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Abstract 

Supergenes control various complex phenotypes, yet in many cases the mechanisms contributing 

to maintain such genetic polymorphisms remain poorly understood. In the Alpine silver ant 

Formica selysi, a supergene determines social organization, a fundamental trait for the evolution 

of sociality by kin selection in insects. The supergene has two haplotypes, Sm and Sp. In single 

queen (monogynous) colonies, all females and males have the genotypes Sm/Sm and Sm, 

respectively. In contrast, all individuals produced by multiple queen (polygynous) colonies bear 

at least one copy of the Sp haplotype. In this thesis, I explore three mechanisms that might be 

involved in the maintenance of the polymorphism at this supergene controlling ant social 

organization. In the first chapter, I used fine-scale population genomic data to investigate the 

mating and dispersal strategies of each sex from each social form. The mating pattern observed in 

mature colonies was asymmetrical, suggesting unidirectional male-mediated gene flow from the 

monogynous to the polygynous social form. Queens showed signs of restricted dispersal and 

queens from polygynous colonies tended to be mated with relatives. In the second chapter, I 

investigated the causes of a transmission ratio distortion observed in polygynous colonies. 

Heterozygous queens are expected to produce Sm males, and, when mated with Sm males from 

monogynous colonies, Sm/Sm females, yet such individuals are absent from polygynous 

colonies. I found that the Sp haplotype is a maternal offspring killer, causing the death of 

progenies from heterozygous queens that did not inherit Sp. In the third chapter, I tested whether 

mate preferences and genetic incompatibilities explain the asymmetrical mating pattern 

documented in the first chapter. There was no evidence for genetic or behavioral barriers between 

social forms. Queens of monogynous origin were more likely to mate and more fertile than 

queens of polygynous origin, suggesting that queens of alternative social forms differ in their 

reproductive strategies. Altogether, this thesis sheds light on some key mechanisms contributing 

to the maintenance of polymorphism at a supergene controlling ant social organization. 
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Résumé 

Les supergènes contrôlent de multiples phénotypes complexes, mais dans de nombreux cas les 

mécanismes qui contribuent à maintenir ces polymorphismes génétiques sont encore mal 

compris. Chez la fourmi Alpine argentée Formica selysi, un supergène détermine l’organisation 

sociale, un trait fondamental dans l’évolution de la socialité par la sélection de parentèle chez les 

insectes. Le supergène a deux haplotypes, Sm et Sp. Dans les colonies à une seule reine 

(monogyne), toutes les femelles et les mâles ont le génotype Sm/Sm et Sm, respectivement. A 

l’inverse, tous les individus produits par les colonies à plusieurs reines (polygynes) portent au 

moins une copie de l’haplotype Sp. Dans cette thèse, j’ai exploré trois mécanismes susceptibles 

d’être impliqué dans la maintenance du polymorphisme au supergène contrôlant l’organisation 

sociale chez une fourmi. Dans le premier chapitre, j’ai utilisé des données de génomique des 

populations à une échelle fine pour explorer les stratégies d’accouplement et de dispersion de 

chaque sexe et chaque forme sociale. Le pattern d’accouplement observé dans les colonies 

matures était asymétrique, suggérant un flux de gènes unidirectionnel induit par les mâles de la 

forme sociale monogyne à polygyne. Les reines ont montré des signes de dispersion limitée, et 

les reines des colonies polygynes avaient tendance à être accouplées avec des mâles apparentés. 

Dans le deuxième chapitre, j’ai exploré les causes du biais de transmission observé dans les 

colonies polygynes. Les reines hétérozygotes devraient produire des mâles Sm ainsi que des 

femelles Sm/Sm lorsqu’elles sont accouplées avec des mâles Sm, mais ces génotypes ne sont pas 

présents dans les individus produits par les colonies polygynes. J’ai trouvé que l’haplotype Sp est 

un élément génétique égoïste, causant la mort des descendants de reines hétérozygotes qui 

n’héritent pas Sp. Dans le troisième chapitre, j’ai testé si les préférences d’accouplement et les 

incompatibilités génétiques expliquent le pattern d’accouplement asymétrique documenté dans le 

premier chapitre. Il n’y avait pas d’indices de barrières génétiques ou comportementales entre les 

formes sociales. Les reines d’origine monogyne avaient plus de chances de s’accoupler et étaient 

plus fertile que les reines d’origine polygyne, ce qui suggère que les reines de forme sociales 

alternatives diffèrent dans leurs stratégies reproductrices. Dans l’ensemble, cette thèse met en 

lumière certains mécanismes clés contribuant à la maintenance du polymorphisme au supergène 

contrôlant l’organisation sociale chez une fourmi. 

 



 
5 

 

General introduction 

 

 Social organization 

Social organization, here defined as the number of breeders within colonies, is a very labile trait 

in ants (Bourke & Franks, 1995). In particular, colony queen number varies tremendously within 

and between species (Crozier & Pamilo, 1996). This variation in social organization has long 

been a puzzle in evolutionary biology (Keller, 1995, Hamilton, 1972). Indeed, social organization 

shapes the genetic composition of the colony, and therefore the degree of relatedness among 

nestmates, which is central for the evolution of eusociality by kin selection (Hamilton, 1964). 

Single queen (monogynous) colonies, which maximize intra-colony relatedness, are ancestral in 

ants (Hughes et al., 2008a). Yet, multiple queen (polygynous) colonies evolved multiple times, 

raising questions on the evolution and maintenance of such societies with low intra-colony 

relatedness (Hughes et al., 2008b, Keller, 1995, Hamilton, 1972). 

Unraveling the causes and consequences of intra-specific variation in social organization can help 

to understand fundamental evolutionary principles generating phenotypic diversity (Ross, 2001, 

Schradin, 2013). Social organization is a complex phenotype, i.e. an association of many co-

adapted behavioral, physiological and morphological traits (Keller, 1995, Rosset & Chapuisat, 

2007, Araujo & Tschinkel, 2010, Meunier et al., 2011, Purcell & Chapuisat, 2012, Purcell & 

Chapuisat, 2014). Individuals originating from single-queen and multiple-queen colonies 

typically differ in body size, behavior, mating and dispersal (DeHeer et al., 1999, Lawson et al., 

2012, Meunier & Chapuisat, 2009). Such differences may lead to reproductive isolation between 

the two social forms, and some authors have suggested that social polymorphism is a transient 



 
6 

 

state toward speciation (Ross & Keller, 1995a, Pamilo et al., 1997). More generally, co-adapted 

traits involve more than one locus. This raises an interesting question pertaining to the 

mechanisms underlying the polymorphism, because co-adapted alleles are likely to be disrupted 

by recombination, creating maladaptive phenotypes (Pinho & Hey, 2010). 

 Maintenance of complex phenotypes 

Several mechanisms can produce intra-specific variation in complex phenotypes. Phenotypic 

plasticity in response to variable environment may generate alternative phenotypes. For instance, 

phenotypic plasticity underlies variation in social organization in the sweat bee Halictus 

rubincundus. Using transplant experiments, researchers showed that the social phenotype of these 

bees, solitary or social, was a plastic response to the length of the season allowing for brood 

production (Field et al., 2010). The alternative morphological, behavioral and reproductive castes 

that characterize the eusocial insects represent another striking example of phenotypic plasticity. 

In general, female-destined eggs with identical genomes can develop into either a queen or a 

worker (Corona et al., 2016, but see Schwander & Keller, 2008). 

Current research seeks to understand the epigenetic modifications modulating this reproductive 

division of labor, which is the hallmark of eusociality (Corona et al., 2016, Yan et al., 2014). 

Alternative DNA methylation patterns between castes have been documented in ants (Bonasio et 

al., 2012, Alvarado et al., 2015) and bees (Foret et al., 2012, Lyko et al., 2010, Herb et al., 2012), 

although more studies with greater statistical power are still needed to demonstrate the 

importance of DNA methylation for caste differentiation (Libbrecht et al., 2016). Another 

epigenetic modification, histone acetylation, modulates worker caste polymorphism in 
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Camponotus floridanus (Simola et al., 2016), suggesting that multiple epigenetic modifications 

are likely to contribute to the regulation of plastic complex phenotypes. 

Intra-specific variation in complex phenotypes may also result from genetic variation at 

pleiotropic genes or at supergenes (Saltz et al., 2017). These two forms of genetic architecture are 

not mutually exclusive, and the regulation of some complex phenotypes leans on both 

mechanisms (e.g. Carbone et al., 2006). A pleiotropic gene affects multiple traits, for instance, 

genes controlling hormone production are often pleotropic. Division in labor is primarily 

controlled by the expression of one pleiotropic gene coding for vitellogenin in the honeybee Apis 

mellifera and another pleiotropic gene coding for juvenile hormone in the leaf-cutting ant 

Acromyrmex octospinosus (Nelson et al., 2007, Norman & Hughes, 2016). 

 Supergenes 

There is growing evidence that many complex phenotypes are regulated by supergenes. 

Supergenes are clusters of co-adapted loci in a region of reduced recombination (Schwander et 

al., 2014, Thompson & Jiggins, 2014, Charlesworth, 2016). The co-adapted loci within the 

supergene are transmitted as a single Mendelian unit, avoiding the formation of intermediate, 

maladaptive phenotypes. Co-adapted loci must be located in close physical proximity, which may 

be achieved by functional mutation of a neighboring locus, duplication or translocation of loci 

(Schwander et al., 2014). Suppressed recombination between co-adapted loci is generally due to 

inversions but can also be caused by the genomic location of the loci and epigenetic mechanisms 

(Schwander et al., 2014). 

The idea that complex phenotypes were controlled by multiple loci kept in tight linkage was first 

proposed by Fisher in 1930 to explain mimetic polymorphism in Papilio butterflies (Fisher, 
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1930). Soon after, Dobzhansky and Sturtevant (1937) demonstrated that chromosomal inversions 

were common, providing a mechanism for the evolution of tight linkage and supporting the idea 

that supergenes might be prevalent in nature.  

The best-known supergenes are heteromorphic sex chromosomes controlling sex determination 

(Charlesworth, 2016, Abbott et al., 2017). Sex chromosomes have evolved independently 

multiple times (Matsubara et al., 2006, Marshall Graves & Peichel, 2010, Bachtrog et al., 2011), 

yet the steps involved in their evolution are similar. Sex-determination loci and sexually 

antagonistic genes first appear on autosomes. Then reduced recombination through inversions 

and further recruitment of sex specific genes lock co-adapted loci together and expand the 

supergene (Bachtrog et al., 2011, Charlesworth et al., 2005). 

Since the advent of the genomic era, multiple studies have shown that supergenes are involved in 

the regulation of other types of complex phenotypes (Schwander et al., 2014). Supergenes 

underlie spectacular polymorphisms associated with Müllerian mimicry in the butterfly 

Heliconius numata (Joron et al., 2006), plumage and social behavior in the white-throated 

sparrow (Tuttle et al., 2016), male morphs and mating strategies in the ruff (Küpper et al., 2016, 

Lamichhaney et al., 2016), color polymorphism in the land snail Cepaea nemoralis (Murray & 

Clarke, 1976, Richards et al., 2013), self-incompatibility in plants (Li et al., 2016), autosomal 

drivers in the house mouse (Lyon, 2003) and the fruit fly (Larracuente & Presgraves, 2012), and 

sperm morphology in the zebra finch (Kim et al., 2017, Knief et al., 2017). In social insects, a 

supergene is associated with a high-altitude morph of honeybees (Wallberg et al., 2017) and with 

social organization (colony queen number) in two ant species (Wang et al., 2013, Purcell et al., 

2014b). 
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There is no shared synteny between the supergenes controlling social organization in the fire ant 

Solenopsis invicta and the Alpine silver ant Formica selysi, which shows that the supergenes 

have evolved independently in these phylogenetically distant lineages (Purcell et al., 2014b). This 

provides a great opportunity to compare the two systems and unravel common principles in the 

evolution and maintenance of supergenes. In S. invicta, the supergene controlling social 

organization contains more than 600 genes in a non-recombining region of 13Mb. This supergene 

has two alternative haplotypes, SB and Sb (Wang et al., 2013). Because the Sb haplotype is 

homozygous lethal it can’t recombine. The Sb haplotype shows reduced nucleotide diversity and 

accumulates repetitive elements, suggesting that it is degenerating (Pracana et al., 2017). The Sb 

haplotype is also a “green-beard gene” favoring its own transmission to the detriment of the rest 

of the genome: in polygynous colonies, queens that lack a copy of Sb are killed by workers that 

carry a copy of it (Keller & Ross, 1998). Despite the selective advantage of the Sb haplotype, the 

polymorphism may be stable in S. invicta because of the homozygous lethality of Sb, strong 

selection on sexuals, or unidirectional gene flow from the monogynous to the polygynous social 

forms (Shoemaker & Ross, 1996, Fritz et al., 2006). 

 Study species 

The Alpine silver ant F. selysi is a pioneer ant specialized in floodplains across Europe, from the 

Alps to the Pyrenees (Seifert, 2002). Colonies of F. selysi can survive occasional floods by 

building living rafts and floating to the bank (Lude et al., 1999, Purcell et al., 2014a - Appendix 

1). Workers use brood as a base, which increase the floatability of the rafts and the workers’ 

ability to recover after rafting (Purcell et al., 2014a - Appendix 1). In addition, workers 

participating in the construction of the raft show memory and specialization in their positions 

(Avril et al., 2016 - Appendix 2). 



 
10 

 

Populations of F. selysi are composed of monogynous and polygynous colonies living in 

sympatry (Chapuisat et al., 2004). The social structure of the colonies rarely shifts, and the social 

polymorphism appears stable at the population level (Purcell & Chapuisat, 2013). However, the 

proportion of monogynous colonies within populations increases with altitude, which is likely 

due to differences in ecological optima between social forms (Purcell et al., 2015). 

Variation of social organization in F. selysi is associated with many differences in life-history 

traits. Nest density, colony size, egg, queen and worker sizes, fecundity, survival rate in absence 

or presence of a pathogen, development time and chemical profiles are significantly different 

between the monogynous and the polygynous social forms (Meunier et al., 2010, Purcell & 

Chapuisat, 2012, Purcell et al., 2016a, Reber et al., 2008, Reber et al., 2010, Rosset & Chapuisat, 

2007, Meunier et al., 2011, Schwander et al., 2005). Yet, there is little genetic differentiation 

between social forms at neutral markers, suggesting ongoing gene flow between them (Chapuisat 

et al., 2004). In line with this result, queens and males of different social forms are able to mate 

and found colonies, indicating that there is no genetic or behavioral incompatibilities between 

social forms (Reber et al., 2010). 

Social organization in F. selysi is controlled by a supergene with two haplotypes, Sm and Sp 

(Purcell et al., 2014b). In monogynous colonies, only the Sm haplotype is present. In polygynous 

colonies, all the individuals bear at least one copy of the Sp haplotype, with workers and queens 

being Sp/Sp or Sp/Sm, and males Sp (Figure 1). The mechanisms maintaining this genetic 

polymorphism are not well understood. 
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Figure 1: Genotypic distribution at the supergene in monogynous and polygynous colonies. 

 

Aims of the PhD  

The aim of this PhD is to get a better understanding of how the polymorphism at this supergene 

controlling social organization is maintained in F. selysi. Ultimately, this work provides insights 

into the evolutionary mechanisms and selective pressures contributing to a balanced 

polymorphism (Ford, 1971). 

Several mechanisms may contribute to the maintenance of polymorphism at supergenes 

(Schwander et al., 2014, Kirkpatrick, 2010). Most of these mechanisms generate negative 

frequency-dependent selection, a selection regime under which the fitness of individuals bearing 

a specific haplotype is negatively correlated with the frequency of this haplotype in the 

population. For instance, obligate disassortative mating generates strong negative frequency-

dependent selection that maintains the polymorphism at sex chromosomes. Likewise, 

disassortative mating has a critical role in the maintenance of polymorphism at supergenes 

controlling plumage color and social behavior in the white-throated sparrow (Tuttle et al., 2016), 
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self-incompatibility in Primula vulgaris (Li et al., 2016), and mimetic wing patterns within 

populations of Heliconius numata (Chouteau et al., 2017). In many supergenes, the positively 

selected variant is a recessive lethal, generating negative frequency-dependent selection that 

stabilizes the polymorphism (Lyon, 2003, Larracuente & Presgraves, 2012, Wang et al., 2013). 

Heterogeneous spatial selection, whereby the fitness of individuals bearing a specific haplotype 

depends on their spatial location, can also maintain diversity (Svardal et al., 2015). For example, 

the frequencies of multiple haplotypes at the supergene controlling Müllerian mimicry in 

Heliconius butterflies are greatly influenced by the distribution of co-mimics Melineae species 

with alternative wing patterns. The fitness of Heliconius individuals with a given genotype 

depends on the local abundance of different species of Melineae, which contributes to the 

maintenance of the supergene polymorphism over a large geographical scale (Joron et al., 1999). 

Finally, some polymorphic supergenes are maintained by heterozygote advantage, whereby 

individuals bearing a copy of each haplotype have the greatest fitness. For instance, 

heterozygotes males at the supergene controlling sperm morphology in the zebra finch have a 

higher sperm velocity and fertilization success, maintaining variation at the supergene (Knief et 

al., 2017, Kim et al., 2017). 

In this thesis, I tested for three mechanisms that are likely to contribute to the maintenance of the 

polymorphism at a supergene controlling social organization in F. selysi (Figure 1). In the first 

chapter, I used fine-scale population genomic data to investigate the dispersal and mating 

strategies of queens and males from each social form. Variation in social organization is often 

associated with changes in dispersal and mating, at least between species (Sundström et al., 2005, 

Ross, 2001, Hölldobler & Wilson, 1990). Queens from monogynous species usually disperse far 

and found colonies independently. In contrast, queens from polygynous species often mate close 
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to, or within their nests, and disperse by budding. Differences between social forms in mating and 

dispersal strategies are likely to play an important role in the maintenance of the supergene 

controlling social organization in S. invicta (Ross & Shoemaker, 1993, Ross & Keller, 1995a, 

Ross & Keller, 1995b, Shoemaker & Ross, 1996, Goodisman et al., 2000). Exploring the mating 

and dispersal strategies in F. selysi will shed light on the population genetic consequences of the 

social polymorphism and ultimately on the maintenance of alternate haplotypes at this supergene 

controlling social organization. 

In the second chapter, I investigated the causes of the transmission ratio distortion observed in 

polygynous colonies of F. selysi. The Sp haplotype appears to favor its own transmission over the 

one the alternate haplotype. Specifically, Sm males and Sm/Sm females are not produced by 

polygynous colonies, although they are expected to occur, given the patterns of mating 

documented in the first chapter. I tested whether a meiotic drive, a green-beard effect or a 

maternal killing effect were responsible for this transmission bias. 

The genetic data from field colonies of F. selysi presented in the first chapter point at an 

asymmetric mating pattern with respect to social form. Queens of monogynous origin are always 

mated with males of monogynous origin. In contrast, queens of polygynous origin are mostly 

mated with males of polygynous origin, but 23.6% mated with males of monogynous origin. In 

the third chapter, I tested whether mate preferences or genetic incompatibilities between social 

forms caused this asymmetric mating pattern observed in field colonies. Overall, by combining 

genomic data from the field, crossing experiments and mate choice experiments, I documented 

unexpected effects of the supergene at multiple levels of biological organization, and revealed 
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some key mechanisms contributing to the maintenance of genetic and phenotypic social 

polymorphism in the Alpine silver ant. 
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Abstract 

Genomic rearrangements that suppress recombination over large portions of the genome underlie 

spectacular phenotypic polymorphisms within single populations. Because alternate haplotypes at 

supergenes affect multiple morphological, physiological and behavioral traits, understanding how 

such polymorphisms are balanced is often challenging. In the Alpine silver ant Formica selysi, 

variation in social organization is controlled by a large supergene with two alternate haplotypes, 

Sm and Sp, maintained by multiple inversions. Sm/Sm females typically establish single-queen 

(monogynous) colonies, while Sm/Sp and Sp/Sp females form multiple-queen (polygynous) 

colonies. Here, we used fine-scale population genomic data from offspring of isolated queens to 

investigate the dispersal and mating strategies of each sex from each social form. Mating between 

social forms was asymmetrical. Queens heading mature monogynous colonies were exclusively 

mated with Sm males. In contrast, queens heading polygynous colonies were mated with Sm and 

Sp males, with a relative contribution of 23.6% of mating by Sm males that are only produced by 

monogynous colonies. This unusual mating pattern causes unidirectional male-mediated gene 

flow from the monogynous to the polygynous social form, confirmed by a higher number of 

private alleles in the polygynous social form. For both social forms, there were signs of restricted 

dispersal for queens, but not for males. Queens of polygynous origin tended to mate with 

relatives. Surprisingly, the supergene was associated with the rate of polyandry. Heterozygous 

queens were more likely to mate with more than one male, compared to homozygous queens for 

both haplotypes. Overall, the genetic data reveal that alternative social forms of the Alpine silver 

ant differ in their mating and dispersal strategies, which affects the maintenance of this genetic 

and phenotypic polymorphism in social organization. 
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Introduction 

Supergenes are clusters of tightly linked loci controlling complex phenotypes (Dobzhansky, 

1970, Schwander et al., 2014, Thompson & Jiggins, 2014). They underlie some of the most 

spectacular polymorphisms in nature, including sexes, mimetic forms in butterflies (Joron et al., 

2011), mating tactics in birds (Küpper et al., 2016, Tuttle et al., 2016), and social organization in 

ants (Wang et al., 2013, Purcell et al., 2014b). Because alternate haplotypes at supergenes 

influence multiple morphological, physiological and behavioral traits, understanding how such 

polymorphisms are balanced is often challenging (Llaurens et al., 2017). Indeed, alternative 

morphs differ in many traits that potentially affect their survival, mating, dispersal and 

reproduction, which will in turn influence the maintenance of the genetic polymorphism (e.g. 

Joron & Iwasa, 2005, Chouteau et al., 2017). 

A major component of the social organization of insects is the number of breeders within each 

colony (Ross, 2001, Bourke & Franks, 1995). The number of queens per colony and the number 

of matings per queen shape the degree of within colony relatedness, which is central for the 

evolution of altruism by kin selection (Bourke, 2011, Hamilton, 1964). In ants, the number of 

queens per colony varies greatly within and among species (Hölldobler & Wilson, 1977, Crozier 

& Pamilo, 1996). Unravelling the causes and consequences of intraspecific variation in social 

organization can provide insights into the fundamental evolutionary principles generating 

phenotypic diversity (Ross, 2001, Schradin, 2013). 

Social organization and dispersal are expected to co-evolve (Mullon et al., 2018, Auld & Rubio 

de Casas, 2012). Variation in social organization is typically associated with shifts in dispersal 

and mating strategies in ants (Pamilo et al., 1997, Ross, 2001, Bourke & Franks, 1995). In 
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polygynous colonies, restricted dispersal of queens and re-acceptance of related queens in their 

natal nest may be a kin selected adaptation, because it limits the erosion of relatedness (Nonacs, 

1988, Ross, 2001). Queens from polygynous species often mate near or within their natal nest, 

and disperse on foot and with nestmate workers to establish a new nest (Chapuisat et al., 1997a, 

Chapuisat & Keller, 1999, Liautard & Keller, 2001, Dekoninck et al., 2014, Holzer et al., 2009, 

Sanllorente et al., 2015, Rees et al., 2009). In contrast, queens from monogynous species usually 

disperse on the wing, mate in swarms away from their natal nest, and rely on their fat reserves to 

found new colonies and produce the first workers independently (Jowers et al., 2013, 

Timmermans et al., 2009, Suni & Gordon, 2010). In line with a shift in dispersal strategies, 

polygynous species tend to have higher degree of population genetic structure than monogynous 

species (reviewed in Sundström et al., 2005, Pamilo et al., 1997). Whether similar differences in 

mating and dispersal underlie intraspecific variation in social organization is less clear. 

The genetic basis of intraspecific variation in social organization is rarely known. In the Alpine 

silver ant Formica selysi, social organization is controlled by a polymorphic supergene that is 

14.1 Mbp long and contains 664 coding genes (Purcell et al., 2014b; Avril, Tran, & Chapuisat, 

unpublished results). This supergene has two non-recombining haplotypes, Sm and Sp, which 

differ through multiple inversion and show high levels of differentiation (Purcell et al., 2014b; 

Avril, Tran, & Chapuisat, unpublished results). All individuals from monogynous colonies have 

only the Sm haplotype, while queens, workers and male alates from polygynous colonies have at 

least one Sp haplotype (Purcell et al., 2014b, Purcell et al., 2016b; Avril et al., chapter 3). 

Alternative haplotypes are likely to influence multiple morphological, behavioral and life history 

traits associated with mating and dispersal strategies (Rosset & Chapuisat, 2007). For instance, F. 

selysi queens of monogynous origin are larger (Meunier & Chapuisat, 2009) and more fecund 
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(Reber et al., 2010; Avril et al., chapter 3) than queens of polygynous origin, which probably 

improves their ability to fly and found nests independently. Such differences in mating, dispersal 

and reproduction are likely to influence the dynamics of the genetic polymorphism. 

Here, we use genomic data to infer the mating system and dispersal of queens and males from 

each social form in the Alpine silver ant Formica selysi. We examine whether differences in 

mating and dispersal affect the transmission of the supergene and contribute to the maintenance 

of the polymorphism in social organization. 

 

Materials and Methods 

Sampling and genotyping strategy 

The Alpine silver ant Formica selysi is a socially polymorphic species that inhabits large valleys 

in the Alps and the Pyrenees (Chapuisat et al., 2004, Purcell et al., 2015). The ants were primarily 

sampled from a population located in central Valais, Switzerland (Finges: 7°36’30” E, 4°18’30” 

N, altitude: 565 m). The social organization of each colony (monogyny or polygyny) had been 

previously determined by genotyping workers at microsatellite markers (Purcell & Chapuisat, 

2013) or with a PCR-RFLP assay that discriminates alternative haplotypes of the supergene 

(Purcell et al., 2014b). It was further confirmed by counting queens during sampling and 

analyzing single nucleotide polymorphisms (SNPs) located outside and within the supergene (see 

below). 
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To obtain the genotypes of queens and their mates, we genotyped offspring of single queens (= 

progenies) and reconstructed the parental genotypes. This strategy was chosen to circumvent the 

difficulty and destructive nature of sampling mature queens from monogynous colonies. A 

similar genotyping of progeny was applied to queens from polygynous colonies in order to obtain 

comparable data on mating frequency and mate genotypes for both social forms. 

Progenies from monogynous queens consisted of four workers sampled from each of 63 

monogynous colonies of the Finges population (Table S1, Figure S1). Progenies from 

polygynous queens were obtained by isolating 142 wingless reproductive queens sampled from 

51 polygynous colonies of the Finges population (Table S1, Figure S1). Direct observations 

confirmed the presence of multiple queens in the polygynous colonies. To minimize the impact 

of sampling, we left at least two observed queens in each polygynous colony. Each sampled 

queen was placed individually in a small plastic box (15 × 13 × 6 cm), with 20 adult workers 

from the same parent colony. The ants were provided with a nest site, water and ad libitum ant 

food (Meunier & Chapuisat, 2009). Brood production was monitored daily. Four callow (young) 

workers per queen were collected for 120 queens originating from 37 polygynous colonies of the 

Finges population. In total, we obtained RAD-seq data for four workers per queen coming from 

XXX monogynous and YYY polygynous colonies, respectively (see below). These RAD-seq 

data were used to reconstruct the genotypes of the live queens and their mates at SNPs outside of 

the supergene and in the supergene (Table S1). The SNPs outside of the supergene were used to 

determine queen mating frequency and for all population genetic analyses. The supergene 

genotype was used to determine the social origin of queens and males and infer mating patterns 

according to social forms (Table S1). 
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In addition, we collected at least eight eggs per queen for all queens from polygynous colonies of 

the Finges population. This sample of queens with eggs was supplemented by eight queens from 

six polygynous colonies of a population in Derborence (7°12’56” E, 46°16’50” N, altitude: 1450 

m; Table S1). At the end of the experiment, we dissected the queens and extracted the sperm 

contained in their spermathecae (Chapuisat, 1998). The supergene genotypes of queens, sperm 

and eggs from polygynous colonies were determined with a PCR-RFLP assay that discriminates 

three SNPs diagnostic for alternative haplotypes of the supergene (Purcell et al., 2014b). These 

RFLP data were used to confirm the supergene genotypes of queens and mates inferred from 

RAD-seq data and to supplement the mating pattern data (Table S1). 

DNA was extracted from the head of queens and from the head and thorax of workers with 

Qiagen Blood and Tissue extraction kit (Qiagen, Hombrechtikon, Switzerland). DNA from eggs 

and sperm was extracted with a salting out procedure adapted from Miller (Miller et al., 1988). 

Genotyping-by-sequencing 

We used a genotyping-by-sequencing (RAD-seq) approach to identify SNPs in workers (Purcell 

et al., 2016b, Brelsford et al., 2016). The DNA was digested with the restriction enzymes MseI 

and SbfI. These enzymes produced a low density of SNP markers and allowed us to multiplex the 

732 workers on a single lane of Illumina HiSeq 2500. The sequencing was performed at the 

Lausanne Genomic Technology Facility in Lausanne, Switzerland. 

The genetic data were processed with the software pipeline Stacks v1.46 (Catchen et al., 2013). 

The raw data was demultiplexed using the process_radtags module, and 22 individuals that had 

low numbers of reads (< 10’000) were removed from the dataset. Reads were aligned to our 

reference genome (Avril et al., unpublished data) with BWA v0.7.13 (Li & Durbin, 2009). SNPs 
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and genotypes were called with the ref_map module of Stacks. To avoid linkage disequilibrium 

between adjacent markers, one SNP per RAD tag was randomly selected, using VCFtools 

v0.1.14 (Danecek et al., 2011). The SNPs in the supergene, which are linked, were conserved but 

were analyzed separately from the ones outside of the supergene. Genotypes with a quality score 

below 20 were treated as missing data. SNPs with a minor allele frequency below 0.01 or missing 

for more than 20% of the individuals were removed from the dataset. The final dataset included 

271 SNPs, of which 25 were in the supergene and 246 in the rest of the genome. 

Parental genotype reconstruction 

For each sibship (progenies from singly mated queens), the genotypes of the queen and her male 

mate were reconstructed from RAD-seq data, using the computer program COLONY. For 

population genomic analyses we conserved the 246 generated SNPs located outside of the 

supergene and excluded the 25 SNPs in the supergene. Parental genotypes at given SNPs for 

which the posterior probability was below 0.8 were considered missing values. For multiply 

mated queens, the maternal and paternal genotypes could not be unambiguously reconstructed. 

These queens and their male mates were excluded from population genetic analyses on sex-

specific dispersal (section 2 below). In total, we reconstructed the genotypes at SNPs outside of 

the supergene for 157 singly mated queens and their mates. 

Genetic data analyses 

1. Social structure, supergene genotypes, mating pattern and queen mating frequency 

The social structure of each colony was inferred by direct observation of queens in the field 

(polygynous colonies) and by measuring the relatedness among nestmates (monogynous 

colonies; see below). The supergene genotype of each queen and respective male mate(s) was 
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inferred from the supergene genotype of the worker progeny (25 SNPs markers in the supergene 

obtained by RAD-seq; Table S1). For queens and mates from polygynous colonies, the supergene 

genotypes were further assessed with a PCR-RFLP assay of queens, sperm and eggs (Purcell et 

al., 2014b; Table S1). 

We calculated the maximum likelihood relatedness among workers from single queens 

(progenies) with the algorithm of Huang et al. (2015), implemented in the software 

PolyRelatedness v1.6. To obtain unbiased estimate of relatedness, we used RAD-seq generated 

SNPs located outside of the supergene. When calculating background allele frequencies, colonies 

were weighted equally. We used these background allele frequencies to simulate 1’000 dataset of 

full-sibs, which provided us with a 95% confidence interval around the relatedness of 0.75, the 

expected value among offspring from singly mated queens. We inferred the pedigree 

relationships between workers using the maximum likelihood approach implemented in the 

program COLONY v2.0.6.1 (Jones & Wang, 2010). This method identifies full-sib and half-sib 

groups. Consensus pedigree relationships were obtained from five iterations, with a genotyping 

error rate set up at 0.01 per locus. 

Queens were inferred to be singly mated when their worker progeny (i) had a relatedness not 

significantly different from 0.75; and (ii) belonged to a full-sib group in the pedigree 

reconstruction. Conversely, queens were assessed to be multiply mated when their worker 

progeny had a relatedness significantly lower than 0.75 and belonged to a half-sib group. Due to 

the small number of offspring genotyped, the number of mates per queen and the proportion of 

multiply-mated queens are minimum estimates (Pamilo, 1982, Boomsma & Ratnieks, 1996). 

With four offspring, there is a 0.125 probability to not sample a patriline when a queen had mated 
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with two equally contributing males (Boomsma & Ratnieks, 1996). However, because we 

genotyped the same number of offspring per queen, we can still compare the relative mating 

frequencies of queens belonging to alternative social forms or with alternative social genotypes. 

2. Dispersal of queens and males 

To get insight into dispersal patterns, we estimated the relatedness of the male mate to the queen, 

which equals the average inbreeding coefficient among their worker offspring (Liautard & 

Sundström, 2005), with the computer program PolyRelatedness v1.6. To test whether the male 

mate to queen relatedness differs between social forms, we used a linear mixed model with the 

mate to queen relatedness as response variable, queen and male social origin as fixed factors and 

the colonies from which queens were sampled as random factor. The model was built with the 

‘lme4’ package (Bates et al., 2015). 

We estimated the relatedness among nestmate queens, among male mates of nestmate queens and 

among progenies of nestmate queens with the computer program PolyRelatedness v1.6. To 

estimate background allele frequencies, colonies were weighted equally. We simulated 1’000 

datasets of unrelated individuals and computed the 95% confidence intervals around this null 

hypothesis. 

Dispersal of queens and males was inferred by computing isolation by distance. Kinship 

coefficient (Loiselle et al., 1995) between pairs of individuals was regressed against the natural 

logarithm of distance. Kinship coefficient was chosen because it is not affected by the ploidy of 

individuals, thereby allowing us to compare the magnitude of isolation by distance between sexes 

(Hardy et al., 2008). Regression was restricted to a maximal distance of 900 meters to ensure that 
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the computation was performed on a similar scale for all comparisons. Correlation between the 

genetic and geographic matrices was tested with a Mantel test with 10’000 permutations. 

3. Gene flow between social forms 

The amount of genetic differentiation between social forms was estimated using hierarchical F-

statistics, with workers nested in sibships, sibships nested in colonies, and colonies nested in 

social forms. Calculation was performed with the hierfstat R package v0.04-22 (Goudet, 2005). 

Confidence intervals were obtained by 10’000 bootstrapping over loci. 

We estimated the number of private alleles in workers from monogynous and polygynous 

colonies, respectively (Slatkin, 1985). To control for the effects of unequal samples sizes and 

hierarchical sampling, we resampled the same number of workers in the monogynous and 

polygynous social form, using only one individual per colony (Kalinowski, 2004). We computed 

the number of private alleles in each social form with the R package ‘poppr’, using 10’000 

resamples (Kamvar et al., 2014). We used a permutation test to evaluate whether the number of 

private alleles differed significantly between social forms. 

To estimate the number of immigrants per generation between social forms, we used the 

Bayesian approach implemented in the computer program MIGRATE v3.6.11 (Beerli & 

Palczewski, 2010). MIGRATE uses coalescent theory to estimate population genetic parameters 

under the assumption of mutation-migration-drift equilibrium. The number of immigrants per 

generation is calculated as the product between the mutation-scaled effective population size 

within a focal social form and the mutation-scaled migration rate from the focal social form to the 

other social form. We ran MIGRATE with 20’000 burnin and 1’000’000 iterations. 
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Results 

1. Social structure, supergene genotypes, mating pattern and queen mating frequency 

The presence of a single reproducing queen in monogynous colonies was confirmed by the 

relatedness among nestmate workers being close to 0.75 and by pedigrees consistent with a single 

queen (Table 1; Table S1; Figure S2). The presence of multiple queens in polygynous colonies 

was demonstrated by direct sampling and observation of multiple wingless reproductive queens. 

Social organization was perfectly associated with the genotypes of queens at the supergene: all 

queens from monogynous colonies were Sm/Sm, and all queens from polygynous colonies had at 

least one Sp haplotype, 51.3% being Sp/Sm and the rest Sp/Sp (Table 1; Table S1; Figure S2). 

Table 1: Mating frequency of queens and social genotypes of queens and their male mates 

heading field colonies. See Table S1 for details. 

 
Polygynous colonies 

Monogynous 

colonies 

Queen genotype Sp/Sp Sp/Sm Sm/Sm 

Queens with worker progeny (RAD-seq) 56 64 63 

Percentage of queens 

singly mated : multiply mated 
92.9 : 7.1 75 : 25  90.5 : 9.5  

Queens with eggs (RFLP) 71 76 0 

Total number of queens  73 77 63 

Percentage of mating with Sp or Sm males 

(Sp males : Sm males) 
75.3 : 24.7 77.3 : 22.7 0 : 100 
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Queens heading mature monogynous colonies were invariably mated with Sm males (Table 1; 

Table S1; Figure S2). In contrast, queens in polygynous colonies were mated with Sm and Sp 

males (Table 1; Table S1; Figure S2), with a relative contribution of Sm males totaling 23.6%. 

Sm males are only produced by monogynous colonies (Purcell et al., 2014b; Avril et al., chapter 

2 & chapter 3). This asymmetrical pattern of mating between social forms generates 

unidirectional male-mediated gene flow from the monogynous to the polygynous social form. 

The proportion of mating with Sm versus Sp males did not differ significantly between Sp/Sp and 

Sp/Sm queens (Table 1; Fisher exact test, p = 1). 

Most queens were singly mated (Table 1; Table S1; Figure S2). Yet, at least 16.7% of the queens 

in polygynous colonies and 9.5% of the queens in monogynous colonies were mated with more 

than one male (Table 1; Fisher exact test, p = 0.26). The rate of multiple mating in polygynous 

colonies was associated with the social genotype of the queens. Heterozygous Sp/Sm queens 

were significantly more likely to be multiply mated than homozygous Sp/Sp and Sm/Sm queens 

(Table 1; Figure S2, Fisher exact test; p = 0.013).  

2. Dispersal of queens and males 

The relatedness between queens and their male mates depended on the social origin of queens 

(Figure 1; Linear mixed model; F(2,107) = 5.80, p = 0.0041). Overall, queens from polygynous 

colonies tended to mate with relatives, whereas queens from monogynous colonies tended to 

mate with non-relatives. In particular, the relatedness of mates of polygynous origin to queens in 

polygynous colonies was significantly higher than the relatedness of male mates of monogynous 

origin to queens in  monogynous colonies (Figure 1; TukeyHSD: Z = 3.2, p = 0.004). 
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Figure 1: Relatedness of the male mates to the queens: mates of monogynous origin to queens in 

monogynous colonies (left bar), mates of monogynous origin to queens in polygynous colonies 

(central bar) and mates of polygynous origin to queens in polygynous colonies (right bar). 

Boxplots represent the lower and upper quartiles and whiskers the minimum and maximum 

values (in the limits of 1.5 × interquartile range). 

 

Two lines of evidence indicate that queens in polygynous colonies were related, as expected if 

some of these queens had stayed within or close to their natal colony. First, the relatedness 

between workers of different sibships belonging to the same polygynous colony was significantly 

greater than zero (r = 0.117 ± 0.089; mean ± SE; p < 0.05). Second, the relatedness among 

nestmate queens was significantly greater than zero (r = 0.179 ± 0.018; mean ± SE; p < 0.05), 

while the relatedness among their mates was not (r = 0.056 ± 0.007; mean ± SE; p > 0.05). 
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For both social forms, there were signs of restricted dispersal resulting in isolation by distance for 

queens, but not for males (Table 2). Indeed, the kinship coefficient decreased significantly with 

geographic distance for queens heading monogynous colonies and for queens heading 

polygynous colonies. In contrast, no significant isolation by distance was detected for males of 

monogynous origin, nor for males of polygynous origin (Table 2).  

Table 2. Isolation by distance for queens and males belonging to each social form. R
2
 is the 

correlation between kinship coefficient and geographic distance, b the slope of the regression and 

p the significance of the Mantel test. 

 R
2
 b p 

Monogynous social form    

Queens -0.06 -0.0056 0.011 

Males -0.022 -0.000044 0.11 

Polygynous social form    

Queens -0.048 -0.0082 0.003 

Males 0.022 0.0007 0.12 

 

3. Gene flow between social forms 

There was little genetic differentiation between social forms at SNPs located outside of the 

supergene (Fst = 0.0021, 95% confidence interval [0.0003, 0.0039]). Both the private allele 

analysis and estimates of migration rate between social forms were consistent with directional 

gene flow from the monogynous to the polygynous social form. First, he number of private 

alleles among workers of the polygynous social form was significantly higher than among 

workers of the monogynous social form (Figure 2). Second, the number of immigrants per 

generation was twofold higher from the monogynous to the polygynous social form than in the 

reverse direction (Nm from the monogynous to the polygynous social form: median = 8.22, 95% 
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confidence interval [4.39, 11.7]; Nm from the polygynous to the monogynous social form: 

median = 3.7, 95% confidence interval [1.82, 5.89]). 

 

 

Figure 2: Number of private alleles in workers from monogynous and polygynous colonies 

respectively. Boxplots represent the lower and upper quartiles and whiskers the minimum and 

maximum values (in the limits of 1.5 × interquartile range). 

 

Discussion 

Supergenes control complex co-adapted traits, including traits involved in survival, mating 

system and reproduction. Because alternate supergene haplotypes can influence their own 

transmission in multiple ways, understanding the processes and selective pressures contributing 

to the maintenance of the polymorphism is a challenging task for evolutionary biologists. We 

investigated the mating system and dispersal strategies of queens and males belonging to 
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alternative social forms of the Alpine silver ant. We first confirmed that the colony social 

structure was perfectly associated with alternative genotypes at a large supergene. The Sp 

haplotype was present in all queens heading multiple-queen colonies, with Sp/Sp and Sm/Sp 

queens in similar proportions, while all queens heading single-queen colonies were Sm/Sm. 

Mating was asymmetrical with respect to social forms, generating unidirectional male-mediated 

gene flow from the monogynous to the polygynous social form. Queens heading monogynous 

colonies were always mated with Sm males. In contrast, queens heading polygynous colonies 

were mated with Sp males and Sm males, with the latter contributing to 23.6% of the mating, 

weighting queens equally. This is an intriguing mating pattern, because polygynous colonies do 

not produce Sm males (Purcell et al., 2014b and Avril et al., chapter 3: in total 94 males from 21 

polygynous colonies were all Sp; see Avril et al., chapter 2 for the mechanism causing the 

absence of Sm males in the offspring of polygynous queens). We conclude that polygynous 

queens mate with Sm males originating from monogynous colonies. Biased gene flow from the 

monogynous to the polygynous social from was confirmed by a higher number of private alleles 

in workers from monogynous colonies, and by a twofold higher number of immigrants per 

generation in that direction. Genetic differentiation between social forms was close to zero at 

markers located outside of the supergene, indicating that gene flow is strong enough to 

homogenize allelic frequencies between social forms, as already reported in previous studies of 

the same population (Chapuisat et al., 2004, Purcell & Chapuisat, 2013, Purcell et al., 2014b). 

Unidirectional gene flow from the monogynous to the polygynous social form is likely to 

contribute to the maintenance of the social polymorphism, rather than lead to reproductive 

isolation and speciation between social forms (Crozier & Pamilo, 1996). The Sp haplotype is a 
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selfish genetic element, favoring its own transmission (Avril et al., chapter 2). Hence, 

unidirectional gene flow from the monogynous to the polygynous social form may preclude the 

Sp haplotype from spreading to fixation. A similar mechanism seems to be involved in the 

maintenance of the supergene controlling social organization in the fire ant Solenopsis invicta 

(Shoemaker & Ross, 1996). 

In mature monogynous colonies, we never found queens of monogynous origin mated with males 

of polygynous origin. This is surprising, because in mate choice experiments we detected no mate 

preferences with respect to social form or mating incompatibilities between social forms (Avril et 

al., chapter 3). In addition, the absence of isolation by distance for males of polygynous origin 

indicates that these males have good dispersal abilities and might have opportunities to mate with 

queens originating from monogynous colonies. Sp males may be rare in the field or may show 

spatial or temporal segregation with Sm/Sm queens. Alternatively, it is possible that crosses 

between Sm/Sm queens and Sp males are selected against during independent colony founding or 

are quickly converted into polygynous colonies headed by multiple Sp/Sm daughter queens. 

More research is needed to understand why no Sp x Sm/Sm cross was detected in mature field 

colonies and how this absence affects the maintenance of the polymorphism at the supergene. 

The proportion of polyandrous queens in monogynous colonies (9.5%) was fully consistent with 

the rate of polyandry measured in monogynous colonies of the same population by Chapuisat et. 

al. (2004). The current study provides the first estimate of polyandry for queens from polygynous 

colonies. It revealed an unexpected association between the supergene genotype of queens and 

their rate of polyandry: multiple mating was significantly more common among Sp/Sm queens 

than among Sp/Sp queens or Sm/Sm queens. Mating with a single Sm male is detrimental for 
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heterozygous queens, as half of the offspring will die due to the selfish genetic element 

associated with the Sp haplotype (Avril et al., chapter 2). Therefore, mating with multiple males 

might be a form of bet-hedging that is adaptive for heterozygous queens under certain conditions. 

Polyandry might also be a way to compensate for males with lower sperm quality. In line with 

this hypothesis, higher rates of polyandry are associated with the driving haplotypes of 

supergenes controlling social organization in fire ants (Lawson et al., 2012) and autosomal drive 

in mice (Sutter & Lindholm, 2015). 

Queens of both social forms showed signs of isolation by distance, consistent with restricted 

dispersal. The relatedness between queens and their mates was higher for queens in polygynous 

colonies than for queens in monogynous colonies. In addition, nestmate queens in polygynous 

colonies were significantly related. This suggests that occasional intranidal mating and 

acceptance of daughter queens occur in polygynous colonies. For both social forms, males 

showed no isolation by distance, suggesting that they are better dispersers than queens. 

Overall, the genetic data revealed that alternative social forms of the Alpine silver ant differed in 

their mating strategies and possibly in dispersal. Asymmetrical mating between social forms 

generates unidirectional male-mediated gene flow from the monogynous to the polygynous social 

form. In addition, the supergene genotype of queens was associated with their rate of polyandry. 

Finally, queens of both social forms showed signs of restricted dispersal, but signs of local 

mating and philopatry were more pronounced for polygynous queens than for monogynous ones. 

The differential mating and dispersal of queens and males with alternative supergene genotypes is 

likely to impact the maintenance of this genetic polymorphism controlling social organization. 
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Table S1. Sampling of queens heading monogynous and polygynous colonies, with details on the 

genetic analyses and inferred social genotypes for queens, their worker progeny, eggs and male 

mates. 
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Figure S1: Map of sampled monogynous (blue) and polygynous (red) colonies from which four 

workers were used for RAD-seq. 
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Figure S2: Social structure, supergene genotypes and queen mating frequency. The y axis shows 

the relatedness (mean ± SE) among progenies of single queens originating from monogynous 

colonies (left side of graph) and polygynous colonies (right side of graph), respectively. Red and 

black dotted lines indicate the mean and 95% confidence interval of the expected relatedness 

among progenies of a singly mated queen. Blue, purple and red symbols represent progenies of 

Sm/Sm queens, Sp/Sm queens, and Sp/Sp queens, respectively. Filled and open symbols 

represent progenies of queens mated with Sm and Sp males, respectively. Shaded symbols 

represent progenies of queens mated with one Sp and one Sm male. Circle stands for progenies of 

singly mated queen. Squares and triangle depict progenies of multiply mated queens, confirmed 

by both relatedness estimates and pedigree analysis, or by pedigree analysis alone, respectively. 
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Abstract  

Supergenes determine major alternative social phenotypes, yet their persistence remains poorly 

understood. In the Alpine silver ant, colony social organization is controlled by a large supergene 

with two haplotypes. Here we show that the haplotype associated with polygynous organization 

is a maternal effect killer. Specifically, all eggs from heterozygous queens that did not inherit this 

haplotype failed to hatch. Hence, intragenomic conflict influences the maintenance of alternative 

social forms and selfish drive by one haplotype contributes to the preservation of cooperative, 

polygynous ant societies. More generally, selfish genetic elements frequently occur in non-

recombining regions, suggesting that many supergenes are likely to be transmission ratio 

distorters. 
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Introduction 

Supergenes control a variety of complex polymorphic phenotypes, including sexes, distyly, 

ecotypes, cryptic morphs, mating morphs and alternative forms of social organization (Thompson 

& Jiggins, 2014, Charlesworth, 2016, Schwander et al., 2014). The suppression of recombination 

in supergenes can preserve groups of co-adapted alleles and avoid maladaptive combinations of 

antagonistic alleles (Wright et al., 2017, Dobzhansky, 1970). But the suppression of 

recombination has a darker side: it exacerbates intra-genomic conflict, as co-transmitted alleles 

gain power to favor their own transmission over that of alternative alleles, at a cost to their 

bearers (Burt & Trivers, 2006, Hamilton, 1967). Segregation distorters arise through tight linkage 

of a distorter and target locus, followed by further accumulation of enhancer loci (Burt & Trivers, 

2006, Lyttle, 1991). As tight linkage generates both supergenes and selfish genetic elements, 

large non-recombining genomic regions are likely not only to control complex phenotypes, but 

also to cause transmission ratio distortion.  

The recent discovery that a supergene determines colony queen number in the Alpine silver ant 

Formica selysi provides a novel opportunity to investigate the impact of polymorphic supergenes 

across multiple levels of biological organization (Purcell et al., 2014b). In this species, colonies 

headed by a single-queen (= monogynous) and colonies headed by multiple queens (= 

polygynous) occur in the same populations (Chapuisat et al., 2004, Purcell & Chapuisat, 2013, 

Purcell et al., 2015). The two social forms differ in multiple life-history traits (Rosset & 

Chapuisat, 2007, Purcell et al., 2014b), yet queens and males of both social forms interbreed in 

the laboratory (Reber et al., 2010; Avril et al., chapter 2). There is no sign of genetic 

differentiation between social forms over most of the genome, except for a large, non-
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recombining supergene that spans most of a chromosome (Chapuisat et al., 2004, Purcell et al., 

2014b, Purcell et al., 2015; Avril et al., chapter 1). All ants from monogynous colonies invariably 

harbor only the Sm haplotype, with females having the Sm/Sm genotype and males the Sm 

haplotype. In contrast, ants produced by polygynous colonies harbor at least one copy of the Sp 

haplotype, with females having Sp/Sm or Sp/Sp genotypes and males carrying the Sp haplotype 

(Purcell et al., 2014b). 

The Alpine silver ant supergene in unusual in that homozygotes for both haplotypes, Sm and Sp, 

are viable (Purcell et al., 2014b). This contrasts with other supergenes for social traits, in which 

one variant is a recessive lethal (Wang et al., 2013, Küpper et al., 2016). Another surprising 

feature of the Alpine silver ant supergene is the absence of Sm/Sm females and Sm alate males 

from polygynous colonies (Purcell et al., 2014b). As many as 51.3% of the mature queens 

heading polygynous colonies are Sp/Sm (Avril et al., chapter 1). These queens are expected to 

produce Sp and Sm males. Moreover, 22.7% of the Sp/Sm queens were mated with Sm males 

originating from monogynous colonies (Avril et al., chapter 1). These queens should produce 

Sp/Sm and Sm/Sm females. The underrepresentation of the Sm haplotype in offspring from 

polygynous queens points at a transmission ratio distortion and suggests that the Sp haplotype is 

a selfish genetic element favoring its own transmission over that of the alternative haplotype. 

Transmission ratio distortion results from intragenomic conflict (Burt & Trivers, 2006). Selfish 

genetic elements can favor their own transmission at various stages in development, from 

gametogenesis to adult behavior, by causing either meiotic drive, maternal effect killing, or green 

beard effect (Burt & Trivers, 2006, Huang et al., 2013). Meiotic drive is characterized by the 

overrepresentation of one allele in the gametes of heterozygous individuals. Well-known 
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examples include the t-complex in mice (Lyon, 2003) and the Segregation Distorter gene 

complex in the fruit fly, Drosophila melanogaster (Larracuente & Presgraves, 2012). Maternal 

effect killers are genetic elements present in the parent that cause the death of the progeny that 

did not inherit this element (Werren, 2011). Maternal effect killers operate through a 

modification-rescue system, such as a toxin and antidote (Burt & Trivers, 2006, Werren, 2011). 

Typical maternal effect killers are the Medea element in red flour beetles (Lorenzen et al., 2008, 

Beeman et al., 1992) and both the peel/zeel and sup-35/pha-1 systems in Caenorhabdtitis elegans 

(Seidel et al., 2011, Ben-David et al., 2017). Finally, a green beard effect occurs when the carrier 

of an allele recognizes and favors individuals that also carry this allele (Hamilton, 1964, 

Dawkins, 1976). Such an effect has been documented in the fire ant, where workers carrying the 

polygynous haplotype at the social supergene kill queens that lack this haplotype (Keller & Ross, 

1998, Trible & Ross, 2016). 

Here, we explore whether and how the supergene controlling social organization in the Alpine 

silver ant distorts the law of Mendelian segregation. We monitor the development of brood from 

Sp/Sm queens mated with Sm males and investigate if the Sp haplotype favors its own 

transmission by causing meiotic drive, maternal effect killing, or a green beard effect. 

 

Materials and Methods 

Ant sampling, rearing and genotyping 

To study the causes of the transmission ratio distortion observed at the social supergene of F. 

selysi, we reared queens individually and genotyped their progeny. We sampled 134 mature 
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queens from 45 polygynous colonies in two field populations in Valais, Switzerland (Finges: 

7°36’30” E, 4°18’30” N, altitude 565 m; Derborence: 7°12’56” E, 46°16’50” N, altitude 1450 

m). Each queen was reared in a plastic box (15 × 13 × 6 cm) lined with Fluon® to prevent 

escape. Each rearing unit had a nest site (a glass test tube wrapped in aluminum foil, with water 

retained by a cotton plug at the bottom) and contained 20 workers originating from the same 

colony as the queen. The ants were fed ad libitum with standard ant food (Meunier & Chapuisat, 

2009). We sampled eggs and larvae in multiple experimental conditions, as described below. We 

determined the social supergene genotype of eggs and larvae by genotyping three haplotype-

diagnostic SNPs with a PCR-RFLP assay (Purcell et al., 2014b). DNA was extracted from eggs 

and larvae following a salting out procedure adapted from Miller et al. (1988).  

The social genotype of the queens and their male mates was determined as described in detail in 

chapter 1 (see Table 1 and Table S1 of Avril et al., chapter 1). In short, a PCR-RFLP assay for 

diagnostic SNPs was applied to queens, sperm in their spermathecae and eggs. The social 

genotypes of most queens and mates were further confirmed by reconstructing parental genotypes 

from RAD-seq SNPs genotypes of four worker progeny per queen (Avril et al., chapter 1). To 

study transmission ratio distortion, we focused on 34 queens from 16 polygynous colonies that 

were heterozygous at the supergene. Of these 34 Sp/Sm queens, 16 had mated with Sm males and 

18 with Sp males, respectively. 

Meiotic drive 

To test if the Sp haplotype was transmitted to more than 50% of the gametes, we sampled and 

genotyped embryonated eggs laid by Sp/Sm queens. We collected worker-destined female eggs, 
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which are commonly produced year-round under laboratory conditions. All eggs were less than 

three days old. We succeeded in genotyping 16 eggs per queen from 34 Sp/Sm queens. 

Maternal effect killing 

To detect post-segregational lethal maternal effects, we monitored the mortality of brood from 

known crosses developing in the absence of workers. If the Sp haplotype is a maternal effect 

killer, we expect that Sm/Sm brood laid by Sp/Sm queens mated with Sm males will not develop, 

while Sp/Sm brood from the same clutch will develop normally. Moreover, brood from Sm/Sm 

or Sp/Sp queens mated with Sm males should also develop normally. We used brood from 15 

Sp/Sm queens mated with Sm males. Ten of them were mature queens sampled in polygynous 

colonies, while the five others resulted from experimental crosses in which young queens and 

males were allowed to mate in flight cages, as described in Reber et al. (2010). We also analyzed 

brood from control experimental crosses, namely eleven Sm/Sm queens mated with Sm males, 

and seven Sp/Sp queens mated with Sm males. 

Queens were isolated for two days, and their eggs were placed individually onto sterile plastic 

plates, using a soft paintbrush cleaned with ethanol. The eggs were placed in an incubator (a 

climate chamber at 24°C and 95% relative humidity). We sampled brood at two developmental 

points. First, after four days in the incubator, we collected half of the surviving eggs from each 

queen. Hence, these eggs were four to six days old. We then monitored the remaining brood on a 

daily basis for twelve days, and collected all hatched larvae. All these eggs and larvae were later 

genotyped at the social supergene. 

 



 
50 

 

Green beard effect 

We performed a cross fostering experiment to examine whether workers from polygynous 

colonies, which carry at least one Sp haplotype, selectively eliminated brood that lacked this 

haplotype. We introduced eggs from known crosses in rearing groups of non-nestmate workers 

originating from monogynous and polygynous colonies, respectively. If the Sp haplotype is 

causing a green beard effect, polygynous workers should kill Sm/Sm brood, while monogynous 

workers should spare it. Control brood of other genotypes should develop normally. 

The laying queens were isolated for three days. Their eggs were transferred to small rearing units 

(11 × 8 × 6 cm), each containing 20 workers, and reared as described above. We formed 60 

rearing units, half with workers originating from polygynous colonies, and half with workers 

originating from monogynous colonies, all from the Finges population (6 rearing groups per field 

colony). Each rearing group received 17.6 ± 4.2 (mean ± SD) eggs, as a ratio of eggs to workers 

close to 1:1 tends to maximize brood survival (Purcell et al., 2012). 

We tested whether brood mortality depended on the genotypes of eggs, mothers and rearing 

workers. We introduced eggs laid by four mature Sp/Sm queens mated with Sm males into 

twelve rearing groups of polygynous workers and twelve rearing groups of monogynous workers, 

respectively. We collected the surviving eggs after three days, when these eggs were three to six 

days old. We further introduced eggs laid by mature Sp/Sm queens mated with Sm males into 

eight rearing groups of each social form, monitored brood on a daily basis for twelve days, and 

collected all hatched larvae. As controls, we introduced eggs laid by five Sp/Sp queens and five 

Sm/Sm queens, all mated with Sm males, into ten rearing groups of each social form. Again, we 

collected all hatched larvae. All the eggs and larvae were later genotyped. 
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Statistical analysis 

To detect transmission ratio distortion, we examined whether the supergene genotypes of brood 

from Sp/Sm queens departed from the expected 1:1 Mendelian ratio. We used generalized linear 

mixed models (GLMM) implemented in the R package ‘lme4’ (Bates et al., 2015) with a 

binomial error distribution, as described in Ducret et al. (2016). In these models, the response 

variable was whether the offspring had inherited the Sp or Sm haplotype from its Sp/Sm mother. 

We constructed three separate models to determine biases during gamete production, offspring 

development, and behavior of caring workers, respectively. When testing for meiotic drive in 

eggs, we included the genotype (Sm or Sp) of the male (= the queen’s mate) as fixed factor, and 

the queen identity as random factor. In tests of maternal effect killing, we used Sp/Sm queens that 

had mated with Sm males, and included brood stage (eggs or larvae) as a fixed factor, and the 

number of eggs laid in each replicate and the queen identity as random factors. When testing for a 

green-beard effect, we included the interaction between brood stage and social origin of workers 

as fixed factors, and the rearing group of workers and the queen identity as random factors. For 

each model, we used a Wald test to examine whether the intercept differed significantly from 

zero, revealing whether the brood genotypes deviate from the 1:1 Mendelian ratio. 

In complement to identifying deviations from the 1:1 Mendelian ratio, we sought differences in 

brood mortality based on the cross and the rearing group. Using a GLMM with a binomial error 

distribution, we analyzed the mortality of brood from queens with alternative genotypes mated to 

Sm males, and reared either without workers, by monogynous workers or by polygynous 

workers, respectively. Brood mortality was the response variable. We included the interaction 

between queen and brood genotype as fixed factors and the queen identity, the number of eggs 
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incubated and the rearing group of workers as random factors. We did not detect any departure 

from the 1:1 Mendelian ratio in eggs laid by heterozygous queens (see results). Hence, for 

heterozygous queens, we estimated the mortality of each genotype by assuming that they were 

present in half of the eggs laid. The brood survival data showed complete separation, precluding 

reliable prediction of the regression estimates. Therefore, we computed GLMMs using Bayesian 

inference on the regression estimates with the function ‘bglmer’ implemented in the ‘blme’ 

package in R (Gelman et al., 2008, Rainey, 2016). We tested for pairwise differences in brood 

mortality with a post-hoc Tukey HSD test, as implemented in the ‘multcomp’ package in R. All 

the statistics were performed in R v3.2.0 (R Development Core Team, 2015). 

 

Results 

Meiotic drive 

There was no sign of meiotic drive in the eggs laid by queens heterozygous at the supergene. The 

proportion of eggs carrying the Sp and Sm maternal haplotype did not depart significantly from 

the 1:1 Mendelian inheritance ratio, irrespective of whether the Sp/Sm queens had mated with 

Sm males or Sp males (Figure 1). 
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Maternal effect killing 

We monitored the development of brood from Sp/Sm queens mated with Sm males. This brood 

was reared in one of three treatments: in the absence of workers, by workers from monogynous 

colonies or by workers from polygynous colonies. There was clear evidence that the Sp haplotype 

was a maternal effect killer. The Sm/Sm eggs had normal survival and were found in the 

Mendelian ratio of 1:1 during the early stages of development, but they all failed to hatch into 

larvae (Figure 2). In contrast, Sp/Sm eggs from the same clutches hatched normally. As a result, 

all surviving larvae were heterozygous at the supergene (Figure 2). 

Figure 1: No evidence for meiotic drive. 

The proportion of eggs that inherited the Sp 

maternal haplotype was not significantly 

different from 0.5 for heterozygous Sp/Sm 

queens mated with Sm males (Left bar; 

GLMM, z
 
= -0.238, p = 0.81) or Sp males 

(GLMM, z = -1.06, p = 0.29). The number 

of eggs genotyped is indicated above each 

bar. 
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Figure 2: Evidence that the Sp haplotype is a maternal effect killer. Sm/Sm eggs laid by 

heterozygous queens failed to hatch into larvae, while Sp/Sm eggs from the same clutches 

developed normally. The number of live brood items collected and genotyped are indicated above 

the bars. Asterisks indicate significant departures from 1:1 Mendelian proportions (GLMM, Wald 

test, p < 0.0001 after Bonferroni correction for multiple comparisons). 

The mortality of Sm/Sm brood depended on the presence of Sp in their mother. Sm/Sm eggs did 

not hatch into larvae when coming from Sp-carrying queens, but they developed normally when 

coming from queens that lacked Sp (Figure 3). This strong maternal effect was evidenced by the 

sharp contrast between the 100% mortality rate of Sm/Sm brood laid by Sp/Sm queens and the 

moderate mortality rate of Sm/Sm brood laid by Sm/Sm queens, which was similar to the one of 

brood with alternative genotypes (Figure 3). 
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Figure 3: Evidence for lethal maternal effect. Median mortality rate until the larval stage for 

(A) Sm/Sm brood from Sp/Sm queens mated with Sm males, (B) Sp/Sm brood from Sp/Sm 

queens mated with Sm males, (C) Sm/Sm brood from Sm/Sm queens mated with Sm males and 

(D) Sp/Sm brood from Sp/Sp queens mated with Sm males. The number of eggs at the start of the 

experiments is indicated above the bars. For heterozygous queens, the number of eggs of each 

genotype was estimated based on Mendelian ratio, as there was no sign of meiotic drive, and the 

mortality rate was constrained between zero and one in each replicate. Boxplots depict the lower 

and upper quartiles and the whiskers encompass 1.5 times the interquartile range. The mortality 

rate varied significantly according to brood genotype and parental cross (GLMM; without 

workers: χ
2

(3) = 381, p < 0.0001; reared by monogynous workers: χ
2

(3) = 164, p < 0.0001; reared 

by polygynous workers: χ
2

(3) = 122, p < 0.0001). Different small letters above bars indicate 

significant differences in mortality (post-hoc TukeyHSD test for multiple comparisons, p < 0.05). 

Overall, Sm/Sm brood laid by Sp/Sm queens mated with Sm males had significantly higher 

mortality than all other brood genotypes and parental crosses. 
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Green beard effect 

There was no sign that the Sp haplotype was causing a green beard effect. The presence and 

social origin of rearing workers did not alter the 1:1 Mendelian ratio in eggs and did not explain 

the differential mortality of embryos with alternative genotypes (Figure 2 and 3). Hence, 

workers from polygynous colonies, that carry at least one Sp haplotype, did not selectively 

eliminate brood that lacked Sp. Overall, irrespective of whether the brood was unattended, 

attended by monogynous workers or attended by polygynous workers, all Sm/Sm eggs laid by 

Sp/Sm queens did not hatch into larvae, while the Sp/Sm brood from the same clutch had normal 

survival (Figure 2 and 3). 

 

Discussion 

We provide strong evidence that the haplotype associated with polygynous colonies (Sp) in the 

Alpine silver ant is a maternal effect killer. Queens heterozygous at the supergene (Sp/Sm) 

produced viable eggs that inherited each haplotype in the expected 1:1 Mendelian ratio. When 

heterozygous mothers had mated with Sm-carrying males, their Sp/Sm offspring developed 

normally, while all their Sm/Sm eggs failed to hatch into larvae. In contrast, Sm/Sm brood from 

homozygous mothers hatched normally. In short, presence of the Sp haplotype in a mother 

induced developmental arrest of her brood that did not inherit this haplotype. 

The mechanism causing the death of progeny that did not inherit the Sp haplotype is not yet 

known, but likely involves a modification-rescue system (Burt & Trivers, 2006). We hypothesize 

that this very long, non-recombining genetic element contains a maternally-expressed toxin and 
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an embryo-expressed antidote. Such systems have been well characterized in C. elegans, where 

the toxins and antidotes are tightly linked through their adjacent position in an insertion-deletion 

polymorphism (Seidel et al., 2011) or in an inversion (Ben-David et al., 2017). Clusters of 

tightly-linked loci commonly cause other types of segregation distortion. For example, the t-locus 

in mice and the Segregation Distorter gene complex in D. melanogaster cause meiotic drive 

(Lyon, 2003, Larracuente & Presgraves, 2012), while the b haplotype in fire ants induces a green-

beard effect (Keller & Ross, 1998, Trible & Ross, 2016). 

Selfish genetic elements are difficult to observe, because they either spread to fixation or are 

repressed by other genes (Hurst & Werren, 2001). The ones that persist are often recessive lethal 

or near-lethal, so that negative frequency-dependent selection prevents the fixation of the driving 

allele (Burt & Trivers, 2006, Lyon, 2003, Keller & Ross, 1998). In the Alpine silver ant, 

homozygotes for both haplotypes at the social supergene are viable (Purcell et al., 2014b; this 

study). Yet, the social polymorphism appears stable over time and is present in most populations 

(Purcell et al., 2015, Purcell & Chapuisat, 2013). 

Our results provide new light on the forces contributing to the maintenance of the balanced 

polymorphism in the Alpine silver ant. On the one hand, maternal effect killing causes a drive 

that favors the Sp haplotype within polygynous colonies. On the other hand, all queens in mature 

monogynous colonies had mated with males carrying the Sm haplotype, while 23.6% of queens 

in polygynous colonies had mated with males carrying the Sm haplotype (Avril et al., chapter 1). 

This asymmetrical mating pattern and unidirectional male-mediated gene flow may restrict the 

spread of the driving Sp haplotype and protect the Sm haplotype from extinction (Avril et al., 

chapter 1). Further investigations of the behavioral strategies and fitness of males, queens and 
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workers with alternative genotypes will provide a more complete picture of the dynamics of this 

system. 

In conclusion, the suppression of recombination in large clusters of genes creates co-adapted 

gene complexes that selfishly distort Mendelian transmission in their favor, while promoting a 

cooperative, polygynous form of social organization. Supergenes controlling colony queen 

number have evolved independently in two highly divergent ant lineages (Purcell et al., 2014b). 

In the fire ant, the haplotype causing polygyny generates a green-beard effect, as workers 

carrying this haplotype kill queens that lack it (Keller & Ross, 1998, Trible & Ross, 2016, Huang 

& Wang, 2014). In the Alpine silver ant, the haplotype associated with polygynous colonies is a 

maternal effect killer, causing developmental arrest of brood that did not inherit this haplotype. 

Strikingly, in both systems intra-genomic conflict contributes to the maintenance of alternative 

social organizations, with the selfish drive by a supergene haplotype favoring the spread of a 

cooperative colony-level phenotype. More generally, many supergenes are likely to be 

transmission ratio distorters maintained in balanced polymorphism through antagonistic selective 

pressures at the gene, individual or group levels. 
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Abstract 

Disassortative mating generates negative frequency-dependent selection, maintaining sex 

chromosomes and several supergenes that underpin complex phenotypes. Here, we explored 

whether mate preferences or genetic incompatibilities contribute to the maintenance of a 

supergene controlling variation in colony queen number in the Alpine silver ant Formica selysi. 

With mate choice experiments, we found that queens and males mated randomly with respect to 

social form. Moreover, for queens of both social forms, offspring production and incipient colony 

survival did not depend on whether the founding queen had mated with a male of the same or of 

the alternative social form. Overall, we found no evidence that mate preferences or genetic 

incompatibilities between social forms explain the asymmetric mating pattern observed in field 

populations. Furthermore, our experiment revealed that queens of monogynous origin were more 

likely to mate and more fertile, which suggests that queens of alternative social forms differ in 

their mating and colony founding strategies. This calls for further studies to evaluate how 

dispersal affects the dynamics of this polymorphism.  
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Introduction 

Supergenes determine complex divergent phenotypes in single populations, yet in many cases 

explaining how the polymorphism is maintained remains a challenge (Schwander et al., 2014, 

Thompson & Jiggins, 2014). In absence of opposing selection pressure, natural selection will 

often lead to the fixation of the locally adapted supergene haplotype (Fisher, 1930, Chouteau et 

al., 2017). Disassortative mating between alternative morphs is a powerful mechanism to 

maintain balanced polymorphisms, because the rarer morph gains a reproductive advantage over 

the more frequent morph (Ayala & Campbell, 1974). This process explains the 1:1 sex ratio 

observed in many sexually reproducing species (Fisher, 1930) and the balanced polymorphism at 

sex chromosomes (Beukeboom & Perrin, 2014). 

Disassortative mating plays a major role in maintaining polymorphic supergenes in plants and 

animals. Primula vulgaris has heteromorphic flowers that have either long style and low anthers, 

or short style and high anthers (heterostyly). Self-incompatibility is associated with obligate out-

crossing with the alternative flower morph, which balances the frequencies of alternate allelic 

variants at the supergene controlling heterostyly (Li et al., 2016). In the white-throated sparrow 

Zonotrichia albicolis, near-perfect disassortative mating between alternative morphs leads to a 

balanced polymorphism at a supergene controlling plumage color and social behavior (Tuttle et 

al., 2016). Mate preferences for morphs with alternative wing-pattern also maintain the 

polymorphism at a supergene regulating Müllerian mimicry in the butterfly Heliconius numata 

(Chouteau et al., 2017). 

Non-random mating may contribute to the maintenance of a supergene controlling alternative 

colony social organization in the Alpine silver ant Formica selysi (Purcell et al., 2014b) . In this 
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species, colonies can be headed by a single queen (monogynous) or by multiple queens 

(polygynous) and the two social forms were found in sympatry in all well-sampled populations 

(Chapuisat et al., 2004, Purcell & Chapuisat, 2013, Purcell et al., 2015). Two highly divergent 

non-recombining haplotypes at a large supergene determine colony queen number (Purcell et al., 

2014b). All individuals from monogynous colonies have only the Sm haplotype, while queens, 

workers and male alates from polygynous colonies have at least one Sp haplotype. Both 

haplotypes produce normally viable homozygotes (Purcell et al., 2014b). This stands in contrast 

to many other supergenes where one variant is lethal when homozygote, which prevents it from 

reaching fixation (Wang et al., 2013, Küpper et al., 2016, Schwander et al., 2014). This unusual 

system raises questions on the selective pressures and evolutionary mechanisms contributing to 

the maintenance of the polymorphism. 

Asymmetries in the pattern of mating appear to play a role in the maintenance of the social 

polymorphism in F. selysi. In monogynous field colonies, the supergene genotypes of 

reproductive queens and of their respective male mates reveal complete assortative mating with 

respect to social form: all queens are Sm/Sm and their mates are Sm (Avril et al., chapter 1; 

Purcell et al., 2014b). In contrast, in polygynous field colonies, 76.4% of the queens’ mates have 

the Sp haplotype, while 23.6% have the Sm haplotype (Avril et al., chapter 1). Sm males are 

exclusively produced by monogynous colonies and Sp males by polygynous colonies (Purcell et 

al., 2014b). Hence, a fraction of queens in polygynous colonies had mated disassortatively, with 

males of monogynous origin. The asymmetric mating pattern observed in field colonies may be 

due to mate preferences or genetic incompatibilities. In particular, queens of monogynous 

colonies may reject Sp males, or queens of monogynous origin mated to males of polygynous 
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origin may fail to produce offspring. Alternatively, this asymmetric mating pattern could be due 

to differences between social forms in numbers and dispersal of queens and males. 

The recent discovery that one variant of the supergene is a selfish genetic element further 

suggests that asymmetric patterns of mating contribute to stabilize the polymorphism. Sp is a 

maternal offspring killer causing developmental arrest of brood from heterozygous queens that 

did not inherit Sp (Avril et al., chapter 2). By so doing, Sp favors its own transmission over the 

alternative haplotype. Despite this strong drive, Sp does not go to fixation in polygynous 

colonies, and populations remain polymorphic (Purcell et al., 2015). We hypothesize that queen 

preference for Sm males or genetic incompatibilities between queens of monogynous origin and 

males of polygynous origin prevent the spread of the driving Sp haplotype. Here, we examine 

whether mate preferences or genetic incompatibilities between social forms explain the 

asymmetric mating pattern observed in the field and contribute to balance a polymorphic 

supergene controlling ant social organization. 

 

Materials and Methods 

Mate preferences 

Virgin alate queens and males of Formica selysi were collected in summer 2015 from 42 colonies 

in Swiss populations (Finges: 7°36’30” E, 4°18’30” N, altitude: 565m; Derborence: 7°12’56”E, 

46°16’50” N, altitude: 1450m). The social organization of each colony was previously 

determined based on direct observations of queens in early spring, microsatellite genotyping and 

RFLP genotyping of SNPs diagnostic for social form (Avril et al.,chapter 1; Purcell et al., 2014b, 
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Purcell & Chapuisat, 2013). Most colonies of F. selysi specialize in the production of one sex 

(Rosset & Chapuisat, 2006). When the two sexes were present, they were separated upon 

collection. Virgin queens or males and workers from the same parent colony were placed in 

plastic boxes (15 × 13 × 6 cm), and transferred to the laboratory. The ants were kept at 24°C and 

50% relative humidity, and were provided with water and standard ant food ad libitum (Meunier 

& Chapuisat, 2009). 

With mate choice experiments, we examined whether queens and males prefer to mate with 

partners of the same or the alternative social form. A virgin queen and two males from each 

social form were placed in a plastic box (35 × 22 × 15 cm) covered by a net. For each mating 

trial, the queen and males originated from different colonies of the same population. Males of 

alternative social forms were color-marked and the colors used were randomized between mating 

trials. The mating trials took placed outside in the morning, which stimulates the mating flight 

(Reber et al., 2010). We monitored the behavior of queens and males until mating, if any, or up to 

30 minutes otherwise. Immediately after mating, the queen was isolated for incipient colony 

founding. Each queens was placed in a glass test tube partially filled with water retained by a 

cotton plug and kept in dark conditions (Brütsch et al., 2017). Males and females that did not 

mate were returned to their lab colonies and used in at most one other mating trial. 

Genetic incompatibilities 

Brood production and incipient colony survival were monitored for each mated queen. The 

number of eggs, larvae, cocoons and workers was counted every other day, and the status of 

queens (dead or alive) was recorded. To detect if some crosses suffer from genetic 

incompatibilities, we compared brood production (for fertile queens that survived until the end of 
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the experiment) and colony failure (the proportion of queens that died or did not produce any 

worker) between queens of monogynous or polygynous origin, mated with males of monogynous 

or polygynous origin, respectively. 

Statistical analyses 

Mate preferences and queen mating propensity were analyzed with generalized mixed effect 

models (GLMM), using a binomial error distribution. For mate preferences, we constructed a 

model in which the social origin of the queen’s mate was the response variable and the social 

origin of the queen was included as fixed effect. Random effects comprised colony of origin of 

queen and males, color marks, date of mating trial, and whether the queen or males were in their 

first or second trial, if any. A Wald test on the intercept was used to detect significant departure 

from random mating. For the mating propensity of queens, we built a model in which the 

response variable was the mating status of the queen (mated or not) at the end of the trial. The 

queen social origin was included as fixed effect, while random effects comprised the date and 

whether the queen or males were in their first or second trial.  

We explored whether genetic incompatibilities between social forms affected brood production 

and incipient colony survival. For brood production, we used a generalized additive mixed model 

(GAMM), which can model non-linear time series data (Zuur et al., 2009). The number of brood 

items (eggs, larvae, cocoons and workers) was the response variable. Queen social origin, male 

social origin and the interaction between the two factors were included as fixed effects. The post-

mating date was used as the smoothing covariate. Random effects comprised queen identity and 

whether the queen or males were in their first or second trial. For incipient colony survival, we 

used a GLMM with a binomial error distribution. Colony failure rate was the binomial response 



 

 
66 

 

variable. Queen social origin, male social origin and the interaction between the two factors were 

included as fixed effects. Random effects comprised the date and the number of times queens and 

males were used in mating trials. All the statistics were done in R v 3.3.2 (R Development Core 

Team, 2015). GAMM and GLMM models were built using the ‘mgcv’ package v1.8 (Wood, 

2011) and the ‘lme4’ package v1.1 (Bates et al., 2015), respectively. 

Results 

Mate preferences 

In mate choice experiments involving a virgin queen and two males from each social form, 

mating occurred randomly with respect to social form. No significant preference was detected for 

queens of monogynous origin (Figure 1; GLMM binomial, z = -0.25, p = 0.81), nor for queens of 

polygynous origin (Figure 1; GLMM binomial, z = 0.78, p = 0.43). However, queens of 

monogynous origin were more likely to mate than queens of polygynous origin (Figure 1; mating 

occurred for 74.2 % of 62 queens of monogynous origin and 40.7 % of 59 queens of polygynous 

origin, respectively; GLMM binomial, χ
2
 = 14.1, p < 0.001). 
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Figure 1: Mate choice experiments with F. selysi queens of monogynous origin (Mono-Q) and 

polygynous origin (Poly-Q), respectively. (A) Mate preference. Frequency of mating occurring 

with males of monogynous origin. Each queen was presented with two males of each social form, 

and was removed after the first mating. Bars indicate the binomial 95% confidence interval 

around the mean. The total number of matings is indicated above each bar. (B) Mating 

propensity. Percentage of queens that successfully mated across trials. Bars indicate the binomial 

95% confidence interval around the mean. The total number of mating trials is indicated above 

each bar. 

 

Genetic incompatibilities 

Brood production in incipient colonies was not influenced by whether a queen had mated with a 

male of the same or the alternative social origin (Figure 2; Interaction between social origins of 

queens and their mates, for eggs: t = 0.38, p = 0.70; Larvae: t = 0.60, p = 0.55; Cocoons: t = 0.95, 

p = 0.34; Workers: t = 0.96, p = 0.34). Male social origin did not influence brood production by 

queens (Figure 2; Eggs: t = 0.47, p = 0.64; Larvae: t = 1.11, p = 0.27; Cocoons: t = 0.01, p = 0.99; 



 

 
68 

 

Workers: t = 0.84, p = 0.4). However, queens of monogynous origin produced more brood than 

queens of polygynous origin (Figure 2; Eggs: t = 4.6, p < 0.0001; Larvae: t = 6.5, p < 0.0001; 

Cocoons: t = 6.9, p < 0.0001; Workers: t = 7.4, p < 0.0001). 

 

Figure 2: Brood production. Number of (A) eggs, (B) larvae, (C) cocoons, and (D) workers 

produced by queens of monogynous origin mated with males of monogynous origin (dark blue, 

N=17) or males of polygynous origin (light blue, N=15), and by queens of polygynous origin 

mated with males of monogynous origin (light red, N=6) or males of polygynous origin (dark 

red, N=6), respectively. Lines and shaded areas depict the average number of brood items and the 

standard error of the mean, respectively. 

 

Colony failure did not depend on whether the founding queen had mated with a male from the 

same or the alternative social form (Table 1; GLMM, χ
2
 = 0.05, p = 0.81) and was not influenced 

by male social origin (Table 1; GLMM, χ
2
 = 0.43, p = 0.51). Colony failure rate was 1.64 times 
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higher for queens of polygynous origin than for queens of monogynous origin, but the difference 

was not statistically significant (Table 1; GLMM; χ
2
 = 3.0, p = 0.08). 

 

Table 1: Proportion of incipient colonies in which the queen died or did not produce any worker. 

The number of colonies monitored is indicated between parentheses. 

 Queens of monogynous origin Queens of polygynous origin 

Mate social origin monogynous polygynous monogynous polygynous 

Colony failure rate 0.29 (24) 0.32 (22)  0.4 (10) 0.57 (14) 

 

Discussion 

Genomic rearrangements and suppressed recombination over large portions of the genome 

underlie spectacular alternative phenotypes within populations (Schwander et al., 2014, Küpper 

et al., 2016). Alternate haplotypes at supergenes have complex phenotypic effects and the 

polymorphism is typically maintained by opposing selective pressures that combine recessive 

lethality, selfish genetic drive, natural selection or sexual selection (Schwander et al., 2014, 

Huang & Wang, 2014, Charlesworth, 2016, Chouteau et al., 2017). In the Alpine silver ant, 

genetic data indicate that all monogynous queens and a fraction of polygynous queens heading 

mature field colonies had mated with males originating from monogynous colonies (Purcell et al., 

2014b). This asymmetric mating pattern suggests that mate preferences or genetic 

incompatibilities between social forms may contribute to the maintenance of the polymorphic 

supergene underlying social organization in this ant species. 
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In mate choice experiments, we found no evidence for mate preference or genetic 

incompatibilities associated with the social forms of F. selysi. Mating between queens and males 

occurred irrespectively of their social origin and genotype at the supergene controlling social 

organization. Brood production and incipient colony success were independent of whether the 

queen had mated with a male of the same or the alternative social form, in line with earlier results 

(Reber et al., 2010). Behaviorally and genetically, mating within and between social forms 

appeared unrestricted. 

Overall, disassortative mate preference does not appear to stabilize the polymorphism at the 

social supergene of F. selysi. Because homozygotes for both haplotypes are viable, there might be 

no selection favoring mating between social forms. In our experiment, brood productivity and 

colony founding success were similar for queens mated with males originating from the same or 

the alternative social form. Hence, there appears to be no selective advantage for either 

assortative or disassortative mating with respect to social form, at least in the early stages of 

colony development. 

Mate preference or genetic incompatibilities did not explain the asymmetric mating pattern 

observed in field colonies. In mate choice experiments, queens showed no preference for Sm 

males. In particular, Sm/Sm queens did mate with Sp males when given the opportunity, and this 

cross produced viable offspring. Yet, despite extensive genotyping from mature field colonies, 

we never detected the presence of Sm/Sm queens that had mated with Sp males. It is possible that 

Sm/Sm queens do not encounter Sp males in the field, due to differences in numbers, phenology 

or dispersal behavior (Rosset & Chapuisat, 2007). Alternatively, the Sm/Sm founder queen, when 

mated with a male of polygynous origin, might be quickly replaced by multiple Sp/Sm daughter 

queens.  
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Queens of alternative social forms differed in their mating and reproductive strategies. Queens of 

monogynous origin were more likely to mate, produced three times as many brood and were 

marginally more successful at independent colony founding than queens of polygynous origin, 

irrespective of the social origin of their mates. This difference in queen behavior and fertility 

suggests that queens of monogynous origin are more prone to mate outside of their nests and 

more successful at establishing incipient colonies without the help of workers. In contrast, queens 

of polygynous origin may preferentially mate close to or within their natal nest and establish new 

nests with the help of workers. In ants, restricted dispersal and dependent colony founding are 

generally associated with smaller queen body size (Keller & Passera, 1989). F. selysi queens of 

polygynous origin are smaller than queens of monogynous origin and a cross-fostering 

experiment showed that this difference was genetic (Rosset & Chapuisat, 2007, Meunier & 

Chapuisat, 2009). 

An intriguing result of our experiment was that queens of polygynous origin managed to establish 

incipient colonies independently and succeeded in rearing a first cohort of workers.  Yet, mature 

monogynous colonies in the field are never headed by Sp/Sm or Sp/Sp queens. Incipient colonies 

established by queens of polygynous origin may fail to develop into mature colonies in the 

harsher and more competitive conditions that prevail in the field. In line with this hypothesis, in 

the protected conditions of the laboratory queens of polygynous origin produced significantly 

fewer workers and tended to have a higher colony failure rate than queens of monogynous origin. 

Alternatively, incipient colonies founded by single queens of polygynous origin may rapidly 

recruit new daughter queens, and thus become polygynous. 

Differences between social forms in the number of queens and males produced, and in their 

dispersal behavior, may contribute to maintain the polymorphism. On the one hand, the 
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supergene haplotype associated with polygyny is a maternal effect killer favoring its own 

transmission (Avril et al., chapter 2). On the other hand, a lower fraction of polygynous colonies 

produce queens and males, compared to monogynous colonies (Rosset & Chapuisat, 2007). 

Moreover, queens and males of polygynous origin may show more restricted dispersal and favor 

dependent colony founding, further limiting the spread of the Sp haplotype. In the fire ant 

Solenopsis invicta, the supergene haplotype causing polygyny is a selfish genetic element causing 

a green beard effect (Keller & Ross, 1998, Wang et al., 2013). Selection or unidirectional gene 

flow may prevent its fixation in the population (Ross, 1996, Shoemaker & Ross, 1996, Fritz et 

al., 2006, Goodisman et al., 2000). 

Heterogeneous spatial selection for alternative forms of social organization may also contribute 

to stabilizing the genetic polymorphism. In Heliconius butterflies and Cepaea snails, supergenes 

control alternative color patterns, which are differentially selected for in different environments 

(Cook, 1998, Joron et al., 1999, Richards et al., 2013). Although the two social forms of F. selysi 

live in sympatry, previous work suggests that they have different ecological optima (Purcell et 

al., 2015). Whether heterogeneous spatial selection affects the maintenance of the polymorphism 

in F. selysi remains to be tested. 

In summary, we found no evidence that mate preferences or genetic incompatibilities between 

social forms cause the asymmetric mating pattern observed in the field, or contribute to stabilize 

the polymorphism. Queens of monogynous origin were more likely to mate, more fertile and 

marginally more successful at independent colony founding than queens of polygynous origin, 

regardless of the social origin of their mates. This result likely reflects differences in the dispersal 

and colony founding strategies of queens from alternative social forms. Further research is 
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needed to evaluate the impact of dispersal on gene flow between social forms and on the 

dynamics of the polymorphism. 
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General discussion 

 

Main findings and perspective 

Understanding how balanced polymorphisms are maintained is a major current question in 

evolutionary biology. In this thesis, I investigated key mechanisms that may contribute to the 

maintenance of a supergene controlling social organization in the Alpine silver ant Formica 

selysi. 

In chapter 1, I used a population genomic approach to investigate the mating and dispersal 

patterns for queens and males of each social form. I found that mating was asymmetrical with 

respect to social form. Queens of monogynous origin invariably mate with Sm males of 

monogynous origin. In contrast, queens of polygynous origin mate with Sp males of polygynous 

origin, but 23.6% mate with Sm males of monogynous origin. In addition, I found evidence of 

restricted dispersal of queens, and queens of polygynous origin tended to mate with relatives.  

In the Alpine silver ant, alternative social forms were associated with differences in dispersal and 

mating strategies within a single population. Whether and how similar differences affect gene 

flow between and within social forms at a larger scale remains to be investigated. In addition, the 

causes of the asymmetrical mating pattern deserve further investigations. Understanding the 

determinants of the mating and dispersal strategies may reveal important factors contributing to 

the maintenance of the polymorphism at the supergene. 

In chapter 2, I showed that the supergene haplotype associated with polygyny was a selfish 

genetic element causing transmission ratio distortion. Heterozygous queens mated to Sm males 

never produce Sm/Sm females, because the Sp haplotype is a maternal offspring killer. Sm/Sm 
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offspring from Sp/Sm queens die before reaching the larval stage, while Sm/Sm offspring from 

Sm/Sm queens develop normally. Hence, the Sp haplotype is a selfish genetic element favoring 

its own transmission over the transmission of the Sm haplotype. The selfish behavior of the Sp 

haplotype is likely to play a central role in the maintenance of the two haplotypes at this 

supergene.  

The molecular basis underlying the selfish behavior of the Sp haplotype remains to be 

investigated. Post-segregation distorters are generally based on a modification-rescue system, for 

example a toxin linked to its corresponding antidote (Burt & Trivers, 2006). We have obtained 

high quality PacBio sequences for each haplotype of the Formica selysi supergene. The genome 

assembly of the Sm form has been completed, with excellent continuity (N50 > 7.9 Mbp). We are 

currently assembling the genome of the Sp form. The comparison of the gene content between 

the Sp and Sm haplotypes, coupled with gene expression analyses of early developmental stages, 

may help identifying the functional and molecular basis of the maternal effect killing induced by 

the Sp haplotype.  More generally, high quality genomes and gene expression analyses from each 

social form will help to understand the link between the genotype at the supergenes and the social 

phenotype. 

Several supergenes contain selfish genetic elements (Wang et al., 2013, Larracuente & 

Presgraves, 2012, Lyon, 2003), which raises interesting questions about the evolutionary history 

of this association (Huang & Wang, 2014). Segregation distorters involve tight linkage between 

the modification and the rescue elements. Hence, genomic regions with suppressed 

recombination, like supergenes and sex chromosomes, are prime areas for the accumulation of 

distorters. Whether the distortion played a causal role in the evolution of the supergene remains 

an open question. Future studies should determine whether supergenes evolve first by integrating 
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co-adapted loci controlling for adaptive polymorphism, or by integrating selfish genetic elements 

(Huang & Wang, 2014). Comparative genomics among closely related species should help to 

trace the evolutionary history of selfish genetic elements within supergenes. 

In chapter 3, we tested whether mate preference or genetic incompatibilities may contribute to 

the maintenance of the polymorphism. In mature field colonies, queens and males of each social 

form do not exhibit random mating. All queens in monogynous colonies had mated with a male 

of monogynous origin, while 76.4% of queens in polygynous colonies had mated with a male of 

polygynous origin. Yet, in mate choice experiments, queens and males mated at random with 

respect to social form, and there were no genetic barriers between social forms. Hence, 

disassortative mate preference does not contribute to stabilize the polymorphism, and factors 

independent of mate choice must contribute to the pattern of non-random mating observed in the 

field. Future research should investigate whether the two social forms differ in spatial location or 

timing of mating. For instance, reproductive isolation between Pogonomyrmex rugosus and two 

hybrid lineages is partly due to temporal differences in mating flight (Schwander et al., 2008). 

The data in chapter 3 suggest that queens of monogynous and polygynous origin differ in their 

mating behavior. Indeed, a higher proportion of queens of monogynous origin did mate under our 

experimental settings mimicking a mating flight, in comparison to queens of polygynous origin. 

This difference is consistent with the results in the chapter 1, showing that queens of polygynous 

origin tend to be mated with relatives, which may indicate that queens of polygynous origin mate 

within or close to their natal nest, without engaging in a mating flight.  

We didn’t find any genetic or behavioral barriers between Sm/Sm queens of monogynous origin 

and Sp males of polygynous origin. In addition, results from chapter 1 showed that males of 



 

 
78 

 

polygynous origin have good dispersal abilities. Yet, we never observe Sm/Sm queens mated 

with Sp males in field colonies, which calls for more studies on the mechanisms regulating the 

dispersal and mating behavior of queens and males of both social origin. 

Maintenance of the polymorphism 

Overall, our results shed light on unexpected mechanisms contributing to balance the frequencies 

of the two haplotypes of the supergene controlling social organization in F. selysi. The Sp 

haplotype is a selfish genetic element, and therefore has a selective advantage over the alternate 

Sm haplotype. However, biased gene flow from the monogynous to the polygynous social form, 

and restricted dispersal of queens from the polygynous social form, may counterbalance the 

selective advantage of the Sp haplotype. Hence, despite the absence of genetic barriers and 

mating preferences between social forms, neither haplotype may be able to reach fixation, 

resulting in what appears to be a stable social polymorphism in most populations (Purcell & 

Chapuisat, 2013, Purcell et al., 2015). 

Other factors are likely to contribute to the maintenance of the polymorphism. For instance, a 

previous study indicated that the two social forms have different ecological optima (Purcell et al., 

2015), so that heterogeneous spatial selection, where each social form is favored under specific 

environmental condition, may contribute to maintain the supergene. This selection regime has 

been shown to contribute to the maintenance of other supergenes (Joron et al., 1999, Lowry & 

Willis, 2010).  

 

Future directions 
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The supergene controlling social organization in Formica selysi has homologues in other species 

of the genus Formica (Brelsford, Purcell and Chapuisat, unpublished results). A comparative 

genomic analysis of Formica species can shed light on how the supergene evolved, and may 

pinpoint key genes involved in producing alternative social forms. This type of approach has 

revealed that the evolution of heteromorphic sex chromosome results from successive inversions, 

leading to several evolutionary strata within sex chromosomes (Lahn & Page, 1999, Zhou et al., 

2014). In contrast, in Heliconius butterflies, few narrow genomic regions are responsible for 

alternative color polymorphism (Van Belleghem et al., 2017). 

Social organization is controlled by independently evolved supergenes in two distantly related ant 

lineages, Solenopsis and Formica (Wang et al., 2013, Purcell et al., 2014b). A third genus, 

Leptothorax is also likely to have a supergene controlling for the number of queens actively 

reproducing in the colony (Braim, 2015). This suggests that supergenes controlling social 

organization may be widespread in ants. Further research is needed to investigate the genetic 

basis of social organization in other ant species, and the role of supergenes in the evolution of 

other forms of complex phenotypes. 
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Abstract 

Social organisms can surmount many ecological challenges by working collectively. An 

impressive example of such collective behavior occurs when ants physically link together into 

floating ‘rafts’ to escape from flooded habitat. However, raft formation may represent a social 

dilemma, with some positions posing greater individual risks than others. Here, we investigate 

the position and function of different colony members, and the costs and benefits of this functional 

geometry in rafts of the floodplain-dwelling ant Formica selysi. By causing groups of ants to 

raft in the laboratory, we observe that workers are distributed throughout the raft, queens are 

always in the center, and 100% of brood items are placed on the base. Through a series of 

experiments, we show that workers and brood are extremely resistant to submersion. Both 

workers and brood exhibit high survival rates after they have rafted, suggesting that occupying the 

base of the raft is not as costly as expected. The placement of all brood on the base of one cohesive 

raft confers several benefits: it preserves colony integrity, takes advantage of brood buoyancy, 

and increases the proportion of workers that immediately recover after rafting. 
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Introduction 

Social organisms have an advantage when responding to ecological adversity: they can 

react in a collective and organized way, working together to perform tasks that a solitary 

individual could not achieve (Gordon,  2007,  Dussutour  e t  a l . ,  2009b ,  Detra in & 

Deneubourg,  2006) . For instance, some societies respond to predators by mounting a 

coordinated defense, as in leaf- cutter ants, which form a defensive line featuring large 

major workers and teams of smaller workers to block invading army ants ( P o w e l l  &  

C l a r k ,  2 0 0 4 ) . Other species link their bodies together to achieve a mutual goal, as in 

Japanese honeybees, which will surround large predatory hornets and form an ‘oven,’ 

raising the interior temperature to kill the intruder (Ono et al., 1995). The latter case is an 

example of a ‘collective structure.’ These self-assembled collective structures can provide 

defense, shelter, thermoregulation, bridges over obstacles, or a means of transportation 

( A n d e r s o n  e t  a l . ,  2 0 0 2 ) . Although collective structures are widespread, particularly 

in the social Hymenoptera, their functional geometry, defined as the position and function 

of individuals within the structure, generally remains poorly understood. 

In many collective structures, different castes occupy specific positions. In the ‘bivouac’ nests 

of army ants and in bee or wasp swarms, for example, workers form protective layers around 

more vulnerable queens and brood (Anderson et al., 2002, Schneirla, 1971, Cully & Seeley, 

2004). If some positions are safe and others risky, the configuration of these structures 

suggests that altruism or coercion may be inherent in such self-assemblages. However, the costs 
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and benefits of specific positions are difficult to measure, and the position of each individual 

may also depend on how its particular physical properties function in the structure. 

Ant rafts provide a useful model of a collective structure in which occupancy of some 

positions – namely positions on the raft base – may be detrimental and thus reflect 

altruistic self-sacrifice. Alternatively, positions may be filled based on the functional 

properties of individuals. Many floodplain-dwelling ant species form rafts. Colony members 

assemble into a floating platform by linking tarsus-tarsus or mandible-tarsus (Mlot et al., 2011, 

Nielsen, 2011). In the fire ant Solenopsis invicta, recent studies have investigated the physical 

properties of rafts (Mlot et al., 2011), as well as raft formation, longevity, and success rates 

under controlled conditions (Adams et al., 2011). Adams et al. (2011) further noted qualitatively 

that fire ants tended to place larger brood on the raft base, which allowed rafts to remain afloat 

longer than those consisting of only workers. They speculated that brood may be more 

buoyant than workers. The finding that rafting ants place some brood on the raft base raises 

the question of whether this action imposes costs on the brood and/or benefits the group. 

Here, we investigate the functional geometry of rafts in the ant Formica selysi. These ants are 

abundant in floodplains throughout the Alps and the Pyrenees (Figure 1a), where floods can 

cause severe erosion and may submerge nests for days (Chapuisat et al., 2004). During floods, 

colonies have been observed to evacuate their nests and raft to safety (Figure 1b) (Lude et 

al., 1999). We elicited rafting behavior in the laboratory to investigate where workers, brood, 

and queens are positioned in the raft, and to what degree their respective positions require 

altruistic self-sacrifice, and/or reflect functional differences in their physical properties. In a 

series of experiments, we quantify for the first time the costs and benefits associated with 

the position of workers and brood in the rafts, and we measure their respective buoyancy. 
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We expect workers to protect the most vulnerable and valuable nest-mates by placing them 

in the center of the raft, but also to take advantage of the physical properties of each caste to 

build a robust and buoyant raft. 

 

Figure 1: Photos of floodplain habitat in Valais, Switzerland (a) and incipient raft during 

self-assembly (b). 

 

Materials and Methods 

In 2011 and 2012, we collected workers and brood from field colonies in a large F. selysi 

population along the Rhône River in Valais, Switzerland (7°36’30”E, 46°18’30”N, altitude 565 

m). We additionally collected one to two mature queens from each of five polygynous 

colonies. No specific permit was required to collect this ant species, which is not endangered or 

protected. Each individual was used in only a single experiment or trial in this study. This 

population has been monitored for over ten years (Purcell & Chapuisat, 2013), and large floods 

causing erosion and nest destruction have been observed during that time (Figure S1 in File 

S1) (Chapuisat  et  a l . ,  2004 ). Flooding of the alluvial plain habitat generally occurs in the 

late spring through late summer, when brood is present in F. selysi colonies (Chapuisat et al., 

2004). 
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We constructed an apparatus to film raft formation from above and from below 

simultaneously (Figure S2 in File S1). To induce rafting, we placed ants on a platform and 

raised the water level slowly. Initially, we investigated the placement of queens, sexual 

brood, and worker brood in rafts (Table 1). We then performed a series of experiments to 

better understand the geometry, function, costs and benefits of ant raft assemblages. 

Additional details of the rafting apparatus, study species, and methodology are provided in 

the supporting information.  

Colony member positions 

We formed groups of 60 workers collected from each of 15 field colonies, to which we added 

additional individuals from the same field colonies to constitute three different experimental 

conditions. We added: (i) one or two queens (N = 2 and N = 3, respectively), (ii) ten worker 

pupae (N = 5), or (iii) five sexual pupae (N = 5). Each group was then subjected to a flood, 

causing them to raft for 30 minutes. 

Submersion tolerance of workers 

We submerged three workers from each of 14 field colonies, and investigated their 

resistance to staying underwater. The experimental apparatus consisted of a glass tube that 

we placed in a large water container, ensuring that no bubbles remained in the tube. We 

then placed workers individually in the glass tube, so that ants were not able to float to the 

surface. Following an eight hour submersion, we removed workers to a filter-paper lined 

box and measured their survival and recovery time. 
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Table 1: Summary of results from rafting experiments. Each trial involved 60 workers, and each group of workers (and brood) rafted 

only once. The same groups of workers and brood were used for the raft recovery and rafting tolerance of brood experiments: after the 

initial raft trials, we observed the raft recovery and later monitored brood eclosion. 

 

 

 group 
composition 

trials raft duration positions comparison 

Queen 
1 queen 2 

30 min. 
Queens in center of raft, workers 

above, on base, and on sides of raft. 
 

position 
2 queens 3 

 25-50% of workers in contact with the 
water. 

 

Sexual 
brood 

position 
5 brood 5 30 min. 

Sexual brood on raft base, workers 
throughout but few on base. 

 

Worker 
brood 

position 
10 brood 5 30 min. 

Worker brood on raft base, workers 
throughout but few on base. 

 

Rafting 
tolerance 

-- 10 
3 hrs. 

Brood on base if present, workers 
throughout the raft. 

Survival of brood that rafted versus brood provided to worker 
groups after rafting: 

of brood 
10 brood 10  

More workers in contact with water in 
the absence of brood. 

83% versus 79%, paired t-test t9 = 0.74, p = 0.48 

Buoyant 
materials 

choice 

10 brood + 
10 wood 
cylinders 

10 30 min. 

Brood on base. In some cases, wood 
cylinders passively included on the 
peripheral base of the raft, workers 

throughout but few on base 

Mean numbers of brood items versus wood cylinders collected: 
9.8±0.2 (standard error) versus 1.1±0.5 and incorporated in the 
raft: 9.8±0.2 versus 3.8±0.6, paired Wilcoxon tests V = 55, df = 

9, p = 0.0055 

Raft 
-- 10 

3 hrs. 
Brood on base if present, workers 

throughout the raft. 

Mean time to disassemble rafts with brood versus without 
brood: 326±37 seconds ± standard error versus 230±29 

seconds, paired t-test t9 = 1.60, p = 0.14; 
recovery 

10 brood 10  
More workers in contact with water in 

the absence of brood. 
Mean number of unresponsive workers after rafting with 

brood versus without brood: 0.6±0.2 versus 3±0.8, paired t-test 
t9 = 3.09, p = 0.013 
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Rafting tolerance of brood 

For each of ten field colonies, we formed two experimental groups of 60 workers and 

allowed them to raft for three hours; for each colony, one of the groups had ten nest-mate 

brood items during rafting, while the other group received ten nest-mate brood items after 

rafting (Table 1). We used a combination of pupae and larvae during this experiment, but 

found no difference in survival between the two (Binomial test p = 0.51), so we combined 

them in our subsequent analyses. After rafting, the experimental groups (each with 60 

workers and 10 brood items) were placed in boxes (15×13×6 cm) containing one plaster nest 

and ad libitum access to standard ant food and water. The groups were monitored at least 

five times per week until all brood had either eclosed to adulthood or died. We used a paired 

t-test to investigate whether brood that experienced rafting exhibited a different survival rate 

than brood that did not experience rafting. 

Buoyancy of workers and brood 

We placed individual workers, larvae and pupae from each of eight field colonies in 

solutions with increasing concentrations of detergent for two minutes and recorded whether 

they remained afloat (Table S1 in File S1). Detergent decreases the surface tension of water, 

which reduces buoyancy caused by air trapped on the hydrophobic body surface (Mlot et al., 

2011). 

Buoyant materials choice experiment 

To test whether workers prefer brood over other buoyant material to form a raft base, we 

provided them with both brood items and pieces of wood of similar dimensions and weight as 

the brood (Table 1). We collected workers and brood from 10 field colonies to form 10 
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replicates. We let groups of 60 workers settle on the watch glass, and placed 10 pupae and 10 

wood cylinders at equal distances from the largest group of workers. We then measured the 

number of pupae and wood cylinders that were actively collected and the number 

incorporated into the raft (either actively or passively) during 30 minutes of rafting, and 

compared these measures using paired Wilcoxon tests. 

Raft recovery 

We compared the recovery time of workers from rafts with brood to those from rafts without 

brood. For each of ten field colonies, we formed two experimental groups: one with 60 

workers and the other with 60 workers plus 10 brood items. We filmed the behavior of groups 

for one hour after three hours of rafting and used paired t-tests to compare the time to 

disassemble the raft and the number of unresponsive workers. 

 

Results 

Raft formation 

When only workers are present, rafts are initiated by a single group of workers (about 60–

80% of the 60 individuals in our trials) that remain close to one another and begin to form a 

pile consisting of 2–3 layers of workers as the water level rises. The remaining workers 

walk between the water’s edge and the group, or engage in trophallaxis, self-grooming or 

allo-grooming away from the group. These individuals either climb onto the pile or join the 

outer edge of the aggregation when the water level rises to the raft level. The picture is 

similar when queens or brood are present. Workers quickly and actively collect brood 
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items from the platform, place them in a single pile and aggregate on top of them. The 

brood is often repositioned during this phase. As the water level rises, and early in the raft 

assembly process, queens gradually move to occupy the center of the pile of workers. Brood 

are held in the mandibles of the workers and maintained on the base of the pile. As above, 

some workers remain mobile until the water level reaches the raft when queens or brood 

are present. When they begin to float, rafts have 3–4 layers of workers. Formica selysi was 

reluctant to raft, both in the field (Lude et al., 1999) and in the laboratory (see supporting 

information). 

Raft geometry 

Adult queens always occupied the center of the raft (Table 1). The placement of queens 

ensured that they were neither touching the water nor exposed from above. In contrast, workers 

systematically placed all sexual and worker-destined brood on the base of the raft (Table 1; see 

Movie S1, S2). When brood items were present, very few workers occupied a position on the 

raft base, but without brood, 25–50% of workers had at least partial contact with water. 

Costs of submersion and rafting 

The cost of rafting was lower than expected, because both workers and brood were highly 

resistant to submersion in water. After spending eight hours completely under water, 79% of F. 

selysi workers recovered. On average, workers began to move 66 ± 3 minutes (mean ± 

SE) and began to walk 77 ± 4 minutes after removal from water. Given that workers in 

rafts usually were not completely submerged, rafting may cause little or no direct mortality 

to workers, even when they occupy the raft base. However, workers on the raft base need a 

significant period of time to recover after rafting (see ‘Benefits of raft geometry’ section). 
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Similarly, brood that spent 3 hours on a raft base did not appear to pay a significant cost; 

brood that rafted survived until eclosion at the same rate as those that did not (Table 1). 

Function of raft geometry 

Larvae and pupae (with and without cocoons) were significantly more buoyant than workers 

(Table S1 in File S1), which most likely explains why workers place brood on the raft base. 

Workers preferred to use brood over wood cylinders, which are also highly buoyant (Table 

1, Table S1 in File S1). Wood cylinders were sometimes incorporated into the raft when 

they were encountered after raft formation. 

Benefits of raft geometry 

After rafting, the workers released each other and began to move away from the 

aggregation. The rafts disassembled with workers from the top and sides of the raft 

departing first. Brood and unresponsive workers were generally moved to a dry location 

within 20 minutes and groomed extensively. Rafts with brood tended to take more time to 

disassemble than rafts without brood, but the difference was not significant (Table 1; 

Figure 2). On the other hand, rafts composed of workers and brood had significantly fewer 

unresponsive workers than those with workers alone (Table 1; Figure 2). 
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Figure 2: Comparison of recovery of rafts with and without brood: time to disassemble raft (a) 

and proportion of unresponsive workers after 60 minute recovery period (b). 

 

Discussion 

Some ants have evolved a remarkable ability to self-assemble into rafts in response to floods. 

The formation of rafts is a progressive and coordinated process, resulting in a collective 

structure with a well-defined geometry. Strikingly, workers place brood on the base of the 

raft and use them as a floating platform. We expected F. selysi ants to protect particularly 

vulnerable or valuable members of their society by placing them in the center of their rafts. 

Indeed, queens consistently occupied rafts centers, out of the water and protected by workers 

on all sides. In contrast, ants placed larvae and pupae, both worker and sexual, on the raft base. 

This geometry did not result from constraints due to lack of workers; rafts generally consisted 

of three or four layers of workers, so placing brood in an internal position would have been 

possible if the workers holding brood in their mandibles occupied a higher layer. 
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We observed little mortality in our experiments, suggesting that the social dilemma facing 

rafting ants may have less severe consequences than we initially predicted. Contrary to 

our expectations, even workers and brood that stayed underwater for hours on the raft base 

exhibited very high survival rates. The reluctance of ants to raft combined with the 

protective placement of queens in the raft center, however, suggest that there may be other 

costs or dangers not accounted for in our experiments. Obvious costs of rafting include 

the risk of losing the nest, of colony fragmentation, and of being washed away to 

unsuitable habitat. Moreover, predation by fish or exposure to turbulent waters may 

cause higher mortality than measured in laboratory conditions. Consistent with the 

hypothesis of elevated risks, fire ants increase the venom in their stings while rafting 

(Haight, 2006). Finally, there are likely to be physiological costs associated with 

submersion in water, including oxygen deprivation, increased CO2 levels, and possible 

thermal effects from cold water. 

The collection and placement of brood on the raft base may serve multiple functions. First, 

brood items are more buoyant than adult workers, and thus serve as flotation devices. When 

submerged for an extended time, F. selysi workers become immobile, and require an hour or 

more to recover. Thus, workers from rafts with brood recover more quickly, on average, than 

workers from rafts without brood. This would likely be highly advantageous in the natural 

environment, where groups need to find cover quickly after reaching shore. Along the same 

lines, Adams et al. (2011) showed that S. invicta rafts are able to remain afloat longer when 

brood items are integrated. 

Other essential functions of self-assembling into a single raft are to preserve the progeny, and 

to keep the colony together (Depickere et al., 2004, Sempo et al., 2006). Given that the brood 
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suffers little or no mortality and workers preferentially incorporate brood into the raft over 

other buoyant materials, we suggest that brood rescue and colony cohesion are the primary 

motivations to incorporate brood in the raft, while their buoyant properties explain their 

placement on the base. 

The rafts in our study contained fewer ants and brood items than most natural colonies (see 

supporting information), but given the consistent and deliberate placement of brood and 

queens across our tests, we expect the functional geometry of rafts to scale up to full size 

colonies. Other measurements, such as mortality rate and raft recovery, may not scale linearly 

with raft size and the time spent rafting. Future tests investigating how self-assemblages such 

as ant rafts are affected by colony size would be of interest (Dornhaus et al., 2012). 

Moreover, a careful investigation of individual behavior as the raft forms would provide novel 

perspectives on how ants self-organize to form complex structures. 

Ants from at least two phylogenetically independent species, F. selysi and S. invicta, use 

brood items as a floating platform when they raft. Brood placement in rafts is one of the few 

examples of hymenopteran societies actively exploiting the functional characteristics of their 

young, which are usually dependent on adults and only passively contribute to the colony, due 

to the complete metamorphosis of holometabolous insects. Other examples include weaver 

ants using silk produced by larvae to build sturdy nests (Wilson & Hölldobler, 1980), 

Leptanilla japonica brood providing nutrition to queens through a larval hemolymph tap 

(Masuko,  1989) and various forms of brood cannibalism (Chapuisat et al., 1997b, Bourke, 

1991). 

Overall, collective structures keep nest-mates together during emergencies. Within this 

function, groups can optimize the structural geometry, taking advantage of the properties of 
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different group members to minimize costs and maximize survival probability. Rafting ants 

seem to solve this optimization problem by placing brood on the base of the raft, thereby 

maintaining the colony integrity and constructing a more durable raft without imposing high 

costs on the brood. 

 

Supporting Information 

File S1 contains the files: Text S1 Description of the study species, Formica selysi. Text S2 

Additional information about the experimental set up and rafting apparatus. Text S3 

Information on rafting pilot studies. Text S4 Details about experimental methods. Text S5 

Overview of results from the buoyancy experiment. Text S6 List of references cited in the 

supplementary information. Figure S1 Photo of erosion of Formica selysi habitat caused by a 

flood of the Rhône River. Figure S2 Side view of the experimental set up. Table S1 Results of 

buoyancy tests of workers, brood, and wood cylinders. Movie S1 60 workers with ten sexual 

larvae forming a raft, filmed from below and played at 64x speed. Workers place sexual larvae 

on the base of the raft. We replicated this raft configuration five times with similar results, but 

provided five sexual pupae instead of the ten larvae shown here to ensure that brood 

placement was not due solely to the workers’ limited ability to manipulate these large brood 

items. Movie S2 60 workers with ten worker brood and ten wood cylinders, played at 64x 

speed. Workers place brood in a pile as the water level rises and form the raft above the 

brood. Wood cylinders are not actively collected, but some are incorporated around the 

perimeter of the raft after the group is afloat. 
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Abstract 

By working together, social insects achieve tasks that are beyond the reach of single individuals. 

A striking example of collective behaviour is self-assembly, a process in which individuals link 

their bodies together to form structures such as chains, ladders, walls or rafts. To get insight into 

how individual behavioural variation affects the formation of self-assemblages, we investigated 

the presence of task specialization and the role of past experience in the construction of ant rafts. 

We subjected groups of Formica selysi workers to two consecutive floods and monitored the 

position of individuals in rafts. Workers showed specialization in their positions when rafting, 

with the same individuals consistently occupying the top, middle, base or side position in the raft. 

The presence of brood modified workers' position and raft shape. Surprisingly, workers’ 

experience in the first rafting trial with brood influenced their behaviour and raft shape in the 

subsequent trial without brood. Overall, this study sheds light on the importance of workers’ 

specialization and memory in the formation of self-assemblages. 
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Introduction 

Members of insect societies cooperate in sophisticated ways. By coordinating their actions and 

working collectively, workers manage to perform tasks that are beyond the reach of isolated 

individuals, such as transport large items (Detrain & Deneubourg, 2008). On occasion, social 

insects link their bodies together to construct adaptive structures termed self-assemblages 

(Anderson et al., 2002). Self-assemblages take a variety of functional forms, such as bridges, 

bivouacs, protective curtains or rafts (Anderson et al., 2002, Reid et al., 2015). 

The proximate mechanisms and behavioural processes involved in the formation of self-

assemblages are poorly known (Anderson et al., 2002). Most self-assemblages described so far 

require quick reactions from colony members (Peeters & De Greef, 2015, Reid et al., 2015). For 

instance, workers of the arboreal ant species Azteca andreae use an elaborate hunting technique: 

many workers self-assemble into “pulling chain” structures to capture very large prey items, 

which requires fast coordination to prevent prey from escaping (Dejean et al., 2010). Researchers 

hypothesize that simple behavioural rules under positive feedback exponentially attract workers 

to the first individuals involved and therefore ensure a rapid growth of the self-assemblage 

(Foster et al., 2014, Garnier et al., 2013, Lioni et al., 2001). For example, Anderson and 

colleagues (2002) suggested that a rule such as “run to the end of the chain and hang there” 

would be sufficient for Eciton ants to build structures such as chains or ladders. Hence, organised 

patterns arise from simple behavioural rules and individual decisions based on local information 

(Camazine et al., 2001). 

Task specialization emerges when members of a social group consistently differ in their 

behavioural responses to a given input, and such division of labour is central to the organization 
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of social insects colonies (Holbrook et al., 2013, Ferrante et al., 2015, Cahan & Gardner-Morse, 

2013). The specialization of individuals in performing particular tasks or roles tends to increase 

group efficiency (Oster & Wilson, 1978, Beshers & Fewell, 2001). In social insects, workers can 

display a wide array of specific tasks in colony defense, foraging or brood care (Rocha et al., 

2014, Wilson, 1980). Factors determining task specialization are numerous and include worker 

morphology, age, previous experience, or genetic background (reviewed in Duarte et al., 2011). 

Extensive research has been carried out on task specialization and division of labor in insect 

societies (Smith et al., 2008). Yet, the role of task specialization in the construction of self-

assemblages remains little explored, with only Eciton ants’ bridges being investigated so far 

(Garnier et al., 2013, Franks, 1985). 

Here, we investigate the presence of specialization and the role of past experience in the 

construction of rafts by the Alpine silver ant Formica selysi. This species is found primarily in 

floodplains, where colonies may respond to floods by forming a living raft and floating to safety 

(Lude et al., 1999, Purcell et al., 2014a). In a first experiment, we assess whether workers show 

specialization in the positions they occupy during the self-assembly of successive rafts. If 

workers uniformly follow a single set of assembly rules, we expect that they will be positioned at 

random in each raft. In contrast, if workers differ in their individual responses, they will 

consistently occupy similar positions in successive rafts. In a second experiment, we explore the 

effect of brood presence and prior experience by workers on raft assembly. Since brood are 

placed on the raft base (Purcell et al., 2014a) we expect rafts with brood to have a different 

configuration than rafts with only workers. We then test for an effect of prior experience on raft 

assembly by removing brood for a second rafting trial. Together, these experiments describe 

individual behavioural variation in the formation of self-assemblages. 
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Materials and Methods 

Study system and apparatus 

Formica selysi is a floodplain specialist living along rivers in the mountainous parts of central 

and southern Europe (Seifert, 2002). When the rivers flood, this species can form floating rafts in 

both field (Lude et al., 1999) and laboratory conditions (Purcell et al., 2014a). We collected 

workers and brood from 25 field colonies of F. selysi. All colonies come from a population 

located along the Rhône River, between Sierre and Susten in Valais, Switzerland (7°36’30” E, 

4°18’30” N, altitude 565 m). Groups of workers from each field colony were used in only one 

experiment, with each worker group being subjected to two successive rafting trials. 

We mimicked natural floods using the apparatus described by Purcell et al. (2014a). Briefly, we 

placed the ants on a raised watchglass mounted inside a plastic container and slowly increased the 

water level in the container. We recorded the positions of ants from above and below using two 

Logitech C905 webcams. 

Experiment 1 - Worker specialization in rafts 

We examined whether workers specialize on specific positions in raft assembly by subjecting the 

same groups of workers to two successive experimental floods and recording the positions of 

individuals in rafts. We formed 17 groups of 60 workers, with 20% of the workers marked with 

Lackmalstift® paint dots on the abdomen. Each marked worker had a unique combination of 

colours on both the ventral and dorsal faces. At least three days before the experiment, we 

returned the marked workers to their respective groups. We replaced marked individuals that died 

before the start of the experiment. After the experiment started, marked workers that died were 
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not replaced. When they were not participating in rafting trials, groups were kept in plastic boxes 

with ad libitum access to water and standard ant food (Meunier & Chapuisat, 2009). To initiate a 

rafting trial, we transferred each group to the watchglass of the apparatus and elicited raft 

formation by slowly increasing the water level. We considered groups to be rafting when the 

workers lost contact with the watchglass and were fully afloat. Three days after the first trial, we 

subjected the same groups to a second rafting trial. 

Our analysis of worker positions in rafts began when the raft formed and began to float, and 

lasted for 30 minutes during each rafting bout. We recorded the amount of time spent by each 

focal worker at the base, middle, top, and side positions (Figure 1). We detected consistent inter-

individual behavioural variation by comparing the proportion of time spent by workers in each of 

the four positions between the first and the second trials, as described in the statistical analysis 

section. 

 

Figure 1. Schematic representation of an ant raft. Labelled workers depict base (a), middle (b), 

top (c), and side (d) positions. 
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Experiment 2 - Effects of brood presence and workers' prior experience on raft assembly 

We explored the effect of brood on raft assembly. As in experiment 1, we subjected the ants to 

two successive floods and examined if workers show consistent positions across trials. However, 

in experiment 2, brood were added to the first raft trial and not to the second trial to further assess 

if individual position in the second trial depends on prior experience. In a previous study, we 

showed that brood is always placed at the bottom of the rafts in F. selysi, increasing the buoyancy 

of the rafts without any costs for brood survival (Purcell et al., 2014a). We supplemented eight 

groups of 60 workers with 10 nestmate pupae. We marked 20% of the workers with paint and 

elicited raft formation as described above. For this analysis, we scored a single rafting position 

for each rafting session and each marked worker. In the rare cases where the focal worker moved 

from one position to another during the rafting trial, we recorded the position that was occupied 

the longest. We assessed whether brood presence influenced raft configuration by comparing the 

proportion of workers in each position in rafts without brood and in rafts with brood, from the 

first trials of experiment 1 and 2, respectively. 

To test if workers' prior experience influenced raft assembly, three days after the first rafting trial 

with pupae, we elicited a second raft with the same workers but without pupae. We scored the 

position of workers as described above. We compared the proportions of workers in each position 

in the first raft with brood and in the second raft without brood, from the first and second trials of 

experiment 2, respectively. 
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Statistical analysis 

We used permutation tests to distinguish between the null hypothesis that there would be no 

relationship between the positions of individually-marked workers in the first and second 

flooding trial, and the alternate hypothesis, that marked workers would occupy the same position 

in successive rafts (robust gamma rank correlations with 10’000 permutations calculated in the R 

package “rococo”, R project software version 3.0.0, R Development Core Team, 2015 ). This 

analysis examines whether the positions of the marked ants in the first trial are correlated with 

their positions in the second trial by comparing the correlation coefficient from the actual data 

with correlation coefficients obtained after permutating the identity of individually-marked 

workers. Therefore, this test accounts for unequal proportions of marked workers in each position 

within each experiment. To control for multiple comparisons, we adjusted the alpha with a 

Bonferroni correction. To evaluate the effect of brood presence on raft configuration, we 

compared the proportion of marked workers in each position between the first trials of 

experiments 1 and 2 (without or with brood, respectively) using a chi-square test on the absolute 

number of marked workers. Based on a previous experiment (Purcell et al., 2014a), we expected 

differences in the proportion of workers in each position in this initial raft. To test the effect of 

prior experience, we then compared the first and second trials of experiment 2 using a Wilcoxon 

signed rank test for paired data, in order to distinguish between our null hypothesis that the 

proportion of workers in each position would remain the same between trials, and our alternate 

hypothesis that the proportions would change in the absence of brood. We removed from our 

analyses marked workers that died between the two rafting trials. 
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Results 

Experiment 1 - Worker specialization in raft assembly 

Individual workers often occupied the same position in successive rafting trials. Specifically, 

workers that spent time on the top, middle, base or side of the first raft were significantly more 

likely to spend time in the same positions in the second raft (Table 1, Figure 2a). Along the 

same lines, workers were significantly less likely to occupy a different position in the second trial 

in most cases (Table 1). The only exception to this pattern was occupancy of the base and side 

positions, which were positively correlated across successive rafting trials (Table 1). Eighty 

percent of the marked workers stayed in the same position for the 30-minute rafting duration. The 

numbers of moves for the same individual workers were not correlated between the first and 

second trial (correlation coefficient γ = 0.118, P = 0.48), suggesting that moving within the raft is 

not a specialized behaviour. Together, these results point at consistent behavioural differences 

among workers in their positioning during self-assembly. 

Table 1: Correlations between the positions of individual workers in the first and second raft 

(Experiment 1). Asterisks indicate significant robust gamma rank correlations with 10’000 

permutations (* P < 0.05, ** P < 0.01, after Bonferroni correction). Positive and negative 

significant correlations are depicted in bold and italic, respectively. 
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Figure 2: Proportion of workers in each position during rafting. Black bars represent first trials 

and grey bars second trials. Error bars indicate 95% confidence intervals. (a) Experiment 1. The 

groups of workers had no brood in the two successive trials (N = 17 colonies, n = 171 workers). 

(b) Experiment 2. The groups of workers had brood in the first trial (black bars) and no brood in 

the second trial (grey bars; N = eight colonies, n = 68 workers). 

Experiment 2 - Effects of brood presence and workers' prior experience on raft assembly 

The presence of brood influenced raft shape. Workers placed the brood at the base in all rafts, as 

previously documented (Purcell et al., 2014a). The configuration of the raft, measured as the 

proportion of marked workers in each position, differed between first rafts without brood and 

first rafts with brood, as observed in the first trials of experiments 1 and 2, respectively (Figure 

2, chi-square test, χ
2

(4) = 33.52, P < 0.001). Rafts with brood were flattened and contained fewer 

layers of workers than rafts without brood. As a result, rafts with brood had a larger proportion of 

workers occupying the base and top positions and a smaller proportion of workers occupying the 

middle and side positions, as compared to rafts without brood (Figure 2). 

Workers' prior experience had an effect on raft assembly. Indeed, workers without brood in the 

second trials of the two experiments formed rafts that differed significantly in their configuration, 

depending on whether brood was present (second experiment) or not (first experiment) in the first 
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trial (Figure 2a and 2b, grey bars, chi-square test, χ
2

(4) = 37.05, P < 0.001). The effect of past 

experience with brood was strong. In the second experiment, the configuration of the second raft 

without brood did not differ significantly from the configuration of the first raft when brood was 

present (Figure 2b, Wilcoxon signed rank test, V = 3, P = 1). 

 

Discussion 

Workers often occupied the same raft positions in successive rafting trials, indicating inter-

individual variation in assembly rules. Consistent inter-individual differences in decision rules 

have often been documented in animal societies (Jeanson & Weidenmuller, 2014). Such variation 

generates adaptive division of labour (Beshers & Fewell, 2001, Pruitt & Riechert, 2011) and 

improves collective decisions (Dussutour et al., 2009a, Jeanson et al., 2012). However, to our 

knowledge, specialization in the context of self-assemblages has only been demonstrated 

previously in Eciton ants, wherein morphologically distinct worker castes differ in their 

participation to bridge construction (Franks, 1985, Garnier et al., 2013). Our study is the first to 

demonstrate individual specialization during self-assembly in an ant species that lacks discreet 

morphological worker castes. Models of self-organisation consider that patterns emerge from 

simple behavioural rules on the basis of variation in local information (Couzin & Krause, 2003, 

Camazine et al., 2001). Integrating inter-individual differences in these models should improve 

our understanding of the formation and function of self-assemblages (Jeanson et al., 2012). 

We do not yet know which factors determine the consistent position of workers in the raft. 

Different positions may be associated with differences in behavioural castes, age and/or body size 
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(Schwander et al., 2005). For example, workers on the base of the raft with brood may be nurses, 

while workers on top may be foragers. Foragers have a slightly larger body size than nurses in F. 

selysi (Schwander et al., 2005), and worker body size might also affect their placement in the raft. 

Along the same lines, the position of workers in bee swarms depended on their age, with younger 

bees tending to occupy the core of the swarm and older bees the mantle (Cully & Seeley, 2004). 

Consistencies in worker positions may also result from different personalities among workers. 

Personality, i.e. consistent behavioural strategies through time and situations, has been 

documented across families of social insects (Jandt et al., 2013). In addition, behavioural group 

composition was shown to influence collective behaviour in ants (Cronin, 2015, Hui & Pinter-

Wollman, 2014, Modlmeier et al., 2014) and social spiders (Pruitt & Riechert, 2011). Further 

experiments involving different behavioural contexts are needed to determine whether 

consistency in worker position reflects individual personality, and whether variation in 

behavioural group composition affects raft formation. 

The presence of brood influenced raft geometry and the positions of workers in the raft. Purcell et 

al. (2014a) demonstrated that brood was always placed on the base of the rafts. Larvae and pupae 

improved the buoyancy of the rafts, and brood survival was not impaired by rafting (Purcell et 

al., 2014a). Pupae and larvae are large items that have to be linked together by a number of 

workers at the base of the raft. These physical properties result in a flatter raft with a larger 

footprint. When brood is absent, rafts contain more layers and fewer individuals form the base. 

Therefore, having brood in the group constrains raft shape and workers’ choice of positions, 

resulting in distinct raft configurations. 
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The presence of brood in a raft also influenced the configuration of subsequent rafts without 

brood. Specifically, the configuration of the second rafts, without brood, differed significantly 

between groups that had previously rafted with or without brood. Moreover, groups that rafted 

with brood in the first trial and without brood in the second trial assembled in rafts with similar 

configurations on both occasions. This result suggests that groups of workers have a form of 

memory, as their prior experience influences their behaviours in subsequent self-assemblages. 

Past experience affects how individuals behave in future interactions in many contexts (e.g. 

Grüter & Farina, 2009, Liang et al., 2010, Shah et al., 2010, Schwartz et al., 2007, Ravary et al., 

2007), but to our knowledge memory had not been demonstrated in self-assemblages until now. 

Workers rarely moved from one position to another when rafting in our experiment. This result 

contrasts with the high mobility of workers observed in much larger rafts of fire ants (Adams et 

al., 2011). A possible explanation is that worker behaviour during raft assembly varies with 

group size. In small rafts, workers would position themselves according to their individual 

specializations. When the number of workers reaches a certain threshold, workers would position 

themselves more randomly, ensuring a quick growth of the raft. In line with this argument, the 

behaviour of fire ant workers changed from linear to diffusive motion when the raft size 

increased (Mlot et al., 2012). In addition, an effect of group size on task specialization has been 

documented in multiple contexts. For instance, the complexity of the array of tasks performed 

increases at larger colony sizes in attine ants (Ferguson-Gow et al., 2014) and in Pogonomyrmex 

californicus (Holbrook et al., 2011). Moreover, the proportion of workers involved in different 

foraging tasks varies with colony size in Lasius niger (Mailleux et al., 2003). Further experiments 

involving variable raft size are needed to investigate whether behavioural rules during raft 

construction vary along with group size.  
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Together, these results shed light on the importance of inter-individual variation in collective 

behaviour. We demonstrated that workers assemble rafts according to their individual specialized 

position and past experience. The origin and adaptive value of individual variation in self-

assemblages deserves further investigation. 
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