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Abstract 

Plants are sessile and photo-autotrophic, their entire life cycle is thus strongly influenced 

by the ever-changing light environment. In order to sense and respond to those 

fluctuating conditions higher plants possess several families of photoreceptors that can 

monitor light from UV-B to the near infrared (far-red). The molecular nature of UV-B 

sensors remains unknown, red (R) and far-red (FR) light is sensed by the phytochromes 

(phyA-phyE in Arabidopsis) while 3 classes of UV-A/blue photoreceptors have been 

identified: the cryptochromes, phototropins and members of the Zeitlupe family (cry1, 

cry2, phot1, phot2, ZTL, FKF1 and LKP2 in Arabidopsis). Functional specicialization 

within photoreceptor families gave rise to members optimized for a wide range of light 

intensities.  Genetic and photobiological studies performed in Arabidopsis have shown 

that these light sensors mediate numerous adaptive responses (e.g. phototropism and 

shade avoidance) and developmental transitions (e.g. germination and flowering). Some 

physiological responses are specifically triggered by a single photoreceptor but in many 

cases multiple light sensors ensure a coordinated response. Recent studies also provide 

examples of crosstalk between the responses of Arabidopsis to different external factors 

in particular between light, temperature and pathogens. Although the different 

photoreceptors are unrelated in structure in many cases they trigger similar signaling 

mechanisms including light-regulated protein-protein interactions or light-regulated 

stability of several transcription factors. The breath and complexity of this topic forced us 

to concentrate on specific aspects of photomorphogenesis and we point the readers to 

recent reviews for some aspects of light-mediated signaling (e.g. transition to flowering). 
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1. Multiple photoreceptors to sense a variety of light colors and intensities

Higher plants transform solar energy into chemical energy through the process of 

photosynthesis but also use light as an informational cue to control a multitude of 

physiological responses throughout their life cycle. Collectively these responses are 

known as photomorphogenesis (Kendrick and Kronenberg, 1994). Such responses can be 

reversible such as stomata opening or irreversible such as seed germination. The light 

quality (spectral composition), quantity, direction, and duration change depending on the 

season, latitude, (magnitude of day-length variable) and local condition (weather, 

position within plant communities). For instance, light under a plant canopy has a typical 

signature with a strong reduction of blue and red light absorbed by the photosynthetic 

pigments while levels of green and in particular far red (FR) light (near infra-red λ 700-

750nm) remain relatively high (Figure 1A). To sense such a diversity of light conditions 

higher plants possess multiple light-sensors (Chen et al., 2004; Quail, 2002; Somers and 

Fujiwara, 2009). Plant photobiology has a long history with detailed descriptions of 

photomorphogenic responses dating back to the 19th century (e.g. (Sage, 1992; Whippo 

and Hangarter, 2006)). In the second half of the 20th century light-responses were 

analyzed in many plant species using primarily physiological, photobiological and 

biochemical approaches (Kendrick and Kronenberg, 1994).  With the development of 

molecular genetics, Arabidopsis became the primary model to discover photoreceptors 

and signaling factors (Chen et al., 2004; Quail, 2002; Somers and Fujiwara, 2009). In this 

review, we will describe how the light environment shapes most aspects of the 

Arabidopsis life cycle and present recent progress in light-regulated development. 
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Four classes of photoreceptors have been identified in Arabidopsis. These photoreceptor 

families are present in all sampled higher plants although the number of members in each 

family is somewhat variable. Arabidopsis possesses five phytochromes (phyA-phyE) 

maximally absorbing red and FR light (Figure 1B) (Franklin and Quail, 2010; Rockwell 

et al., 2006). Three distinct classes of specific UV-A/blue light sensors are known: the 

cryptochromes (cry1, cry2), phototropins (phot1, phot2) and ZEITLUPEs (ZTL, FKF1, 

LKP2) (Figure 1B) (Christie, 2007; Demarsy and Fankhauser, 2009; Lin and Shalitin, 

2003; Somers and Fujiwara, 2009). Cryptochromes that are related to DNA photolyases 

possess a third member in Arabidopsis known as cry3 (or cry-DASH). It is still unclear 

whether cry3 is a photosensory photoreceptor however it is involved in DNA repair 

mechanisms (Pokorny et al., 2008). Higher plants posses a UV-B receptor of unknown 

molecular nature with broad roles in photomorphogenesis (Figure 1B, table I) (Jenkins, 

2009). Finally a number of green light responses in plants might be mediated by a yet to 

be identified photoreceptor (Folta and Maruhnich, 2007). 

 

Photoreceptors are chromoproteins composed of an apo-protein bound to a variety of 

chromophores (Christie et al., 1998; Imaizumi et al., 2003; Lin et al., 1995; Rockwell et 

al., 2006). The characteristic absorption spectra are determined by the chemical character 

of the chromophore and apo-protein. The chromophores and a simplified scheme of the 

light reactions of plant photoreceptors are presented on Figure 2. Phytochromes are 

synthesized in their red light (λmax 670 nm) absorbing state known as Pr. Upon light 

absorption the chromophore isomerizes leading to a FR absorbing state (λmax 730 nm) 

 4 



known as Pfr. This is due to the isomerization of a double bond between the C and D 

rings of the tetrapyrrol (Figure 2) (Rockwell et al., 2006). This traditional view has 

however been challenged by recent NMR data of the Pr and Pfr states of a bacterial 

phytochrome indicating that the primary light reaction is an isomerization between the A 

and B rings (Ulijasz et al., 2010). Whether this new finding is applicable to all 

phytochromes remains to be established. Phytochromes also possess a secondary 

absorption peak in the UV-A/blue (Rockwell et al., 2006). These spectral properties 

correlate with the action spectra of phytochrome-mediated responses showing maximal 

activity for red and FR light but also responses in the UV-A/blue range (Table I). Light-

induced changes of the chromophore lead to structural changes of the protein initiating 

photoreceptor-mediated signal transduction (e.g. (Harper et al., 2003; Pfeifer et al., 

2010)). For the phototropins this primary light reaction leads to activation of the protein 

kinase activity (Tokutomi et al., 2008). Light-regulated kinase activity has also been 

proposed for plant phytochromes and cryptochromes but the physiological relevance of 

those activities remains to be firmly established (Bouly et al., 2003; Shalitin et al., 2003; 

Shen et al., 2009; Yeh and Lagarias, 1998). In contrast the light-induced interaction 

between phytochromes in their Pfr form and transcription factors of the PIF 

(Phytochrome Interacting Family) class is an established output of phytochrome light 

activation (see below) (Castillon et al., 2007). 

Although members of one photoreceptor family have similar absorption properties each 

of the best-characterized plant photoreceptor families is broadly speaking composed of 

members specialized for high and low light responses. This difference in activity can be 
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traced back to both changes of the biochemical properties of the photoreceptor and 

expression patterns (Christie, 2007; Demarsy and Fankhauser, 2009; Lin and Shalitin, 

2003; Rockwell et al., 2006). For example, phyA, cry2 and phot1 function in low light 

while phyB-E, cry1 and phot2 are more specialized for high light responses (Lin et al., 

1998; Sakai et al., 2001; Smith and Whitelam, 1990). This correlates with the high levels 

of phyA and phot1 in etiolated seedlings allowing them to perceive minute amounts of 

light as the seedling grows towards to upper layers of the soil (Christie, 2007; Rockwell 

et al., 2006). Moreover, phyA, cry2 and to lower extent phot1 are unstable and degraded 

soon after activation (Clough and Viestra, 1997; Sakamoto and Briggs, 2002; Shalitin et 

al., 2002). In contrast a photoreceptor like phot2 is transcriptionally induced by light 

which correlates with the need for this photoreceptor under high light (Christie, 2007). 

Finally there are differences in the photochemistry of the members of a given 

photoreceptor family. This has been extensively characterized for the phytochromes with 

phyA having much slower dark-reversion (thermal relaxation of the activated Pfr to the 

Pr ground state) (Rockwell et al., 2006). Similarly for the phototropins differences in 

LOV2 (Light, Oxygen, Voltage domain) photochemistry between phot1 and phot2 may 

also contribute to the functional specialization of those photoreceptors (Aihara et al., 

2008). 

The analysis of phytochrome evolution in the green lineage has shown that members of 

this gene family have diverged very early in the evolution of seed plants. The repertoire 

of phytochromes is somewhat species-specific with most having at least three types 

(phyA, phyB and phyC) and all seed plants sampled to date having a phyA and a phyB 
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(Mathews, 2006). The functions and molecular properties of phyA and phyB are quite 

distinct and it has been argued that phyA has evolved novel properties in order for 

seedlings to better cope with the higher density of large plants (table I) (Mathews, 2006; 

Rockwell et al., 2006). Indeed phyA has the ability to signal in FR-rich light conditions, 

which leads to a very low ratio of Pfr/Ptot (due to the overlapping spectra of Pfr and Pr 

even canopy light leads to some Pfr production). This ability of phyA allows seedling 

establishment (de-etiolation) under dense plant cover and is thus a competitive advantage 

for angiosperms which all posses a phyA (Mathews, 2006). Studies comparing 

Arabidopsis accessions have also demonstrated that the phytochromes are subject of 

natural variation that may enhance the fitness of those plants in diverse environments 

(Balasubramanian et al., 2006; Filiault et al., 2008; Samis et al., 2008). Thus, plants can 

responds to a wide range of distinct and variable light conditions and natural variation at 

the level of the photoreceptors participates to their adaptation to their environment. 

2. Physiological responses mediated by plant photoreceptors

Photoreceptors modulate plant growth and development throughout their life cycle, 

moreover by monitoring the light environment they contribute to the timing of key 

developmental transitions such as seed germination and initiation of flowering (Figure 3). 

We have summarized this information on Table I, which lists the light-dependent 

physiological responses for which the photoreceptor has been determined. We will 

describe many of these responses quite briefly and would like to point the readers to more 

specific reviews in particular for photoperiodic induction of flowering (Imaizumi and 
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Kay, 2006; Kobayashi and Weigel, 2007; Turck et al., 2008). Traditionally light 

responses are subdivided depending on the amount of light needed and whether the 

response requires continuous irradiation or whether it is efficiently triggered by light 

pulses (Kendrick and Kronenberg, 1994). So-called very low fluence responses (VLFR) 

are initiated in response to as little as 100 pmol m-2. Low fluence responses (LFR) occur 

in the range of 10 to 1000 µmol m-2 while high irradiance responses (HIR) require 

continuous light with a total fluence typically in excess to 10 mmol m-2. This 

classification has been particularly useful to characterize different types of phytochrome-

mediated responses (Rockwell et al., 2006; Shinomura et al., 1996; Shinomura et al., 

2000). PhyA is the only phytochrome mediating both the VLFR and the FR-HIR 

(Shinomura et al., 1996; Shinomura et al., 2000). In addition all phytochromes are also 

capable of mediating the classical R/FR reversible LFR (Rockwell et al., 2006). The 

exact difference in signaling of the phytochromes under these different light conditions is 

not fully understood however a number of studies have indicated that phyA uses at least 

partially distinct signaling mechanisms when acting in the VLFR and FR-HIR (Casal et 

al., 2000; Kneissl et al., 2009; Lariguet et al., 2003; Staneloni et al., 2009) 

 

Germination 

 

In the seed the embryo is in a very protected environment while the young seedling is 

very vulnerable. Germination is thus under strong environmental control including effects 

of water, oxygen, temperature and light (Penfield and King, 2009). Seeds only become 

competent to respond to those environmental signals once they have broken dormancy 
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(Penfield and King, 2009). Among all photoreceptors the phytochromes play the most 

predominant role to promote germination under favorable light conditions and to prevent 

it when the light conditions are suboptimal as for example under a canopy (Franklin and 

Quail, 2010). In order to promote germination the phytochromes primarily act on 

gibberellin (GA) synthesis and signaling (Oh et al., 2007; Piskurewicz et al., 2009). The 

study of germination illustrates the distinct roles of phyA and phyB, with phyA acting as 

a broad-band sensor for low light and phyB controlling R/FR reversible induction of 

germination (Shinomura et al., 1996). In addition phyD and phyE have also been shown 

to promote germination (Dechaine et al., 2009; Hennig et al., 2002). It should be pointed 

out that the germination potential of seeds is conditioned by light-stable phytochrome that 

is transmitted in the dry seed in a Pfr/Ptot ratio depending on the growth conditions of the 

mother plant (Casal and Sánchez, 1998). In contrast phyA is only synthesized during seed 

imbibition (Casal and Sánchez, 1998; Shinomura et al., 1996). This may explain recent 

findings showing that the phytochromes in the mother plant also condition the 

germination potential of their seeds by modulating seed maturation and dormancy 

(Dechaine et al., 2009; Donohue et al., 2008; Heschel et al., 2007). Finally as discussed in 

a later section the predominance of a given phytochrome to control germination is 

modulated by temperature. 

Young seedling development 

Following germination the young seedling may encounter a variety of environments. The 

most extreme case is darkness and higher plants have evolved a strategy to survive for a 
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few days in this situation by living from their seed reserves (etiolated development). This 

developmental strategy is characterized by fast elongation of the hypocotyl growing 

against the gravity vector, the maintenance of an apical hook, inhibition of cotyledon 

expansion and inhibition of leaf initiation (Chen et al., 2004). This strategy maximizes 

the chances of the seedling to rapidly reach the soil surface where the process of de-

etiolation will be initiated. Phytochromes and cryptochromes predominantly control the 

de-etiolation phase by inhibiting hypocotyl elongation, initiating chloroplast 

development, promoting cotyledon expansion and leaf initiation to enable the seedling to 

start its photosynthetic life (Chen et al., 2004). The predominant photoreceptor 

controlling de-etiolation depends on the light environment with phyA single-handedly 

mediating this response in FR light (as encountered under a canopy), while multiple 

phytochromes are involved in red light (with phyB playing a predominant role) and the 

cryptochromes with contributions from the phytochromes in blue light (Chen et al., 2004; 

Franklin and Quail, 2010; Lin and Shalitin, 2003; Quail, 2002). UV-B also mediates this 

developmental transition and does not require any of the known photoreceptors. This 

UV-B response critically depends on UVR8 (UV Resistance Locus 8), the ubiquitin E3 

ligase COP1 (COnstitutively Photomorphogenic) and the transcription factor HY5 

(elongated HYpocotyl 5) (Jenkins, 2009). The phototropins also play an important role 

during this phase of development because once emerging from the soil the seedling may 

have to direct its growth towards a more favorable place (with better light) (Christie, 

2007). The phototropins mediate a fast but transient inhibition of hypocotyl elongation 

and later are crucial to guide growth towards a directional light cue (Christie, 2007; Folta 

and Spalding, 2001). Although directional growth depends on the phototropins, the 
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magnitude of this response is modulated by both the phytochromes and the 

cryptochromes (Nagashima et al., 2008). By modulating the hypocotyl growth rate and 

inhibiting the hypocotyl gravitropic response the later two classes of photoreceptors 

affect the phototropic potential of young seedlings (Iino, 2006; Lariguet and Fankhauser, 

2004; Whippo and Hangarter, 2003; Whippo and Hangarter, 2004).  

 

Vegetative development 

 

Broadly speaking throughout vegetative development the different photoreceptors allow 

the optimization of photosynthesis according to the prevalent light conditions (table I). 

The shade avoidance response (SAR) is a good illustration of this concept (Franklin, 

2008; Franklin and Quail, 2010; Vandenbussche et al., 2005). Shade from the vegetation 

has a distinct spectral signature (Figure 1), which has a strong influence on the 

phytochrome photoequilibrium due to alterations of the R:FR ratio (Franklin, 2008). 

Moreover the green:blue ratio is also modified, which is predicted to alter the proportion 

of the cryptochromes in their signaling state (Figures 1 and 2) (Banerjee et al., 2007; 

Bouly et al., 2007). A plant response related to shade avoidance is neighbor detection, 

which occurs in response to a decrease of the R:FR ratio due to the reflexion of FR light 

from neighboring plants but does not necessarily lead to a reduction of PAR 

(Photosynthetically Active Radiation) (Franklin, 2008). In shade-intolerant plants like 

Arabidopsis this reduction in the R:FR ratio has a number of striking effects on plant 

growth and development. The SAR is characterized by increased hypocotyl, stem and 

petiole elongation, a more erect leaf position, increased apical dominance and early 
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flowering (Franklin, 2008; Vandenbussche et al., 2005). As for the other light-responses 

discussed above, these morphological changes are accompanied by rapid and extensive 

alterations of the gene expression profile (Franklin, 2008; Vandenbussche et al., 2005). 

The light-stable phytochromes (phyB-phyE) with phyB playing a prevalent function 

repress the SAR in direct sunlight (Franklin, 2008; Franklin and Quail, 2010). In contrast 

phyA due to its ability to limit hypocotyl growth in FR light counteracts the activity of 

the other phytochromes. However the light-labile nature of phyA limits its role in de-

etiolated plants (Franklin and Quail, 2010; Salter et al., 2003). A role for the 

cryptochromes in this adaptive response has also been demonstrated, this can be 

explained by the overall reduction of blue light and the low blue:green ratio under a 

canopy, which inhibits cryptochromes activity (Banerjee et al., 2007; Bouly et al., 2007; 

Vandenbussche et al., 2005; Yanovsky et al., 1995). Upward positioning of leaves which 

is typical of the SAR (leaf epinasty) is also triggered by low light environments and has 

been shown to depend on the combined action of phyA, phyB, cry1 and cry2 (Millenaar 

et al., 2009; Vandenbussche et al., 2005). This growth response, which presumably 

depends on asymmetric growth of the two sides of the petioles is also under the control of 

the phototropins (Inoue et al., 2008b). Interestingly the phototropins also ensure that leafs 

are flat which combined with their effect on leaf and stem positioning maximizes the 

photosynthetic potential in low light environments (Christie, 2007; Inoue et al., 2008b; 

Takemiya et al., 2005). 

Controlled gas exchange by the stomata represents another physiological parameter that 

is directly related to photosynthetic capacity. A tight regulation of this activity is essential 
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to properly control CO2 uptake, release of O2, plant cooling and water loss depending on 

the external conditions (Casson and Hetherington, 2009). It has long been known that 

blue light promotes stomata opening. This response primarily depends on phot1 and 

phot2 with cry1 and cry2 playing a more limited role (Kinoshita et al., 2001; Mao et al., 

2005). While the relatively weak effect of red light on stomata opening was regarded as a 

photosynthetic effect recent evidence suggests a role for the phytochromes in this 

response (Sharkey and Raschke, 1981; Wang et al., 2009). In addition to light’s short-

term effect on stomata opening several photoreceptors have also been shown to control 

the stomata index (ratio of guard cells over total cells). Both a decrease in irradiance and 

in the R:FR ratio typical of shading is perceived in mature leaves and will decrease the 

stomata index in the newly emerging leaves (Boccalandro et al., 2009; Casson et al., 

2009; Lake et al., 2001). By analyzing stomatal pattern in monochromatic lights and in 

different mutant backgrounds it was shown that phyA, phyB and the cryptochromes are 

the principal regulators of stomata formation and pattern in FR, red and blue light 

respectively (Boccalandro et al., 2009; Casson et al., 2009; Kang et al., 2009). 

Interestingly this developmental response involves elements of light signaling that were 

initially identified in the context of seedling de-etiolation such as COP1 and PIF4 

(Casson et al., 2009; Kang et al., 2009). However while pif4 and phyB have opposite 

phenotypes during seedling de-etiolation in red light (see below), their stomata 

development phenotypes are similar suggesting a developmentally regulated mode of 

interaction of these two factors. 

 

 13 



Also of great importance for the optimization of photosynthesis is a proper control of 

chloroplast positioning (Suetsugu and Wada, 2007). In low-light conditions the 

chloroplasts display an accumulation response towards the source of blue light 

presumably in order to maximize light capture. This response is controlled by phot1 and 

phot2 (Sakai et al., 2001). In contrast high light conditions that are typical of a sunny day 

trigger the phot2-mediated chloroplast avoidance response preventing photooxydative 

damage and allowing plant survival (Jarillo et al., 2001; Kagawa et al., 2001; Kasahara et 

al., 2002). As for other responses primarily controlled by the phototropins the 

phytochromes modulate the extent of the response (DeBlasio et al., 2003). Moreover both 

the phytochromes and the cryptochromes play a central role in the development of 

etioplasts into chloroplasts (Rockwell et al., 2006; Ruckle et al., 2007). 

Transition to flowering 

Both light and temperature influence the transition from vegetative to reproductive 

growth. The phytochromes, cryptochromes and members of the Zeitlupe family all 

contribute to this complex regulatory network, either by acting directly on key regulators 

of floral transition such as CONSTANS (CO) or by modulating the circadian clock which 

has a profound influence on photoperiodic flowering. A detailed description of 

daylength-regulated flowering is beyond the scope of this review, we recommend the 

following recent review articles (Imaizumi and Kay, 2006; Kobayashi and Weigel, 2007; 

Turck et al., 2008). Light quality and in particular shading also leads to accelerated 

flowering (Franklin, 2008; Vandenbussche et al., 2005). The early flowering in short days 
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of mutants such as phyB presumably reflects the constitutive shade avoidance phenotype 

of these plants (Franklin, 2008; Franklin and Quail, 2010). This specific aspect of the 

shade avoidance response requires PFT1 (Phytochrome and Flowering Time) a 

component of the Mediator complex that has global roles in transcriptional regulation by 

acting as an adaptor between transcription factors and RNA polymerase II (Backstrom et 

al., 2007; Cerdan and Chory, 2003). Interestingly PFT1 has also been implicated in 

disease resistance providing an example of the possible crosstalk between different 

environmental factors affecting plant development (Kidd et al., 2009) (see below). 

 

3. Photomorphogenesis in a changing environment.  

 

Phenotypes developed by plants in response to changes in light quality/quantity can also 

be observed in others situations. For instance, the shade-avoidance phenotype described 

above is similar to the phenotype of plants grown under high temperatures (28°C versus 

22°C) or in flood conditions (Franklin, 2008; Franklin, 2009; Koini et al., 2009; 

Millenaar et al., 2005; Pierik et al., 2005; van Zanten et al., 2009; Vandenbussche et al., 

2003). Taking the leaves away from the warm/submerged soil presumably optimizes 

plant fitness by preserving their “power supply” (leaves). More surprising was the 

identification of a gene controlling shade avoidance that encodes a TIR-NBS-LRR 

protein typically involved in plant-pathogen interaction (Faigon-Soverna et al., 2006). 

Altogether these data suggest that multiple signaling pathways may control the same 

“core-genetic program” to modulate plant growth according to the environmental cues. 

This could be achieved through independent and parallel signaling pathways or by using 
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shared signaling components. Several pieces of evidence suggest that common regulators 

of growth are used in a variety of conditions. For instance, the DELLA proteins that 

negatively regulates GA pathways are involved in repression of growth responses to 

shade, pathogen, salt stress or cold treatment (Achard et al., 2006; Achard et al., 2008a; 

Achard et al., 2008b; Navarro et al., 2008). Similarly PIF4 is involved in elongation-

growth responses in a variety of light responses and also in response to increased 

temperatures (Huq and Quail, 2002; Koini et al., 2009; Lorrain et al., 2008; Lorrain et al., 

2009; Stavang et al., 2009). The variety of conditions in which PIF4 modulates growth is 

paralleled by a great complexity of PIF4 regulation. The control of PIF4 activity includes 

interaction with the DELLAs and HFR1 (long Hyprocotyl in FR) to prevent it from 

binding to DNA, transcriptional regulation by the clock and temperature and proteolytic 

degradation upon interaction with the phytochromes (de Lucas et al., 2008; Feng et al., 

2008; Hornitschek et al., 2009; Koini et al., 2009; Nozue et al., 2007; Stavang et al., 

2009). Although PIF4 was identified as a light-signaling component it also acts 

independently of photoreceptor activity indicating that light-signaling components also 

work in other pathways (Leivar et al., 2008b; Koini et al., 2009). As a consequence, light 

sensing can influence responses induced by different stimuli and vice-versa. Examples of 

such interactions are presented in the following sections.  

Light sensing and pathogen defense 

Light is required to mount an efficient response to pathogens in Arabidopsis (Chandra-

Shekara et al., 2006; Genoud et al., 2002; Griebel and Zeier, 2008; Roden and Ingle, 
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2009; Zeier et al., 2004). Especially, light is important during the first hours following the 

inoculation as dark-infected plants support more bacterial growth and mount less efficient 

defense mechanisms than light-infected plants (Griebel and Zeier, 2008). Interestingly the 

appearance of spontaneous necrotic lesions in the so-called “lesion-mimic mutants” is 

also light dependent (Brodersen et al., 2002; Dietrich et al., 1994; Lorrain et al., 2004; Lu 

et al., 2003; Mach et al., 2001). This may reflect the requirement of photosynthetic 

energy for an efficient resistance or a cross talk between chloroplast-derived molecules 

and defense mechanisms (Genoud et al., 2002). In few cases participation of the 

photoreceptors in the defense mechanisms was studied (Chandra-Shekara et al., 2006; 

Genoud et al., 2002; Griebel and Zeier, 2008; Wu and Yang, 2010). PhyA, phyB and 

cry1 are involved in the resistance response to P.syringae pv. tomato carrying the 

AvrRpt2 gene while they do not seem to play any role in response to P.syringae pv. 

maculicola (AvrRpm1) or to Turnip crinkle virus except in the set up of the systemic 

acquired resistance (Chandra-Shekara et al., 2006; Genoud et al., 2002; Griebel and 

Zeier, 2008; Wu and Yang, 2010). This does not necessarily mean that light is 

differentially required in response to various pathogen but rather that different 

mechanisms are involved in response to different pathogen. In both cases, light seems to 

act through salicylic acid perception/signaling.  

The response of plants to pathogens and unfavorable light conditions may also compete 

with each other. This situation is encountered when plants are grown close to each other, 

as in agriculture. Plants competing for light resources may at the same time face 

pathogens such as attack by herbivores. Carbon resources have to be reallocated either to 
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growth-responses to reach the light or to defense mechanisms against pathogens: this is 

the “plant dilemma” (Ballare, 2009; Roberts and Paul, 2006). Priority is given to shade 

avoidance as it has been shown that shade increases the leaf area eaten by 

herbivores/herbivores fitness or the leaf area infected by pathogens (Izaguirre et al., 2006; 

Moreno et al., 2009; Roberts and Paul, 2006). This is not a passive phenomenon due to 

the modified plant architecture under shade conditions. Indeed the response to pathogens 

is also reduced by shade in sav3 although this mutant does not respond to low R:FR by 

elongation growth (Moreno et al., 2009). Shade conditions inhibit biosynthetic pathways 

linked to production of defense molecules such as phenolic compounds, a response that is 

phytochrome-dependant in tomato (Izaguirre et al., 2006; Moreno et al., 2009). One 

hypothesis is that low R:FR ratio reduces plant sensitivity to jasmonates (JA) (Moreno et 

al., 2009). These phytohormones are important for defense against herbivores but were 

also shown to inhibit cell division and elongation (Bari and Jones, 2009; Zhang and 

Turner, 2008). Thus by reducing JA action shade may weaken defense mechanisms but 

allow full growth of the plants (Moreno et al., 2009). 

 

Cross-talk between light and temperature 

 

Important development transitions such as germination and flowering need to be 

synchronized with the environment to maximize the chances of species survival. For 

instance, most Arabidopsis accessions are typical “winter annual” that germinate in the 

autumn, spend all the winter as rosette and flower in the spring. In addition to light, a 

cold period called vernalization is required to induce flowering. Furthermore, if light is 

 18 



necessary to induce germination in fresh seeds, it is not sufficient: a cold and wet 

treatment called stratification is required to break seed dormancy. These mechanisms are 

believed to prevent seeds maturation and germination during the winter, a period that can 

be deleterious for the newly developing organisms. Phytochrome functions are well 

described in these mechanisms (Franklin, 2009; Franklin and Whitelam, 2004; Penfield, 

2008; Samach and Wigge, 2005; Seo et al., 2009). Depending on the temperature, the 

different phytochromes perform different functions (Dechaine et al., 2009; Donohue et 

al., 2008; Donohue et al., 2007; Franklin, 2009; Halliday and Whitelam, 2003; Heschel et 

al., 2007). For instance, while phyB plays a major role in germination under a wide range 

of temperatures, phyE and phyA are particularly important at cooler and warmer 

temperatures respectively (Heschel et al., 2007). Phytochromes function is not limited to 

germination: they are also involved in the perception of the temperature and light 

environment of the maternal plant during seed maturation (Dechaine et al., 2009; 

Donohue et al., 2008; Donohue et al., 2007). Indeed seeds from plants that experienced a 

cool environment are heavier but germinate less efficiently than those maturated under a 

warm environment (Dechaine et al., 2009). PhyA prevents germination/favors dormancy 

when seeds are matured under a cold and shaded environment while phyB is important to 

promote germination under cold environments (Dechaine et al., 2009). Integration of 

light- and cold- induced pathways will thus allow plants to anticipate changes in their 

environment. Another good example is the freezing tolerance conferred to Arabidopsis by 

low R:FR ratio when plants are grown at 16°C (Franklin and Whitelam, 2007). This is 

associated with the fact that plants experience longer periods of low R:FR ratio as winter 

approaches. This tolerance is conferred by the increased expression at 16°C of CBF 
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(CRT/DRE binding Factors) and COR (Cold-regulated) genes in low R:FR as compared 

to high R:FR and depends on the inactivation of phyB and phyD (Franklin and Whitelam, 

2007). As a consequence, phyD mutant grown in high R:FR at 16°C present a higher 

expression of COR15a gene as compared to the wild type, which is correlated with a 

higher freezing tolerance (Franklin and Whitelam, 2007). 

 

The way phytochromes and temperature signaling-pathways interact is not well known 

yet. Temperature can influence phytochrome photoequilibrium, which may explain why 

the phytochromes have different roles depending on the temperature (Kristie and 

Fielding, 1994; Pons, 1986). The two signals can also share signaling components such as 

PIF4 (Koini et al., 2009; Stavang et al., 2009). Interestingly temperature changes lead to 

alterations of the nucleosome composition (Kumar and Wigge, 2010). Thus temperature 

changes can modify the expression of different signaling components such as PIF4 whose 

activity could further be modulated by the phytochromes. Interestingly different signaling 

pathways are involved in response to temperature: decreasing temperature can suppress 

the phyB early-flowering phenotype but not phyB-induced elongation responses (Halliday 

et al., 2003). This suggests a developmentally regulated cross-talk between light and 

temperature pathways. 

 

4. Sites of perception and action of a light signal 

 

Tissue-specific considerations 
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Photoreceptors are present in most if not all plant tissues (Goosey et al., 1997; Sakamoto 

and Briggs, 2002), however light-responses are tissue-specific as illustrated during 

seedling de-etiolation when light inhibits growth in the hypocotyl while promoting it in 

the cotyledons. Such organ-specific light responses can also be observed at the gene 

expression level (Lopez-Juez et al., 2008; Ma et al., 2005). This could reflect tissue 

and/or developmentally regulated expression of signaling components. Furthermore 

photoreceptors in one organ/tissue can influence responses in distant parts of the plant in 

a non-cell autonomous way. The best-known example of such systemic signal induced by 

light is “florigen” that is induced in the leaves and moves to apical meristem to regulate 

the formation of flowers (Kobayashi and Weigel, 2007; Turck et al., 2008). Other 

examples include irradiation of mature leaves by a low light, which leads to decreased 

stomatal index in newly emerging leaves that grow under a high irradiance (Lake et al., 

2001). More recently using tissue-specific phytochrome inactivation, Warnasooriya et al 

showed that a FR light signal perceived by the cotyledons controls hypocotyl elongation 

(Warnasooriya and Montgomery, 2009). This complements the data of (Tanaka et al., 

2002) where FR light irradiation of the cotyledons induced the specific expression of a 

reporter gene in the hypocotyl while irradiation of the hypocotyl did not (Tanaka et al., 

2002). This indicates that systemic signals are rather prevalent in the control of plant 

responses to light. We recommend two recent reviews extensively covering this aspect of 

light signaling (Bou-Torrent et al., 2008; Montgomery, 2008).  

Sites of action of the photoreceptors within the cells 
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The cellular site of action of several photoreceptors has received considerable attention 

over the past few years and been recently reviewed for the phytochromes (Chen, 2008; 

Fankhauser and Chen, 2008). The bulk of all phytochromes is cytoplasmic in their 

inactive Pr state. However light triggers rapid translocation of the activated phytochromes 

into the nucleus. Interestingly only phyA has the ability to enter the nucleus under light 

conditions triggering a very low Pfr/Ptot ratio correlating with the ability of phyA to 

trigger the FR-HIR and the VLFR (Fankhauser and Chen, 2008). This special property is 

enabled by a dedicated phyA nuclear import system depending on FHY1 and FHL, two 

related proteins that interact with the light-activated phyA (Genoud et al., 2008; 

Hiltbrunner et al., 2006; Pfeiffer et al., 2009; Rosler et al., 2007). In addition the 

transcription of those phyA importers depends on two transposase-derived transcription 

factors, which therefore indirectly control phyA nuclear accumulation (Lin et al., 2007). 

Two recent publications indicate that FHY1 and FHL may play additional functions in 

addition to regulating phyA nuclear import (Shen et al., 2009; Yang et al., 2009). The 

light-regulation of phyB nuclear import appears to depend on the unmasking of an NLS 

specifically in the light activated Pfr conformation (Chen, 2008; Chen et al., 2005). The 

phenotypic analysis of a variety of mutants (e.g. fhy1fhl) and transgenic lines expressing 

phyA or phyB fused to NES (Nuclear Export Signal) or NLS (Nuclear Localization 

Signal) sequences in phytochrome mutant backgrounds has determined that the major site 

of action of the phytochromes is the nucleus (Genoud et al., 2008; Huq et al., 2003; 

Matsushita et al., 2003; Rosler et al., 2007). This fits well with the rapid phytochrome-

dependent effects on gene regulation and with their direct control of the activity of 
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transcription factors of the PIF family (see below) (Castillon et al., 2007; Leivar et al., 

2009; Tepperman et al., 2006). However phyA in particular may also have roles in the 

cytoplasm (Rosler et al., 2007). 

 

While for the phytochromes light-induced nuclear import is an important regulatory 

mechanism both cry1 and cry2 are already nuclear in dark-grown seedlings and blue light 

does not alter the localization of those photoreceptors (Wu and Spalding, 2007). Cry1 is 

found both in the nucleus and the cytoplasm contrasting with the exclusively nuclear 

localization of cry2 (Kleiner et al., 1999; Lin and Shalitin, 2003; Wu and Spalding, 

2007). Complementation studies with GFP-cry1 fused either to an NES or an NLS were 

used to determine that the major site of cry1 action is the nucleus (Wu and Spalding, 

2007). However this study highlighted that different subcellular pools of cry1 have 

different functions with, for example, cytoplasmic cry1 promoting cotyledon expansion 

in blue light (Wu and Spalding, 2007). 

 

In contrast to the aforementioned photoreceptors the phototropins are primarily found at 

the plasmamembrane (Kong et al., 2006; Wan et al., 2008). However a fraction of both 

phot1 and phot2 leaves the plasmamembrane upon blue light perception. Phot1 

relocalizes to the cytoplasm while phot2 is found on the Golgi (Kong et al., 2006; Wan et 

al., 2008). The significance of this light-induced relocalization remains poorly 

understood. Interestingly however phyA modulates the blue-light induced phot1 

relocalization and it has been proposed that this activity explains phytochrome 

 23 



enhancement of phototropism (Han et al., 2008). This model fits with the previously 

proposed role of phyA in the cytoplasm to promote phototropism (Rosler et al., 2007). 

 

The subcellular localization and cellular cite of action of members of the Zeitlupe family 

(ZTL, FKF1 and LKP2) has been analyzed less extensively (Somers and Fujiwara, 2009). 

Nevertheless, the currently available data on FKF1 and ZTL reveals some interesting 

differences between these two related photoreceptors (Kim et al., 2007; Sawa et al., 

2007). ZTL controls the stability of the central circadian clock component TOC1 (Timing 

Of CAB1 expression) and the related protein PRR5 (Pseudo Response Regulator) by 

interacting with those proteins in a time-of-day specific manner in the cytoplasm (Kiba et 

al., 2007; Kim et al., 2007). In contrast, FKF1 appears to be nuclear where this F-box 

protein controls the stability of a repressor of CO expression thereby contributing to 

daylength regulated flowering (Fornara et al., 2009; Sawa et al., 2007). The precise 

function of LKP2 is less well understood but its localization is also nuclear (Yasuhara et 

al., 2004). 

 

5. Signal transduction 

 

A large number of signaling components acting downstream of the photoreceptors has 

been identified. However in many cases the events leading from photoreceptor activation 

to the specific function of a given signaling component is poorly understood. We will 

thus not attempt an exhaustive coverage of photoreceptor-mediated signal transduction, 

but rather focus on specific facets of the better understood signaling events. The analysis 
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of these signaling pathways reveals a number of communalities such as the importance of 

light regulated protein-protein interaction, protein stability and kinase activity that are 

briefly reviewed below. Finally we will present the PIF branch of phytochrome signaling 

in more detail. 

Light-regulated degradation, protein-protein interactions and kinase activity. 

The importance of light-regulated protein abundance was revealed with the identification 

of COP1 a ubiquitin E3 ligase that is required to maintain the de-etiolation program in the 

dark (reviewed in (Jiao et al., 2007; Yi and Deng, 2005)). COP1 in conjunction with 

members of the SPA family control the abundance of several light signaling components 

including HY5, LAF1 (Long After FR light), HFR1, CO and phyA (Jang et al., 2008; 

Jiao et al., 2007; Zhu et al., 2008). This list includes numerous transcription factors that 

need to be maintained at low levels in the dark and accumulate in the light to mediate 

multiple aspects of photomorphogenesis (Figure 4). Both the phytochromes and the 

cryptochromes inhibit COP1 activity but the underlying mechanism is still not fully 

understood (reviewed in (Jiao et al., 2007)). The cryptochromes directly interact with 

COP1 both in the light and the dark and a yet to be identified light-induced event in the 

cryptochromes leads to the inhibition of COP1 (Wang et al., 2001; Yang et al., 2001). 

How the phytochrome limit COP1 activity remains an open question but it is worth 

pointing out that by inhibiting COP1 and leading to the degradation of several PIFs (see 

below) the phytochromes profoundly influence transcription factor composition in a 

light-dependent fashion (Figure 4) (Jiao et al., 2007). Importantly COP1 and HY5 also 
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play essential roles during UV-B signaling. These exciting new developments are beyond 

the scope of this review and we point the interested readers to these excellent recent 

publications (Favory et al., 2009; Jenkins, 2009). Thus with the exception of phototropin 

signaling all other plant photoreceptors described here mediate light responses at least in 

part by controlling the abundance of key regulators in a light dependent fashion. 

Interestingly NPH3 (Non Phototropic Hypocotyl 3) a central component of phototropin 

signaling codes for a BTB/POZ containing protein (Pedmale and Liscum, 2007). Such 

protein domains typically interact with cullin3 leading to the speculation that regulated 

proteolysis may also take centre stage during phototropin signaling. 

 

Light regulated protein-protein interactions is also a recurrent theme in light signaling as 

exemplified by the interaction between phytochromes and the PIFs (see below) and 

during ZTL and FKF1 signaling (Somers and Fujiwara, 2009). A light-regulated 

interaction between photoactivated cry2 and the bHLH protein CIB1 (Cryptochrome 

Interacting BHLH) has also recently been described (Liu et al., 2008). This interaction 

requires the cryptochrome chromophore and blue light. CIB1 and related bHLHs play a 

role in cryptochrome-regulated flowering, however they do not regulate seedling de-

etiolation (Liu et al., 2008). Although more work is needed to fully understand the 

consequences of this interaction and the role of CIB1 and its family members this work 

suggests an analogous signaling mechanism for the phytochromes and the cryptochromes 

as both photoreceptor families display light-regulated interactions with bHLH factors. 

UV-B signaling provides another striking example of light-regulated protein-protein 
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interactions with the discovery that the UV-B specific signaling component UVR8 

interacts with COP1 in a UV-B dependent manner (Favory et al., 2009). 

 

Light-regulated kinase activity has long been proposed as a primary signaling mechanism 

for the phytochromes, a hypothesis that received new impetus with the discovery that 

cyanobacterial phytochromes are light-regulated histidine kinases (Yeh et al., 1997). 

However, uncovering the significance of the reported protein kinase activity of plant 

phytochromes requires more work. Similarly plant cryptochromes have been reported to 

possess Ser/Thr kinase activity but the physiological relevance of this finding remains to 

be established (Bouly et al., 2003; Shalitin et al., 2003). One problem for both classes of 

photoreceptors is that these enzymes have no homology with the well-characterized 

Ser/Thr protein kinase family and thus the characterization of mutants specifically 

inhibiting protein kinase activity has not be performed. On the other hand the importance 

of the light-regulated protein kinase activity of the phototropins has strong experimental 

support (Christie, 2007; Tokutomi et al., 2008). Ironically while there are potential targets 

of the debated phytochrome kinase activity (e.g. PIF, FHY1) there is still no known target 

of the phototropins except the photoreceptor itself (Inoue et al., 2008a; Shen et al., 2009).  

 

The PIF branch of phytochrome signaling 

 

A lot of attention was focused on members of the PIF class of bHLH transcription factor 

since the discovery that PIF3, the founding member of this family, specifically interacts 

with the light activated Pfr form of phyB (Ni et al., 1999). This distinguishing feature 
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suggests a mechanism by which the phytochromes directly control light-regulated gene 

expression (Castillon et al., 2007; Monte et al., 2007). The PIFs are part of a 15-members 

clade of bHLHs, many of which have been shown to act in light-regulated morphogenesis 

(Castillon et al., 2007; Heim et al., 2003; Toledo-Ortiz et al., 2003). Some of them are 

known as PIFs or PILs (PIF3 Like). We will use the PIF nomenclature for all members of 

this group that interact with phyB (Khanna et al., 2004). This group comprises PIF1 

(PIL5), PIF3, PIF4, PIF5 (PIL6), PIF6 (PIL2) and PIF7. Several other members of this 

group such as PIL1, HFR1 and SPT do not interact with the light-activated phytochrome 

but nevertheless play functions in phytochrome-mediated morphogenesis (Castillon et al., 

2007; Khanna et al., 2004). Interestingly PIF orthologs were identified in rice suggesting 

a similar mode of phytochrome-regulated transcriptional regulation in monocots and 

dicots (Oryza sativa) (Nakamura et al., 2007). 

 

Most members of this subfamily contain two characteristic domains: the Active 

Phytochrome Binding (APB) domain and the bHLH domain. The HLH domain allows 

the formation of homo-and heterodimers and the basic domain is responsible for DNA 

binding. PIF1, PIF3, PIF4, PIF5 and PIF7 were shown to bind to a specific cis-element 

the E-box (5’-CANNTG-3‘) and more precisely the G-box (5’-CACGTG-3’) frequently 

found in light-regulated promoter sequences (Martinez-Garcia et al., 2000; Huq et al., 

2004; Huq and Quail, 2002; Oh et al., 2007; Shen et al., 2007; Hornitschek et al., 2009). 

HFR1 has an atypical basic domain, lacking two conserved amino acids resulting in the 

incapacity to bind to the G-box sequence (Fairchild et al., 2000; Hornitschek et al., 2009). 

PIFs contain an amino-terminal located APB domain that is necessary and sufficient for 
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interaction with light-activated phyB (Khanna et al., 2004). In vitro interaction studies 

indicate that PIF3 and PIF1 have a higher affinity for phyB than other PIFs (Huq et al., 

2004; Khanna et al., 2004). How the conformational change of phyB from Pr to Pfr leads 

to conformer specific interaction with the PIFs is not fully understood. A combination of 

homology modeling based on the structure of a prokaryotic phytochrome and the analysis 

of phyB point mutants indicates that several residues present on the so-called light-

sensing knot are crucial to mediate this interaction (Kikis et al., 2009; Oka et al., 2008). 

This is noteworthy given that this corresponds to a region of phyB that is predicted to 

change its conformation upon light excitation. In addition PIF1 and PIF3 also bind to the 

Pfr conformer of phyA through the APA (Active Phytochrome A binding site) domain, 

which surprisingly is not well conserved between PIF1 and PIF3 (Al-Sady et al., 2006; 

Shen et al., 2008).  

The activity of the PIFs is regulated at multiple levels most prominently via interaction 

with the light-activated phytochromes leading to phosphorylation and subsequent 

degradation of PIF1, PIF3, PIF4 and PIF5 (Al-Sady et al., 2006; Bauer et al., 2004; de 

Lucas et al., 2008; Lorrain et al., 2008; Park et al., 2004; Shen et al., 2005; Shen et al., 

2007). For PIF1, PIF3 and PIF5 rapid light-induced ubiquitylation has been reported 

suggesting a common mechanism for the regulated abundance of all those PIFs (Al-Sady 

et al., 2006; Shen et al., 2008; Shen et al., 2007). This results in a relatively high level of 

those proteins in the dark and a rapid decline in their abundance in light with a high R:FR 

ratio (typical of sunlight). In addition and correlating with phyA interaction assays PIF1 

and PIF3 levels also significantly decline in FR light while the levels of PIF4 and PIF5 
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remain much higher under such light conditions (Bauer et al., 2004; Lorrain et al., 2009; 

Shen et al., 2008). PIF7 represents an exception because despite its ability to interact with 

phyB, PIF7 protein levels are not light regulated (Leivar et al., 2008a). The activity of 

several PIFs is also inhibited by dimerization with transcriptional regulators leading to 

the formation of non-DNA-binding heteromers (de Lucas et al., 2008; Feng et al., 2008; 

Hornitschek et al., 2009). PIF3 and PIF4 heterodimerize with members of the DELLA 

family leading to a crosstalk between hormone and light regulated growth (Alabadi et al., 

2008; de Lucas et al., 2008; Feng et al., 2008). The activity of PIF4 and PIF5 is inhibited 

by HFR1, which accumulates to high levels in low R:FR conditions typical of shade 

(Hornitschek et al., 2009; Sessa et al., 2005). The regulation of HFR1 levels results from 

the combination of transcript upregulation in FR-rich environments and light-regulated 

COP1-mediated protein stability (Figure 4) (Fairchild et al., 2000; Hornitschek et al., 

2009; Sessa et al., 2005). Finally, transcriptional regulation of PIF4 and PIF5 represents 

an additional level of regulation that determines when these factors promote elongation 

growth. Both genes are expressed under circadian control, in addition PIF4 levels are 

strongly temperature-dependent (Koini et al., 2009; Nozue et al., 2007; Stavang et al., 

2009). 

 

Members of the PIF family play both specific and overlapping roles in the control of a 

variety of phytochrome responses. For instance germination is primarily controlled by 

PIF1 with SPT and PIF6 having a much more limited role for this response (Oh et al., 

2004; Penfield et al., 2009; Penfield et al., 2005; Shin et al., 2009). Remarkably none of 

the 2031 genes that are regulated by a germination-inducing red light treatment in wild-
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type seeds are light-regulated in a pif1 mutant demonstrating large-scale effect of PIF1 in 

the control of seed germination (Oh et al., 2009). The picture emerging from these studies 

is that PIF1 is an inhibitor of seed germination that directly acts on ABA and GA the two 

principal hormones regulating seed germination (Oh et al., 2009; Piskurewicz et al., 

2009). By triggering the degradation of PIF1 the light-activated phytochromes release 

this break and promote germination. 

In contrast to the specific role of PIF1 in the control of seed germination at least 4 PIFs 

control the morphology of etiolated seedlings in a partially redundant manner (Leivar et 

al., 2008b; Leivar et al., 2009; Shin et al., 2009). An etiolated quadruple pif1pif3pif4pif5 

mutant displays numerous features of light grown seedlings including morphology and 

the global gene expression pattern (Leivar et al., 2008b; Leivar et al., 2009; Shin et al., 

2009). In etiolated seedlings the PIFs play a particularly important function by 

controlling chlorophyll biosynthesis with PIF1, PIF3 and PIF5 being most important for 

this response (Huq et al., 2004; Shin et al., 2009; Stephenson et al., 2009). Thus the PIFs 

are required for the etiolated mode of seedling development and the phytochromes 

promote de-etiolation (at least in part) by leading to their inactivation. 

The analysis of pif mutants during seedling development in red and FR leads to similar 

conclusions. It should however be pointed out that the interpretation of the results 

obtained in red light is somewhat complicated by the finding that PIFs regulate the 

abundance of phyB which is the primary photoreceptor controlling de-etiolation in red 

light (Leivar et al., 2008a). phyB levels are increased in pif loss-of-function mutants 

31 



while they are reduced in PIF-overexpressing plants correlating with enhanced de-

etiolation in pif mutants and inhibited light responses in PIF over-expressers (Huq and 

Quail, 2002; Leivar et al., 2008a). The mechanism by which the PIFs control phyB 

abundance remains unclear but as for the light-regulated PIF degradation it requires 

interaction between the transcription factor and the photoreceptor (Al-Sady et al., 2008). 

In contrast in FR light PIF1, PIF4 and PIF5 also negatively regulate the de-etiolation 

response but without affecting the levels of phyA, which controls this light response 

(Lorrain et al., 2009; Oh et al., 2004). Moreover PIF4 and PIF5 also promote elongation 

growth in more mature plants during the shade avoidance response (Hornitschek et al., 

2009; Lorrain et al., 2008). Phenotypic analysis and gene expression studies show that 

PIF4 and PIF5 regulate a subset of SAR and more studies are needed to understand the 

relationship between the PIFs and other regulators of the SAR (Hornitschek et al., 2009; 

Lorrain et al., 2008; Roig-Villanova et al., 2007; Sorin et al., 2009; Tao et al., 2008). 

 

Outlook 

Despite considerable progress during the last decades on the elucidation of molecular 

events underlying photomorphogenesis there are still a large number of unresolved 

issues. What is the molecular nature of the elusive UV-B receptor and are there really 

green light sensors in higher plants? Although extremely sophisticated biophysical 

approaches have been applied to analyze plant photoreceptors our biochemical 

understanding of the events triggered by activation of these light sensors remains in its 

infancy (with the possible exception of the PIF branch of phytochrome signaling). The 

application of more biochemical and biophysical approaches should allow us to better 

 32 



address questions such as: How do both the phytochromes and cryptochromes inhibit 

COP1 in a light dependent fashion? Which phototoreceptors are really light-regulated 

kinases and what are their substrates? Photoreceptor-induced signaling mechanisms 

influence numerous aspects of plant development, however in most cases we do not 

understand at the molecular level how the photoreceptors modulate development. 

Significant progress on these important issues require the combined approaches of 

developmental and photo-biologists. In many cases phenotypes of relevant mutants will 

have to be analyzed with greater temporal and spatial resolution in order to understand 

the sequence of events and order of action of molecular players underlying a light 

response. A final fascinating avenue of research is to examine how all this knowledge 

gathered in Arabidopsis grown in the laboratory can be used to understand plant 

adaptation to their local environment. 
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Figure legends 

 

Figure 1. The spectral photon irradiance of natural light environments and effective 

spectrum of photoreceptors. 

(A) All of spectra were measured by spectroradiometer (LI-1800; Li-Cor, Lincoln, NE) in 

Nara, Japan (May 2003,15:00, fine weather).  Unfiltered sunlight (Sunlight), the shadow 

of building (Shadow), sunlight transmitted through a green Pueraria lobata leaf and light 

brown Pueraria lobata leaf (Autumnal leaf). (B) Effective spectrum of photoreceptors for 

activation and inactivation.   

 

Figure 2. Primary light reactions in the different classes of plant photoreceptors 

Arabidopsis has five phytochrome-encoding genes (PHYA-E), three cryptochrome genes 

(CRY1-3), two phototropin genes (PHOT1 and PHOT2) and three Zeitlupe family genes 

(ZTL, FKF1, LKP2).  The protein domain organization of the different photoreceptors is 

schematized with the position of chromophore attachment marked with an arrowhead. 

Phytochromes have an N-terminal extension of unknown fold (NT) followed by a PAS 

(Per, ARNT, Sim) domain, a GAF (cGMP phosphodiesterase/adenyl cyclase/FhlA) 

domain that binds the chromophore, a PHY domain (related to PAS domains) and a C-

terminus that is composed of two PAS domains and a histidine kinase related domain 

(HKRD). Cryptochromes have a photolyase homology region (PHR) and a C-terminus of 

unknown structure (CT). Phototropins are composed of two LOV (Light, Oxygen, 

Voltage) domains in their N-terminus (LOV1 and LOV2) and a Ser/Thr protein kinase 

domain (KD). Members of the ZTL family have an N-terminal LOV domain, an F-box 
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and KELCH repeats. Phytochromes have phytochromobilin (PΦB) as a chromophore that 

is covalently bound to an invariant Cys residue in a GAF domain and photoreversibly 

switches between the Pr and the Pfr conformers upon isomerization of a double bond 

between the A and B rings of the tetrapyrrol. Cryptochromes have two chromophores; 

flavin adenine nucleotide (FAD) and a pterin acting as an antenna pigment. The light 

reactions from FAD to flavin adenine dinucleotide (FADH-) or neutral radical form of 

FADH (FADH*) are depicted on the figure (adapted from (Bouly et al., 2007)).  

Phototropins use flavin mononucleotide (FMN) as a chromophore. In darkness, each of 

the LOV domains non-covalently binds to FMN.  After absorbing UV-A/blue light, an 

invariant Cys in the LOV domain covalently binds to FMN. This activated state rapidly 

return to the dark state. Zeitlupe family light-sensors also have a LOV photosensory 

domain. In contrast to the phototropins this LOV domains remains in the light-activated 

state for a long time (hours). 

Figure 3. Photomorphogenesis in Arabidopsis. 

After germination, the seedling undergoes etiolated development in darkness or develops 

as a photosynthetically active seedling in the light. As the etiolated seedling emerges 

from the soil it will undergo de-etiolation. Light affects growth and development 

throughout life cycle of plants. 

Figure 4. Phytochromes modulate the activity of multiple transcription factors. 

In the dark the phytochromes are present in the cytoplasm in their ground Pr state. COP1 

in association with SPA proteins leads to the degradation of multiple transcription factors 
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including HY5 and HFR1. Multiple PIF proteins remain stable and contribute to the 

etiolated form of development of the seedling. Upon light perception the phytochromes in 

their Pfr conformation translocate into the nucleus where they lead to the inactivation of 

COP1 and the degradation of several PIFs. In addition to degradation the PIFs are also 

inactivated by dimerization with HFR1 and the DELLAs. The primary mechanism 

leading to PIF inactivation depends on the light condition with dimerization with HFR1 

playing an important role in FR-rich light because under these conditions the PIFs are 

relatively stable and HFR1 accumulates to high levels. The abundance of DELLA 

proteins is also regulated by the environment with for example higher levels of GA in the 

etiolated seedlings leading to more DELLA degradation. 

 

Table I. Photoreceptor-dependent responses in Arabidopsis. 

Summary of the photomorphogenic responses with the identified photoreceptor triggering 

these reactions. The type of light treatments leading to these responses is indicated. P 

stands for Pulse with Very low corresponding to a fluence of 10-6 ~ 10-2 µmol m-2, Low 

to 10-2 ~ 103 µmol m-2 and High to >103 µmol m-2. C stands for continuous light with 

Low corresponding to a fluence rate of 10-2 ~ 101 µmol m-2 s-1 and High to >101 µmol m-2 

s-1. Wc = Continuous white light, LD = long days (16h white light / 8h dark), SD = short 

days (8h white light / 16h dark), EOD = End Of Day treatment which is done with FR 

light and leads to inactivation of the phytochromes.  *Publication showing action spectra 

in Arabidopsis.  ** Multiple narrowband monochromatic lights between 320-780 nm 

were used for this experiment. 
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