
Causal inference can lead us to modifiable mechanisms and 
informative archetypes in sepsis

J. Kenneth Baillie‡,1,2,3,4,5, Derek Angus5,6,7, Katie Burnham8, Thierry Calandra5,9, Carolyn 
Calfee5,10, Alex Gutteridge11, Nir Hacohen12, Purvesh Khatri13, Raymond Langley14, Avi 
Ma’ayan15, John Marshall5,16, David Maslove17, Hallie Prescott5,18, Kathy Rowan5,19, 
Brendon Scicluna20, Christopher Seymour5,6, Manu Shankar-Hari4,5,21, Nathan Shapiro5,12, 
W. Joost Wiersinga5,22, Mervyn Singer5,23, Adrienne G. Randolph5,24,25

1Baillie Gifford Pandemic Science Hub, Centre for Inflammation Research, The Queen’s Medical 
Research Institute, University of Edinburgh, 47 Little France Crescent, , Edinburgh, UK.

2Roslin Institute, University of Edinburgh, Easter Bush, , Edinburgh, EH25 9RG, UK.

3MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western 
General Hospital, Crewe Road, , Edinburgh, EH4 2XU, UK.

4Intensive Care Unit, Royal Infirmary of Edinburgh, 54 Little France Drive, , Edinburgh, EH16 
5SA, UK.

5International Sepsis Forum

6Department of Critical Care Medicine, University of Pittsburgh

7UPMC Health System, Pittsburgh, Pennsylvania

8Wellcome Sanger Institute, Hinxton, UK.

9Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.

10Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Departments of Medicine and 
Anesthesia, University of California San Francisco, San Francisco, CA, USA.

This work is licensed under a BY 4.0 International license.
‡to whom correspondence should be addressed: j.k.baillie@ed.ac.uk . 

Conflict of Interest Statement 
The International Sepsis Forum has been generously sponsored by Cytosorbents, Genentech, GE, BD, deepull, Gentian, Inflammatix, 
Oxford Nanopore Technologies, Sanofi, and Baxter. JKB reports research funding from Wellcome, MRC, BBSRC, UKRI, Baillie 
Gifford, and NIHR. JM reports grants from the Canadian Institutes of Health Research and has served as chair of data and safety 
monitoring boards for AM Pharma and Adrenomed. MS-H reports funding from NIHR. TvdP has received grants from the EU’s 
Horizon 2020 research and innovation funding programme. All other authors declare no competing interests. AG is a shareholder 
of and has received salaries from GSK and Novo Nordisk. AGR is the Chair of the International Sepsis Forum and has received 
consultancy fees from Inotrem, Thermo Fisher and Volition, and receives funding from the US National Institute of Allergy and 
Infectious Diseases and Centers for Disease Control. TC reports grants from the Swiss Academy of Medical Sciences, the Swiss 
Federal Institute of Technology Zurich and the EU’s Horizon 2020 research and innovation funding programme, and consulting, 
speaker’s bureau, data safety monitoring boards from Basilea, Cidara, Gilead Sciences, MSD Merck Sharp & Dohme, Moderna, 
Novartis, Pfizer, Shionogi (payments made to his institution.) CSC reports grant funding from the NIH, Roche-Genentech, and 
Quantum Leap Healthcare Collaborative, and has served as a consultant or advisor to Vasomune, Gen1e Life Scienes, Arrowhead, 
Cellenkos, Calcimedica, EnliTISA, Novaris, Aerogen, Fisher-Paykel, and Boehringer. BPS received funds from the European Society 
of Intensive Care Medicine (ESICM) and Xjenza Malta Research Excellence Program (REP-2023-049). CWS reports grants from the 
US National Institutes of Health National Institute of General Medical Sciences, during the conduct of the study, and personal fees 
from Inotrem and Beckman Coulter, outside of the submitted work.

Europe PMC Funders Group
Author Manuscript
Intensive Care Med. Author manuscript; available in PMC 2024 December 01.

Published in final edited form as:
Intensive Care Med. 2024 December 01; 50(12): 2031–2042. doi:10.1007/s00134-024-07665-4.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

https://creativecommons.org/licenses/by/4.0/


11Computational Biology, GSK, Stevenage, UK

12Harvard University, Boston, USA.

13Research Institute for Immunity, transplantation and infection, 240 Pasteur Dr Rm 1553, 
Biomedical Innovation Building, Palo Alto, California, USA

14College of Medicine, University of New Mexico, Albuquerque, New Mexico, United States.

15Icahn School of Medicine at Mount Sinai, New York, NY

16St Michael’s Hospital, Toronto, ON M5B 1W8, Canada.

17Department of Critical Care Medicine, Queen’s University, Kingston, Ontario, Canada.

18University of Michigan, Michigan, USA.

19Intensive Care National Audit & Research Centre, London, UK.

20University of Malta, Malta.

21Centre for Inflammation Research, The Queen’s Medical Research Institute, University of 
Edinburgh, 47 Little France Crescent, , Edinburgh, UK.

22Division of Infectious Diseases, Amsterdam UMC, University of Amsterdam, Netherlands.

23University College London, London, UK.

24Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, 
Boston, MA, USA.

25Departments of Anaesthesia and Pediatrics, Harvard Medical School, Boston, MA, USA

Abstract

Purpose—Medical progress is reflected in the advance from broad clinical syndromes to 

mechanistically-coherent diagnoses. By this metric, research in sepsis is far behind other areas 

of medicine - the word itself conflates multiple different disease mechanisms, whilst excluding 

noninfectious syndromes (e.g. trauma, pancreatitis) with similar pathogenesis. New technologies, 

both for deep phenotyping and data analysis, offer the capability to define biological states with 

extreme depth. Progress is limited by a fundamental problem: observed groupings of patients 

lacking shared causal mechanisms are very poor predictors of response to treatment.

Results—Here we discuss concrete steps to identify groups of patients reflecting archetypes of 

disease with shared underlying mechanisms of pathogenesis. Recent evidence demonstrates the 

role of causal inference from host genetics and randomised clinical trials to inform stratification 

analyses. Genetic studies can directly illuminate drug targets, but in addition they create a 

reservoir of statistical power that can be divided many times among potential patient subgroups 

to test for mechanistic coherence, accelerating discovery of modifiable mechanisms for testing in 

trials. Novel approaches, such as subgroup identification in-flight in clinical trials, will improve 

efficiency.

Conculsion—Within the next decade, we expect ongoing large-scale collaborative projects to 

discover and test therapeutically-relevant sepsis archetypes.
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Introduction

The sepsis hypothesis and a half-century of disappointment

While other areas of medicine have progressed into the mechanistic era, critical care in 2024 

remains a speciality of syndromes, rather than diseases. Here, we build on our previous work 

on theoretical foundations1 and potential implications2 of subgrouping in critical illness, to 

describe practical steps for future research. This report describes a consensus among the 

authors, built over several years of discussion.

A 2014 review found that more than 120 published large-scale clinical trials of treatments 

for sepsis have been conducted,3 each costing millions of dollars (current estimates of Phase 

II/III trial costs range from $7-50 million4). None of these trials has yielded an effective 

new treatment. Sepsis is still considered an “orphan” disease with no approved therapies, 

with the lone exception of severe COVID-19. Since sepsis lumps together patients with 

fundamentally different disease pathogenesis,5 it is likely that some effective therapies have 

been rejected that could succeed in the right subgroup.6 The problem may be particularly 

difficult in sepsis compared to other syndromes: the biological processes triggered in sepsis 

have evolved to become extremely complex, making the effect of new treatments very 

difficult to predict.7

Significant progress has been made in recent years in recognising the heterogeneity 

of patients with sepsis, summarised in our previous work.1,2 The development of new 

technologies - here, together referred to as “deep phenotyping” - enables us to make millions 

of observations about a single patient with sepsis. This refers both to high-throughput 

biological read-outs in genomics and transcriptomics, and to automated collation of 

information from clinical records, monitoring, imaging and other routine tests.

Numerous studies demonstrate that deep phenotyping reveals features of critically ill 

patients that are not clinically obvious.8–15 If the host response to sepsis is treatable, then 

it is reasonable to expect that some of these observations are either biomarkers for, or 

direct measurements of, underlying processes that can be modified to prevent death.16 The 

distinguishing feature of these modifiable mechanisms is that they have a causal relationship 

with clinical outcomes.

Where the number of observations greatly exceeds the number of patients, there is a 

high probability that important signals will be present but cannot be detected with any 

confidence, because there is too much random noise. Secondly, since biology is reliably 

more complex than our understanding of it, causal relationships in high-dimensional 

biological data are difficult to distinguish from correlations. These fundamental limitations 

have probably prevented discovery of mechanistically-coherent diagnoses within sepsis.

The 1992 systemic inflammatory response syndrome (SIRS) concept17 summarised the 

prevailing clinical perception that immune processes associated with organ failure extend 

across infections and sterile injuries. This was proposed at around the same time as the 

prescient reasoning by Janeway that antibodies and T-cell receptors could not explain the 

speed of immune responses to pathogens, and hence that a broader, more ancient recognition 
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system must exist.18 Subsequent research has revealed that innate immune systems across 

the tree of life possess a range of pattern recognition receptors19 that respond not only 

to molecular patterns found on infectious organisms, but also to similar patterns released 

by damaged cells20 (danger-associated molecular patterns, DAMPs),21 by initiating non-

specific immune responses that may cause organ damage. The clinical concept of systemic 

inflammatory response might be described in molecular biological terms as DAMP-osis. 

Perhaps if SIRS had been proposed as a clinical observation, or a theoretical concept,22 

rather than a clinical syndrome with the expectation of specific therapeutic responses, it 

might have better stood the test of time.23

A syndrome definition can err by inclusion and by exclusion. The definition of sepsis24 

makes both errors: it is simultaneously too broad and too narrow. A single syndrome 

that combines coma due to meningitis, respiratory failure due to critical Covid-19, and 

cardiovascular shock due to urosepsis is self-evidently incoherent: it is very likely that 

distinct causal mechanisms underlie outcomes in these diseases. In part as a consequence, 

it also errs by exclusion - although classifiers exist,25 to our knowledge no immune process 

has been discovered to be shared across the whole spectrum of patients with sepsis, that is 

not also evident in patients with severe systemic inflammation precipitated by sterile injury 

such as trauma, pancreatitis, haemorrhage and burns.

Critical care medicine does not need a new definition of sepsis. Instead, we anticipate 

that future progress will ultimately replace the sepsis syndrome with overlapping, 

mechanistically-coherent diagnoses with specific therapeutic consequences. Here, we report 

a series of recommendations following an ongoing discussion among an international group 

of experts across a range of relevant disciplines,1,2 and consider some concrete steps that can 

be taken to discover and modify causal mechanisms of disease in sepsis.

Definitions

Endotype: A subgroup within a population of patients who are distinguished by a shared 

disease process.26 Historically, the underlying mechanism is what distinguishes a disease 

from a syndrome.

Trait*: A specific distinguishing characteristic of an organism.

Phenotype*: An observable characteristic of an organism.

Genotype*: The genetic makeup of an organism

Treatable trait: The pathophysiological feature (or, in a looser sense, a biomarker or 

group of biomarkers for that feature) that determines whether a given therapy will 

improve a given patient’s outcome. The same trait may be present in many different 

clinical syndromes or disease processes.26

Modifiable mechanism: An underlying disease process that can be modified by 

treatment.

Archetype: A description of the idealised, typical appearance representative of a group.
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* these words are used widely in biology under these, or similar, definitions, so it would 
be undesirable for clinical researchers to attempt to redefine them.

Pitfalls and recommendations

Since modern approaches yield too many observations for a human brain to recall 

simultaneously, we need to devise rules with which to program a computer to recognise 

clinically-important signals. For this reason, we must explicitly state the desirable 

characteristics of the clinical patterns we want to find. Here we state some of the pitfalls that 

may limit progress in this field, and make recommendations to guide future work.

No stratification without causation

By definition, there are always subgroups within a heterogeneous population: these 

may be valid subgroup observations, meeting mathematical criteria for robustness and 

reproducibility, reliably separate from each other, and consistent in past populations and 

future ones. But in many cases they are clinically and biologically uninformative. What 

makes a clinical subgroup useful is the presence of an underlying, modifiable, causal 

mechanism.

Robust causal inference is a primary objective of the scientific method in all cases we 

discuss, but different philosophical perspectives impact on the approach. The key distinction 

is between deterministic reasoning, which frames stratification around the assumption of 

an underlying, unseen, chain of causal events, and probabilistic reasoning, which views 

stratification as the combination of a range of semi-quantifiable probabilities of benefit 

or harm. Both are valid approaches; there is no dichotomy (Figure 1). In reality, both 

approaches are used simultaneously, overlap, and together lead to a deeper and more 

useful understanding of reality. A purely probabilistic approach in the absence of causal 

mechanisms has limited utility, because any prediction made in one population cannot be 

reliably translated to a future population. A deterministic approach, building stratification 

based on causal events, has the advantage that true causal mechanisms are predictive 

across populations in different circumstances, but this is very difficult (or, under a rigid 

definition of causality, impossible) to achieve. In reality, a tractable option is to pursue 

causal mechanisms as best we can, using them as a tool to improve the reliability of 

predictions about future populations of patients with sepsis.

How to identify causal mechanisms driving sepsis outcomes.

Using randomisation as the primary tool to infer causation:

• Opportunistic randomisation in genetics (Mendelian randomisation) to rapidly 

test many therapeutic hypotheses

– Test specific drug targets

– Test for mechanistic coherence within hypothetical subgroups
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• Deliberate randomisation in clinical trials to definitively test carefully-

selected therapeutic hypotheses Rigour in identification of sepsis subgroups 

with coherent causal mechanisms:

• Co-enrolment and data sharing to maximise yield from intervention studies

• Use high-quality data visualisation to incorporate domain specific knowledge 

from experts

• Important caveats:

– Subgroup differences in disease outcome driven by disease severity 

are not proof of differences in underlying mechanism.

– Treatable traits may not be sepsis-specific, and may occur in other 

syndromes.

– Not every individual will fit into a subgroup.

– Focus on subgroups with a high level of intra-group similarity: 

archetypes.

– There may be many subgroups, however, useful subgroups are those 

that may benefit from specific therapies.

Trial designs:

• Use genetics to test and prioritise proposed subgroups, to improve statistical 

efficiency of definitive trials

• Basket trials focusing inclusion on a clinical feature that may span several 

different diagnoses

• “In-flight” modification of trial inclusion criteria to enable detection and 

testing of subgroups

Randomisation remains our primary tool to assign a causal role to any factor, because it can 

balance both measured and unmeasured confounding variables. Two types of randomisation 

offer the potential to draw robust causal inferences with quantifiable uncertainty:

1. deliberate randomisation (e.g. in clinical trials or model studies)

2. opportunistic randomisation in nature (e.g. random assignment to genotype at 

conception)

Inferring causality: deliberate randomisation in clinical trials—The most direct 

and interpretable causal evidence in clinical medicine comes from trials. This evidence 

comes with a fundamental limitation, which is common to both Bayesian and frequentist 

designs: any attempt at stratification makes the comparison groups smaller, drastically 

cutting the probability of detecting a real therapeutic signal in a subgroup, above the noise 

created by chance variation.
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But real therapeutic signals in subgroups exist, are important, and can modify clinical 

practice. Detecting them requires a principled approach, because the number of possible 

subgroups in a trial population is so vast that it is a near certainty that some subgroups 

exist in which large effects for benefit or harm have been observed by chance alone. In 

order to overcome this, trials define a carefully limited number of subgroups for secondary 

analyses a priori. This approach can work: for example, the RECOVERY trial in the UK 

discovered a therapeutic benefit from steroid treatment in some patients with Covid-19 

(those with hypoxaemic lung injury), and a trend towards harm in others (hospitalised 

patients not requiring oxygen therapy).27 This subgroup analysis was defined in advance, 

and the differential treatment effect was very strong. Perhaps for these reasons, and because 

of the unusual circumstances of the pandemic, this result led to an immediate change in 

clinical practice.28

Efficiency is the main problem in deriving causally coherent subgroups from trial data. 

The number of subgroups that can be tested, and the number of treatments that can be 

tested simultaneously, are limited. These limitations are baked in: if a clinical trial continued 

long after the treatment had been shown to be effective, it is very likely that differential 

treatment effects between subgroups would be identified, since the relative benefit and harm 

varies between patients (a concept referred to as heterogeneity of treatment effect, HTE). 

But no trial would ever continue to allocate patients to miss out on a treatment that has 

been shown to be effective. The ethical imperative in trial design acts to limit the power to 

detect subgroups. This limitation does not apply to another method to draw causal inferences 

about biological mechanisms - host genetics - in which “spare” statistical power is generated 

routinely.

Inferring causality: opportunistic randomisation in genetics—Since some genetic 

effect sizes can be very large, and because the same hypothesis is tested repeatedly in 

each new study of a given disease, aggregated genetic signals are often overpowered. For 

example in the largest study of susceptibility to critical illness in Covid-19, the strongest 

association has a P-value less than 1x10-253.29 Unlike clinical trials, genetic studies do not 

stop detecting a signal after it reaches criteria for significance. This means that an extensive 

reservoir of spare discovery power is generated, and can be divided among subgroups to test 
stratification hypotheses (Figure 1).

Genetics has the potential to cut through the intractable complexity of the human immune 

system to identify levers that alter outcome.7 For example, genes that associated with 

cardiovascular disease and cholesterol levels encode proteins targeted by drugs. In the 

case of PCSK9 inhibitors, a new effective drug was discovered from a host genetic study. 

Similarly, for the first time in critical care medicine or infectious diseases, a host genetic 

signal near the TYK2 gene30 led directly to the discovery of a new, effective treatment 

for Covid-19: baricitinib.31 This drug was one of 9 candidates under consideration for 

inclusion in the RECOVERY trial, and like others on the shortlist,32 had some support 

from bioinformatics predictions and small trials.33 The genetic signal influenced the 

prioritisation of baricitinib ahead of other potential treatments (personal communication, 

Patrick Chinnery, Chair, UK CTAP34).
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The primary methodology used for causal inference in genetics is a special case of 

instrumental variable analysis called Mendelian randomisation. Briefly, at conception, each 

individual is assigned to a given genotype at each position in their genome. These genotypes 

are selected at random when gametes are formed through meiosis. Since the genome is 

also largely static from conception throughout life, this creates a powerful tool for asking 

causal questions about biological mediators. For example, where the same genetic variants 

are associated with mediator levels (i.e., where a given genotype changes the amount of a 

mediator that an individual produces) and with a clinical phenotype (e.g. the development 

of a disease), they can be used to infer causal relationships between mediators and clinical 

phenotypes.35 The analysis treats patients as if they had been randomised, in a trial, to 

receive higher or lower amounts of the mediator, and asks, what effect does this have 

on development of the disease? The approach relies on several explicit assumptions, of 

which the most important is the assumption that there is not an alternative mechanistic 

pathway linking a genetic variant to a clinical outcome.36 This assumption is often violated, 

since genetic variants tend to have multiple effects (“pleitropy”),37 and infinitesimally small 

genetic effects on other traits are widespread (and possibly ubiquitous).38

Mendelian randomisation can in theory be used to test hypotheses about a causal role for any 

exposure variable that can come under strong genetic influence. The most directly relevant 

exposures for mechanistic inference are genetic variants (quantitative trait loci, QTL) that 

change the amount of a given molecule that is produced in a particular biological context 

(e.g. RNA expression (eQTL) or protein concentration (pQTL)). Where these molecular 

QTL are also associated with a clinical outcome, they provide an opportunity to fill the 

mechanistic gaps between genetic variants and disease states (Figure 2). Disease-associated 

molecular QTL relationships are highly cell-type and -state dependent, so despite a rapid 

recent expansion in known molecular QTL39,40 it is likely that many important effects 

remain to be discovered.

With advancing knowledge of molecular QTL, genetics provides the potential to efficiently 

test multiple causal hypotheses about mediators in the same pathway in a composite 

design, by controlling for confounders at each step using Mendelian randomisation (Figure 

3).[10.1534/genetics.117.300191] The same approach would be technically possible, but 

inefficient and costly, using a series of targeted interventions in randomised controlled trials.

The prediction of therapeutic effects from genetics depends on a simple parallel: in some 

circumstances, the effect of a genetic variant mimics the effect of a drug. This arises 

where the genetic variant modifies molecular mechanisms in a similar way to a given 

treatment. A further parallel is expected to exist with heterogeneity of treatment effect. Just 

as individual patients have different probability of net benefit from a given drug treatment, 

there is heterogeneity of genetic effect across a population of patients. Taking the example 

of corticosteroid treatment in Covid-19, the population in which greatest therapeutic benefit 

was seen, is also the population in which the strongest genetic signals for association with 

hypoxaemic respiratory failure are seen.29

Importantly, the proportion of variance in a common clinical outcome explained by a single 

genetic variant is usually very low, which leads to a common misconception that the signals 
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are not useful. In fact, this is an expected finding in complex trait genetics and does not 

preclude the use of genetics in identifying disease mechanisms.

We believe that the time has come to obtain and collate genotype data from tens of 

thousands of patients with sepsis. Global, “open-source”41 efforts such as GenOMICC 

(Genetics Of Mortality In Critical Care) offer the potential to significantly advance 

biological understanding of sepsis and other forms of critical illness.

How to identify subgroups and traits

There is no reason why the biggest stratification signal should be the most 
informative—A simple example reveals the challenge. In many cities around the world, 

the population divides their allegiance between two or more sports teams. Classifying 

the patients presenting to a local hospital in such a city according to the colour of 

their clothing would result in robust groupings of patients that meet the most stringent 

mathematical criteria. Demographic and behavioural differences between these groups 

may result in different disease prevalence, biological characteristics and even clinical 

outcomes. This may correlate strongly with other factors, including socioeconomic status, 

environmental exposures, and even religious beliefs. But these traits are highly unlikely 

to reveal therapeutically-actionable underlying mechanisms. The largest stratification is the 

easiest to detect, but a smaller signal with a coherent causal mechanism could be much more 

important.

Conflating severity with mechanism—Since sepsis is a response syndrome, 

differential severity and differential disease mechanisms are often indistinguishable. In 

critically ill populations, the probability of death varies continuously over a wide range. 

This has a direct mathematical effect on the probability of net benefit from therapeutic 

interventions, and hence on the observed treatment effect in clinical trials. This form of 

heterogeneity of treatment effect means that there are always some patients with a much 

higher chance of net benefit from an effective therapy, and conversely, some patients with 

a higher probability of null effect, or harm.42 The impact of HTE is that the optimal 

probability of net benefit from a given therapy is a balance between the benefit and harm 

associated with that therapy, and is hence specific to that therapy.

Similarly, different patients prioritise different disease outcomes: some may value survival 

above all else, whereas others will place greater value on symptom control. So the choice 

of the ideal group of patients to receive a given therapy is not only determined by the 

probability of net benefit, but by the definition of “benefit” for each patient. Disease 

severity has direct and important therapeutic consequences, but it is conceptually distinct 

from disease mechanism. Heterogeneity of severity acts on a single dimension, and is 

quantifiable by definition for any clinical outcome. In contrast, mechanistic heterogeneity 

is as broad as our current understanding of disease biology, and as multidimensional as the 

number of different pathophysiological processes that exist. Since mechanistic heterogeneity 

is expected to overlap with severity heterogeneity, we recommend that a difference between 

subgroups in disease outcome should not be taken as evidence of difference in underlying 

mechanism.
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The spotlight fallacy—This form of selection bias affects the interpretation of any 

study using new technology to examine a group. Subgroups of a set are interpreted to 

be specific features of that set, neglecting the possibility that the same subgroupings apply 

equally to other sets (Figure 4). For example, imagine a new technology is used to observe 

patients meeting a certain condition, such as sepsis (as if a new kind of spotlight is being 

shone on this group). Subgroups are found within these patients. This observation is then 

interpreted to be a new discovery about patients with sepsis. But it may well be that the same 

observation can be made about patients with many other clinical problems, but since no-one 

has ever looked for the same observations in other conditions, this has been overlooked.

Real mechanisms of disease do not always restrict themselves to clinically-obvious 

syndromes. For this reason, the definition of treatable traits is syndrome-agnostic. This 

is self-evident from numerous examples in medicine - to take a trivial example, shock 

is modifiable by noradrenaline, but can occur in a broad range of syndromes. It is 

not a surprise that subgrouping signals are detected in multidimensional data analysis. 

Probably the first example of this is the observation that the same subgroups can be 

detected in patients with ARDS43 and mild-moderate pancreatitis,11 suggesting that the 

subclassification signal in ARDS is generalisable to a broader range of syndromes.

It is not necessary to assign every patient to a subgroup—Diagnoses are 

sometimes made with a high degree of confidence and sometimes with considerable 

uncertainty. It is common, particularly in acute presentations, for patients to have no 

diagnosis at all. Studies looking to discover new diseases within heterogeneous syndromes 

should employ the same humility as a clinician at the bedside, accepting that in many cases, 

we aren’t sure which category fits best. Subgrouping studies in sepsis have often assigned 

group/cluster/class membership to every patient within the study population.

The converse of the spotlight fallacy is the assumption that, within a given group of patients, 

every individual must be classifiable. Whilst we take it as read that every patient is deserving 

of care, it is not true that every patient can be assigned to an informative subgroup. When 

we subdivide a group of patients with the same syndrome, we must have the humility to 

ask, what if some patients don’t really have that syndrome? Or what if the definition of the 

syndrome itself is incoherent? If either of these conditions are true, some patients will not 

belong in any subgroups of that syndrome.

The consequences of this depend on the mathematical approach to classification. Many 

approaches derive from general classification methods and begin with the assumption that 

all entities must be classified. Probabilistic methods, which derive a probability of class 

assignment for each individual, can overcome this limitation, but depend on the user to 

avoid this pitfall when interpreting the results. Some patients are not classifiable, and some 

subgroups are not informative.

Uninformative subgroups are not a new problem, and the solution adopted by our medical 

ancestors presents a tractable route forward: archetypes. Archetypes are familiar to clinicians 

worldwide as those rare, uncomplicated presentations of a single disease. They are known 

variously as “classical”, “typical” or “canonical” presentations of disease, and taught to 
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medical students primarily as a tool to preserve memory. The concept may also help to 

protect us from some of the pitfalls listed above: by focusing only on what is interpretable 

and informative, we can avoid the difficulties created by attempting to create a single 

solution for a complex and heterogeneous clinical population. Focusing on subgroups with 

a high level of intra-group similarity is more likely to yield subgroups across which the 

underlying causal mechanisms of disease are demonstrably shared (Figure 1).

The number of subgroups does not matter—Patients do not fall into discrete, 

mutually-exclusive subgroups. The presence or absence of disease is not a binary 

classification. This is evident because:

• patients often present with many overlapping diagnoses simultaneously

• diagnostic observations often have a high degree of measurement uncertainty

• most disease processes exist on a wide spectrum of severity, which may vary 

over time and alters the balance between risk and benefit for any given treatment

Two conclusions follow: firstly, an optimised subgroup definition for therapeutic benefit will 

be specific to a given therapy, and may not generalise to other therapies, particularly those 

that target a different mechanism. Secondly, the number of subgroups observed within a 

group of patients is wholly determined by the application of arbitrary thresholds along a 

range of continuous variables. Hence, the absolute number of subgroups is uninformative. 

What matters is the number of useful subgroups. For example, a study of sepsis that 

observed that a group of patients with a particular combination of test results (e.g. SARS 

CoV-2 antigen and hypoxaemia) would benefit from treatment with steroids, IL-6 inhibition, 

and baricitinib, would be a major step forward, even if the same study also identified other, 

uninformative, subgroups.

Consider the pathogen—It is already true that a single class of laboratory tests can 

stratify patients with sepsis according to immediately therapeutically-actionable clinical 

features: pathogen diagnostics reveal a target for antimicrobials, and increasingly, for 

immunomodulatory therapy to prevent organ injury.27,31,44 As molecular diagnostics 

improve and generate increasingly complex information about potential pathogens,45 it 

will be important to integrate microbial diagnostics into analyses of multidimensional host 

observations.

Domain-specific knowledge—Analysis of deep phenotyping does not need to start from 

a position of total ignorance. Biological processes in innate immunity are some of the most-

studied in any species. A fundamental challenge is incorporating domain-specific knowledge 

into analytic strategies to detect treatable traits. This requires two-way communication. 

There is a clear unmet need, first to encode the existing knowledge of clinicians and 

biologists for use in machine learning, and secondly to visualise the richness of data from 

deep phenotyping such that it can be interpreted by clinicians.

Acquisition of deep phenotyping data—A significant practical challenge exists in 

linking the tools described above for causal inference with the deep biological data that can 

reveal stratification signals. Obtaining any additional data or sample in a clinical trial or 
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host genetic study comes at a cost by depleting the financial, human or institutional capacity 

available to recruit new patients. We propose that, since it is not necessary to obtain deep 

phenotype data from every patient in a study, co-enrolment and data sharing among trials, 

genetic and phenotyping studies will substantially accelerate progress in sepsis research and 

mechanisms to encourage this should be incentivised by both funders and research groups.

Trial designs

Basket trials and predictive enrichment—There are multiple examples in critical care 

of “basket” trials46–48 using syndrome-agnostic, biomarker-defined inclusion criteria (i.e. 

testing whether these traits are treatable). The concept has been very effective in oncology 

(reviewed here49). The insight in basket trials is, fundamentally, to avoid the spotlight fallacy 

(Figure 4) by including similar patients from across multiple different disease states or 

syndromes. For example the ongoing TRAITS trial in Scotland (https://traits-trial.ed.ac.uk/) 

recruits critically ill patients with shock and raised CRP for randomisation to imatinib, 

or those with lymphopaenia and respiratory dysfunction for randomisation to budesonide/

baricitinib. This is a true “basket” design in which the inclusion criteria are not restricted to a 

clinical diagnosis or “spotlight”.

Predictive enrichment is the selection of patients who are more likely to respond to a given 

therapy (compared with the similarly-named prognostic enrichment, which is the selection 

of patients at higher risk of an outcome of interest).50 An early example of this logic 

is the 2004 MONARCS trial, which employed a rapid test in severe sepsis patients to 

identify a subgroup with high circulating IL-6, whilst randomising all patients to receive 

an anti-TNF monoclonal antibody.51 More recently, the EUPHRATES trial of polymixin 

B haemoperfusion to remove endotoxin enriched for patients with high endotoxin levels,52 

tying the biomarker used for patient selection to the proposed causal mechanism of the 

intervention. A broad definition of predictive enrichment would include stratification by site 

of infection53 or by specific organ failure.54 If the mechanistic rationale for enrichment 

is correct, this approach increases the probability of detecting a true effect, at the cost of 

decreasing generalisability.

“In-flight” precision trials—Where there is residual uncertainty about therapeutic effect 

in a subgroup, after the primary analysis of a trial is complete, there is a strong argument 

for continuing to randomise within that subgroup. We propose that subgroup detection 

“in-flight” in clinical trials could both rescue effective treatments that would otherwise be 

rejected, and protect patients from receiving treatments that are more likely to cause them 

harm. Funding bodies should facilitate extended refinement of therapeutic indications by 

supporting ongoing recruitment within subgroups identified through a principled analysis. 

Such subgroups may be identified a priori or through unsupervised analyses of trial data, 

since ultimately the therapeutic effect in any chosen subgroup will be subjected to a rigorous 

test through subsequent randomisation.

Conclusion

Many of these pitfalls can almost always be avoided by a simple, intuitive approach which 

is too often missed in large scale studies: maintaining a focus on the desirable real-life 

Baillie et al. Page 12

Intensive Care Med. Author manuscript; available in PMC 2024 December 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

https://traits-trial.ed.ac.uk/


destination of subclassification research. By considering the ultimate goal - to delineate a 

landscape of informative disease archetypes - the ultimate utility of sepsis research can be 

significantly improved.

Like SIRS, sepsis is, fundamentally, more of a hypothesis than a disease. Perhaps our 

mistake has been to use the term in the context usually reserved for diseases - “treatment 

of sepsis”, “diagnostic criteria for sepsis” - rather than the more circumspect language used 

to describe a theory, that is, that organ damage is caused by a common pathway of host 

immune mechanisms precipitated by a broad range of infectious triggers. We contend that 

progress in sepsis research will require, above all, a focus on causal mechanisms driving 

clinical outcomes.

There is no single objectively-true view of the landscape of human disease. We consider 

the defining feature of a successful view of the landscape to be utility. Subgrouping aims 

to identify mechanistically coherent disease archetypes with value beyond the clinically 

obvious, with differential genetic predisposition and treatment response. Ultimately, we need 

to move beyond classification, to recognising, explaining and modifying continuous traits 

within the sepsis population.

Methods

The objectives of the ISF Colloquium were to: (a) engage experts from data analysis, 

machine learning, systems biology and related disciplines in the clinical problem of sepsis 

and how to identify and treat the underlying biological processes; (b) Establish effective 

communication between domain experts in clinical science, immunology, genomics and data 

science; and, (c) identify and overcome the barriers to achieving these goals in sepsis.

The International Sepsis Forum Executive Committee (M.S., T.C., S.F., and Elaine Rinicker) 

appointed co-chairs for the colloquium (J.K.B & A.R.), who identified contributors based 

on expertise relevant to the topic. A deliberate attempt was made to engage experts 

form outside of critical care medicine and infectious disease research. Experts in systems 

biology, high-dimensionality data analysis, genetics and genomics, transcriptomics, clinical 

epidemiology were asked to participate. Through an iterative process of snowball sampling 

by recommendation, a highly-engaged set of experts was gathered for the two-day 

colloquium, which occurred 6 weeks before the first cases of Covid-19 were reported, and 

provided the opportunity to test many of the ideas proposed. The final report summarises a 

consensus among the authors.
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Take Home Message

Until now, causal inference has been lacking from efforts to tackle heterogeneity in 

sepsis, ARDS and other forms of critical illness. The ability to test for causality using 

genetics, trial data, and other methods provide a tool to resolve this, and ultimately will 

enable us to find what we all want: mechanistically-coherent archetypes of critical illness.
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Figure 1. 
Illustration of the complementary perspectives from probabilistic or deterministic reasoning. 

Our observations in genetics, clinical trials and epidemiology lead to inherently probabilistic 

evidence (viewing from the right), but there are underlying biological or physiological 

events that determine disease state (progressing from the left). Patients are shown in a 

network grouped by similarity, with archetypal patients highlighed in red.
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Figure 2. 
Role of molecular QTL (including eQTL) in filling in the gaps in mechanistic understanding 

of genetic mechanisms of disease.

Baillie et al. Page 19

Intensive Care Med. Author manuscript; available in PMC 2024 December 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 3. 
Causal models of a hypothetical pathway in which three molecules (A, B, and C) form a 

pathway that leads to a potential clinical outcome (D). (a) In an experiment, patients can 

be randomised to receive an inhibitor of ‘A’. Randomisation balances confounders that 

affect the relationship between exposure and outcome, enabling robust causal inference. 

But randomisation does not balance the effect confounders, so the causal contributions of 

intermediate mediators cannot be directly inferred. (b) A proposed composite of multiple 

experiments in which each mediator is tested as a separate exposure. Using Mendelian 
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randomisation, if there are known genetic effects (eQTL) on each mediator, then each 

element in the pathway can be efficiently tested, using randomisation at conception to 

balance confounders.
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Figure 4. 
The spotlight fallacy. An observer looking at a flock of sheep in the darkness cannot see 

what colour each sheep is. Shining a spotlight on one field reveals a hidden subgroup of 

brown sheep among a flock of white ones (a). The observer falsely concludes that the brown 

sheep are only to be found in one field, but in fact they can be found in other fields if they 

are illuminated (b).
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