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Abstract

Glioblastoma multiforme (GBM) tumors are the most common malignant primary brain tumors in

adults. Although many GBM tumors are believed to be caused by self-renewing, glioblastoma-

derived stem-like cells (GSCs), the mechanisms that regulate self-renewal and other oncogenic

properties of GSCs are only now being unraveled. Here we showed that GSCs derived from GBM

patient specimens express varying levels of the transcriptional repressor REST, suggesting

heterogeneity across different GSC lines. Loss- and gain-of-function experiments indicated that

REST maintains self-renewal of GSCs. High REST-expressing GSCs (HR-GSCs) produced

tumors histopathologically distinct from those generated by low REST-expressing GSCs (LR-
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GSCs) in orthotopic mouse brain tumor models. Knockdown of REST in HR-GSCs resulted in

increased survival in GSC-transplanted mice and produced tumors with higher apoptotic and

lower invasive properties. Conversely, forced expression of exogenous REST in LR-GSCs

produced decreased survival in mice and produced tumors with lower apoptotic and higher

invasive properties, similar to HR-GSCs. Thus, based on our results, we propose that a novel

function of REST is to maintain self-renewal and other oncogenic properties of GSCs and that

REST can play a major role in mediating tumorigenicity in GBM.
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Introduction

Glioblastoma multiforme (GBM) tumors are the most common malignant primary brain

tumors in adults 1–3 However, despite decades of basic science and clinical research, the

outcome for GBM patients remains dismal, with average median survival of only 12–16

months4–15. The lack of progress in GBM research can be attributed to the highly

heterogeneous, invasive, necrotic, and chemotherapy- and radiation-resistant nature of GBM

tumor cells16. Thus, even after aggressive multimodal therapy, the invading tumor cells

often survive and cause tumor relapse. The generation of invaluable animal models have

provided new insights into GBM biology and alternate therapeutic approaches17–19. In

addition, the recent advent of the “cancer stem cell” hypothesis has brought a new

perspective to our understanding of GBM biology and therapy16, 20–23. According to this

hypothesis, tumors contain stem-like cells, which have the capacity for long-term self-

renewal. This hypothesis further proposes that stem-like cells are the main cancer-initiating

cells due to their long-term self-renewal capacity. However, the mechanisms that lead to

self-renewal and tumorigenicity in glioblastoma-derived stem-like cells (GSCs) are still

unclear.

The transcriptional repressor REST was originally discovered as a repressor of many

neuronal differentiation genes in non-neural cells and results derived from Rest mutant mice

showed that it was indeed a repressor of neurogenesis24–26. However, more recent genome-

wide analysis revealed that REST can bind to the chromatin of more than a thousand genes

and can potentially affect many biological processes of different tissue types27. Our previous

studies indicated that REST maintains self-renewal of embryonic stem cells28 and that this

role of REST was dependent on the specific cell line as well as the cellular environment

(unpublished data). More recently, REST was found to maintain stemness of normal adult

neural stem cells 29 . Our previous studies indicated that REST is involved in

medulloblastoma tumorigenesis, in which it functions by blocking differentiation of

neuronal stem/progenitor cells30–32. Thus, we reasoned that REST might have a critical role

in maintaining self-renewal and other oncogenic properties of GSCs. Our studies indicate

that REST indeed regulates such functions in GSCs. Our studies also suggest that targeting

REST can potentially represent a novel therapeutic strategy in GBM.
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Materials and Methods

Cells and cultures

GSCs used in this study were obtained by acute cell dissociation of human glioblastoma

multiforme (GBM) surgical specimens from patients treated at The University of Texas MD

Anderson Cancer Center, Houston, Texas, as described previously33–38. The specific HR-

GSC1, HR-GSC2 and/or LR-GSC lines have been described previously33–38. These cell

lines were maintained under proliferation conditions in Dulbecco’s modified Eagle’s

medium (DMEM)/F12 supplemented with B27 1:50 (Invitrogen), 20 ng/ml EGF (Sigma),

and 20 ng/ml bFGF as neural stem cell–permissive medium, according to procedures

described elsewhere39, 40. These cell lines form neurospheres and demonstrate the ability to

express multiple lineage markers and reliably form tumors that recapitulate many of the

pathological features of the original tumor after orthotopic xenografting36, 37, 41.

Immunofluorescence and TUNEL Assay

Cells were fixed with 4% paraformaldehyde (PFA) in PBS for 15 minutes. After washing

with PBS, cells were blocked with 4% goat serum and 0.3% Triton-X for 1 hour at room

temperature. Primary antibodies were added overnight at 4°C, rabbit anti-REST (Sigma,

1:100), mouse anti-REST (1:100), Sox-2 (Stemgent, 1:50), rabbit anti-YKL40 (Quidel,

1:500). After washing with PBS, cells were incubated with Alexa fluor secondary antibodies

(Invitrogen) for 1 hour at room temperature. Cells were mounted with mounting media

containing 4,6 diamino-2-phenylindole (DAPI) (Vector Laboratories) and photographed

using a Nikon TE2000 controlled with Metamorph software (Molecular Devices).

Paraffin sections were hydrated through alcohol grades after clearing with CitriSolv (Fisher

Scientific). Antigen retrieval was performed with citrate buffer at 90°C for 20 minutes.

Sections were blocked with 4% goat serum followed by human specific primary antibody

(Nestin 1:200 (Millipore)) overnight at 4°C. After washing twice with PBS sections were

incubated with secondary antibodies followed by mounting with DAPI. In vivo TUNEL

Assay was conducted as per manufacturer’s recommendations and positive cells were

counted from 10 different fields (Roche cat # 11684817910).

Neurosphere and self-renewal assay

For GSCs, neurosphere assay was done as previously described33–38. In brief, cells were

dissociated into single cell suspensions, 10 cells per well for self renewal assay for multiple

generations or 100 cells per well self renewal for single generation were seeded in 96-well

plates, and the number of neurospheres was counted after 15 days. For serial neurosphere

assay, cells were collected after the first passage and dissociated into single cells and plated

at the same density as the first passage.

In vitro invasion assay

Control and Rest altered lines were counted and 5×105 cells were seeded into the upper

compartment of either the invasion or control chambers, as chemo-attractant 10%FBS

containing media was added to the lower chamber. Cells were incubated for 24 hrs. The

nonadherent cells were removed by washing with PBS and the noninvading cells were
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removed by cotton swabs. The control and invasion membranes were then fixed with 100%

Methanol and stained with crystal violet. Cells were counted under the microscope and a

ratio of invading cells on the matrigel matrix to invasive cells on the control membranes of

the control versus the Rest altered lines was compared.

Cell transfections and transductions

Loss-of-function experiments—Stable knockdown of REST in GSCs was done using

Mission-lentiviruses expressing short hairpin RNA (shRNA) (Sigma), either non-targeting

shRNA (shNT) as control or targeting REST (shRest). Cells were incubated the day prior to

transduction with 8 µg/ml hexadimethrine bromide. Cells were then incubated with the virus

particles at one multiplicity of infection (1MOI) in normal proliferation media for 48 hours.

Cells were puromycin (1.5ug/ml) selected. Five individual clones for each line were

selected, cultured and REST knockdown efficiency was determined by western blot

analysis. The clone with maximum knockdown for each line (shRest construct #1 for HR-

GSC1: 42% knockdown; shRest construct #3 for HR-GSC2: 70% knockdown) was selected

for further experimentation.

Gain-of-function experiments—GSCs were transfected with plasmids expressing a

control vector, or Rest using the the Amaxa nucleofector kit. In brief, 4×106 cells were

suspended in 90 µl of nucleofector solution with REST or control plasmids and then

transfected using an Amaxa transfection device. Cells were puromycin (1.5ug/ml) selected

and REST over expression was confirmed by western blot analysis.

RNA preparation and qRT-PCR

Total RNA prepared using Trizol (Invitrogen) according to the manufacturer’s instructions.

Approximately 500 ng total RNA was used as a template for cDNA synthesis using the

Verso cDNA kit (Thermo-Scientific). Real-time PCR was done using SYBR green master-

mix (Applied Biosystems) as per the manufacturer’s instructions. All real-time PCR

experiments were done on an ABI7900HT sequence detection system (Applied Biosystems).

Genome-wide expression analysis of GSCs with loss- and gain-of-function manipulations

Total RNA was used and Affymetrix HG-133 Plus 2.0 whole genome microarrays were

performed (LC sciences, Houston) for two HR-GSCs and one LR-GSC plus the

corresponding control lines. Genes with differential fold expression in HR- versus LR-GSCs

were determined using the Agilent GeneSpring GX 11.5 software. Robust Multiarray

Average (RMA) was used for normalization and genes greater than 1.5 fold differentially

expressed were included to determine gene function and disease ontologies using Ingenuity

Pathway Analysis (IPA, www.ingenutiy.com).

Western blot procedures

Whole cell extracts were prepared from cell lines and 30 µg protein was loaded on gradient

SDS-PAGE gel (Pierce). Then proteins were electrophoretically transferred to nitrocellulose

membranes. The membranes were probed with the following antibodies: rabbit anti-REST

(1:1000, Upstate), mouse anti-Sox2 (1:350 R&D), and rabbit anti-Nestin (Millipore,
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1:10,000), mouse anti Bmi-1 (Millipore, 1:500), and goat anti-YKL40 (Santacruz, 1:200).

Mouse anti-actin (1:10,000, Sigma) was used as the internal control. The membranes were

incubated with the primary antibodies overnight before they were incubated with

corresponding fluorescent-labeled secondary antibodies (1:15000, Licor) for 1 hour at room

temperature. The protein-antibody complexes were visualized by scanning the membrane

using the Odyssey detection system (Li-Cor Biosciences).

Proliferation assays

Proliferation assays for HR-GSC1 and HR-GSC2 cell lines were done using colorimetric

BrdU cell proliferation assay kit (Roche 11647229-01).The assay was performed according

to manufacturer’s instructions. In short GSC 1 or GSC 2 cells were seeded at 3000 cells per

well in a 96 well plate. Allowed them to grow for overnight and incubated with BrdU

labeling agent for 24 hours. Cells were fixed for 30min and incubated with Anti-BrdU for 2

hours and the substrate was added and on color development, colorimetric measurements

were performed at 492nm.

Intracranial tumorigenicity assay

Intracranial transplantation of GSCs into nude male mice was done as described

previously41. A total of 56 animals (7 animals/treatment condition) were used. To

standardize GSC transplantation into nude mice brain, a guide-screw system was implanted

2.5mm lateral and 1mm anterior to the bregma accepting a 26 gauge Hamilton syringe.

GSCs cultured were collected and dissociated into single cells. 50,000 cells (or 5,000 cells

for Supplementary Fig. 2) in 5ul of media were simultaneously injected using an automated

syringe pump (Harvard Apparatus). Animals were carefully monitored for survival.

Statistical Analysis

Values are reported as mean+/− standard error of means. Microsoft Excel 2010 and SPSS

(IBM) software was used to conduct t-test or ANOVA for each of the experiments.

Microarray data was analyzed with Agilent GeneSpring GX11.5 and the Genepattern suite

(Broad Institute).

Results

Patient derived glioblastoma stem cells show varying levels of the REST protein

To understand the role of REST in GBM, we quantified REST protein expression in ten

patient-derived GSC lines. These lines showed varying levels of REST protein with several

fold differences between the lines (Fig. 1A). High REST expression (HR-GSCs) coincided

with high levels of Sox2, a known neural stem cell self-renewal regulator42, 43, whereas low-

REST expression (LR-GSCs) with low levels of Sox2, suggesting that REST plays a role in

self-renewal of GSCs. Interestingly, only one of the GSC lines expressed YKL40, a

mesenchymal marker9. To further understand the regulation of REST expression in GSCs,

we measured the Rest transcript levels using real time RT-PCR. Comparison of the relative

levels of REST protein and Rest transcript levels (Fig. 1B, left panel) and a scatter plot (Fig.

1B, right panel) are shown. The data indicated that the transcript levels did not correlate with

the REST protein levels (correlation coefficient =0.04, Fig. 1B). To investigate the lack of
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correlation between protein and RNA levels, we treated GSCs with the proteasomal inhibitor

(MG132) for 24 hours. Our results indicated significant REST protein accumulation in most

of the 11 different GSC lines after MG132 treatment compared to the control DMSO

treatment (Figure 1C). These results strongly suggested that REST expression is controlled

mainly at the protein degradation level in GSCs, similar to what was observed in other cell

types26, 44, 45.

REST protein levels correlate with expression of stemness markers and neurosphere
formation capacity of GSCs

We selected two GSC lines with high levels of REST, HR-GSC1 and HR-GSC2 (GSC11

and GSC23, respectively), and one line with low levels of REST, LR-GSCs (GSC20), for

further characterization by Western blotting (Fig. 2A) and double-immunofluorescence (Fig.

2B) analysis. As shown, both HR-GSC lines, compared to LR-GSCs, showed higher

expression of the neural stemness markers Nestin, Sox2, and Bmi1, and absence YKL-40.

These findings further confirmed the association of REST with stemness markers of GSCs.

To determine if high levels of REST in GSCs corresponded to increased functional stem-like

properties, we measured their self-renewal efficiency using neurosphere assays. Our results

showed greater neurosphere formation ability of both HR-GSC1 and HR-GSC-2 compared

to LR-GSCs (Fig. 2C). Thus, our data indicated that high REST expression is associated

with high stemness of GSCs both at marker and functional levels.

REST maintains self-renewal of GSCs

To determine the functional role of REST in GSCs, we generated stable lines expressing

either shNT control or shRest in HR-GSC1 and HR-GSC2. As shown in Figures 3A and 3B,

Western blot analysis confirmed REST protein knockdown in the shRest clones in both HR-

GSC lines. The knockdown of REST corresponded to increased expression of neuronal β-

tubulin, a direct target gene of Rest46, 47, indicating that shRest caused a functional REST

knockdown. The loss of REST also produced concomitant loss of the stemness regulator

Sox2. To determine whether loss of REST resulted in functional loss of stem like properties

of GSCs, we performed self-renewal assays in both HR-GSCs lines. Our results showed that

loss of REST resulted in decreased self-renewal in both the high REST lines over multiple

passages (Supplementary Figs. 1A for HR-GSC1 and Fig. 1B for HR-GSC2), indicating that

REST maintains self-renewal in both HR-GSC lines.

To further establish the role of REST in GSCs, we performed complementary experiments

in which we transfected LR-GSCs with expression vectors encoding either non targeting

control or Rest, confirmed the increased REST protein expression by Western blot and

determined the cells’ self-renewal capacity (Fig. 3C). As shown, higher REST expression

produced lower expression of its target gene neuronal beta-tubulin and caused a significant

increase in self-renewal. As expected from the loss-of-function experiments, additional

REST caused an increase in the expression of Sox2 levels (Supplementary Fig. 2). Thus,

taken together, these results showed that REST maintains self-renewal of GSCs.
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HR-GSCs and LR-GSCs produce distinct brain tumors in mice

To determine the tumor-producing properties of the HR- and LR-GSCs, we transplanted

HR-GSC1 and LR-GSC cells (5×104 cells) into the brains of nude mice and performed

mouse survival assays (Fig. 4A) and histopathological examination of the resultant tumors

(Fig. 4B). HR-GSC1 cells produced shorter survival in mice compared with LR-GSCs. This

corresponded to their respective self-renewal capacity (Fig. 2C). While both HR- and the

LR-GSC lines produced tumors, HR-GSC1 tumors morphologically showed a marked

difference in growth pattern when compared with the LR-GSC tumors. The HR-GSC1

tumors were more diffusely infiltrative than the LR-GSC tumors, which grew as relatively

circumscribed expansive masses.

REST regulates survival in orthotropic mouse model

We performed loss-of-function experiments, in which we transplanted 5×104 cells of the

stable lines of HR-GSC1 (Fig. 4C) and HR-GSC2 (Fig. 4D) expressing either shRest or

shNTinto the brains of nude mice and assayed for their survival. Under these conditions,

shRest treatment, as compared with shNT treatment, increased the survival of tumor-bearing

mice. Although the effect in mouse survival was statistically significant, it was not robust

and perhaps points to the notion that survival depended on multiple factors. To further

confirm that these experiments were performed under conditions, in which the survival

correlated with the number of cells injected, we compared the survival of mice harboring

HR-GSC1 cells expressing either shRest or shNT and either 5×104 (Fig. 4C) or 5×103

(Supplementary Fig. 3) per mouse. All mice bearing shNT control cells died within 64 days

for 5×104 cells compared to within 112 days for 5×103 cells, indicating that survival

corresponded inversely to the number of tumor cells transplanted. Thus, these results

suggest that by regulating self-renewal in GSCs, REST expression also correlated with

survival of GSC tumor-bearing mice.

To further establish the control of survival by REST, we performed gain-of-function

experiments, in which we transplanted LR-GSCs expressing REST that we previously found

to express higher levels of the REST protein, lower levels of its target gene, neuronal β-

tubulin, and concomitant higher self-renewal ability into the brains of nude mice. We then

assayed for survival (Fig. 4E). As shown, the addition of exogenous REST, compared with

that of non-targeting control, to LR-GSCs caused decreased survival in tumor-bearing mice.

Thus, REST controls survival in mice bearing GSC-mediated brain tumors

REST suppresses apoptosis in GSC-mediated tumors

To determine if the tumorigenic effects of REST in mouse brain tumors were partly

regulated by promoting GSC survival, we analyzed our orthotopic mouse tumor sections for

apoptosis using TUNEL assays. The data showed increased cell death upon REST

knockdown in both HR-GSC lines (Fig. 5A and Fig. 5B) and, conversely, decreased cell

death upon expression of exogenous REST in the LR-GSC line (Fig. 5C). Quantification of

the TUNEL assay is shown in Fig. 5D. The in vivo TUNEL staining was concordant with

the BrdU-incorporation in cultured cells and showed a decrease in cell proliferation for the

two HR-GSC lines upon REST knockdown (Supplementary Fig. 4). These results indicated

that REST suppresses apoptosis in GSC tumors.
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Genome-wide mRNA expression analysis reveals further potential oncogenic properties of
REST

Because REST regulates numerous genes, it is likely that REST controls tumorigenicity of

GSCs at multiple regulatory points. To determine what pathways could be affected by REST

alteration in GSCs, in addition to self-renewal and cell viability, we compared genome-wide

mRNA expression profiling of the six GSC lines that we characterized above: HR-

GSC1+shNT, HR-GSC1+shRest, HR-GSC2+shNT, HR-GSC2+shRest, LR-GSC+GFP, and

LR-GSC+Rest. We identified 301 genes that were more than 1.5 fold differentially

expressed across the HR- versus the LR-GSC lines. We then identified core biological

pathways and cellular functions associated with REST expression using the Ingenuity

Pathway Analysis (Table 1). The pathways involving cellular movement, cellular assembly

and organization, cellular development, cell-to-cell signaling and interaction, and cellular

growth and proliferation were most significantly associated with REST.

REST regulates invasion of GSC-mediated orthotopic tumors

Since the genome-wide results suggested REST to play a major role in cellular movement,

we further investigated whether REST regulated invasion of GSCs using in vitro invasion

assays. Our data showed a statistically significant decrease of invasion in the two HR-GSC

lines upon REST knock down with HR-GSC1 showing comparatively higher degree of

infiltration than HR-GSC2 (Supplementary Fig. 5).

To further establish the role of REST in GSC-mediated invasion, we re-examined the tumor

sections generated during orthotopic mouse experiments described in Fig 4 by staining the

tumor sections with a human nestin antibody to distinguish the human tumor-derived cells

from the surrounding mouse cells (Fig. 6A – 6C)48. This approach helps in visualizing the

injected human cells in the midst of mouse brain cells present in the mouse xenograft tumors

but cannot determine the cellular status of the injected cells, such as their stemness or

differentiation properties. Our results indicated that the shNT-treated HR-GSC1 and HR-

GSC2 lines showed very high degree of migration with cell invasion to the pial surface from

the core of the tumor. In contrast, the corresponding shRest-treated cells showed a decreased

migratory phenotype with a circumscribed tumor growth, where cells rarely reached the pial

surface. In the complementary experiment, exogenous REST expression in LR-GSCs

resulted in a diffuse tumor growth and significant increase of cellular invasion compared to

the control cells, in which GFP was expressed. Remarkably, the expression of additional

REST in LR-GSCs converted the tumors such that they were similar to HR-GSCs. Taken

together, these results suggest a major in vitro and in vivo role of REST in regulating tumor

phenotype and invasion in GSCs.

Discussion

Here we show that REST promotes oncogenic properties of GSCs with respect to self-

renewal, cellular viability, and invasion and affects survival in mice bearing GSC-xenograft

tumors. Our work does not reflect the GBM tumor, which will presumably contain many

other types of cells than just the GSCs. Previously, we found that REST, which is also over-

expressed in a major subtype of human medulloblastoma tumors that are mostly in the
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neuronal pathway, caused tumorigenesis by blocking the differentiation of cerebellar stem/

progenitor cells30, 31. Thus, these results suggest that the conservation of stemness through

REST contributes to both neuronal and glial tumors and that deregulation of normal REST

expression is a major factor in producing these tumors. Our results also indicate that REST

expression in GSCs is mainly regulated at the protein degradation level suggesting that

patient outcome should be determined based on REST expression at the protein, and not

transcript, levels. Thus, the public datasets, which are based on the transcript levels, cannot

be used to determine the prognostic values of the HR- versus LR-GBM patient population.

Our results indicate that expression of exogenous REST in LR-GSCs produce more invasive

tumors in the mouse brain. The mechanism by which REST regulates invasive properties is

unclear. Neural stem cells carrying exogenous genes were found to specifically target mouse

intracranial glioma tumors either when transplanted at a site distant from the tumor or

injected into the tail veins, providing a promising means of delivery of therapeutic

molecules to the tumor49. The targeting activity of the NSCs is presumably regulated by

cell-cell and cell-microenvironment interactions. Whether the high-level expression of

REST in HR-GSCs would affect the tumor-targeting process of NSCs is unknown. We are

currently exploring ways to answer these questions.

Studies in ES cells have revealed that self-renewal in these cells is regulated by an

interconnected regulatory circuit consisting of many factors, including Oct4, Sox2, and

Nanog, rather than by a single molecule50. Similarly, REST was found to be a part of the

interconnected network regulating ES cell self-renewal and pluripotency50–52. This suggests

that self-renewal in GSCs, as well as in normal neural stem cells, might be controlled by a

circuit, in which there is constant cross-talk between the regulators of self-renewal and the

microenvironment (niche), producing a dynamic equilibrium; when individual regulators of

the circuit are influenced by the niche, the equilibrium is re-set. To understand GBM

tumorigenesis and to design a more appropriate targeted therapy for GBM than what is

currently available, it will be important to identify and characterize the other players in this

self-renewal circuit.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. (A) Patient glioblastoma-derived stem cells (GSCs) show varying REST levels
Western blotting assays of GSCs obtained from 10 human GBM patient specimens showed

varying levels of REST, Sox2 and YKL-40 proteins. Actin was used as an internal control.

(B) Comparison of REST expression at the protein and transcript levels indicated that REST

protein levels do not correspond to Rest transcript levels (left panel). A scatter plot is also

shown (Right panel, Rsq=0.04). (C) Western blot based quantification of REST protein

levels in GSCs treated with either the proteasomal inhibitor (MG132) or solvent (DMSO)

indicated that REST protein is sensitive to proteasomal degradation in most of the GSC

lines.
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Figure 2. High REST protein expression correlates with stemness markers in GSCs
(A) Expression of REST, Nestin, Bmi1, Sox2, and YKL40 in two HR-GSCs (HR-GSC1 and

HR-GSC2) and one LR-GSC were determined by Western blotting assays. Actin was used

as an internal control. (B) Immunofluorescence analysis of the two HR-GSCs and one LR-

GSC shows a distinct pattern of expression of Sox2, and YKL-40. The bar in the figures

represents 50 micron. (C) HR-GSCs (HR-GSC1 and HR-GSC2) show higher neurosphere-

formation ability compared to LR-GSCs.
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Figure 3. REST controls self-renewal of GSCs
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(A, B) Rest loss-of-function experiments. Knockdown of REST with shRest (shNT as a

control) in HR-GSC1 (A) and HR-GSC2 (B) caused lowered expression of REST, higher

expression of the direct REST target neuronal beta-tubulin and lower expression of neural

stem cell self-renewal regulator Sox2 as determined by Western blotting assay (left panels),

and lowered self-renewal ability (right panels) (n=48). (C) REST gain-of-function

experiments. Expression of exogenous REST in LR-GSCs (expression of exogenous GFP

served as a control) caused decreased β-tubulin expression (left panel) and increased self-

renewal ability (right panel) (n=48).
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Figure 4. REST regulates survival in mice bearing GSC-mediated brain tumors
(A, B) HR-GSC1 and LR-GSC cells were transplanted into the brains of nude mice, the

mice were assayed for survival using Kaplan-Meier method (A) and histopathology of the

resulting tumors were examined by H&E staining (B) (n=7 mice per treatment group). HR-

GSC1 tumors produced shorter survival in mice than LR-GSC tumors and HR-GSC1 tumors

were more infiltrative than LR-GSC tumors, which showed circumscribed masses. Arrows

in the same direction indicate more infiltrative cells while those in the opposite direction

represent more restrictive structure. (C, D) Rest loss-of-function tumors. Stable lines of

HR-GSC1 (C) and HR-GSC2 (D) cells expressing either shREST or shNT were transplanted

into the brains of nude mice and mouse survival was compared. Knockdown of REST

produced increased survival in tumor-bearing mice generated by both lines (n=7 mice per

treatment group). (D) Rest gain-of-function tumors. LR-GSCs expressing either exogenous

REST or GFP were transplanted into the brains of nude mice, the mice were assayed for

survival. Additional REST converted LR-GSCs into more infiltrative tumors and decreased

survival in tumor-bearing mice (n=7 mice per treatment group).
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Figure 5. REST suppresses apoptosis in GSC-mediated brain tumors
(A–C) In vivo TUNEL assay indicating increased apoptosis in mouse tumors upon

knockdown of REST in HR-GSC1 (A) and HR-GSC2 (B). LR-GSCs showed reduced

apoptosis upon expression of exogenous REST compared to exogenous GFP control (C).

(D) quantification of in vivo TUNEL assays shown in A–C.
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Figure 6. REST regulates invasion in GSC-mediated brain tumors
(A–C) Both HR-GSC1 (A)- and HR-GSC2 (B)-mediated tumors showed decreased invasion

upon shRest-treatment compared to control shNT-treatment. LR-GSC-mediated tumors

showed increased invasion upon expression of exogenous REST compared to GFP control

(C). Arrows in the same direction indicate more infiltrative cells while those in the opposite

direction represent more restrictive structure.P = pial layer. Bar = 50 micron.
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Table 1
Potential pathways regulated by REST in GSCs

Ingenuity Pathway Analysis of genome-wide expression profiles of GSCs with loss- and gain-of-function

manipulations.

Molecular and Cellular Functions

Name p-value # Molecules

Cellular Movement 1.99E-08 - 8.23E-03 63

Cellular Assembly and Organization 2.75E-08 - 7.77E-03 49

Cellular Development 4.61E-06 - 8.58E-03 80

Cell-To-Cell Signaling and Interaction 6.96E-06 - 8.58E-03 68

Cellular Growth and Proliferation 1.23E-05 - 8.62E-03 77

Physiological System Development and Function

Name p-value # Molecules

Tissue Development 2.75E-08 - 8.56E-03 75

Organismal Development 5.97E-07 - 8.77E-03 64

Cardiovascular System Development and Function 1.25E-06 - 8.02E-03 40

Connective Tissue Development and Function 1.79E-06 - 7.77E-03 35

Skeletal and Muscular System Development and Function 1.79E-06 - 8.77E-03 41

ID Associated Network Functions Score

1 Drug Metabolism, Endocrine System Development and Function, Lipid Metabolism 50

2 Cell-To-Cell Signaling and Interaction, Cellular Function and Maintenance, Drug Metabolism 32

3 Cellular Movement, Cell Morphology, Immune Cell Trafficking 30

4 Lipid Metabolism, Molecular Transport, Small Molecule Biochemistry 27

5 Cell Death, Cellular Development, Cellular Growth and Proliferation 26
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