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The official statistics produced by National Statistical Institutes are mainly used by policy 
makers to take decisions. In particular, when policy makers and decision takers would like 
to know the impact of a given policy, it is important to acknowledge the heterogeneity 
of the treatment effects for different domains. If the domain of interest is small with 
regard to its sample size, then the evaluator has entered the small area estimation (SAE) 
dilemma. Based on the modification of the Inverse Propensity Weighting estimator and 
the traditional small area predictors, new estimators of area specific average treatment 
effects are proposed for unplanned domains. A robustified version of the predictor against 
presence of the outliers is also developed. Analytical Mean Squared Error (MSE) estimators 
of the proposed predictors are derived. These methods provide a tool to map the policy 
impacts that can help to better target the treatment group(s). The properties of these small 
area estimators are illustrated by means of a design-based simulation using a real data set 
where the aim is to study the effects of permanent versus temporary contracts on the 
economic insecurity of households in different regions of Italy.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

In recent years, the thrust of planning process has shifted from the macro to the micro level. There is a demand from 
administrators and policy planners for reliable estimates of various parameters at the micro level (Chandra et al., 2011). In 
particular, policy makers and decision takers would like to know the impact of a given policy in certain unplanned geo-
graphic, socio-demographic, or socio-economic domains. Thus, they are faced with the problem of estimating heterogeneous 
causal effects. Unfortunately, very often it is not possible to design a randomized experiment, and observational data (from 
censuses, administrative archives and surveys that are not designed for the purpose) are used to evaluate the effects of the 
intervention. In some cases, large databases with baseline covariates are available and the assignment to treatment (the 
benefit received) is known, but there is not enough information on the outcome variables to be representative of the un-
planned domains. In particular, direct estimates are not accurate because sample surveys are usually designed so that direct 
estimators for larger domains (states, regions - macro level) lead to reliable estimates. If the domain of interest for impact 
evaluation is small with regard to its sample size (or even zero in some domains), then the evaluator has entered the small 
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area estimation (SAE) dilemma. Small area techniques provide official statistics using the survey samples and other sources 
of available information from which the estimators can borrow strength.

It is still surprising that no link has been established between the SAE literature and causal analysis that would allow 
for evaluating the impact of such a policy or decisions at a finer population level. There are exceptions but with different 
intentions. Chan (2018) attempts to combine the strength of the two fields, causal inference and small area estimation, 
to provide more precise generalization of the randomized trials to the entire population. The paper uses model-based 
techniques borrowed from the SAE literature to get a better estimate of the average treatment effect in the sub-classification 
strata, which are defined by the propensity scores, that have a sparse sample from the randomized experiment. There has 
been some statistical research on how to assess the generalizability of randomized trials to the target population in which it 
may be implemented (external validity). Stuart et al. (2011) propose the use of propensity-score-based metrics to quantify 
the similarity of the participants in a randomized trial and a target population. Stuart et al. (2015) provide a case study 
using one particular method, which weights the subjects in a randomized trial to match the population on a set of observed 
characteristics. Methods for assessing and enhancing external validity are just beginning to be developed. These studies and 
SAE methods share the aim to generalize the sample treatment effect to the population. However, the heterogeneity of the 
effects in different sub-populations is usually out of the scope of external validity analysis.

In this paper, we propose new methods to estimate the area specific average treatment effects for small areas in obser-
vational studies. The main motivation behind this is that such methods allow for local rather than universal policy advice. 
Another advantage of our proposed method over existing ones is that the small area techniques can be used to predict 
the effects even if the sample size of the treated or control group is zero in the area of interest. In particular, if the size 
of the control group is zero in the small area of interest the proposed method still allows to predict the area-specific av-
erage treatment effect, whereas if the size of the treated group in the area of interest is zero the new approach is not 
able to estimate the area-specific average treatment effect, but it allows to predict an average treatment effect, that is not 
area-specific, by a synthetic estimation. We adopt the nested error unit-level regression models (Battese et al., 1988) and 
the M-quantile models (Chambers and Tzavidis, 2006) to estimate propensity scores and the unobserved outcomes for the 
population because they are methods vastly used in SAE; however in the general format of our proposal other prediction 
methods that are justified by the practitioner can be adopted. Then to estimate the area specific average treatment effects 
for unplanned domains we propose a modification of the Inverse Probability Weighting estimator based on the estimated 
propensity scores and predicted outcomes (Rosenbaum and Rubin, 1983; Hahn, 1998) and we prove that it is double robust.

Borrowing from some recent papers we report two examples of impact assessment based on observational data in which 
our methodological proposal could improve the accuracy of the results at a finer level (territorial classification or population 
subgroups).

Bachtrögler et al. (2020) analyze the impact of the European Union’s Cohesion Policy (CP) on manufacturing firm growth. 
They aim to assess whether and to which extent the effects of the regional CP investments on supported manufacturing 
firms’ performance vary across different territorial settings (European countries and NUTS-2 regions). The paper combines 
firm-level data with a set of territorial characteristics of NUTS-2 regions (data assembled from three databases). Firms for 
which no NUTS-2 information is available were dropped out from the study and the sample was further reduced due to 
poor availability of outcome variables (change in value added, employment growth, and growth in productivity) for some 
firms.

Starting from growing interest in studying the effectiveness of therapies in real-world conditions, Wendling et al. (2018)
compare methods based on observational data from health care databases (e.g., commercial claims data, electronic health 
records, and national registries) to estimate treatment effects that are supposed to be heterogeneous, e.g. different in sub-
populations which are excluded or underrepresented in Random Control Trials (RCTs).

Depending on the outcome variables of interest (which could also be rare), it may be difficult to have follow-up data for 
a representative sample of the subgroups of interest. In such a case, small area estimation techniques can help reconstruct 
the outcome variable where it is missing, using covariates available in the health care databases.

To show the potential of our proposal, in this paper we consider a design-based simulation experiment based on real 
data in an observational setting. Our experiment aims to approximate a real application in economic policy evaluation as 
closely as possible.

The paper is organized as follows. Section 2 is devoted to set out the theoretical background and the assumptions of 
the causal inference which are then used to extend the small area predictors. We propose extensions to the Empirical Best 
Linear Unbiased Predictor (EBLUP) and M-quantile-based predictors for causal inference in Section 3. Their corresponding 
MSE estimators are presented in Section 4. The performances of these newly proposed predictors are empirically assessed 
in Section 5 by a design-based simulation using EU-SILC data. Finally, in Section 6 we summarize our main findings, and 
provide directions for future research.

2. Notation and assumptions

To explain the methodology developed in this paper we need to link the notations and the terminologies conventionally 
used both in small area estimation and in causal inference. Specifically, in SAE, we usually use small letters to indicate the 
outcome variable because we analyze a finite population, while in the new framework we switch to capital letters to take 
into account the probabilistic assignment mechanism of treatment. In what follows we use the bold cases to indicate vectors 
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and matrices. The parameters of interest are shown using Greek letters, for example α, and their estimates are defined by 
adding a ‘hat’, for example α̂.

Consider a population U of size N that is partitioned into m mutually disjoint sub-populations/domains U j of size N j , 
j = 1, · · · , m. We assume that values of a (continuous) outcome variable Yij are available from a random sample s, which 
includes units from all target domains. We assume that a set of auxiliary information, denoted as a vector of covariates 
and treatment status, (xi j, wij), is available for all the units in the population (from census or administrative data) and that 
provides predictive power for the unobserved part of the population. It is also assumed that the vector xi j of dimension 
p × 1 contains the set of all confounders and some additional covariates that are useful in predicting the outcome. More 
generally, the vector of covariates may include both individual and area-level covariates. It is a common practice for model-
based techniques in SAE to assume a non-informative sampling scheme to allow valid inferences of non-sampled units 
based on models for sampled values. In what follows we implicitly assume a Simple Random Sampling Without Replacement 
(SRSWOR).

We are interested in studying the impact of a binary treatment, W ij , that takes the value 1 for treated and 0 for non-
treated (control) units on the outcome Yij in the population. We focus on treatment assigned at the individual level and 
assume that the information on treatment status exists for all population units, for example from administrative sources. 
This is a plausible assumption in many applications, such as unemployment benefits, government subsidies and pensions.

We denote the sample size, the sampled part of the population and the non-sampled part of the population in each 
small area j by n j , s j and r j respectively, with U j = s j

⋃
r j . The total sample size is given by n = ∑m

j=1 n j .
To link the two methodologies on small area estimation and causal inference, we adopt the framework of Rubin Causal 

Model (RCM) (Rubin, 1974), and use the approach of potential outcomes to properly define the causal estimands of interest. 
In small area estimation setting the aim is to provide estimates of the average effects for each small sub-population or 
domain (i.e., these are the unplanned domains in the survey) rather than for the entire population. This is particularly 
relevant when heterogeneous effects are expected among different domains. In these cases our proposal can provide a map 
of policy impacts at a small area level, helping to better understand the impact of an intervention and to better target the 
treatment group(s).

The potential outcome approach is firstly developed under SUTVA (Stable Unit Value Assumption; Rubin, 1980), stating 
that the outcome of each unit is unaffected by the treatment assignment of any other unit and also that there are no 
different versions of each treatment level, which may lead to different potential outcomes. Within the simplest framework, 
each unit has only two potential outcomes, defined as Y 0

i j and Y 1
i j under control and under treatment, respectively. The 

former, Y 0
i j , denotes the outcome that would be realized by the unit if not treated and the latter, Y 1

i j , indicates the outcome 
that would be realized by the same unit if treated.

For the sampled units of area j (the set s j ) only one of the potential outcomes is observed for each individual; the 
other is necessarily missing and needs to be predicted, entering the so called fundamental problem of causal inference. We 
then observe the outcome variable Yij where Yij = W ij Y 1

i j + (1 − W ij)Y 0
i j , in this set. For the non-sampled units of area j

(the set r j ), however, neither of the potential outcomes are available and both need to be predicted, implying that for the 
out of sample units Yij s are never observed. In this respect, our problem resembles that studied widely in the literature of 
imputation for missing data in the context of small area estimation. See Haziza and Rao (2010), Cantoni and de Luna (2018)
and Chen and Haziza (2019) for a comprehensive review of this topic. The main difference of this line of literature with our 
work is twofold: (i) causal inference require additional assumptions and (ii) the percentage of missing values for which we 
need to predict the value is not negligible.

The individual treatment effect for the unit i in area j can be defined as a comparison of potential outcomes, such as 
the difference, conditioning on area j, and can be denoted as:

τi j = Y 1
i j − Y 0

i j =
(

Y 1
i − Y 0

i | j
)

.

For ease of notation, from now on we simply use the subscript j to indicate conditional operators or conditional expectations 
given j, avoiding the explicit conditioning in formulas.

This parameter τi j is not identifiable due to a lack of information for each unit, but several causal estimands can be de-
fined as summaries of individual effects, which are identifiable and can be estimated out of the data under some additional 
assumptions. Here we distinguish between two sets of estimands that are essential for our analysis. The first includes the 
conditional average treatment effect (S AT E j) for the sample units. The second set of estimands includes the conditional 
ATE for the population, named P AT E j . Each of these estimands can be defined at the area (domain) level (i.e., conditioning 
on the specific area-membership, which acts as a special covariate) as follows:

τS AT E j = 1

n j

∑
i∈s j

(
Y 1

i j − Y 0
i j

)
, (1)

τP AT E j = 1

N j

∑
i∈U

(
Y 1

i j − Y 0
i j

)
. (2)
j
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The aim of our proposal is to provide reliable estimates of τP AT E j for different areas/domains, borrowing strength from 
small area estimation techniques.

Causal effects from observational data can be identified under a set of assumptions, guaranteeing that the treatment is 
effectively randomized within cells defined by the values of a set of observed covariates. Slight modifications are needed in 
some cases for the identification of heterogeneous effects among different domains.

Here, we assume SUTVA, which is implied in the notation above, together with strong ignorability assumptions:

Assumption 1. Stable Unit Treatment Value

SUTVA states that there are no different forms or versions of each treatment level and the potential outcome for any 
unit does not vary with the treatments assigned to other units.

This assumption may become questionable in multilevel designs, where individual causal effects can vary depending 
on which cluster a unit is assigned to. In this case, interactions between units within a cluster are likely, mainly when 
treatment is administered at cluster level. The implications of a cluster structure, which may affect both the assignment to 
treatment and the potential outcomes, have not been intensively studied, with a few exceptions (Arpino and Mealli, 2011; 
Li et al., 2013; Kim et al., 2017; Cafri et al., 2019).

We explicitly included the cluster variable, which is here considered as a special confounder to condition on. In the 
definition of cluster-specific potential outcomes and conditional causal effects. We also assume that the treatment admin-
istered at the unit level will not affect other units within the same area and that there are no expected movements and 
interference across domains. Therefore, a multilevel SUTVA will be maintained throughout the paper.

Assumption 2. Unconfoundedness based on propensity scores

The assignment mechanism is unconfounded (with the potential outcomes, Rosenbaum and Rubin, 1983) if:

W ij ⊥ (Y 1
i j, Y 0

i j) | xi j, ∀i ∈U j,

or

W ij ⊥ (Y 1
i j, Y 0

i j) | e(xi j), ∀i ∈U j,

where e(xi j) = Pr(W ij = 1|Xi j = xi j) to be decided is known as a propensity score.
We assume that, conditional on a set of pre-treatment covariates or conditional solely on the propensity scores, the 

assignment mechanism is independent from the cluster-specific potential outcomes.

Assumption 3. Common support (overlap)

We assume that the unconfounded assignment mechanism is probabilistic, that is all the unit-level probabilities for 
receiving treatment are strictly between zero and one:

0 < e(xi j) = Pr(W ij = 1|xi j) < 1 ∀i ∈U j .

In other words, each unit in the defined population has a chance of being treated and a chance of not being treated 
(Rosenbaum and Rubin, 1983). We assume common support within area, based on the whole set of population auxiliary 
variables, using the propensity scores within each area at population level. Treatment assignment mechanisms satisfy-
ing both overlap and unconfoundedness are called strongly ignorable, so that we assume strong ignorability within each 
area/domain. Rubin et al. (2004) discuss the importance of using propensity scores to match the treatment and control 
units while using regression models in the complex survey settings. This approach can be also considered as a diagnostic 
tool to test the Assumption 3.

3. Small area estimators for causal inference

We propose a modification of the Augmented Inverse Probability Weighting estimator (Rosenbaum and Rubin, 1983), 
based on the estimated propensity scores and predicted outcomes.

We start from defining the Conditional Average Treatment Effect in area j, using the notation introduced in Section 2
where the subscript j denotes the conditional expectation given the area-membership j. Under unconfoundedness (Assump-
tion 2), Imbens and Wooldridge (2009) show that:

E j[Y 1
i j] = E j

[
W ij Yij

e(xi j)

]
,

and
4
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E j[Y 0
i j] = E j

[
(1 − W ij)Yij

1 − e(xi j)

]
,

where e(·) is the propensity score (i.e., the probability for each unit to be treated) which is a function of confounding 
covariates, xi j . The natural sample estimator for this parameter is:

τ̃S AT E j = 1

n j

∑
i∈s j

[
wij yi j

e(xi j)
− (1 − wij)yij

1 − e(xi j)

]
.

If the propensity scores are unknown, the e(xi j) values need to be replaced by their estimates. Using an estimated propensity 
score even when the scores are known is recommended for greater efficiency gain in estimating the average treatment effect 
(Hirano et al., 2003; Robins et al., 1995; Rosenbaum and Rubin, 1983). Therefore later on in our setting, even though the 
assignments to treatment are known for all units in the population, we use the estimated propensity scores:

τ �
S AT E j

= 1

n j

∑
i∈s j

[
wij yi j

ê(xi j)
− (1 − wij)yij

1 − ê(xi j)

]
. (3)

Lunceford and Davidian (2004) and Imbens (2004) propose to improve the performance of estimator (3) by re-normalizing 
the weights so that they some up to one:

τ̂S AT E j =
⎛⎝∑

i∈s j

[
wij yi j

ê(xi j)

]⎞⎠( n j∑
i=1

wij

ê(xi j)

)−1

−
⎛⎝∑

i∈s j

[
(1 − wij)yij

1 − ê(xi j)

]⎞⎠( n j∑
i=1

1 − wij

1 − ê(xi j)

)−1

. (4)

In what follows we refer to (4) as the IPW-Direct estimator, which is the classical Inverse Propensity Weighting estimator 
proposed by Rosenbaum and Rubin (1983). Alternative direct estimators, that use the survey weights, have been proposed 
by Zanutto (2006) and by Miratrix et al. (2018).

In the context of small area estimation we assume the unit level auxiliary information and the treatment status are 
available for all units in the population. Under unconfoundedness and following Imbens and Wooldridge (2009) τP AT E j (2)
can be written as:

τP AT E j = E j[Y 1
i j] − E j[Y 0

i j] = E j

[
W ij Yij

e(xi j)

]
− E j

[
(1 − W ij)Yij

1 − e(xi j)

]
, (5)

where the expectations are taken over all units in the population of area j. The population counterpart of these expectations 
can be re-expressed as:

τP AT E j =
⎛⎝∑

i∈s j

[
wij yi j

e(xi j)

]
+

∑
i∈r j

[
wij yi j

e(xi j)

]⎞⎠⎛⎝ N j∑
i=1

wij

e(xi j)

⎞⎠−1

−

⎛⎝∑
i∈s j

[
(1 − wij)yij

1 − e(xi j)

]
+

∑
i∈r j

[
(1 − wij)yij

1 − e(xi j)

]⎞⎠⎛⎝ N j∑
i=1

1 − wij

1 − e(xi j)

⎞⎠−1

, (6)

where 1/N j is replaced with 
(∑N j

i=1
wij

ê(xi j)

)−1
and 

(∑N j

i=1
1−wij

1−ê(xi j)

)−1
to normalize the sum.

This allows us to predict the outcome for the non-sampled part of the population in each small area and to fit a model on 
the whole population to estimate the propensity scores quite accurately (Hirano et al., 2003; Robins et al., 1995; Rosenbaum 
and Rubin, 1983). Then, using the predicted outcome ŷi j for out of sample units and the estimated propensity scores ê(xi j), 
an estimator of (6) is:

τ̂P AT E j =
⎛⎝∑

i∈s j

[
wij yi j

ê(xi j)

]
+

∑
i∈r j

[
wij ŷi j

ê(xi j)

]⎞⎠⎛⎝ N j∑
i=1

wij

ê(xi j)

⎞⎠−1

−

⎛⎝∑
i∈s j

[
(1 − wij)yij

1 − ê(xi j)

]
+

∑
i∈r j

[
(1 − wij) ŷi j

1 − ê(xi j)

]⎞⎠⎛⎝ N j∑
i=1

1 − wij

1 − ê(xi j)

⎞⎠−1

. (7)

This proposal is quite general in the sense that no restriction is imposed on the models used to predict the unobserved 
outcomes or to estimate the propensity scores for population units.
5
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In Theorem 1 we show that the estimator (7) has consistent and double robust properties without any extra adjustment. 
On the contrary, if in equation (7) the weights are not re-normalized the estimator is no more double robust and an 
adjustment term is needed to obtain this desirable property, see the Section S.1 in Supplementary Material.

We can show the consistency and double robust properties of the proposed estimator in equation (7) by expressing it as 
a weighted average of the outcomes yij s and their estimates ŷi j s in each small area:

τ̂P AT E j =
⎛⎝∑

i∈s j

ai j yi j +
∑
i∈r j

ai j ŷi j

⎞⎠⎛⎝ N j∑
i=1

aij

⎞⎠−1

−
⎛⎝∑

i∈s j

bi j yi j +
∑
i∈r j

bi j ŷi j

⎞⎠⎛⎝ N j∑
i=1

bij

⎞⎠−1

,

where {aij = wij

ê(xi j)
} and {bij = 1−wij

1−ê(xi j)
} are the sequences of weights in area j. The τ̂P AT E j can be now expressed as a 

weighted average of i.i.d. random variables (rvs) conditioned on the small area j after few steps of mathematical devel-
opments, which are reported in Supplementary Material S.2, and we can show that the estimator is double robust and 
consistent as N j → ∞. Let AN j and B N j be 

∑
i∈U j

ai j and 
∑

i∈U j
bi j , respectively. The theory will be developed under 

Assumptions 1, 2, 3. Further the following conditions have to be satisfied for the convergence of τ̂P AT E j to its true value:

(a) AN j → ∞ and aij/AN j → 0;
(b) B N j → ∞ and bij/B N j → 0;
(c) aij s and bij s are bounded;
(d) the var(Yij) < ∞ and var(Yij − Ŷ i j) < ∞.

Assumption 2 and the fact that the propensity scores are estimated using the information on the whole population guaran-
tee that weights are a deterministic sequence of values given the area population of size N j . The conditions that AN j → ∞
and B N j → ∞ are linked with the assumptions that in each area there must be treated and non-treated units in the pop-
ulation. While it is possible to provide the estimates even if the entire sample units in some areas belong only to treated 
or control group, as pointed out in the Section 1, at the population level the presence of both groups is essential to provide 
area level estimates of the treatment. Further, according to Assumption 3 the propensity scores take values between 0 and 
1 away from the boundaries. When N j → ∞, where the propensity scores are bounded away from 0, aij s are bounded and 
aij/AN j → 0. Likewise, when the scores are bounded away from 1, bij s are bounded and bij/B N j → 0.

Theorem 1. Under Assumptions 1-3 and the conditions (a), (b), (c) and (d) the estimator (7) is double robust and consistent. That is:

Pr

(
lim

N j→∞ τ̂P AT E j = E j

[
Y 1

i j

]
− E j

[
Y 0

i j

])
= 1,

(i) as long as the propensity score model is correct, even if the postulated prediction model is incorrect;
(ii) as long as the prediction model is correct, even if the postulated propensity model is incorrect.

The proof of Theorem 1 is in Section S.2, Supplementary Material.
In estimator (7) different methods can be adopted to predict the unobserved yij s and to estimate the propensity scores. 

Here we propose two feasible strategies and discuss their implications on the estimation of (7). In the first proposal we 
predict the unobserved outcomes using EBLUP and a generalized linear mixed model to estimate the propensities. This 
estimator is referred to as IPW-EBLUP hereafter and can also be seen as a modification of the EBLUP estimator for the 
area level mean. In the second proposal we use a robust approach based on M-quantile models proposed by Chambers and 
Tzavidis (2006) for the continuous outcome and by Chambers et al. (2016) for the binary case to predict the unobserved 
outcomes and estimate the propensity scores. The resulting estimator is labelled IPW-MQ hereafter. We explain in more 
detail the models and the estimating strategies used for IPW-EBLUP and IPW-MQ in Section 3.1.

The properties of IPW-Direct estimators are widely studied in the literature; see for instance Hirano et al. (2003) and 
Wooldridge (2007) for more details. However, when the area/domain sample sizes are small these estimates are no longer 
reliable at this fine levels, that is, they could vary significantly. Our proposed estimators IPW-EBLUP and IPW-MQ overcome 
this problem by borrowing strength from additional sources of information rather than merely using the sample data. The 
second estimator can also deal with data that is contaminated by outlying values.

3.1. Data generating processes and estimation strategies

To explain the data generating process and justify our estimation strategies for predicting the unobserved population 
outcomes and estimating the population propensity scores once again we use the potential outcome framework. Consider 
the two potential outcomes for individual i in area j, Y 1

i j , and Y 0
i j , and τ j be the area specific causal effect of a policy 

intervention. We are assuming a treatment effect specific to a subgroup of subjects, where the subgroup (that we call ‘area’) 
can be defined by subjects’ attributes (e.g., gender), the context in which the intervention occurs (e.g., the subjects at a 
6
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specific site in a multi-site context), or a combination of both. We maintain a constant treatment effect assumption within 
subgroups (τi j = τ j ), bearing in mind that the subgroups can be very small in size.

To benefit from the hierarchical structure in the data, without loss of generality, we consider a nested error linear model 
(Battese et al., 1988) as the data generating process of the potential outcome in the absence of the treatment:

y0
i j = xT

i jβ + u j + εi j,

where u j is the area specific random effect and εi j is the individual error, the distributions of which are to be assumed (in 
general normal) if the model is fitted parametrically. This holds for the entire population as well as for the sample at hand 
in the absence of sample selection bias. Let wij be the individual treatment status, the outcome (observed in the sample 
and not observed for the population) is:

yij = (wij)y1
i j + (1 − wij)y0

i j

= xT
i jβ + wijτ j + u j + εi j . (8)

In the context of small area estimation we need to fit this model to the sample data and predict the outcome for the entire 
population by using the estimated parameters of the model and the auxiliary information that is available for the entire 
population. There are many different techniques that are developed in the SAE literature; two sets of parametric models are 
discussed in this paper, but, of course, others can also be adopted if appropriate. It is also worth noting that, if we have 
the area level variables in the model, then the interaction between these variables and the treatment variable must also be 
included in the random part of the model (Arpino and Mealli, 2011). It should be noted that since the proposed estimation 
methods in this section are parametric, they impose some restrictions on the conditional distribution of potential outcomes, 
and this directly translates to the shape of the treatment effect heterogeneity. In other words, we will explicitly assume that 
τ j s, are randomly distributed with τ j ∼N(γ0, σ 2

γ ). This assumption is relaxed when we introduce a robust estimator based 
on M-quantile models.

3.1.1. Out-of-sample estimation of outcome and propensities in the hierarchical structure
We start by assuming that the area specific causal effects, τ j s, are randomly distributed with τ j ∼ N(γ0, σ 2

γ ). Then 
equation (8) can be rewritten as

yij = x̃T
i jβ̃ + wijγ j + u j + εi j, (9)

where x̃i j = (xT
i j, wij)

T is of dimension (p + 1) × 1, β̃ = (βT , γ0)
T is the vector of fixed effects and we further assume 

that u j ∼N(0, σ 2
u ), and εi j ∼N(0, σ 2

ε ). As a consequence of our assumption on the distribution of the area specific causal 
effects we have γ j ∼N(0, σ 2

γ ), that is the random slope associated with the treatment status. For obtaining the IPW-EBLUP, 
a mixed linear model (more specifically a random slope model) is fitted, using the maximum likelihood (ML) or restricted 
maximum likelihood (REML) method (McCulloch and Searle, 2001; Pinheiro and Bates, 2006). Then the estimated parameters 
are used to predict the outcome ŷi j for i ∈ r j under model (9). The assumption of normality of the random components is 
mainly in place to specify the form of ML or REML used for estimating the unknown parameters of the model, including the 
unknown parameters of the variance-covariance matrix. However, this assumption can easily be relaxed using other existing 
methods for fitting random effect models, such as quasi-likelihood methods or Generalized Estimating Equation (Liang and 
Zeger, 1986) under some other mild conditions.

Proposition 1. Under Assumption 2, unconfoundedness, the vector of random slopes γ and random intercepts u in equation (9) are 
independent, that is:[

γ
u

]
i.i.d.∼ (

0, �ω

)
,

where γ = (γ1, · · · , γm)T , u = (u1, · · · , um), and �ω =
(

�γ 0
0 �u

)
.

Proof. Based on Assumption 2 the treatment assignment is independent from the potential outcomes conditional on the 
set of pre-treatment covariates (confounders). This assumption requires that conditional on observed covariates there 
are no unobserved factors that are associated both with the assignment mechanism and potential outcomes, that is, 
E

[
γ j

(
u j + εi j

)] = 0. Because E
[
γ jεi j

] = 0 it goes that E
[
γ ju j

] = 0. �
In equation (9) the average return to wij is captured by the fixed effect and the area specific heterogeneity of the return 

to wij is modelled through a random slope γ j , that needs to be predicted (Li et al., 2013). However, our estimators of 
the total causal effect do not merely depend on the estimation/prediction of these two effects. In addition, we balance 
the characteristics of treated and control groups by weighting the outcomes based on the individual propensity scores. 
7
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Therefore, these estimators have doubly robust properties (Bang and Robins, 2005), that is, having misspecified only one 
of the models for the prediction of the outcomes or for the estimation of the propensity scores, we can still provide a 
consistent estimator for the causal effects of each area. Further, the hierarchical structure of the data as it is defined in 
equation (9) for the outcome model should also be considered in the estimation model of the propensity scores, see Arpino 
and Mealli (2011) and Arpino and Cannas (2016). Then, we consider the following model for the propensity scores:

ηi j = 
(e(xi j)) = xT
i jα + ν j, (10)

where 
(.) is a logit link function. Substituting the estimated values ŷi j = x̃T
i j

ˆ̃β + wij γ̂ j + û j and ê(xij) = 
−1(xT
i jα̂ + ν̂ j) in 

equation (7) provides the estimates of IPW-EBLUP.

Remark 1. The τ̂P AT E j based on the IPW-EBLUP, obtained by fitting the random slope model to the sample data, is double 
robust and consistent estimator because this predictor satisfies the assumptions 1-3 and the conditions (a), (b), (c) and (d) 
of Theorem 1. Note that in this case the consistency of the EBLUP for the outcome variable is not needed, which can be 
obtained only if m and n j tend to infinity as stated in Jiang (1999, 2010) and Lyu and Welsh (2021).

Remark 2. if the size of the control group is zero in the small area j the value of the response variable can be estimated by 
ŷi j = x̃T

i j
ˆ̃β + wij γ̂ j + û j , whereas if the size of the treated group in the area of interest is zero the response variable can be 

predicted by ŷi j = x̃T
i j

ˆ̃β + û j .

3.1.2. Robust estimation for out-of-sample units
An alternative to mixed models and IPW-EBLUP is given by the M-quantile regression models for estimating the outcome 

variable and the propensity scores. If an outlying value can destabilize a population estimate based on a large survey sample, 
it can almost certainly destroy the validity of the corresponding direct estimate for the small area from which the outlier 
is sourced, since this estimate will be based on a much smaller sample size. This problem does not disappear when the 
small area estimator is a model based estimator such as EBLUP: large deviations from the expected response (outliers) 
are known to have a large influence on classical maximum likelihood inference based on generalized linear mixed models 
(GLMM). Chambers and Tzavidis (2006) and Sinha and Rao (2009) addressed the issue of outlier robustness in SAE proposing 
techniques that can be used to down-weight any outliers when fitting the underlying model. In particular, Chambers and 
Tzavidis (2006) proposed to apply the M-quantile regression models to SAE with the aim of obtaining reliable and outlier 
robust estimators without recourse to parametric assumptions for the residuals distribution using M-estimation theory. For 
details on M-quantile regression see Breckling and Chambers (1988).

When using the M-quantile method the unobserved outcomes are predicted as follows:

ŷi j = xT
i jβ̂ ˆ̄q j

+ wij γ̂ ˆ̄q j
, (11)

where β̂ q̄ j
and γ̂q̄ j are the regression coefficients of the M-quantile model estimated at quantile ˆ̄q j , that is, the average of 

the estimated quantiles for the sample units in area j. The Chambers and Tzavidis (2006) proposal is an alternative to the 
random effect models for characterizing the variability across the population not accounted for by the regressors based on 
the M-quantile coefficients of the population units. The authors observed that if a hierarchical structure does explain part of 
the variability in the population data, units within areas defined by this hierarchy are expected to have similar M-quantile 
coefficients. For details on the computation of M-quantile coefficients see Chambers and Tzavidis (2006).

For estimating the propensity scores the M-quantile for binary data proposed by Chambers et al. (2016) is adopted. Mod-
elling the M-quantiles of a binary outcome presents more challenges than modelling the M-quantiles of a count outcome. 
A detailed account of these challenges is provided in Chambers et al. (2016). The authors proposed a new semiparametric 
M-quantile approach to small area prediction for binary data that extends the ideas of Cantoni and Ronchetti (2001) and 
Chambers and Tzavidis (2006). This predictor can be viewed as an outlier robust alternative to the more commonly used 
conditional expectation predictor (10) for binary data that is based on a logit GLMM with Gaussian random effects. With 
the proposed approach random effects are avoided and between-area variation in the response is characterized by varia-
tion in area-specific values of M-quantile indices. Furthermore, outlier robust inference is achieved in the presence of both 
misclassification and measurement error.

Under the M-quantile framework the propensity scores are estimated as:

η̂i j = 
(ê(xi j)) = xT
i jα̂ ˆ̄q j

, (12)

where the area level M-quantile coefficients are computed in a different way with respect to the continuous outcome. See 
Chambers et al. (2016) for details. Substituting the ŷi j and ê(xij) in equation (7) provides the estimates of IPW-MQ. Note 
that this estimator is a special case of the equation (7) and so it is double robust and consistent.
8
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Remark 3. if the size of the control group is zero in the small area j the value of the response variable can be estimated 
by ŷi j = xT

i jβ̂ ˆ̄q j
+ wij γ̂ ˆ̄q j

, whereas if the size of the treated group in the area of interest is zero the response variable can be 

predicted by ŷi j = xT
i jβ̂ ˆ̄q j

.

4. MSE estimators in the finite population

In the context of randomized experiments Ding et al. (2019) proposed the decomposition of overall treatment effect 
variation into systematic and idiosyncratic components. In this paper we are in the framework of observational data and 
we are using the inverse propensity weighting; for this reason, we decompose the variation of the effect into the variation 
due to the estimation of the (i) outcome and the (ii) propensity scores. For the first component of variation we propose 
its estimation with an analytical derivation. In particular, for the IPW-EBLUP the proposal is based on the MSE estimation 
approach that is described in Prasad and Rao (1990) and represents an extension of the ideas in Opsomer et al. (2008). 
For IPW-MQ the MSE estimator is based on second order approximations to the variances of solutions of outlier robust 
estimating equations and represents an extension of the ideas in Chambers et al. (2014). The proposed analytical MSE 
estimators do not take into account the variability due to the estimation of the propensity scores. So to add this component 
of variability we suggest using re-sampling techniques. Miratrix et al. (2018) point out the importance of considering the 
extra variability that is introduced when estimating τP AT E using weights, which is a similar problem to ours. In particular, 
for IPW-EBLUP we suggest using a parametric bootstrap technique, such as that proposed by Gonzalez-Manteiga et al. (2008)
or a non-parametric bootstrap procedure as in Opsomer et al. (2008). For IPW-MQ, we suggest applying an outlier robust 
bootstrap estimator that is the modified version of the block-bootstrap approach of Chambers and Chandra (2013). These 
bootstrap methods are explained in detail in Supplementary Material, Section S.4.

We show in model-based simulation experiments (Section S.6) how these approaches can be useful for estimating the 
MSE of various small area predictors that are considered in this paper.

To develop the analytical MSE estimators for small area predictors based on EBLUP and MQ approaches, we rewrite the 
estimator in equation (7) as a linear combination of observed and unobserved outcomes:

τ̂P AT E j = K −1
j

⎛⎝∑
i∈s j

[
wij yi j

ê(xi j)

]
+

∑
i∈r j

[
wij ŷi j

ê(xi j)

]⎞⎠ −

T −1
j

⎛⎝∑
i∈s j

[
(1 − wij)yij

1 − ê(xi j)

]
+

∑
i∈r j

[
(1 − wij) ŷi j

1 − ê(xi j)

]⎞⎠
=

∑
i∈s j

Di j yi j +
∑
i∈r j

Di j ŷi j, (13)

where K j = ∑N j

i=1 wij/ê(xi j), T j = ∑N j

i=1(1 − wij)/(1 − ê(xi j)), and

Dij =
(

K −1
j wij

ê(xi j)
− T −1

j (1 − wij)

1 − ê(xi j)

)
.

4.1. MSE of the causal effect estimator IPW-EBLUP

We start from equation (13) to derive the analytic formula of the MSE for IPW-EBLUP. We consider that the Dij s are 
known for the entire population, so we do not account for their variations originating from the estimation of the propensity 
scores. Therefore, if the proportion of observed outcomes, f j = n j

N j
, is small (negligible) we can write:

τ̂P AT E j − τP AT E j = DT
j ŷ j − DT

j y j = DT
j

(
ŷ j − y j

)
,

where D j , ŷ j and y j are the vectors of Dijs, the response variable and predicted outcomes, respectively, for the population 
in area j (Prasad and Rao, 1990). The prediction of outcome is obtained using the equation (9):

ŷ j = X̃T
j
ˆ̃
β + W̃ j γ̂ + Z jû, (14)

where X̃ j is the matrix of auxiliary variables for area j of dimension (p + 1) × N j , W̃ j is a sparse matrix with the jth 
column being replaced by the treatment status of individuals in area j, Z j is a sparse matrix of area indicators with only 
the elements of column jth equal to one, so that var(Y) = V = W̃�γ W̃T + Z�uZT + �ε . Assuming that sampling is non-
informative for the small area distribution of the response variable given the covariates, allows us to use population level 
models with the sample data. Where the variances of the random components are known, standard results from BLUP 
9
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theory (McCulloch and Searle, 2001, Chapter 9) guarantee that, given the model specifications (9) and Proposition 1, the 
generalized least squares estimator

ˆ̃
β =

(
X̃T

s V−1
s X̃s

)−1
X̃T

s V−1
s Ys

and the predictors

γ̂ = �γ W̃T
s V−1

s

(
Ys − X̃s

ˆ̃
β

)
û = �uZT

s V−1
s

(
Ys − X̃s

ˆ̃
β

)
are optimal among linear estimators and predictors, respectively. Here X̃s , Vs , Ys , W̃s and Zs denotes the sample component 
of X̃, V, Y, W̃, Z, respectively. Replacing ŷ j with (14) we can write

τ̂P AT E j − τP AT E j = DT
j

(
ŷ j − y j

)
= DT

j c j(
ˆ̃
β − β̃) + DT

j Z̃ j

[
�ωZ̃T

s V−1
s

(
Ys − X̃sβ̃

)
− ω

]
, (15)

where c j = X̃T
j −

(
Z̃ j�ωZ̃T

s V−1
s X̃s

)
, Z̃ j = (W̃ j, Z j), Z̃ = (W̃, Z), Z̃s = (W̃s, Zs) and ω = (

γ T ,uT
)T

, �γ = σγ Im , �u = σuIm . If 
both the random slopes and the area specific intercepts are treated as true random effects in the underlying model (9), the 
mean prediction error is 0 and the covariance between the two terms in equation (15) is also 0, so that the MSE of the 
prediction errors is

E
[
(τ̂ BLU P

P AT E j
− τP AT E j )

2
]

= DT
j Z̃ j�ω

(
I2m − Z̃T

s V−1
s Zs�ω

)
Z̃T

j D j + DT
j c j(X̃T

s V−1
s X̃s)cT

j D j. (16)

To extend these results for IPW-EBLUP, that is, where V is unknown, the variation that comes from the estimation of 
variance components has to be added. The resulting EBLUP version of equation (15) is

DT
j ĉ j(

ˆ̃
β − β̃) + DT

j Z̃ j

[
�̂ωZ̃T

s V̂−1
s

(
Ys − X̃sβ̃

)
− ω

]
, (17)

with ĉ j = X̃T
j −

(
Z̃ j�̂ωZ̃T

s V̂−1
s X̃s

)
using restricted maximum likelihood estimators for the unknown variance components in 

V and �ω . To derive a second-order approximation for the MSE as well as an estimator for the MSE that is correct up to 
the second order we follow the method proposed by Opsomer et al. (2008). The vector of unknown components of the 
variance-covariance matrix is θ = (σ 2

γ , σ 2
u , σ 2

ε ) and we define

St = DT
j Z̃ j

(
∂�ω

∂(θ)t
Z̃T

s V−1
s + �ωZ̃T

s
∂V−1

s

∂(θ)t

)
, t = 1,2,3.

Further, we define the 3 × 3 matrix I, as the Fisher information matrix with respect to the variance components θ , then, 
the MSE of the IPW-EBLUP predictor is given by

M S E(τ̂ E BLU P
P AT E j

) = E
[
(τ̂ BLU P

P AT E j
− τP AT E j )

2
]
+ tr

(
SVsSTI−1

)
+ o(m−1), (18)

and its estimator can be obtained as

mse(τ̂ E BLU P
P AT E j

) =DT
j Z̃ j�̂ω

(
I2m − Z̃T

s V̂−1
s Z̃s�̂ω

)
Z̃T

j D j + DT
j ĉ j(X̃T

s V̂−1
s X̃s)ĉT

j D j

+ 2
(

Ys − X̃s
ˆ̃
β

)T
ŜT Î−1Ŝ

(
Ys − X̃s

ˆ̃
β

)
, (19)

substituting θ by the restricted maximum likelihood estimates in S and I. Using some results of this section, asymptotic 
properties of the IPW-EBLUP are obtained.

Proposition 2. Under assumptions 1-3 and the conditions (a), (b), (c) and (d) of Theorem 1 and the normality assumption on the 
random effects and the error terms, the estimator IPW-EBLUP is double robust and asymptotically normally distributed:√

N jm(τ̂ E BLU P
P AT E j

− τP AT E j ) ∼N(0,V j(θ)),

as m → ∞.

The proof of Preposition 2 is provided in the Section S.3 of the Supplementary Material.
10
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4.2. MSE of the robust causal effect estimator IPW-MQ

In this section we propose an analytical derivation of the MSE for the IPW-MQ type estimator. This is based on the 
linearization ideas that are set out in Booth and Hobert (1998) and that are used by Chambers et al. (2014) to propose a 
new estimator of the MSE of a small area estimator that is defined by the solution of a set of robust estimating equations. 
The MSE is the sum of prediction variance and squared bias term. The theoretical development, as in Chambers et al. (2014), 
is based on approximations that correspond to assuming that max(n j) = O (1), so that, as the number of small areas tends 
to infinity, the prediction variance and the squared bias are O (1). We also make the standard assumption that a consistent 
estimator of the MSE of a linear approximation to the small area estimator of interest can be used as its MSE estimator. As 
noted by Harville and Jeske (1992), such an approach will not generally be consistent, and the resulting MSE estimator can 
be downward biased. However, in small sample problems, this is not generally an issue.

Note that we assume that the q̄ j values are known. The prediction error of the IPW-MQ estimator is then:

τ̂ M Q
P AT E j

− τP AT E j =
∑
i∈r j

Di j ŷi j −
∑
i∈r j

Di j yi j, (20)

where ŷi j = xT
i jβ̂ q̄ j

+ wij γ̂q̄ j . Following Chambers et al. (2014) the prediction variance of IPW-MQ estimator is:

var(τ̂ M Q
P AT E j

− τP AT E j |q̄ j) =
∑
i∈r j

{
D2

i j

(
xi j wij

)T var

(
β̂ q̄ j

γ̂q̄ j

)(
xi j wij

)} +
∑
i∈r j

D2
i j var(yij). (21)

A first order approximation to var(β̂ q̄ j
, γ̂q̄ j ) is obtained following Chambers et al. (2014) and Bianchi and Salvati (2015). 

These approximated expressions lead to the following sandwich estimator:

v̂ar

(
β̂ q̄ j

γ̂q̄ j

)
= n

(n−p−1)

∑m
j=1

∑
i∈s j

ψ2
(
ω−1

i j (yi j−xT
i j β̂q̄ j

−wij γ̂q̄ j
)

)
{∑m

j=1
∑

i∈s j
ψ ′

(
ω−1

i j (yi j−xT
i j β̂q̄ j

−wij γ̂q̄ j
)

)}2

((
X̃s W̃s

)T (
X̃s W̃s

))−1

, (22)

where ωi j is a robust estimator of the scale of the residual yij − xT
i jβ̂ q̄ j

− wij γ̂q̄ j in area j. An estimator of the first-order 
approximation (21) is then

v̂ar(τ̂ M Q
P AT E j

|q̄ j) =
∑
i∈r j

{
D2

i j

(
xi j wij

)T v̂ar

(
β̂ q̄ j

γ̂q̄ j

)(
xi j wij

)} + v̂ar(yij)
∑
i∈r j

D2
i j, (23)

where v̂ar(yij) = (n − 1)−1 ∑m
j=1

∑
i∈s j

(
yij − xT

i jβ̂ q̄ j
− wij γ̂q̄ j

)2
.

A corresponding estimator of the area-specific bias of the IPW-MQ estimator is

B̂(τ̂ M Q
P AT E j

|q̄ j) =
m∑

k=1

∑
i∈sk

ci j(xT
ikβ̂ q̄k

+ wikγ̂q̄k ) −
∑
i∈U j

Di j

(
xT

i jβ̂ q̄ j
+ wij γ̂q̄ j

)
, (24)

where ci j = bij + Dij I(i ∈ j) and

b j = (bi j) =
⎛⎝∑

i∈r j

Di j
(

xi j wij
)⎞⎠ WM Q

q̄ j

(
X̃s W̃s

)((
X̃s W̃s

)T
WM Q

q̄ j

(
X̃s W̃s

))−1
.

The final expression for the estimator of the MSE of IPW-MQ is just the sum of equation (23) and the square of equation 
(24):

̂M S E(τ̂ M Q
P AT E j

|q̄ j) = v̂ar(τ̂ M Q
P AT E j

|q̄ j) + B̂2(τ̂ M Q
P AT E j

|q̄ j). (25)

Following the approach of Bianchi and Salvati (2015), a further adjustment to the approximation of the MSE is needed 
to account for the variation due to the estimation of the area M-quantile coefficient q̄ j in the equation (25). Therefore,

var( ˆ̄q j) = (
X̃ j W̃ j

)
GT

q̄ j
Gq̄ j

(
X̃ j W̃ j

)T
v2

ˆ̄q j
, (26)

where Gq̄ j =n−1 ∑m
j=1

(
H−1

jq̄ j

{
∂q̄ j L jq̄ j − ∂q̄ j H jq̄ j H

−1
jq̄ j

L jq̄ j

})
with H jq̄ j =X̃T

j WM Q
q̄ j

X̃ j , L jq̄ j = X̃T
j WM Q

q̄ j
ỹ j , ∂q̄ j H jq̄ j = X̃T

j ∂q̄ j W
M Q
jq̄ j

X̃ j , 

∂q̄ j L jq̄ j = X̃T
j ∂q̄ j W

M Q
jq̄ j

ỹ j , ∂q̄ j W
M Q
jq̄ j

=2� j

∣∣∣ψ {
�−1

j (ỹ j−X̃T
j β q̄ j

} ∣∣∣ {ỹ j − X̃T
j β q̄ j

}−1
, � j=diag(ωi j), i ∈ s j and v2

ˆ̄q j
= n−1

j

∑n j

i=1(q̂i j −
ˆ̄q j)

2 where q̂i j are the M-quantile coefficients at unit level. This expression (26) can be estimated by
11
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v̂ar( ˆ̄q j) = (
X̃ j W̃ j

)
ĜT

q̄ j
Ĝq̄ j

(
X̃ j W̃ j

)T
v̂2

ˆ̄q j
. (27)

The final form of the MSE estimator of τ̂ M Q
P AT E j

is then

mse(τ̂ M Q
P AT E j

) = v̂ar(τ̂ M Q
P AT E j

) + B̂2(τ̂ M Q
P AT E j

) + v̂ar( ˆ̄q j). (28)

The validity of model-based inference depends on the validity of the model assumed. We empirically evaluate the proper-
ties of small area predictors and corresponding MSE estimators. In particular, we use the Monte Carlo simulation to evaluate 
the performance of the proposed small area estimators and their corresponding MSEs in comparison with the performance 
of the IPW-Direct estimator at small area level. Due to space constraints, the results and the discussion are not reported in 
the manuscript but they can be found in Supplementary Material, Section S.6. These results show that the proposed small 
area predictors, IPW-EBLUP and IPW-MQ, are much more efficient than the IPW-Direct and this suggests that it may be 
good to use these predictors to estimate the average treatment effect when the sample size in each area becomes small.

In addition, the benchmarking properties of the estimators are shown in Section S.5 of Supplementary Material.

5. A design-based simulation based on real data

In this section we perform a design based simulation study using the 2015 Italian module of the EU-SILC survey. The 
focus is on estimating the effect of permanent versus temporary contracts on the economic insecurity of households in 
different regions of Italy.

In the design based simulation we consider the following substantive policy issue. Suppose policy makers are interested 
in evaluating the impact of temporary employment contracts on the economic insecurity of households, measured by subjec-
tive poverty as defined in Kapteyn et al. (1988), with potential consequences on consumption behaviour, life satisfaction and 
well-being in general. The increase in non-standard forms of employment in many countries appears to have contributed 
to rising in-work poverty (Eurofound & the International Labour Office, 2017; Crettaz, 2013). The development of forms of 
flexible employment may have both positive and negative consequences. On the one hand it is expected to increase employ-
ment and reduce unemployment. On the other hand, this is often associated with greater economic insecurity and poorer 
working conditions. Relatively little research has been dedicated to the link between job instability and subjective poverty. 
According to some scholars, temporary as opposed to permanent employment contributes to lower general life satisfaction 
and well-being and a worse perceived household income situation. Scherer (2009) investigates the social consequences of 
insecure employment (fixed-term contracts), taking into account information on current family life, future family plans and 
general well-being. The analysis, for Western European countries, confirms that insecure employment is accompanied by 
more problematic social and family situations. These negative consequences are partly shaped by the specific institutional 
context (welfare state and labour market conditions). Filandri and Struffolino (2018), using the 2014 Italian wave module of 
the EU-SILC (EU Statistics on Income and Living Conditions) survey, find that subjective poverty is associated with instability 
of household members’ job contracts, with effects on other life domains, such as well-being, adequate level of consumption, 
social integration.

Differently from the previous literature, in this paper we adopt a causal perspective and consider the effect of temporary 
employment on the feeling about the household economic status. As discussed above, an overall negative effect of temporary 
employment is expected compared to permanent employment. However, we expect the effect to be heterogeneous across 
Italian regions due to different quality and cost of living. The effects may be confounded by local institutional contexts 
(local welfare policies and labour market conditions), in addition to socio-demographics characteristics and information on 
the employment situation (work intensity and the skill level of the occupation). The presence of numerous regions with a 
very small sample size makes it difficult to obtain reliable direct estimates at the area level and motivates the use of SAE 
techniques. In this simulation each region of Italy is considered as a small area.

In this setting the units of the analysis are the Italian households and the treatment, Job stability, is a dichotomous 
variable that gets the value 1 if the head of the household (or the household respondent) has a temporary job and 0 if 
she/he has a permanent job at the time of the interview. We assume the existence of a causal path from this variable to the 
lowest monthly income to make ends meet, which is a subjective measure of the household economic status. This is one of 
the EU-SILC target variables in the domain of social exclusion/non-monetary household deprivation indicators. Respondents 
are asked to provide their own assessed indication of the very lowest net monthly income that the household would have 
to get in order to make ends meet, that is, to pay its usual necessary expenses. We use this continuous outcome as a proxy 
variable for subjective poverty in the following analysis. For the outcome model, as it is common for highly right skewed 
outcome distributions, we use the log transformation and then we consider the transformed values per individual in the 
household by dividing the total value by the equivalized household size. We consider two sets of plausible confounders and 
predictors at the individual and household level. The individual characteristics concern the head or the responsible person 
in the household. We assume unconfoundedness conditioning on the following set of covariates: Age, Gender, Educa-
tion, Marital status, Tenure, Family type. In addition, the Number of rooms in the house, the Dwelling 
type, the existence of problems related to crime, violence and vandalism in the local area from the point of view of the 
respondents (Crime), and the Household disposable income are used as additional predictors of the outcome.
12
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Fig. 1. Boxplots of the median values of area-specific relative bias and relative root mean square error computed over 1000 replications. Note that the 
Direct, EBLUP and MQ stand for IPW-Direct, IPW-EBLUP and IPW-MQ, respectively.

The aim of the design-based simulation is to compare the performance of different estimators for the impact in each 
domain under repeated sampling from a fixed population. For this reason we consider the sample of the workforce, aged 
between 25 and 80, in the 20 administrative regions of Italy, based on the 2015 Italian module of the EU-SILC survey as 
a pseudo-population (population hereafter). Due to sample size requirements Abruzzo and Molise are aggregated, leading 
to 19 areas. After accounting for common support within all areas 11011 units are left, from which 1254 units belong to 
the treated and the rest to the control group. The area population sizes range from 152 to 1329 with an average of 580. 
Figure S.10 in Section S.7 of the Supplementary Material shows the overall common support of the propensity scores among 
treated and control groups. In the same section we also report diagnostics on the balancing of covariates based on the 
estimated propensity score, both descriptive statistics (using the Standardized Mean Differences, SMD, and the maximum 
distance between empirical Cumulative Distribution Functions, eCDF) and inferential tests (running t-tests on the difference 
in the linearized estimated propensity score by treatment status within each area).

The original estimates of the impacts are considered as the true τ j parameters at population level. This pseudo-
population is then kept fixed over the Monte Carlo simulations. We draw S = 1000 independent random samples without 
replacement by randomly selecting individuals in the 19 regions with sample size of each area sets to 10% of its population 
size (resulting in a proportional stratified sampling). The samples from each region are drawn not considering the treatment 
status. This means that the sample of a specific region might include both treated and control units, or it might only contain 
the observations from one of the two groups. Three different estimators are evaluated in this simulation study: the IPW-
Direct (4), the IPW-EBLUP (see Section 3.1.1) and the IPW-MQ (see Section 3.1.2). For the estimator based on M-quantile 
approach the influence function is the Huber-type function with tuning constant equal to 1.345 for the continuous response 
and 1.6 for the binary variable in the propensity scores estimation (Chambers and Tzavidis, 2006; Chambers et al., 2016). 
For each estimator and for each small area, we computed the Monte Carlo estimate of the percentage of relative bias and 
the percentage of relative root MSE and the corresponding efficiency.

Fig. 1 illustrates the box plots of the median values of area-specific relative bias and relative root MSE computed over 
replications, confirming the characteristics of the different estimators. We see that IPW-EBLUP and IPW-MQ work well in 
terms of both bias and relative root MSE compared with the IPW-Direct. This point is also highlighted in the series of 
model-based simulation studies in Section S.6 of the Supplementary Material. Fig. 2 shows that IPW-MQ, IPW-EBLUP and 
the IPW-Direct capture the heterogeneity of the average treatment effects over the areas. It illustrates that the distribution 
of the estimated effects by IPW-MQ, IPW-EBLUP (solid blue and red liens) and IPW-Direct (solid gray line) are close to 
the true distribution of the effects (dashed line). These results are confirmed in Table 1 where we report the distribution 
of the true and estimated average area treatment effects. However, the IPW-Direct shows a higher variability (almost 100 
times) in the estimation of area specific treatment effects than the model-based predictors. The advantage of IPW-EBLUP 
and IPW-MQ in terms of variability is shown in the empirical confidence intervals presented in Fig. 3.

The relative efficiencies of the proposed estimators with respect to IPW-Direct are computed as the ratio of the average 
actual MSE for each area to the average actual MSE of the IPW-Direct. Table 2 presents the summary statistics over the 19 
regions in the study. A value less than 100 for this ratio indicates that the MSE of the model-based estimate (i.e. IPW-EBLUP, 
IPW-MQ) is smaller than that of the direct estimate. The results reported in Table 2 indicate that the best method for this 
data appears to be the robust version, IPW-MQ. These results are consistent for all the areas in the study.

Fig. 3 illustrate the 95% Confidence Intervals that are obtained by sorting the 1000 estimates for each area and then 
taking the percentiles 2.5% and 97.5% as the lower and upper bound, respectively. In this illustration we can see that the 
length of the intervals for IPW-Direct estimator is much larger than our proposed IPW-EBLUP and IPW-MQ estimators due 
to the large variance of this estimator. This leads to the point that for all the 19 regions the CI of the direct estimator contain 
13
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Fig. 2. The distribution of heterogeneous effects across areas. (For interpretation of the colours in the figure(s), the reader is referred to the web version of 
this article.)

Table 1
Summary statistics over 19 regions in the study of the true and the estimated aver-
age area treatment effects.

min Q1 Median Mean Q3 max

True -0.5921 -0.3391 -0.1308 -0.1180 0.1023 0.3728

IPW-Direct -0.5549 -0.2304 -0.1367 -0.0644 0.1825 0.4090

IPW-EBLUP -0.5755 -0.3309 -0.1808 -0.1257 0.1744 0.3175

IPW-MQ -0.5932 -0.3277 -0.2012 -0.1287 0.1639 0.2954

Table 2
The efficiency of each estimator compared to IPW-Direct. Summary 
statistics over 19 regions in the study.

Method Min. 1st Qu. Median 3rd Qu. Max.

IPW-EBLUP 25.73 40.09 47.25 52.11 61.39

IPW-MQ 24.03 39.22 44.92 50.31 59.01

zero, implying that the direct method cannot not identify any significant effect and does not distinguish the heterogeneity 
of the effects among different areas. On the contrary, the CIs for IPW-EBLUP and IPW-MQ only contain zero in cases where 
the true area effects are very close to the zero line. Although the length of the intervals for our estimators are considerably 
lower than the direct estimator, they still mostly encompass the true values and manage to capture the heterogeneous 
effects among different regions.

6. Conclusion

Small area techniques provide official statistics for politicians and decision makers using sample surveys and other 
sources of information. However, to the extent of our knowledge there is no link between this literature and that on causal 
inference, even though sometimes the statements in the former literature are interpreted in a causal way.

In this paper we propose a methodological framework that links the two streams of literature and emphasize the rele-
vance of such methods in many applications to real data. Our proposed methods take account of the heterogeneity of the 
effects across areas even at a very fine level (small area level). This allows policy makers and decision takers to know the 
impact of a given policy for a finer geographic, socio-demographic, or socio-economic grid and, consequently, to plan better 
local-targeted interventions.

Some of the usual assumptions for making causal inference with observational data are revisited and modified to be 
consistent with the context of small area estimations. The proposed methods IPW-EBLUP and IPW-MQ are mainly based on 
weighting with propensity scores. These estimators inherit the properties of doubly robust estimators, i.e., if one of the two 
14
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Fig. 3. 95% confidence intervals (CI) based on the quantiles of 1000 Monte Carlo replications. True values of the effect for the 19 NUTS2 area are depicted 
by black dots. CIs are shown for the Direct estimator in dashed black, for IPW-EBLUP in solid red and for IPW-MQ in solid blue line.

models (the one to estimate the propensity scores and the other to predict the outcome) is misspecified the estimator is 
still consistent.

For each of the proposed estimators, IPW-EBLUP and IPW-MQ, we developed an analytical MSE estimator under the as-
sumption that the propensity score is known. We also suggest a correction for the bias in the analytical MSE, that can occur 
due to the estimation of the propensity score, by proposing two different bootstrap methods. They are defined as a para-
metric bootstrap and modified random effect block bootstrap, for IPW-EBLUP and IPW-MQ, respectively. The performance 
of the MSE estimators is studied via simulations.

Monte Carlo model based simulations are used to evaluate the performance of the proposed estimators in comparison 
with the performance of the IPW-Direct at small area levels. The results show that the proposed small area predictors, 
IPW-EBLUP and IPW-MQ, are much more efficient than the IPW-Direct and this suggests that it may be best to use these 
predictors to estimate the average treatment effect when the sample size in each area becomes small. However, as expected, 
these methods manifest higher bias than the direct estimator.

The application to real data, even if conducted as a design-based simulation analysis, has shown the potential of the 
proposed method in reconstructing the detail of the impact at the regional level, albeit with differences in the performance 
of the estimators. Job stability affects the perception of economic insecurity, but not in a homogeneous way in the different 
regions. The effect is negative in most cases with even significant differences, which we can attribute to the different levels 
of quality and cost of living, as well as to a different social context in general. Once again, this highlights the importance of 
adopting local policies to support families and combat poverty.

As future lines of research, we plan to extend our results for other robust estimators, such as REBLUP (Sinha and Rao, 
2009). Moreover, due to the presence of bias in IPW-EBLUP and IPW-MQ, observed in our simulation experiment, we would 
like to investigate bias calibration methods to make the approach predictive rather than projective. We aim also to exploit 
the use of other matching techniques by properly defining distance measures and including the predicted random effects in 
the matching algorithm in small area estimation. Finally, in most small area estimation asymptotics, and also in this paper, 
m tends to infinity but n j s are bounded. As pointed out by Jiang and Lahiri (2006), the alternative asymptotic setting in 
which both number of areas m and area specific sample sizes n j tend to ∞ (possibly at differential rates) is indeed an 
important problem. This alternative asymptotic framework has received relatively less attention in the SAE research. Lyu 
and Welsh (2021) recently put forward an asymptotic approach where both m and n j are allowed to tend to infinity. The 
extension of the asymptotics of our proposal using this framework is an avenue of future research.
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