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Abstract

Conjunctival melanoma (CJM) is a rare but potentially lethal and highly-recurrent cancer of

the eye. Similar to cutaneous melanoma (CM), it originates from melanocytes. Unlike CM,

however, CJM is relatively poorly characterized from a genomic point of view. To fill this

knowledge gap and gain insight into the genomic nature of CJM, we performed whole-

exome (WES) or whole-genome sequencing (WGS) of tumor-normal tissue pairs in 14

affected individuals, as well as RNA sequencing in a subset of 11 tumor tissues. Our results

show that, similarly to CM, CJM is also characterized by a very high mutation load, com-

posed of approximately 500 somatic mutations in exonic regions. This, as well as the pres-

ence of a UV light-induced mutational signature, are clear signs of the role of sunlight in

CJM tumorigenesis. In addition, the genomic classification of CM proposed by TCGA

seems to be well-applicable to CJM, with the presence of four typical subclasses defined on

the basis of the most frequently mutated genes: BRAF, NF1, RAS, and triple wild-type. In

line with these results, transcriptomic analyses revealed similarities with CM as well, namely

the presence of a transcriptomic subtype enriched for immune genes and a subtype

enriched for genes associated with keratins and epithelial functions. Finally, in seven tumors

we detected somatic mutations in ACSS3, a possible new candidate oncogene. Transfected

conjunctival melanoma cells overexpressing mutant ACSS3 showed higher proliferative

activity, supporting the direct involvement of this gene in the tumorigenesis of CJM. Alto-

gether, our results provide the first unbiased and complete genomic and transcriptomic clas-

sification of CJM.
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Author summary

Conjunctival melanoma is an extremely rare form of cancer of the eye that arises from

melanocytes–the cells producing the protective pigment melanin–in the outmost layer of

the eye: the conjunctiva. This tissue, similarly to the skin, can also be exposed to UV light

radiation from the sun. We investigated the genetic background of this rare form of can-

cer in samples from fourteen patients, by global DNA and RNA sequencing. Our results

showed that conjunctival melanoma is genetically very similar to cutaneous melanoma.

More precisely, in tumor DNA we detected signs of damage caused by UV light, as well as

mutations in the genes BRAF, NF1 and NRAS/HRAS, previously described to be involved

in cutaneous melanoma. Analysis of tumor gene expression also revealed similarities

between these two types of cancer, some of which could be used as prognostic factors or

as indicators of a patients’ response to therapy. In addition, we identified frequent somatic

mutations in ACSS3, a gene not yet associated with either conjunctival or cutaneous mela-

noma, which represents a potential key player in oncogenesis of conjunctival melanoma.

Introduction

Conjunctival melanoma (CJM) is thought to arise from melanocytes localized in an external

mucosal membrane that partially covers the eye and the eyelids, the conjunctiva. CJM presents

as a persistent, usually pigmented lesion on the surface of the eyeball (bulbar conjunctiva) or

on the palpebral (tarsal) conjunctiva. In the majority of cases, the tumor arises from preexist-

ing flat pigmented melanocytic proliferations, termed primary acquired melanosis (PAM) or

Conjunctival Melanocytic Intraepithelial Neoplasia (C-MIN). Less frequently, it can arise from

a pre-existing nevus, or even completely de novo (without pre-existing lesions) [1,2]. CJM is

extremely rare, with an incidence rate ranging from 0.24 to 0.80 cases per million per year [3–

7]. It is, however, a very recurrent tumor (recurrence is higher than 50%) [8–10] that spreads

through the lymphatic system, with metastatic death occurring in 25–35% of patients within

10 years from the initial diagnosis [7,8,11–15].

In contrast to other mucosal membranes, the bulbar conjunctiva is directly exposed to the

ultraviolet (UV) light radiation from the sun, suggesting a role for this agent in the tumorigen-

esis of CJM [16]. UV light exposure is also a known mutagenic factor in cutaneous melanoma

(CM), and indeed CJM and CM share certain known risk factors, such as a lighter color of the

skin and an association between incidence of disease and decreasing latitude [15,17–19]. Fur-

thermore, the occurrence of CJM has been increasing in recent years, in a pattern that is com-

parable to that of CM, once again in agreement with a possible link to a sunlight-related

etiology [3–5].

Unlike CM, the genetics of CJM has not been extensively evaluated. Previous genetic work

on CJM only scored mutations within a panel of known genes that are frequently mutated in

melanomas, or copy number variations (CNVs) detected by FISH, MLPA, array-CGH or

SNP-array analysis. These studies have reported frequent mutations in known CM genes such

as BRAF, RAS sequences (NRAS, KRAS, HRAS), NF1, TERT, and KIT, as well as patterns of

CNVs resembling that of cutaneous and mucosal melanomas [20–24]. Expression analyses in

CM have shown that gene expression signatures may be prognostic and that specific transcrip-

tional patterns may be associated with tumor resistance [25], suggesting the theoretical possi-

bility that the same could be done for CJM.

In this study, we unbiasedly assessed the landscape of genomic alterations in conjunctival

melanoma by characterizing somatic single nucleotide variants (SNVs) and somatic copy
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number variations (CNVs) through Whole Exome Sequencing (WES) or Whole Genome

Sequencing (WGS). A transcriptome profiling by RNA sequencing (RNA-seq) was also performed,

allowing the characterization of transcriptional CJM subtypes and the identification of gene

fusions. Overall, our results provide the first unbiased and complete genomic and transcriptomic

classification of CJM and reveal that the molecular basis of CJM strongly resembles that of CM.

Results and discussion

Clinical description of patients and clinicopathological material

Fourteen CJM tumor tissue samples were collected from surgically-excised masses, along with

the corresponding patient’s normal blood leukocytes, and screened either by WES (twelve

samples) or WGS (two samples [16]). Written informed consent was obtained from all indi-

viduals enrolled in this study, and approval for human subject research was obtained from the

Institutional Review Boards of all participating Institutions.

We considered samples from seven men (average age = 61.7 years) and seven women (aver-

age age = 69.6 years). Four tumor samples had tarsal conjunctiva localization and the remain-

ing were from the bulbar conjunctiva. In ten subjects the tumor originated from either PAM/

C-MIN (9/14) or from previous nevi (1/14), and in the remainder it evolved de novo (4/14).

Two tumors were irradiated. Pigmentation was assessed in all tumor tissues and was scored as

a 0–3 value (0 = no melanin pigment, 1 = slight melanin pigmentation visible at high power,

2 = moderate pigmentation visible at low power, 3 = high pigmentation readily visible at low

power with dense melanin content) [26]. Over a follow-up period of 36 months (SD: 26.9

months), nine patients experienced tumor recurrence, three developed metastases, and two

died of the disease. All clinical data are summarized in S1 Table.

Elevated mutational load and presence of UV light damage signature

WGS or WES analysis identified on average 1,447 somatic SNVs (range 216–4,067) and 87

(range 49–139) small insertions or deletions (indel; all somatic SNVs and small insertions/

deletions are available in S2 Table). In addition, each sample presented on average CNVs cov-

ering 33% of its genome length (range 12%-71%, S3 Table, further details in Methods). We

observed that, similarly to CM, CJM is also characterized by a very high somatic mutation

load, possibly the highest detected so far in tumors, composed of a median of 518 nonsynon-

ymous somatic mutations in exonic regions. These findings are indicative of the role of UV

light in the tumorigenesis of CJM and are in striking contrast with recently-obtained data

from uveal melanoma (UM) [27,28], another melanoma of the eye, where only approximately

15 somatic variants per tumor are found on average. Mutational burden did not correlate with

age, sex or origin of the tumor (PAM/C-MIN/nevus/de novo). However, lymph invasion

showed a significant inverse correlation with respect to mutational load (present = 267,

absent = 756, p-value = 0.02, by t-test).

To elucidate the nature of this elevated load, we examined the mutational spectrum of this

tumor by first comparing the number and contribution of different mutational events. Consis-

tently with the presumed role of UV light in CJM tumorigenesis, in 86% of the samples C>T

changes accounted for more than 70% of the total mutational load (Fig 1A). Interestingly, the

three individuals with the lowest contributions of the C>T changes were samples whose

tumors had a tarsal localization and therefore were less exposed to UV light. We next extracted

the mutational signatures present in the data by observing the patterns of somatic mutations

and by comparing them with the 30 validated signatures of mutational processes in human

cancer [29]. We identified two main patterns showing the highest correlation with two COS-

MIC signatures: signature 7 and 30. Signature 7 is characteristic of skin cancer and resembles
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the mutational spectrum observed after exposure to UV light in experimental settings. Specifi-

cally, the pattern we observed resembles signature 7a (from CM, as defined by Hayward et al.
[30]), which is most likely due to the repair of 6–4 photoproducts [31]. Signature 30 is a signa-

ture that has been observed only in a small subset of breast cancers, for which the etiology

remains currently unknown (Fig 1B).

Genetic features of tarsal CJM

The three samples with the highest contribution of signature 30 (Fig 1A) were also tumors

with the lowest proportions of C>T changes, all localized tarsally. Interestingly, another

patient with tarsal tumor (CM10) showed a very high contribution of signature 7 and the sec-

ond highest proportion of C>T changes (Fig 1A). This patient’s tumor did not contain muta-

tions in the APOBEC deaminases, was not enriched in APOBEC related mutations [32], and

none of the APOBEC family genes showed a significant overexpression, excluding the possibil-

ity that APOBEC-mediated DNA deamination events could be the cause of the high load of

C>T changes (S1 Fig). The molecular characteristics of this tumor suggest that it could have

arisen from a precursor in the bulbar conjunctiva exposed to UV-light, and in fact this patient

also had focal areas of pigmentation in the bulbar conjunctiva. Considering the discrepancy

between the actual localization of the tumor and its genomic profile, we decided to exclude it

from any further comparisons of tarsal versus bulbar tumors.

Next, we examined the overall load of somatic variations, specifically in relationship with tarsal

vs. bulbar localization. We observed that tumors with tarsal localization had a significantly lower

number of somatic variations (tarsal = 195, bulbar = 742, p-value = 0.007, by t-test) (S2 Fig). When

comparing mutational spectra of these two classes of CJM by PCA (Fig 2), we also detected a sub-

stantial difference: bulbar tumors showed relatedness to CM, while tarsal tumors clustered sepa-

rately. Taken together, our results suggest a different etiology for these two sub-classes of CJM.

Genomic classification

Assessment of mutations by MutSigCV_1.4127 revealed that no gene had higher than back-

ground mutation frequency to be considered as a potential driver. Since this is obviously not a

realistic hypothesis, we concluded that the high background noise of somatic alterations that

are present in CJM, as well as the limited sample size, complicated the identification of cancer

driver genes by means of computer analysis alone. We therefore searched for known cancer

driver events first. We screened our data for the presence of somatic alterations in driver genes

from DriverDBV3 [33], and we observed that overall the detected genomic classification was

indeed similar to what has been reported previously for CJM [21,34,35]. Also, it overlapped

with the classification proposed by TCGA for CM subtypes, identifying four classes defined on

the basis of the most frequently-mutated genes: a BRAF-class, a NF1-class, a RAS-class (muta-

tion in the genes NRAS, HRAS or KRAS), and a triple wild-type-class [25,29]. Inactivating

mutations in NF1 (Fig 3, S3A Fig, S2 Table) were found in 7/14 samples, always present in a

mutually-exclusive pattern with respect to mutations in BRAF. Four samples carried missense

mutations in BRAF. In three out of these four samples we found the canonical p.V600E mis-

sense alteration, and in one sample a p.G466E mutation, also already-reported in various

human cancers (S3B Fig) [25,29,36]. Mutations in genes from the RAS family were identified

Fig 1. Mutational spectrum of CJM. (A) The proportions of different SNV changes show that C>T transitions dominate the

mutational spectrum. Grey bars on the top indicate the number of non-neutral mutations in coding regions (see Methods). (B) Two

main mutational signatures, detected in our dataset and presenting the highest correlation with COSMIC signatures 7 and 30 (v2

March 2015), are shown.

https://doi.org/10.1371/journal.pgen.1009201.g001
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in three samples (1 in NRAS and 2 in HRAS), in a mutually-exclusive fashion with respect to

the hotspot p.V600E in BRAF. These tumors carried known hotspot mutations: p.Q61R and

p.G13D in HRAS and p.Q61L in NRAS (S3C and S3D Fig). In two samples, none of these

major driver genes was mutated, and they were therefore classified as ‘triple wild-type’. Muta-

tions in hTERT and its promoter were identified in 9/14 tumors, essentially within the same

hotspots identified previously in other tumor types [37–40](S4 Table). In addition, we identi-

fied missense or loss of function mutations in less-common cutaneous melanoma drivers,

such as TP53, NOTCH3, and KIT (Fig 3). We did not find any mutations in the known UM

driver genes GNAQ, GNA11, SF3B1, BAP1 or EIF1AX, again highlighting the dissimilarity

between these two ocular tumor types, whereas the landscape of mutations in CJM constitutes

yet another similarity between CJM and CM. However, when combining the results of the

three studies on the genetics of CJM [21,34,35] with our results and data from TCGA [25]

(90 CJM and 333 CM), we found a statistically significant difference in the distribution of the

four genomic classes (CJM: 31, 23, 19, 17 versus CM: 28, 166, 93, 46 for the NF1, BRAF, RAS,

and WT classes, respectively; p-value = 4.99x10-10 by Pearson’s Chi-squared test). While TCGA

reports the BRAF subtype to be the most prevalent in CM, followed by the RAS-class and the

Fig 2. Principal-component analysis (PCA) of the mutational spectrum data. PCA is showing the similarity between CJM and CM, as well as a possible separation of

tarsal vs. bulbar CJM tumors.

https://doi.org/10.1371/journal.pgen.1009201.g002
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NF1-class, combined results in CJM showed a different behavior. NF1 was the gene that was

found to be mutated most frequently, followed by BRAF, and finally the RAS genes [21,34].

Clinically, patients in the NF1 class had significantly lower rates of local lymph node inva-

sion compared to the other three classes (0:6 vs. 3:4, p-value = 0.049, by one-sided Fisher exact

test). From the molecular point of view, patients in the triple wild-type class had the lowest

number of exonic somatic changes (223.5 vs. 681.7, p-value = 0.008, by t-test) and the lowest

-

Fig 3. Landscape of single nucleotide and copy number variations in key driver genes in CJM, according to the 4-group genetic classification of CM. Each column

represents alterations in 17 known cancer driver genes in one tumor sample; the number of non-neutral coding somatic mutations for each patient is indicated by the

grey bars on the top of each column and the frequency of mutation for each gene is shown on the right side of the figure.

https://doi.org/10.1371/journal.pgen.1009201.g003

PLOS GENETICS Landscape of conjunctival melanoma

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009201 December 31, 2020 7 / 22

https://doi.org/10.1371/journal.pgen.1009201.g003
https://doi.org/10.1371/journal.pgen.1009201


contribution of the C>T changes overall (289.5 vs. 1350.5, p-value = 0.003, by t-test, S4A and

S4B Fig). Again, this behavior is similar to what has been previously observed in CM [25,30].

No statistically-significant changes were observed among the molecular classes with respect to

overall survival, presence or absence of metastasis, or recurrence rates.

ACSS3, a new candidate oncogene

In search for additional contributors for CJM we looked for genes harboring non-synonymous

mutations shared by at least three individuals. By this procedure, we identified three genes:

USH2A, ACSS3 and BRAF. The BRAF mutation is the canonical p.V600E missense change and

therefore an already-known driver mutation, confirming the robustness of this method. The

mutation in USH2A resulted to be a sequence artifact and therefore was discarded from our

analysis. The mutation in ACSS3 is a missense (NM_024560: c.1594C>T/p.P532S), present in

a very conserved position and situated 7 amino acids away from an ATP-binding site (S5 Fig),

and this alteration creates a site predicted to be phosphorylated by NetPhos [41]. We searched

for the presence of p.P532S in public databases of cancer patients and cancer cell lines, and we

identified this particular mutation in two cell lines from neuroblastoma and from cutaneous

melanoma (Broad Institute Cancer Cell Lines Encyclopedia v18-07-2018 [42] and COSMIC

v90-05-09-2019 [43]), as well as 12 additional patients with either cutaneous melanoma (8/12),

skin cancer (non-melanoma) (1/12) or cutaneous squamous cell carcinoma (3/12) (cBioPortal

v3.1.3 [44,45]). Furthermore, 4 additional somatic mutations in ACSS3 were detected in our

cohort of patients (S5 Fig).

ACSS3 is one of the three genes encoding acetyl-CoA synthetase proteins, catalyzing the

synthesis of acetyl-CoA from acetate in an ATP-dependent manner. ACSS3, together with

ACSS1, are mitochondrial proteins, whereas ACSS2 is present in the cytoplasm and in the

nucleus of the cell [46–48]. Multiple studies have shown that acetyl-CoA can be used by tumor

cells for de novo lipid synthesis [49–51] and that acetyl-CoA levels are strongly associated with

levels of global histone acetylation [52–54], as well as with expression of genes involved in can-

cer [55]. In favorable conditions of high glucose levels and presence of oxygen, acetyl-CoA is

synthesized through oxidative conversion of pyruvate during glycolysis [56]. Conversely, in

tumor cells glucose is preferentially converted into lactate instead of pyruvate, even in the pres-

ence of oxygen, through a process of aerobic glycolysis also known as the ‘Warburg effect’

[57,58]. The decrease in rates of oxidative phosphorylation limits the synthesis of acetyl-CoA

from pyruvate, forcing the tumor cells to use alternative ways—such as through acetyl-CoA

synthetase enzymes—ACSS1/2 and 3—to produce acetyl-CoA and support tumor growth

[59]. Indeed, recent studies have shown that ACSS enzymes can catalyze formation of acetyl-

CoA from acetate in unfavorable growth conditions in tumor cells [60,61]. In particular,

ACSS1 expression was associated with the growth and invasiveness of tumor cells in human

hepatocellular carcinoma [62]. Furthermore, silencing of ACSS2 in mouse models of liver can-

cer leads to dramatic reduction of tumor growth [63]. Recently, expression of ACSS3 has also

been reported in association with cancer growth and invasion in human gastric cancer and

bladder urothelial carcinoma [64,65]. All these data indicate that ACSS3 may represent an

interesting candidate for tumorigenesis of CJM and that p.P532S could act as an activating

driver mutation. To investigate its oncogenic impact we transfected the conjunctival recurrent

malignant melanoma-1 CRMM-1 cell line (Research Resource Identifier, RRID: CVCL_M593

[66]), negative for mutations in ACSS3, with plasmids expressing either cDNA from the wild-

type ACSS3 gene (pCMV-ACSS3-wt) or cDNA containing the p.P532S variant (pCMV-

ACSS3-mut) under the transcriptional control of the human cytomegalovirus pCMV pro-

moter. MTT assay, assessing metabolic activity indicative of cell proliferation, was performed
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post-transfection and indicated a significant increase in viable and proliferating CRMM-1 cells

bearing the pCMV-ACSS3-mut construct vs. its wt counterpart and vs. untransfected cells

(31% and 33% increase, and p-values by t-test = 3.39x10-6 and 6.91x10-7, respectively, Fig 4).

This was not simply due to increased ACSS3 mRNA expression from the mutant plasmid vs.

the wt plasmid, as we could ascertain by plasmid-specific Q-PCR (ACSS3 expression from

pCMV-ACSS3-mut vs. pCMV-ACSS3-wt = 89 ± 14 vs. 79 ± 5 arbitrary units, respectively, p-

value = 0.39, by t-test), indicating indeed that the effect was consequent to the presence of the

p.P532S mutation.

Copy number variations profile

Somatic copy number variations (CNVs, S5 Table) were detected using CNVkit 0.9.5 [67,68]

with default settings, from paired tumor and normal tissues (further details in Methods). Large

Fig 4. The p.P532S mutation in ACSS3 stimulates cell proliferation. CRMM-1 cells were left untreated or

transfected with a plasmid containing a wild-type ACSS3 cDNA (pCMV-ACSS3-wt) or a cDNA containing the

mutation p.P532S (pCMV-ACSS3-mut). Proliferation was assessed after 24 hours, by means of the MTT colorimetric

test. Data are indicated in arbitrary units, corresponding to background-corrected absorbance values at 570 nm.

Asterisks indicate significant p-values (6.91x10-7 between untreated and pCMV-ACSS3-mut and 3.39x10-6 between

pCMV-ACSS3-wt and pCMV-ACSS3-mut, by t-test).

https://doi.org/10.1371/journal.pgen.1009201.g004
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CNVs impacting entire chromosomal arms are depicted in Fig 5. Significant arm amplifica-

tions were: 7p and 7q (6/14 and 8/14; amplification q-value = 5.3x10-3 and 4.32x10-7, respec-

tively, by GISTIC 2.0), also detected in CM [69] but absent in UM [28], 8p (3/14, q-

value = 3.8x10-3), 8q (8/14, q-value = 1.2x10-6) and 6p (10/14, q-value = 1.2x10-6). Significant

arm deletions were impacting both arms of chromosome 19 (19p: 7/14, q-value = 2.83x10-4

and 19q: 7/14, q-value = 2.05x10-5) and 9p (4/14, q-value = 2.9x10-2). The overall pattern of

CNVs overlaps with those detected previously in CJM [20,22]. In addition, we identified ten

significantly-deleted focal regions (with q< 0.25) (Fig 5, S6 Fig), including the 16q24.3 region

(3/14, q-value = 0.04) containing the MC1R gene, as well as 5q35.3 (3/14, q-value = 0.08) and

9p21.3 (3/14, q-value = 0.01), encompassing the known tumor suppressor gene CDKN2A, also

detected in CM. The focal region 17p13.1 (deleted in 3/14, q-value = 0.14) contained well-

known cancer driver genes such as TP53, NCOR1M, MAP2K4, GPS2, and MYH10. Interest-

ingly, we did not detect the previously-discovered 10q11.21–26.2 deletion associated with

metastasis in CJM [22]. Comparison of the proportions of CNV detected for both large and

focal events in the four molecular classes defined above showed that BRAF-class tumors had

the lowest proportion of their genomes affected by CNV [18% (BRAF) vs. 36.9% (not-BRAF),

p-value = 0.01, by t-test, S3 Table].

Transcriptomic classification

Due to reduced availability of primary material, total RNA was extracted from tumor cells in

11 of the 14 CJM patients. RNA sequencing-based analysis showed three main transcriptomic

clusters, according to Pearson’s correlation pairwise similarity analysis of Self Organizing

Fig 5. Landscape of CNVs in CJM. Sub-chromosomal level CNVs are shown, in relationship to specific characteristics of each tumor.

https://doi.org/10.1371/journal.pgen.1009201.g005
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Maps (SOM) portraits (Fig 6, S7 Fig). These clusters were characterized based on the GO ‘bio-

logical process’ set, as follows: (1) DNA repair, DNA replication and cell cycle, (2) immune

system response and (3) keratinization, cornification and cell-cell adhesion (S7 Fig). Next, we

mapped gene expression signatures from previously published studies of CM [25,70–76] onto

our transcriptomic data and observed strong similarities with the CM transcriptomic classifi-

cation proposed by TCGA [25]. Indeed, similarly to CM, we detected the ‘keratin high’ (N = 3;

27.3%) and ‘immune high’ (N = 5; 45.4%) subtypes. However, we did not identify the ‘MITF

high’ subtype cluster, probably because this class is the least abundant one in CM and our

rather small dataset did not have enough power to detect it (S8 Fig). The third identified clus-

ter was characterized by overexpression of gene sets involved in cell cycle activity (S8 Fig) and

by gene sets overexpressed in high-grade CM, associated with poorer survival and higher pro-

liferation rates [72]. Patients in this class had indeed significantly higher tumor thickness (5

mm vs. 2.3 mm, p-value = 0.02, by t-test). There was no significant correlation between the

transcriptomic classes and the proposed genomic classification, tumor localization or pres-

ence/absence of metastasis. In addition, such classes correlated neither with mutations in any

of the known oncogenes from DriverDBv3, nor with the distribution of the deleted regions,

5

5. Transcriptomic Classi cation

Immune high subtype

Keratin high subtype

Cell cycle high subtype
1. Depth of invasion

2. Localization of the tumor

3. Metastasis

4. Molecular classi cation

1000

500

4
3
2
1

0

Fig 6. Transcriptomic classification of CJM. (A) Heatmap depicting pairwise similarity (Pearson’s correlation coefficients) between the Self Organizing Maps (SOM)

portraits of single patients, highlighting the presence of three distinct clusters of samples, based on gene expression similarity (CM06-10-07, CM11-01-09, and CM03-

05-04-02-08). CM gene sets mapped to the data allow for the classification of CJM into an “cell cycle high subtype”, a “keratin high subtype”, and a “immune high

subtype”. Grey bars on the top of each column indicate the number of non-neutral coding somatic variants in each patient. (B) Overexpression profiles in selected

hallmarks of cancer gene sets, scaled in units of the gene set Z-score in the three clusters.

https://doi.org/10.1371/journal.pgen.1009201.g006
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focal or broad. Finally, no significant differences in mRNA expression were found in tarsal vs.

bulbar tumors. However, in CM patients the immune subtype was associated with better sur-

vival [25] and CM patients whose expression patterns were enriched for cell cycle genes and

DNA repair genes had increased metastatic risk and worse prognosis [25,77]. Therefore, pro-

jecting this information onto CJM patients could possibly provide a prognostic indication.

Signaling pathways

Next, we integrated all SNV, CNV and RNA-seq data, to assess to which extent the ten canoni-

cal cancer signaling pathways (cell cycle, p53, Hippo, Myc, Nrf2, PI-3-Kinase/Akt, RTK-RAS,

TGFβ signaling, Notch, and Wnt) [78] contribute to the pathophysiology of CJM and provide

a global overview of its biology. Our analysis showed that genes in the RTK-RAS pathway were

altered in all patients (14/14), by SNV or indel, and that all tested samples also showed an alter-

ation by a CNV concordant with the gene expression level of that same gene (either an amplifi-

cation/gain and significantly higher gene expression or shallow/deep deletion and significantly

lower gene expression; see Methods for more details). Hippo and Wnt pathways were altered

in 89% of the cases (both Hippo and Wnt: 86% by SNV/indel and 89% by a CNV). The least

mutated pathway overall was NRF2, affected by CNVs in only 11% of cases (S9 Fig, S6 Table).

Gene fusions

Lastly, we used RNA-seq data to assess the presence of possible gene fusions. Overall, 58

unique fusion events were identified. RP11-206L10.9—PSPH, STEAP1—RAPGEF5 and

ACTG2—ACTG1 were detected in two individuals, as well as two known fusion events involv-

ing PMEL—SQSTM1 and PPTC7—HVCN1. Interestingly, PMEL, encoding the promelano-

some protein (P100), was involved in 4 different fusion events and fusions impacted overall 31

known cancer genes (S10 Fig). Despite PMEL and MC1R (that was deleted in 3/14 patients)

are both involved in the process of pigmentation, and in turn pigmentation is associated with

prognosis [79], we did not find any significant correlation between the levels of pigmentation

in tumors and the presence of these molecular events.

Conclusions

In conclusion, through the analysis of mutational load and mutational signatures, our study

highlights the similarity between CJM and CM, mostly due to the effect of exposure to UV-

light. Interestingly, tarsally-located CJM tumors show different behavior in terms of their

genetic make-up. They carry significantly lower numbers of C>T changes, but also somatic

SNVs overall, and are characterized by a different composition of mutational signatures com-

pared to tumors localized on the light-exposed bulbar conjunctiva. This phenomenon, for

which two similar tumors in the same tissue have such a different genetic background, is

intriguing. Moreover, similarly to CM, CJM can be grouped into four genomic subclasses,

based on their main driver events: the BRAF, NF1, RAS and a triple wild-type classes.

Our data also suggest the involvement of the gene ACSS3, not yet described in association

with either CJM or CM, in CJM tumorigenesis, possibly in relationship to one of the hallmarks

of cancer—the Warburg effect. In particular, the missense variant p.P532S in this gene was dis-

covered in 3/14 of CJM patients in our cohort and in additional twelve patients and two cell

lines in public databases, representing a potential hot-spot mutation. Furthermore, we showed

that overexpression of the mutated (p.P532S) ACSS3 gene leads to higher proliferative activity

in the CRMM-1 cells, in line with the hypothesis of oncogenicity of this gene in CJM.

Transcriptomic classification of CJM also overlaps with that of CM. We identify three main

transcriptomic subtypes: ‘cell cycle high’, ‘keratin high’, and ‘immune high’. However, we

PLOS GENETICS Landscape of conjunctival melanoma

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009201 December 31, 2020 12 / 22

https://doi.org/10.1371/journal.pgen.1009201


could not detect any correlation between these expression classes and the genetic profile of

tumors (CNVs and/or SNVs), their metastatic status, recurrence, or patients’ outcome.

Interestingly, some of the similarities between CM and CJM described here are important

indicators of the response to treatment in CM. For instance, CM patients with a high muta-

tional load respond well to T-cell immunotherapy and patients with desmoplastic melanoma

with NF1 mutations, that are also prevalent in CJM, benefit from treatment with immune

checkpoint inhibitors. While some of these treatments are being used in isolated cases, they do

not yet represent the state-of-the-art therapy for advanced CJM. Similar to other rare cancers,

conjunctival melanoma suffers from a lack of appropriate research, leading to many practical

drawbacks for patients, such as for instance limited access to the newest treatments or ineligi-

bility to enroll into clinical trials. By this study, we hope to provide the first basis for improving

diagnostic processes and potential treatment options for all individuals affected by this disease.

Materials and methods

Ethics statement

This study adhered to the tenets of the Declaration of Helsinki and was approved by the “Com-

mission cantonale d’éthique de la recherche sur l’être humain (Vaud)” and the “Ethikkommis-

sion Nordwest- und Zentralschweiz”. Prior to be enrolled in this study, all patients signed a

written informed consent detailing their voluntary participation and their donation of biologi-

cal material for medical research.

DNA sequencing

The WGS data were obtained using the Complete Genomics sequencing platform [80]. Reads

were aligned to the reference genome (NCBI Build 37) and somatic single nucleotide variations,

indels, and CNVs were identified by comparing the matching tumor and non-tumor tissue vari-

ations, as previously described [81]. WES was performed at the iGE3 Genomics Platform in

Geneva, Switzerland, using a HiSeq 4000 sequencer. Mapping was performed using NovoAlign

V3.08.02 (Novocraft, Selangor, Malaysia). Mutect2 by GATK v.3.8 [67] was used for variant

calling, to detect somatic single-nucleotide variants (SNVs) and indels. Oncotator v1.8.0.0 [82]

was used for the annotation of all somatic variants. Coding non-synonymous variants (in the

text and in Figs 1, 3, 6 -grey bars, as well as in Figs S2, S3, S4A, and S5) corresponded to those

classified as: Frame_Shift_Del, Frame_Shift_Ins, In_Frame_Del, In_Frame_Ins, Missense_Mu-

tation, Nonsense_Mutation, Nonstop_Mutation or Splice_Site in S2 Table.

Since the promoter of the hTERT gene was not captured by the kit used to pre-process DNA

undergoing exome sequencing, we amplified it by PCR on DNA from tumor samples and ana-

lyzed it directly by Sanger sequencing, according to the procedure described by Scott et al. [83].

RNA sequencing

Total RNA was extracted from tumor cells of 11 CJM patients. Size-selected transcripts were

isolated for library construction and sequenced on an Illumina HiSeq 2500 at the Genomic

Technologies Facility, Lausanne, Switzerland. Fastq files were mapped to the human reference

genome (NCBI build 37) and the transcripts were quantified by the CLC Genomics Work-

bench 10.0 (https://www.qiagenbioinformatics.com/).

CNV analysis

Somatic copy number variations (CNVs) were detected using CNVkit 0.9.5 [68] with default

settings from paired tumor and normal tissues. The log2 copy number ratios were corrected

PLOS GENETICS Landscape of conjunctival melanoma

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009201 December 31, 2020 13 / 22

https://www.qiagenbioinformatics.com/
https://doi.org/10.1371/journal.pgen.1009201


using estimated purity by PureCN [79]. To call CNVs, the following thresholds were used:

shallow deletion heterozygous copy number loss, deep deletion homozygous copy number

loss, gain 1.5 to 2 increase and amplification > 2 increase, as done previously [84]. Focal and

broad CNVs were detected using the CNVkit segmentation data imported in GISTIC 2.0 [85].

The proportion of genome altered by CNV was obtained by computing the ratio between the

number of base pairs of each CNV event and the total length of the genome, in each patient.

Transcriptomic classification

The final gene expression counts from the CLC Genomics Workbench were log10 normalized

and used to perform an unsupervised machine learning classification of the large-scale tran-

scriptome profiles of the 11 patients using self-organizing maps (SOMs), by using the opoSOM

2.1.1 R package [86]. To functionally characterize obtained clusters, we overlaid GO-term ‘bio-

logical process’ and gene expression signatures from previously-published studies of cutaneous

melanoma onto our data, as described by Kunz et al. [87].

Fusions

STAR-Fusion [88] and EricScript [89] were used to detect fusions from RNA-seq data. According

to previous studies, STAR-Fusion shows the highest sensitivity for detecting fusions [78,90]. It

was therefore used as the main fusion caller, whereas the output of EricScript was integrated in

the filtering process. All the fusions were annotated using FusionHub [91]. The filtering of the

fusions involved: 1) exclusion of uncharacterized genes, immunoglobin genes, and mitochondrial

genes, 2) exclusion of fusions from the same gene or gene paralogs, 3) exclusion of fusions present

in the databases of normal samples from FusionHub, and 4) exclusion of fusions called by STAR-

Fusion with a FFPM (fusion fragments per million total reads) value of less than 0.1 and simulta-

neously not detected by Ericscript. S10 Fig was generated using CIRCOS Table Viewer [88].

Pathways

Genes were assigned to the ten canonical cancer pathways following the study by Vega et al.
[78] and based on the literature. A gene was considered as impacted by an SNV or by an indel

if it carried a protein-impacting variant—missense/nonsense/nonstop/splice site/frameshift

insertion or deletion/change impacting start or stop codons or a change creating a de novo
start—or any combination of these. A gene was considered as impacted by a CNV variant if

there was a correlation between the CNV and the expression levels of that gene. More specifi-

cally, a gene was considered as “deleted” if its expression in individuals with deep or shallow

deletions was significantly lower compared to the rest of the patients and a gene was consid-

ered as “amplified” if its expression in individuals with gains and amplifications was signifi-

cantly higher compared to the rest of the patients. The CNV levels were taken from the file

all_thresholded.by_genes.txt by GISTIC2.0, with the following parameters: deep deletion = -2,

shallow deletion = -1, neutral = 0, gain = 1, amplification = 2. The comparisons were done

using t-test with the threshold of 0.05, implemented in a custom Python (v2.7.15) script. The

template for S9 Fig was generated using PathwayMapper [92].

Plasmids

Gateway donor plasmids pDONR221 encoding the synthesized cDNA of human ACSS3
(NM_024560), and the ACSS3 missense mutation NM_024560: c.1594C>T/p.P532S were

used as a templates in a Gateway recombination reaction (Gateway LR Clonase cat. n˚

117910020) to integrate the genes in a pCDNA-DEST47 expression plasmid, under the
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transcriptional control of a human cytomegalovirus pCMV promoter. Recombinant plasmids

were used to transform E. coli DH5α, selected on LB agar containing 100 μg/ml ampicillin.

Plasmids were purified using Nucleobond extra midi-prep kit (cat. n˚ 740410.50, Macherey-

Nagel). Purified DNA was quantified using a DropSense 96 benchtop spectrophotometer

(Dropsense 96, Trinean) and integrity assessed by running the DNA on 0.8% agarose gel.

Gene sequences were verified using Sanger sequencing.

Cell culture

Conjunctival Recurrent Malignant Melanoma-1 cells (CRMM-1; RRID:CVCL_M593) were

grown at 37˚C, with 5% CO2 in a medium composed of 40% Ham’s F-12K (cat. n˚ 21127022,

Thermo Fisher), 40% RPMI 1640 (cat. n˚ 61870010, Thermo Fisher), supplemented with 10%

Fetal Bovine Serum FBS (Lot n˚ BCCB2240 cat. n˚ F7524, Sigma-Aldrich), 6 mM Hepes and

1% Penicillin-Streptomycin solution (cat. n˚ P4333-100 mL, Sigma-Aldrich). Cell passages

were performed every six days using Trypsin-EDTA (0.05%) (cat. n˚ 25300054, Thermo

Fisher).

Transfections

Transfections were performed with the Lipofectamine 2000 reagent (cat. n˚ 11668030, Thermo

Fisher) in 6-well plates (cat. n˚ 92996, Techno Plastic Products AG). Cells (0.3x106) were

seeded to reach 80% confluence a day prior to the transfection. Lipofectamine was diluted with

Opti-MEM medium (cat. n˚ 31985070, Thermo Fisher). After a 5-minute incubation, the lipo-

fectamine solution was mixed with the DNA solution. The expression plasmids were diluted

with Opti-MEM medium to a final volume of 150 μl, mixed with an equal volume of diluted

lipofectamine solution (10 μl lipofectamine per 2.5 μg DNA) and, after 20 minutes, added

dropwise to the well. Six hours after transfection, the cell medium was exchanged with fresh

medium.

Cell proliferation assay

CRMM-1 cells from three independent transfections in 6-well plates were transferred into a

96-well cell culture plate to evaluate the effect of transiently-expressed ACSS3 alleles on cell

proliferation. Six hours after transfection, adherent cells were washed with PBS and trypsi-

nized; 20 μl cell suspension was loaded on a cell counting chamber (SD100, Nexcelom) and

counted with a Cellometer Auto 1000 instrument. Ten thousand cells were seeded in 100 μl

medium for each well, in a 96-well cell culture plate (cat. N˚ 92096, Techno Plastic Products

AG). Cell proliferation assay (Cell Proliferation Kit I (MTT), cat. n˚ 11465007001, Roche) was

performed according to the manufacturer protocol. In brief, cells were incubated with 10 μl of

MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide, 0.5 mg/ml) solution for

4 hours, the medium was removed, and purple formazan salt crystals formed during incuba-

tion were solubilized with 100 μl solubilization solution in a humidified incubator at 37˚c for 2

hours. Samples were transferred into a 96 wells plate, and absorbance [A570 nm—A690 nm]

was measured with an absorbance plate reader (Hidex Sense).

RNA and Q-PCR

RNA was extracted from 0.5x106 cells in 6-well plates using Illustra RNA minispin (cat n˚ 25-

0500-70, GE Healthcare). RNA was quantified using a DropSense 96 benchtop spectropho-

tometer (Dropsense 96, Trinean). Two hundred nanograms RNA were used as a template for

cDNA synthesis using High-Capacity cDNA reverse transcription (cat n˚ 4368814,
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Thermofisher). Gene expression was quantified on QuantStudio 3 RT-PCR system (Applied

Biosystems) using the following primer sets. ACSS3 (from plasmid): 5’-CAGGCTTCCCACC

ATGAAAC-3’ and 5’-TGATCTGCTCGGCAGCTTTG-3’; ACTB (endogenous): 5’-CACCT

TCTACAATGAGCTGCG-3’ and 5’-AGCACAGCCTGGATAGCAACG-3’.

Software information and availability

Data were analyzed with software described previously or with a combination of custom

Python (v2.7.15) and R scripts (v3.6.0). To generate the figures and supplementary figures the

following R packages were used:

maftools 2.0.16: Fig 1, S3 Fig, S5 Fig

ComplexHeatmap 2.0.0: Fig 3

ggplot2 3.2.1: Fig 4, S1 Fig, S4 Fig

oposSOM 2.2.0: Fig 6, S7 Fig, S8 Fig

ade4 1.7–13: Fig 2

Supporting information

S1 Table. Summary of the clinical characteristics of the 14 patients. (RxTT—Radiotherapy,

PAM—Primary Acquired Melanosis, AJCC—AJCC melanoma staging system, KI67—expres-

sion of KI67, MMC—mitomycin C, OS—overall survival)

(XLSX)

S2 Table. All somatic SNVs and small insertions/deletions (indels) detected in the study.

(TXT)

S3 Table. Summary of all the somatic variations per patient, including SNVs, Indels and

CNVs.

(XLSX)

S4 Table. Mutations identified in the hTERT promoter. nd; not determined.

(XLSX)

S5 Table. All somatic CNVs detected in the study.

(TXT)

S6 Table. SNVs and indels impacting genes in the ten main cancer pathways, present our

set of 14 CJM patients.

(XLSX)

S1 Fig. Expression of APOBEC-family genes (in Reads Per Kilobase per Million—RPKM)

in CJM patients in relation to their tumor localization. Sample CM10 is shown separately,

demonstrating that none of the genes is significantly overexpressed in the patient’s tumor.

APOBEC1 and APOBEC4 were not expressed in any of the samples.

(PDF)

S2 Fig. Comparison of the number of somatic variants in tarsal vs. bulbar tumors. The

associated p-value for the difference in the distribution is 0.007, by t-test.

(PDF)
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S3 Fig. Landscape of mutations for the genes: (A) NF1 (B) BRAF (C) HRAS and (D)

NRAS. The grey bar represents the full protein and the colored segments visualize the posi-

tions of the specific functional domains.

(PDF)

S4 Fig. Comparisons of: (A) number of somatic exonic alterations, (B) number of C>T alter-

ations within the four genomic tumor classes defined by TCGA.

(PDF)

S5 Fig. Landscape of mutations in the gene ACSS3. The grey bar represents the full protein

and the colored segments visualize the positions of specific functional domains.

(PDF)

S6 Fig. Recurrent focal amplifications and deletions. Recurrent focal CNVs (amplifications

—right, deletions—left), as detected by Gistic 2.0, are displayed across the genome. The statis-

tical significance of the focal events is shown as FDR q values (x axis).

(PDF)

S7 Fig. Gene expression enrichment analysis of the three transcriptomic clusters. The clus-

ters are enriched in functions related to (i) DNA replication, DNA repair and cell cycle, (ii)

immune system, and (iii) keratinization, cornification and cell-cell adhesion.

(PDF)

S8 Fig. Classification of CJM into an “immune high subtype”, a “keratin high subtype”,

and a “cell cycle high subtype” based on the known CM gene sets.

(PDF)

S9 Fig. Pathways altered in CJM. (A) Proportions of altered genes in ten canonical oncogenic

signaling pathways. Frequency of SNVs, amplifications and deep deletions are indicated.

Color intensity reflects the frequency of the alteration. (B) Summary data per pathway, with

respect to SNVs and CNVs.

(PDF)

S10 Fig. Spectrum of fusion events detected in CJM. The thickness of the edges reflects the

frequency of the fusions detected. Edges in green depict known cancerrelated fusion events.

Genes in bold are known cancer-related genes.

(PDF)
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92. Bahceci I, Dogrusoz U, La KC, Babur Ö, Gao J, Schultz N. PathwayMapper: a collaborative visual web

editor for cancer pathways and genomic data. Bioinformatics. 2017; 33:2238–2240. https://doi.org/10.

1093/bioinformatics/btx149 PMID: 28334343

PLOS GENETICS Landscape of conjunctival melanoma

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009201 December 31, 2020 22 / 22

https://doi.org/10.1016/j.cels.2015.12.004
https://doi.org/10.1016/j.cels.2015.12.004
http://www.ncbi.nlm.nih.gov/pubmed/26771021
https://doi.org/10.1126/science.aad0501
http://www.ncbi.nlm.nih.gov/pubmed/27124452
https://doi.org/10.1371/journal.pone.0034247
https://doi.org/10.1371/journal.pone.0034247
http://www.ncbi.nlm.nih.gov/pubmed/22536322
https://doi.org/10.1016/j.cell.2018.03.035
http://www.ncbi.nlm.nih.gov/pubmed/29625050
https://doi.org/10.1136/bjophthalmol-2018-312018
http://www.ncbi.nlm.nih.gov/pubmed/29777046
https://doi.org/10.1126/science.1181498
http://www.ncbi.nlm.nih.gov/pubmed/19892942
https://doi.org/10.1089/cmb.2011.0201
https://doi.org/10.1089/cmb.2011.0201
http://www.ncbi.nlm.nih.gov/pubmed/22175250
https://doi.org/10.1002/humu.22771
http://www.ncbi.nlm.nih.gov/pubmed/25703262
https://doi.org/10.1038/modpathol.2013.167
https://doi.org/10.1038/modpathol.2013.167
http://www.ncbi.nlm.nih.gov/pubmed/24030752
https://doi.org/10.1126/science.aau6509
http://www.ncbi.nlm.nih.gov/pubmed/30385465
https://doi.org/10.1186/gb-2011-12-4-r41
http://www.ncbi.nlm.nih.gov/pubmed/21527027
https://doi.org/10.1093/bioinformatics/btv342
https://doi.org/10.1093/bioinformatics/btv342
http://www.ncbi.nlm.nih.gov/pubmed/26063839
https://doi.org/10.1038/s41388-018-0385-y
http://www.ncbi.nlm.nih.gov/pubmed/29995873
https://doi.org/10.1101/120295
https://doi.org/10.1093/bioinformatics/bts617
https://doi.org/10.1093/bioinformatics/bts617
http://www.ncbi.nlm.nih.gov/pubmed/23093608
https://doi.org/10.1016/j.celrep.2018.03.050
http://www.ncbi.nlm.nih.gov/pubmed/29617662
https://doi.org/10.1371/journal.pone.0196588
https://doi.org/10.1371/journal.pone.0196588
http://www.ncbi.nlm.nih.gov/pubmed/29715310
https://doi.org/10.1093/bioinformatics/btx149
https://doi.org/10.1093/bioinformatics/btx149
http://www.ncbi.nlm.nih.gov/pubmed/28334343
https://doi.org/10.1371/journal.pgen.1009201

