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Abstract

Background: Gene duplication is the primary source of new genes with novel or altered
functions. It is known that duplicates may obtain these new functional roles by evolving divergent
expression patterns and/or protein functions after the duplication event. Here, using yeast
(Saccharomyces cerevisiae) as a model organism, we investigate a previously little considered mode
for the functional diversification of duplicate genes: subcellular adaptation of encoded proteins.

Results: We show that for 24-37% of duplicate gene pairs derived from the S. cerevisiae whole-
genome duplication event, the two members of the pair encode proteins that localize to distinct
subcellular compartments. The propensity of yeast duplicate genes to evolve new localization
patterns depends to a large extent on the biological function of their progenitor genes. Proteins
involved in processes with a wider subcellular distribution (for example, catabolism) frequently
evolved new protein localization patterns after duplication, whereas duplicate proteins limited to
a smaller number of organelles (for example, highly expressed biosynthesis/housekeeping proteins
with a slow rate of evolution) rarely relocate within the cell. Paralogous proteins evolved divergent
localization patterns by partitioning of ancestral localizations ('sublocalization'), but probably more
frequently by relocalization to new compartments (‘neolocalization'). We show that such
subcellular reprogramming may occur through selectively driven substitutions in protein targeting
sequences. Notably, our data also reveal that relocated proteins functionally adapted to their new
subcellular environments and evolved new functional roles through changes of their physico-
chemical properties, expression levels, and interaction partners.

Conclusion: We conclude that protein subcellular adaptation represents a common mechanism
for the functional diversification of duplicate genes.

Background evolutionary fates of the two duplicate gene copies are possi-
Gene duplication is an important evolutionary mechanism,  ble and have been described. For instance, one of the two cop-
providing genomes with the genetic raw material for the  ies may be redundant and accumulate deleterious mutations
emergence of genes with new or altered functions [1]. Several ~ that eventually render it a non-functional pseudogene [1].
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Alternatively, both copies might be functionally preserved by
natural selection if an increase in gene dosage of the ancestral
gene is beneficial [2], or if a change of the stoichiometry of
proteins in complexes (for example, after whole genome
duplication (WGD) events) would be deleterious [3,4].
Finally, if both gene copies are preserved after the duplication
event, they may functionally diverge in two major ways.

In the classic scenario termed neofunctionalization [1], one of
the duplicates evolves a new function (usually defined as a
new biochemical function of the encoded protein), while the
other retains the ancestral function of the progenitor gene. An
alternative model - termed subfunctionalization - posits that
the ancestral functions are partitioned between the two dupli-
cates such that their joint levels and patterns of activity are
equivalent to the single ancestral gene [5-7]. 'Gene function'
in this model is defined as either a function of the encoded
proteins [6,8] or the expression pattern of the gene [5,9]. In
addition, a combination of these two scenarios (‘subneofunc-
tionalization') was recently proposed [10].

The subcellular localization of a protein is key to its function
in the cell [11]. In view of this and prompted by the observa-
tion that a number of individual reports describe gene fami-
lies that encode proteins that differ with respect to their
subcellular localization (see, for example, [12,13]; for more
individual examples, see also [14]), we set out to systemati-
cally investigate an - as yet - little considered alternative
mechanism for the functional diversification of duplicate
genes, namely, the subcellular relocalization and adaptation
of their encoded proteins [14] (which may or not be followed
or accompanied by changes of gene expression patterns and/
or functional/biochemical properties of the proteins).

To this end, we used the yeast Saccharomyces cerevisiae as a
model, for three reasons. First, the subcellular localization of
a large proportion (approximately 75%) of its proteins was
recently established [15]. Second, in addition to other dupli-
cates, the WGD event in this species, which occurred approx-
imately 100 million years ago [16], resulted in a large set of
well-defined duplicate gene pairs with the same age (that is,
they have the same divergence time). Finally, a wide range of
genome- and proteome-wide functional data sets are availa-
ble for this organism. Thus, the S. cerevisiae genome/pro-

Table |
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teome provides a unique opportunity to assess the extent and
patterns of protein subcellular adaptation after gene
duplication.

Results and discussion

Subcellular divergence is common among yeast whole-
genome duplicates

Using protein localization data (22 compartments; obtained
by green fluorescent protein (GFP)-fusion analysis) covering
75% of the S. cerevisiae proteome [15], we established the
subcellular localization of proteins encoded by 9oo yeast
genes, forming 450 pairs of WGD-derived duplicate genes
[17] (see Materials and methods for details). Among these, we
collected 238 pairs for which both paralogs are unambigu-
ously assigned to at least one subcellular compartment (Table
1; see Materials and methods). For 88 of these protein pairs
(approximately 37%), we found that the two duplicates are
located in at least one different subcellular compartment
(Table 1 and Additional data file 1).

The localization data we used was previously shown to be in
80% agreement with data (small and large-scale) from the
Saccharomyces Genome Database [15,18], suggesting that
the subcellular assignments are generally reliable. However,
to assess to what extent experimental artifacts may poten-
tially have influenced the analysis of subcellular divergence
between duplicates, we performed a second analysis using
earlier S. cerevisiae localization data generated by epitope-
tagging [19]. The two localization analyses present considera-
ble differences in their experimental setup and the number of
cellular compartments covered. Thus, the error sources and
potentially misassigned subcellular localizations are expected
to be different between the two datasets (for details see [15]).

We found no significant difference in the proportion of paral-
ogous protein pairs showing distinct subcellular localizations
between the GFP (88 of 238 pairs, approximately 37%) and
epitope data (53 of 124 pairs, approximately 43%; two-tailed
P = 0.31, Fisher's exact test; Table 1). We also considered 75
paralogous protein pairs for which localization was assigned
in both the GFP and the epitope fusion analyses. Among
these, 18 (24%) showed a distinct subcellular localization in
both experimental sets (Table 1). Thus, we estimate that

Subcellular localization data for S. cerevisiae proteins in this study

Number of S. cerevisiae proteins™*

Number of WGD duplicate pairst

Number of WGD pairs with distinct
localizations for the two members

GFP taggingt 3,919 (62.9%)
2,745 (44.0%)

2,716 (43.5%)

Epitope tagging?
GFP/epitope tagging overlapT

238 (52.8%)
124 (27.5%)
75 (16.7%)

88 (37.0%)
53 (42.7%)
18 (24%)

*Qut of 6,234 annotated yeast open reading frames [15]. TOut of 450 gene pairs [|7]. ¥Based on [15] unambiguous protein localization assigments.
$Based on [19]. TGene pairs for which the subcellular localization is unambiguously assigned to both paralogs in both datasets.
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approximately 24-37% of the S. cerevisiae WGD pairs show
protein localization differences, consistent with a recent esti-
mate (approximately 19%) based on Gene Ontology (GO)
annotation [20]. This suggests that a significant proportion of
yeast duplicates have diverged in terms of their subcellular
localization.

All following analyses are based on the GFP-fusion localiza-
tion data [15], since they represent the most extensive and
reliable localization survey of the budding yeast proteome
available. WGD-derived duplicates with distinct cellular
localization will be referred to as D-pairs, and those with the
same subcellular distribution as S-pairs.

Subcellular localization change and protein function
As some biological processes (for example, phosphorylation)
are widespread in the cell, whereas others, such as transcrip-
tion, are restricted to certain organelles (nucleus, mitochon-
dria), one may expect that ancestral functions may impose
different constraints with respect to the subcellular diversifi-
cation potential of duplicates.

To assess whether a gene's biological function indeed influ-
ences the subcellular localization fate of proteins after dupli-
cation, we tested for general functional differences between
genes in S- and D-pairs using GO annotation. In this analysis,
we assume that the current GO distribution of duplicates
overall reflects that of their ancestors. Two GO categories
stand out (Table 2). While S-pairs show a significant excess of
genes involved in biosynthetic processes, D-pairs are signifi-
cantly enriched with genes involved in catabolism (P < 0.01
after false discovery rate correction [21]). We note that, gen-
erally, S. cerevisiae proteins (excluding the WGD duplicates)
involved in catabolism are located in, on average, 1.47 com-
partments, while those that contribute to biosynthesis local-
ize in 1.35 compartments, a significantly different
distribution (two-tailed P < 0.01, Mann-Whitney U test). This
suggests that the a priori wider subcellular distribution of
proteins involved in catabolic pathways facilitates functional
divergence through subcelullar relocalization after gene
duplication when compared to biosynthetic proteins, which
show more restricted localization patterns.

Next, we analyzed the extent of amino acid divergence in D-
and S-pair duplicates. To this end, we used a related yeast
species, Kluyveromyces waltii [17], which diverged from S.
cerevisiae before the WGD event, as an outgroup, and esti-
mated the non-synonymous substitution rate (that is, the
number of non-synonymous substitutions per non-synony-
mous site, dy) on the lineages leading to each one of the two
S. cerevisiae duplicates using a maximum-likelihood
approach [22] (see Materials and Methods for details). This
analysis revealed a difference in the dy distribution between
genes in S- and D-pairs (Figure 1; Additional data file 1; two-
tailed P < 105, Mann-Whitney U test); S-pair genes generally
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show lower non-synonymous substitution rates than those in
D-pairs.

Consistent with previous observations [17], cases of extreme
decelerated evolution (one of the duplicates has a dy = 0)
among S-pairs include protein coding genes that are known to
be highly constrained, such as ribosomal genes (28 pairs),
histones (2 pairs) and elongation factors (2 pairs). Selection
for increased gene dosage and/or decreased dosage imbal-
ance may explain the intensity of purifying selection observed
for these 'housekeeping' duplicates [1,3,23]. The fact that
these duplicates did not change their subcellular localization
is likely due to the specificity of their biological function,
which is restricted to certain compartments and may gener-
ally preclude subcellular shifts, as suggested by our data
above.

We also found that S-pair genes show higher expression levels
than D-pair genes (median = 1.3 copies per cell versus 0.8
copies per cell; two-tailed P < 105, Mann-Whitney U test),
consistent with the idea that many S-pairs represent duplica-
tions of housekeeping genes. This difference is also reflected
at the protein level; D-pair genes (median = 5,436.9 pmol)
express significantly more protein than S-pair genes (mean =
35,788.3 pmol, two-tailed P < 0.01, Mann-Whitney U test).

Thus, generally, biological function appears to be a strong
determinant for the propensity of duplicates to relocate in the
cell. While duplicate proteins encoded by slowly evolving
housekeeping genes with high expression levels (for example,
genes involved in biosynthetic process, such as ribosomal
genes) tend to preserve ancestral localization patterns (and
functions) after duplication, duplicates from other categories,
such as those involved in catabolic processes, are much more
likely to evolve divergent localization patterns.

Functional divergence of duplicates through neo- or
sublocalization

But how do these divergent localization patterns emerge?
Akin to concepts proposed for the functional divergence of
duplicate genes through changes in expression and/or pro-
tein function, we hypothesized that duplicates may show two
types of subcellular divergence (Figure 2). First, ancestral cel-
lular compartments may be partitioned between them, or
they may specifically localize to only part of the ancestral
compartments, a process we term 'sublocalization'. Second,
they may localize to new, previously unoccupied compart-
ments ('neolocalization'). These two processes are analogous
to the traditional neo/subfunctionalization concepts [1,5-
7,9], but should be treated separately, as neo/subfunctionali-
zation of the biochemical function and/or expression of the
duplicate (that is, the previously considered fates of dupli-
cates) may follow or accompany subcellular divergence (Fig-
ure 2).
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Table 2

Summary of GO analysis for D- and S-pair duplicates

D-pair S-pair

Biological process* No. Percentage No. Percentage P-valuet Excesst
Biosynthetic process 32 21.1 Il 42.9 0.0008 56
Catabolic process 32 21.1 17 6.6 0.0024 22
Regulation of biological process 59 388 56 21.6 0.0172 26
Response to biotic stimulus 0 0.0 12 4.6 0.1480 12
Nitrogen compound metabolic process 4 2.6 21 8.1 0.3988 14
Cell communication 18 1.8 15 5.8 0.4587 9
Primary metabolic process 110 724 210 8.1 0.5012 23
Cell cycle 21 13.8 20 7.7 0.5012 9
Response to endogenous stimulus 12 79 9 3.5 0.5012 7
Chemical homeostasis 0 0.0 6 23 0.5012 6
Cellular developmental process I 7.2 9 35 0.5012 6
Chromosome segregation 5 33 2 0.8 0.5012 4
Cell division 21 13.8 25 9.7 0.6028 6
Response to stress 24 15.8 29 11.2 0.6483 7
Reproductive process 14 9.2 15 5.8 0.6696 5
Conjugation 7 4.6 6 23 0.6982 3
Sexual reproduction 7 4.6 6 23 0.6982 3
Aging I 0.7 6 23 0.7084 4
Cellular metabolic process 120 79.0 214 82.6 0.7686 9
Asexual reproduction 3 2.0 2 0.8 0.7686 2
Nuclear division | 0.7 0 0.0 0.7686 |
Protein localization 10 6.6 23 8.9 0.7785 6
Cell adhesion 0 0.0 2 0.8 0.7785 2
Response to chemical stimulus 17 1.2 25 9.7 0.8583 2
RNA localization 6 4.0 9 35 0.9959 |
Anatomical structure development 12 79 19 73 | I
Establishment of localization 33 21.7 55 21.2 | |
Macromolecule metabolic process 98 64.5 169 65.3 | 2
Response to external stimulus 0 0.0 | 04 | |
Maintenance of localization | 0.7 | 0.4 | 0
Response to abiotic stimulus 4 2.6 7 2.7 | 0
Cell organization and biogenesis 57 375 97 375 | 0
Regulation of biological quality 8 5.3 14 5.4 | 0
Autophagy 0 0.0 | 0.4 | |
Filamentous growth 8 5.3 13 5.0 | 0
Cell homeostasis 7 4.6 12 4.6 | 0
Regulation of a molecular function | 0.7 3 1.2 | |
Cell proliferation 0 0.0 | 04 | |
Non-developmental growth | 0.7 2 0.8 | 0

*We selected GO level 3, since this constitutes a good compromise between the number of genes annotated and the depth of the information
contained in each class [46]. TAfter false discovery rate correction. fRepresents the difference between the observed number of genes in the over-
represented set and what would be expecated based on the observed genes in the other gene set.

If divergent subcellular localization between duplicates wasa  the common ancestral protein. Conversely, the number of
consequence of sublocalization alone, the joint number of dif-  compartments per pair should be higher than that of the
ferent compartments per protein pair (that is, combining  progenitor if neolocalization contributed to subcellular
both duplicates) would be expected to be the same as that of  diversification.
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Distribution of non-synonymous substitution rates (dy) for duplicate
genes in S- and D-pairs (estimated for the time since the whole-genome
duplication event - see text for details).

To assess the contribution of neo- and sublocalization to the
functional diversification of duplicates and given the lack of
subcellular localization data for ancestral proteins, we used
the average number of subcellular compartments of yeast sin-
gleton gene products (that is, genes that show no evidence of
paralogs in the S. cerevisiae genome; see Materials and meth-
ods for details) as a proxy for the subcellular representation of
WGD duplicate progenitors (akin to a previous analysis of
yeast duplicates [10]).

We observed that the joint number of distinct compartments
per D-pair (mean = 2.31 + 0.63, median = 2) is significantly
higher than that observed for singleton proteins (mean = 1.30
+ 0.49, median = 1, two-tailed P < 105, Mann-Whitney U
test). In contrast, there is no difference between the distribu-
tions of the number of subcellular compartments for S-pairs

Genome Biology 2008,  Volume 9, Issue 3, Article R54

(mean = 1.27 + 0.42, median = 1) and singletons (two-tailed P
= 0.2, Mann-Whitney U test), suggesting that the increase in
the number of compartments observed for D-pairs is due to
neolocalization events among D-pair proteins.

A potential caveat of this analysis is that the types of proteins
represented in D-pairs might generally and a priori be
present in a larger number of compartments, as also indi-
cated by the analysis of the number of compartments for cat-
abolic/biosynthetic proteins discussed above. To control for
this, we compared the number of distinct compartments per
D-pairs and singletons for proteins within the same GO
classes. To ensure adequate sample sizes, we focused on the 8
GO categories that contain more than 30 proteins for both D-
pairs and singletons (Table 3). This analysis shows that for all
eight comparisons, the joint number of compartments per D-
pair is significantly higher than that observed for singletons
(Table 3; two-tailed P < 104, Mann-Whitney U test). This sug-
gests that the elevated number of compartments for D-pairs
is indeed a result of neolocalization and not due to a wide cel-
lular representation of ancestral progenitor proteins, prior to
duplication. Based on the observed excess (mean, approxi-
mately 0.98) of D-pairs relative to singletons from the same
functional categories, we estimate that, on average, approxi-
mately one compartment is gained by neolocalization per
duplication event between duplicates showing subcellular
divergence. In addition to the elevated number of compart-
ments per D-pairs, we find that the average number of com-
partments per D-pair protein (approximately 1.53) is
significantly higher than that of singletons in 7 of 8 compari-
sons (two-tailed P < 0.05, Mann-Whitney U test). This result
further underscores that neolocalization probably predomi-
nated over sublocalization during yeast duplicate evolution.

To further assess and illustrate the types and extent of subcel-
lular relocalizations in the evolution of yeast gene families, we

%0
‘ duplication Q

%0 neofunctionalization %0

’

2 0 J . o
%0 subfunctionalization =~ [ ¢ e
Figure 2

lllustration of the different evolutionary fates of (functional) duplicate genes. Each gene/protein is represented in different colors: red, ancestral, 'A’; green,
duplicate copy Al; and blue, duplicate copy A2. Different shapes of proteins (circle, square, and triangle) indicate different functions. Three different
subcellular localizations (nucleus, cytoplasm, and cytoplasmic membrane) are indicated in a schematic cell. We note that only the major possible scenarios

are illustrated here.
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Table 3

Genome Biology 2008,
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Comparison between the number of different compartments per D-pairs, proteins in D-pairs, and singleton proteins from the same GO

categories
Singleton D-protein D-pair
Biological process* Total no.  Average no.of Totalno.  Average no.of  P-valuet Total no. Averageno.of P-valuet
compartments compartments compartments

Regulation of biological process 64 1.30 59 1.56 0.020 32 2.31 1.92E-10
Macromolecule metabolic process 247 1.28 98 1.54 0.001 52 2.31 1.57E-19
Cell organization and biogenesis 160 1.28 57 1.60 0.021 37 2.38 2.27E-14
Primary metabolic process 325 1.30 110 1.52 0.005 57 2.28 1.93E-20
Catabolic process 53 1.47 32 1.41 0.370 16 2.19 1.19E-04
Establishment of localization 8l 1.17 33 1.55 0.013 19 2.37 1.82E-09
Biosynthetic process 162 1.30 32 1.53 0.044 18 2.11 1.52E-07
Cellular metabolic process 372 1.32 120 1.52 0.006 62 2.27 1.42E-21
Regulation of biological process 64 1.30 59 1.56 0.020 32 2.31 1.92E-10

The data are derived from 8 categories with at least 30 proteins per group - see text for details. *GO level 3. TMann-Whitney U test comparing D-
proteins and singletons. ¥Mann-Whitney U test comparing D-pairs and singletons.

used the K. waltii ortholog(s) as outgroups and reconstructed
the phylogeny for 45 WGD yeast families (15 D- and 30 S-
pair-containing gene families) with at least 1 additional mem-
ber and mapped the subcellular localizations of these onto the
phylogenies (Figure 3 and Additional data file 2). In 16 fami-
lies, the subcellular localization has remained completely pre-
served among the members (Additional data file 2). For the
remaining 29 families, we analyzed changes in protein loca-
tion, assuming that the scenario requiring the smallest

number of subcellular changes, given the observed data (par-
simony principle), reflects the true pattern of events.

For 16 of the 29 families, we could infer the most likely sce-
nario of subcellular diversification. Eight families show
instances of neolocalization (Additional data file 2). For
example, members of the ubiquitin-conjugating enzyme fam-
ily, involved in protein degradation [24], are generally located
in the cytoplasm and the nucleus (Figure 3a). However,

(a) UBC protein family

RAD6 o
UBCA1
UBC9 o

sublocalization
]

UBC13 @

UBCH1

— UBC5

L uBC4
neolocalization

QR18

AR L

CDC34

(b) AIR protein family

sublocalization

ARz @ D

sublocalization

asz2 )@

ART €)@

Figure 3

Subcellular localizations of the (a) UBC and (b) AIR family members and subcellular localization changes inferred based on the phylogeny. The common
name and yeast protein identifier (in brackets) of the protein are indicated. The schematic representation of a yeast cell depicts three possible
localizations: nucleus (small circle), endoplasmatic reticulum (eclipse around nucleus), and cytoplasm (remainder of the cell). The co-localization of the
protein with one of the yeast subcellular compartments is indicated by grey shading.
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UBCyp (also known as QR18) neolocalized to the endoplas-
mic reticulum (ER; Figure 3a), where it became essential for
the degradation of misfolded proteins [25].

Sublocalization events occurred in four protein families. For
instance, GIS2 (cytoplasmic) and AIR2 (nuclear) of the AIR
protein family partitioned their ancestral compartments (the
cytoplasm and nucleus - still seen for their AIR1 paralog; Fig-
ure 3b). Consistent with their specific localizations, GIS2 spe-
cialized in a function in the RAS/cAMP signaling pathway
[26], whereas AIR2 became specifically involved in the
processing and export of mRNAs from the nucleus [27].

In the remaining four families, both neo- and sublocalization
events appear to have occurred (Additional data file 2). In
addition to the neolocalization event described above, the
UBC family also reveals an instance of sublocalization based
on GFP data; UBC13 lost the ancestral nuclear localization
(Figure 3a). Thus, the UBC family shows both neo- and sub-
localization of family members.

Subcellular shifts and signal peptide evolution

The information required for sorting of proteins to different
cellular compartments is encoded in their sequence, some-
times in distinct targeting motifs [11]. Consequently, differ-
ences in the subcellular localization of paralogous proteins
should be due to protein sequence changes and should, in
principle, be detectable. However, the identification of pro-
tein targeting sequence determinants has proven to be a
difficult task [11]. To elucidate the molecular basis of subcel-
lular relocalization of duplicates, we focused our analysis on
the best characterized targeting sequences; amino-terminal
signal peptides (SPs) that target proteins to the mitochondria
or the ER. These types of SPs are typically 13-36 amino acids
long and are usually cleaved from the mature peptide [28].

We estimated the amino acid divergence between WGD pro-
teins pairs with ER and/or mitochondrial localization (36
pairs in total, among which 21 are S-pairs and 15 are D-pairs;
Table 4). We then determined the aminoacid divergence in
the first either 13 or 36 amino acids (putative signal peptide
region) and in the mature peptide (protein sequence without
signal peptide), and then compared it between the 21 S- and
15 D-pairs (Table 4).

The average amino acid divergence in the SP is higher for pro-
tein pairs for which the ER/mitochondrial localization is not
preserved (the median divergence based on the 13 amino acid
SP is 0.92, and based on the 36 amino acid SP is 0.86) than
for those pairs that maintained the same subcellular localiza-
tion (13 amino acid SP, 0.69; 36 amino acid SP, 0.67), a sig-
nificantly different distribution (two-tailed P < 0.05, Mann-
Whitney U test). In contrast, we observed no significant dif-
ference for the accumulation of amino acid substitutions in
the mature peptide (for neither of the mature peptide sizes
tested) between the two sets of proteins (two-tailed P > 0.6,

Genome Biology 2008,  Volume 9, Issue 3, Article R54

Mann-Whitney U test; Table 4), which excludes the possibil-
ity that proteins that changed their subcellular localization
generally show a faster rate of protein evolution and, there-
fore, show an elevated SP divergence. Thus, at least for
proteins targeted to the mitochondria and to the ER, differ-
ences in subcellular localization between duplicates are asso-
ciated with accelerated signal peptide sequence evolution.
Conceivably, this acceleration may have been driven by posi-
tive Darwinian selection. A recent study demonstrating selec-
tively driven optimization of a mitochondrial targeting signal
of a protein from a young primate gene (L Rosso and col-
leagues, unpublished) suggests that this is a plausible
scenario.

The NTG1/2 base excision repair and TRR1/2 thioredoxin
reductase WGD gene pairs provide striking examples of how
subcellular reprogramming through changes in targeting
sequences may occur (Figure 4). Through a comparison with
the NTG orthologous protein from K. waltii, we determined
that NTG1 gained an amino-terminal signal after the WGD
event (mainly through a number of amino acid substitutions)
that targets it to mitochondria, while NTG2 maintained the
ancestral nuclear localization (Figure 4a). Conversely, TRR1
lost the ancestral capacity to localize to mitochondria, due to
a deletion of its amino-terminal mitochondrial targeting
sequence (Figure 4b). Thus, while keeping their ancestral
enzymatic functions [29,30], both NTG1 and TRR1 obtained
new functional roles through neolocalization changes, caused
by gain and loss of (mitochondrial) targeting sequences,
respectively.

Functional adaptation to new subcellular
environments

Functional adaptation of duplicate proteins to new subcellu-
lar compartments may occur in several ways. Given that
organelles generally display distinct physico-chemical prop-
erties that are reflected in the properties of their proteome
and transcriptome [31,32], relocalized duplicates may show
physico-chemical adaptations that allow them to optimally
function in their new (in the case of neolocalization) or more
restricted (sublocalization) cellular environments.

We first tested whether duplicate proteins reveal evidence for
adaptation to the pH of the compartments to which they
localize. To this end, we analyzed the pI (isoelectric point) of
duplicates, since the plI distribution of proteins is specific to
compartments and likely associated with the compartments'
pH [32]. We observed a significantly different distribution of
fold differences in pI between D- and S-pair duplicates (two-
tailed P < 1073, Mann-Whitney U test; see Additional data file
1 for individual values), with D-pairs displaying a higher
median fold difference between the members of the pair
(0.09) than S-pair genes (0.04). This result is in accordance
with the notion that duplicates with different subcellular
localization show pI adaptation, likely due to the pH of their
new/altered cellular environments. However, alternatively, it
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Table 4

Genome Biology 2008,  Volume 9, Issue 3, Article R54

Amino acid divergence between WGD protein pairs

D-pairs S-pairs P-value*
Amino-teminus signal peptide
I3 amino acids 0.92 0.69 0.019t
36 amino acids 0.86 0.67 0.017%
Mature peptide
I3 amino acids 0.57 0.50 0.596
36 amino acids 0.57 0.48 0.785

*Two-tailed Mann-Whitney U test. 1Significant at the 5% level.

remains possible that the elevated pI divergence of D-pair
proteins may simply reflect the generally higher amino acid
divergence observed for D-pair relative to S-pair duplicates
(see above).

To distinguish between these two possibilities, we tested
whether the observed substitutions between proteins are
biased in terms of the pI of the accumulated amino acids. This
analysis revealed that 24 of the 88 D-pairs display a signifi-
cantly skewed accumulation of substitutions regarding the pI

of their amino acids (P < 0.05, Pearson's chi-square test;
Bonferroni-corrected for multiple (238) tests). In other
words, for 24 pairs, the two paralogs have accumulated a sig-
nificantly larger number of amino acids with a higher or
smaller pl, respectively, than expected by chance for such a
pairwise comparison (50%). This is a significantly higher pro-
portion of pairs (one-tailed P < 0.05, Fisher's exact test) com-
pared to that of S-pairs (26/150 pairs), for which the
difference in pI cannot be explained by subcellular localiza-
tion differences. These analyses suggest that D-pair proteins

(a) NTG signal peptide evolution

NTG1 -MQKISKYSSMAILRKRPLVKTETGP-ESELLP--EK
NTG2 -MREESRSR----KRKHIPVDIEEVEVRSKYFKKNER
outgroup

MMATRTRRA----KRARVEVEMEDGE-TSKYFKKEEM

% % % * %

NTG1 - DNA base excision repair

SPe

mitochondrial

NTG2 - DNA base excision repair

Yo

nuclear

subcellular localization prediction

(b) TRR signal peptide evolution

TRRLT e MVHNKVTIIGSGP
TRR2 MIKHIVSPFRTNFVGISKSVLSRMIHHKVTIIGSGP
outgroup  MYLKPFTRSKGSFVQARQ--FRKMAHHKVTTIIGSGP

ok Fdedddekdehd

TRR2 - Thioredoxin reductase

20

mitochondrial

TRR1 - Thioredoxin reductase

e

cytoplasm

subcellular localization prediction

mitochondrial ER elsewhere mitochondrial ER elsewhere
NTGH1 0.69 - 0.31 TRRA1 - 0.01 0.99
NTG2 - 0.01 0.99 TRR2 0.64 - 0.36
outgroup 0.05 0.01 0.94 outgroup 0.87 - 0.13
Figure 4

Subcellular relocalization and signal peptide evolution. Signal peptides (36 amino-terminal residues) and experimentally determined subcellular localizations
of the (@) NTGI/NTG2 and (b) TRRI/TRR2 duplicate pairs (derived from the S. cerevisiae WGD event) are shown. K. waltii orthologous sequences are
used as outgroups. Predotar [39,40] was used to predict subcellular localizations based on the protein sequences. The (predicted) subcellular localization
of the K. waltii proteins was considered to represent the ancestral state. Identical residues in all peptide sequences are represented with (¥) under the

corresponding position in the protein alignment.
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Figure 5

Distribution of the proportion of shared interactors for genes in S- and D-
pairs.

show adaptation to the pH/pI properties of new or altered
cellular environments through the fixation of certain amino
acids by natural selection.

The expression level of a gene was reported to also be related
- at least in part - to the subcellular localization of its product
[31]. This may be due to the different volumes of the various
compartments (for example, larger compartments would
require more protein molecules according to this hypothesis
[31]). We computed the fold difference in mRNA transcript
abundance [33] for our set of yeast duplicates. The average
expression difference between genes in D-pairs (mean, 0.88)
is higher than that between S-pair genes (0.71), a significantly
different distribution (two-tailed P < 0.05, Mann-Whitney U
test). The elevated expression divergence of D-pair duplicates
may indicate that they generally adapted to the expression
level requirements of their compartments, for example,
through changes in their regulatory sequences.

Subcellular adaptation, protein-protein interactions,
and the evolution of new functions

The subcellular localization of a protein determines its ability
to interact with other proteins in its local environment.
Therefore, subcellular diversification of duplicates should
often entail changes in their interactions with other proteins.
In the case of sublocalization, the descendant duplicate
(assuming that it required protein partners for functioning) is
bound to lose interaction partners that were specific to the
lost compartment(s). Conversely, proteins that occupy new
subcellular niches may obtain new interaction partners.

Using a database containing extensive S. cerevisiae protein
interaction data [34], we observed that the two members in
D-pairs share a significantly smaller fraction of interactors
(median = 6.4%) than duplicates in S-pairs (median = 13.7%,
two-tailed P < 0.05, Mann-Whitney U test; Figure 5). This
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result is likely not due to a difference in the number of differ-
ent interactors determined for the two sets of protein pairs
(median = 9 and 8 interactors per S- and D-pairs, respec-
tively; two-tailed P = 0.48, Mann-Whitney U test). Thus, as
predicted, subcellular divergence of duplicates appears to
lead to a pronounced divergence in terms of their interaction
with other proteins.

Subcellular relocalization may allow for the possibility that
duplicate proteins evolve new functions (in the case of neolo-
calization) or functionally specialize (in the case of sublocali-
zation, where both duplicates localize to distinct
compartments) by evolving interactions with proteins that
are located in their own compartment(s) but not in that of
their duplicate copies. To test this, we assessed how often an
interactor is located in the same compartment as the D-pair
duplicate with which it interacts. We then compared this
value to the extent of co-localization of these interactors with
the other protein of the pair (with which no interaction was
found).

For 1,270 interactions that are not shared between D-pair
proteins (involving 955 interactors and 82/88 D-pair pro-
teins), 684 show co-localization of the interactor and the
duplicate with which it interacts. This represents a signifi-
cantly larger overlap than that observed between these inter-
actors and the non-interacting paralogs of the pairs (582/
1,270, two-tailed P < 104, Fisher's exact test). We note, how-
ever, that - as expected (given the shared history of the two
duplicates of a D-pair) - this subcellular overlap is greater
than that observed between random protein pairs (1,354/
2,628, two-tailed P < 104, Fisher's exact test). These results
support the notion that subcellular diversification allowed
duplicates to obtain new functions and/or functionally spe-
cialize by evolving interactions with proteins that are specific
to their compartment(s). Given that neolocalization seems
frequent (see above), duplicates appear to often have
obtained novel functional roles by evolving interactions with
compartment-specific proteins - unattainable to their single
copy progenitors.

Conclusion

In this study, we have begun to assess the role of subcellular
relocalization and adaptation for the emergence of new or
altered gene functions after duplication, using yeast as a
model organism. Our work suggests that subcellular diver-
gence has played a significant role for the functional diver-
gence of duplicate genes. It has affected roughly one-third of
yeast WGD duplicates, in particular those involved in biolog-
ical processes with a wider subcellular distribution (for exam-
ple, catabolism).

Although subcellular redistribution of duplicate proteins
involved repartitioning/loss of ancestral compartments, relo-
calization of proteins to previously unoccupied
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compartments (neolocalization) seems to have prevailed and
led to an overall gain of compartments among duplicates.
Thus, duplicate genes appear to frequently have obtained new
functional roles through the process of subcellular relocaliza-
tion. The finding that relocalized proteins have obtained new
interaction partners and lost ancestral ones underscores this
notion. Interestingly, we found that relocalized proteins show
adaptations to the physico-chemical properties of their
altered cellular environments through the selective fixation of
amino acid substitutions.

A number of individual reports have revealed differences in
subcellular localization of paralogous proteins in humans and
other mammals (for example, [12]; see also references in
[14]). Our study here motivates and warrants systematic sur-
veys that address the role of subcellular adaptation in the
functional diversification of mammalian (duplicate) genes.
These should also aim to explore recent duplications (most
duplications in the yeast genome - including those studied
here - are old), in order to better understand the timing and
selective pressures associated with this process. In fact, two
individual recent cases from apes have shed initial light on the
early stages of subcellular adaptation (L Rosso and col-
leagues, unpublished). These demonstrate that subcellular
adaptation may indeed occur through both neolocalization (L
Rosso and colleagues, unpublished) and sublocalization (L
Rosso and colleagues, unpublished), and that subcellular
adaptation may be accompanied or followed by adaptive
changes of the biochemical function of the protein (L Rosso
and colleagues, unpublished). Moreover, they show that sub-
cellular shifts may be adaptive, driven by positive selection,
and may occur through a few selected changes in specific
(signal) sequences (consistent with our analysis of duplicated
target sequences presented here), thus allowing for rapid
retargeting of duplicate proteins during evolution.

We conclude that in addition to changes in their expression
and biochemical function, selectively driven subcellular
adaptation has played an important role for the functional
diversification of duplicate genes and the emergence of new
gene functions in both uni- and multicellular organisms.
Thus, generally, investigating the subcellular phenotype of
duplicate genes may provide valuable clues to their function
and fate.

Materials and methods

S. cerevisiae WGD genes and other paralogs

We retrieved the gene IDs of 900 S. cerevisiae WGD paralogs
(organized in 450 gene pairs) as well as the IDs, orthologs,
and nucleotide/protein sequence of K. waltii orthologs from
the supplemental data of [17]. Nucleotide and amino acid
sequences for all S. cerevisiae WGD gene pairs and non-WGD
paralogs (as defined by Ensembl gene family annotations)
were retrieved from the Ensembl database, release 45
[35,36].
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Subcellular localization data

Subcellular localization data were retrieved from [37]. Only
proteins unambiguously assigned to at least one of the 22
analyzed subcellular compartments were used. Another glo-
bal protein localization data set [19,38] was used for compar-
ison. Subcellular localizations (Figure 4) were predicted using
Predotar [39,40].

Non-synonymous substitution rates

We used MUSCLE 3.6 [41] to construct codon-based nucle-
otide alignments of S. cerevisiae WGD gene pairs and their
corresponding K. waltii orthologous genes. To estimate the
rate of non-synonymous changes, dy, along the different
branches of the S. cerevisiae/K. waltii gene trees, we used the
CODEML free-ratio model as implemented in the PAML 3.15
package [22].

Phylogenetic reconstructions

We used a maximum likelihood approach, PROML, as imple-
mented in the PHYLIP 3.67 software package, to reconstruct
the phylogeny of the protein families (protein sequence align-
ment infiles were generated using MUSCLE 3.6).

S. cerevisiae singletons

To identify proteins without paralogs (singletons), an all-
against-all BLASTP similarity search (E-value = 0.1) was con-
ducted. Proteins without hits against other proteins in this
search were considered to be singletons.

Gene ontology analysis
GO analyses were conducted using FatiGO [42,43].

Gene expression analyses

S. cerevisiae gene expression levels - measured as the number
of mRNA copies per cell - were retrieved from [33]. The aver-
age absolute protein abundance in pmol was retrieved from
the literature (supplemental data of [44]). The fold difference
of gene expression per gene pair was calculated as the abso-
lute difference between the numbers of mRNA copies or pro-
tein concentration per gene normalized by the average mRNA
copy number or protein concentration per gene pair.

Isoelectric point and hydrophathy data
Hydrophathy and pI data were collected from the literature
(supplemental data of [44]).

Protein-protein interactions
Protein interactors for all proteins in D- and S-pairs were col-
lected from the BioGRID repository [34,45].

Abbreviations

ER, endoplasmic reticulum; GFP, green fluorescent protein;
GO, Gene Ontology; SP, signal peptide; WGD, whole-genome
duplication.

Genome Biology 2008, 9:R54

Marques et al. R54.10



http://genomebiology.com/2008/9/3/R54

Authors' contributions

ACM, NV and HK conceived and designed the experiments.
ACM, NV and DB performed analysis. ACM and HK wrote the
paper. All authors read and approved the final manuscript.

Additional data files

The following additional data are available with the online
version of this paper. Additional data file 1 is a table listing all
whole genome duplicate pairs and relevant information for
each member. Additional data file 2 contains the subcellular
localizations of members from 45 S. cerevisiae protein fami-
lies (each containing one WGD protein pair) and most parsi-
monious subcellular localization changes inferred based on
the phylogeny.

Acknowledgements

This research was supported by funds available to HK from the European
Union (STREP: PKB140404) and the Swiss National Science Foundation.

References

l.
2.
3.

Ohno S: Evolution by Gene Duplication Berlin: Springer Verlag; 1970.

Li WH: Molecular Evolution Sunderland MA: Sinauer Associates; 1997.
Aury M, Jaillon O, Duret L, Noel B, Jubin C, Porcel BM, Segurens B,
Daubin V, Anthouard V, Aiach N, Arnaiz O, Billaut A, Beisson J, Blanc
I, Bouhouche K, Camara F, Duharcourt S, Guigo R, Gogendeau D,
Katinka M, Keller AM, Kissmehl R, Klotz C, Koll F, Mouél A, Lepére
G, Malinsky S, Nowacki M, Nowak JK, Plattner H, et al: Global
trends of whole-genome duplications revealed by the ciliate
Paramecium tetraurelia. Nature 2006, 444:171-178.

Papp B, Pal C, Hurst LD: Dosage sensitivity and the evolution of
gene families in yeast. Nature 2003, 424:194-197.

Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J:
Preservation of duplicate genes by complementary, degen-
erative mutations. Genetics 1999, 151:1531-1545.

Hughes AL: The evolution of functionally novel proteins after
gene duplication. Proc Biol Sci 1994, 256:119-124.

Stoltzfus A: On the possibility of constructive neutral
evolution. | Mol Evol 1999, 49:169-18I.

Hughes AL, Friedman R: Expression patterns of duplicate genes
in the developing root in Arabidopsis thaliana. | Mol Evol 2005,
60:247-256.

Lynch M, Force A: The probability of duplicate gene preserva-
tion by subfunctionalization. Genetics 2000, 154:459-473.

He X, Zhang J: Rapid subfunctionalization accompanied by
prolonged and substantial neofunctionalization in duplicate
gene evolution. Genetics 2005, 169:1157-1164.

Emanuelsson O, von Heijne G: Prediction of organellar targeting
signals. Biochim Biophys Acta 2001, 1541:114-119.

Reymond A, Meroni G, Fantozzi A, Merla G, Cairo S, Luzi L, Riganelli
D, Zanaria E, Messali S, Cainarca S, Guffanti A, Minucci S, Pelicci PG,
Ballabio A: The tripartite motif family identifies cell
compartments. EMBO | 2001, 20:2140-2151.

Schmidt TR, Doan JW, Goodman M, Grossman LI: Retention of a
duplicate gene through changes in subcellular targeting: an
electron transport protein homologue localizes to the golgi.
J Mol Evol 2003, 57:222-228.

Byun-McKay SA, Geeta R: Protein subcellular relocalization: a
new perspective on the origin of novel genes. Trends Ecol Evol
2007, 22:338-344.

Huh WK, Falvo ]V, Gerke LC, Carroll AS, Howson RW, Weissman
JS, O'Shea EK: Global analysis of protein localization in bud-
ding yeast. Nature 2003, 425:686-691.

Wolfe KH, Shields DC: Molecular evidence for an ancient dupli-
cation of the entire yeast genome. Nature 1997, 387:708-713.

Kellis M, Birren BW, Lander ES: Proof and evolutionary analysis
of ancient genome duplication in the yeast Saccharomyces
cerevisiae. Nature 2004, 428:617-624.

Genome Biology 2008,

20.

21.

22.
23.
24.

25.

26.

27.

28.
29.

30.

32

33.

34.

35.

36.

38.
39.

40.
41.

42.

43,
44,

Volume 9, Issue 3, Article R54

Saccharomyces Genome Database
nome.org/]

Kumar A, Agarwal S, Heyman JA, Matson S, Heidtman M, Piccirillo S,
Umansky L, Drawid A, Jansen R, Liu Y, Cheung KH, Miller P, Gerstein
M, Roeder S, Snyder M: Subcellular localization of the yeast
proteome. Genes Dev 2002, 16:707-719.

Wapinski |, Pfeffer A, Friedman N, Regev A: Natural history and
evolutionary principles of gene duplication in fungi. Nature
2007, 449:54-61.

Benjamini Y, Hochberg Y: Controlling the false discovery rate: a
practical and powerful approach to multiple testing. Statist
Soc B 1995, 55:289-300.

Yang Z: PAML: a program package for phylogenetic analysis
by maximum likelihood. Comput Appl Biosci 1997, 13:555-556.
Zhang L, Li WH: Mammalian housekeeping genes evolve more
slowly than tissue-specific genes. Mol Biol Evol 2004, 21:236-239.
Jentsch S, Seufert W, Sommer T, Reins HA: Ubiquitin-conjugating
enzymes: novel regulators of eukaryotic cells. Trends Biochem
Sci 1990, 15:195-198.

Friedlander R, Jarosch E, Urban |, Volkwein C, Sommer T: A regula-
tory link between ER-associated protein degradation and the
unfolded-protein response. Nat Cell Biol 2000, 2:379-384.
Balciunas D, Ronne H: Yeast genes GISI-4: multicopy
suppressors of the Gal- phenotype of snfl migl srb8/10/11
cells. Mol Gen Genet 1999, 262:589-599.

Inoue K, Mizuno T, Wada K, Hagiwara M: Novel RING finger pro-
teins, Airlp and Air2p, interact with Hmtlp and inhibit the
arginine methylation of Npl3p. J Biol Chem 2000,
275:32793-32799.

Hegde RS, Bernstein HD: The surprising complexity of signal
sequences. Trends Biochem Sci 2006, 31:563-571.

You HJ, Swanson RL, Harrington C, Corbett AH, Jinks-Robertson S,
Senturker S, Wallace SS, Boiteux S, Dizdaroglu M, Doetsch PW: Sac-
charomyces cerevisiae Ntglp and Ntg2p: broad specificity N-
glycosylases for the repair of oxidative DNA damage in the
nucleus and mitochondria. Biochemistry 1999, 38:11298-11306.
Pedrajas JR, Kosmidou E, Miranda-Vizuete A, Gustafsson JA, Wright
AP, Spyrou G: Identification and functional characterization of
a novel mitochondrial thioredoxin system in Saccharomyces
cerevisiae. | Biol Chem 1999, 274:6366-6373.

Drawid A, Jansen R, Gerstein M: Genome-wide analysis relating
expression level with protein subcellular localization. Trends
Genet 2000, 16:426-430.

Ho E, Hayen A, Wilkins MR: Characterization of organellar pro-
teomes: a guide to subcellular proteomic fractionation and
analysis. Proteomics 2006, 6:5746-5757.

Holstege FC, Jennings EG, Wyrick ]J, Lee Tl, Hengartner CJ, Green
MR, Golub TR, Lander ES, Young RA: Dissecting the regulatory
circuitry of a eukaryotic genome. Cell 1998, 95:717-728.

Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M:
BioGRID: a general repository for interaction datasets.
Nucleic Acids Res 2006, 34 (Database issue):D535-D539.

Hubbard T), Aken BL, Beal K, Ballester B, Caccamo M, Chen Y, Clarke
L, Coates G, Cunningham F, Cutts T, Down T, Dyer SC, Fitzgerald S,
Fernandez-Banet J, Graf S, Haider S, Hammond M, Herrero J, Holland
R, Howe K, Johnson N, Kahari A, Keefe D, Kokocinski F, Kulesha E,
Lawson D, Longden |, Melsopp C, Megy K, Meidl P, et al.: Ensembl
2007. Nucleic Acids Res 2007, 35 (Database issue):Dé610-D617.
Ensembl Database [http://www.ensembl.org]
Yeast GFP Fusion Localization Database
gfp.ucsf.edu/]

Subcellular Localization Epitope [http://ygac.med.yale.edu]
Small |, Peeters N, Legeai F, Lurin C: Predotar: A tool for rapidly
screening proteomes for N-terminal targeting sequences.
Proteomics 2004, 4:1581-1590.

Predotar [http://urgi.versailles.inra.fr/predotar/predotar.html]
Edgar RC: MUSCLE: multiple sequence alignment with high
accuracy and high throughput. Nucleic Acids Res 2004,
32:1792-1797.

Al-Shahrour F, Minguez P, Vaquerizas JM, Conde L, Dopazo |: BABE-
LOMICS: a suite of web tools for functional annotation and
analysis of groups of genes in high-throughput experiments.
Nucleic Acids Res 2005, 33 (Web server issue):W460-VW464.
FatiGO [http://fatigo.bioinfo.cnio.es]

Lu P, Vogel C, Wang R, Yao X, Marcotte EM: Absolute protein
expression profiling estimates the relative contributions of
transcriptional and translational regulation. Nat Biotechnol
2007, 25:117-124.

[http://www.yeastge

[http://yeast

Genome Biology 2008, 9:R54

Marques et al. R54.11


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17086204
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12853957
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12853957
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10101175
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10101175
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8029240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8029240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10441669
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10441669
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15785853
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10629003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10629003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15654095
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15654095
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15654095
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11750667
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11750667
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11331580
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11331580
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14562965
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14562965
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17507112
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17507112
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14562095
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14562095
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9192896
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9192896
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15004568
http://www.yeastgenome.org/
http://www.yeastgenome.org/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11914276
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11914276
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17805289
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17805289
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9367129
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9367129
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14595094
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14595094
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2193438
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2193438
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10878801
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10878801
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10878801
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10628841
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10628841
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10628841
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10896665
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10896665
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10896665
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16919958
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16919958
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10471279
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10471279
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10471279
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10037727
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11050323
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11050323
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17068763
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17068763
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17068763
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9845373
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9845373
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381927
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381927
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17148474
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17148474
http://www.ensembl.org
http://yeastgfp.ucsf.edu/
http://yeastgfp.ucsf.edu/
http://ygac.med.yale.edu
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15174128
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15174128
http://urgi.versailles.inra.fr/predotar/predotar.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15034147
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15034147
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15980512
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15980512
http://fatigo.bioinfo.cnio.es
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17187058
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17187058
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17187058

http://genomebiology.com/2008/9/3/R54 Genome Biology 2008,  Volume 9, Issue 3, Article R54 Marques et al. R54.12

45. BioGRID [http://www.thebiogrid.org/]

46. Mateos A, Dopazo J, Jansen R, Tu Y, Gerstein M, Stolovitzky G: Sys-
tematic learning of gene functional classes from DNA array
expression data by using multilayer perceptrons. Genome Res
2002, 12:1703-1715.

Genome Biology 2008, 9:R54


http://www.thebiogrid.org/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12421757
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12421757
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12421757

	Abstract
	Background
	Results
	Conclusion

	Background
	Results and discussion
	Subcellular divergence is common among yeast whole- genome duplicates
	Subcellular localization change and protein function
	Functional divergence of duplicates through neo- or sublocalization
	Subcellular shifts and signal peptide evolution
	Functional adaptation to new subcellular environments
	Subcellular adaptation, protein-protein interactions, and the evolution of new functions

	Conclusion
	Materials and methods
	S. cerevisiae WGD genes and other paralogs
	Subcellular localization data
	Non-synonymous substitution rates
	Phylogenetic reconstructions
	S. cerevisiae singletons
	Gene ontology analysis
	Gene expression analyses
	Isoelectric point and hydrophathy data
	Protein-protein interactions

	Abbreviations
	Authors' contributions
	Additional data files
	Acknowledgements
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


