
 1 

PROPPINs and membrane fission in the endo-lysosomal system 

 

Navin Gopaldass and Andreas Mayer 

Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.  

 

Correspondence to: navin.gopaldass@unil.ch or andreas.mayer@unil.ch 

 

Abstract 

PROPPINs constitute a conserved protein family with multiple members being expressed in 
many eukaryotes. PROPPINs have mainly been investigated for their role in autophagy, 
where they cooperate with several core factors for autophagosome formation. Recently, 
novel functions of these proteins on endo-lysosomal compartments have emerged. 
PROPPINs support the division of these organelles and the formation of tubulo-vesicular 
cargo carriers that mediate protein exit from them, such as those generated by the Retromer 
coat. In both cases, PROPPINs provide membrane fission activity. Integrating information 
from yeast and human cells this review summarizes the most important molecular features 
that allow these proteins to facilitate membrane fission and thus provide a critical element to 
endo-lysosomal protein traffic.  

 

Introduction 

Cells constantly internalize parts of their plasma membrane during endocytosis, for example 
for receptor downregulation, feeding, or pathogen clearance. During this process, the plasma 
membrane pinches off endocytic vesicles. They fuse with other early endocytic vesicles and 
early endosomes to constitute a first compartment where endocytosed material arrives [1]. At 
these early endosomes, the fates of the different constituents diverge. They can be either 
recycled back to the plasma membrane, targeted for degradation by lysosomal 
compartments, or be sent towards the Golgi [2] (Fig. 1). Proteins and lipids are sorted into 
these different pathways by tubulo-vesicular carriers, which are generated by protein coats 
that deform the membrane and select and accumulate cargo. Some of these coats are 
formed by large protein complexes, which can have tubular structures, such as the sorting 
nexin-based coats Retromer, ESCPE-1, or Commander [3], or the AP1 or ACAP-based coats 
[4–6]. Others can be more spherical, such as clathrin, COP1 or caveolin coats [7–9]. While 
there have been recent advances in deciphering the mechanism of recruitment of these 
protein coats and the formation of tubular carriers, the machinery that drives the fission of 
these tubules from the endosomal membrane is poorly understood. Recent observations 
revealed that PROPPIN proteins (β-propellers that bind phosphoinositides [10]) promote 
membrane fission on endosomal compartments [11–14].  

PROPPINs are conserved proteins that bind PI(3)P, PI(5)P and PI(3,5)P2 [15–17]. There are 
three homologues in yeast (Atg18, Atg21 and Hsv2), and mammals (WIPI1, WIPI2, 
WIPI3/WDR45B and WIPI4/WDR45) express four PROPPIN genes in multiple splice variants 
[15,18,19]. PROPPINs function in PI3P and PI5P-dependent processes, such as autophagy, 
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and in PI(3,5)P2-dependent processes, such as membrane fission on endo-lysosomal 
compartments. The function of PROPPINs in autophagy was discovered by genetic 
screening in yeast [20,21]. Different PROPPIN isoforms support various forms of selective 
and non-selective autophagy through links to core components of the autophagic machinery. 
Atg21 and WIPI2 support the elongation of the phagophore by recruiting Atg16, and with it 
the Atg8/LC3 lipidation machinery Atg12-Atg5, which mediates lipidation of Atg8, a key 
component coating the phagophore [15,22,23]. Atg18 forms a complex with the lipid transfer 
protein Atg2 and the lipid scramblase Atg9 at ER phagophore contacts, which may facilitate 
the flow of lipid that is required to allow the phagophore to expand [24–29]. Atg18 also 
mediates retrieval of Atg9 from the phagophore towards the Golgi. These and other roles of 
PROPPINs in autophagy have been elaborated in comprehensive reviews [30–33], which 
provide a more complete picture of these activities.  

Autophagic and endo-lysosomal functions of PROPPINs might be interrelated at some level 
because the endosomal system is a significant source of lipids for autophagosome 
biogenesis - membrane contacts between phagophores and endosomes hold these two 
organelles in proximity and thus link two sites of PROPPIN activity [34,35]. However, as 
described below, PROPPINs appear to rely on distinct molecular features for supporting 
membrane fission and autophagy. Here, we focus on the membrane fission function of 
PROPPINs on endo-lysosomal compartments and on their role as effectors of PI(3,5)P2.  

 

PI(3,5)P2 and membrane fission in the endo-lysosomal system 

PI(3,5)P2 is a minor phospholipid on endo-lysosomal membranes [36]. It is synthesized from 
PI3P by the lipid kinases Fab1 in yeast and PIKfyve in mammalian cells [37–43]. PIKfyve can 
also generate PI(5)P by directly phosphorylating PI [38,44,45].  

Fab1 and PIKfyve knockout cells show enlarged endo-lysosomal compartments. Since the 
structure of these organelles depends on an equilibrium of fusion and fission activities [46–
52], this phenotype could result from impaired fission and/or enhanced fusion. Since absence 
of Fab1 or PIKfyve activity does not enhance fusion of these compartments [53,54], these 
phenotypes support a requirement of PI(3,5)P2 for fission. This requirement becomes directly 
apparent in the rapid fission of the yeast vacuole/lysosome, which can be triggered in vivo 
and in vitro [55–58], and in the fission of endo-lysosomes that undergo kiss-and-run, i.e. 
transient fusion followed by immediate re-fission [51,53,59–61].  

Apart from regulating the size and fission of endo-lysosomal compartments, PI(3,5)P2 also 
supports the exit of proteins from them. Cargo proteins are collected by tubulo-vesicular 
endosomal carriers, which must undergo membrane fission to detach from the organelle and 
migrate to their target compartments [62]. In line with this, PI(3,5)P2 is required for endosome 
to TGN trafficking of the M6PR, Shiga toxin, or Sortilin, for the transfer of EGFR for 
lysosomal degradation [45,63,64], and the recycling of integrins towards the plasma 
membrane [65]. 

 

Structure of PROPPINS  

PROPPINs bind membranes via two lipid binding sites (Fig. 2). These sites recognize the 
phosphoinositides PI(3)P, PI(5)P and PI(3,5)P2 [11,18,25,66–68]. Atg18 illustrates that these 
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lipid binding sites can display different specificities, with lipid binding site 2 showing 
preference for PI(3,5)P2 [68]. Autophagy requires PI(3)P and PI(5)P [44]. PI(3,5)P2 does not 
play a major role in this process [36,44,69] and inactivation of the PI-5-kinase PIKfyve can 
even enhance autophagy [64]. The capacity of PROPPINS to bind PI(3,5)P2 may therefore 
relate to a role in the endo-lysosomal system that is independent of autophagy. In line with 
this, substitutions in lipid binding site 2 of WIPI1 impair the exit of protein cargo from 
endosomes but do not affect the contribution of this protein to autophagy [14]. Simultaneous 
substitutions in both lipid binding sites reduce or abolish membrane binding and impair both 
autophagic and endosomal functions [14,16,18,55,70,71], demonstrating that these lipid 
binding sites make a major contribution to the recruitment of PROPPINs to membranes. 

Besides their two lipid binding sites, PROPPINs also carry a disordered and relatively 
hydrophobic loop on blade 6 of their b-propeller structure, i.e. between the two lipid binding 
sites. A part of this loop folds into an amphipathic a-helix when it is brought in contact with a 
lipid bilayer, but the loop itself does not suffice for binding to the membrane [11]. The 
amphipathic character of the a-helix is a conserved feature of PROPPINs. Its role was 
probed by swapping 2-4 amino acids in the amphipathic helix sequence to make the helix 
lose its amphipathic character while maintaining its overall content of hydrophobic amino 
acids. Such loop mutants sustain the autophagic functions of Atg18 and WIPI1 but fail to 
support fission of the lysosome-like vacuoles of yeast (for Atg18) and the formation of human 
endosomal transport carriers (for WIPI1) [11,14], underlining the functional importance of this 
conserved loop on endo-lysosomal compartments.  

Atg18 can self-assemble into different oligomeric structures in solution and on membranes. 
In solution they form a helical assembly that has been analyzed by cryo-electron microscopy 
[72]. It is composed of Atg18 tetramers forming a lozenge cylindrical lattice. The 
physiological significance of this assembly is not clear. However, since the lattice sterically 
hinders the lipid binding sites of Atg18 from interacting with a bilayer it is assumed to 
represent a soluble and membrane-inactive form of Atg18. On membranes, Atg18 forms 
dimers that can engage bilayers and tether opposing membranes at a distance of 80 Å. 
Based on structure predictions, this tethering activity was proposed to enhance lipid transfer 
during autophagy by providing a platform recruiting the lipid transfer protein Atg2 [72]. In line 
with this, in vitro lipid transfer experiments showed that Atg18 and WIPI1 or WIPI4 increase 
the lipid transfer activity of their binding partner Atg2 [27,73]. The presence of membranes 
also induces the formation of higher order oligomers of Atg18 [11]. In contrast to the 
oligomers formed in solution, membrane-triggered oligomers form at much lower 
concentrations. The structure of these membrane-bound oligomers is unknown. Their 
formation depends on PI(3,5)P2 rather than on PI3P, which links them more to endosomal 
than to autophagic functions of Atg18.  

 

PROPPINs as membrane fission proteins and PI(3,5)P2 effectors  

PI(3,5)P2 is required for vacuole fragmentation in yeast, for the division of endo-lysosomes, 
and for the formation of endosomal carriers, which are all processes depending on 
membrane fission [10,18,57,74]. That mutations inactivating the respective PROPPINs 
reproduce many of these defects made them good candidates for representing PI(3,5)P2 
effector proteins in these processes. In further support of this notion, substitutions in the two 
lipid binding sites can have differential impact. Site 2 affects the binding of Atg18 to 
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PI(3,5)P2-containing membranes more strongly than equivalent substitutions in site 1, which 
suggested a preference of site 2 for PI(3,5)P2 [68]. Introducing such site 2 substitutions into 
human WIPI1 impaired the PI(3,5)P2-dependent endosomal cargo exit and led to the 
accumulation of long endosomal tubules, whereas PI3P-dependent autophagy was 
unaffected [14]. The link between PROPPINs, PI(3,5)P2, and membrane fission could be 
firmly established by in vitro experiments with Atg18 and synthetic liposomes. Purified Atg18 
suffices to drive fission of giant unilamellar vesicles (GUVs). This in vitro fission activity 
depends on PI(3,5)P2 and the amphipathic helix in the loop on blade 6 [11]. By contrast, PI3P 
supports only efficient membrane binding of Atg18, but not fission. Also PI(4,5)P2 could not 
promote fission activity, demonstrating isomer specificity. This indicates that Atg18 is a 
PI(3,5)P2 effector protein. 

The amphipathic nature of the helix and the fact that its formation is triggered by contact with 
the membrane suggests a mechanism of action for Atg18. Shallow insertion of amphipathic 
helices modifies spontaneous membrane curvature and can significantly perturb bilayer 
structure, particularly if the density of inserted helices is high [75,76]. Interestingly, PI(3,5)P2, 
but not PI3P, drives Atg18 oligomerization on membranes in vitro [11,77]. Therefore, it was 
proposed that PI(3,5)P2-triggered oligomerization of Atg18 could be a means to reach a high 
local density of membrane-inserting amphipathic helixes, thus generating high curvature and 
bilayer destabilization that favors membrane fission [11]. 

 

Links to endosomal coat proteins: The CROP complex 

Searches for Atg18 interactors in yeast were performed by Bio-ID and by SILAC approaches 
[12,13]. Both studies identified the endosomal Retromer complex as a major interactor. 
Retromer consists of three subunits, Vps26, Vps29, and Vps35, and cooperates with sorting 
nexins such as Vps5 and Vps17 to form tubular membrane coats that export cargo proteins 
from endosomes and transfer them to the plasma membrane or the Golgi [78]. Purified 
Retromer binds Atg18 with a Kd of 50 nM, forming a novel complex that was termed CROP 
[12]. Atg18 competes for Retromer binding with the sorting nexins Vps5 and Vps17. This 
competition is also evident at the functional level by epistasis experiments. Yeast lacking 
Vps5 or Vps17 show hyper-fragmented vacuoles, suggesting that the responsible fission 
machinery may be overactivated. This hyper-fragmentation phenotype coincides with 
increased formation of CROP. Deleting either subunit of CROP rescues the hyper-
fragmentation phenotype, genetically linking CROP to the fission of vacuoles in vivo [12]. 

CROP is conserved and can be detected in human cells as an association of the Atg18 
homolog WIPI1 with Retromer. In both yeast and human cells, CROP stability depends on an 
intact LFSTSL motif in blade 2 of the b-propeller of the PROPPIN subunit [12]. This motif 
overlaps with the binding site for Atg2. Substitutions in this motif - T57 in yeast or S69 in 
human cells - labilize the respective CROP complexes, abolish the in vivo fission activity of 
CROP on yeast vacuoles, and lead to an enlargement of endosomes and the accumulation 
of long endosomal tubules in human HK2 cells. This latter phenotype suggests that tubular 
endosomal carriers may form but cannot detach when CROP cannot assemble [12,14]. 
Substitutions destabilizing CROP in human cells phenocopy deletion or inactivation of WIPI1 
not only morphologically, but also by interfering with exit of multiple protein cargos from 
endosomes, such as Transferrin receptor, GLUT-1, EGF receptor, and Shiga toxin. This 
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supports the notion that PROPPINs act in endo-lysosomal protein traffic and vacuole fission 
mainly through CROP. 

CROP contains the entire Retromer complex. Retromer can oligomerize through homotypic 
Vps26-Vps26 or Vps35-Vps35 interactions of its subunits [79–82]. This allows Retromer to 
form a network that interconnects and stabilizes the protein layer that sorting nexins from on 
endosomes to scaffold their membranes into an endosomal carrier. In this way Retromer 
contributes driving force to the scaffolding of the membrane and accelerates coat formation 
[83]. Given that Atg18 competes with the sorting nexins for binding Retromer it is plausible 
that it might take the place of a sorting nexin on a coated membrane tubule (Fig. 3). Although 
Atg18 and sorting nexins compete globally for Retromer binding, the oligomeric nature of 
Retromer could allow for simultaneous recruitment of Atg18 and sorting nexins into a 
Retromer-coated tubule, using distinct Vps26 subunits in the network. It was hence proposed 
that multiple Atg18 could integrate into a Retromer tubule. Integration could be favored at the 
end of the tubule when the coat seizes to grow, and new sorting nexins competing with 
Atg18 integration may no longer be recruited [12]. This could concentrate multiple Atg18 
subunits and thereby promote fission at the end of a tubule. While this is an attractive model, 
experimental evidence for integration of PROPPINs into Retromer coats is still missing. 

 

Regulation of PROPPIN activity 

PROPPIN recruitment and oligomerization can be controlled through the abundance of their 
lipid ligands PI3P, PI5P and PI(3,5)P2. At least one of these lipids must be present to allow 
PROPPINs to bind the membrane [16,18,19,44,68,84]. Direct regulation through lipid 
abundance may underlie the activation of vacuole fission in yeast. This reaction is stimulated 
by hypertonic shock, which triggers a rapid, transient increase in PI(3,5)P2. If this increase is 
prevented, for example through ablation of Fab1 activity, fission is impaired [40,41,43,85]. 
Hyperactive fab1 mutants show a corresponding constitutive hyper-fragmentation of the 
vacuolar compartment [86]. In yeast, Atg18 is not only an effector of PI(3,5)P2 but also feeds 
back on the synthesis of this lipid. Genetic ablation of Atg18 leads to constitutively increased 
levels of PI(3,5)P2 [18]. While elevated PI(3,5)P2 is usually associated with highly fragmented 
vacuoles, lack of Atg18 prevents the development of this fragmented phenotype, despite the 
elevated PI(3,5)P2 content of atg18 knockout cells. This is another support for the role of 
Atg18 as a PI(3,5)P2 effector [55]. However, it should be kept in mind that PI(3,5)P2 also 
activates further targets that are needed for vacuole fission. It promotes V-ATPase assembly, 
which stimulates vacuoles fission and impairs the opposing reaction of vacuole fusion 
[46,47,49,87,88], and it activates the vacuolar two-pore Ca2+ channel Yvc1 [47,57,89]. 

Additional regulation of PROPPINs can be achieved by phosphorylation. Overexpression of 
Atg18 in the yeast Pichia pastoris leads to a majority of the Atg18 pool being phosphorylated 
[90]. This phosphorylation occurs in the amphipathic a-helix of the CD loop on blade 6 that is 
critical for the fission function of Atg18 [11]. Phosphorylation in this loop prevents membrane 
binding of Atg18 and the phosphorylation and dephosphorylation of the loop coincides with 
the activation and inactivation of vacuole fission [90].  

The endo-lysosomal fission activity of PROPPINs could also be regulated at the level of the 
CROP complex. Several PROPPINs, such as Atg18 and WIPI1, carry an LFSTSL motif, 
which is present in blade 2 of their b-propeller structure and required for the formation of 
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CROP [12]. While the grouping of serine and threonine residues in this motif is suggestive of 
a potential target for phosphorylation, available high-throughput data has so far not yielded 
any indications for a phosphosite in this motif. By contrast, PROPPINs carry numerous other 
sites that are modified by phosphorylation or ubiquitylation (see e.g. www.phosphosite.org). 
Targeted work will be required to identify the proteins targeting these sites and to probe their 
impact on endosomal membrane traffic, autophagy, and the known interactors of PROPPINs 
in these processes. 

 

Perspectives  

1) PROPPINs have important functions in two distinct cellular processes of great 
physiological relevance: autophagy and the formation of endosomal carriers that sort 
proteins between endosomes, the plasma membrane, and the Golgi. 

2) Although it appears that PROPPINS support endosomal protein sorting and autophagy 
using distinct molecular features these two processes are not completely disconnected. 
Phagophores and endosomal compartments have physical contacts, PROPPINs interact with 
core machinery of both compartments, and endosomes may serve as a source of lipids for 
autophagosome formation.  

3) It will hence be interesting to see to which degree the endosomal and autophagic 
functions of PROPPINs are intertwined. To this end, we need to understand how PROPPINs 
link to endosomal coats and trafficking factors in the CROP complex, and how their 
recruitment into CROP or onto phagophores is regulated. To this end, structural studies of 
the complexes and detailed analyses of their interaction with the membrane will be crucial. 
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Figures: 

 

Figure 1: Schematic view of the endocytic pathway (Yeast vs mammals) 

Schematic view of the endocytic pathway for yeast (A) and mammalian (B) cells. The sites 
were PROPPINs are known to act are highlighted in green (Atg18 for yeast and WIPI1 for 
mammals). Sites were PROPPINs likely participate in fission are marked in magenta.  
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Figure 2: Structural features of PROPPINS 

General structure of PROPPINs showing the 7 blades of the b-propeller in (A) linear or (B) in 
a 3D structure model (based on structure PDB:8AFW, Mann et al, 2023). Critical structural 
features and the following sites relevant for interaction with known ligands are highlighted: 
Regions relevant to the binding of Retromer (red) and Atg2 (yellow); lipid binding site1 
(cyan); FRRG motif (green); lipid binding site2 (magenta); site carrying the loop with the 
amphipathic helix (blue, the loop itself is not shown).  
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Figure 3: Suggested co-integration of PROPPIN into Retromer-coated endosomal 
tubules 

Putative model for PROPPIN/CROP mediated fission on endosomal tubules (A). Retromer 
dependent clustering of PROPPINs leads to an accumulation of amphipathic helixes in the 
membrane resulting in membrane destabilization and fission. 
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