when exact
access to a single layer is unavailable.

8. Conclusions

We conceptualized AI forensics and identified malicious AI sys-
tems as part of forensic work based on two case studies leveraging
layer activations in the gray box model. Forensic work poses novel
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challenges to investigators, and AI systems provide ample opportuni-
ties for hiding evidence, such as obfuscating computational patterns.
Techniques from emerging areas in AI, such as reverse engineering,
explainability, adversarial analysis, and testing, play an integral part in
the investigation, but often require adjustment for forensic work. Thus,
the ‘cat-and-mouse’ game between attackers and forensic experts has
just begun.
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Appendix

A.1. Drone design options

On-board processing vs. communicating to server: A key challenge
for drones, in general, is limited battery power. From a system design
perspective, two fundamental design options strongly impact energy
consumption: Transmit the image to a server or process it on the
drone. While both options have their strengths and weaknesses, in the
paper, we discussed the latter, more battery energy-consuming option,
because arguably, a non-autonomous drone would leave digital traces
if it had to communicate with the nearest cell tower or WLAN access
point. This poses a high risk for an attacker since the server the drone
communicates with might be identifiable. Furthermore, if the server
does a similar type of processing as the autonomous drone would,
the investigative methods are the same once it is identified. From an
investigative point of view, where the emphasis is on analyzing the
AI system, the design options are the same. Also, both are found in
practice.

Object tracking vs. object recognition: We employ object recogni-
tion, assuming that each image of a drone is analyzed independently.
There exist techniques designed for object tracking. However, these
networks also rely on CNN layers, and they are not necessarily ad-
vantageous, e.g., in terms of ease of use and computational needs.
Additional Custom CNN vs. Fine-Tuning of object detector: For the
drone design, one might fine-tune an object detector or use a custom
CNN to refine the output of the object detector. The former has slightly
lower energy consumption for the drone, but arguably requires more
effort. We opted for a custom CNN, but both options are very similar
— also from an investigative perspective.

Choice of Object Detector: We opted for Faster-RCNN, but acknowl-
edge that any other object detector could be used and not a key
factor for our analysis. For example, YOLO provides a computationally
lightweight object detector. Also, our neural network designs do not
require much computing (our custom CNN only has a few layers).
However, our networks might be further optimized toward less energy
consumption. Furthermore, other architectures like MobileNet might
lead to even lower energy consumption, though potentially at the cost
of reduced detection/classification performance.

Drone control logic: Controlling a drone is complex. Therefore, our
control logic consisting of a few simple rules is on a rather high level.
The reason is that drone control algorithms are not the focus of investi-
gation and, thus, are not of primary interest, though one could envision
other scenarios where they are. Tracking referee vs. ball: From a
conceptual point of view, there is little difference. Also, the drone
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image covers a fairly large area of the sports ground (much larger than
on the cropped images in the paper). Therefore, it is rarely the case that
any action is missed if the focus is on the referee. Disguise and Impact
on investigator: Another reason why an investigator might not rely
only on the last outputs based on the order of computation is disguise
layers as shown in one of the figures in the paper: the network might
intertwine genuine and non-genuine layer computations, where the last
layers might consist of non-genuine layers. Thus, the investigator has
to assess all layers.

A.2. Dataset(s) for Case 1

Data labeling : The dataset was collected by extracting images from the
drone video lasting about 35 min. For a frame of the video, we obtained
all objects (as returned by faster RCNN). We retained those with heights
between 80 to 128 and labeled them according to the 10 classes shown
in the figure in the paper. Objects with lower heights are hard to assess
visually. After processing each frame, we skipped 50 frames to have
some variation between frames and reduce the overall labeling load.
This left us with 2013 labeled samples. After a first labeling round, we
checked for mis-labelings and fixed those we identified.

Data source: The data stems from a public event in a public setting
uploaded on YouTube, where spectators are welcome, and filming is
commonplace. We are happy to share more information, including our
labeled dataset, or upload it publicly upon reviewer request. We only
show very low-resolution images of players in the paper to respect
their privacy, though millions of YouTube videos covering more private
themes have been used in research, e.g., see the 8 million video
YouTube-8M dataset. We also contacted the uploader and carefully took
into account ethical pros- and cons.4
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