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Abstract Individual-as-maximizing agent analogies result in a simple under-

standing of the functioning of the biological world. Identifying the conditions under

which individuals can be regarded as fitness maximizing agents is thus of consid-

erable interest to biologists. Here, we compare different concepts of fitness maxi-

mization, and discuss within a single framework the relationship between Hamilton’s

(J Theor Biol 7:1–16, 1964) model of social interactions, Grafen’s (J Evol Biol

20:1243–1254, 2007a) formal Darwinism project, and the idea of evolutionary stable

strategies. We distinguish cases where phenotypic effects are additive separable or

not, the latter not being covered by Grafen’s analysis. In both cases it is possible to

define a maximand, in the form of an objective function /(z), whose argument is the

phenotype of an individual and whose derivative is proportional to Hamilton’s

inclusive fitness effect. However, this maximand can be identified with the expres-

sion for fecundity or fitness only in the case of additive separable phenotypic effects,

making individual-as-maximizing agent analogies unattractive (although formally

correct) under general situations of social interactions. We also feel that there is an

inconsistency in Grafen’s characterization of the solution of his maximization pro-

gram by use of inclusive fitness arguments. His results are in conflict with those on

evolutionary stable strategies obtained by applying inclusive fitness theory, and can

be repaired only by changing the definition of the problem.
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Introduction

It is plausible that ant colonies adjust their collective behaviour to maximize food

intake. Plants may regulate biochemical cycles to maximize photosynthesis under

different constraints of pH or water and carbon dioxide availability. A bird wing

shape may be built to maximize aerodynamic efficiency for different kinds of flight.

The application of such optimality considerations to understand the form,

physiology, and behavior of organisms has often enhanced the understanding of

biological processes (Maynard Smith 1982; Dawkins 1982; Parker and Maynard

Smith 1990).

The theory of natural selection itself was originally developed as a way of

explaining the perceived optimal fit of organisms to their physical environment.

However, much of the attraction of natural selection also stems from its ability to

understand processes involving social interactions, from iconic examples of sex

ratio evolution to the analysis of conflicts at all levels of biological organization

(e.g., Maynard Smith and Szathmary 1995; Bourke 2011). A long-standing question

in evolutionary biology is the extent to which natural selection leads individuals to

behave as if they maximize a common measure, ‘‘fitness’’, of fit to the environment

in all these different cases, and then what this fitness means.

In a series of papers, Grafen (2002, 2006, 2008) appears to have constructed

general results in the form of individual-as-maximizing agent analogies and

describes these results as a general formal statement of Darwin’s theory of natural

selection. What he appears to be after is the formal maximization of a function /
(z) with respect to an individual phenotype z. The problem then is to find the

appropriate function /.

In order to identify this individual maximand, Grafen describes, in particular with

his concept of ‘‘no potential for selection’’, the mathematical characterization of a

concept of evolutionary stability (‘‘no possible mutant would spread’’, Grafen 2008,

p. 425). This is supposed to go beyond more traditional concepts from evolutionary

game theory (Maynard Smith 1982; Eshel 1983) in two directions. First, it is based

on explicit population genetic considerations and, second, the characterization must

apply to an arbitrary genetic makeup of a given parental population.

Many steps of Grafen’s argument are sound. For instance, his stressing of the

importance of having a consistent usage of the word ‘‘fitness’’, and whose arithmetic

mean can be applied to understand the effect of natural selection even in cases

where biologists feel a need to consider geometric means (Grafen 1999, 2000). But

we are skeptical about the biological importance of the results reached on

maximization, for two reasons. First, the exact significance of Grafen’s (2006)

results on the maximization of inclusive fitness may easily be missed. They require

the assumption of additive separable phenotypic effects on fitness (ruling out

phenotypic interactions), which is stronger than additive separable genetic effects.

Hamilton’s (1964) model still works with the latter assumption and thus applies to

phenotypic interactions (the rule in the presence of social interactions). Second,

Grafen’s mathematical characterization of fitness maximization does not always

appear consistent with well-established population genetic and game theoretical
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considerations. In particular, it appears to us as inconsistent with inclusive fitness

theory.

In this commentary, we develop the above points. We discuss the validity of

different concepts of fitness maximization in Hamilton’s (1964) model of social

interactions, in the formal Darwinism project of Grafen (2014), and how these relate

to each other and to the idea of evolutionary stability (Maynard Smith 1982; Eshel

1983). This paper is organized as follows. (1) We start by discussing fitness

maximization in population genetics. (2) We analyze fitness maximization in

Hamilton’s (1964) model of social interactions, where candidate maximands depend

on gene frequency. With the possible exception of our comparison of partial and

total changes in fecundity under this model, our analyses are not new, but are

profitably set in a common framework. (3) We relate Hamilton’s model to the

concept of evolutionary stability, where candidate maximands now depend on

phenotypes. We then compare maximands under two different altruism models, one

involving additive separable phenotypic effects and the other not. While we show

that individual-as-maximizing agent analogies still appear formally correct in the

latter case, they generally do not provide new biological insights. (4) In light of

these results, we call for several clarifications in Grafen’s arguments in the case of

social interactions.

Fitness and optimization

Fitness

For simplicity, we assume throughout that evolution occurs in a haploid population

of constant size N without any class structure. We denote by wi the fitness of

individual i in this population, and follow Hamilton’s (1964) words in defining this

as the number of offspring in a daughter generation that descend from individual

i reproducing in a given parental generation. Because population size is constant,

mean fitness is equal to one ( �w ¼
P

i wi=N ¼ 1). If a trait or characteristic with

value yi in individual i is transmitted identically from parent to offspring, the change

D�y in the average �y ¼
P

i yi=N of that trait over one generation can then be written

as

D�y ¼
X

i

yiwi=N �
X

i

yi=N
X

i

wi=N ¼ Covðyi;wiÞ: ð1Þ

This is a particularly simple formulation of the classic result of Price (1970),

which is in agreement with Grafen’s (2008) ‘‘simplest model’’, and where the

covariance is taken over all population members.

It is tempting to set yi = wi in Eq. (1), which gives the change in mean fitness as

the covariance in fitness: D �w ¼ Covðwi;wiÞ ¼ VarðwiÞ, but mean fitness should not

change over generations in a population of constant size ðD �w ¼ 0Þ. What goes

wrong here? The answer is that the wi’s are not identically transmitted from parent

to offspring. This fact may be framed in terms of Fisher’s (1930) so-called

Fundamental Theorem of Natural Selection, as explained by Price (1972).
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According to this interpretation, Var(wi) only represents a partial change in the

average fitness �w, attributed by Fisher to ‘‘natural selection’’. But the total change in

�w is also affected by changes in the ‘‘environment’’, which, in a model of social

interactions, encapsulates the genetic effects (and thus behavior) of other

individuals in the population. The change in the environment thus includes changes

in the genetic composition of the population as the result of natural selection. The

partial change Var(wi) isolates that part of the mean change about which something

can be said independently of what is know about the parental generation (Ewens

2011, p. 169), but this is exactly counter-balanced by the change in the genetic

environment from the parental to offspring generation.

The idea that natural selection always results in such a simple concept of

adaptation as an increase in mean fitness (the ‘‘mean fitness program’’ in the words

of Grafen 2008, p. 424) has been criticized and assessed in population genetics

(Moran 1964; Ewens 2004, 2011) and evolutionary game theory (Mylius and

Diekmann 1995; Metz et al. 2008). Yet Hamilton (1964) attempted to show that

‘‘inclusive fitness’’ would always increase. Hamilton’s result may thus appear as an

instantiation of the mean fitness program. However, we now show that Hamilton’s

1964 result is an instantiation of the partial change in mean fitness result. In so

doing, we will not use Hamilton’s notations, but follow his line of arguments

applied to a simple example. Hence, all results presented in the next section can be

seen as special case of Hamilton’s (1964) model.

Social interactions

Partial change in fitness

Hamilton (1964) assumed a population without spatial structure, with discrete and

non-overlapping generations, and where the fitness wi ¼ fi=�f of individual i depends

on the average fecundity �f in the population. In a model with only two alleles, the

fecundity fi of individual i may depend not only on the frequency pi by which it

carries the mutant allele, but also on the fraction pn,i of neighbours it interacts with

that carry the mutant. The fecundity of individual i can then be written as

fi = fb(1 - Cpi ? Bpn,i) for some baseline fecundity fb, fecundity cost C of

expressing the mutant allele, and fecundity benefit B received from neighbors that

express the mutant.

Fecundity fi is not identically transmitted across generations, because in general

pn,i is not identically inherited from parent to offspring (pn,i is part of the

‘‘environment’’). However, there are two further steps to Hamilton’s reasoning.

First, the population is very large, each allele is in many copies, and random

fluctuations in pn,i average out over all gene copies i of a given allelic type. Second,

the expected pn,i for individual i takes the form Rpi þ ð1� RÞ�p in terms of the

mutant allele frequency �p in the total population (Hamilton 1964, p. 35), which can

be interpreted as saying that a fraction R of gene copies in neighbors are identical to

those of individual i, while a complementary fraction are mutant gene copies

according to its frequency in the population. For a mutant, this entails expected
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frequency Rþ ð1� RÞ�p of interactions with other mutants and expected fecundity

fbð1� C þ Rþ ð1� RÞ�p½ �BÞ, while for a resident (or wild-type) it entails frequency

ð1� RÞ�p of interactions with mutants and expected fecundity fbð1þ ð1� RÞ�pBÞ.
The difference between the two expected fecundities is fb(- C ? RB), and, the

average mutant frequency change in the population can be written as

D�p ¼ �pð1� �pÞ �C þ RBð Þfb=�f : ð2Þ
Because selection acts on fecundity differences in this model, Hamilton showed

that the change in allele frequency in the population is as if the fecundity of

individual i is

fa;i ¼ fb½1þ pið�C þ RBÞ�; ð3Þ

which is a value that can be associated to each gene copy (equal to fb for a wild-type

and fb(1 - C ? RB) for a mutant). Hamilton (1964, p. 6) called this value

‘‘inclusive fitness’’, a semantic choice consistent with the usage in the population

genetic literature that inspired him, but is inconsistent with his own verbal definition

of ‘‘fitness’’ as a number of adult offspring (Hamilton 1964, p. 1), which matches wi

defined above. In order to avoid such semantic inconsistencies, and further semantic

difficulties that arise in models of spatially structured population (where regulation

is local), we prefer to call this value ‘‘fecundity asif’’ to emphasize the precise

interpretation of Eq. (3).

With the definition of fecundity asif, the expected fecundity of individual i can be

written as

E½fi� ¼ fa;i þ fbBð1� RÞ�p; ð4Þ

which is the sum of fecundity asif and a remainder term depending on population

allele frequency. The total change in fecundity asif is then given by

D�fa ¼ Covðfa;i;wiÞ ¼ Cov fa;i; ½fa;i þ fbð1� RÞ�pB�=�f
� �

¼ Varðfa;iÞ=�f . Using the

explicit expression for fa,i and the identity Covðpi; piÞ ¼ VarðpiÞ ¼ �pð1� �pÞ
produces

D�fa ¼ �pð1� �pÞ �C þ RBð Þ2f 2
b =

�f : ð5Þ
Therefore, the fecundity asif always increases in the population as long as allele

frequency change occurs, and the same argument can be made for the fitness asif �wa,

defined in terms of fitness wi by dividing all expressions involving fecundity by �f .

In Hamilton’s construction, the mean fecundity asif, �fa ¼ fbð1þ �p �C þ RB½ �Þ,
acts as a so-called potential function, which is increased by evolutionary change.

That is, the gradient d�fa=d�p ¼ fbð�C þ RBÞ of the potential points in the direction

of the steepest increase in fecundity asif, which is the path taken by allele frequency

change:

D�p ¼ �pð1� �pÞ
�f

dfa

d�p
: ð6Þ

As proven, this result does not imply that fecundity is maximized under

biological scenarios involving social interactions. In fact, Eq. (5) only provides the

partial change in fecundity due to changes in allele frequencies in the population,
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but given the mean fecundity in the parental population. This mean fecundity also

changes as the result of allele frequency change. The key relationship is here

Eq. (4), where it is seen that differences among alleles in fecundity asif equal

differences in expected fecundity fi, but that the fecundity asif differs from fecundity

by a function of allele frequency which is Hamilton’s (1964, p. 6) diluting effect.

Total change in fitness

In order to obtain the total change, it suffices to note that each mutant allele imparts

a total cost -C and a total benefit B on the relative fecundity of the population. The

overall effect of each mutant on relative population fecundity is B - C. This is an

exactly transmitted property of each mutant allele. Hence, the total change in

average population fecundity depends on the extent to which allele frequency

change alters this value: D�f ¼ fb B� Cð ÞD�p, and using Eq. (2) produces

D�f ¼ �pð1� �pÞ B� Cð Þ �C þ RBð Þf 2
b =

�f : ð7Þ
This shows that average fecundity will decrease in the population as genes with

higher relative fecundity increase in frequency: -C ? RB [ 0, but absolute

fecundity decreases (B - C \ 0); namely, when B \ C \ RB \ 0. A ‘‘selfish’’

mutant with positive direct effects but larger negative indirect effects on weakly

related neighbours is selected for. The case where a selfish mutant invades despite

imparting a negative effect on the whole population (R *0) is indeed an intuitive

case of this more general result, which also underlies selection-driven population

extinction (Matsuda and Abrams 1994).

To sum up, and as claimed by Hamilton, allele frequency changes proceed as if

fitness was proportional to fb[1 ? pi(- C ? RB)]. The average fecundity asif �fa

therefore increases in the population as the mutant invades, and the same argument

holds for fitness asif. Indeed, Hamilton’s argument was that the change of allele

frequency due to selection proceeds as if individuals were changing behaviour to

increase their fitness asif. Hamilton’s (1964, 1970) model thus appears analogous to

previous works by Wright (1942) and Kingman (1961) to which he refers, and

which are instantiations of the ‘‘mean fitness program‘‘. In effect, Eq. (6) takes the

same form as the influential ‘‘adaptive topography’’ equation of Wright (1942). But

the analogy holds only as long as one deals with allele frequency changes, but not

with changes in fecundity or fitness, as there is nothing in Hamilton’s result that

prevents these quantities from going down.

Optimization

Continuum of phenotypes

So far, the fecundity asif, fa,i, was not considered a function of all the alternative

phenotypes that can be expressed by an individual, and therefore not considered as

an objective function that can be maximized by varying its behavior over an
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arbitrary phenotypic range. But what Grafen is seeking in is his ‘‘optimization’’

papers (Grafen 2002, 2006, 2008) is such an objective function /(z), whose

argument z is the phenotype of an individual (more precisely that part of the

phenotype that vary with genotype holding everything else constant), and that can

represent its state, from physiological to informational.

In order to capture the (competitive) fit of an organism to its environment, this

maximand must allow one to characterize evolutionary stable strategies in the sense

that if all individuals in a population express the phenotypic value zH that

maximizes the objective function (such that /ðzHÞ ¼ maxz2U /ðzÞ, where U is the

set of phenotypes), no mutant with a deviant phenotype can invade the population.

The non-invadability condition of mutants is captured by the concept of ‘‘no

potential for selection in relation to the set U’’ in Grafen’s work (e.g., Grafen 2008,

p. 425).

Can one find such a maximand in the framework based on Hamilton’s model

described above? In order to answer this question, we write the fecundity cost C and

B explicitly in terms of an evolving phenotype, whose range U is assumed to be real

valued (continuously distributed phenotype). For instance, this phenotype could be

the probability of committing self-sacrifice (U ¼ ½0; 1�). The fecundity of individual

i in an altruism model could then be written as

fi ¼ f ðzi; znÞ ¼ fbð1� ziÞð1þ aznÞ; ð8Þ

where a is the increase in fecundity when a focal individual that has not committed

self-sacrifice interacts with an altruistic neighbor. This is a standard formulation for

an altruism model in the literature (Charlesworth 1978; Frank 1998).

The change in frequency of a mutant allele with phenotype z ? d in a wild-type

population with phenotype z is then given for a mutant with small phenotypic

deviation d by

D�p ¼ �pð1� �pÞd �CðzÞ þ RBðzÞ½ �=f ðz; zÞ; ð9Þ

where

�CðzÞ ¼ of ðzi; znÞ=ozijzi¼zn¼z

BðzÞ ¼ of ðzi; znÞ=oznjzi¼zn¼z:
ð10Þ

For the altruism model, these marginal cost and benefit are -C(z) = - fb(1 ? a
z) and B(z) = fb(1 - z)a, respectively. It is in terms of such marginal costs and

benefits that Hamilton’s (1964) model should be thought of, otherwise the

relatedness coefficients would not behave as claimed and would depend on

frequency �p of the mutant. In terms of the marginal cost and benefit, the fecundity

asif of individual i is fb þ pi �CðzÞ þ RBðzÞ½ �, its mean is �faðz; �pÞ ¼ fb þ
�p �CðzÞ þ RBðzÞ½ � and all the results obtained in the previous section apply mutatis

mutandis. In particular, the mutant invades a population of wild-types when the

selection gradient SðzÞ ¼ ½o�faðz; �pÞ=o�p�=f ðz; zÞ is positive, as if individuals were

changing their behaviour to maximize their fitness asif. But what about maximi-

zation of the fitness asif with respect to z?
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Evolutionary potential function

Because the gradient S(z) is of constant sign, invasion of a mutant allele implies its

fixation in the population. By successive allelic replacement, the level of altruism in

the population will gradually change. For a constant mutation rate and phenotypic

variance, the change in phenotype under a trait substitution sequence assumption

(e.g., Metz et al. 1996) is proportional to the gradient: dz/dt = kS(z), where the

constant k of proportionality determines the rate of evolution. This equation for the

change in phenotype (which neglects the possibility of stable polymorphism in the

population) is the so-called canonical equation of adaptive dynamics (Dieckmann

and Law 1996; Champagnat et al. 2006), which can be derived by using the

population genetic assumptions behind Hamilton’s model (Lehmann 2012). It thus

applies to interaction between relatives and provides the direct long-term

phenotypic evolution counterpart to the short-term evolutionary model discussed

in the last section (Eq. 2).

It is useful to note that the selection gradient on the level of altruism can be

interpreted as the gradient of the potential function

/ðzÞ ¼
Z

SðzÞdz; ð11Þ

whereby the change of phenotype in the population is

dz

dt
¼ k

d/ðzÞ
dz

: ð12Þ

Evolution stops when dz /dt = 0. This occurs in point z where the selection

gradient vanishes: d/(z)/dz = S(z) = 0. It entails no change of allele frequency and

thus characterizes a candidate evolutionary stable strategy if /(z) is a local

maximum, so that no nearby deviant mutant can invade. Thus, if the individuals in

the population behave as if they were maximizing /(z), no nearby deviant mutant

can invade. In the altruism model, this entails maximizing

/ðzÞ ¼ R logð1þ azÞ � logð1� zÞ ð13Þ

and expressing level of altruism zH ¼ ðaR� 1Þ=½að1þ RÞ�.
In the absence of social interactions, the fecundity of an individual depends only

on its own phenotype (fi = f(zi) does not depend on zn, nor on z). Then, the inclusive

fitness effect can be written as SðzÞ ¼ o�faðz; �pÞ=o�p ¼ ½df ðzÞ=dz�=f ðzÞ and we can

take /(z) = log f(z), which is the logarithm of fecundity. If the individuals in a

population then behave as if they were maximizing log f(z) or simply f(z), no mutant

in relation to the whole set U can invade; and we can even remove the term ‘‘nearby

mutant‘‘ in this case. The maximand thus allows one to characterize evolutionary

stable phenotypes and provides an intuitive individual-as-maximizing-agent

analogy.

In the presence of social interactions, the fecundity of an individual no longer

depends only on its own phenotype and it is no longer clear what the maximand /
(z) really represent biologically. Indeed, in the altruism model given above (Eq. 13),

neither log (1 - z) nor log (1 ? az) have a clear biological interpretation in terms
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of vital rates of actors and/or recipients. Further, relatedness itself may depend on

the evolving phenotype, as occurs when dispersal is the evolving phenotype (e.g.,

Frank 1998; Rousset 2004). In these cases, the individual-as-maximizing-agent

analogy of /(z) becomes less seductive, even if formally correct. But /(z) still

retains a biological effect, as it determines the distribution of phenotypes at a

mutation-selection-drift equilibrium, and thus arises naturally in a model where the

continuum of possible phenotypes in U are explicitly taken into account under

arbitrary kinds of asymmetric interactions and environmental or demographic

stochasticity (Lehmann 2012).

Additive separable phenotypic effects

There is, nevertheless, a case where the evolutionary potential function takes a clear

biological interpretation in the presence of social interactions. Consider the altruism

model where the fecundity of individual i is written as

f ðzi; znÞ ¼ fb � cðziÞ þ bðznÞ ð14Þ

for some cost function c and benefit function b entailing additive separable phe-

notypic effects on fecundity. This is an alternative formulation to Eq. (8) of an

altruism model, and also appears in the literature (Frank 1998; Lion and Gandon

2009).

For this model the selection gradient is SðzÞ ¼ �dcðzÞ=dzþ RdbðzÞ=dz½ �=f ðz; zÞ
and one can define the evolutionary potential

/sðzÞ ¼ �cðzÞ þ RbðzÞ; ð15Þ

which allows us to write the selection gradient as

SðzÞ ¼ 1

f ðz; zÞ
d/sðzÞ

dz
: ð16Þ

If the individuals in the population behave as if they were maximizing /s, no

nearby mutant can invade, and this result applies more generally; namely, to all

cases where /(z) applies and where social interactions result in a fecundity function

(or fitness function) that is additive separable.

Equation (15) sums up the relatedness weighted cost and benefit of social

interactions, and is sometimes used as ‘‘inclusive fitness‘‘ in the literature, in

particular in reproductive skew or tug-of-war models (e.g., Johnstone et al. 1999).

This definition departs from the initial conception of Hamilton (Eq. 3) in a crucial

way. In effect, his equations also apply to all cases where gene action is additive

under weak selection (so that there are additive effects on fitness stemming from

differences in behaviour between competing alleles, e.g., Taylor 1989; Rousset

2004). For instance, they apply in the altruism model (Eq. 8), where phenotypic

interactions are not additive separable, but weak selection entails additive gene

action. Many other applications of Hamilton’s rule involve such phenotypic

interactions, e.g., phenotype-matching kin recognition (Reeve 1989) or the

evolution of sex-ratio, over-exploitation of resources, or policing (Frank 1998;

Wenseleers et al. 2010).
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Grafen’s program

We now discuss the results of Grafen’s ‘‘optimization’’ papers (Grafen 2002, 2006,

2008) in the light of the inclusive fitness and game theoretic results introduced

above. One of the main reason that we presented these results is that we failed to

find an unambiguous relationship between Grafen’s concepts of fitness and

maximization, and those used by Hamilton (1964) and in classical ESS calculations

with and without relatives (e.g., Parker and Maynard Smith 1990; Frank 1998;

McNamara et al. 2001). Therefore, our aim in the forthcoming section is not so

much to discuss all of Grafen’s claims about maximization (which we may not fully

understand), but rather to give elements that should help readers to evaluate future

clarifications of these claims. A major issue is to find the function to which Grafen’s

program applies. In our understanding, a function of at least two variables, such as

the fitness function, does not fit with Grafen characterization of the maximand. As

emphasized by Grafen (2008, p. 423), there is not even a concept of population

involved in the definition of the maximand, so that the phenotypes of different

individuals cannot be considered in this definition. This strict concept of

maximization thus excludes the concept of ‘‘best response’’ (Mas-Colell et al.

1995, p. 242), that is, maximization with respect to one argument by holding the

others constant, which actually often underlies ESS calculations (e.g., Parker and

Maynard Smith 1990; Mylius and Diekmann 1995). While the selection gradient is

a function of a single variable, it takes a value of zero at an ESS point and is thus not

the required maximand. The remaining candidate encountered above for a

maximand is the evolutionary potential function, from which we suggest that the

maximands proposed by Grafen (2002, 2006, 2008) can be retrieved.

Asocial worlds

In his first paper demonstrating the existence of a maximand, Grafen (2002)

assumes no social interactions. The fecundity (or survival) of an individual thus

depends only on its own phenotype (fi = f(zi)). In this case, we saw that if

individuals behave as if they maximize f(z), one obtains a characterization of

evolutionary stability so that no mutant can invade (‘‘no potential for selection in

relation to the set U’’). This has been noticed before and the maximands /
(z) = f(z) (or /(z) = log f(z)) form the basis of much of behavioral ecology in the

absence of social interactions (e.g., marginal value theorem, Charnov 1976) and

life-history evolution (e.g., semelparity vs. iteroparity, Stearns 1992).

Grafen (2002, 2008) proves the result that organisms may be regarded as

fecundity/survival maximizers under conditions more general than assumed above,

and extends it to an arbitrary ploidy, number of loci, and uncertainty. As

emphasized by Grafen himself (e.g., Grafen 2007a, p. 1248), it is not a conclusion

that natural selection will necessarily lead to optimization under such conditions,

and, importantly, the classical population genetic restriction to optimization noted in

the section ‘‘Fitness‘‘ (e.g., Moran 1964) still apply to his model. But by

emphasizing the phenotypic optimization and population genetic parts of the same

model, Grafen provides a more detailed justification of previous models assuming
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optimality, in particular in behavioral ecology (e.g., Charnov 1976), and his

characterization is sufficient to determine the candidate endpoints of the

evolutionary process when genetic constraints are ignored.

In effect, many parts of an organism appear as if they have been optimally

engineered. From molecular motors and pumps to swim bladders and the eye, there

are many morphological and behavioral traits that seem to ideally fit the prevailing

environmental conditions. The behavior of individuals from other species is taken as

constant in the maximand, so that the immune system, spider webs, or the ability to

evade predators, all fall to some extent into the ambit of Grafen’s model.

Social worlds

Additive separable phenotypic effects

In the presence of social interactions, however, the behaviors of individuals often do

no look as if there were at their best. Overexploitation of resources, nepotism, and

conflicts at various levels of social organization do not carry the hallmarks of optimal

design. Indeed, when the fecundity (or survival) of an individual depends on the

behavior of conspecifics, the Pareto optima of a game are often not Nash equilibria.

In his (2006) paper, Grafen extends his (2002) results and claims to show that in

the presence of social interactions individuals behave as if they maximize their

inclusive fitness effect (the maximand is verbally defined as such by Grafen 2006,

p. 552 and given explicitly by Eqs. 8–9). This is inconsistent with the

results discussed above, since the inclusive fitness effect is proportional to

S(z) = [-C(z) ? R B(z)]/f(z, z) and takes a value of zero at an interior candidate

evolutionary stable state [following the definition of Hamilton (1964, p. 6), the

inclusive fitness effect is dS(z)]. This inconsistency is resolved by noting that

Grafen’s construction of inclusive fitness is in terms of additive separable

phenotypic effects (e.g., Eq. 15, Grafen personal communication). Hence, the

maximand should be /s(z); that is, Eq. (15) or its generalization to asymmetric

interactions and/or stochastic demographies and environments. As discussed above,

this is but a special case of the domain of application of Hamilton’s model, and this

maximand is not the inclusive fitness effect per se, but still bears a simple enough

relationship to it for the two to be often confounded.

Dynamic sufficiency

We are actually further puzzled by Grafen’s (2006) treatment of the inclusive fitness

effect, because it seems that the kind of partial change Grafen is after is so partial that

it actually does not contain any inclusive fitness effects in its formulation. If so, his

characterization of ‘‘no scope for selection’’ and ‘‘no potential for selection’’ will

appear removed from the evolutionary stability considerations such as those outlined

above. If not, his results need to be reconciled with the following considerations.

Grafen (2006) compares changes in the transmission of a gene copy when a

single individual in a population of wild-types switches to the expression of a
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mutant allele. The result (Grafen 2006; p. 553, eq. 10) may then be seen to depend

only on the direct effect of the individual on its fitness, not on its effects on

related neighbours. Namely, on -C(z) [or -c(z)] rather than on -C(z) ? RB(z) [or

-c(z) ? Rb(z)] in our altruism example. This result and its derivation depart from

Hamilton’s logic in a crucial way. In the latter logic, the role of the inclusive fitness

effect in determining allele frequency change is recovered in the following

comparison: when a gene copy switches from one behaviour to another, the

behaviour expressed by any gene copy related by R to the first one should also be

altered with probability R. In other words, considering the fate of a single switch in

behaviour over one episode of reproduction is not indicative of the direction of

selection on a mutant in the presence of interactions between relatives, and thereby

decoupled from any consideration of evolutionary stability.

It is plausible that Grafen’s (2006) result for the change in allele frequency (his

Eq. 10) also applies to the case where there are several mutants. In this case,

however, the inclusive fitness effect in this equation will depend on allele

frequency, since relatedness depends on the distribution of allele frequencies in

the population (Grafen 2006, Eq. 3). Thus, the maximand will depend on the setups

of the two parental populations that are compared. But in Grafen’s approach, what

determines this setup is not considered. Indeed, since the model is not dynamically

sufficient, as emphasized by Grafen (2008, p. 431; 2007a, p. 1247), we are not in a

position to say anything about the parental population setup. We do not see,

however, how one can provide a formal foundation to phenotypic optimization by

letting the relatedness coefficient, and thus the maximand, vary with the parental

population setup. This criticism is not inspired by the classical population genetic

counterexamples to optimization found when dynamics sufficiency is taken into

account. But by the fact that Grafen’s characterization of ‘‘no potential for selection

in relation to the set U’’ is then at variance with the usual notion of non-invadability,

which is a procedure that allows one to determine the candidate endpoints of an

evolutionary process (e.g., Parker and Maynard Smith 1990; McNamara et al.

2001). This should take into account the likelihoods of various population

configurations in order to make predictions about the behaviors that are likely to be

observed in a population.

Indeed, Hamilton’s argument leading to the expression for change in fecundity

(or survival) in terms of relatedness (Eq. 4) shows that the parental setup matters

and must be chosen in a biological meaningful way, rather than considered as an

arbitrary given. In the simplest population genetic scenario without social

interactions, the change in allele frequency is of the form p(1 - p)s for some

constant selection coefficient s (Crow and Kimura 1970; Gillespie 2004), and thus

the direction of selection is given by s irrespective of p: we do not need to care about

making dynamically sufficient claims about p (this is one of the reasons why

Grafen’s characterization of the asocial case is relevant and also pertains to long-

term evolution). In Hamilton’s scenario, the change in allele frequency is similar in

form, p(1 - p)S(z), but, importantly, this result rests on the average genetic

structure in the parental population given p. In a more formal analysis of Hamilton’s

model, this genetic structure may be obtained as the result of a dynamically

sufficient analysis of probabilities of identity between pairs of genes (Rousset 2004),
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so that S(z) (and /(z) in Eq. 11) encapsulate the likelihoods of various population

configurations. Hence, the maximization of the evolutionary potential /(z) makes

prediction about the behaviors that are likely to be observed in the population in the

long run. By contrast, Grafen’s (2006) measure of relatedness (his Eq. 3), and then

his maximand, depend on the the realized distribution of allele frequencies in a

given parental population, so that it is not clear how its maximization pertains to the

behaviors to be observed in the population.

Under more general biological scenarios, the parental genetic structure may be

more difficult to characterize. One way of circumventing this problem it to derive

results for fixation probabilities (rather than allele frequency change), obtained as

integrals of some functions over sample paths of a stochastic process determining

likely properties of the parental population (Rousset 2003, 2004; Lehmann 2007;

Lessard and Ladret 2007). In such an approach, one still has to say something about

the likely state of the parental population in order to obtain a measure of the

direction of selection on a mutant and then to determine the evolutionary potential

individuals may appear to be maximizing as the result of natural selection.

Metamodel?

By contrast to the previous arguments, Grafen’s (2006) computation gives mutant

spread only under conditions decoupled from a consideration of evolutionary

stability. We thus have difficulties to reconcile this approach with Grafen’s claim in

his (target review) that his project has the status of a meta model (Grafen 2014), by

which the processes going on in other models can be understood. For instance, he

claims that the paper of Grafen (2007b) follows the assumptions of Grafen (2006)

and allowed to show that the results of Ohtsuki et al. (2006) for games on graphs

can be understood in terms of inclusive fitness effects. To do this, however, Grafen

(2007b) in his Appendix does not apply his characterization of solutions of the

optimization program, but precisely the dynamically sufficient approach on

probabilities of identity mentioned above.

Conclusion

Are there general conditions where individuals can be regarded as fitness

maximizing agents? Hamilton (1964) showed that one can attribute to each gene

copy a value, the fitness asif 1 ? pi(- C ? RB), such that the change of allele

frequency in the population due to selection proceeds as if individuals were

changing their behaviour to increase their fitness asif (called ‘‘inclusive fitness‘‘ by

Hamilton 1964). Here, -C ? RB can be recognized as being the average effect of a

mutant allele (Falconer and Mackay 1996; Lynch and Walsh 1998; Frank 1997), so

that Hamilton’s construction actually holds even in the presence of non-additive

gene action. But it provides exactly the same information about the operation of

natural selection and the behavior of individuals as the Price equation itself:

selection favors those alleles that are associated to the fitness of their carriers. Since

there is no general, nor even univocal, relationship between the change in fitness and
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allele frequency change under natural selection, any individual-as-maximizing-

agent analogy is constrained to depend on specific assumptions.

As illustrated above, such an analogy can be identified in the absence of social

interactions (Grafen 2002), and for social interactions between relatives when

phenotypic effects are additive separable. But owing to a lack of dynamic

sufficiency we failed to find a satisfying proof of this later case in Grafen’s (2006)

writings. When phenotypic effects are not additive separable (the rule when social

interactions occur), an individual maximand that is formally maximized in an ideal

evolutionary process (trait substitution model and additive gene action) can be

constructed. But no clear individual-as-maximizing-agent analogy emerges unless

further assumptions are made, like that of Pareto optimal evolutionary stable states

(characterized by maxzi;zj
f ðzi; zjÞ þ f ðzj; ziÞ
� �

when individual i and j interact), and

where individuals can then be regarded as fecundity (or group fecundity)

maximizers. This piecemeal identification of maximands makes us skeptical of

the importance in evolutionary biology of strict individual-as-maximizing-agent

analogies (i.e., strict optimization as opposed to concepts of best-responses). But for

all the maximands encountered in this paper, their derivative is proportional to

Hamilton’s inclusive fitness effect. This describes the direction of selection under

all conditions, a general message worth recalling.

Acknowledgments This work was partly funded by Swiss NSF Grant PP00P3-123344. We thank

Christine Clavien, Alan Grafen, Charles Mullon, and Samir Okasha for useful comments on various

drafts.

References

Bourke A (2011) Principles of social evolution. Oxford University Press, Oxford
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