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Abstract

Circadian rhythms govern many aspects of metabolism, physiology and behaviour and are

associated with extensive oscillating gene expression. Although oscillating transcription is at the

core of circadian gene expression, rhythmic post-transcriptional mechanisms can also explain

numerous observations at the level of the final rhythmic protein output. In the first part of

this thesis, the contribution of translation to the generation and modulation of diurnal gene

expression in mouse liver and kidney was quantified using ribosome profiling. I observed that

translationally engendered rhythmicity is largely organ-specific, and that tissue differences in

translation efficiency served to modulate the phase and levels of protein biosynthesis from

rhythmic mRNAs. Finally, upstream open reading frame (uORF) translation was identified as a

novel mechanism of circadian clock regulation. Several core clock genes contained translated

uORFs, and loss-of-function of DENR, a protein involved in translation reinitiation after uORF

usage, led to circadian period shortening in cells.

In the second part of the thesis, I used ribosome profiling in NIH3T3 cells to annotate uORFs

acting through DENR-mediated translation reinitiation transcriptome-wide, and characterised

the uORF features that confer DENR dependance using a comprehensive regression model. I

identified 240 transcripts that required DENR for efficient protein production, including genes

associated with increased proliferation and cancer. DENR targets were enriched for the presence

of translated uORFs, and were involved in functional pathways related to translation, transcript

stability and the cell cycle. The presence of multiple uORFs, the uORF start codon identity

and sequence context, and the distance to the main ORF, correlated with the magnitude of

translational regulation, indicating that DENR promotes leaky scanning or reinitiation after

strong uORF translation. Finally, within core clock genes, Clock was found as a DENR target.

Clock contains two AUG-initiated uORFs, the second of which overlaps the main CDS and is

followed by an additional AUG codon in frame with the annotated CDS, that could give rise to

a 5’ alternative CLOCK protein. Systematic mutation of the uORF, annotated or alternative

CDS start codons suggested that DENR is required for reinitiation and biosynthesis of the

alternative CLOCK isoform after translation of the overlapping uORF. In summary, this study

provided important insights into uORF-mediated translational mechanisms that can regulate

circadian clock function and gene expression at large.
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Résumé

Le rythme circadien gouverne plusieurs aspects métaboliques, physiologiques et du comporte-

ment, et est associé à une forte expression oscillante des génes. L’oscillation de la transcription

est à la base de la expression circadienne. Cependant, les mécanismes post-transcriptionnelles

peuvent aussi expliquer certaines observations quant au niveau de la rythmicité des protéines.

Dans la première partie de ma thèse, la méthode de profil ribosomique a permis de quantifier la

contribution de la traduction à la génération d’oscillation de l’expression des gènes dans le foie

et les reins de souris. J’ai donc pu observer que la rythmicité engendrée par la traduction est

principalement organe-spécifique. Ces différences entre organes dans l’efficacité de la traduction

induisent la modulation de phase et de niveau d’expression des protéines à partir des ARNm

rythmiques. Finalement, nous identifions la traduction des “uORF” (“upstream open reading

frame”) comme un nouveau méchanisme de régulation de la fonction circadienne. Plusieurs

gènes essentiels à l’horloge moléculaire contenaient des uORFs traduit. La perte de fonction de

DENR, protéine impliquée dans la réinitialisation de la traduction après un uORF, conduit à un

raccourcissement de la période circadienne.

Dans la deuxième partie de ma thèse, j’ai identifié les cibles de DENR avec la méthode

de profil ribosomique dans la ligne cellulaire NIH3T3. Ensuite, j’ai caracterisé les propriétés

des uORFs qui sont modulés par DENR avec un modèle de régression linéaire. 240 transcrits

qui nécessitent DENR pour une production protéique efficace ont été identifiés, dont certains

sont associés au cancer. La présence de plusieurs uORFs, l’identité et le contexte du codon

d’initiation du uORF ainsi que la distance avec l’ORF principal étaient corrélés avec la magnitude

de la traduction. Finalement, parmis les gènes essentiels au rythme circadien, Clock a été défini

comme cible de DENR. Clock contient deux uORFs commençant par AUG dont le deuxième

chevauche la séquence codante principal (“CDS”) et est suivi par un codon AUG additionel.

Cela pourrait entrainer la synthèse d’une protéine CLOCK altérnative. Des mutations dans les

codons initiaux des uORFs ou de la CDS ont suggéré que DENR est requis pour la synthèse de

l’isoforme altérnatif de CLOCK après la traduction de l’uORF chevauché. En résumé, cette

étude a apporté des nouveaux méchanismes de régulation de la fonction circadienne et de la

expression des génes en général basés sur la traduction des uORFs.

[Traduit de l’anglais par Mariano Schiffrin, PhD.]
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Introduction

During my thesis, I was interested in the study of translational regulation of gene expression in

mammals, and in particular, in the context of circadian rhythms.

In the first chapter, post-transcriptional mechanisms regulating circadian gene expression are

introduced, with special interest in translational control. I then present two studies – Janich

et al. [2015, 2016] and Castelo-Szekely et al. [2017] – aimed at elucidating the contribution of

translational efficiency to tissue-specific rhythmic gene expression.

The second chapter takes on our finding of upstream open reading frames (uORFs) as novel

regulators of circadian function, and introduces the regulatory mechanisms exerted by uORFs

and by the translation reinitiation factor DENR. The chapter then presents an ongoing work

studying the sequence specificities of DENR-mediated reinitiation transcriptome-wide, and the

functional relevance of uORFs within circadian core clock transcripts.
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1 Post-transcriptional and tissue-specific

regulation of circadian gene expression

Environmental fluctuations due to the Earth’s rotation are predictable; therefore being able

to anticipate and adapt to them offers an advantage to any living system. To do so, most

organisms have developed circadian (from the Latin ’circa’: approximately, and ’diem’: a

day) clocks: endogenous, self-sustained, entrainable, and temperature-compensated oscillators

ticking with a period of about 24 hours.

Molecular mechanism of the mammalian circadian clock:

the transcriptional model

In mammals, the circadian system is organised hierarchically, with a central pacemaker located

in the brain suprachiasmatic nuclei (SCN) synchronising peripheral clocks present in virtually

every cell of an organism. In turn, the SCN receives photic inputs from the environment via the

retino-hypothalamic tract connecting to the photosensitive retinal ganglion cells, thus entraining

internal timing to geophysical time (reviewed in Mohawk et al. [2012]).
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CHAPTER 1. POST-TRANSCRIPTIONAL AND TISSUE-SPECIFIC REGULATION OF CIRCADIAN GENE EXPRESSION

Molecularly, the clock mechanism is similar across cyanobacteria, fungi, plants, flies, and

mammals [Doherty and Kay, 2010], consisting in a network of transcriptional activators and

repressors interacting in feedback loops and driving the expression of core clock components

[Ko and Takahashi, 2006].

In the core mammalian feedback loop, CLOCK and BMAL1 heterodimerise and bind E-box

cis-regulatory enhacers to activate the transcription of target genes, including Period (Per1,

Per2, Per3), and Cryptochrome (Cry1, Cry2). PER:CRY heterodimers then translocate back to

the nucleus and repress CLOCK:BMAL1 activity, thus inactivating their own expression and

closing the loop (Figure 1.1) [King et al., 1997; Gekakis et al., 1998; Kume et al., 1999; Bunger

et al., 2000].

In a secondary feedback loop, CLOCK:BMAL1 also drive the transcription of Rev-erbα

and Rorα, and these, in turn, repress and activate Bmal1 expression, respectively, by binding

to retinoic acid-related orphan receptor response elements (ROREs) present in the promoter

(Figure 1.1) [Preitner et al., 2002; Sato et al., 2004; Guillaumond et al., 2005].

In order for the cycle to take ∼24 hours to complete, a delay must be introduced between

the activation and repression parts of the loop. Post-translational modifications of core clock

proteins have been shown to play a critical role by regulating stability and nuclear translocation.

Phosphorylation of CLOCK leads to rhythmic DNA binding [Yoshitane et al., 2009], and

phosphorylation of PER proteins by Casein Kinase 1 (CK1) δ and ε induces PER degradation,

thus delaying their accumulation and entry into the nucleus [Eide et al., 2002; Akashi et al.,

2002]. Circadian sumoylation of BMAL1, induced by CLOCK, parallels its activation and is

required for normal rhythmicity [Cardone et al., 2005], whereas BMAL1 acetylation, also by

CLOCK, facilitates CRY1 recruitment to the heterodimer [Hirayama et al., 2007].

16



CHAPTER 1. POST-TRANSCRIPTIONAL AND TISSUE-SPECIFIC REGULATION OF CIRCADIAN GENE EXPRESSION
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CLOCK
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Figure 1.1: Mammalian molecular clockwork. Timekeeping relies on negative transcriptional
feedback loops that give rise to oscillatory gene expression. In the core loop, the transcriptional
activator CLOCK:BMAL1 drives the expression of its own repressors, PERs:CRYs; whereas in the
interconnecting limb, CLOCK:BMAL1 activate the transcription of Rev-erbα and Rorα, which, in
turn, repress and activate Bmal1 expression, respectively. [CCGs: clock-controlled genes; RRE:
Ror-responsive element].

The importance of core clock components for the generation and maintenance of cell-

autonomous circadian rhythms is manifested by the profound impact of their disruption on the

molecular oscillations and normal behaviour of the animal. For example, Per1−/−, Per2−/− or

Cry1−/− mice display shorter free-running periods; Cry2−/− mice exhibit longer behavioural

periods; and disruption of both Per1 and Per2, or Bmal1, results in behavioural arrhythmicity in

mice [Ko and Takahashi, 2006]. Moreover, disruption of CKε leads to PER2 stabilisation, and

a subsequent shortening of the circadian period that is implicated in familial advanced sleep

phase syndrome (FASPS) [Lowrey et al., 2000; Toh et al., 2001; Xu et al., 2005], highlighting

the importance of post-translational modifications.
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CHAPTER 1. POST-TRANSCRIPTIONAL AND TISSUE-SPECIFIC REGULATION OF CIRCADIAN GENE EXPRESSION

Challenges to the transcriptional model: evidence for

post-transcriptional control

CLOCK:BMAL1-activated transcription can also give rise to the rhythmic expression of clock-

controlled genes (CCGs) (Figure 1.1), partly responsible for oscillating circadian outputs and

functions in each tissue. However, although transcription is the driver of mRNA synthesis,

protein levels also reflect regulatory processes at the post-transcriptional level, including 3’ end

cleavage and polyadenylation, splicing, nuclear export, RNA stability, translation and protein

degradation.

Genome-wide studies comparing rhythmically transcribed mRNAs to rhythmically accumu-

lated transcripts in mouse liver revealed a large discrepancy. Parallel quantification of nascent

RNA expression or RNA Pol II loading as a measure of transcription, and steady-state mRNA

accumulation using microarrays, showed that ∼25 - 70% of rhythmic mRNAs did not originate

from oscillatory transcription [Menet et al., 2012; Le Martelot et al., 2012]. Similarly, quanti-

fying steady-state mRNA levels with RNA-seq and using intronic and exonic reads as proxy

for transcription and transcript abundance, respectively, estimated that only 22% of cycling

transcripts were also rhythmically transcribed [Koike et al., 2012]. On the other hand, compar-

ative analyses across organs have shown that circadian transcriptomes are largely divergent,

despite a common rhythmic core clock [Panda et al., 2002; Storch et al., 2002; Zhang et al.,

2014]. Together, these studies indicate that post-transcriptional mechanisms account for a

significant part of the observed circadian oscillations, and that systemic cues, local oscillators

and tissue-specific factors, all contribute to the generation and modulation of circadian outputs.

Evidence for post-transcriptional regulation that is time-of-day dependent has been shown at

18



CHAPTER 1. POST-TRANSCRIPTIONAL AND TISSUE-SPECIFIC REGULATION OF CIRCADIAN GENE EXPRESSION
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Figure 1.2: Post-transcriptional regulation of rhythmic gene expression. Circadian gene expression
can be regulated at virtually every level from transcription to protein degradation. This figure illustrates
mRNA processes known to be under the control of the circadian clock, including polyadenylation,
translation and degradation.

virtually every stage of the mRNA life, from splicing to translation, stability and degradation

(Figure 1.2). Understanding the function, extent and tissue-specificity of these processes in the

generation of rhythmic gene expression is relevant for circadian physiology and behaviour.

Alternative splicing.

Alternative splicing is the process by which several transcript isoforms are produced from a

single gene, through the differential inclusion/exclusion of exons, giving rise to functionally

and structurally different proteins. Given the pervasiveness of the process, altering the relative

expression of isoforms in a daily fashion could broadly influence the stability and translatability

of mRNAs in a tissue-specific fashion.

In the only study addressing this question, the use of exon arrays in mouse liver identified

surprisingly few (47, 0.4% of detectable genes) rhythmic genes regulated by circadian splicing

in a tissue-specific manner, with alternative splicing phases occurring throughout the circadian
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CHAPTER 1. POST-TRANSCRIPTIONAL AND TISSUE-SPECIFIC REGULATION OF CIRCADIAN GENE EXPRESSION

cycle. [McGlincy et al., 2012].

Cytoplasmic polyadenylation.

Circadian adenylation and deadenylation activities can lead to oscillating poly(A)-tail lengths

and, in turn, to rhythmic association to polyribosomes and mRNA degradation, respectively.

Nocturnin is a circadian deadenylase highly expressed in many tissues, including kidney and

liver [Wang et al., 2001]. Noc−/− mice displayed normal circadian rhythms and clock gene

expression but were resistant to obesity upon high fat diet [Green et al., 2007]. Furthermore

Noc expression paralleled that of multiple clock-controlled genes, suggesting its involvement in

gating circadian output pathways.

The extent of daily variations in poly(A)-tail length in mouse liver was addressed transcriptome-

wide by Kojima et al. [2012]. They observed widespread rhythmicity in poly(A) tail lengths that

could mostly be explained by co-transcriptional nuclear adenylation. However, they identified

∼42 transcripts (18% of poly(A) rhythmic mRNAs) whose poly(A) tail length variation could

not be explain transcriptionally or by steady-state mRNA level oscillations, and were therefore

under the control of cytoplasmic circadian polyadenylation. Importantly, the peak in tail lengths

of these transcripts correlated with maximal expression of polyadenylation-related proteins,

such as cytoplasmic polyadenylation element binding proteins (CPEBs), and with maximal

accumulation of the encoded proteins.

MicroRNAs.

MicroRNAs (miRNAs) are small (∼22 nt) non-coding RNAs that mediate mRNA silencing

through translation inhibition and mRNA destabilisation, by base-pairing to complementary

sequences typically located on the 3’ UTR. Given that up to 60% of mammalian protein-coding
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CHAPTER 1. POST-TRANSCRIPTIONAL AND TISSUE-SPECIFIC REGULATION OF CIRCADIAN GENE EXPRESSION

transcripts have been estimated to be regulated by miRNAs [Lewis et al., 2005; Friedman et al.,

2009], it is conceivable that rhythmically expressed miRNAs contribute to the generation of

oscillatory gene expression post-transcriptionally, and that miRNA-mediated regulation further

modulates cyclic transcription. By genetically inactivating miRNA biogenesis in mouse liver, it

was shown that the core clock was largely unaffected by miRNA loss, and that <2% of the

mRNA oscillations were dependent on miRNAs [Du et al., 2014]. However, miRNA served to

modulate the phase and amplitude of ∼30% of the rhythmic transcriptome [Du et al., 2014].

mRNA and protein degradation.

Daytime-dependent mRNA and protein stability can readily explain rhythms in steady-state

mRNA levels from non-oscillatory transcription, and cyclic protein accumulation from con-

stitutively expressed transcripts, respectively. Long transcript and protein half lives can also

account for cases of rhythmic transcriptional and translational activities that are followed

by constant steady-state levels [Le Martelot et al., 2012; Menet et al., 2012; Reddy et al.,

2006]. Moreover, rhythmic half-lives can modulate the phase, amplitude and magnitude of

transcript and protein rhythms, and explain the delay observed between maximal transcription

and transcript abundance, and between mRNA and protein level peaks [Luck et al., 2014].

Translation efficiency.

Translational regulation by RNA-binding proteins (RBPs) has been shown to play an important

role in the regulation of core clock protein expression, and for the temperature entrainment of the

clock. In cultured fibroblasts, physiological temperature cycles drove the rhythmic expression of

cold-inducible RNA-binding protein (CIRP), and cross-linking and immunoprecipitation (CLIP)

experiments identified Clock among its targets [Morf et al., 2012]. CLOCK protein expression
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CHAPTER 1. POST-TRANSCRIPTIONAL AND TISSUE-SPECIFIC REGULATION OF CIRCADIAN GENE EXPRESSION

was strongly reduced in Cirp-depleted cells, but total Clock mRNA showed only a modest

decrease, consistent with a role of CIRP in controlling Clock translation [Morf et al., 2012].

Furthermore CIRP binding sites were significantly enriched near polyadenylation sites (PAS) and

low temperatures (Cirp upregulation) lengthened 3’UTRs, whereas CIRP depletion shortened

them, indicating that CIRP dictated the usage of PAS, and can therefore regulate circadian

gene expression by controlling alternative polyadenylation [Liu et al., 2013].

RBPs and, in particular, heterogeneous nuclear ribonucleoproteins (hnRNPs), have also been

implicated in degradation and cap-independent translational regulation of core clock genes.

HnRNP I, also known as polypyrimidine-tract-binding protein (PTB), binds the 3’UTR of Per2,

promoting its degradation. Importantly, PTB protein levels are in antiphase to Per2, supporting

its stability regulatory role [Woo et al., 2009]. Similarly, hnRNP D (or ARE-binding factor 1,

AUF1) mediated the rhythmic decay of Cry1 mRNA, by binding to the 3’UTR, and rhythmic

accumulation of hnRNP D was antiphasic to Cry1 mRNA expression [Woo et al., 2010]. Finally,

IRES-dependent translation has been reported for Rev-erbα by interaction with PTB [Kim

et al., 2010], and for Per1, through the interaction with hnRNP Q [Lee et al., 2012a].

The above constituted individual examples of translational modulation of clock protein expres-

sion. With the advent of sequencing technologies and the improvement in mass spectrometry

(MS) quantitative accuracy, these findings could be extended to a transcriptome-wide scale.

A systematic analysis of the circadian proteome by two-dimensional difference gel elec-

trophoresis (2D-DIGE) and MS in mouse liver revealed that up to 20% of the assayed proteins

fluctuated in a daytime-dependent manner, but that only half of them derived from a rhythmic

transcript [Reddy et al., 2006], providing one of the earliest evidence for post-transcriptional

mechanisms regulating circadian gene expression.
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CHAPTER 1. POST-TRANSCRIPTIONAL AND TISSUE-SPECIFIC REGULATION OF CIRCADIAN GENE EXPRESSION

More recently, Robles et al. [2014] and Mauvoisin et al. [2014] in mouse liver, and Chiang

et al. [2014] in the SCN, have revisited this question using high resolution MS-based proteomics

together with quantification via the in vivo stable isotope labeling by amino acids (SILAC)

technology. Although the total protein detection varies across studies, all three reported that

4-20% of the detected proteome oscillates in a circadian manner. The proportion of the

circadian proteome that cannot be accounted for by an underlying transcript rhythmicity also

differed among the three studies, likely due to different experimental and analytical methods.

However, non-transcriptional contribution was estimated at 20 [Robles et al., 2014] to 50%

[Mauvoisin et al., 2014]. Interestingly, all studies observed a phase delay between transcript

and protein accumulation of 5 to >8 hours that is daytime dependent and is consistent with a

diurnal control of protein half-life too. Moreover, the time-of-day proteome was enriched for

key biological processes such as mitochondrial oxidative phosphorylation in the SCN [Chiang

et al., 2014], and xenobiotic detoxification [Robles et al., 2014] and protein secretion [Mauvoisin

et al., 2014] in liver, highlighting the tissue-specificity of translational and post-translational

circadian regulatory mechanisms.

Jouffe et al. [2013] used microarray analysis of total and polysomal RNAs to account for diurnal

variations of the mouse hepatic translatome. Polysome profiling is based on the fractionation of

transcripts in a sucrose gradient according to the number of ribosomes associated to them. It

therefore provides an estimate of the relative levels of translation: monosome fractions reflect the

translationally arrested pool, while heavier fractions are associated with increasing translational

levels. 249 probes, corresponding to ∼2% of the expressed genes, showed a rhythmic polysome

profile and a constant mRNA abundance, with the peak in polysome association clustering at

the day-to-night transition. The vast majority of these translationally regulated transcripts were
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CHAPTER 1. POST-TRANSCRIPTIONAL AND TISSUE-SPECIFIC REGULATION OF CIRCADIAN GENE EXPRESSION

related to ribosome biogenesis and belong to the 5’-terminal oligopyrimidine tract (5’TOP)

gene family.

Briefly, TOP mRNAs are characterised by the presence of a C residue at the 5’cap (only

about 17% of mammalian transcripts start at C), followed by a stretch of 4-14 pyrimidines and a

GC-rich sequence, and they usually have short 5’UTRs devoid of uAUGs. The location and the

presence of a C at the first position are crucial for the functional importance of this cis-regulatory

element [Meyuhas, 2000]. TOP mRNAs appear to be in an ’all-or-none’ association state

to polysomes, in which cellular growth arrest leads to the fast dissociation from polysomes

and translation repression, and nutrient and energy availability triggers polysome loading and

translation activation [Meyuhas, 2000]. Thus the presence of this cis-element allows a fast and

coordinated response of the whole translational machinery to external growth stimuli. Although

the precise regulatory mechanism has not been fully elucidated, the translation efficiency of

TOP mRNAs responds to signalling via the mammalian target of rapamycin (mTOR) pathway,

which is thought to activate S6 kinase and RPS6 phosphorylation [Meyuhas and Dreazen, 2009],

as well as the inhibitory eIF4E-binding proteins (4E-BPs). Since 4E-BP competes with eIF4E

for binding to eIF4G, it was hypothesised that loss of eIF4E-eIF4G interaction could impair

TOP mRNAs translation more strongly than other mRNAs [Thoreen et al., 2012]. Additionally,

it could involve one or several trans-acting elements recognizing the motif, as well as other

elements of the initiation machinery to which the S6K and/or mTOR signals are conveyed

[Hamilton et al., 2006].

Accordingly, mTORC1 expression, but also the phosphorylation state of 4E-BP1, were all

rhythmic in mouse liver [Jouffe et al., 2013].

Although a large number of fractions can be obtained from a polysome gradient, these are
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usually pooled to reduce the costs associated with cDNA microarrays. Pooling fractions into

those containing e.g. <2 ribosomes, 2-n and >n ribosomes can limit the quantitative analysis

of translational regulation to “on-off” states or large relative changes, compromising accurate

calculations of translational efficiency. Moreover polysome profiling does not provide positional

information on the ribosomes within ORFs or regulatory regions that can gain insights into the

regulatory mechanisms underlying translational fluctuations.

By contrast, ribosome profiling is a method to determine the distribution of actively translating

ribosomes on an mRNA, providing a snapshot of a cell’s translatome at a given time [Ingolia

et al., 2009, 2012; Ingolia, 2014; MGlincy and Ingolia, 2017]. The basis of ribosome profiling is

that a ribosome covers a sequence of ∼30 nucleotides and protects it from nuclease digestion

[Wolin and Walter, 1988]. By sequencing these ribosome footprints or ribosome-protected

fragments (RPF-seq), the precise location of ribosomes and the codon being translated can

be determined transcriptome-wide (Figure 1.3). Relative translation efficiency can then be

quantified by the ratio of ribosome footprints to the total mRNA present (from total RNA-seq

done in parallel).

Ribosome profiling has been widely used in the last decade to quantify gene-level translational

control in Drosophila [Dunn et al., 2013], yeast [McManus et al., 2014] and mouse embryonic

stem cells [Ingolia et al., 2011]; during the cell cycle [Stumpf et al., 2013] and mitosis

[Tanenbaum et al., 2015]; in disease phenotypes [Schafer et al., 2015]; in the mitochondria

[Rooijers et al., 2013]; by miRNAs [Bazzini et al., 2012]; to define uORFs [Bazzini et al., 2014];

to assess the coding potential of long non-coding RNAs [Guttman et al., 2013]; or to study the

different stages of translation elongation itself [Lareau et al., 2014], among many others.
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Nuclease digestion (RNAse I) Ribosomal RNA depletion High-throughput sequencing

Cell/Tissue lysis
Ribosome arrest
(cycloheximide)

ATCCATGCATAGATTCGTAGCTTCAGCATC

ATGGATTCGCTTCTAGAGCATCCCATGGAT

TCACATGCATAGATTCGTAGCTTCAGCACT

CGTAGCATCCATGCATTTTTCAGCATAGAC

ATCCATGCATAGATTCGTAGCTTCAGCATC

CGGAGCATCCATGCATTCCTCAGCATAGAC

Ribosomal RNA depletion Random fragmentation

RIBOSOME FOOTPRINTING
RPF-seq

TRANSCRIPT ABUNDANCE
RNA-seq

High-throughput sequencing

CGGAGCATCCATGCATTCCTCAGCATAGAC

E P A

Figure 1.3: Ribosome profiling technique. Top: For the preparation and sequencing of ribosome-
protected fragments (RPF-seq), cells/tissues are lysed in the presence of cycloheximide, to arrest
elongating ribosomes. Following RNA digestion, ∼30 nt footprints are generated, from which libraries
can be prepared. In parallel, total mRNA libraries (RNA-seq) are made from ribosome-depleted and
randomly fragmented RNAs from the same lysate. Bottom: Since the ribosome protects a 30-nt
fragment, the codon being translated (A-site) can be inferred as the position +15 (from the 5’ of the
footprint).

Investigating translational regulation around-the-clock in

mouse liver and kidney

Ribosome profiling is suitable to study the dynamics of translational efficiency across the

circadian cycle as well. The extent of uncoupling between transcript abundance rhythms, as

measured by RNA-seq, and ribosome occupancy rhythms, from RPF-seq, can be thus quantified,

identifying cases of oscillations at either level, and the phase relationship of transcripts cycling

at both. Moreover, the relative stoichiometric levels of core clock proteins can be inferred,

since the ribosome occupancy on a transcript is a direct measure of the absolute amount of

protein synthesized, assuming that a ribosome engaged on an mRNA will produce a protein

[Li et al., 2014]. Finally, using the ribosomal positional information, ribosome profiling can
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gain insights into the causal sequences modulating translation efficiencies, such as uORFs or

ribosomal pausing.

Using ribosome profiling around-the-clock in mouse liver, we aimed to study a new layer

of post-transcriptional regulation of circadian gene expression, namely, translation efficiency,

[Janich et al., 2015, 2016], and do so in a tissue-specific and comparative fashion [Castelo-Szekely

et al., 2017].

Janich et al. 2015 and 2016: Results summary and

contribution to the study

In Janich et al. [2015] (Research Articles, page 75) we used ribosome profiling in mouse liver

to study the contribution of daytime-dependent translation to protein level oscillations that

cannot be explained by rhythmic transcription.

Ribosome profiling data was collected with a 2-hour resolution in light-dark entrained mice

and constituted one of the first studies applying this technique in a solid mammalian organ.

We therefore verified that data was of high quality and nucleotide resolution (e.g. by looking at

footprint size, and their distribution and periodicity along the transcript), and could recapitulate

its temporal nature (article’s figure 1).

Globally and independently of the time component of the data, translation efficiency showed

an asymmetric distribution, similar to that observed in cells [Ingolia et al., 2011], with a longer

negative tail suggestive of inhibitory mechanisms. In this line, 5’UTR length and the frequent

presence of uORFs within them, were shown to correlate inversely with translation efficiency

(article’s figure 2), consistent with the predominantly negative effect of uORFs on main CDS
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translation [Wethmar, 2014].

Rhythmicity detection and parameter estimation were performed on RPF and RNA-seq

datasets separately based on AIC model selection, and included a 1.5 fold cutoff on amplitude.

Within the core clock, rhythmic transcript abundance was a good predictor of rhythmic ribosome

occupancy, and both oscillations were tightly coupled without further modulation by time-of-day

dependent translation efficiency (article’s figure 3). This phase synchrony was also observed

globally for oscillating transcripts – the majority of rhythmic events detected in this organ –

whereas transcripts cycling at either the mRNA or protein synthesis levels showed distinct peak

distributions, during the night phase and at the light-to-dark transition, respectively (article’s

figure 4).

Robust daytime-dependent translation of non-oscillating transcripts was detected in a set

of 150 genes, showing the peak of ribosomal occupancy at the onset of the dark phase. This

genes were enriched for components of the translation machinery including ribosomal proteins,

whose regulation has been shown to involve both the circadian and the feeding cycles [Jouffe

et al., 2013; Atger et al., 2015]. Moreover, we identified transcription factors and transcripts

containing iron-responsive elements, suggesting that rhythmic protein synthesis could feedback

to the circadian transcriptome, and regulate iron metabolism (article’s figure 5).

Finally, since the presence of uORFs was widespread in liver transcripts and modulates

translation efficiency, we explored the impact of uORF translation on the circadian clock

(article’s figure 6). Among core clock genes, Bmal1, Clock, Cry1, Rev-erbα and Rev-erbβ,

contained translated uORFs whose ribosome occupancy rhythmicity followed that of the main

CDS. When the start codons of the uORFs detected in Rev-erbα were mutated in cells containing

a circadian reporter, we observed increased levels of the reporter activity, indicating that uORFs
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are involved in regulating Rev-erbα levels and possibly the magnitude of its oscillation in

vivo. In order to study the overall effect of uORF translation on the clock function, we

knocked-down Denr (Density Regulated Protein), a protein implicated in ribosome recycling

and reinitiation after uORF translation ([Schleich et al., 2014] and chapter 2). Cells deficient

for Denr displayed a ∼1.5-hour shorter period (article’s figure 6), uncovering uORF translation

as a novel mechanism regulating circadian function.

Janich et al. [2016] (Research articles, page 121) is a methods article that provides additional

information on the experimental and analytical details to generate the ribosome profiling data

used in Janich et al. [2015]. It presents an outline of the experimental workflow to prepare

RPF and RNA-seq libraries (article’s figure 1), and insights into some of its critical steps, such

as nuclease digestion, monosome purification and rRNA depletion. For example, in order to

ensure reproducible ∼30 nt footprint generation, nuclease digestion conditions were optimised in

preliminary tests (article’s figure 2), and verified for the time course experiment (article’s figure

3). Moreover, the article summarizes the main steps for sequencing quality assessment, data

preprocessing, and generation of per-gene count tables ready for subsequent gene expression

and translation efficiency calculations.

Contribution to the studies

This study was designed by Prof. David Gatfield; whole-organ ribosome profiling was set up

and performed by Dr. Peggy Janich, and data was analyzed by Dr. A. Bulak Arpat. Dr. Peggy

Janich, Maykel Lopes and myself carried out the validation and follow up experiments.

I was involved in the investigations of uORF translation role on circadian clock function and,

particularly, in studying the effect of impairing translation reinitiation on the circadian period in
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cells (Janich et al. [2015], figure 6). This included the production of lentivirus carrying different

shRNAs against Denr, the transduction of NIH3T3 fibroblasts carrying a circadian reporter

(Dbp-Luciferase), the validation of knock-down efficiency by qPCR and Western blotting, and

the in vivo measurement of bioluminescence rhythms on synchronized cells.

The identification of several core clock genes containing uORFs and their overall impact on

circadian phenotype prompted us to investigate circadianly relevant uORFs and reinitiation

events transcriptome-wide in a dedicated follow up study (Chapter 2).

Castelo-Szekely et al. 2017: Results summary and

contribution to the study

In Castelo-Szekely et al. [2017] (Research Articles, page 127) we studied translational regulation

across time, i.e. around the day, and space, i.e. across tissues.

As in Janich et al. [2015], we used ribosome profiling to assess the contribution of translational

efficiency to daily gene expression rhythms in mouse kidney, an organ with important circadian

functions [Bonny et al., 2013] that shares a large proportion of the expressed transcriptome

with liver [Brawand et al., 2011; Zhang et al., 2014]. Furthermore, by contrasting translational

rhythms in kidney to those in liver, we observed that the large tissue specificity reported for the

rhythmic transcriptome [Storch et al., 2002; Zhang et al., 2014] extended to the translatome,

both in transcript identities and in phase clustering.

We first verified that kidney ribosome profiling data was of comparably high quality and

resolution than the liver data of the same mice from Janich et al. [2015]. Temporal disposition

of the data was similarly reproduced for kidney; albeit in a reduced manner, suggestive of fewer
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and/or smaller amplitude rhythms in this organ (article’s figure 1).

This study revealed 178 genes with robust rhythms in transcript abundance and ribosome

occupancy in both organs (article’s figure 3). In contrast to liver, where both oscillations

were tightly synchronised, protein production peaks preceded maximal abundance in kidney,

suggesting that translation efficiency was markedly regulated in this organ and decreases over

the lifetime of the transcript.

Rhythmic translation of constantly abundant transcripts was confined to less than hundred

cases in kidney and, interestingly, did not include ribosomal proteins and other translational

machinery components, whose translation efficiency remained constantly high along the day

(article’s figure 4). Since mTOR signalling triggered by feeding-fasting cycles is a known

regulator of the expression of these transcripts [Jouffe et al., 2013; Atger et al., 2015], these

results suggested a reduced sensitivity of kidney to systemic feeding cues. Moreover, translational

oscillations in kidney showed a broader peak distribution and were of overall smaller amplitude

than liver rhythms.

Finally, tissue-specific translation efficiency also modulated protein biosynthesis of core clock

transcripts, leading to an overall higher convergence between tissues at the level of translation

than mRNA abundance (article’s figure 5).

On the other hand, the data generated in this comparative study provided insights into

constitutive gene expression regulation across organs. We observed that translation efficiencies

spanned a narrower range across tissues than mRNA levels, indicating a major role of transcrip-

tion and mRNA decay in setting gene expression differences (article’s figure 2). Nevertheless,

tissue-specific translation efficiency was significant for ∼9% of the transcriptome and globally

counteracted transcript abundance divergence. Furthermore, our anlyses suggested that tissue
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specificity in translation efficiency was partly achieved by the differential expression of transcript

isoforms that differed in their 5’UTRs (article’s figure 2).

Contribution to the study

This study was designed by Prof. David Gatfield. Liver ribosome profiling data came from

Janich et al. [2015], generated by Dr. Peggy Janich and analyzed by Dr. A. Bulak Arpat. I

carried out the ribosome profiling experiment around the clock in mouse kidney, performed

nearly all analyses presented in the study with the invaluable help of Dr. A. Bulak Arpat, and

contributed to the writing of the manuscript.
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2 Translational regulation by upstream

Open Reading Frames

Gene expression regulation can occur at several stages, including translation - the process of

protein assembly according to the nucleotide sequence of an mRNA. Translational regulation

allows for more rapid and reversible changes in protein concentrations than transcriptional

control to restore homeostasis in response to internal or environmental stimuli.

Canonical translation initiation

Translation itself can be global and transcript-specifically regulated at either of the four stages

- initiation, elongation, termination, and ribosome recycling - although initiation is considered

the rate-limiting step [Jackson et al., 2010]. In eukaryotes, canonical initiation involves a

scanning mechanism that requires multiple initiation factors (eIFs) [Sonenberg and Hinnebusch,

2009]. It begins with the formation of the ternary complex (TC) comprised of GTP-bound

eIF2 and methionyl-initiator tRNA (Met-tRNAi), and its assembly onto the 40S ribosomal

subunit, facilitated by eIF1, eIF1A, eIF3 and eIF5, forming the 43S preinitiation complex (PIC).
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The PIC is then recruited to the mRNA at its m7G-capped 5’ end, an attachment mediated

by the eIF4F complex, composed of the RNA helicase eIF4A, cap-binding protein eIF4E, and

eIF4G, a scaffold protein that, in turn, binds to poly(A)-binding protein (PABC) allowing

circularization of the transcript. The PIC begins scanning downstream the 5’ untranslated

region (5’ UTR) until it encounters an initiator codon with base complementarity to Met-tRNAi.

Upon recognition, eIF5 facilitates irreversible GTP hydrolysis, which triggers the formation of

the scanning-arrested 48S PIC, release of eIF2-GDP, and subsequent joining of the 60S subunit,

catalyzed by eIF5B, to produce 80S ribosomes ready for translation elongation.

Exceptions to the scanning mechanism involve the direct recruitment of the ribosome to the

mRNA at specific internal ribosome entry sites (IRES). IRES-mediated translation initiation is

frequent on viral mRNAs and can occur on some cellular mRNAs too, allowing translation on

certain transcripts when translation has been globally downregulated.

The initiation rate can be controlled, leading to a global reduction of cap-dependent transla-

tion. The two best known mechanisms involve interfering with the TC recycling or with the

cap recognition process [Jackson et al., 2010].

In order to allow new rounds of translation initiation, the ternary complex needs to be

recycled, a process in which eIF2 is recharged with GTP by eIF2B, a guanine exchange factor

(GEF). However, upon a variety of cellular stresses, including accumulation of unfolded proteins

in the ER, nutrient starvation, iron deficiency or virus infection, eIF2 can be phosphorylated on

Ser51 of its α subunit, rendering it a competitive inhibitor of eIF2B and therefore preventing

recycling and TC reconstitution. Four protein kinases are known to phosphorylate eIF2α

depending on the type of cellular stress: PKR kinase, activated by double stranded RNA and

important in the antiviral response; heme-regulated kinase, most relevant in erythroid cells;
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PKR-like endoplasmic reticulum kinase (PERK), activated upon ER stress; and general control

non-derepressible 2 kinase (GCN2), activated by nutriend starvation [Jackson et al., 2010].

Phosphorylation also regulates the levels of eIF4F and therefore, the cap recognition com-

petence of the complex and the recruitment of the PIC. The assembly of the complex is

hindered by eIF4E-binding proteins (4E-BPs) that compete with eIF4G for binding to eIF4E.

Hypophosphorylated 4E-BPs strongly bind eIF4E, preventing cap complex formation, whereas

phosphorylation weakens their interaction with eIF4E. The main kinase of 4E-BPs is mammalian

target of rapamycin (mTOR), an effector of the PI3K/Akt pathway that integrates signals from

cellular nutrient, oxygen and energy availability [Jackson et al., 2010].

Upstream open reading frames and alternative translation

initiation

Due to the scanning nature of canonical translation initiation, the first AUG encountered by the

ribosome does not often correspond to that of the main protein coding sequence. Translation

can thus initiate within the so-called 5’ untranslated region (5’ UTR) – more recently known as

5’ leader – giving rise to upstream open reading frames (uORFs) that can terminate before or

overlap with the coding sequence (CDS). uORFs are typically shorter than the CDS, with a

mean length of 48 nt [Calvo et al., 2009], and can initiate by near-cognate start codons – with

NUG generally working best – embedded in strong contexts similar to the kozak consensus

sequence “gccA/GccNUGGG” [Hinnebusch, 2011]. The functional importance of AUG uORFs

has been supported by the fact that their occurrence is less frequent than expected by chance

[Iacono et al., 2005], and that they show a high degree of evolutionary conservation [Churbanov
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et al., 2005; Matsui et al., 2007; Calvo et al., 2009; Arribere and Gilbert, 2013; Johnstone

et al., 2016].

Translation of these uORFs requires translation to be reinitiated, a process in which the

ribosome retains or reacquires the necessary eIFs and resumes scanning of the 5’UTR before

the next start codon. Alternatively, the scanning ribosome might bypass certain uORFs, located

in unfavourable contexts, in favour of a stronger uORF further downstream, or of the CDS, in

a process known as leaky scanning (Figure 2.1). Translation reinitiation and leaky scanning

are inefficient processes, and thus uORF-harbouring transcripts generally show reduced protein

synthesis levels from the main CDS [Matsui et al., 2007; Calvo et al., 2009], and also [Janich

et al., 2016; Castelo-Szekely et al., 2017]. Moreover, the peptide encoded by the uORF might

interfere with the ribosome, blocking further translation or scanning, or triggering mRNA

degradation by nonsense-mediated decay (NMD) (Figure 2.1). The presence of uORFs thus

serves to modulate translation in a transcript-specific manner. In addition, alternative splicing

and alternative promoter usage can give rise to uORF-containing and uORF-lacking isoforms in

a tissue and condition-specific manner, further adding to the myriad of mechanisms through

which uORFs can act (reviewed in Wethmar [2014]).

Several factors are known to affect the efficiency of reinitiation; for example, short uORFs and

uORFs without strong secondary structures – usually requiring shorter translational times – are

more likely to be reinitiation-competent, as the ribosome might retain the initiation machinery

[Kozak, 2001]. Similarly, the location of the uORF stop codon with respect to the start of

the CDS is critical for reinitiation: larger distances would allow the ribosome to regain the

required initiation factors, reducing the inhibitory potential of the uORF, whereas a shorter

spacing could be insufficient for reinitiation [Kozak, 1987]. In addition to the uORF length and
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uORF
5’ UTR

40S

60S

CDS

40S
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A) Leaky scanning

B) Translation reinitiation

C) Stalling

Figure 2.1: Mechanisms of uORF-mediated translational control. A) In leaky scanning, the ribosome
can sometimes bypass a uORF and initiate translation at a downstream ORF. The frequency of leaky
scanning depends on the efficiency of start codon recognition. B) Translation reinitiation occurs
when the small ribosomal subunit remains associated to the mRNA and resumes scanning after uORF
translation is terminated. C) Both the nascent uORF peptide and ribosome stalling can create a
roadblock for further elongation. Alternatively, ribosome stalling and/or recognition of the uORF
stop codon as premature can trigger nonsense-mediated mRNA decay (NMD).

intercistronic distance, sequences upstream, within and downstream of the uORF can all affect

reinitiation efficiency and protein production [Mohammad et al., 2017] illustrating the complex

regulatory mode exerted by uORFs.

As mentioned above, uORF translation can also trigger NMD, a surveillance mechanism

employed by cells to selectively degrade mRNAs with premature termination codons [Behm-

Ansmant and Izaurralde, 2006; Singh et al., 2008]. Briefly, during normal translation termination,

eukaryotic release factor 3 (eRF3) joins the ribosome upon stop codon recognition, and, in

turn, interacts with PABC, triggering ribosome subunit dissociation and peptide release. On

the other hand, premature termination codons (PTCs) can be selectively recognized by the

NMD pathway, which involves the interaction of eRF3 with UPF1, the NMD effector present in

the exon-junction complex (EJC) deposited on the mRNA during splicing. uORF stop codons
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can thus be recognised as premature and, due to the large linear distance to the poly-A, where

PABC sits, and the likely presence of EJC downstream of the uORF, elicit NMD. Nonetheless,

the interaction of PABC with the eIF4F complex during translation initiation, might also favour

efficient translation termination, especially on shorter uORFs that retain eIF4F and eIF3, making

uORFs NMD-resistant [Barbosa et al., 2013]. Although uORF-containing transcripts have been

shown to be more susceptible to NMD [Mendell et al., 2004], the extent of transcript expression

regulation by NMD-sensitive uORFs has not been fully elucidated.

Up to 50% of mammalian transcripts contain uORFs [Calvo et al., 2009; Lee et al., 2012b],

although their functional relevance has only been experimentally validated in a relatively small

number of transcripts [Wethmar et al., 2014]. The best known example of uORF-mediated

translational regulation in mammals involves activating transcription factor 4 (Atf4), with

a regulatory mode similar to that of GCN4 in yeast [Hinnebusch, 2005]. Atf4 contains two

uORFs, the second of which overlaps the CDS. In normal conditions, efficient translation

reinitiation occurs at the second uORF, avoiding protein synthesis from the CDS. During

nutrient deprivation stress, however, when translation is globally switched off and ternary

complex levels are low, the ribosome cannot reacquire the TC after translation of the first

uORF on time to restart at the second uORF. Instead, translation reinitiation occurs at the

main ORF, thus allowing ATF4 protein expression, which helps restoring cellular homeostasis

[Vattem and Wek, 2004].

Since the presence of uORFs generally leads to a reduction in protein synthesis, mutations or

polymorphisms that create, delete or alter uORFs could influence disease-relevant phenotypes.

Several hundred single nucleotide polymorphisms (SNPs) have been identified within human

5’ UTRs that create or delete a uORF, leading to a 30-60% increase in protein production
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in the uORF-less variant [Calvo et al., 2009]. As an example, a C-to-T polymorphism in

human clotting factor XII (FXII) introduces a short uORF in the 5’ UTR that leads to a ∼50%

reduction plasma FXII levels, increasing the risk of thrombosis [Kanaji et al., 1998]. Similarly,

rare mutations that create uORFs in several genes have also been associated to reduced

protein levels and associated to a disease phenotype, including familial hypercholesterolemia

(low-density lipoprotein receptor gene; LDLR), cystic fibrosis (cystic fibrosis transmembrane

conductance regulator; CFTR), melanoma (cyclin-dependent kinase inhibitor 2A; CDKN2A), or

congenital hyperinsulinemia(potassium inwardly-rectifying channel, subfamily J, member 11;

KCNJ11) [Barbosa et al., 2013; Calvo et al., 2009].

DENR-MCTS1-mediated translation reinitiation

Despite the prevalence and functional relevance of uORFs, little is known about the factors

mediating translation reinitiation.

As mentioned above, the time required for uORF translation can be critical to maintain

initiation factors on the ribosome that, in turn, would allow reinitiation. Ribosomes that retain

eIF3 have been shown to be competent for reinitiation on yeast Gcn4, through its association

with reinitiation-promoting elements (RPEs) present upstream of the uORF [Mohammad et al.,

2017]. In this way, eIF3 would prevent post-termination ribosome recycling – consisting in the

dissociation of tRNA and mRNA from 40S subunits mediated by eRF1 and ATP-binding cassette

protein ABCE1 [Dever and Green, 2012] – and allow scanning resumption. The presence of eIF1,

eIF1A and eIF4F on terminating ribosomes has also been associated to efficient reinitiation

[Jackson et al., 2010; Skabkin et al., 2013].

Non-canonical factors can be required for reinitiation on certain transcripts, too. Density
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regulated protein (DENR) and Malignant T-cell amplified sequence 1 (MCTS1) form an

heterodimer that can bind the 40S ribosomal subunit. In vitro biochemical studies showed

that DENR-MCTS1 can recruit the initiator tRNA (Met-tRNAi) to ribosomes that place the

P-site directly on an mRNA start codon, in a scanning-independent manner similar to the

recruitment of ribosomes to IRES by certain virus, including hepatitis-C virus (HCV) [Skabkin

et al., 2010]. Moreover, they can promote the release of deacylated tRNA and mRNA from

dissociated ribosomes. DENR expression increases in cultured cells at high density but not at

growth arrest [Deyo et al., 1998], and it is overexpressed in several cancers. Similarly, MCTS1

is an oncogene that promotes cell cycle progression [Prosniak et al., 1998; Hsu et al., 2005] and

can bind the 5’ cap complex to upregulate the translation of a subset of proliferation-related

transcripts [Reinert et al., 2006]. Overexpression of MCTS1 increases tumorigenicity of breast

cancer cells by promoting angiogenesis and suppressing apoptosis [Levenson et al., 2005].

The DENR-MCTS1 dimer is analogous to eIF2D, where DENR corresponds to the C’ terminal

part and MCT to the N’ terminus of EIF2D (Figure 2.2), suggesting a functional analogy

between both factors. In this line, eIF2D can also deliver Met-tRNAi to the ribosomal P-site

in a GTP-independent fashion [Dmitriev et al., 2010], and induce efficient ribosome recycling

[Skabkin et al., 2010]. Both DENR and MCTS1 contain RNA-binding domains: MCTS1

contains a PUA domain, involved in dsRNA binding in rRNA and tRNA, whereas DENR has a

SUI domain, like that found in eIF1 (Figure 2.2), suggesting a role in start codon recognition.

Moreover, biochemical studies showed that the presence of eIF1 inhibited the activity of eIF2D

and that eIF1 could substitute DENR in binding to MCTS1, although less efficiently [Skabkin

et al., 2010]. The structural similarities between eIF2D and DENR-MCTS1 were recently

confirmed by X-ray crystallography and cryoelectron microscopy [Lomakin et al., 2017; Weisser
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Figure 2.2: Domain organization of DENR-MCTS1 heterodimer, eIF2D, and eIF1. The protein
domains of DENR and MCTS1 correspond to those in the C’ terminal and N’ terminal parts of eIF2D,
respectively, whereas the SUI domain is shared with eIF1, and is involved in start codon recognition.

et al., 2017]. Both studies showed that the DENR-like end of eIF2D binds the 40S subunit in

close proximity to the mRNA entry channel and P-site of the ribosome, and could interact with

the 18S rRNA, and the acceptor arm and the anticodon stem loop of tRNA. Moreover, they

revealed that the presence of eIF2D in the ribosome would be incompatible with that of eIF3,

suggesting mutually exclusive mechanisms of translation reinitiation.

Involvement of DENR-MCTS1 in translation reinitiation was recently shown in Drosophila

[Schleich et al., 2014]. Schleich et al. [2014] reported that Denr -homologue knockout flies died

as pharate adults, had a larval-like epidermis and showed deficient proliferation of histoblasts.

Polysome profiling of Denr -knockdown S2 cells showed a decreased protein synthesis for ∼100

transcripts, specifically in proliferating cells. Follow up on one of such targets, myoblast city

(mbc), indicated that the 5’UTR was sufficient to confer DENR dependance to a luciferase

reporter, reducing its activity without changes in mRNA levels. A series of systematic deletions

on the 5’UTR led to the identification of three short uORFs with strong Kozak contexts required

for DENR dependance, which was abolished upon mutation of the start codons, indicating that

DENR was required for efficiently translation reinitiation. Moreover the identified targets were
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enriched for the presence of uORFs containing strong Kozaks, and were related to functional

categories involving in transcriptional regulation and kinases, together suggesting that DENR

is necessary for efficient translation of a subset of strong uORF-containing genes involved in

proliferation.

More recently, the observations made in Drosophila were tested in human HeLa cells [Schleich

et al., 2017], by constructing 5’ UTR reporters carrying synthetic (non-endogenous) strong

uORFs. Knockdown of Denr or Mcts1, but not of Eif2d, resulted in reduced luciferase activity,

suggesting that, like in Drosophila S2 cells, strong uORF-containing mRNAs require DENR

for translation reinitiation. However, in contrast to the observations in Drosophila, DENR

requirement was strongly dependent on the length of the synthetic uORF, with only uORFs

coding for 1 aminoacid leading to a decrease in reporter activity upon Denr knockdown. Taking

into account these uORF specificities, Schleich et al. [2017] defined ∼100 human transcripts

that would be predicted to be DENR-dependant in human cells, most of which were neuronal

genes and G-protein-coupled receptors genes, and further validated several candidates. By

contrast, an analogous search for strong uORFs in the mouse transcriptome could not be

validated in reporter assays, suggesting that the uORF features that confer DENR dependance

might vary across cells and/or organisms [Schleich et al., 2017].
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Investigating the sequence features of DENR-mediated

translational control and the circadian clock regulation by

uORFs

Together, the above-mentioned studies indicated that DENR-MCTS1, and likely also eIF2D,

can regulate translation reinitiation, and defined ∼100 transcripts predicted to be under DENR

control. However, a direct identification of the endogenous DENR-MCTS1 targets in mammalian

cells is still lacking, as well as an in vivo quantification of the degree of protein synthesis

regulation conferred by DENR-MCTS1.

On the other hand, the presence of translated uORFs in several core clock genes prompted

us to investigate whether DENR-MCTS1 could regulate translation reinitiation within the clock

circuitry, and therefore, affect circadian function. Depletion of Denr in mouse NIH3T3 fibroblast

carrying a circadian reporter led to a circadian period shortening of up to 1.5 hours, suggesting

a role of uORF translation and DENR-mediated reinitiation in efficient clock function (Janich

et al. [2015], Research Articles page 75, and Chapter 1 of this thesis).

In Castelo-Szekely et al. [in preparation](Research articles, page 167), we therefore aimed to

identify genes that require DENR for efficient translation transcriptome-wide in mouse NIH3T3

cells, to systematically characterise uORF/transcript features that confer DENR dependance,

and to detect the DENR targets within the core clock that could explain the period phenotype.

43



CHAPTER 2. TRANSLATIONAL REGULATION BY UPSTREAM OPEN READING FRAMES

Castelo-Szekely et al. (in preparation): Results summary

and contribution to the study

In this study (Research articles, page 167), we aimed to identify the endogenous DENR targets

in mammalian cells by performing ribosome profiling in NIH3T3 cells upon shRNA-mediated

Denr depletion. We hypothesized that, if DENR is required for efficient protein synthesis of a

subset of uORF-containing genes, DENR targets could be identified from changes in translation

efficiency (TE) from the main CDS. Ribosome profiling is thus suitable for these analysis, as

it allows both the annotation of translated uORFs and the quantification of TE differences

between knockdown and control cells. Moreover, through the use of multiple regression analysis,

we aimed to characterise uORF features associated with DENR dependance, expanding the

observations from Schleich et al. [2014, 2017].

To explore how the translational landscape changed upon Denr knockdown, we quantified

relative 5’ UTR translation as the ratio of 5’ UTR to CDS-mapping reads. We observed an

increased relative translation in 5’ UTRs of Denr -deficient cells and a higher 5’ UTR footprint

density, suggesting a ribosome redistribution upon Denr knockdown, likely due to the presence

of uORFs (article’s figure 1). Since 5’ UTR translation served as a proxy for uORF translation,

the translational shift could reflect an increased uORF usage that can be due to impaired leaky

scanning or reinitiation.

In order to identify DENR targets based on a change in CDS TE, we used several available

algorithms for the quantification of differential TE, and identified ∼200 transcripts with a

significant decrease in TE in Denr -depleted cells. These targets were enriched for translated-

uORF containing transcripts, were associated to functional pathways, such as translation, kinase
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activity, and mRNA stability, and included many cancer-related genes (article’s figure 2).

DENR dependance was validated through the use of dual reporters in which the 5’ UTR

of several identified targets was cloned upstream of Firefly luciferase. Luciferase activity was

thus reduced in the absence of Denr and could be rescued by mutating the uORF start codon.

Although not initially identified in our analyses, reporter assays also revealed DENR dependance

for the mouse homologue of mbc identified in Schleich et al. [2014] as a DENR target (article’s

figure 3).

We next investigated which transcript specificities can confer DENR dependance by modelling

the change in CDS TE observed upon Denr knockdown on several uORF features that can

regulate uORF TE and efficient translation reinitiation. The analysis revealed that the number

of uORFs, the presence of AUG uORFs in strong Kozak contexts, and the distance of the last

uORF to the start of the main ORF were associated to decreased CDS TE in Denr -deficient

cells (article’s figure 4).

Finally, this study also revealed Clock as a target of DENR. Clock contains two translated

AUG uORFs, the second of which overlaps the CDS. Following the second uORF’s stop codon,

Clock CDS contains a second start site, in frame with the annotated one, thus potentially

giving rise to an alternative N’ truncated protein, that would be 9 aminoacids shorter, when

the overlapping uORF is translated. Through a series of luciferase reporter assays, in which

the start codon of the uORFs, main ORF or alternative ORF were systematically mutated, we

observed that uORF 2 (the overlapping one), strongly reduces CLOCK protein expression, and

was dependent on DENR for initiation on the alternative CDS (article’s figure 5). Moreover,

mutation of the annotated CDS start codon did not result in a change in protein expression

compared to Clock Wt, suggesting that this ATG is not being used in NIH3T3 cells, or even,
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that the start codon of CLOCK is wrongly annotated. By contrast, mutating the alternative

ATG led to a 95% reduction in luciferase signal, consistent with the predominant expression of

the shorter isoform.

Contribution to the study

I participated in the study design together with Prof. David Gatfield; performed all experiments,

with helpful assistance from Mara de Matos and Angelica Liechti, who carried out all clonings for

reporter construction. I analysed the data and wrote the manuscript with input and supervision

from Prof. David Gatfield. The manuscript is currently in preparation. The recent finding

of Clock as a DENR target opened new exciting questions that we are currently addressing

experimentally and that we count on adding to the final manuscript (See Discussion).
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Tissue-specific translational regulation of circadian gene expression

In the first part of this thesis, two fundamental questions of circadian genomics were addressed,

namely, its post-transcriptional and tissue-specific regulation (Research articles, pages 75, 121

and 127). Given that proteins are closer to the final functional rhythmic output, quantifying

protein synthesis rates around-the-day is of high relevance to understand circadian gene

expression, physiology and behaviour.

The analysis of daytime-dependent translation efficiency revealed that 8-9% of transcripts

with protein synthesis rhythms showed constant steady-state mRNA levels in liver and kidney,

globally corresponding to 1-2% of the transcriptome. Moreover, translational rhythms were

largely exclusive to each organ, despite the large overlap in expressed transcriptomes. The latter

suggested that, similar to the observed differences in oscillatory transcriptomes [Storch et al.,

2002; Panda et al., 2002; Zhang et al., 2014; Mure et al., 2018], tissue-specific factors and

different integration of systemic cues (e.g. feeding) largely determine rhythmic protein output.

In liver, an organ with key metabolic functions, biosynthesis of ribosomal proteins (RPs) is

rhythmically regulated, gating the high energy consuming process of translation to the time of
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the day with highest nutrient availability. Accumulation of RPs during the dark/active phase

could result in a global increase in protein synthesis in this phase, which would be missed in our

analysis (see below). This hypothesis was recently confirmed in night-time-fed animals, showing

that not only total protein content oscillated, but also whole liver size and mass changed

accordingly [Sinturel et al., 2017]. This further indicated that the number of ribosomes might

be rate-limiting for protein synthesis, through the precise production of RPs and the synthesis of

rRNAs in excess [Sinturel et al., 2017]. The opposite, however - an accumulation of RPs during

the day in day-time-fed animals - was not observed [Sinturel et al., 2017], suggesting that there

is more to it than a response to nutrient availability and that both circadian and metabolic

signals could control RP biogenesis. Given that TOR expression itself is clock-regulated in

liver [Jouffe et al., 2013], the local clock could, in this scenario, gate nutrient-derived mTOR

signalling by controlling its expression. Given its smaller role in energy homeostasis, it is

likely that kidney responds less pronouncedly to feeding/fasting signals, therefore showing a

dampened or rather constant expression of translational machinery components. In this line,

TOR expression and activity also showed reduced-amplitude rhythms in kidney [Jouffe et al.,

2013]. Moreover, kidney contains a more heterogeneous cell population, making it plausible

that different cell types with specialised functions show cell type-specific translational rhythms,

as shown for rhythmic mRNA accumulation as well [Zuber et al., 2009]. Elucidating RP and

other cases of translational control observed in liver – including the rhythmic regulation of iron

homeostasis through Fth1/Ftl1 – could be the object of future research.

It is noteworthy, that ribosome profiling as it was implemented in these studies would

miss global translational changes occurring between time-points, e.g. a global translation

upregulation during night-time due to increased RP production. These would be lost upon the

48



DISCUSSION

global normalization procedure that assumes that most transcripts do not change their ribosome

occupancy, and that is applied between samples (i.e. timepoints) to correct for sequencing

depth differences. In future studies, the use of spike-ins (e.g. ribosome footprints derived from

mRNA of a different species) and a normalization to this external reference will be useful in

cases where a lack of global changes cannot be assumed.

Beyond the contribution of protein synthesis rates to rhythm generation, tissue-specific trans-

lation efficiency served to modulate the phase differences between the rhythmic transcriptome

and translatome. In kidney but not in liver, maximal protein biosynthesis preceded mRNA level

peaks, suggesting that differences in mRNA polyadenylation kinetics and stability across organs

can regulate translation efficiency rhythms, as has been shown before in mouse liver alone

[Kojima et al., 2012].

Quantification of ribosome footprints on the CDS serves as an estimation of absolute

protein production [Li et al., 2014]. Our work therefore allowed the comparison of core clock

stoichiometries across organs, and showed that TEs counteracted mRNA levels differences in all

but Clock, Bmal1, Rev-erbβ, and Rorα transcripts. Presumably, rhythmic translation efficiency

that is tissue-specifically regulated, serve to modulate core clock components production, which

in turn, may adjust organ-specific rhythmicity parameters. For example, since increased PER2

levels give rise to long free-running period [D’Alessandro et al., 2015], the higher PER proteins

production in kidney could explain the longer period observed in kidney vs. hepatic explants

[Yoo et al., 2004]. In the interconnecting limb too, the higher synthesis of activators (RORs)

and lower of repressors (REV-ERBs) observed in liver – the latter potentially via differential

uORF translation – were consistent with known differences in the active state of their targets,

mainly involved in hepatic metabolism [Fang and Lazar, 2015]. Using protein synthesis rather
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than transcript levels as a read-out will be of use to understand the functional properties of the

clock circuitry in other organs as well.

Translational contribution to constitutive gene expression divergence

between tissues

The transcriptome and translatome data generated in Janich et al. [2015] and Castelo-Szekely

et al. [2017] provided insights into constitutive gene expression control as well. Understanding the

mechanisms behind tissue-specific regulation of gene expression, and the relative contributions

of transcription and translation to define protein levels, is a subject of current research in the

gene expression field at large, and an ongoing matter of debate [Vogel and Marcotte, 2012; Silva

and Vogel, 2016]. Recent studies have shown that mRNA levels correlated only poorly with

protein abundance, indicating post-transcriptional regulation, but while some studies suggested

that mRNA-to-protein ratio differs between genes but is constant across tissues [Edfors et al.,

2016], others observed a significant inter-organ variation [Franks et al., 2017] suggestive of

tissue-specificity as well.

The analysis of differential translation efficiency across organs showed that this was of smaller

scale than mRNA abundance differences, similar to the narrower dynamic range of TE observed

within tissues. These findings indicated that gene expression divergence is largely defined at

the transcriptome level and that protein biosynthesis had a modulatory role. Nevertheless,

organ-specific TE, affecting ∼9% of the shared transcriptome, served to counteract mRNA

level differences leading to a larger similarity in protein production across organs, a phenomenon

similar to that reported between yeast [McManus et al., 2014] and rat [Schafer et al., 2015]

strains, and in line with a higher evolutionary conservation of the proteome [Schrimpf et al.,
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2009; Laurent et al., 2010; Khan et al., 2013]. It it therefore likely that a stronger selection

pressure acts to maintain precise protein biosynthesis rates than RNA levels.

Several mechanisms may be responsible for tissue-specific gene regulation post-transcriptionally.

In Castelo-Szekely et al. [2017], I observed that transcript diversity that affects the 5’ UTR,

as well as GC content or 5’UTR length, were associated to TE differences. These results

highlight the relevance of translation regulatory mechanisms involving 5’ UTRs, and that could

include tissue-specific uORF, RBP or translation machinery components expression and usage.

In particular, differential uORF translation between organs, as well as differential expression

of transcript isoforms containing or lacking uORFs, can thus serve to quickly, reversibly, and

cell-specifically regulate protein biosynthesis.

The genome-wide data generated in our studies can serve as a resource for future studies in

the field; for example, of the correlation of protein levels to both translational rates and mRNA

abundance in different organs, or for a more comprehensive study of uORF usage across organs.

DENR-mediated translation regulation

Translation efficiency can be regulated through both cis- and trans- acting factors, such as

uORFs and RBPs, respectively. uORF usage is pervasive in the mammalian transcriptome,

and generally leads to a reduced translation efficiency on the main CDS [Wethmar, 2014]. In

the analyses of the liver translatome, we found that also within core clock transcripts, uORF

translation was abundant, and that circadian period length in NIH3T3 cells could be regulated

by DENR-mediated translation reinitiation [Janich et al., 2015], revealing a novel mechanism

of circadian clock regulation. In the second part of this thesis (Research articles, page 167),

DENR targets in NIH3T3 cells were identified, including one among core clock genes, gaining
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insights into the sequence specificities that confer DENR dependance.

DENR was recently identified as a eukaryotic reinitiation factor [Schleich et al., 2014], and

its targets in mammalian cells have been predicted through an in-silico approach that used

the DENR dependance measured for several synthetic uORF-containing reporters – of varying

length or Kozak strength – to extrapolate translational regulation genome-wide [Schleich et al.,

2017]. Using ribosome profiling in Denr -deficient cells, I quantified CDS TE changes in vivo,

identifying 240 transcripts that needed DENR for efficient protein production, and that were

enriched for uORF-containing genes.

DENR and its heterodimerization partner MCTS1 are oncogenes [Prosniak et al., 1998;

Reinert et al., 2006], upregulated, among other, in prostate cancer according to public cancer

genomic databases [Cerami et al., 2012]; and many of the identified targets are thus proliferation-

related genes, upregulated in several cancer types, or associated to increased risk and poor

prognosis. Kelch Domain Containing 8A (KLHDC8A) protein is overexpressed in human gliomas

that become resistant to epidermal growth factor receptor (EGFR) silencing, the commonly

used therapeutic approach, allowing aggressiveness maintenance in these tumors through an

unknown EGFR-independent pathway [Mukasa et al., 2010]. It is thus plausible that in the

absence of EGFR dependance, a DENR-mediated translational control comes in place to

increase KLHDC8A protein levels. Similarly, Vascular endothelial growth factor D (VEGF-D),

or Mitogen-Activated Protein Kinase Kinase 5 (MAP2K5) are upregulated in different cancers

[Thelen et al., 2008; Diao et al., 2016]. DENR could therefore be an attractive drug target

candidate: decreasing DENR levels could, in turn, reduce the oncogenic levels of the proteins it

regulates in proliferating, but not in quiescent, cells.

A comparison of the targets identified in our study and those found previously [Schleich et al.,
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2014, 2017] returned little overlap. All but one (Tmem60) of the eight targets computationally

predicted and validated in HeLa cells by Schleich et al. [2017] were not expressed in NIH3T3

cells. Tmem60 was reported to result in a 25% downregulation upon Denr knockdown, whereas

in our system a ∼8% decrease in CDS TE was quantified. Similarly, from the ensemble of

104 targets predicted by Schleich et al. [2017], >90% were not expressed or lacked a mouse

orthologue in NIH3T3 cells, and others (e.g. Lca5, Mllt11 or Dsel) were regulated to a lesser

extent. It is therefore likely that DENR targets and their degree of regulation is cell-type and

organism-specific. Moreover, fundamental differences in experimental and analytical approaches

could underlie the differences in the translation regulation magnitude observed between studies.

Nevertheless, Dock1, the mouse orthologue of Drosophila’s mbc shown in Schleich et al. [2014]

to be a strong DENR target in flies, also showed DENR dependance in our reporter assays,

although it was not detected in our differential TE analysis, indicating that our list might not

be fully exhaustive.

Several transcript/uORF properties can control the efficiency of uORF by-pass and translation

reinitiation. The start codon and context can influence the strength of its recognition; sequences

upstream, within or downstream a uORF can be recognised by trans-acting factors affecting

reinitiation [Mohammad et al., 2017]; and uORF length, structural complexity and time required

for decoding, as well as the intercistronic distance, can affect reinitiation efficiency [Poyry et al.,

2004; Kozak, 1987, 2001]. What rules dictate DENR dependance on certain uORFs but not on

others are thus intriguing. Using all annotated uORF-containing transcripts, I identified four

prominent features that added predictive value to a comprehensive model of CDS TE regulation

exerted by DENR. The number of uORFs, the start codon identity and sequence context, and

the distance to the main ORF, correlated with the magnitude of translational regulation. The
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presence of several uORFs was already known to lead to a CDS TE downregulation, by requiring

successive reinitiation events [Calvo et al., 2009], and DENR regulated transcripts would not

be an exception. Similarly, DENR would be required for efficient reinitiation on uORFs located

further from the CDS, consistent with the idea that longer distances allow reacquisition of the

initiation machinery on time for CDS translation [Kozak, 1987]. Finally, AUG-starting uORFs

and those within strong Kozak contexts showed the strongest DENR dependance, as was shown

in fly [Schleich et al., 2014] and human cells [Schleich et al., 2017], suggesting a conserved

mechanism of action. On the other hand, the length of the uORFs was not correlated with

the efficiency of DENR-mediated regulation. Notably, already between Drosophila and human

cells, DENR dependance on uORF length was quantitatively different: whereas in S2 cells, up

to 4 amino acid-coding uORFs were found to be regulated by DENR [Schleich et al., 2014],

uORFs coding for only 1 amino acid were strongly DENR-dependent in HeLa cells [Schleich

et al., 2017]. Therefore, the length specificities for DENR regulation could differ between

species. Moreover, deriving genome-wide DENR dependance from synthetic uORF-containing

reporters [Schleich et al., 2017] could be biased to the results obtained from a selected number

of constructs. It is therefore not unlikely that the in vivo targets contain uORFs of varying

length, since it is the time required for translation rather than the linear length per se what

determines scanning resumption [Barbosa et al., 2013; Calvo et al., 2009; Poyry et al., 2004].

Translational regulation in uORF-containing genes can occur through several different

mechanisms: leaky scanning, in which uORFs are bypassed; reinitiation, in which the ribosome

resumes scanning after uORF translation; and other mechanisms involving ribosome stalling

and NMD (Wethmar [2014] and Figure 2.1). DENR-MCTS1 can bind the small ribosomal

subunit, close to the P-site and mRNA entry channel [Lomakin et al., 2017; Weisser et al.,
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2017]. However, the iClip experiments that I carried out in collaboration with Prof. Jernej

Ule did not reveal DENR crosslinking to mRNAs (data not shown), suggesting that DENR

travels on the ribosome or transiently interacts with it, although recognition and binding

to specific motifs around uORFs could be possible through a so far unknown factor. The

presence of DENR-MCTS1 potentially clashes sterically with that of other canonical translation

initiation factors, e.g. certain eIF3 subunits [Lomakin et al., 2017; Weisser et al., 2017]. Given

that eIF3 is implicated in translation termination and ribosome recycling [Beznoskova et al.,

2013], it is plausible that DENR-MCTS1 recruitment to the ribosome displaces eIF3 to then

promote reinitiation on a downstream ORF through DENR’s SUI motif, involved in start codon

recognition [Yoon and Donahue, 1992]. Alternatively, DENR-MCTS1 could compete with, and

replace, eIF1 for cap-dependent scanning, given that simultaneous DENR-MCTS1 and eIF2-

tRNAi presence on the ribosome is not incompatible [Lomakin et al., 2017]. Overexpression of

DENR in proliferating cells would shift the balance to more DENR-MCTS1-containing ribosomes,

leading to increased CDS translation through skipping of strong uORF that would normally be

translated in a eIF1-containing ribosome. Discerning between leaky scanning and reinitiation

would gain insights into the precise mechanism of action of DENR-MCTS1. Translation complex

profile sequencing (TCP-seq), a newly developed technique derived from ribosome profiling,

could be used to monitor the translation dynamics of scanning and terminating ribosomes

[Archer et al., 2016]. TCP-seq allows the recovery of small ribosomal subunit footprints –

which differ in length from those captured by 80S monosomes – around both the uORF start

and stop codons, and could thus be used to elucidate the mode of action of DENR-MCTS1

and other translation (re)initiation factors.

The structural and domain organisation similarity between the DENR-MCTS1 heterodimer
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and eIF2D (Skabkin et al. [2010]; Lomakin et al. [2017]; Weisser et al. [2017] and Figure 2.2)

suggests similar modes of regulation. However it is still unknown whether both factors regulate

the same or different sets of transcripts and whether they act in different cell types/cellular

contexts, what are the sequence specificities of the transcripts and uORFs regulated by each

factor, and whether their action confers a similar degree of protein synthesis regulation to their

targets. It would thus be of interest to carry out a comparative study between both factors,

following an approach analogous to this study on eIF2D. Interestingly, Fijalkowska et al. [2017]

performed ribosome profiling on Eif1 -depleted human cells and characterised uORF features

associated to eIF1-mediated translational control. Like DENR, eIF1 contains a SUI domain

involved in start codon recognition [Kasperaitis et al., 1995], and previous in vitro studies

showed that both factors can promote reinitiation [Skabkin et al., 2010, 2013]. However, in

contrast to DENR, which is necessary for efficient translation of strong AUG uORF-containing

mRNAs, eIF1 regulated transcripts with near-AUG uORFs, indicating that, despite the protein

domain similarity, these two factors are involved in reinitiation on distinct classes of uORFs.

CLOCK protein isoforms generated through reinitiation

Among core clock transcripts, Clock was identified as a DENR target, showing a ∼20%

reduction in protein synthesis rate in Denr -depleted cells. We annotated two highly translated

AUG-initiated uORFs on Clock’s 5’ UTR, the second of which overlaps with the main CDS. The

presence of an additional AUG, downstream of the second uORF’s stop codon and in frame with

the annotated CDS start site, could give rise to a 5’ truncated CLOCK protein isoform, that

would be 9 amino acids shorter (Figure 3.1). A series of systematic mutations suggested that

DENR was necessary for reinitiation on the alternative CDS after translation of the overlapping
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uORF, revealing that alternative translation initiation could give rise to two CLOCK protein

isoforms. Nevertheless, our results suggested that the currently annotated, longer CLOCK

isoform, is not highly expressed in NIH3T3 cells, and could even be missannotated, taking into

account our and published ribosome profiling data (see article’s Supplementary Figure 8). In

the future, it will be exciting to investigate whether both isoforms can be detected in vivo, by

for example, N-terminal proteomic experiments in mouse liver.

The N-terminal portion of CLOCK contains the bHLH domain, which together with its

counterpart in BMAL1, is involved in DNA binding. Mutations affecting the heterodimer

interface have been shown to impair CLOCK:BMAL1 stability and binding activity and lead to

altered circadian period phenotypes [Huang et al., 2012]. Since the alternative CLOCK protein

identified here would only lack the first nine amino acids of the full CLOCK isoform, it is likely

that the bHLH domain itself (starting at aa-26) would remain intact (Figure 3.1). However,

N-terminal motifs upstream of the DNA-binding domains in other bHLH transcription factors

have also been shown to be required for cooperative DNA binding [Knoepfler et al., 1999]. It

is therefore tempting to speculate that long and short forms of CLOCK protein could have

distinct DNA binding properties, affecting transcriptional activation, and thus giving functional

differences in the clock.

We had previously observed that Denr -deficient cells displayed a shorter circadian period

(Janich et al. [2015] and Chapter 1 of this thesis). Although we cannot conclude that reduced

CLOCK protein synthesis underlies this phenotype, it is reassuring that Clock−/− fibroblasts

also showed a similar period shortening [Landgraf et al., 2016]. In vivo mutation of the

overlapping uORF through the CRISPR-Cas system could be useful to further assess whether

uORF translation is relevant for circadian function.
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MVFTVSCSKM SSIVDRDDSS IFDGLVEEDD KDKAKRVSRN KSEKKRRDQF NVLIKELGSM 60
LPGNARKMDK STVLQKSIDF LRKHKETTAQ SDASEIRQDW KPTFLSNEEF TQLMLEALDG 120
FFLAIMTDGS IIYVSESVTS LLEHLPSDLV DQSIFNFIPE GEHSEVYKIL STHLLESDSL 180
TPEYLKSKNQ LEFCCHMLRG TIDPKEPSTY EYVRFIGNFK SLTSVSTSTH NGFEGTIQRT 240
HRPSYEDRVC FVATVRLATP QFIKEMCTVE EPNEEFTSRH SLEWKFLFLD HRAPPIIGYL 300
PFEVLGTSGY DYYHVDDLEN LAKCHEHLMQ YGKGKSCYYR FLTKGQQWIW LQTHYYITYH 360
QWNSRPEFIV CTHTVVSYAE VRAERRRELG IEESLPETAA DKSQDSGSDN RINTVSLKEA 420
LERFDHSPTP SASSRSSRKS SHTAVSDPSS TPTKIPTDTS TPPRQHLPAH EKMTQRRSSF 480
SSQSINSQSV GPSLTQPAMS QAANLPIPQG MSQFQFSAQL GAMQHLKDQL EQRTRMIEAN 540
IHRQQEELRK IQEQLQMVHG QGLQMFLQQS NPGLNFGSVQ LSSGNSNIQQ LTPVNMQGQV 600
VPANQVQSGH ISTGQHMIQQ QTLQSTSTQQ SQQSVMSGHS QQTSLPSQTP STLTAPLYNT 660
MVISQPAAGS MVQIPSSMPQ NSTQSATVTT FTQDRQIRFS QGQQLVTKLV TAPVACGAVM 720
VPSTMLMGQV VTAYPTFATQ QQQAQTLSVT QQQQQQQQQP PQQQQQQQQS SQEQQLPSVQ 780
QPAQAQLGQP PQQFLQTSRL LHGNPSTQLI LSAAFPLQQS TFPPSHHQQH QPQQQQQLPR 840
HRTDSLTDPS KVQPQ I

aa 26

Figure 3.1: CLOCK sequence and structure. On top, CLOCK amino acid sequence, with both the
annotated and alternative Methionines in green. Highlighted in bold are the peptides detected in the
circadian nuclear proteome study by Wang et al. [2017], although sequence coverage was fairly limited
(38.42%). On the bottom, CLOCK protein domain organisation and CLOCK:BMAL1 heterodimer
structure (from Huang et al. [2012]). CLOCK crystal structure was resolved starting from amino acid
26, which lies in the bHLH domain that interacts with DNA.

The presence of several uORFs, one of them overlapping the CDS, is reminiscent of the

uORF arrangement observed in Atf4. Protein synthesis in Atf4 follows an on/off regulatory

mode, in which translation is abolished in normal cellular homeostasis, because translation

on the overlapping uORF avoids ribosomal assembly on the CDS start. During nutrient

starvation, however, when levels of ternary complex are low, the ribosome fails to assemble

on the overlapping uORF after translation of the first uORF, thus allowing ATF4 protein

production [Vattem and Wek, 2004]. It will thus be interesting to investigate whether Clock

uORFs are responsive to different stress signals, such as glucose, serum or oxygen deprivation,

oxydative stress, etc, and whether DENR is involved in the stress response to shift the balance

between the different CLOCK isoforms.
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Mammalian gene expression displays widespread circadian oscillations. Rhythmic transcription underlies the core clock

mechanism, but it cannot explain numerous observations made at the level of protein rhythmicity. We have used ribosome

profiling in mouse liver to measure the translation of mRNAs into protein around the clock and at high temporal and nu-

cleotide resolution. We discovered, transcriptome-wide, extensive rhythms in ribosome occupancy and identified a core set

of approximately 150 mRNAs subject to particularly robust daily changes in translation efficiency. Cycling proteins pro-

duced from nonoscillating transcripts revealed thus-far-unknown rhythmic regulation associated with specific pathways

(notably in iron metabolism, through the rhythmic translation of transcripts containing iron responsive elements), and in-

dicated feedback to the rhythmic transcriptome through novel rhythmic transcription factors. Moreover, estimates of rel-

ative levels of core clock protein biosynthesis that we deduced from the data explained known features of the circadian clock

better than did mRNA expression alone. Finally, we identified uORF translation as a novel regulatory mechanism within the

clock circuitry. Consistent with the occurrence of translated uORFs in several core clock transcripts, loss-of-function of Denr,
a known regulator of reinitiation after uORF usage and of ribosome recycling, led to circadian period shortening in cells. In

summary, our data offer a framework for understanding the dynamics of translational regulation, circadian gene expres-

sion, and metabolic control in a solid mammalian organ.

[Supplemental material is available for this article.]

The mammalian circadian system consists of a master pacemaker
in the brain’s suprachiasmatic nuclei (SCN) that synchronizes sub-
sidiary oscillators present in most cell types. In the liver and other
organs, up to 15% of gene expression shows daily oscillations that
are driven directly by local clocks, or by systemic signals such as
feeding and body-temperature rhythms (Vollmers et al. 2009;
Mohawk et al. 2012; Zhang et al. 2014). Of the molecular mecha-
nisms potentially accounting for rhythmic gene expression, tran-
scription has been extensively studied, notably within the core
clock circuitry consisting of transcriptional activators (mainly
CLOCK; ARNTL/BMAL1; RORA, RORB, RORC) and repressors
(mainly PER1, 2; CRY1, 2; NR1D1/REV-ERB alpha; NR1D2/REV-
ERB beta). Their interactions in negative feedback loops generate
transcriptional oscillations not only of clock genes, but genome-
wide (Mohawket al. 2012),whichhas led to theviewthat transcrip-
tion represents the dominant driver of gene expression rhythms.
However, post-transcriptional mechanisms likely contribute as
well. In extension to earlier work showing poor overlap between
liver proteome and transcriptome rhythms (Reddy et al. 2006),
two recent studies have indicated that 20% (Robles et al. 2014) to
50% (Mauvoisin et al. 2014) of cyclically accumulating proteins
are expressed fromnonoscillatingmRNAs. Conceivably, these pro-
tein rhythmsaregeneratedat the levelof translationand/orprotein

stability. In other fields, translational regulation is emerging as key
tounderstanding theoverallmoderate correlations betweenmRNA
andproteinabundances (Vogel andMarcotte2012); a role in rhyth-
mic gene expression is thus conceivable as well.

Time of day–dependent translation is not unprecedented in
mammals. Transcripts encoding ribosomal proteins (RPs) associate
with polysomes preferentially at the beginning of the night, coin-
cidentwith feeding time (Jouffe et al. 2013). ThesemRNAs contain
5′-terminal oligopyrimidine (5′-TOP) motifs that are regulated by
the nutrient-sensitive mammalian target of rapamycin complex
1 (TORC1) pathway (Meyuhas and Kahan 2015). Another docu-
mented mechanism for rhythmic translation involves daily dy-
namics in poly(A) tail length and the rhythmic activity of
cytoplasmic polyadenylation element-binding proteins (CPEBs)
(Kojima et al. 2012). Despite such individual examples, a compre-
hensive and quantitative analysis of rhythmic translation from a
mammalian organ is still lacking.

We have used ribosome profiling (RPF-seq), a method based
on the massively parallel sequencing of ribosome-protected
mRNA footprints (Ingolia et al. 2009), to determine the positions
of translating ribosomes transcriptome-wide and to establish a
quantitative, high-resolution map of the mouse liver translatome
around the clock. From RPF-seq and matching whole-transcrip-
tome sequencing (RNA-seq) data, we determined the relationship
between translation and mRNA abundance rhythms, uncovered
the set of mRNAs for which these rhythms are uncoupled, and
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calculated translation efficiencies transcriptome-wide. Moreover,
we inferred the relative levels of clock protein biosynthesis and
identified upstream open reading frame (uORF) translation as a
novel regulatory mechanism within the clock circuitry.
Altogether, our study reveals key features of rhythmic protein bio-
synthesis and the impact of translational control on gene expres-
sion in a solid, highly differentiated mammalian organ with
well-studied functions.

Results

Ribosome profiling in liver around the clock

We collected time-resolved ribosome profiling data from 48 male
mice entrained to light-dark cycles and euthanized at 2-h intervals
around the clock. We assembled liver extracts into two indepen-
dent replicate time series (12 timepoints, Zeitgeber time ZT0 to
22) (Fig. 1A), prepared ribosome footprints and matching total
RNA, converted them into sequenceable libraries (Fig. 1B), and se-
quenced them with high coverage (Supplemental Table S1). Our
protocol yielded high-quality footprints that mainly mapped to
protein coding sequences (CDS) and were depleted from untrans-
lated regions (UTRs) ofmRNAs (Fig. 1C,D; Supplemental Table S1).
Moreover, the predominant footprint length of 29–30 nt (Fig. 1E)
allowed the precise identification of translated codons. The align-
ment of CDS-mapping reads relative to the position of the ribo-
some’s aminoacyl tRNA-site (A-site; inferable from footprint
length and sequence) (Ingolia et al. 2011) thus revealed excellent
reading frame preference (Fig. 1F) and captured the CDS triplet co-
don composition transcriptome-wide (Fig. 1G). These characteris-
tics were absent in the RNA-seq data, as expected (Fig. 1D–G;
Supplemental Fig. S1A). Moreover, the quantification of CDS-
mapping reads showed high reproducibility across biological repli-
cates (Supplemental Fig. S1B,C). Finally, principal component
analysis (PCA) on the ensemble of data sets (Fig. 1H) separated
RPF-seq and RNA-seq data on PC1 and recapitulated its cyclic na-
ture with near-perfect temporal resolution (PC2 and PC3); i.e.,
the covariates in the experimental design (RNA/RPF and factor
time) were retrieved by an unsupervised method for sample clus-
tering. We concluded that the data sets were of high technical
quality and would be suitable for comprehensive analyses of
rhythmic and constitutive translation in the liver.

Hallmarks of translational regulation in liver

Ribosome profiling from mammalian tissues is still relatively un-
common, and we therefore started with a characterization of gen-
eral properties of the translatome data, independently of its time
resolution. From the ratio of CDS-mapping RPF-seq to RNA-seq
reads, we first computed relative ribosome occupancies, which
can be interpreted as relative translational efficiencies (TEs) be-
cause each footprint reflects the synthesis of an individual protein
molecule and, importantly, integrating read numbers across the
entire CDS corrects for local variation in footprint density
(Ingolia et al. 2011). Briefly, while the local speed of translation
elongation may vary (e.g., ribosome pausing due to RNA structure
or codon usage) and represents a source of inhomogeneous foot-
print distribution on a given CDS, average translation speeds
across genes appear to be rather constant (Ingolia et al. 2011). It
should be noted, however, that a possible influence of local varia-
tion on overall translation speed of an mRNA has been suggested
(Dana and Tuller 2012) and is a current topic of debate (Ingolia
2014).

Inmouse embryonic stemcells (mESCs), TEs cover an approx-
imately 10-fold range and have an asymmetric distribution indic-
ative of an intrinsic upper limit that is transcript-specifically
decreased by inhibitory mechanisms (Ingolia et al. 2011). TEs in
liver showed a broader dynamic range and analogous asymmetry
(Fig. 2A). While multiple mechanisms are likely involved in estab-
lishing transcript-specific ribosome occupancies, several simple
transcript features have previously been observed to correlate
with TEs. In yeast, ORF length and translation rate correlate in-
versely, presumably due to a selection for faster translation initia-
tion on loci encoding short proteins (Arava et al. 2003; Ingolia
et al. 2009). Also in the liver data set, CDS lengths explained a sig-
nificant proportion of variance in ribosome occupancies (R2 =
0.16; P = 1.26 × 10−160) (Fig. 2B). 5′ UTR (R2= 0.047; P = 2.33 ×
10−46) and 3′ UTR lengths (R2 = 0.015; P = 4.29 × 10−16) correlated
with TEs as well (Fig. 2B), and the predictive power of the 5′ UTR
length remained significant even after correction for interdepen-
dence of UTR and CDS lengths (Supplemental Fig. S2A–C). These
results are consistent with a prominent role for 5′ UTRs in transla-
tional control and with the idea that translation regulatory ele-
ments—of which longer 5′ UTRs potentially contain more—are
predominantly inhibitory.

Within 5′ UTRs, uORFs are emerging as important cis-regula-
tory elements that control CDS translation, usually in an inhibito-
ry fashion (Wethmar et al. 2014). Six percent of RPF-seq reads fell
into annotated 5′ UTRs (Fig. 1C), albeit with pronounced tran-
script-specific variability (Supplemental Fig. S3A), suggestive of
abundant uORF usage in the liver. uORFs are short and often poor-
ly conserved (Churbanov et al. 2005) and frequently initiate at
near-cognate (non-AUG) start codons (Ingolia et al. 2011), compli-
cating prediction just from sequence. To explore uORFusage in the
liver, we therefore compiled a uORF-enriched transcript set based
on whether the 5′ UTRs harbored sequence stretches (1) embraced
by AUG initiation and stop codons and (2) covered by footprints
with distinct reading frame preference. Despite these simple crite-
ria that miss, for example, non-AUG-initiated uORFs, the detected
transcripts showed significantly lowermainORF TEs (difference in
location of red vs. gray densities on the ordinate of −0.525 corre-
sponds to >30% TE reduction; P = 2.2 × 10−16; Wilcoxon rank-
sum test) (Fig. 2C), whereas the TEs of transcripts lacking translat-
ed uORFs were slightly increased (Fig. 2C, blue). Importantly, the
correlation of low TEs with translated uORFs was independent of
5′ UTR (or CDS/3′ UTR) lengths (Supplemental Fig. S2D–F).
Instead, linear regression analysis uncovered that the underlying
cause for the correlation of TE with 5′ UTR length (see above)
(Fig. 2B) was uORF presence rather than 5′ UTR length per se
(Supplemental Fig. S2, cf. G–K and A–C). Finally, uORF-containing
mRNAswere globally less abundant (Fig. 2C, red density on abscis-
sa), possibly reflecting the activity of the nonsense-mediated
mRNA decay (NMD) pathway that selectively degrades mRNAs
with premature termination codons and that is known to act on
uORF-containing transcripts (Mendell et al. 2004). We concluded
that uORF usage is frequent in the liver and likely a major determi-
nant of transcript-specific TEs, correlating with reduced protein
biosynthesis from the CDS. Of note, we also analyzed another fea-
ture that may have been expected to correlate with TE, i.e., the
presence of pause sites. By using an analogous approach to
Ingolia et al. (2011) to identify local variation in footprint density
that exceeded the CDS median (more precisely, we used the simi-
lar, but for low translated transcripts, less stochastic “trimean”) by
a certain threshold,we found that the presence of such sites hadno
predictive power for translation rates (Supplemental Fig. S4A,B).

The rhythmic liver translatome
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Figure 1. Time-resolved ribosome profiling data frommouse liver. (A) Overview of the experimental design for liver sampling over the 24-h cycle of the
day. Forty-eight livers were collected and assembled into two replicate time series of 12 timepoints around the clock (each sample representing a pool of
two mice). (B) Overview of the main steps in the protocol for the preparation of RNA abundance (RNA-seq) and ribosome profiling (RPF-seq) data; for
details, see Supplemental Material. (C) Mapping summary of RPF-seq and RNA-seq reads across all replicates and timepoints. Note that RPF-seq reads
were enriched for mRNAs, as expected. For detailed mapping outcome, see Supplemental Table S1. (D) Read distribution within 5′ UTRs, CDS, and 3′
UTRs for RPF-seq (blue) and RNA-seq data (orange) compared with the distribution expected by chance, which is determined by the feature sizes
(gray; N = 10829). Note the enrichment of RPF reads within CDS, the depletion from 3′ UTRs, and considerable amounts of reads (6%) within the 5′
UTR. (E) Insert size distribution of RPF-seq reads across all replicates and timepoints shows that the majority of footprints are 29–30 nt in length. Box-
and-whisker plots: midline, median; box, 25th and 75th percentiles. Whiskers extend to the minimum and maximum values within 1.5 times the inter-
quartile range from the box. (F) Frame analysis for RPF-seq and RNA-seq reads within the CDS (using genes for which the expressed transcript isoforms
define one main translated CDS/protein—called single protein isoform genes—with an RPF-RPKM [reads per kilobase per million mapped reads] value
>5 and fulfilled a few other minor criteria described in Supplemental Material; N = 3793). RPF-seq reads show a clear preference for reading frame 1
(the annotated frame), whereas RNA-seq reads distribute equally across the three reading frames, as expected. Violin plots extend to the range of the
data, with horizontal lines marking the 2.5% and 97.5% quantiles. (G) Read density distribution of RPF-seq and RNA-seq reads within 200 nt from the
start or −200 nt from the stop codons reveals a 3-nt periodicity of RPF reads within coding sequences. The analysis used only transcripts from single protein
isoform genes (see F) with RPF-RPKM > 5 and CDS > 400 nt (N = 3237) and quantified the number of reads per nucleotide based on the A-site prediction as
described in the Supplemental Material. (H) Principal component (PC) analysis of RPF-seq and RNA-seq data sets, using the top-ranked 4000 genes (see
Supplemental Methods). The first three PCs explain 70.3%, 8.3%, and 4.9% of total variation, respectively (3D scatter plot, left panel). While PC1 mainly
reflected variance attributable to differences between the mRNA abundance and footprint data sets (middle panel), PC2 and PC3 resolved mainly variance
attributable to factor time (right panel). Note that the timepoints assemble to a near-perfect “clock” in the PC2 versus PC3 representation. A scree plot
showing contributions of further PCs can be found in Supplemental Figure S1D.
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In the core clock and globally, rhythmic mRNA abundance

is a good predictor of footprint rhythms

Weused the clock genes for first temporal analyses of the data sets.
As illustrated by the anti-phasic expression ofArntl andNr1d1, core
clock transcripts were detected with high coverage and oscillated
in both the RNA-seq and RPF-seq data sets (Fig. 3A). Read count in-
tegration over the CDS indicated that for all core clock compo-
nents, footprint profiles closely matched mRNA abundance
rhythms (Fig. 3B). We concluded that the rhythmic biosynthesis
of core clock proteins was determined by mRNA availability with

no further regulation by time of day–
dependent translation (Supplemental
Fig. S5A). We next conducted tran-
scriptome-wide rhythmicity analyses.
Applying a more than 1.5-fold peak-to-
trough amplitude cut-off, we identified
oscillations in the RNA-seq and RPF-seq
data sets that affected in both cases
∼17% of the protein-coding transcrip-
tome (almost 1900 mRNAs) (Fig. 4A;
Supplemental Table S2).However,mRNA
abundance and ribosome occupancy
rhythms showed different peak phase
distributions (Fig. 4B,C). In good agree-
ment with previous reports (Le Martelot
et al. 2012; Zhang et al. 2014), a majority
of mRNAs thus showed maximal abun-
dance during the night, with an enrich-
ment around ZT15–ZT19 (Fig. 4B). In
contrast, maximal translation was preva-
lent at the beginning of the dark phase,
with a dominant peak around ZT15–
ZT16 (Fig. 4C). These different distribu-
tions resulted from transcripts that were
unique to either data set rather than
from phase delays occurring between
mRNA accumulation and translation,
because the intersecting set of 1192
“mRNA and footprints rhythmic” tran-
scripts (Fig. 4A) showed near-identical
RNA-seq and RPF-seq oscillations (Fig.
4D–G; Supplemental Fig. S6A). We con-
cluded that whenever both mRNA abun-
dance and ribosome occupancy cycled,
they globally did so in sync. Similar to
the core clock components (Fig. 3),
most rhythmic mRNAs were thus trans-
lated concomitant with their cellular ac-
cumulation and had constant TEs.
Distinct out-of-phase translation was in-
deed confined to rather few exceptional
cases (Supplemental Fig. S6B). Finally, it
is noteworthy that the TEs of “mRNA
and footprints rhythmic” transcripts
were slightly increased compared with
the global population of expressed tran-
scripts (location shift of dark blue vs.
gray densities of 0.106 corresponds to
∼8% higher TEs; P = 2.2 × 10−05; Wil-
coxon rank-sum test) (Fig. 4H). No en-
richment or depletion for rhythmic

genes was seen with regard to AUG-initiated uORFs or pause sites
(P = 0.533 and P = 0.315, respectively; Fisher’s exact test).

Widespread time of day–dependent translation

of nonrhythmic mRNAs

More than one-third (682/1874) of genes that cycled at the foot-
print level did not have a rhythmic mRNA (Fig. 4A); globally,
these transcripts showed decreased TEs (location shift of −0.105
corresponds to a 7% TE reduction; P = 0.002) (Fig. 4H, light
blue). However, closer inspection of the underlying RPF-seq and
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Figure 2. Analysis of translation efficiencies in mouse liver. (A) TE distribution in mouse liver (red curve;
representing all 24 ZTs from 10829 genes, i.e.,N = 129870 individual data points) comparedwith that in
mESCs (black curve; data from Ingolia et al. 2011;N = 10217 genes). Liver datawere adjusted formean to
ensure comparability with mESC data. The asymmetrical nature of the TE distribution that has previously
been reported for mESCs and that is indicative of an intrinsic upper limit to translation rates (Ingolia et al.
2011) is also observed in the liver. Note that the TE range is significantly broader in the liver, where 95%
of data fall into a 13.2-fold TE range, compared with a 10.6-fold range in mESCs (P < 2 × 10−5, permu-
tation test). (B) Correlation between TEs and 5′ UTR, CDS, or 3′ UTR lengths. Analysis was performed
on transcripts from genes for which the transcriptomics analysis showed that a single protein isoform
was produced, and that had an RNA-seq RPKM value >5, and 5′ and 3′ UTR lengths ≥10 nt (N =
4277). Linear regression lines for each group are plotted over the data points, and related t-test results
of the regression slopes are reported in the plot area with the same color code. Inverse and statistically
significant correlation between TE and feature length was thus apparent for all three features, with pre-
dictive value CDS > 5′ UTR > 3′ UTR. (C) Scatter plot of TEs (ordinate) versus transcript abundances (TAs;
abscissa) averaged over timepoints and replicates. Highlighted are transcripts from single protein isoform
genes, which do (red) or do not (blue) contain at least one translated AUG-initiated uORF. Density curves
of TEs and TAs for highlighted data points are plotted on the margins with same color code. uORF trans-
lation is thus associated with a pronounced TE decrease and a slight decrease in transcript abundances.
Numbers on density curves reflect the location shift (log2 values of the median calculated from the dif-
ferences across all timepoints) relative to all transcripts. Transcripts with translated uORF: TE, P < 2.2 ×
10−16; TA, P = 1.3 × 10−5 (Wilcoxon rank-sum test). Transcripts without translated uORF: TE, P < 2.2 ×
10−16; TA, P = 0.287 (Wilcoxon rank-sum test).
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RNA-seq profiles indicated that in many cases, nonrhythmicity
assignments at the mRNA level had resulted from noise or low
amplitudes (close to the imposed 1.5-fold cut-off) in expression
profiles that otherwise still appeared to be rhythmic (false-nega-
tives caused by “cliff effects”) (Supplemental Fig. S6C). To refine
the “mRNA flat–footprints rhythmic” assignments, we used the
analytical framework Babel (Olshen et al. 2013) to first identify
all transcripts that had significant TE differences over timepoints
(and/or whose TEs significantly deviated from the global tran-
script population), and subsequently performed the rhythmicity
analyses on these. This strategy resulted in a high-confidence
set of 147 rhythmically translated, but otherwise nonoscillating,
mRNAs (Fig. 5A; Supplemental Table S3). Their RPF-seq profiles
showed a striking phase distribution with a dominant peak
around the day-to-night transition (ZT10–ZT16) (Fig. 5B). Gene
ontology (GO) analyses revealed enrichment for mRNAs encod-
ing components of the protein biosynthesis machinery, including
RPs, elongation factors, and poly(A) binding proteins, whose
translation underwent a characteristic upsurge starting from
ZT10 (Fig. 5C,D). Of note, increased polysome association at the
beginning of the night has previously been described for this class
of transcripts (Jouffe et al. 2013), which all contain 5′-TOP motifs
that are regulated by TORC1 (Meyuhas and Kahan 2015). Of 79
RPs, 35 were contained in the high-confidence list, and—with
the exception of eight proteins whose mRNAs were undetectable
or translationally invariable—visual inspection confirmed that

most other RPs shared a similar RPF-seq profile as well
(Supplemental Fig. S7A; Supplemental Dataset 1). In summary,
our data extend previous findings (Jouffe et al. 2013) and precisely
quantify the coordination of protein biosynthesis within the
translational apparatus in mouse liver. Of note, our study uncov-
ers a peculiarity of RP gene expression, i.e., particularly high
mRNA abundances paired with low TEs, which undergo coordi-
nated upsurge/translational de-repression prior to the day-to-
night transition (Supplemental Fig. S7B; Supplemental Movie
M1).

Other GO terms and individual “mRNA flat–footprints rhyth-
mic” transcripts caught our attention as well. The electron trans-
port chain components that the GO analysis identified (Fig. 5C)
corresponded throughout to mitochondrially encoded transcripts
characterized by a translational spike at ZT12 (Supplemental Fig.
S8A; Supplemental Dataset 1). As Western blot analysis did not re-
veal any oscillations at the protein level (Supplemental Fig. S8B),
the significance of these translational rhythms remains to be un-
covered. We next verified for other examples of rhythmic transla-
tion whether protein abundances oscillated. This was indeed the
case for geranylgeranyl diphosphate (GGPP) synthase 1 (Ggps1),
encoding a key branchpoint enzyme in the mevalonate pathway
(Supplemental Fig. S8C,D). GGPP is important for the C20-preny-
lation of proteins and for the regulation of the nuclear receptor
NR1H3/LXR alpha (Forman et al. 1997). Moreover, two transcrip-
tion factors, Deformed epidermal autoregulatory factor 1 (Deaf1)

A B

Figure 3. Core clock transcripts show mRNA abundance and ribosome occupancy in sync. (A) Time-resolved distribution (ZT00 to ZT22; arranged ver-
tically) of normalized counts of ribosome profiling (RPF-seq; blue) and RNA abundance (RNA-seq; orange) reads along the Arntl/Bmal1 and Nr1d1/Rev-erb
alpha transcripts. Different color shadings (dark/light orange and blue) indicate the two biological replicates. Gray shading of the boxes marks the CDS;
UTRs are in white. (B) RPKM values of CDS-mapping RPF-seq (blue) and RNA-seq (orange) data for circadian core clock genes around the 24-h daily cycle.
Means per timepoint are plotted; error bars, the two biological replicates. Dashed lines represent rhythmic curve fittings to the data.
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and Max interactor 1 (Mxi1), showed robust greater than twofold
rhythms in translation (Fig. 5E; Supplemental Fig. S8E). For
DEAF1, steady-state protein levels oscillated as well (Fig. 5E), rais-
ing the interesting possibility that translational rhythmicity is
propagated to transcriptional target genes and thus contributes

to shaping the rhythmic transcriptome. In accordance, previously
reportedDEAF1 targets (Yip et al. 2009)were significantly enriched
for genes that are rhythmically transcribed (enrichment 1.6-fold;
P = 0.009) (Fig. 5F; identified by Du et al. 2014). Notably, the ma-
jority of DEAF1 target gene pre-mRNAs peaked between ZT6 and
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Figure 4. Transcriptome-wide analysis of transcript abundance and ribosome occupancy rhythms. (A) Venn diagram summarizing the result of rhyth-
micity detection in the RNA-seq and RPF-seq data. Of a total of 10,829 expressed protein-coding loci, 1870 showedmRNA rhythms and 1874 had footprint
rhythms (in both cases 17% of all) with a >1.5× peak-to-trough amplitude (FDR < 0.05); 1192 transcripts were common to both sets. (B) Phase histograms
for the transcripts in A, showing the peak phase distribution of mRNA abundance (RNA-seq) rhythms over the 24-h cycle in orange. The length of the spoke
indicates howmany transcripts peaked at a specific time. (C) As in B for footprint rhythm (RPF-seq) in blue. Note the different phase distribution of ribosome
occupancy rhythms compared with RNA abundance rhythms depicted in B. (D) Heat map of rhythms at the level of mRNA abundance (RNA-seq; left) and
footprints (RPF-seq; right) for the overlapping set from A (1192 genes). Transcripts are sorted by the phase of maximal ribosome occupancy. For the rep-
resentation, mRNA abundances and translation levels are standardized within each gene (row) and independently for RNA-seq and RPF-seq columns
(Z-scores). (E) Phase histograms showing the phase distribution of “mRNA and footprints rhythmic” transcripts from the overlap in A (N = 1192) for
mRNA accumulation (RNA-seq) in orange. (F ) As in E, but for footprints (RPF-seq) in blue. Note that the distribution is near-identical to that in E. (G)
Phase correlation plot of the “mRNA and footprints rhythmic” genes (N = 1192). Each row contains two dots marking the phase of maximal mRNA abun-
dance (orange) and the phase of maximal footprints (blue) for each gene. Genes are ordered according to the phase of the mRNA. (H) Scatter plot of TE
versus transcript abundances for the genes classified into the different rhythmicity categories shown in A (values averaged over timepoints and replicates).
Density curves are plotted on the margins with the same color code. Numbers on density curves reflect the location shift (log2 values) relative to all tran-
scripts (gray). (∗) Significance at the 0.05 level (Wilcoxon rank-sum test). The plot shows that rhythmic genes (i.e., those with rhythmic mRNAs [light salm-
on], with rhythmic footprints [light blue], or with rhythmic mRNA and footprints [dark blue]) are significantly different at the level of TE and of transcript
abundances than transcripts of nonrhythmic genes (red).
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ZT12, coinciding with maximal DEAF1 protein abundance (Fig.
5E,F).

Finally, our data revealed that the well-known case of transla-
tional control through iron-responsive elements (IREs) undergoes
high-amplitude oscillations. IREs are stem–loops found in mRNAs
involved in iron, oxygen, and energy metabolism (see Anderson

et al. 2012 and references therein). Depending on the cytosolic
iron concentration and other cues (see Discussion), IREs located
in 5′ or 3′ UTRs regulate mRNA translation and degradation, re-
spectively. Ferritin heavy and light chain 1 (Fth1, Ftl1), involved
in iron storage, as well as aminolevulinic acid synthase 2 (Alas2),
a rate-limiting enzyme of heme synthesis, showed high-amplitude
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Figure 5. Daytime-dependent translational control of protein biosynthesis machinery components, of transcription factors, and in iron metabolism. (A)
Heat map of “mRNA flat–footprints rhythmic” genes identified after Babel analysis (significant changes in ribosome occupancy) showing the mRNA abun-
dance (RNA-seq; left) and footprint (RPF-seq; right) data for 147 genes. Transcripts are sorted by the phase of maximal ribosome occupancy. For the rep-
resentation, mRNA abundances and translation levels are standardized within each gene (row) and independently for RNA-seq and RPF-seq columns
(Z-scores). Note that this high-confidence set of 147 transcripts has clear rhythms at the translational level, but not so at the mRNA abundance level.
(B) Phase histogram showing the phase distribution of footprint data across the 24-h cycle. Generally, there was a strong enrichment of ribosome occu-
pancy maxima at the light-to-dark transition. This distribution is significantly nonrandom (P = 1.12 × 10−10; R = 0.395; Rayleigh uniformity test) and sig-
nificantly different from those in Figure 4C (P < 7.6 × 10−08; W = 32.80; Watson–Wheeler test for homogeneity of angles). (C) Gene ontology (GO)
analysis of biological process based on genes detected in A. Bar graph shows log10 of P-values for each category. Numbers next to the bars represent
the number of genes within each category. Marked in red are the GO terms connected to the protein biosynthesis machinery. (D) RPF-seq (blue) and
RNA-seq (orange) profiles for several rhythmically translated transcripts connected to the protein biosynthesis machinery—ribosomal proteins, translation
factors, and poly(A) binding proteins—around the 24-h cycle. Means per timepoint are plotted; error bars, replicates. Dashed lines represent rhythmic
curve fittings. (E, left) RNA-seq (orange) and RPF-seq (blue) profile as in D for transcription factor Deaf1 around the clock. (Right) Western blot analysis
for DEAF1 (and loading control U2AF2) in liver nuclear extracts. Numbers below the panels show relative levels of DEAF1 protein after normalization to
U2AF2. Data from one representative time series are shown (N = 2). (F, left) Rhythmically transcribed genes (from Du et al. 2014) are 1.6-fold enriched
in DEAF1-regulated genes (Fisher’s exact test P = 0.009) (Yip et al. 2009), consistent with the idea that rhythmic translation and protein accumulation
of DEAF1 leads to rhythmic transcriptional activity on its target genes. (Right) Peak abundances of rhythmically transcribed genes around the clock.
(Black) All rhythmically transcribed genes; (green) rhythmic DEAF1-regulated genes. (G, left) RNA-seq and RPF-seq profiles for Ftl1, Fth1, and Alas2, similar
as in D. Note the high-amplitude rhythms in translation from flat mRNAs. (Right) Confirmation of protein rhythmicity by Western blot analysis of total pro-
tein extracts (FTL1, FTH1) or mitochondrial extracts (ALAS2) prepared frommouse liver. Protein levels were normalized to beta tubulin or NDUFB8, respec-
tively. Protein data from one representative time series are shown (N = 2–3).
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oscillations in translation that led to protein rhythmicity (Fig. 5G).
All three transcripts contain IREs in their 5′ UTRs,whereas transfer-
rin receptor (Tfrc) is a case where a 3′ UTR–borne IRE controls
mRNA turnover (Anderson et al. 2012). TfrcmRNA (and footprint)
profiles were rhythmic in our data set (Supplemental Dataset 1);
moreover, previous RNA-seq data quantifying pre-mRNA and
mRNA levels around the clock (Du et al. 2014) revealed that the
abundance of Tfrc mRNA, but not of its pre-mRNA (and hence,
its transcription), oscillated (Supplemental Fig. S8F). These analy-
ses suggest that regulation by IREs is overall under time of day–de-
pendent control. Of note, besides the temporal regulation of IRE-
containing transcripts, we observed high-amplitude oscillations
in gene expression (RNA-seq and RPF-seq) throughout key steps
in iron metabolism (Supplemental Fig. S8G). These findings indi-
cated widespread rhythmic regulation of iron homeostasis that
has been largely overlooked so far.

Core clock transcripts show a broad range of TEs and abundant

uORF usage

Although core clock transcript TEs were temporally invariable (see
above) (Fig 3B; Supplemental Fig. S5A), further analyses of the data
revealed features of regulation that were potentially of functional
importance. First, we noticed that the intrinsic TEs of clock
mRNAs spanned a greater than sixfold range from the poorest
(Clock, Per3) to the best (Nr1d1) translators (Supplemental Fig.
S5A,B, upper panel). TEs and mRNA abundances together define
the amounts of protein that are produced, and RPF-seq RPKMs
are hence a direct readout of relative protein biosynthesis levels.
We therefore used our footprint counts to precisely quantify the
stoichiometry at which the clock proteins are produced. Impor-
tantly, these estimates explained known features of the clock bet-
ter than did RNA expression data alone. Notably, Clock is in excess
of its heterodimerization partner Arntl at the transcript level (inte-
grated over the day, about 1.6-fold more Clock than Arntl mRNA),
but due to TE differences, about 1.5-foldmore ARNTL thanCLOCK
protein is produced (Supplemental Fig. S5B; for similar results ob-
tained when peak levels rather than daily amounts were consid-
ered, see Supplemental Fig. S5C), which is consistent with the
conjecture that ARNTL is in excess over CLOCK (Huang et al.
2012). For the main positive and negative limb components,
our data indicated daily biosynthesis at a ratio of CLOCK(1.0):
ARNTL(1.5):PER1(0.6):PER2(1.1):CRY1(2.3):CRY2(2.3), i.e., over-
all similar levels of produced proteins (Supplemental Fig. S5B).
Finally, it is established that in the interconnecting limb NR1D1/
REV-ERB alpha represents the dominant Rev-erb paralog in liv-
er (Preitner et al. 2002; Bugge et al. 2012). While Nr1d2/Rev-erb
beta is nevertheless significantly more abundant at the mRNA lev-
el, the amount of biosynthesized NR1D1 protein exceeds the
NR1D2paralog by greater than twofold due to greater than fivefold
differences in TEs (Supplemental Fig. S5B, lower panel). In sum-
mary, these analyses suggest that TE is an important factor in es-
tablishing the appropriate clock protein output. Conceivably, it
may represent an additional layer at which the core clock can un-
dergo regulation.

The striking correlation of uORF usage with TEs (Fig. 2C)
prompted us to explore whether translated uORFs were present
in core clock transcripts. Intriguingly, Arntl, Clock, Cry1, Nr1d1,
and Nr1d2, all showed considerable ribosome occupancy in their
5′ UTRs and contained one or more AUG-initiated uORFs (Fig.
6A)with footprint coverage that showed clear framepreference, in-
dicative of their active translation (Fig. 6B). To investigate how

uORFs regulated the rhythmic production of a clock protein, we
chose Nr1d1, for which RPF-seq reads on uORFs 1 and 2 showed
particularly high coverage (Fig. 6A), frame bias (Fig. 6B), and rhyth-
micity in sync with the main ORF (Supplemental Fig. S9A).
Moreover, uORF1 was remarkably long (192 nt) and conserved
in mammals, potentially coding for a 63-amino-acid polypeptide
(Supplemental Fig. S9B). We constructed a lentiviral reporter
gene from an Nr1d1 genomic fragment that contained promoter
sequences conferring rhythmic transcription (Stratmann et al.
2010), exon 1 (5′ UTR and codons 1–10), intron 1, and a modified
exon 2, in which firefly luciferase (FL) was fused to NR1D1 after
amino acid 15 (Fig. 6C). Moreover, we designed reporter variants
in which the predicted uORF initiation codons were mutated or
the uORFs were deleted altogether (Supplemental Fig. S9C).
When expressed in a circadianmodel cell line, NIH3T3 fibroblasts,
all constructs showed comparable high-amplitude biolumines-
cence rhythms in the detrended data (Fig. 6C), indicating that
uORFs were dispensable for rhythmic protein expression per se.
Importantly, the differences in absolute luciferase signals that we
observed between reporters (Supplemental Fig. S9D,E) could
have resulted from altered TEs or simply reflect unequal lentiviral
titers, transduction efficiencies, cell numbers, or similar.We there-
fore measured the effect of the uORFs on main ORF translation in
an independent assay in which the 5′ UTRs were cloned upstream
of FL CDS in a lentiviral vector that also expressed an internal con-
trol gene, Renilla luciferase (RL), driven from the same bidirec-
tional promoter (Fig. 6D, top; Du et al. 2014). These analyses
revealed that uORF deletions, or the subtle initiation codonmuta-
tions, led to increased levels of FL reporter activity (Fig. 6D, bot-
tom). Moreover, uORF1 and uORF2 had an additive effect, as
judged bymutants in which uORF1 and uORF2 AUGs were mutat-
ed to alanine codons either singly (mutantsM1A-uORF1 andM1A-
uORF2) or in combination (M1A-uORF1+2). We next measured
RNA expression levels of both luciferases, which allowed us to es-
timate the relative contributions that altered RNA stability (lighter
shading in Fig. 6D, bottom) and translation regulation (darker
shading in Fig. 6D, bottom) made to the observed increases in re-
porter protein output. These analyses suggested dual contribution
by both mechanisms, in line with the initial observation (Fig. 2C)
of decreased TE and mRNA abundance of uORF-containing tran-
scripts (the latter possibly involving regulation through the
NMD pathway). Extrapolated to the regulation of the endogenous
Nr1d1 transcript in vivo, the prediction from these results would
be that uORF1+2 could regulate the magnitude of NR1D1
oscillations.

There was evidence for translated uORFs in several core clock
transcripts (Fig. 6A,B), but the net regulatory effect of uORF trans-
lation on clock function would likely be difficult to predict from
studying each case individually. In order to estimate the overall
impact of uORF translation on the clock, we took advantage of
the recent discovery that Density Regulated Protein (DENR) is im-
plicated in ribosome recycling after translation termination and
acts as a selective regulator of reinitiation at the main CDS after
uORF usage (Skabkin et al. 2013; Schleich et al. 2014). In the ab-
sence of DENR, proteins whose expression is regulated by uORFs
are thus produced at lower levels (Schleich et al. 2014). We
down-regulated endogenousDenr in NIH3T3 cells carrying a circa-
dian Dbp-Luciferase reporter gene (Stratmann et al. 2012) using
three different shRNAs (Fig. 6E).Denr-deficient cells showed robust
period shortening of free-running circadian oscillations by up
to 1.5 h (Fig. 6F); moreover, a short period phenotype was also
observed using a second reporter, Arntl-Luciferase (Supplemental
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Figure6. uORF translation is prevalent in core clock transcripts and impacts clock functions. (A) The 5′ UTRs of the depicted clock transcripts all contained
at least one translated AUG-initiated uORF. Distribution of raw read counts of RPF reads (blue) along the 5′ UTR (white region in box) and the first 200 nt of
the CDS (gray shaded region) is shown for the timepoint with maximal CDS translation. Red filled boxes indicate AUG-initiated uORFs within the 5′ UTR.
Predicted uORFs for each gene are serially numbered. (B) Frame preference of uORF-mapping footprints. The fractions of footprints aligning to the three
reading frames are shown for the uORFs shown in A and for themain ORF (CDS). Frame definition is relative to the annotated 5′ end of the transcript; please
note that frame definition is different from that in Figure 1F.Most uORFs are thus covered by footprints that have a similar degree of frame preference as the
main ORF-mapping footprints, indicating that uORF-mapping reads likely originate from processive translation. (C, top) Schematic showing the wild-type
Nr1d1-firefly luciferase (FL) reporter gene consisting of a genomic Nr1d1 fragment in which FL (blue) is expressed in fusion with the first 15 amino acids of
NR1D1 (green). In exon 1, the location of uORF1 and -2 (red) and their predicted start codons within the 5′ UTR is shown. (Bottom) Real-time biolumines-
cence recordings of luciferase rhythms in NIH3T3 cells lentivirally transduced with the Nr1d1-FL reporter (Wt) and various mutants in which either uORFs
are deleted (Del mutants) or uORF initiation codons are mutated to an alanine codon (M1A mutants). Cells were synchronized with dexamethasone. Raw
bioluminescence was detrended using a 24-h moving average, and one representative replicate of a total N = 3–9 is shown. (D, top) Schematic represen-
tation of the dual luciferase reporter construct to measure how the Nr1d1 5′ UTR (Wt/mutants) influences the expression of the FL CDS. From the same
bidirectional promoter, Renilla luciferase (RL) is expressed for internal control. (Bottom) Results of dual luciferase assay where FL signals were internally nor-
malized to RL. Empty vector (gray) only contained the vector-encoded 5′ UTR. Experiments were performed in NIH3T3 cells (N = 2–4 independent exper-
iments of triplicates). Lighter shading of the bars indicates the proportion of the increase that can be attributed to increased FL mRNA abundance in the
mutants (measured by qRT-PCR), leaving the remainder of the increase (darker shading) attributable to translation. Note that whenever the translated
uORF1 and -2 of the Nr1d1 5′ UTR are deleted (Del mutants) or just the initiation codons are mutated to alanine codons (M1A mutants), the inhibitory
activity of the Nr1d1 5′ UTR is relieved. uORF1 and uORF2 appear to have an additive inhibitory effect on main ORF translation (cf. M1A uORF1 and -2
single mutants with the double mutant). For a schematic of the mutants, see also Supplemental Figure S9C. (E, left) Relative mRNA levels (RT-qPCR; nor-
malized to expression of control geneNudt4) of Denr in DBP-Luciferase reporter–expressing NIH3T3 cells transduced with scramble shRNA (Scr; serving as
control) or three different shRNAs targeting Denr (N = 3). All shRNAs reduced Denr expression to <10%. (Right) Western blot analysis for DENR indicated
efficient depletion at the protein level. Beta tubulin served as loading control. (F ) shRNA-mediated Denr knockdown causes a short period phenotype of
free-running circadian rhythms in NIH3T3 cells. (Left) Summary of period change engendered by Denr shRNAs 1–3 relative to Scr (control) shRNA in cells
expressing theDBP-Luciferase reporter (N = 3–8). (Right) Representative bioluminescence tracks of Scr (control) andDenr shRNA-transducedDBP-Luciferase
cells. Depending on the shRNA, the period of free-running circadian oscillations was 0.8–1.5 h shorter. (D–F ) Bar graphs, mean ± SD; (∗∗) P < 0.01, (∗∗∗) P <
0.001 (t-test). P-value in D refers to differences in FL/RL activities (darker shading).
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Fig. S9F).We concluded that DENR has important functions in the
regulation of the mammalian circadian clock.

Discussion

How translation efficiency contributes to temporal gene expres-
sion is a largely unexplored facet of chronobiology. Translation
is one step closer than the mRNA to the relevant output of most
gene expression, the protein. Our ribosome profiling data should
therefore be of wide interest to the research community and com-
plement the many transcriptome data sets that are already avail-
able. By providing a resource consisting of transcriptome-wide
RPF-seq/RNA-seq and TE plots (Supplemental Dataset 1), associat-
ed rhythmicity parameters (Supplemental Table S2), and high-
confidence transcript lists from Babel analysis (Supplemental
Table S3), we wish to facilitate the widespread use of our data.
This resource provides a number of straightforward opportunities
for exciting future endeavors, one example being the interesting
cases of genes whose mRNAs, but not the footprint profiles, oscil-
late (Fig. 4A; Supplemental Fig. S6C), which wewere unable to fur-
ther investigate within the scope of this study.

Our study provides part of the explanation for the longstand-
ing enigma that the mRNAs of many oscillating proteins show
constant abundance over the day (Reddy et al. 2006). Two recent
reports have estimated that 20% (Robles et al. 2014) to 50%
(Mauvoisinet al. 2014)ofprotein rhythmsare engenderedby trans-
lation, protein degradation, or secretion. Our high-confidence set
of approximately 150 nonoscillating mRNAs that undergo robust
daily TE rhythms corresponds to ∼8% of all detected rhythmically
biosynthesized proteins. Considering the conservative selection
criteria that were applied, the true extent of translationally driven
rhythmicity may even be higher.

How does the translatome data correlate with the rhythmic
proteome? The answer to this question is less straightforward
than expected. A first complication lies in the poor overlap of
the proteomics studies; although both report on almost 200 rhyth-
mic proteins (Mauvoisin et al. 2014; Robles et al. 2014), <20% are
shared between the studies, and the particularly interesting
“mRNA flat–protein rhythmic” class has only three proteins in
common (Supplemental Fig. S10A,B). As the overlap in the total
detected proteome (about 3000–5000 polypeptides in both stud-
ies) is >50%, the differences seen in the rhythmic sets are not
just a matter of proteome coverage. Differences in mass-spectro-
metric and, very likely, rhythmicity detection methodology may
have caused the discrepancies; sophisticated meta-analyses on all
available raw data using comparable algorithms and statistical pa-
rameters would thus be of great value. Another concern when
comparing RPF-seq and proteome data sets is that MS data are in-
evitably biased for abundant (i.e., highly expressed and/or stable)
polypeptides, whereas rhythmic TEs predominantly affected
mRNAs whose abundance was below average (Fig. 4H). Many
translationally regulated transcripts are hence not covered by the
proteome data. It is reassuring that, despite such limitations, sever-
al translationally rhythmic transcripts are part of the rhythmic
proteome (e.g., FTH1, EEF1A1, and EEF2 in study by Robles et al.
2014).

Transcripts encoding components of the protein biosynthesis
machinery stand out among the rhythmically translated mRNAs.
Their preferential association with polysomes at the light-to-dark
transition has been reported before; it likely gates the energy-
consuming ribosome biogenesis to the appropriate time when
nutrients are plentiful, and involves regulatory cues from both

feeding (via TORC1-regulated 5′-TOP motifs) and from the clock
(Jouffe et al. 2013). As we observed increased TEs on these
mRNAs already at ZT10 (Fig. 5D), i.e., ∼2 h before the main surge
in food intake in ad libitum fed animals (Adamovich et al. 2014),
we consider it likely that the mechanism entails more than a sim-
ple, immediate reaction to nutrients. Moreover, the relatively var-
iable up-regulation seen across biological replicates (Fig. 5D, RPF-
seq error bars) is remarkable for genetically identical animals and
could point to a behavioral component contributing to the regula-
tory mechanism. Interestingly, and reminiscent of the timing in
the liver, increased ribosome association of mRNAs in Drosophila
occurs at phases of relative behavioral quiescence, just prior to
locomotor activity bouts (Huang et al. 2013). It remains to be ex-
plored whether this similarity is indicative of mechanistic paral-
lels. Another exciting open question concerns the possibility
that the rhythmic biosynthesis of components of the translational
apparatus contributes to daily changes in overall translation rate
that have been reported and that may involve mTOR signaling
and a noncanonical cytoplasmic role for ARNTL (Lipton et al.
2015).

Among the other cases of TE rhythmicity, only a few were
directly suggestive of an underlying mechanism, as was the case
for mRNAs encoding iron metabolic proteins that all contain
IREs. IREs are bound by iron regulatory proteins (IRPs) 1 and 2 (en-
coded by the genes Aco1 and Ireb2, respectively), which sense in-
tracellular iron levels by distinct mechanisms and respond to
other metabolic signals as well (for review, see Anderson et al.
2012). IRP1 assembles a 4Fe-4S cluster in response to increased
iron availability, which precludes IRE binding and permits transla-
tion. Other signals, such as NO, H2O2, and O2, also influence the
Fe-S cluster and IRP1 activity. IRP2 is regulated by protein degrada-
tion via FBXL5, an E3 ubiquitin ligase stabilized by iron and
oxygen. We did not observe high-amplitude rhythms in the ex-
pression of IRPs or their known regulators (Supplemental Fig.
S11; please note low amplitude rhythms for Ireb2), and it is con-
ceivable that rhythmicity occurs at the level of available, bioactive
iron in the hepatocyte (day/night changes in hepatic total iron
have been reported) (Unger et al. 2009), of O2 pressure/consump-
tion (Peek et al. 2013), or of reactive oxygen species (Khapre et al.
2011). Together with the oscillations inmRNA abundance seen for
multiple other iron metabolic genes, the rhythmic regulation of
IRE-containing transcripts uncovers a previously unappreciated
extent of temporal control in this physiologically important
pathway.

It is noteworthy that clock genes showed constant TEs, in-
dicating exclusion from time of day–dependent translational
control. The considerable delays between mRNA and protein
accumulation that have been reported for several core clock
components (e.g., Lee et al. 2001) must therefore have other,
post-translational origins. Nevertheless, our study has unveiled
important insights into how translation contributes to core clock
regulation. First, the CDS-mapping RPF-seq reads allow estimating
relative biosynthesis rates of core clock proteins, which will likely
add to a better quantitative understanding of the clock mecha-
nism. Moreover, the footprint profiles from several clock mRNAs
showed hallmarks of regulation that, however, may be operative
not in a temporal fashion but under other (e.g., environmental,
metabolic, cell-type–specific) conditions yet to be defined. In
this context, the high number of translated uORFs within the
core clock transcripts is particularly striking. uORF translation is
generally viewed as inhibitory for protein production from the
main ORF (Wethmar et al. 2014) and represents an attractive
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mechanism for how clock protein levels (and consequently clock
parameters) could be adjusted post-transcriptionally. It is tempting
to speculate that one or several of the identified core clock uORFs
are implicated in the short period phenotype observed in Denr-
depleted cells. Of note, there is growing evidence for cell-type–
specific uORF usage (e.g., Ingolia et al. 2011), and it is also largely
unexplained how certain core clock parameters can be strikingly
tissue specific (e.g., >2 h longer free-running period in kidney vs.
lung) (Yoo et al. 2004). It is conceivable that cell-type–specific dif-
ferences in clock protein concentration and/or stoichiometry are
involved (Lee et al. 2011) and that tissue-specific uORF usage
and translation rates contribute. Altogether, our results suggest
that the circadian system represents a particularly suitable para-
digm for future studies of uORF biology.

Methods

Animals

For time series experiments, 12-wk-old male mice (C57BL/6J;
Janvier Labs) were entrained for 2 wk to LD 12:12 with free access
to food and water and were euthanized at indicated Zeitgeber times
(ZT0 corresponding to “lights on”) by decapitation after anesthesia
(isoflurane). Livers were removed and processed either directly or
flash-frozen in liquid N2. All experimental procedures were ap-
proved by theVeterinaryOffice of theCantonVaud (authorization
VD2376).

Ribosome profiling and RNA-seq

RPF-seq and RNA-seq libraries were generated using Ribo-Zero and
ARTseq ribosome profiling kits (Epicentre) and sequenced on an
Illumina HiSeq 2500. Detailed protocols, including for lysate prep-
aration, are described in the Supplemental Material.

Bioinformatic analysis of ribosome profiling and RNA-seq

Adapter-trimmed, size-filtered sequencing reads (lengths 26–35 nt
and 21–60 nt for RPF-seq and RNA-seq, respectively) were mapped
sequentially tomouse rRNA, human rRNA,mt-tRNA,mouse tRNA,
mouse cDNA (Ensembl release 75), and, finally,mouse genomic se-
quences (GRCm38.p2). cDNA-mapping reads were counted to-
ward 5′ UTR, CDS, and 3′ UTR per gene basis. CDS counts were
normalized by the upper quantile method and transformed into
modified RPKM values. TEs were calculated as the ratio of RPF-
RPKM tomRNA-RPKM. For detailed information on bioinformatic
analysis, see the Supplemental Material.

Protein analyses

Total, nuclear, and mitochondrial protein extracts were prepared
from two to three individual mice per timepoint and analyzed
by SDS-PAGE and Western blotting according to standard pro-
tocols. Figures show one representative time series. Detailed
experimental protocols and antibodies are described in the
Supplemental Material.

Cloning

The generation of lentiviral luciferase reporter plasmids contain-
ing wild-type/mutant fragments of the Nr1d1 genomic region is
described in the Supplemental Material. For the generation of len-
tiviral shRNA expression vectors targeting Denr, sequences from
the TRC shRNA Library at the Broad Institute were cloned into
pLKO.1puro backbone vector (Addgene no. 10878) (Moffat et al.

2006); sequences/clones are listed in Supplemental Material.
Scramble shRNA (Addgene no. 1864) served as control.

Cell culture

Cell culture, lentiviral production/transduction, the recording of
circadian bioluminescence rhythms, and the dual luciferase assays
followed standard methods. Detailed experimental protocols and
additional references can be found in the Supplemental Material.

RT-qPCR

RNA was extracted with TriFast peqGOLD (PEQLAB), reverse-
transcribed with SuperScript II (Invitrogen), and amplified with
SYBR green rox master mix (Roche) and gene-specific primers
(Supplemental Material) on a Stratagene Mx3000P apparatus
(Agilent). Relative expression levels were determined using the
ΔΔCt method.

GO analysis

GO analysis was carried out on the footprints rhythmic set after
Babel analysis (Olshen et al. 2013) using theDAVIDbioinformatics
resource (Huang et al. 2009).

Data access

The sequencing data from this study have been submitted to the
NCBI Gene Expression Omnibus (GEO; http://www.ncbi.nlm
.nih.gov/geo/) under accession number GSE67305.
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SUPPLEMENTAL FIGURE LEGENDS

Supplementary Figure S1. Ribosome profiling and RNA-seq in mouse liver.

A)  Insert  size  distribution  of  RNA-seq  reads  across  all  replicates  and  timepoints.

Box-and-whisker  plots:  midline,  median;  box,  25th and  75th percentiles;  whiskers,

extend to the minimum and maximum values within 1.5 times the interquartile range

from the box. While most RNA-seq reads are in the range of around 30 nt (i.e., similar

to RPF-seq reads), the distribution is broader, as expected for chemically fragmented

RNA. This graph is complementary to the RPF-seq distribution in main Fig. 1E.

B) Intra- and inter-group relationships between normalised CDS counts of RPF-seq

libraries are visualised with a heat map of Spearman correlation coefficients. Size and

dark  shading  of  disks  increase  with  increasing  correlation  coefficients;  colour

correspondence is given in the legend. Average Spearman correlation for biological

replicates: 0.987 ± 0.004 (average ± SD).

C)  Same as  B),  for  RNA-seq  counts.  Average  Spearman  correlation  for  biological

replicates: 0.985 ± 0.004 (average ± SD).

D) Scree plot of the PCA shown in main Fig. 1H. Components beyond the first three

PCs shown in Fig. 1H only explain a small percentage of additional variation in the

data.

Supplementary Figure S2: Transcript length features and uORF usage as

predictors of translation efficiency.

A-C) Partial regression plots for the modelling of TE on the three variables, 5’ UTR (A),

CDS (B) and 3’ UTR (C) lengths. Such partial regression plots are useful to investigate

the relationship between a predictor and the response variable taking into account

the effect of  the other predictors.  Both 5’  UTR and CDS lengths show significant

predictive value for the efficiency at which the transcripts’ main ORFs are translated.

The predictive value of 3’ UTR length for TE is, however, not significant in this linear

regression analysis.  The statistically  significant  correlation between 3’  UTR length

and TE that was originally observed in main Fig. 2B therefore likely results from the

correlation between 3’ UTR with CDS length. Analysis was performed on transcripts

from single protein isoform genes with an RPKM value >5 and 5’ and 3’ UTR lengths

≥10 nt (N=4277). In red, the slope of the red regression line and the significance

level (t-test) are reported.



D) uORF  translation  correlates  with  low  TE  independently  of  5’  UTR  length.  The

scatter plot of translation efficiency vs. 5’ UTR length shows that transcripts without

translated uORF (violet)  have globally shorter 5’  UTRs than those with translated

uORFs (green). Nevertheless, the locally weighted fits (Lowess) indicate that even for

transcripts with UTRs of similar length, uORF-containing transcripts have lower TEs

(i.e., the green line is below the violet line throughout). The effect of low TEs is thus

an effect of uORF translation and not merely of 5’ UTR length. Same transcript set as

in (A-C) was used.

E) Same analysis as D) for CDS length. The lower TEs of uORF-containing transcripts

is  seen independently  of  CDS length  (i.e.,  the  green line is  below the  violet  line

throughout).

F) Same  analysis  as  D)  for  3’  UTR  length.  The  lower  TEs  of  uORF-containing

transcripts is seen independently of 3’ UTR length  (i.e., the green line is below the

violet line throughout).

G-K) Partial regression plots for the modelling of TE on the four variables, 5’ UTR (G),

CDS (H), 3’ UTR (I) lengths and uORF presence (K). uORF-containing transcripts are

depicted in green (N=920) and other in black (N=3357). uORF presence is thus a

strong predictor of reduced TE (K). When compared to the three predictor model (A-C)

it becomes clear that with the inclusion of uORF translation as a forth predictor, the

5’ UTR length lost much of its predictive value. This indicates that to a large extent

the 5’ UTR effect seen in A) is in reality a uORF effect, whereby longer 5’ UTRs will be

more likely uORF-containing than short 5’ UTRs. Given that relatively conservative

uORF detection criteria were applied (e.g. only AUG-initiated uORFs with a certain

minimal coverage) it is possible that 5’ UTR length  per se has even lower (or no)

predictive value for TE.

Supplementary Figure S3: Read distributions to 5’ UTR, CDS and 3’ UTR per

transcript.

A) Read distribution within 5’ UTRs, CDS and 3’ UTRs of RPF-seq (blue) and RNA-seq

data (orange) compared to the distribution expected by chance, which is determined

by the feature sizes (grey). Box-and-whisker plots: midline, median; box, 25th and 75th

percentiles; whiskers, extend to the minimum and maximum values within 1.5 times

the interquartile range from the box. Note that 5’ UTR-mapping RPF-seq reads make

up on average 6% of all reads (Fig. 1D), but that the actual percentage per transcript

is variable (N=10829).



Supplementary Figure S4. Pause site occurrence is not correlated with TE.

A)  Distribution  of  per-codon  RPF-seq  and  RNA-seq  counts.  The  plot  shows  the

cumulative  distribution  of  footprint  (blue)  counts  at  each  codon,  relative  to  the

median density across the gene. In analogy to the method previously applied and

published by (Ingolia et al. 2011) (see Fig. 2A in the cited publication), stall sites were

defined at an arbitrary threshold for individual codons that exceeded read counts that

are 25 x the median on the transcript (in our analysis we used the trimean instead of

the  median;  see  Supplemental  Material).  RNA-seq  counts  (red)  control  effects  of

library generation. The twelve blue and red curves represent the means of the 12

timepoints. For B), only pause sites were further considered when they appeared in

the RPF-seq counts of both replicates of a timepoint. The dotted lines show the data

from  (Ingolia et al. 2011) for comparison and indicated that the overall pause site

distribution is similar in liver and mESCs.

B) Pause sites are not associated with TE changes. Transcripts that did (red) or did

not (blue) contain pause sites detected in A) were plotted according to their mRNA

abundance (abscissa)  and their  TE (ordinate).  Density curves for  highlighted data

points are plotted on the margins with the same colour code. Red numbers on density

curves  reflect  the  location  shift  (log2  values)  of  the  transcripts  with  pause  sites

relative to those without pause sites; neither shift was significant at the 0.05 level

(Wilcoxon rank sum test). A cut-off on RPF-seq RPKMs was applied – shown by the

dotted diagonal – because for very low footprint density the probability to detect 25 x

median levels is very low and would lead to false-negative pause site detection due

to coverage effects. The applied cut-off corresponds to the minimal RPKM at which

pause sites were still detectable.

Supplementary  Figure  S5.  Constant,  but  widely  differing  TEs  in  clock

transcripts.

A) Time-resolved TE plots for the core clock transcripts. This graph is complementary

to main Fig. 3B and shows the ratios of RPF-seq/RNA-seq RPKMs around-the-clock.

Means  are  plotted  with  error  bars  connecting  the  two  biological  replicates  per

timepoint. Grey dotted lines show a harmonic fit to the data points, and grey shading

the 95% confidence interval of the fit. A fit was performed irrespective of whether

rhythmicity was significant or not (when no fit was possible, e.g. for  Npas2 due to

extremely low expression at ZT18, a straight line was plotted). Dark grey curves (e.g.

for Nr1d1, Per3) indicated that the fit itself was significant, whereas light grey curves

indicated  non-significant  harmonic  fits  or  a  fit  with  a  <1.5  x  peak-to-trough

amplitude.  Importantly,  the  meaning  of  a  “significant  fit”  to  TEs  should  not  be



over-interpreted  as  it  does  not consider  if  the  TEs  were  significant  between

timepoints from the start – this important prerequisite was tested using the more

sophisticated  Babel analysis  (Olshen et al.  2013).  Indeed,  none of  the core clock

transcripts (including  Nr1d1 and Per3, for which the harmonic fits themselves were

significant) showed significant TE changes according to Babel analysis (Supplemental

Table S3).  It  can therefore be concluded that  core clock TEs were not subject to

time-of-day-dependent control.

B) Bar graph in the top panel shows the mean ± SD of translation efficiencies over

the day.  Middle and lower panel  show the sum of RNA abundance and ribosome

footprint  RPKMs integrated over-the-day,  respectively,  for  the circadian core clock

genes listed below. Ribosome footprints (as RPKMs) are a direct measure of protein

biosynthesis  rate  and  can  thus  be  used  to  calculate  the  relative  daily  protein

production of the core clock components. Large differences that are seen at the level

of RNA abundance (e.g.  Nr1d1 and Nr1d2) are thus compensated by TE, leading to

protein output that explains some of the core clock biology better than the RNA levels

do. See text for details.

C)  RNA  abundance  and  ribosome  footprint  plots  as  in  B),  but  using  the  peak

expression timepoints only.

Figure S6. Relationships between RPF and RNA rhythmicity parameters.

A) Evaluation of phase differences (left panel) and amplitude differences (right panel)

between  ribosome  occupancy  (RPF)  and  RNA  abundance  (RNA)  of  ‘mRNA  and

footprints rhythmic’ genes. The deviations of the means from 0 are not significant,

indicating synchrony in RNA abundance and footprint rhythms for the vast majority of

transcripts in the overlapping set.

B)  Distinct  out-of-phase translation was confined to few exceptional  cases,  which

were initially identified by overlaying the ‘mRNA and footprints rhythmic’ set with the

list of transcripts for which the  Babel analysis had revealed significant TE changes

between timepoints (Supplemental Table S3). The resulting 93 genes – many of which

showed temporal changes in TE, but similar phase in RNA-seq and RPF-seq profiles –

were  further  examined  by  visual  inspection  to  identify  out-of-phase  translation

events. Shown are the two most striking cases, Biogenesis of lysosomal organelles

complex-1 subunit  1 (Bloc1s1)  and Histone cluster 1,  H4h (Hist1h4h), which both

showed remarkable out-of-phase peaks in their mRNA and footprint profiles. Means

per timepoint are plotted with error bars depicting the replicates.

C) Phase distribution (top panels) and heat maps (bottom panels) of genes identified

as rhythmic only at the mRNA level (left) or only at the footprint level (right). mRNA



abundances and footprint levels are standardised within each gene. Note that many

of these supposedly non-rhythmic transcripts still had underlying, yet noisier rhythms

that apparently escaped the detection algorithm – a problem that prompted us to use

the  Babel  method with the aim of obtaining a high-confidence set of “mRNA flat –

footprints rhythmic” transcripts (see main text and Fig. 5A).

Figure S7. Rhythmic control of ribosomal protein biosynthesis.

A) Table summarising the genes encoding ribosomal proteins of the 40S and 60S

ribosomal subunits. Highlighted are those genes that were either detected as “mRNA

flat – footprints rhythmic” in main Fig. 4A (bold print), or that had a similar profile as

those in Fig. 4A (as judged by visual inspection) but were below the amplitude cut-off

of >1.5 fold (normal print), or were not rhythmic, or not detected in our datasets

altogether (grey print). The vast majority of Rps and Rpl transcripts thus undergoes

similar regulation at the translational level.

B) Scatter plot of translation efficiencies and transcript abundances for Rpl and Rps

genes of the cytoplasmic (pink) or mitochondrial (green; used as control) ribosome

for timepoints ZT2 and ZT10 (small subunit proteins are shown in lighter shadings;

large subunit proteins in darker shadings). Density curves of translation efficiencies

and transcript abundances for highlighted data points are plotted on the margins with

the same colour code.  Numbers  on density curves reflect the location shift  (log2

values)  relative  to  all  genes  (grey);  a  (*)  denotes  significance  at  the  0.05  level

(Wilcoxon rank sum test). The two plots visualise the shift in translation efficiency of

mRNAs of cytoplasmic ribosomal proteins between ZT2 and ZT10. Wilcoxon rank sum

test indicated that only RPs (RPLs+ RPSs) changed their TEs (location shift=0.864,

p=3.016e-10),  whereas  MRPs  (MRPLs+MRPSs)  remained  unchanged  (location

shift=0.009, p=0.916) between ZT2 and ZT10.

See also Supplemental Movie M1.

Figure  S8.  Rhythmicity  in  iron  metabolic  genes  and  validation  of  other

cases of rhythmic translation.

A)  Mitochondria  encode  13  protein-coding  genes,  of  which  the  expression  of  12

(exception: mt-Nd4l) was detectable in our datasets and all showed a characteristic

translational  spike  at  ZT12 (Supplemental  Dataset  1).  As  an  example,  this  graph

shows  RPKM-normalised mRNA abundance (orange) and footprint (blue) profiles for

mt-Co1 around the 24-hour daily cycle.

B)  Western blot analysis for MT-CO1 and NDUFB8 proteins (loading control) in liver

mitochondrial extracts. Numbers show relative MT-CO1 protein levels across different



timepoints  after  normalisation  to  NDUFB8  protein  levels.  Data  from  one

representative time series are shown (N=3). Note that despite the translational peak

at ZT12, no protein rhythmicity was seen. An explanation may be the reported high

stability of mitochondrial proteins (Kim et al. 2012). Nevertheless, one may speculate

that the rhythmic translation has a role in assuring the coordinated biosynthesis of

the  individual  proteins,  thus  enabling  an  efficient  assembly  of  newly synthesised

mitochondrial complexes.

C)  RPKM-normalised  mRNA  abundance  (orange)  and  footprints  (blue)  profiles  for

Ggps1 around the 24-hour daily cycle.

D) Western blot analysis of GGPS1 was performed in total liver extracts (N=2). The

sum of the signals from both bands was used for quantification. Beta-Tubulin served

as  a  loading control  and for  normalisation.  Note  that  rhythmic  translation  led  to

rhythmic protein accumulation.

E) Profiles for Mxi1 similar as in A).

F) Rhythmic regulation of transferrin receptor (Tfrc) mRNA stability around the clock.

The graph shows the temporal profile of pre-mRNA (a proxy for transcription rate;

green) and mRNA abundance (orange) profiles. Note that the mRNA is rhythmic, but

not the pre-mRNA, indicating that oscillations are engendered at the level of mRNA

stability. Extracted from the RNA-seq data in (Du et al. 2014); error bars represent the

two replicates  of  the  time series. Of  note,  post-transcriptional  rhythmicity  of  Tfrc

mRNA was independently confirmed by (Le Martelot et al. 2012).

G) Schematic illustrating the various steps involved in the maintenance of cellular

iron homeostasis. The small gene expression graphs show mRNA abundance (orange)

and footprint  profiles  (blue)  of  rhythmically  expressed genes associated with  key

regulatory  processes  of  iron  metabolism.  Gene  names  highlighted  in  blue  mark

transcripts with rhythmic footprints shown in Fig. 5G. Moreover,  marked rhythms in

mRNA abundance were thus seen at the level of regulators of hepcidin expression,

which is a liver-produced hormone that is crucial for the maintenance of systemic iron

homeostasis and that was recently found to oscillate in human blood (Schaap et al.

2013).  Moreover,  iron  uptake  (Tfrc,  Slc25a37/Mfrn),  export  (Slc11a2/Dmt1,

Slc39a14/Zip14),  storage  (Ftl1,  Fth1) and  transport  (Pcbp4),  as  well  as several

biosynthetic  processes that  use  iron  (Alas1,  Alas2,  Glrx5) all  showed pronounced

rhythmicity.



Figure S9. Analysis of uORF usage in circadian core clock genes.

A) Normalised footprint read counts for uORF1 (left panel), uORF2 (right panel) and

the main ORF (red) for the  Nr1d1 transcript. uORF and main ORF translation thus

occur in sync.

B) Sequence alignment of the hypothetical 63 amino acid Nr1d1-uORF1 polypeptide

across 6 mammalian species (mouse, rat, human, chimpanzee, macaque, horse). The

uORF1 sequence is well conserved even at the amino acid level.

C)  Schematic  representation  of  the  Nr1d1 5’  UTR  mutants  that  were  tested  for

influence on main ORF translation. Nr1d1-Wt represents the annotated,  full-length

Nr1d1 5’ UTR. In Del-uORF1, the first uORF was deleted as a whole. In Del-uORF1+2 a

region encompassing both uORFs was removed. While these deletion mutants can be

considered relatively invasive as they not only remove the uORF but also shorten the

UTR as a whole, the following point mutants are likely more specific and suitable to

measure uORF translation effects. M1A-uORF1 thus carries a point mutation at the

predicted AUG start codon of uORF1 (converting it to an alanine codon). M1A-uORF2

is mutated to an alanine codon at the AUG of uORF2, whereas M1A-uORF1+2 is a

combination of the two point mutations.

D) Raw (not detrended) data for the Nr1d1-Luc reporter traces shown in main Fig. 6C.

E)  Summary of  luciferase  bioluminescence signal  at  the  first  peak of  rhythmicity

recordings as that in D) from several experiments (relative to Nr1d1-Wt which was set

to 1 within each experiment).  The signals of  the mutants thus showed variability

which  conceivably  originated  from  several  sources:  On  the  one  hand,  it  may

represent  a  true  effect  of  impaired  uORF  translation,  but  quantitatively  a  likely

stronger influence are technical parameters that are not controlled for in this assay.

These are in particular the efficiency of lentiviral production and resulting lentiviral

titres, the transduction efficiency of the NIH3T3 cells, the cellular growth rate and cell

density in the transduced cells in the dishes subject to real-time recordings, etc. For

these reasons, the UTRs shown in C) were recloned in a different assaying vector

containing Renilla luciferase as an internal control gene, shown in main Fig. 6D.

F) shRNA-mediated Denr knockdown causes a short period phenotype of free-running

circadian rhythms in NIH3T3 cells also using the Bmal1-Luciferase reporter (Nagoshi

et al. 2004). Left panel: Summary of period change engendered by Denr shRNAs 1-3

relative  to  Scr  (control)  shRNA.  Data  are  from  3  individual  assayed  dishes  per

condition  from  a  single  experimental  series  and  show  period  length  differences

relative to the average of the Scr cells (error bars represent standard deviations).

Within the experiment, the period shortening was significant for all three shRNAs at



the p=0.05 level (t-test). Right panel: Representative bioluminescence tracks of Scr

(control) and Denr shRNA-transduced Bmal1-Luc cells.

Figure S10. Comparison of published rhythmic proteome datasets.

A)  Euler  diagram  showing  the  overlap  in  detected  rhythmic  and  non-rhythmic

proteins in the two publications (Mauvoisin et al. 2014; Robles et al. 2014). Robles et

al. analysed a total of 2883 detected proteins, and Mauvoisin et al. 4197 detected

proteins.  2482  proteins  are  present  in  both  datasets,  corresponding  to  86%

(2482/2883) of the Robles datasets and 59% (2482/4197) of the Mauvoisin dataset.

179 proteins are rhythmic according to Robles et al., and 191 proteins according to

Mauvoisin et al., but here the overlapping set only consists of 32 proteins (18% and

17% of Robles and Mauvoisin rhythmic proteins, respectively). Only in 13 (Robles)

and 52 (Mauvoisin) cases the underlying reason was absence from the other dataset,

indicating that the relatively poor overlap is not only the result of proteome coverage

differences. A likely cause are differences in rhythmicity algorithms, cut-offs, FDRs,

etc., that were applied.

B) Area-proportional Venn diagram of the subset of proteins that Robles et al. (left)

and Mauvoisin  et  al.  (right)  classified as  “mRNA flat  –  protein  rhythmic”.  Only  3

proteins  are  in  common,  namely  Albumin  (Alb),  Apolipoprotein  A-I  (Apoa1)  and

Progesterone receptor membrane component 1 (Pgrmc1).

Figure S11. Known regulators of translation of IRE-containing transcripts do

not show high-amplitude rhythmicity.

A) The Aco1 gene encodes iron regulatory protein 1 (IRP1), one of the main actors of

IRE-controlled translational regulation. Neither at the mRNA and footprint level (left

panel)  nor  at  the  protein  level  (right  panel)  does  ACO1  show  high-amplitude

rhythmicity. The fluctuations in ACO1 protein shown in this blot were not consistently

found in  a  second protein  series  from independent  animals  and should  therefore

likely not be considered oscillating protein expression. The western blot shows one

out of N=2 series that were analysed.

B)  As  in  A),  but  for  the  Ireb2 gene/IREB2 protein  (also  known as  iron  regulatory

protein 2, IRP2). A slight rhythm – that did not pass the 1.5x amplitude cut-off applied

in our study – can be seen at the level of mRNA and footprint abundance. At the

protein level, fluctuations were not consistent between the two western blots that

were  performed  on  independent  extract  series,  suggesting  that  they  did  not

represent robustly regulated rhythmicity.



C) mRNA and footprint quantification for  Fbxl5, a known regulator of IREB2 protein

levels. No rhythm is detectable. Due to the lack in a functioning antibody (several

commercial sources tested), confirmation by western blot as in A) and B) was not

possible.

SUPPLEMENTAL EXPERIMENTAL PROCEDURES

Cell culture

NIH3T3, NIH3T3-Dbp-Luc (Stratmann et al. 2012), NIH3T3-Bmal1-Luc (Nagoshi et al.

2004) and HEK 293FT cells were cultured under standard conditions (DMEM; 10%

FCS, 1% penicillin/streptomycin; all from Invitrogen; 37°C; 5% CO2). Lentiviral particle

production  (from  plasmids  prLV1-Nr1d1 or  pLKO.1-shRNA,  using  envelope  and

packaging plasmids pMD2.G, psPAX2) and viral transduction of NIH3T3 cells followed

published  protocols  (Salmon  and  Trono  2007).  Puromycin  selection  in  shRNA

experiments occurred at  5 μg/ml for 4 days. Dexamethasone synchronisation and

recording of circadian bioluminescence rhythms has been described (Stratmann et al.

2012). Detrending  of  raw  bioluminescence  data  was  performed  using  a  24-hour

moving average. For dual luciferase assays, cells were lysed in passive lysis buffer

and luciferase activities were determined using the DualGlo Luciferase assay system

and a GloMax 96 Microplate luminometer (all Promega). For protein quantification,

cells were lysed in RIPA-buffer and analysed by SDS-PAGE and western blotting.

Ribosome profiling 

Freshly harvested mouse livers were homogenised in 3 volumes of lysis buffer (150

mM NaCl, 20 mM Tris-HCl pH7.4, 5 mM MgCl2, 5 mM DTT, 100 μg ml-1 cycloheximide,

1% Triton X-100, 0.5% Sodium deoxycholate, complete EDTA-free protease inhibitors

(Roche) and 40 U ml-1 RNasin plus (Promega)) using a Teflon homogeniser. Lysates

were incubated for 10 min on ice and cleared by centrifugation at 1000 x g, 4°C for 3

min  in  a  tabletop centrifuge.  Supernatants  were  flash-frozen and stored in  liquid

nitrogen.  Lysates  were  thawed  on  ice  and  the  OD260 was  determined  using  a

Nanodrop spectrophotometer.  For  each replicate  and timepoint  equal  amounts  of

OD260 lysate  from  two  mice  were  pooled.  From  the  lysate  pool,  15  OD260 were

incubated with 650 U RNase I (Ambion) and 5 U Turbo DNase (Ambion) for 45 min at

room temperature  and  gentle  agitation.  Nuclease  digestion  was  stopped through

addition  of  8.7  μl  Superasin  (Ambion).  Subsequently,  lysates  were  applied  to



sephacryl S-400 HR spin columns (GE Healthcare Life Sciences), pre-washed 3 times

with 700 μl polysome buffer for 1 min at 600 x g, and centrifuged for 2 min at 600 x g

and  4°C.  The  flow-through  was  immediately  mixed  with  1  ml  Qiazol  and

ribosome-protected mRNA fragments were purified using miRNeasy RNA extraction

kit (Qiagen) according to the manufacturer’s instructions. For each sample 25 μg RNA

were  separated  on  a  15%  urea-polyacrylamide  gel  and  stained  with  SYBR-Gold

(Invitrogen).  Gel  slices  between  26-34  nucleotides  were  excised  and  RNA  was

extracted using 600 μl gel extraction buffer (0.5 M Ammonium acetate, 1 mM EDTA

and 0.1% SDS) for 2 hours at room temperature and gentle agitation. Gel pieces were

removed by centrifugation over spin filter tubes for 3 min at 5000 rpm. RNA was

precipitated  over  night  at  -20°C  in  the  presence  of  900  μl  isopropanol  and 2  μl

glycogen. RNA was pelleted and washed with 70% ethanol in a tabletop centrifuge at

maximum  speed  and  4°C.  Ribosomal  RNA  was  depleted  using  the  Ribo-Zero

magnetic  kit  (Epicentre)  according to the manufacturer’s  instructions.  Sequencing

libraries  were  generated  using  the  ARTseq  ribosome  profiling  kit  (Epicentre)  and

sequenced on an Illumina HiSeq 2500.

RNA sequencing

For each timepoint  and replicate the  same samples  as for  RPF-seq (pool  of  liver

lysates from two mice) was used to extract total RNA using miRNeasy RNA extraction

kit  (Qiagen).  Ribosomal  RNA  was  depleted  using  the  Ribo-Zero  magnetic  kit

(Epicentre) according to the manufacturer’s instructions. Sequencing libraries were

generated using the total RNA preparation protocol of the ARTseq ribosome profiling

kit (Epicentre). Libraries were sequenced on an Illumina HiSeq 2500.

RT-qPCR

Reverse transcription was performed with random hexamer primers and the following

gene-specific  primers  were  used  for  real-time  PCR.  Denr forward/reverse:

AAAGGCGATACGAAGAACAGTG,  CATCCGGCATGTATTCACAGT;  Nudt4 (control  gene)

forward/reverse:  AAGTTCAAGCCCAACCAGACG,  TCCTGGGACAATCCATTGGTC;  Firefly

luciferase  1 forward/reverse:  CCGCCTGAAGTCTCTGATTAAGT,

ACACCTGCGTCGAAGATGTTG;  Firefly  luciferase  2 forward/reverse:

TGCAAAAGATCCTCAACGTG,  AATGGGAAGTCACGAAGGTG;  Renilla  luciferase

forward/reverse: GGAATTATAATGCTTATCTACGTGC, CTTGCGAAAAATGAAGACCTTTTAC.

Preparation of protein extracts



For the preparation of nuclear extracts, freshly harvested livers were homogenised

each in 4 ml nuclear homogenisation buffer (10 mM HEPES pH 7.9, 10 mM KCl, 0.3 M

sucrose, 0.1 mM EDTA, 0.74 mM spermidine, 1 mM DTT, supplemented with complete

protease inhibitor  tablets  from Roche)  for  1 min using a  Teflon homogeniser  and

subsequently mixed with 8 ml cushion buffer (10 mM HEPES pH 7.9, 2.2 M sucrose,

0.1 mM EDTA, 0.74 mM spermidine, 1 mM DTT, complete protease inhibitors). The

homogenate was split in two and each part was layered on top of 3 ml cushion buffer

and centrifuged at 4°C for 1 h at 25000 rpm in a SW40 rotor. The nuclear pellets were

re-suspended in 400 μl RIPA-buffer (150 mM NaCl, 50 mM Tris pH 8.0, 1% NP40, 0.5%

DOC, 0.1% SDS and complete protease inhibitors) and incubated for 20 min on ice.

The lysates were cleared by centrifugation at 16000 x g for 5 min at 4°C and stored

at -80°C.

For  the  preparation  of  total  cell  extracts,  livers  were  lysed  in  3  volumes  (w/v)

RIPA-buffer using a Teflon homogeniser, incubated for 30 min on ice and centrifuged

for  10  min  at  16000  x  g  and  4°C.  Supernatants  were  stored  at  -80°C.  Protein

concentrations were quantified using a BCA protein assay kit (Pierce). 

For  the  isolation  of  mitochondria,  livers  were  homogenised  in  5  volumes  (w/v)

Mt-homogenisation buffer (10 mM Tris-MOPS pH 7.4, 1 mM EGTA-Tris pH 7.4, 200 mM

sucrose) with 5 strokes in a Teflon homogeniser. The homogenate was centrifuged at

600 x  g for  10 min at  4°C.  The supernatant  was transferred to a new tube and

centrifuged  at  7000  x  g  for  10  min  at  4°C.  Pellets  were  washed  in  1  ml

Mt-homogenisation buffer, re-centrifuged at 7000 x g for 10 min and re-suspended in

SDS-PAGE sample buffer. 

Protein extracts (25 μg) were analysed by SDS-PAGE using standard conditions.

Western blot analysis

Immunoblotting  to  PVDF  or  nitrocellulose  membranes  was  performed  using  a

Tris/CAPS  discontinuous  buffer  system with  semi-dry  transfer  (Trans-Blot  semi-dry

electrophoretic transfer cell, Bio-Rad) according to the manufacturer’s instructions.

Membranes were blocked and incubated with primary and secondary antibodies in

5% milk/TBS-T or 5% BSA/TBS-T. Primary and secondary antibodies were used at the

following dilutions: anti-FTL1 (1:100, Santa Cruz Biotechnology, sc-14420), anti-FTH1

(1:1000, Cell Signaling, #4393), anti-DENR (1:5000, Abcam, ab108221) anti-ALAS2

(1:1000, Abcam, ab184964), anti-NDUFB8 or anti-mt-CO1 (OxPhos rodent antibody

cocktail,  1:250,  Abcam,  ab110413),  anti-GGPS1  (1:1000,  Abcam,  ab167168),

anti-DEAF1 (1:1000, LSBio, LS-C80262), anti-U2AF2 (also known as U2AF65) (1:5000,

Sigma, U4758), anti-beta-Tubulin (1:5000, Sigma, T5201), anti-ACO1 (1:2000, Abcam,



ab126595),  anti-IREB2 (1:2000,  Abcam,  ab181153),  anti-rabbit-HRP or  anti-mouse

HRP  (1:10000,  Promega)  and  anti-goat-HRP  (1:5000,  Santa  Cruz  Biotechnology).

Signals  were  visualised  using  LumiGLO  or  LumiGLO-Reserve  chemiluminescent

substrate kits (KPL). For each timepoint 2-3 animals were analysed; shown are the

results from one representative time series.

Cloning, plasmids

A 8.2 kb fragment containing 3.5 kb of the Nr1d1 promoter region, exon 1, intron 1,

the first 14 bp of exon 2 and the luciferase coding region was amplified by PCR from

the adenoviral  plasmid pCV100-Nr1d1-Luc described previously  (Saini  et al.  2013)

using  the  following primers:  forward:  ACGTTCGCGACGCGTGTGTGTATGTGTGTG,  reverse:

TGCACTCGAGTTACACGGCGATCTTTCCGCC. Fragments were cloned between XhoI and NruI

sites to replace the dual luciferase reporter cassette in the prLV1 lentiviral vector

previously described  (Du et al. 2014) to generate prLV1-Nr1d1-Wt. Subsequently, a

1.1  kb  fragment  of  the  Nr1d1 promoter  region  was  deleted  by  site-directed

mutagenesis  using  forward:  GAAGCCAGAAGCTGGGAGCACACACGCGTCGCGATT,  reverse:

AATCGCGACGCGTGTGTGCTCCCAGCTTCTGGCTTC to reduce plasmid size. The size-reduced

plasmid  was  then  used  to  generate  Nr1d1-mutants  by  means  of  site-directed

mutagenesis using the following primer combinations: M1A-uORF1, mutation of the

uORF1  start  codon  to  alanine,  (F:  CTCTCTGCTCTTCCCGCGCAAATCAGATCTCAGG,  R:

CCTGAGATCTGATTTGCGCGGGAAGAGCAGAGAG);  M1A-uORF2, mutation of the uORF2 start

codon  to  alanine,  (F:  CAAGGTCCAGTTTGAGCGACCGCTTTCAGCTGG,  R:

CCAGCTGAAAGCGGTCGCTCAAACTGGACCTTG);  Del-uORF1,  deletion  of  uORF1  (F:

ACACTCTCTGCTCTTCCCATGACCGCTTTCAGCTGG,  R:

CCAGCTGAAAGCGGTCATGGGAAGAGCAGAGAGTGT);  Del-uORF1+2,  deletion  of  uORF1  and

the first  4 codons of  uORF2,  (F:  GGAGCTCCAGATTCATTACCAGCTGGTGAAGACATGACG,  R:

CGTCATGTCTTCACCAGCTGGTAATGAATCTGGAGCTCC).

For the generation of  dual  luciferase (Firefly/Renilla)  reporter plasmids,  fragments

containing the 5’ UTR and the first 10 amino acids of the  Nr1d1 coding sequence

were amplified by PCR from prLV1-Nr1d1-Wt and mutant plasmids using the forward:

AAAAGGATCCACTAGTGGGAAAGGCTCGGGCAAAAGGCGG and  reverse  primer:

TTTGGATCCTGTGTTGTTATTGGAGTCCAGGGT and cloned into the  BamHI site of the prLV1

dual luciferase reporter plasmid (Du et al. 2014).

For  shRNA  vectors,  the  following  hairpins  targeting  Denr were  cloned: shRNA1:

GTACCACAGAAGGTCACGATA,  corresponding  to  clone  TRCN0000308443;  shRNA2:

GTGCCAAGTTAGATGCGGATT,  corresponding  to  clone  TRCN0000098826;  shRNA3:



GTACCACAGAAGGTCACGATA,  corresponding  to  clone  TRCN0000098827);  scramble

shRNA (Addgene #1864) served as control.

Initial processing and quality assessment of sequencing data

Initial  quality  assessment  of  the  sequencing  reads  was  conducted  based  on  the

preliminary quality values produced by the Illumina pipeline Casava 1.82. Quality

related statistics used were the percentage of clusters passed filtering (%PF clusters)

and the mean quality score (PF clusters), as other quality related statistics, such as

percentage of  reads aligned,  mean alignment  score and percentage of  alignment

error were not very useful due to large contributions of adapter sequences. Adapter

sequences were removed using cutadapt utility (Martin 2011) with following options:

-a  AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC  –match-read-wildcards  -m  6.  The

size  distribution  of  insertions  was  employed  to  assess  the  quality  of  sequencing

libraries,  especially  for  ribosome  footprints;  for  samples  that  did  not  produce  a

distinct  peak  around  29-30  nucleotides,  either  the  sequencing  or  the  library

preparation was repeated. Next, trimmed read sequences were filtered by their size

using an in-house Python script with following inclusive ranges: [26,35] for footprints,

[21,60] for total RNA. Smaller or larger fragments were kept separately and not used

in further analyses.

Alignment to the mouse genome

Trimmed  and  filtered  insert  sequences  were  mapped  sequentially  to  following

databases:  mouse rRNA,  human rRNA,  mt-tRNA,  mouse  tRNA,  mouse  cDNA from

Ensembl mouse database release 75 (Flicek et al. 2013) and, finally, mouse genomic

sequences  (Genome  Reference  Consortium  GRCm38.p2).  All  but  last  one  were

mapped  using  bowtie  version  2.2.1  (Langmead  and  Salzberg  2012) using  the

following parameters: -p 2 -L 15 -k 20 –no-unal. Mapping against genomic sequence

was  performed  using  tophat  v2.0.11  (Trapnell  et  al.  2009) with  the  following

parameters:  –transcriptome-index=Mmusculus.GRCm38.75.dna.ensembl_data  -p  2.

After each alignment, only reads that were not aligned were used in the following

mapping.  For  further  analysis,  only  alignments  against  mouse  cDNA  were  used,

unless specifically stated otherwise. For each query sequence, only alignments with

maximum alignment score (AS) were kept.

Separately  from  this  sequential  alignment  strategy,  trimmed  and  filtered  insert

sequences from each sample were also directly aligned against the mouse genome

using  tophat  with  similar  parameters.  The  output  of  this  alignment  was  used to



estimate expressed transcript models out of all models contained in Ensembl mouse

database release 75. To this end, we used cufflinks v2.2.1  (Trapnell et al. 2010) to

estimate  the  number  of  fragments  per  kilo  base  of  exon  per  million  fragments

mapped  (FPKM)  for  each  transcript,  with  the  following  parameters:  –GTF

Mus_musculus.GRCm38.75.gtf  –frag-len-mean  37  –frag-len-std-dev  8

–compatible-hits-norm  –multi-read-correct  –upper-quartile-norm  –frag-bias-correct

Mmusculus.GRCm38.75.dna.ensembl.fa -p 3. Transcript FPKM estimates from all total

RNA  samples  were  merged  using  cuffcompare  with  following  parameters:  -r

Mus_musculus.GRCm38.75.gtf -R -V. Resulting FPKM tracking information was parsed

with an in-house Python script to filter out transcripts which were not found to have

an FPKM > 0.1, a LOW95 > 0.05 and a FMI > 2.0 in at least 3 samples. A database of

expressed transcripts based on this filtering was used in further analysis.

Quantification of mRNA and ribosome footprint abundance

Abundance  of  mRNA and  RPF  (ribosome  protected  fragment)  was  estimated  per

gene. For this quantification, only reads that were uniquely mapped to a single gene

and only transcripts that were identified as expressed (see Alignment to the Mouse

Genome) were used. An in-house Python script was used to count reads within each

annotation feature (5’ UTR, CDS, 3’ UTR) per gene. For genes that were associated

with  multiple  expressed  transcripts  (multi-isoform  genes),  reads  that  were  not

mapped  unambiguously  within  a  single  feature  were  assigned  to  one  with  the

following preference order: CDS, 5’ UTR, 3’ UTR. 

Prior to further analysis, variation captured by the CDS counts was inspected with the

principal component analysis (PCA) tools provided in the R package DESeq v1.14.0

(Anders and Huber 2010). The aim of this type of analysis is to visualise the overall

effect of experimental covariates and to detect if batch effects or outlying samples

are  present  in  the  experiment.  For  this,  we  followed  the  steps  described  in  the

reference manuals of DESeq. Briefly, a combined matrix of CDS counts for RPF and

mRNA was built, where each row contained time-series data with biological replicates

per gene. Normalisation factors for library sizes were calculated using upper quartile

method and dispersions were blindly estimated using the "pooled" method (ignoring

conditions) of DESeq. Prior to PCA, the normalised (division by size factors) count

data  were  transformed  using  the  getVarianceStabilizedData  function  from DESeq

package, which calculates a variance stabilising transformation (VST) from the fitted

dispersion-mean  relation,  yielding  a  matrix  of  values  which  are  approximately

homoskedastic. The variance-stabilised data matrix was then used for PCA using the

plotPCA function of DESeq. Briefly, rows were ranked in decreasing order by their



row-wise variances and the top 4000 genes were then used in PCA. The number of

genes included was identified empirically  by increasing the initial  default  number

(500) iteratively until the PCA results reached a stable state. The plotPCA function, by

default, performs a PCA without centring or further scaling.

Mappable  and  countable  feature  lengths  (in  nucleotides)  for  each  locus  were

calculated by means of generating all possible 21-, 30-, 45-, and 60-nt long reads in

silico (faux reads) for each expressed transcript in the database and counting the

faux  reads  through  identical  mapping  and  counting  work  flow  used  for  real

experimental  reads  (Du et  al.  2014).  Weighted averages  of  these  mappable  and

countable lengths were later used in RPKM calculations. For weights, proportions of

21-, 30-, 45-, and 60-nt inserts within averaged shifted histograms of insert length

distributions were used.

Read counts of total RNA and RPF were normalised with upper quantile method of R

package  edgeR v3.4.2  (Robinson  et  al.  2010).  Prior  to  normalisation,  transcripts,

which did not have at least 10 counts in at least one fourth of the samples, were

removed from the datasets. For better comparability between datasets, RPKM values

were calculated as the number of counted reads per 1000 mappable and countable

bases per  geometric  mean of  normalised read counts  per  million.  The geometric

mean of normalised read counts were 11,025,834 and 18,520,239 for total RNA and

RPF datasets, respectively. Translational efficiencies (TE) were then calculated as the

ratio  of  RPF-RPKM  /  mRNA-RPKM  for  each  gene  per  sample.  For  most  analysis

downstream, TEs were log2 transformed and means or replicates per timepoint or

grand-means over all timepoints were used as necessary.

Only for comparison of the translational efficiencies obtained from this study to those

reported in  (Ingolia  et  al.  2011),  we first  corrected the differences in  location by

adjusting the means trimmed 10%. Then, 13 data points at  the extremities were

removed from Ingolia’s dataset to achieve similar ranges in both datasets.

Analysis of mRNA abundances and translation efficiencies

Changes in the mRNA abundance or TE distributions between different sets of genes

were compared by estimating the amount of location shift and its significance using

Wilcoxon  rank  sum  test  (equivalent  to  the  Mann-Whitney  test).  For  all  cases,  a

two-sided test was performed and if necessary resulting p-values were corrected for

multiple testing via BH method  (Benjamini and Hochberg 1995). The median of all

possible  differences between a sample  from the first  set  and a sample from the

second  set  was  then  reported  as  an  estimate  for  the  difference  in  location

parameters (location shift).



For all other statistical calculations and figure production, the R environment (R Core

Team, 2013) with various packages (ggplot2 (Wickham 2009); MASS (Venables 2002))

was used. For production of  plots of  RNA and RPF densities along transcripts,  an

in-house Python script was used.

Analysis of significant changes in ribosome occupancy

Significance of  changes in  translational  regulation within  and between timepoints

were assessed with the Babel computational framework (Olshen et al. 2013). To this

end, unnormalised count data for both total RNA and RPF were used following the

authors’ instructions. 10,000,000 permutations were performed within comparisons

to achieve precise estimates. The false discovery rate-adjusted p-values were then

used to create lists of genes, whose ribosome occupancies were significantly altered

(fdr-adjusted p-value < 0.05) within a timepoint or between any two timepoints. A

union of these two gene lists was also created to include all genes that are predicted

to have alterations in their ribosome occupancies (e.g. translational efficiencies).

Rhythmicity detection in mRNA and RPF profiles

Rhythmic  parameter  estimation  methods  that  depend  on  harmonic  regression

typically fail to produce accurate estimates from abundance profiles of genes that

show pronounced deviations from sinusoidal  curves. An example is  Per1 (Fig. 3B),

where the increasing and decreasing portions of the profile are not symmetrical. To

overcome this shortcoming, we have devised an algorithm to detect rhythmicity and

estimate rhythmic parameters, which is based on Akaike information criterion (AIC)

based model selection (Wagenmakers and Farrell 2004) between three linear models:

mean model with 1 parameter, harmonic model with 2 parameters (Symul 2013), and

a sigmoid model with 5 parameters (Symul 2013). The sigmoid fit is composed of two

sigmoid curves, synthesis-up, SU, which lasts l hours, and synthesis-down, SD, which

lasts m hours. The two curves, together with the phase p describe a cyclic curve that

runs from the basal level B to max level, B times the fold-change fc. The equation for

the sigmoid function f(B,fc,p,m,l) of time t is

B(1+(fc−1)(SU+SD))),

where,

For each gene, normalised CDS counts of total RNA and RPF reads were then fit to

each model using the method of least squares. For all regressions, the two biological

replicates  per  timepoint  were  treated  as  independent  replicates  and  were  not

combined into a false 48-hour data-series. For sigmoid curve fitting, the minpack.lm



package in R environment was used. Minimum and maximum values allowed for  m

and l were 3 and 16 hours. First, for each model, we computed the differences in AICc

(AIC corrected for finite sample size) with respect to the AICc of the best candidate

model, ΔAICc. Then, ΔAICc were used to calculate the Akaike weight for each model.

A dataset was considered to be rhythmic if the evidence for mean-model (constant

expression) was less than 0.05. For such genes, the sigmoid model was chosen over

the sinusoidal (harmonic regression) only when the evidence for sigmoid model was

at least 3.5 times higher than that for sinusoidal to prevent over-fitting. The rhythmic

parameters,  phase  and  amplitude-ratio,  were  then  estimated  from  the  selected

model. Finally, genes that did not have an amplitude-ratio of at least 1.5 were flagged

and not categorised as cyclic.

To enable a comparison of our results to those from previously published circadian

proteomics studies (Mauvoisin et al. 2014; Robles et al. 2014), the UniProt and gene

name identifiers in these reports were converted into EnsemblIDs using the external

references maintained in the Ensembl database.

The Rayleigh test for uniformity and the Watson-Wheeler test for homogeneity were

performed using the R package 'circular'.

Analysis of RPF positions on transcripts

For all  total  RNA and RPF reads that were counted towards genes, we have also

tracked  the  position  of  the  5’  end  of  the  read  relative  to  the  5’  end  of  its

corresponding transcript  and the trimmed size of the read. The putative A-site of

ribosomes was then calculated as 5’ position of a RPF read plus 15 if the read was

≤30 nt long or 16 otherwise. For analysis of the 3 nucleotide rhythmicity of RPFs, only

a subset of genes that i) had a single transcript isoform with a CDS length of at least

400 nt, ii) were expressed at both mRNA and footprint levels, iii) had a RPF-RPKM > 5,

iv) had at least 20 nt in UTRs preceding and following CDS region, and v) had at least

10 reads within both the first and the last 200 nt, were considered (N=3237). For

calculation of frame preference in CDS, the last two criteria were not used (N=3793).

Upstream ORFs (uORFs)  were  identified within  the  5'  UTRs of  a  restricted set  of

genes,  for  which  a  single  protein-coding  isoform  was  found  to  be  expressed

(N=6774), with the following criteria: i) start with AUG, ii) are at least 18 nucleotides

long, iii) can overlap with main CDS. To identify uORFs that are actively translated we

used  a  similar  strategy  described  elsewhere  (Bazzini  et  al.  2014).  Briefly,  A-site

counts for each reading frame within a predicted uORF were tested for significant

deviations from a uniform distribution with a chi-square test. Resulting p-values were

adjusted  for  FDR  using  BH  (Benjamini  and  Hochberg  1995),  and  a  uORF  was



considered as actively translated only then if it had an adjusted p-value <0.05, the

preferred reading frame was the first one (relative to uORF’s 5’), and it had a RPF

coverage  >10%.  Same  analysis  was  applied  to  total  RNA  reads,  to  validate  its

specificity and also filter out unspecific cases (likely false positives) which suggested

translation events from total RNA reads (N=34).

The effects of feature (5' UTR, CDS, 3’ UTR) size and presence of translated uORFs on

the translation efficiency (TE) from the main CDS were analysed using linear least

squares regression. While log-transformation of TE is widely used elsewhere in the

manuscript and in almost all other publications reporting ribosome footprinting, for

this analysis we found that cube root transformation was more optimum using the

powerTransform tools  from the R package 'car'  v2.0.25  (Fox and Weisberg 2010).

Feature sizes were log10 transformed, and the presence or absence of translated

uORFs in a transcript was modelled as a binary predictor. The effects of the predictors

were  then  visualised  via  partial  regression  plots  using  the  avPlots  function  from

package 'car'.

Identification of pause-sites

Analysis of ribosome pausing was carried out following previous report (Ingolia et al.

2011). The same restricted set of genes (N=6774) that was used for uORF analysis

was used for pausing analysis. Mainly, two modifications to the original method were

revised. Firstly, as an estimate of central tendency we devised to employ the trimean,

which is the average of the median and the midhinge, instead of the median. The

trimean is a more resistant measure and copes better where median can have a

value of zero. Secondly, we have observed a small but significant positive correlation

(Pearson r = 0.18, p-value < 2.2e-16) in normalised codon counts between RPF and

mRNA, suggesting local RPF read densities along transcripts could also be influenced

by other factors than ribosome pausing. To overcome this effect we devised a method

where RPF codon values were normalised by mRNA codon values before identification

of pause-sites. Specifically, we first calculated the pileup profile of mRNA reads along

each transcript.  At  positions (nt),  where pileup values were smaller  than the first

quartile of all pileup values, the values were set equal to the first quartile value. The

resulting profile was smoothened with a correlation filter and subsequently used to

calculate  the  trimean  normalised  codon  counts  for  mRNA reads.  Finally,  at  each

codon the RPF count  was divided by the mRNA count.  This  approach provided a

conservative means of normalisation where over-representation of pause-sites that

coincide with prominent peaks in the mRNA pileup profile were was lessened, without

extensively promoting non-pause-sites that coincide with troughs in the mRNA pileup



into  novel  pause-sites.  The  correlation  in  codon  counts  between  RPF  and  mRNA

dropped drastically after this normalisation procedure (r = 0.08, p-value < 2.2e-16). A

site is labelled as pause-site only if both biological replicates had a score > 25 at that

site.
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Mammalian physiology and behavior follow daily rhythms that are orchestrated by endogenous timekeepers
known as circadian clocks. Rhythms in transcription are considered the main mechanism to engender rhythmic
gene expression, but important roles for posttranscriptional mechanisms have recently emerged as well
(reviewed in Lim and Allada (2013) [1]). We have recently reported on the use of ribosome profiling (RPF-
seq), a method based on the high-throughput sequencing of ribosome protected mRNA fragments, to explore
the temporal regulation of translation efficiency (Janich et al., 2015 [2]). Through the comparison of around-
the-clock RPF-seq andmatching RNA-seq data wewere able to identify 150 genes, involved in ribosome biogen-
esis, ironmetabolism and other pathways, whose rhythmicity is generated entirely at the level of protein synthe-
sis. The temporal transcriptome and translatome data sets from this study have been deposited in NCBI's Gene
Expression Omnibus under the accession number GSE67305. Here we provide additional information on the ex-
perimental setup and on important optimization steps pertaining to the ribosome profiling technique in mouse
liver and to data analysis.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Specifications

Organism/cell
line/tissue

Mus musculus/liver

Sex Male
Sequencer or
array type

Illumina HiSeq 2500

Data format Raw and processed data
Experimental
factors

Livers were collected every 2 h during the 24-h daily cycle
(with 2 replicate time series)

Experimental
features

RNA-seq and RPF-seq were performed in parallel on the same
liver lysates to identify mRNA subject to rhythmicity at the
translational level

Consent Data are publicly available at NCBI GEO
Sample source
location

Lausanne, Switzerland

1. Direct link to deposited data

Direct link to deposited files: http://datalink.elsevier.com/midas/
datalink/api/downloadfiles?items=18934-18935-18936

Direct link to deposited genomic data: http://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?token=etmbssamttcnzsb&amp;acc=GSE67305

2. Experimental design, materials and methods

2.1. Experimental design

To investigate daily rhythms in translation, we recently performed
ribosome profiling in mouse liver (Janich et al., 2015 [2]), which is the
most commonly used peripheral organ in circadian research due to its
easy dissectability, its relatively homogenous cellular composition and
its abundant, high-amplitude rhythms [3]. Ribosome profiling is based
on the deep sequencing of ≈30 nucleotide mRNA fragments that are
protected by translating ribosomes upon nuclease digestion [4]. The se-
quence information contained in the footprints allowed us to perform
transcriptome-wide, quantitative analyses of protein synthesis rhythms
in mouse liver. Parallel RNA-seq data was used to quantify RNA abun-
dance around-the-clock, allowing the identification of those genes
whose rhythmicity was exclusively translational. Livers were collected
at 2 h intervals around-the-clock in order to have sufficient temporal
resolution for reliable rhythmicity detection. For each time point, two
replicate samples were generated. Each replicate consisted of a pool of
2 individual livers.

2.2. Mice

Wild type C57BL/6J mice were purchased from Janvier Labs. Animal
housing and experimental procedures were in agreement with the vet-
erinary law of the Canton Vaud, Switzerland (authorization to DG:
VD2376). For all experiments, mice were entrained to 12-h-light/12-
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h-dark cycles for 2 weeks with water and normal chow available ad
libitum. Prior to organ collection, mice were anesthetized with
isoflurane and sacrificed by decapitation. Micewere sacrificed at the in-
dicated Zeitgeber times (ZT), with ZT00 corresponding to “lights on”
and ZT12 to “lights off” in the animal housing facility. Livers were rap-
idly excised and immediately processed to lysate.

2.3. Lysate preparation

Freshly extracted liver tissue from each individual mouse was
weighed and subsequently lysedwith 8 strokes in a Teflon homogenizer
containing 3 volumes of ice-cold lysis buffer (20 mM Tris–HCl pH 7.4,
150 mM NaCl, 5 mM MgCl2, 5 mM DTT, 100 μg/ml cycloheximide, 1%
Triton X-100, and 0.5% sodium deoxycholate) supplementedwith com-
plete EDTA-free protease inhibitors (Roche) and 40 U/ml RNasin plus
(Promega). Of note, RNasin plus inhibits RNase A, B and other RNases
present in liver extracts, but not RNase I, which will be used at a later
stage of the protocol to generate ribosome protected mRNA fragments
(RPFs). The liver homogenates were transferred to microcentrifuge
tubes and incubated for 10 min on ice. Cellular debris was pelleted by
centrifugation at 1000 ×g for 3 min at 4 °C. The supernatant was re-
moved, aliquoted, and snap-frozen and stored under liquid nitrogen
until further processing. For absorbance measurements at 260 nm, ly-
sates were gently thawed on ice, diluted 1:10 and 1:20 in water, the ab-
sorbance determined by Nanodrop and the average value from the two

dilutions was determined. In general, the lysates ranged between 100
and 200 OD260 per 1 ml lysate. Equal amounts of lysate (OD260)
from 2 mice, collected at the same time point, were pooled and diluted
with lysis buffer to a final concentration of 15 OD260/100 μl. Lysates
were processed separately for RPF-seq and RNA-seq (Fig. 1).

2.4. RNA extraction and RNA-seq library preparation

For the isolation of total (cytoplasmic) RNA, 100 μl pooled lysatewas
mixed with 1 ml Trizol and incubated for 5 min at room temperature.
RNA was isolated using the miRNeasy kit (Qiagen) according to the
manufacturer's protocol and the concentration determined by
Nanodrop. Prior to library preparation, a total of 5 μg RNAwas subjected
to ribosomal RNA depletion (Ribo-Zero magnetic kit, Epicenter) and
subsequently purified using a RNA purification kit (RNA Clean &
Concentrator-5, Zymo Research). RNA-seq libraries were generated fol-
lowing the instructions for total RNA library preparation of the ARTseq
ribosome profiling kit (Epicenter).

2.5. Preparation of ribosome protected mRNA fragments (RPFs)

In preparation to processing the samples from the large-scale time
series, we optimized the conditions for nuclease digest in order to en-
sure efficient and reproducible generation of RPFs of ≈30 nucleotides
in length. To this end, liver lysates were incubated with different
amounts of RNase I ranging from 0 to 1000 units (Ambion). The
digested mRNA fragments were purified using Trizol extraction and an-
alyzed by northern blot as described previously [5]. Northern blot hy-
bridization was performed using 2 different probes recognizing two
highly expressed liver mRNAs (Alb, albumin and Mup, major urinary
protein). Analysis of the autoradiographs showed that the optimal con-
centration for obtaining mRNA fragments of 30 nucleotides in lysates
prepared from mouse liver was in the range of 600 to 1000 units
RNase I (Fig. 2).

Thus, for our time course experiment, lysates of a concentration of
15 OD260 in a volume of 100 μl were incubated with 650 units RNase
I and 2.5 μl DNase I for 45 min at room temperature. After the incuba-
tion, samples were placed on ice and 8.7 μl Superasin RNase inhibitor
(Ambion) were added to inactivate the RNase I enzyme. In the mean-
time, size exclusion spin columns (S-400, GE Healthcare Life Sciences),
that would subsequently serve to purify the nuclease-generatedmono-
somes, were prepared. To this end, spin columns were washed 3 times
with 700 μl lysate buffer containing 20 U/ml Superasin in a
microcentrifuge at 600 ×g for 1 min. Between each washing step the
matrix of the spin column was gently resuspended by vortexing. After
the washing steps, lysates were applied to the matrix and the spin col-
umns were centrifuged for 2 min at 600 ×g. 1 ml of Trizol was added

Fig. 1. Overview of the experimental workflow used for ribosome profiling (RPF-seq) and
for RNA-seq in mouse liver.

Fig. 2. Optimization of RNase I concentration. Autoradiographs of RNase I-digested liver
RPFs probed for two highly expressed liver mRNAs, albumin (Alb, probe:
cgatgggcgatctcactcttgtgtgcttctc) and major urinary protein (Mup, probe:
gttccttcccgtagaactagcttc). RPFs of 30 nucleotides in length were obtained when 600–
1000 units of RNase I were used for digestion.
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to the flow-through and RNA was extracted using the miRNeasy kit
(Qiagen) according to the instructions of themanufacturer. The concen-
tration of the RNAwas determined by Nanodrop and RNAwas stored at
−80 °C. Before proceeding to library preparation, the quality of the ex-
tracted RPFs was verified for all samples of the time course experiment
by northern blot analysis (Fig. 3).

2.6. RPF-seq library preparation and sequencing

Library preparation of RPFs was performed according to the ARTseq
ribosome profiling kit (Epicenter) with the modification that the steps
of ribosomal RNA depletion (Ribo-zero) and polyacrylamide gel electro-
phoresis (PAGE) purification were inverted. The original protocol uses
5 μg of RPF RNA as starting material, which is the maximum amount
of RNA recommended in a Ribo-zero reaction. However, using this pro-
tocol wewere occasionally unable to obtain sufficiently concentrated li-
braries for sequencing. The inversion of the 2 steps allowed us to
increase the starting material up to 25 μg RPF RNA, without noticing a
negative effect on the performance of the Ribo-zero depletion. In our
case, the RNA was first separated on a 15% urea-polyacrylamide gel
and stained with SYBR-Gold (Invitrogen). Gel pieces between 26 and
34 nucleotides were excised, the RNA extracted, purified and only
then used for ribosomal RNA depletion. After the Ribo-zero reaction,
the RNA was purified using a RNA purification kit (RNA Clean &
Concentrator-5, Zymo Research) and immediately subjected to end-
repair and 3′ adaptor ligation according to the instructions of the
ARTseq protocol. Reverse transcription, cDNA purification and circular-
ization were done as described in the ARTseq protocol. During the last
step of library preparation, i.e. the PCR amplification, 5 μl out of the
20 μl circularized cDNA product was used as template in the PCR reac-
tion. The quality of the final library was assessed by analyzing 5 μl of
the PCR reaction on an 8% native PAGE, stained with SYBR Gold. For
some libraries, only a faint band was visible, and we then performed
up to 3 additional PCR amplifications as described above in order to
have sufficient material. In a final step, the identical PCR reactions
were pooled and loaded on an 8% native PAGE. The library running at
≈150bpwas gel-purified, precipitatedwith ammoniumacetate and re-
suspended in water. The concentration and the quality of both RPF-seq
and RNA-seq libraries were determined by Qubit (Thermo Fisher) and
BioAnalyzer (Agilent). Up to 6 libraries weremultiplexed and subjected
to 100 cycles of single-end sequencing on an Illumina HiSeq2500
(Illumina).

2.7. Data processing and analysis

Here, we briefly outline the first steps of data analysis. More detailed
information on data processing and analysis can be found in the supple-
mentary information of the original publication [2].

In a first step, sequencing reads were de-multiplexed, adapter-
trimmed and size-filtered (lengths of 26–35 nucleotides for RPF-seq
and 21–60 nucleotides for RNA-seq). Next, we removed from the fil-
tered reads sequentially the mouse and human ribosomal rRNA,
mouse mt-tRNA, mouse tRNA, and then finally aligned the reads to

mouse cDNA (Ensembl release 75) and genomic sequences (GRCm38.
p2), using bowtie version 2.2.1 and Tophat v2.0.11, respectively. In par-
allel, a database of expressed transcripts was generated from RNA-seq
reads (cufflinks v2.2.1) and used for subsequent analyses. Read quanti-
fication was done per gene for each annotation feature (5′ UTR, CDS, 3′
UTR). Read counts were normalized with the upper quantile method of
R package edgeR v3.4.2 andRPKMvalueswere calculated as the number
of counted reads per 1000 mapped and counted bases per geometric
mean of normalized read counts per million (RPKM). Translation effi-
ciencies were calculated as the ratio of RPF-RPKM/mRNA RPKM. The
Babel framework was used to assess significant changes in translational
regulation [6]. We used amixedmodel approach for rhythmicity detec-
tion (sigmoid and sinusoidal curve fittings). Rhythmic transcripts were
defined as those with a peak-to-through amplitude N1.5 and an FDR for
rhythmicity detection b0.05.

3. Discussion

Wedescribe here two temporal data sets inmouse liver composed of
transcriptome (RNA-seq) and translatome profiling (RPF-seq) with 2-h
resolution around the 24-h daily cycle. Rhythmic RNA abundance and
rhythmic footprints affected a similar proportion (17%) of the total 10′
800 genes detected in both RNA-seq and RPF-seq datasets. Themajority
of these rhythmic events (≈1200 genes) oscillated both at the mRNA
abundance and the translation level. However, we also identified
≈150 genes that showed no daily changes in mRNA abundance but
rhythms in translation. These genes are involved in ribosome biogene-
sis, translation regulation, iron homeostasis and other pathways. Future
studies will aim at uncovering the precise mechanisms that engender
rhythmicity at the translational level, thus adding a new level of under-
standing to posttranscriptional control of rhythmic gene expression
(Lim and Allada (2013) [1]). In summary, the around-the-clock RPF-
seq and matching RNA-seq datasets provide valuable information
about the role of translation in generating rhythmic gene outputs, but
the data will likely be of high interest to researchers outside the circa-
dian field as well.

Conflict of interest

The authors declare no conflicts of interests.

Acknowledgments

We thank all the staff members at the Lausanne Genomic Technolo-
gies Facility and at Vital-IT for sequencing and computational support.
DGwas supported by Swiss National Science Foundation (professorship
grants 128399, 157528); National Center for Competence in Research
(NCCR) RNA&Disease; Fondation PierreMercier; Fondation Leenaards;
Olga Mayenfisch Stiftung; SystemsX.ch StoNets consortium; and the
University of Lausanne. PJ was supported by Human Frontiers Science
Program long-term fellowship LT000158/2013-L.

Fig. 3.Quality control of footprints generated from time series. Autoradiograph of liver RPFs from all replicate samples of the time series experiment probed for albumin (Alb, probe: same
as in Fig. 2). In all samples RPFs of 30 nucleotides in length were detected, indicating that the nuclease digestion conditions were homogenous and reproducible. ZT, Zeitgeber time.
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Abstract

Background: The daily gene expression oscillations that underlie mammalian circadian rhythms show striking
differences between tissues and involve post-transcriptional regulation. Both aspects remain poorly understood.
We have used ribosome profiling to explore the contribution of translation efficiency to temporal gene expression
in kidney and contrasted our findings with liver data available from the same mice.

Results: Rhythmic translation of constantly abundant messenger RNAs (mRNAs) affects largely non-overlapping
transcript sets with distinct phase clustering in the two organs. Moreover, tissue differences in translation efficiency
modulate the timing and amount of protein biosynthesis from rhythmic mRNAs, consistent with organ specificity
in clock output gene repertoires and rhythmicity parameters. Our comprehensive datasets provided insights into
translational control beyond temporal regulation. Between tissues, many transcripts show differences in translation
efficiency, which are, however, of markedly smaller scale than mRNA abundance differences. Tissue-specific changes
in translation efficiency are associated with specific transcript features and, intriguingly, globally counteracted and
compensated transcript abundance variations, leading to higher similarity at the level of protein biosynthesis
between both tissues.

Conclusions: We show that tissue specificity in rhythmic gene expression extends to the translatome and contributes
to define the identities, the phases and the expression levels of rhythmic protein biosynthesis. Moreover, translational
compensation of transcript abundance divergence leads to overall higher similarity at the level of protein production
across organs. The unique resources provided through our study will serve to address fundamental questions of
post-transcriptional control and differential gene expression in vivo.

Keywords: Circadian clocks, Translation, Ribosome profiling, Kidney, Liver

Background
Circadian clocks serve organisms to synchronise behav-
iour, physiology and gene expression according to time of
day. The mammalian circadian system consists of a master
clock in the brain’s suprachiasmatic nuclei (SCN) that
receives photic inputs from the retina and synchronises
peripheral clocks present in most cells throughout the
body. The molecular timekeeping mechanism—the core
clock—consists of a network of transcriptional activators
and repressors interacting in negative feedback loops
(reviewed in [1, 2]). In the core loop, the heterodimeric

transcription factor ARNTL:CLOCK (also known as
BMAL1:CLOCK) drives the expression of its own re-
pressors, encoded by the Period (Per1, Per2, Per3) and
Cryptochrome (Cry1, Cry2) genes—a configuration also
known as the positive and negative limbs of the oscillator.
Additional feedback—in particular, an interconnecting
limb involving nuclear receptors of the REV-ERB
(encoded by genes Nr1d1, Nr1d2) and ROR (Rora, Rorb,
Rorc) family—intersects with the core loop and numerous
post-translational modifications of clock proteins further
add to the complexity of the circuitry. The final out-
come is a set of robustly cycling transcriptional activ-
ities peaking at different phases around the day that drive
the rhythmic expression of hundreds to thousands of
other genes, termed the clock output or clock-controlled
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genes (CCGs). It is noteworthy that, despite the prob-
ably (near-)identical molecular makeup of the core
clock across cell types, CCGs show considerable tissue
specificity [3]. The co-regulation by core clock and
tissue-specific (non-rhythmic) transcription factors may
engender such cell type-specific rhythmic expression
patterns, as shown to occur in Drosophila [4]. Overall,
however, the origins of tissue specificity in rhythmic
gene output (and even in certain core clock parameters
[5]) are poorly understood. Mechanisms that act at the
post-transcriptional level and that impact daily messen-
ger RNA (mRNA) and protein accumulation kinetics
are plausible players in the generation of cell-type dif-
ferences as well.
Rhythmic gene expression has been mainly investi-

gated at the transcriptome level, i.e. using mRNA abun-
dances as a primary readout. However, comparison of
mRNA levels with datasets of genome-wide transcrip-
tional activity and of protein abundances that have
become available recently, has suggested that a surpris-
ingly large fraction of gene expression oscillations may
have post-transcriptional origins (reviewed in [6]). The
many cases of protein rhythms that are independent of
an underlying oscillating transcript (initially reported in
a low-throughput mass-spectrometric study from mouse
liver ten years ago [7] and recently confirmed at a com-
prehensive scale [8, 9]) point to important roles for
translation, protein degradation and protein secretion
in shaping time of day-dependent proteomes. We [10]
and others [11] have recently used ribosome profiling, a
genome-wide method that assesses translation effi-
ciency through the deep sequencing of ribosome-protected
mRNA fragments, to chart the contribution of translational
control to daily protein biosynthesis in mouse liver. One
conclusion that emerged from the identified cases of
translationally generated oscillations was that circadian
clock activity and feeding rhythms both contribute to
regulating rhythmic gene expression outputs [10, 11].
Notably, the most abundant group of transcripts sub-
ject to rhythmic translation, i.e. mRNAs encoding ribo-
somal proteins and other components of the translation
machinery that all contain 5′-terminal oligopyrimidine
tract (5′-TOP) sequences regulated by the mammalian
target of rapamycin (mTOR) [12], appear to be under
the dominant control of feeding [11].
We have now performed ribosome profiling using a

second organ from the same cohort of animals, the kid-
ney, which is an emerging circadian model organ with
distinct rhythmic functions [13]. By contrasting kidney
and liver datasets, we comprehensively assessed com-
monalities and differences in their translatomes and we
evaluated how far the regulation of translation efficiency
contributed to tissue specificity in rhythmic and consti-
tutive protein biosynthesis.

Results
Around-the-clock ribosome profiling datasets from two
organs
For our recent study of the liver translatome around-the-
clock [10], we had used ribosome profiling [14] (RPF-seq)
on a time series of organs collected from mice sacrificed
every 2 h over the 24-h day (12 timepoints in duplicate;
Fig. 1a). To generate a complementary dataset from a
second organ, we chose the kidneys from the same cohort
of animals. Liver and kidney express thousands of genes in
common [3, 15], thus providing a particularly suitable set-
ting for a cross-organ comparison of gene expression.
Applying the same experimental and computational

methods as for liver RPF-seq [10, 16], we obtained com-
parable high-quality data for kidney (see Additional file 1:
Figure S1A–C and Additional file 2 for details on sequen-
cing and mapping outcomes). Briefly, ribosome footprints
from both organs showed similar enrichment for protein
coding sequences (CDS) of mRNAs and depletion of
untranslated regions (UTRs) (Fig. 1b). Like the footprints
from liver, those from kidney also exhibited excellent
reading frame preference, which allowed resolving the
3-nt periodicity of coding sequences transcriptome-
wide (Fig. 1c and Additional file 1: Figure S2A, B).
Moreover, the high correlation coefficients seen across
replicates of the kidney time series for both RNA-seq
and RPF-seq data indicated excellent biological and
technical reproducibility (Additional file 1: Figure S3A, B).
We also used a recently developed tool, termed Ribo-seq
Unit Step Transformation (RUST) [17], to confirm high
technical similarity of datasets between organs (Additional
file 1: Figure S2C, D). Finally, principal component ana-
lysis (PCA) on all available datasets (96 libraries, i.e.
RPF-seq and RNA-seq from two organs, 12 timepoints,
in duplicate) segregated the data according to the main
experimental and biological covariates. PC1 (explaining
64.2% of variation) thus separated libraries according to
organ, indicating that tissue origin represented the
major source of divergence, followed by PC2 (28.4%)
that separated RNA-seq (mRNA abundance) and RPF-seq
(footprints/translation) (Fig. 1d). The cyclic nature of the
data was resolved in the representation PC3 versus PC5
(together 12.5%), in which timepoints assembled to a
near-perfect clock (Fig. 1e). The larger circular arrange-
ment of the liver versus kidney time series suggested that
rhythmic gene expression from liver contributed more
strongly to overall variation than did kidney rhythms. This
observation is in line with the notion that there are more
and higher amplitude rhythms in liver than in kidney [3].
Taken together, we concluded that the kidney data were of
similarly high quality as our previous liver datasets [10].
Together, they would be suitable for comparative analyses
of time of day-dependent and constitutive translation
across two tissues.
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Fig. 1 (See legend on next page.)
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Cross-organ differences in translation efficiency are
widespread, of moderate scale and partially compensate
RNA abundance differences
To what extent do differences in translation efficiency
contribute to different gene expression outputs across or-
gans? We addressed this question using the set of 10,289
genes whose expression was detectable in kidney and in
liver at both RPF and RNA level (Fig. 2a). From the ratio
of CDS-mapping normalised read counts for RPF-seq
relative to RNA-seq, we first calculated relative translation
efficiencies (TEs) per transcript and for each organ. TEs
were overall rather similar between tissues, with 95% of
genes falling into a less than threefold range for the kid-
ney/liver TE ratio, as compared with a greater than 100-
fold range for the transcript abundance ratio (Fig. 2b).
This observation was coherent with the considerably
broader spread of mRNA abundances versus TEs across
genes within each organ (greater than 500-fold versus just
over tenfold, respectively; Additional file 1: Figure S5A, B)
and is in line with a dominant role for the regulation of
mRNA levels (i.e., transcription and mRNA decay) in con-
trolling quantitative differences in gene output.
Intuitively, we had expected that RNA levels that were

widely dissimilar between kidney and liver and subse-
quently further modulated by organ-specific TEs, would
probably give rise to even greater cross-organ divergence
at the RPF level. Intriguingly, however, the global correl-
ation between kidney and liver was better for footprint
abundances than for transcript abundances (Spearman ρ
[RPF]: mean 0.784 vs. ρ [RNA]: mean 0.736; p < 2.2e-16;
paired t-test of Fisher-transformed correlation coeffi-
cients, n = 24) (Fig. 2c; Additional file 1: Figure S3C, D).
This phenomenon was observed irrespective of whether
the genes expressed only one dominant protein-coding
transcript isoform (‘single isoform genes’ in the

following) that was common to both organs, or whether
they gave rise to different (including tissue-specific)
mRNA variants (‘multiple isoform genes’) (Fig. 2d). The
observed higher cross-organ concordance of RPFs
could have simply had technical reasons, e.g. if the
RPF-seq protocol gave more reproducible results than
the RNA-seq protocol. We addressed this caveat by
comparing measurement errors (MEs) for RNA and
RPF data using a similar approach as in a recent publi-
cation [18]. We found that MEs scaled inversely with
expression levels, as expected, and showed some vari-
ation due to organ (Additional file 1: Figure S6A, B, F,
G). Especially in liver and among low expressed tran-
scripts, a tendency towards smaller MEs for RPF than
for RNA was indeed visible (differences statistically
non-significant). In most other cases, however, meas-
urement errors were (in part significantly) higher for
the transcripts’ RPF counts than for their RNA counts.
Of note, the better cross-organ correlation of RPF vs.
RNA levels seen in the full transcript set (Fig. 2c) was
also evident within various transcript subsets (Add-
itional file 1: Figure S6C–E, H–L), including such sub-
sets for which RPF MEs were higher than RNA MEs
(Additional file 1: Figure S6E, L). It is thus unlikely that
technical bias was the reason for the higher RPF correl-
ation. Finally, an analysis that we performed on independ-
ent ribosome profiling datasets from rat liver and heart
[19] allowed us to confirm the phenomenon of higher
concordance of RPF versus RNA abundance also be-
tween these organs (Additional file 1: Figure S7A–C).
Taken together, these findings are suggestive of a po-
tentially broader biological phenomenon that consists
in the partial compensation of differences in a gene’s
mRNA expression through counteracting effects
exerted through its TE, resulting in the convergence at

(See figure on previous page.)
Fig. 1 Ribosome profiling around-the-clock in mouse liver and kidney. a Overview of the experimental design. Livers and kidneys for ribosome
profiling were collected every 2 h for two daily cycles. Each timepoint sample was a pool of organs from two animals. Mice were kept under
12 h:12 h light-dark conditions, with Zeitgeber times ZT00 corresponding to lights-on and ZT12 to lights-off. b Read distribution to transcript
features. RPF-seq (left; kidney in orange, liver in green) and RNA sequencing (RNA-seq) (right; blue and red for kidney and liver, respectively)
compared with a distribution expected from the relative feature sizes (grey; the distributions based on feature sizes were highly similar for both
organs, thus only that for kidney is shown). Note that RPF-seq footprints were enriched on the CDS and depleted from UTRs, whereas RNA-seq
reads distributed more homogeneously along transcripts, according to feature size. Of note, the higher level of 3′ UTR footprints in kidney resulted
mainly from differences in the efficiency with which stop codon footprints were captured, as described in (c). c Predicted position of the ribosome’s
aminoacyl tRNA-site (A-site) of reads relative to the CDS start and stop codons. Read density at each position was averaged across single protein
coding isoform genes (i.e., genes with one main expressed transcript isoform) that had an average RPF RPKM > 5, a CDS > 400 nt in length and were
expressed in both organs (n = 3037 genes). This analysis revealed the trinucleotide periodicity of RPF-seq (but not RNA-seq) reads in both organs. Inset:
frame analysis of CDS reads showed preference for the annotated reading frame (frame 1, the same frame as the start codon) in RPF but not in RNA
reads. Violin plots extend to the range of the data (n = 3694 genes for liver, n = 4602 genes for kidney). A separate analysis of the higher level of stop
codon footprints in kidney, that also led to the differences in 3′ UTR reads in B, can be found in Additional file 1: Figure S2A, B. d Principal component
analysis (PCA) of kidney and liver RPF-seq and RNA-seq datasets, using the 4000 most variable genes. The first two components reflected the variability
coming from organ (PC1, 64.21%) and from RPF/RNA origin of datasets (PC2, 28.35%). e PC3 vs. PC5 (together 12.5% of variation) resolved the factor
time within each dataset, leading to a representation that resembled the face of a clock. Each dot represents one sample, timepoint replicates are
joined by a line and timepoints within each dataset are sequentially coloured. The circular arrangement was larger for liver than kidney, suggesting a
higher contribution of hepatic rhythmic genes to overall variability. Additional file 1: Figure S4 shows the scree plot for the ten first components
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the level of protein biosynthetic output (footprints,
RPF) across tissues.

Transcript features associated with cross-organ differ-
ences in translation efficiency
Do particular transcript features have predictive value for
organ-specific differences in translation efficiency? To

investigate this question, we selected the genes with sig-
nificantly different TEs between tissues (n = 5013; Wil-
coxon signed rank test; FDR < 0.01) and implemented a
1.5-fold cutoff on TE ratio between the organs to retrieve
the most pronounced cases (n = 960) (Fig. 2e;
Additional file 3). Of these, 533 represented ‘single iso-
form genes’ with no (or negligible amounts of )

a b

d e f g

c

Fig. 2 Cross-organ differences in translation efficiency partially compensate RNA abundance differences and show association with transcript features.
a Venn diagram showing the gene expression overlap (i.e. genes detected at both RPF and RNA level) between kidney (yellow, n = 12,423 genes)
and liver (green, n = 10,676 genes). Same cutoffs on RPKM (reads per kilobase of transcript per million mapped reads) were used for both
organs. b Scatterplot of kidney-to-liver ratio of mRNA abundance versus translation efficiency (TE) for all expressed genes (n = 10,289), averaged
over all timepoints. Corresponding density curves are plotted on the margins. Dashed red lines represent the 2.5 and 97.5 percentiles of each
variable and the corresponding fold-change is indicated. Linear regression line is depicted in blue (R2 = 0.0009, p = 0.0009). While 95% of genes
spanned a 114-fold range in mRNA abundance differences across organs, the same number of genes changed less than threefold in TE, underlining
that transcript abundance was the main contributor to divergent gene expression. c Inter-organ Spearman correlation for RNA-seq and RPF-seq
samples. Each dot represents the correlation coefficient between kidney and liver for a timepoint and replicate sample. Note that RPF-seq
samples consistently correlated significantly better than RNA-seq samples (p < 2.2e-16, n = 24, paired t-test of Fisher-transformed correlation
coefficients). d Scatterplot of inter-organ RNA vs. RPF correlation coefficients for each sample separately calculated from all (blue, n = 10,289), from
single isoform (red, n = 5815), and from multiple isoform (pink, n = 4474) genes. Consistently better RPF correlation was evident in all cases. e Relative
TE in liver vs. kidney (data centred and averaged over all timepoints for all expressed genes, n = 10,289) showed an overall strong inter-organ
correlation. Differential TE—defined as having false discovery rate (FDR)-corrected p < 0.01 (Wilcoxon signed rank test on TE) and > 1.5 difference in
TE across organs—was apparent for ca. 9% of genes (yellow and green show cases where TE is higher in kidney and liver, respectively, n = 960).
f Cumulative distribution of Hellinger distances for genes showing differential TE (red, n = 960), or not (grey, n = 9329), as detected in (e).
Hellinger distance was used as a quantitative measure for relative transcript isoform diversity across organs, as described in ‘Results’ and
‘Methods’. The analysis shows that divergent TE correlated with larger diversity in transcript isoform expression (D = 0.0702, p = 3.74e-04, two-
sample Kolmogorov–Smirnov [KS] test). g Cumulative distribution of the kidney-to-liver TE ratio for genes whose transcript diversity originated
exclusively from the 5′ UTR (identical CDS and 3' UTR, light blue, n = 216; these genes show more TE differences across organs) and genes
whose transcripts had identical 5′ UTR (and divergent CDS and/or 3′ UTR, purple, n = 314; these genes show less TE differences across organs).
The vertical dashed grey line marks the 1.5-fold difference used to define differential TE (as in (e)). These results suggested that tissue specificity
in TE was partially achieved by expressing transcript isoforms that differed in their 5′ UTRs (note the significant shift towards smaller TE differences for
genes with identical 5' UTRs). See also Additional file 1: Figure S9
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expression of tissue-specific mRNA variants. For these
genes, we examined whether a higher TE in kidney (n
= 193) or in liver (n = 340) was associated with specific
transcript characteristics. Of several features tested, we
found that CDS and transcript lengths showed the most
significant association with differential TE (Additional
file 1: Figure S8A, B). Of note, we had previously seen
in liver that shorter coding sequences, i.e., transcripts
encoding smaller proteins, are more efficiently trans-
lated [10]. Our present analyses suggest that such tran-
scripts are also more prone to tissue-specific regulation
at the translational level. Other sequence features
showed some bias within the differential TE gene sets
as well, although the effects were overall weaker and
less consistent. Briefly, the 5′ UTRs of genes with higher
TEs in liver were longer and predicted to fold more
strongly. By contrast, transcripts with higher kidney TEs
were associated with lower 5′ UTR GC content and
slightly shorter 3′ UTRs. No association with differential
TE was found for the Kozak sequence context score.
We also investigated two functional classes of sequence

features, micro RNA (miRNA) binding sites and upstream
open reading frames (uORFs), for association with differ-
ential TE. Of note, the 960 ‘TE different’ transcripts were
not enriched for any predicted miRNA binding sites,
making it unlikely that this class of post-transcriptional
regulators is a major player in establishing tissue-specific
TEs (data not shown). We had previously observed that in
the liver the presence of a translated uORF in the 5′ UTR
was strongly predictive of low TE at the main ORF [10].
An analogous relationship was also evident in kidney
(Additional file 1: Figure S5C). To assess whether uORF
translation was associated with TE differences across or-
gans, we compared how the identified uORF-containing
transcripts (i.e. single isoform genes showing translated
uORFs in at least one organ; n = 1377) distributed to the
differential versus non-differential TE gene sets. The
group of genes with higher TE in liver was significantly
enriched for transcripts with translated uORFs (p = 6.08e-
04; Fisher’s exact test) and there was slight depletion
among genes with higher TE in kidney (not significant)
(Additional file 1: Figure S8C). Only few differential TE
genes exhibited uORF translation that was exclusive to
one organ, but there was a tendency for kidney-specific
translation of uORFs to be associated with higher TE
on the CDS in liver and vice versa (Additional file 1:
Figure S8D). For the genes with uORFs translated in
both tissues, we expected that cross-organ differences
in the strength of uORF usage would negatively correl-
ate with TE differences at the CDS. However, such a
trend was only visible for liver differential TE genes
(Additional file 1: Figure S8E); and globally, uORF and
CDS TEs even showed slightly positive correlation. In
summary, these analyses suggested that uORF

translation contributed to some extent (and especially
for genes that were more efficiently translated in the
liver) to cross-organ differences in TE; however, the
overall impact appeared limited (see ‘Discussion’).
We next included the ‘multiple isoform genes’ in the

analyses and asked whether transcript isoform diversity
between the two organs—i.e. the occurrence of tissue-
specific mRNA variants generated by alternative tran-
scriptional start sites, splicing and 3′ processing—had
any relationship to differential TE. Briefly, using our
RNA-seq data we first compiled an inventory of all an-
notated, protein-coding transcript isoforms and their
estimated relative expression levels per gene and tissue.
We then used the Hellinger distance [20] as a measure
of dissimilarity in isoform expression levels between
kidney and liver. A value of 0 for this metric indicates
that a gene has identical isoform distribution in both
tissues (i.e. these are essentially the ‘single isoform
genes’ described above), while a value of 1 denotes a
lack of overlap in expressed isoforms. Globally, the 960
genes with differential TE showed significantly higher
Hellinger distances than the remainder of the expressed
genes (p = 3.74e-04; Kolmogorov–Smirnov test) (Fig. 2f ).
Molecularly, the term ‘transcript isoform’ comprises varia-
tions affecting 5′ UTR, CDS and 3′ UTR. By comparing
the genes for which all expressed variants affected exclu-
sively one single feature or for which this particular fea-
ture was not affected at all, it became apparent that
transcript diversity in the 5′ UTR was particularly strongly
associated with differential TE (Fig. 2g). By contrast,
variation in the CDS showed significantly less association
with cross-organ differences in translation efficiency
(Additional file 1: Figure S9A, B). Although the low num-
ber of available transcripts bearing exclusively 3′ UTR
differences precluded a rigorous interpretation, 3′ UTR
variation did not appear to be associated with differential
TE either (Additional file 1: Figure S9C). Altogether, we
thus concluded that TE differences between tissues may,
at least in part, have their origin in tissue-specific tran-
script variants, especially through alternative 5′ UTRs.
Finally, we were interested in whether cross-organ dif-

ferences in translation efficiency affected specific path-
ways. For the 640 ‘TE different’ genes that showed
increased TE in liver (Fig. 2d), gene ontology (GO) -
analyses revealed significant enrichment for categories re-
lated to transcription (Additional file 3). Conceivably,
tissue-specific translational control of transcriptional regu-
lators may thus impact also on the organs’ transcriptomes.
The 320 ‘TE different’ genes that were translated better in
kidney did not show any significant enrichment.

Translational modulation of phase of oscillation in kidney
We next turned to the analysis of factor time across the
datasets. We annotated rhythmic events in kidney with
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the same methodology as previously for liver, including
a 1.5-fold cutoff on peak-to-trough amplitudes [10]. A
list of the detected RNA and RPF rhythms and
genome-wide gene expression plots are provided in
Additional file 4 and Additional file 5 under (https://
doi.org/10.6084/m9.figshare.4903193), respectively. Our

analyses yielded 1338 and 977 genes that cycled at the
RNA abundance and footprint level, respectively, with
an overlap of 542 genes (Fig. 3a). As discussed later,
this relatively modest overlap (542 genes corresponds
to 41% and 55% of all ‘RNA rhythmic’ and ‘footprint
rhythmic’ cases, respectively) likely underestimates the
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Fig. 3 Rhythmicity analyses across organs reveals phase modulation by translation in kidney. a Venn diagram showing rhythmic genes in kidney.
Of the 12,423 expressed genes, 1338 showed 24-h oscillations of > 1.5-fold amplitude in mRNA abundance (RNA-seq, 10.7%) and 977 in footprint
abundance (RPF-seq, 7.9%). A total of 542 genes (4.3%) were identified as rhythmic at both levels. b Cumulative distribution of phase differences
(RPF peak – RNA peak, in hours) for genes rhythmic at both RNA-seq and RPF-seq in liver (green, n = 1178) and kidney (yellow, n = 542). The two
distributions were significantly different (p < 1e-04, permutation test) and reflected that maximal footprint abundance frequently preceded mRNA
abundance peaks in kidney (note that the two distributions differed mostly in their negative tail). c Four-way Venn diagram of rhythmicity sets for
genes expressed in both tissues (n = 10,289). Of all genes, 364 and 238 were detected as rhythmic in both organs at the RNA-seq and RPF-seq
levels, respectively, and 178 genes were detected as rhythmic throughout (i.e. RNA-seq and RPF-seq, in kidney and liver). d Cumulative phase
difference distribution in liver (green) and kidney (yellow) for the 178 common rhythmic genes. As in (b), the distributions were significantly
different (p = 0.007, permutation test) and corroborated that even when comparing the same set of genes, footprint peaks frequently preceded
mRNA abundance maxima in kidney. e Cross-correlation in kidney (yellow) and liver (green) of time-resolved RPF-seq profiles relative to the RNA-
seq profiles of the n = 178 common rhythmic genes. The analysis showed that profile correlations for negative lags (i.e. RPF peaking before RNA)
were significantly higher in kidney than liver (* indicate p < 0.05, Wilcoxon signed rank test). Boxplots represent the interquartile range and
whiskers extend to the minimum and maximum expression within 1.5 times the interquartile range. f Examples for genes with maxima in RPF
(blue) preceding those in RNA (orange) by several hours in kidney (top) but not, or less so, in liver (bottom). Arrowheads indicate the peaks in footprint
and mRNA abundance as estimated from the rhythmic fits. g Cross-correlation analyses of RPF-seq relative to RNA-seq profiles (kidney in yellow, liver
in green) for the genes in (f). Maximal correlations of the profiles in kidney were found to be shifted to the left (more negative RPF-to-RNA lags) as
compared with liver. For liver, there was no case with a maximal correlation value in negative RPF-to-RNA lags
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full extent of shared rhythmicity and only contains the
most robustly oscillating gene expression events, which
we further explored in the following.
Interestingly, the analysis of rhythmicity parameters

across the 542 genes revealed that the timing of their
RPF peaks relative to their RNA peaks had a significantly
different and broader distribution than the correspond-
ing set from liver (p < 1.0e-04; permutation test) (Fig. 3b).
This observation suggested that the phase of protein
biosynthesis rhythms was subject to marked translational
modulation in kidney. In liver, by contrast, RPF peaks
were more tightly gated by RNA abundance peaks. Sur-
prisingly, maximal translation tended to precede max-
imal RNA abundance in kidney (Additional file 1: Figure
S10A), as globally the mean RPF peak phase was ad-
vanced (–0.123 h) and also RPF rhythms were enriched
for phase advances (282) versus delays (260), albeit nei-
ther reaching statistical significance (p = 0.16, Wilcoxon
rank sum test).
The above analyses used different rhythmic gene sets

for kidney than for liver, potentially compromising
comparability. The observed differences in the RPF-
RNA phase relationships could thus have simply arisen
from transcript-specific rather than from tissue-specific
differences in the timing of translation. We thus ana-
lysed the group of 178 genes whose RNA and RPF pro-
files were rhythmic in both organs (Fig. 3c; Additional
file 6 and Additional file 7 (https://doi.org/10.6084/
m9.figshare.4903193)). Again, the distribution of RPF-
RNA offsets was significantly broader in kidney than in
liver (Fig. 3d; p = 0.007, permutation test) with an RPF
peak phase advance in kidney (mean –0.143 h) and a
phase delay in liver (mean 0.036 h) (Additional file 1:
Figure S10B, C). We next calculated the gene-wise
RPF-RNA peak phase difference in kidney relative to
that in liver. More genes showed their RPF maxima
earlier (96) than later (82) in kidney versus liver, with a
mean advance of –0.178 h (Additional file 1: Figure
S10D), but again without passing statistical significance
(p = 0.152, Wilcoxon rank sum test).
Conceivably, we lost statistical power and introduced

error in the above analyses by restricting the phase com-
parisons merely to the peaks of the rhythmic curve fits.
We thus sought a method that would take into account
phase differences between RPF and RNA profiles over all
data points. To this end, we used cross-correlation to
quantify the similarity between the RPF and RNA time
series as a function of sliding one series on the time axis
relative to the other. When the time series were not
shifted against each other at all (RPF-RNA lag = 0 h), the
RPF-RNA cross-correlation values were overall highest,
as expected, and they were significantly higher in liver,
in line with stronger gating of RPF rhythms relative to
RNA oscillations in this organ (Fig. 3e). Importantly,

when cross-correlation of RNA was calculated with earl-
ier RPF time points (negative RPF-RNA lags; see in par-
ticular lags of –2 h to –8 h in Fig. 3e), kidneys scored
significantly higher than livers. Sliding the series in the
other direction, however, rather led to overall better cor-
relations in the liver (see lags of +4 to +8 in Fig. 3e;
liver–kidney difference was non-significant). Taken to-
gether, these analyses underscored that there was asym-
metry in the data with RPF rhythms preceding RNA
rhythms specifically in the kidney.
We confirmed kidney-specific translational phase ad-

vances by visual inspection of individual gene expression
profiles. Figure 3f shows the profiles for the genes Hlf,
Nampt, Slc5a6, Tardbp, Dnajb4, Cgn and Etnk2, which all
show an RPF phase advance of up to several hours relative
to RNA. Cross-correlation analysis for the individual
genes also confirmed kidney-specific, phase-advanced
translation (Fig. 3g).
At first sight, translation that is phase-advanced to

mRNA abundance is counterintuitive. Conceivably, it
may occur when translation efficiency is not constant,
but decreases over the lifetime of an mRNA. TEs may
be higher on freshly synthesised messages that have
long poly(A) tails and decrease as a result of gradual
deadenylation even before transcript stability and abun-
dance are affected as well [21]. In keeping with the hy-
pothesis of cross-organ differences in poly(A) kinetics, we
have observed that most subunits of the major cytoplas-
mic deadenylase complex, CCR4-NOT, are significantly
more highly expressed in kidney than in liver (Additional
file 1: Figure S11A–C). Higher deadenylase activity in
kidney could provide an attractive molecular explanation
for the observed tissue-specific differences in RPF-RNA
phasing and for RPF rhythms that are phase-advanced to
RNA oscillations.

High tissue divergence in translationally driven rhythms
Rhythmicity detection algorithms are sensitive to false-
negatives, i.e. to classify gene expression profiles as
‘non-rhythmic’ (for example, because they fail imposed
thresholds on amplitude or FDR) although the underlying
temporal patterns may still be more similar to, and more
likely to be, rhythmic than invariable. Of note, the lack of
canonical methods to reliably determine true absence of
rhythms is a common problem in the field (see recent re-
view by [6] for discussion). Venn diagrams that simply
overlap rhythmic gene sets hence need to be interpreted
with caution. For these reasons, the extent of ‘RNA only’
and of ‘footprints only’ oscillations in Fig. 3a is likely not
reported reliably and subject to overestimation. The heat-
maps of the corresponding RNA and RPF profiles support
this notion as well (Additional file 1: Figure S12B, D).
In order to identify the true-positive ‘translation only’

cycling transcripts with higher reliability, we
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Fig. 4 High tissue divergence in translationally driven rhythms. a Venn diagram of rhythmic RPF-seq sets in kidney (yellow, n = 92) and liver (green,
n = 142) after the Babel analysis indicated strong tissue specificity of translational control. b Daily profiles of RPF-seq RPKM (blue) and RNA-seq
RPKM (orange) for the two genes detected as translationally regulated in both tissues in (a). c, d Circular phase histogram for the 92 (c, kidney)
and 142 (d, liver) genes showing footprint rhythmicity in the organs. Note that the translational upregulation of transcripts observed at the day-to-
night transition in liver was absent in kidney. e, f Heatmaps of RNA (left panels) and RPF (right panels) rhythms for the 92 and 142 genes translationally
regulated in kidney (e) and in liver (f), respectively. Genes are sorted by footprint phase and expression levels are standardized by row (gene). These
sets of genes showed rhythmicity in footprint abundance but no oscillation in mRNA. g, h Daily profiles of RPF-seq RPKM (blue) and RNA-seq RPKM
(orange) for representative examples of translationally generated rhythms specific for liver (g) and kidney (h). For each gene, the upper panel shows the
kidney data and the lower panel the liver data. Hoxd3 was not expressed in liver. i Translation efficiency (TE) around-the-clock for ribosomal protein (RP)
genes expressed in liver (green, n = 86) and in kidney (yellow, n = 89). For each timepoint (ZT) boxplots represent the interquartile range and whiskers
extend to the minimum and maximum TE within 1.5 times the interquantile range. Lines connect the median of each boxplot to ease visualization.
Note the global TE upregulation at ZT10 in liver, whereas TEs in kidney remain high over the day
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implemented the same methodology as in our previous
study [10]. Briefly, we used the analytical framework
Babel [22] to preselect all transcripts whose translation
efficiency changed significantly over the day (and/or
whose TEs deviated significantly from the global tran-
script population). Rhythmicity analyses were then per-
formed on this gene subset and yielded 92 cases with
the sought-after temporal profiles of rhythmic transla-
tion on non-rhythmic mRNAs (Fig. 4a). Comparison
with the 142 genes of the analogous set from liver re-
vealed near-perfect tissue specificity of translationally
driven oscillations. Only two genes, Abcd4 and Lypla2,
were shared between the organs; they were both among
the least compelling cases of ‘translation only rhythms’
that our method had identified, as judged by visual in-
spection (Fig. 4b).
Interestingly, not only the identity of rhythmically trans-

lated genes, but also the time-of-day at which the majority
of rhythmic translation events occurred, was highly tissue-
specific. The phase histograms thus showed striking differ-
ences in the peak time distributions between the organs
(Fig. 4c, d; difference in distributions: p = 1.66e-04; W=
17.403, df = 2; Watson–Wheeler test for homogeneity of
angles). Of note, the enrichment for translational maxima
at the light–dark transition (Zeitgeber time, ZT10-16;
ZT00 corresponds to lights-on and ZT12 to lights-off)
that dominated the distribution in liver (Fig. 4d, f ) was vir-
tually absent from kidney (Fig. 4c, e). Instead, kidney
showed enrichment for transcripts with maximal transla-
tion occurring around ZT4 and ZT16. Visual inspection
of individual examples confirmed the organ specificity of
RPF rhythms. The cases of robust translational oscillations
that we [10] and others [11, 12] had previously identified
in liver were thus absent or severely blunted in kidney.
This included mRNAs encoding ribosomal proteins (RPs),
which make up the bulk of genes showing a transla-
tional surge at the light–dark transition (e.g. Rps25,
Rpl23a), as well as transcripts encoding the transcrip-
tion factors Deaf1 (deformed epidermal autoregulatory
factor 1) and Mxi1 (MAX interactor 1), and mRNAs
containing iron-responsive elements in their 5′ UTRs
(e.g. Ferritin light chain 1, Ftl1) (Fig. 4g), all of which
we had previously reported as translationally rhythmic in
liver [10]. Rhythmic translation exclusive to kidney was
not significantly enriched for particular pathways (data
not shown) and the temporal profiles were overall of
lower amplitude than those seen for liver; Tma7 (transla-
tional machinery associated 7 homolog), Ddb2 (damage-
specific DNA binding protein 2), Actg1 (actin, gamma,
cytoplasmic 1) and Hoxd3 (homeobox D3; not expressed
in liver) were among the most distinct examples (Fig. 4h).
In summary, we concluded that temporal changes in

TE were strikingly tissue-specific and overall relatively
rare in kidney. Specifically for transcripts encoding RPs

and other components of the translation machinery,
which are the most prominent group of TE rhythmic
genes in liver, it has been suggested that feeding-
dependent mTOR-signalling underlies the translational
upsurge at the light–dark transition via a mechanism
involving the 5′-terminal oligopyrimidine (5′-TOP)
motifs that these transcripts carry [11, 12]. Interest-
ingly, the TE comparison between both tissues revealed
that kidney RP translation occurred at a relatively high
level throughout the day (Fig. 4i). The lack in rhythmi-
city for RP genes in this organ may thus result from an
absence of translational repression during the light
phase rather than a lack in activation in the dark phase.
It may indicate that the kidney is less sensitive to
systemic cues engendered by feeding and fasting (see
‘Discussion’).

Different degrees of tissue specificity in core clock gene
expression at the level of RNA abundance and protein
biosynthesis
Clocks exhibit functional differences across cell types and
organs, for example at the level of rhythmicity parameters
(e.g. free-running period and phase [5]), of clock output
gene repertoires [3], of oscillator strength and robustness
[23, 24] or with regard to clock gene loss-of-function phe-
notypes [25]. Conceivably, the precise timing and level at
which the various clock proteins are produced may modu-
late properties of the clock circuitry and underlie some of
the abovementioned functional variations. In order to in-
vestigate these possibilities, we compared the expression
of core clock components in both organs.
We first investigated transcript and footprint RPKMs as

averages over timepoints to assess the cumulative daily
production of clock RNAs and proteins. Most core clock
genes showed a considerable degree of organ specificity in
their expression levels that was readily appreciable in the
footprint versus transcript abundance representation with
both organs overlaid in a single graph (Fig. 5a). Two tissue
differences caught our particular attention. First, the
balance between the transcriptional activators Rora/Rorc
and repressors Nr1d1/Nr1d2 differed markedly between
organs and was skewed towards repression in kidney (i.e.
higher Nr1d1/2 and lower Rora/c RPKMs in kidney,
Fig. 5a, b). These transcriptional regulators bind to shared
sequence elements on DNA and form the ‘interconnecting
limb’ within the rhythm-generating clock circuitry. In
addition, they also control an output branch of the oscilla-
tor [1, 2]. It is hence conceivable that adjusting the relative
levels of NR1D1/2 versus RORs tailors clock-controlled
gene expression in a tissue-specific fashion. Our observa-
tion of an active state of this output branch in liver and a
more repressed state in kidney is fully consistent with the
current knowledge of its target genes and knockout phe-
notypes, which point to a prominent role in the regulation
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Fig. 5 (See legend on next page.)
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of hepatic pathways such as lipid, cholesterol and bile acid
metabolism [26].
A second tissue difference concerned the main con-

stituents of the negative limb, the Period (Per) and
Cryptochrome (Cry) genes. Heterotypic PER:CRY protein
complexes inhibit ARNTL:CLOCK-driven transcriptional
activity and thus lie at the core of the oscillator’s principal
negative feedback loop. We observed a shift to more PER
(and slightly less CRY) biosynthesis in kidney (Fig. 5b).
PERs (and in particular PER2) are considered stoichiomet-
rically rate-limiting components of the PER:CRY complex
and increased PER2 dosage engenders long periods [27,
28]. Interestingly, tissue explant experiments have shown
that kidney clocks free-run with almost 1.5-h longer pe-
riods than liver clocks [5], as would be predicted from the
increased PER biosynthesis that our analyses revealed. As
a more general concept, we deem it conceivable that the
modulation of biosynthesis levels for individual clock
proteins may be a more general mechanism to engender
distinct differences in clock parameters across cell types.
We noted that for the majority of clock genes (Npas2,

Cry1, Cry2, Per1, Per2, Per3, Nr1d1, Rorc) the tissue
differences were less pronounced at the RPF than at the
RNA level (Fig. 5b), indicating that translation efficien-
cies partially counteracted RNA expression differences.
Only in four cases (Clock, Arntl, Nr1d2, Rora) TEs exac-
erbated transcript abundance differences and led to
higher tissue differences at the RPF level. Interestingly,
this observation could also be made in the time-resolved
data. As a measure of similarity between expression
profiles that takes into account profile shape and ex-
pression level, we used the Euclidean distances calcu-
lated between the four rhythmic traces of each
individual gene (i.e. RNA and RPF in kidney and liver;
Additional file 1: Figure S13). Hierarchical clustering of
the similarities for the ensemble of the 12 main core
clock genes showed that RPF profiles from the two

organs grouped together (Fig. 5c). The temporal pro-
files of clock protein biosynthesis between organs were
thus more similar than RNA and RPF expression pro-
files within organs. By contrast, the 178 common rhyth-
mic genes identified in Fig. 3c—serving as a control set
for this analysis—revealed within-organ clustering
(Fig. 5d). These findings underscored that translational
compensation was occurring within the core clock, where
it led to more similar expression profiles in clock protein
biosynthesis than would have been predicted from the
rhythmic RNA abundance. This phenomenon was, how-
ever, not a general feature of all rhythmic gene expression.
The transcriptome-wide analyses described further

above had shown only weak signs of association be-
tween cross-organ differences in TE and in uORF usage
(Additional file 1: Figure S8C–E). However, we knew
from our previous work in liver that at least five core
clock transcripts (Nr1d1, Nr1d2, Cry1, Clock, Arntl)
contained translated, potentially regulatory, AUG-
initiated uORFs [10]. We therefore examined whether
for any of these concrete cases there was evidence for a
connection between uORF translation and cross-organ
TE differences. The read distribution along the tran-
scripts (Additional file 1: Figure S14A) and the marked
frame preference of RPF reads (Additional file 1: Figure
S14B) confirmed that the footprints mapping to our an-
notated uORFs likely reflected active translation. How-
ever, only in one case, Nr1d2, there was a distinct
anticorrelation between uORF usage and TE differences
on the CDS (Fig. 5e). Nr1d2 contains two translated
uORFs in the 5′ UTR (Fig. 5f ), whose decreased usage
in kidney was accompanied with higher TE on the CDS
in this organ (Fig. 5e). For Nr1d2, differential uORF
usage could thus represent a plausible mechanism that
contributes to regulating organ-specific gene expression
output at the translational level, keeping NR1D2 bio-
synthesis low in liver and high in kidney.

(See figure on previous page.)
Fig. 5 Tissue specificity in core clock gene expression at the level of RNA abundance and translation. a Scatterplot of transcript abundance (RNA-seq)
vs. footprint abundance (RPF-seq) for liver (grey) and kidney (sepia) (n = 10,289), where core clock components are highlighted (kidney, dots with
dashed circles). Coloured dashed lines join the relative locations of each core clock gene between organs. b Bar graph of the average RPKM ratio
between kidney and liver for the main circadian core clock genes, at the level of mRNA abundance (dark shades) and ribosome footprints (light shades)
suggested that translational compensation led to higher similarity at the level of protein biosynthesis (RPF) for several core clock genes. c Hierarchical
clustering of the organs’ RNA and RPF profiles based on the similarities of the core clock genes expression patterns (n = 12, genes shown in B). The
height of the branches represents weighted average distances over the considered genes (see ‘Methods’). Note that RPF rhythms in two organs were
more similar than RNA and RPF rhythms within an organ. d Hierarchical clustering as in (c) based on the genes detected as rhythmic throughout
(n = 178, see Fig. 3c). When compared to the clustering based on core clock gene expression patterns in (c), this rhythmic gene set showed an
organ-based clustering. e Scatterplot of kidney/liver ratios of uORF vs. CDS translation efficiencies for genes containing AUG-initiated translated uORFs
in both organs (n = 1199). uORF-containing core clock genes are highlighted. As also shown in Additional file 1: Figure S8E, differential uORF usage
could not globally explain differences in CDS TE across organs (note the lack of negative correlation between the two variables, R2 = 0.005, p = 0.008).
As an exception, the lower uORF TE of Nr1d2 might have a role in setting relatively higher CDS TE in kidney. f RPF (blue) and RNA (orange) reads
mapping along the Nr1d2 transcript in kidney (top) and liver (bottom) for the timepoint of maximal CDS translation (ZT10). 5′ UTR and CDS are shown
in full, but for better visualization only a portion of the 3′ UTR (the same length as the 5′ UTR) is shown. Red boxes indicate the predicted AUG-initiated
translated uORFs. Right panels show that, similar to the CDS, the uORFs showed clear frame preference, indicative of active translation
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Discussion
Given that the functionally relevant output of most gene
expression is the protein, quantitative and genome-wide
analyses of protein biosynthesis are of high interest to
complement the wealth of transcriptomics data that are
already available. Of note, only the fairly recent develop-
ment of the ribosome profiling technique [29] has made it
possible to analyse translational events in a quantitative,
high-throughput fashion. Our study of two paradigms of
differential gene expression, i.e. its tissue-dependence and
its time of day-dependence, is among the first of its kind
and, together with the associated datasets and resources,
will likely be of wide interest and utility to researchers
working in the chronobiology and gene expression fields.
We have addressed several, rather fundamental ques-

tions that go beyond the chronobiological focus of the
study: How does the dynamic range of translation effi-
ciency compare to that of transcript abundances across
two distinct organs of an animal? Is translation efficiency
a default transcript property and comparable across two
tissues or do TEs become reinterpreted depending on cell
type or organ? Does cross-tissue variability of TEs come
with any direction, i.e. is there a global tendency to either
reinforce or to counteract transcriptomal differences?
To our knowledge, only one previous study has reported

on ribosome profiling datasets from two complementary
mammalian tissues: rat liver and heart [19]. This study
also included animals with different genetic backgrounds
as covariates in the experimental design and its main
focus was on strain differences in translation rather than
on tissue differences. Our analyses based on more than
10,000 genes commonly expressed in liver and kidney
show that cross-organ TE differences are widespread, but
of limited magnitude. Across genes in a tissue and for in-
dividual genes between tissues, the dynamic range of
translation efficiencies is thus about 30–50-fold narrower
than that of transcript abundances. These findings are co-
herent with the view that major differences in gene ex-
pression are set up at the level of transcription (possibly
with some influence coming from RNA stability as well),
whereas differences in translation rate have more of a
modulatory role. It is intriguing that this modulation is
overall characterised by directionality, with TE differences
between tissues globally counteracting some of the mRNA
abundance differences. Such translational compensation
has previously been observed for divergent transcript
expression levels across yeast species [30] and across dif-
ferent rat strains [19]; our study now extends this observa-
tion to gene expression across organs. Moreover, the idea
of translational compensation is conceptually similar to
findings that proteomes are evolutionarily more highly
conserved than transcriptomes [31, 32]. As an underlying
common principle, these cases may indicate that selective
pressure on precise gene expression levels likely acts on

protein abundances, whereas a certain degree of variability
(even noise) in RNA levels may be tolerated without
further consequences. It will be exciting to study the un-
derpinnings of translational compensation further, across
tissues and across species.
Maybe not unexpectedly, there was no dominant,

distinct sequence feature that could serve as a predictor
for cross-organ TE differences. Rather, we found several
associations with a number of transcript characteristics.
Conceivably, these contribute collectively to modulating
TEs in concert with the specific cellular and tissue envir-
onment and possible cell-type differences in the transla-
tion machinery including its regulators and trans-acting
factors. While our ribosome profiling studies have
allowed us to record the outcome of such regulation at
high resolution, understanding its causes represents an
exciting challenge for the future. For now, we can only
infer that an overarching theme of the identified associa-
tions is a connection to 5′ UTRs, which is in also in line
with the notion that initiation is rate-limiting for most
translation events. We thus observed associations of
cross-organ TE differences with 5′ UTR length, with
uORF usage, with GC content and folding potential, as
well as with transcript isoform diversity that affected the
5′ UTR. We would like to point out that comprehensive
uORF annotations remain a bioinformatics challenge
that is far from resolved. We have therefore restricted
our analyses to AUG-initiated ORFs, inevitably leading
to a bias towards false-negatives in uORF annotation. As
we will learn how to annotate uORFs more comprehen-
sively and more precisely in the future, it may be worth
revisiting the relationship between differential TE and
uORF translation in our datasets in order to evaluate
whether a clearer role for these regulatory sequence ele-
ments will emerge.
Our study has led to novel insights into rhythmic

gene expression. The extent to which rhythmicity is
generated by the temporal regulation of translation has
been the subject of speculation ever since the first re-
port of rhythmic proteins encoded by non-rhythmic
mRNAs [7]. Our kidney datasets complement recent
time-resolved ribosome profiling data from liver [10,
11] and from a cell line [33]. As compared to liver, the
number of transcripts subject to translational rhythms in
kidney is slightly lower, but overall in a similar order of
magnitude with around 1% of the transcriptome affected.
It came as a surprise that translational rhythms were es-
sentially tissue-specific in terms of the affected genes and
the phase distributions. A possible explanation could be
that these rhythms are driven by rhythmic systemic cues
to which tissues do not respond equally. The effects of
feeding and mTOR signalling, for example, may be more
pronounced in liver due to the dedicated role that this
organ plays in energy homeostasis and fasting responses,
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thus explaining the differences in translational oscillations
for RP genes. Beyond the role that translation has in
generating rhythms, our analyses have pointed to an add-
itional, rhythmicity-modulating role that appears to affect
gene expression quite broadly, i.e. the timing of the phase
of protein biosynthesis oscillations relative to that of
mRNA abundance rhythms. Consistent with work by the
Green lab that showed interactions between polyadenyla-
tion status of mRNAs and rhythmic protein expression in
the liver [21], it is tempting to speculate that related mecha-
nisms are operative across organs, with tissue-specific dead-
enylation kinetics tuning the timing of rhythmic protein
biosynthesis. Finally, our study is a first attempt to resolve
tissue differences in core clock gene expression as a factor
contributing to functional differences of the oscillator. It is
interesting that the core clock mechanism has a long-
standing history of being referred to as a ‘transcription-
translation feedback loop’ [34], although the actual
feedback occurs at the transcriptional level and possible
mechanistic functions of translational regulation have not
been much investigated. Our cross-organ comparison of
core clock protein biosynthesis suggests that translational
control—including through the activity of uORFs [10,
33]—is of regulatory interest and represents a way by which
the identical set of core clock genes could form circuitries
with different stoichiometry of its main components. As a
result, both clock parameters and output gene repertoires
may be organ-specifically tuned.

Conclusions
How translational differences contribute to overall gene
expression diversity is still poorly understood. Our study
uncovered translational changes that occur across two
paradigms of regulated gene expression, i.e. around-the-
clock and between tissues. Daily gene expression rhythms
generated at the translational level were strongly organ-
specific with regard to the identities and phase distribu-
tions of affected genes. Moreover, our data indicate that
translation efficiency differences between organs can ad-
just the timing of protein production from rhythmic
mRNAs and the levels of core clock protein production,
in agreement with the tissue specificities observed in clock
output gene sets and clock parameters. Together, these
results are consistent with an important role of post-
transcriptional mechanisms in mammalian circadian gene
expression regulation. Beyond the temporal dimension,
we have explored constitutive protein biosynthesis across
organs. Our quantitative analyses underscore that gene
expression divergence is largely programmed at the tran-
script abundance level. Interestingly, the widespread
differences in translational efficiency that we detected be-
tween organs even serve to achieve higher concordance in
protein production between tissues. Conceivably, such
translational compensation reflects a selective pressure to

maintain precise protein levels rather than mRNA levels.
The high-resolution genome-wide translatome datasets
generated in this study will allow further explorations into
the mechanisms of post-transcriptional control and differ-
ential gene expression in vivo.

Methods
Animals
Twelve-week-old male mice (C57BL/6 J; Janvier Labs)
were entrained for two weeks to light:dark 12:12 cycles
with ad libitum access to food and water and were anes-
thetized (isoflurane) and sacrificed every 2 h (ZT0–ZT22,
with ZT0 corresponding to ‘lights-on’) for two daily cycles.
Livers and kidneys were removed and processed either
directly or flash-frozen in liquid N2.

Ribosome profiling
Generation of liver RPF-seq and RNA-seq libraries using
the ARTseq ribosome profiling kit (Epicentre) was de-
scribed recently [10, 16]. Kidney libraries were prepared
in the same manner, with a single modification to the
order of steps in RPF library preparation. After RNase
treatment and recovery of ribosome-protected frag-
ments, 5 μg of material was first ribosomal RNA
(rRNA)-depleted (Ribo-Zero magnetic kit, Epicentre)
and then purified by 15% PAGE. In the formerly pre-
pared liver libraries, Ribo-Zero treatment and PAGE
purification had been inverted because at the time we
had found that changing the order had a beneficial ef-
fect on obtaining highly concentrated libraries. For the
kidney samples, however, we noted that this modified
order led to higher contamination with reverse-strand
rRNA probes bleeding from the Ribo-Zero kit and we
thus reverted to ARTseq’s original order. All other steps
and materials were identical between liver and kidney
samples and followed the ARTseq ribosome profiling
kit instructions. RPF and RNA libraries were sequenced
on an Illumina HiSeq 2500.

Sequencing data processing, alignment and quantification
Processing, quality assessment, alignment and quantifica-
tion of sequencing data were performed as described
previously [10, 16]. Briefly, after adapter trimming using
Cutadapt [35], the length distribution of trimmed reads was
used to assess the quality of nuclease digestion and size-
selection, which is particularly important for RPF libraries
(Additional file 1: Figure S1B). Trimmed reads were filtered
by size (26–35 nt for RPF; 21–60 nt for RNA) using an in-
house Python script and sequentially mapped to mouse
rRNA, human rRNA, mitochondrial tRNA, mouse tRNA,
mouse cDNA (Ensemble mouse database release 75) using
Bowtie v2.2.1 [36] and mouse genome (GRCm38.p2) using
Tophat v2.0.11 [37]. Trimmed and filtered sequences were
also directly mapped against the mouse genome (Tophat
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v2.0.11) in order to estimate expressed transcript models in
each organ (using Cufflinks v2.2.1 [38]). Transcriptome-
mapping reads in the sequential alignment were counted
towards their location into the 5′ UTR, CDS or 3′ UTR of
the transcript, based on feature annotation (Ensemble
mouse release 75). Mappable and countable feature lengths
were not calculated for this study (see ‘faux reads analysis’
in the ‘Quantification of mRNA and ribosome footprint
abundance’ section of Supplemental Experimental Proce-
dures of previous study [10]) as its contribution was negli-
gible for further analyses. Therefore, RPKM calculations in
this study were not corrected with such factor. Read counts
in RNA-seq and RPF-seq datasets were normalised with
upper quantile method of edgeR [39] and RPKM values
were calculated as the number of reads per 1000 bases per
geometric mean of normalised read counts per million.
Relative translation efficiencies (TE) were calculated as the
ratio of RPF-RPKM to RNA-RPKM per gene per sample.
Reading frame and nucleotide periodicity analyses were
performed as in [10]. PCA relied on a combined matrix of
CDS counts for RPF and RNA from both liver and kidney
and following the same approach as before [10]. Ribo-seq
Unit Step Transformation (RUST) analysis was used to as-
sess whether the sequencing libraries were globally of simi-
lar quality in terms of their local footprint densities [17].
RUST is a simple normalisation method that reduces the
heterogeneous noise in the data and allows identification of
mRNA sequence features that affect footprint densities glo-
bally. We used the version 1.2 of the published rust_co-
don.py standalone python script with minor modifications
to reflect the experimental settings as closely as possible
(i.e. A-site offsetting). RUST codon profile and correspond-
ing Kullback–Leibler (K–L) divergence for each library
(RPF and RNA) was generated against a database of 8012
single protein isoform transcript sequences using all
mapped reads with a length of 28–32 nt. The K-L diver-
gences from all samples for each combination of tissue
(kidney or liver) and read type (RPF or RNA) were used to
generate K-L profiles at the 0, 10, 25, 50, 75, 90 and 100th
quantiles.

Correlation analyses and assessment of translational
compensation across organs
Correlation of RNA-seq and RPF-seq across organs:
kidney versus liver correlations at the levels of RNA-seq
and RPF-seq (i.e. Fig. 2b; Additional file 1: Figure S6C–
E, H–L) were calculated in a pairwise fashion for each of
the 24 samples (12 timepoints, two replicates/timepoint),
as livers and kidneys of each replicate originated from the
same animals. Significance of the difference in the Spear-
man coefficients between both distributions was assessed
by paired t-test on Fisher z-transformed coefficients. Heart
versus liver correlation at the levels of RNA and RPF-seq
(Additional file 1: Figure S7A) was calculated from the

study [19], using the BN-Lx reference rat strain data. Since
the five heart and liver replicates in this study did not
come from the same animals, we calculated all possible
pairwise correlation coefficients between heart and liver
(i.e. 25) and compared all possible combinations of five
coefficients between RNA-seq and RPF-seq (paired t-test
on Fisher z-transformed coefficients).
Measurement error: measurement errors (Additional

file 1: Figure S6A, B, F, G) were calculated similarly to
[18] using the meas.est() function from smatr R package
[40]. Genes were first binned according to average ex-
pression level (calculated as the fourth root of the prod-
uct of liver RNA-seq, liver RPF-seq, kidney RNA-seq
and kidney RPF-seq) into ten groups, each containing
10% of all genes. Within each bin, the measurement
error was calculated separately for RNA-seq and RPF-
seq and for liver and kidney, using the two replicates
(log of normalised CDS counts) to estimate the error
and the 12 timepoint samples to estimate its variability.
For the analyses using a filtered gene set (Additional file
1: Figure S6F-G), genes that showed a mean expression
ratio (either between organs or between RNA-seq and
RPF-seq) greater than 2 for all timepoints were excluded
(9236 genes used in analysis).

Analyses of differential translation efficiency
To test for differential translation efficiency (TE) between
liver and kidney we used the Wilcoxon-signed rank paired
test, using all 24 samples (12 timepoints; two replicates/
timepoint) as replicates; resulting p values were FDR-
corrected. A gene was defined as having differential TE
when FDR < 0.01 and the inter-organ difference in TE was
at least 1.5-fold (Fig. 2e).
Analysis of transcript usage diversity across organs: for

each gene g, P(g) = (p 1,…,p n) is the vector of the relative
expression proportions of its n protein-coding transcripts,
as estimated from our RNA-seq analysis (see ‘Sequencing
data processing, alignment and quantification’). To quan-
tify the dissimilarity in relative transcript isoform expres-
sion between liver L and kidney K, the Hellinger distance
H is defined as:

H PL gð Þ; PK gð Þð Þ ¼ 1=
ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

ffiffiffiffiffiffiffiffiffi

pLi−
p ffiffiffiffiffiffiffi

pKi
p� �2

s

ð1Þ

In order to detect the transcript features that were asso-
ciated with tissue specificity in TE, we selected genes
whose transcript diversity between both organs originated
from or was excluded from 5′ UTR, CDS, or 3′ UTR,
based on feature annotation information for the detected
protein-coding transcripts (Fig. 2g and Additional file 1:
Figure S9).
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Study of transcript characteristics: for single-isoform
genes, we investigated whether a particular transcript
characteristic (length, GC content, Kozak context, struc-
ture) could be predictive of differential TE. Length and
GC content were determined directly on the whole tran-
script and/or on the region of interest (5′ UTR, CDS, 3′
UTR). Kozak context was scored according to the consen-
sus sequence GccA/GccAUGG, where upper-case letters
denote highly conserved bases (scored +3), lower-case let-
ters indicate the most common nucleotides (scored +1)
and bold is the start codon (not scored), giving a max-
imum score of 13. Minimum free energy secondary struc-
tures on the 5′ UTR were predicted with RNAfold from
ViennaRNA package with default parameters [41].

Detection and translation efficiency calculation for uORFs
To assess the impact of differential uORF usage on TE
differences across organs, uORFs were identified as in our
previous study [10]. Briefly, genes expressing a single
protein-coding isoform in both organs were used for this
analysis (n = 5815). We selected uORFs with an AUG start
codon and a length of at least 18 nt to the first in-frame
stop codon and considered them as translated if the reads
showed significant frame bias towards the reading frame
of the uORF start codon and if coverage was > 10%. uORF
translation efficiency was calculated from the ratio of
RPF-seq to RNA-seq reads whose predicted A-sites
mapped to the annotated uORF regions. If several uORFs
partially of completely overlapped on a given 5′ UTR, a
composite uORF was considered for read counting.
uORFs overlapping with the CDS in the same frame were
not considered. When they overlapped in different frames,
only reads mapping to the 5′ UTR-specific uORF se-
quence (but not the overlapping sequence) was considered
for quantifications.

Rhythmicity analyses
Rhythmicity detection and rhythmic parameter estima-
tions in each dataset (RNA-seq and RPF-seq, liver and
kidney) were done based on Akaike information criterion
(AIC) model selection as in our previous study [10]. The
Babel computational framework [22] was used to detect
rhythmically translated genes from constantly expressed
mRNAs within each organ. For cross-correlation of time
series to compare the daily profiles of rhythmic genes
beyond their peak differences, we used the ccf function in
R. As we computed the correlations of the RPF-seq with
respect to the RNA-seq profiles, negative lag values cor-
respond to RPF leading RNA.

Hierarchical clustering of rhythmic genes
To evaluate the similarity of the expression profiles for
rhythmic genes, a dissimilarity matrix was computed for
each gene of interest, based on the Euclidean distance

between the RNA-seq and RPF-seq expression profiles
within and across organs. A hierarchical clustering tree
was constructed on the weighted average of the dissimi-
larity matrices of genes under consideration (core clock
genes in Fig. 5c or all rhythmic genes in Fig. 5d), using
the ‘average’ clustering method. The R functions {pack-
ages} dist {stats}, fuse {analogue} and hclust {stats} were
used for computing the individual dissimilarity matrices,
the weighted mean dissimilarity matrix and the hierarch-
ical clustering, respectively.

Additional files

Additional file 1: Supplementary Figures. This file contains the
Supplementary Figures S1–S14 and Supplementary Figure legends.
(PDF 32661 kb)

Additional file 2: Mapping outcome summary. This file contains
information on the deep-sequencing data from kidney (raw read counts,
mapping summary etc.) (XLSX 23 kb)

Additional file 3: Differential TE analysis. This file contains details of the
GO-term analysis on the differential TE gene set of Fig. 2. (XLSX 228 kb)

Additional file 4: Rhythmicity parameters in kidney datasets. This file
contains the outcome of the transcriptome-wide rhythmicity analyses
on the kidney datasets (related to Fig. 3a). (XLSX 163 kb)

Additional file 5: Rhythmicity parameters of 178 common rhythmic
genes. This file contains the outcome of the rhythmicity analyses in
kidney and liver for the 178 commonly rhythmic genes (RNA and RPF
in kidney and liver; related to Fig. 3c). (XLSX 35 kb)

Additional file 6: Transcriptome-wide kidney RPF (blue) and RNA
(orange) levels in the left panels (with “error bars” connecting the two
replicates of each timepoint) and TE in the right panels. (ZIP 116896 kb)

Additional file 7: Expression plots for kidney and liver for the 178
common rhythmic genes of Fig. 3c. (ZIP 3338.28 kb)
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SUPPLEMENTARY FIGURE LEGENDS

Figure S1. Overview of sequencing outcome and read length distribution for
RPF- and RNA-seq data used in the study. 
A  Summary of outcome of the sequential mapping pipeline, indicating the number
(y-axis) and percentage (within bars) of reads mapping to each database, averaged
over all timepoints. For each sample of the four datasets an average of more than 20
million reads mapped to the protein-coding transcriptome (cDNA) and was used for
the study.
B and C  RPF-seq  (B)  and  RNA-seq  (C)  read  length  after  trimming  of  adaptors
showed that most RPF-seq reads had a length of 29-30 nucleotides in both organs,
whereas  RNA-seq  fragments  showed  a  broader  distribution  as  expected  from
chemical RNA fragmentation. Boxplots represent the interquartile range and whiskers
extend to the minimum and maximum values within 1.5 times the interquartile range.

Figure S2. RPF reads at the stop codon and quality control. 
A  A-site position of RPF-seq reads in the last  200 nt of the CDS, excluding stop
codon reads. Read density along the CDS was similar in liver and kidney; thus the
higher read density observed in Fig. 1C at the stop codon does not affect CDS-based
calculations.
B  Zooming into the footprint read density at the end of the CDS, stop codon, and
beginning of the 3  UTR indicated read differences between organs for the stop codon′

itself and up to 4 nt downstream, which were increased in kidney. Stop codon reads
are counted towards the 3  UTR and their higher level in kidney thus also explains′

why our analysis in Fig. 1B shows more 3  UTR reads for this organ. The remainder′

of the 3  UTR shows a similar depletion of reads in both organs. ′

C  and  D  Ribo-seq  Unit  Step  Transformation  (RUST) metafootprint  analyses  to
evaluate the contribution of local mRNA positions to the density of footprints. Light
and dark coloured polygonal areas denote the 10%-90% and 25%-75% percentiles,
respectively,  and  the  dash-line  denotes  the  median  of  the  Kullback–Leibler
divergence (K–L) profiles of all samples within kidney (C) and liver (D) separately for
RPF and RNA reads (colour code in inset).  The K-L profile for each sample was
calculated from the RUST ratio values of 61 sense codons across a moving window
of 40 triplet codons upstream to 20 triplet codons downstream of predicted A-sites.
High K-L divergence maxima (lowest relative entropy or highest information gain) are
thus found in the vicinity of the A-site in RPF libraries, and the 5  and 3  termini of the′ ′

reads  in  RNA  libraries.  Importantly,  the  profiles  are  similar  for  kidney  and  liver,
indicating overall similar footprint quality in the two independent datasets.

Figure S3. High technical and biological reproducibility of datasets.
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A and B Spearman correlation of normalised CDS read counts between timepoints
and between replicates for kidney RPF-seq (A) and kidney RNA-seq (B) datasets.
The correlation coefficient is indicated by the size and shading of the disks. Biological
replicates thus show excellent  correlation;  moreover,  the correlation coefficients of
different timepoints reflect the rhythmic nature of the data.
C and D Normalised CDS read counts (RPKM) in liver vs. kidney at the RNA (C) and
RPF level (D). In these graphs, the averages over all timepoints were compared for
the  set  of  commonly  expressed  genes  (N=10289;  see Fig.  2A).  Note  the overall
higher Spearman correlation at the footprint level than transcript level. The difference
between correlations is highly significant with p=8.7e-110, Z value=-22.23; Steiger
test for difference between 2 dependent correlations (Reference: Steiger JH, 1980.
Psychological Bulletin, 87, 245-251).

Figure S4. Additional information for Principal Component Analysis.
Scree plot showing the first 10 components of the PCA in Fig. 1D-E. Components 1
and 2 explained most variance, followed by PC3 to PC5, which explained a closely
similar proportion of variance in the data; the plateau was apparent from the sixth
component.

Figure  S5.  Contribution  of  translation  efficiency  to  overall  gene  expression
variation within organs.
A and B Scatterplot of mRNA abundance vs. translation efficiency (TE) in kidney (A;
N=12423  genes)  and  liver  (B;  N=10676  genes),  averaged  over  all  timepoints.
Corresponding density lines are plotted on the margins. Dotted red lines represent
the 2.5 and 97.5 percentiles, and the corresponding fold change is indicated. The
transcript abundance range for 95% of genes thus spanned two orders of magnitude
(>500-fold range in either organ), whereas TE dynamic range was less than 12-fold in
either  organ.  Transcript  abundance  differences  can  thus  be  considered  the main
source of gene expression variability in the tissues. Moreover, Pearson’s r values of
0.145  (kidney)  and  0.196  (liver)  indicate  weak  positive  correlation  of  transcript
abundance and TE.
C Scatterplot of transcript abundance (TA) vs. translation efficiency (TE) in main CDS
for kidney and as averages over all timepoints. Highlighted are single protein-coding
genes that contain (red) or do not contain (blue) translated uORFs. Corresponding
density lines are plotted on the margins. uORF translation is thus clearly associated
with  significantly  reduced  translation  efficiency.  Numbers  on  the  density  curves
indicate the location shift relative to all transcripts. Genes with translated uORFs: TA,
p=0.16; TE, p<2.2e-16 (Wilcoxon rank sum test). Genes without translated uORFs:
TA, p=8.7e-5; TE, p<2.2e-16 (Wilcoxon rank sum test).

Figure S6. Translational compensation is independent of technical biases in
the datasets.
A  and  B  Measurement  error  (ME)  of  all  genes  in  the  dataset  (n=10289)  was
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calculated separately for RNA-seq (red) and RPF-seq (turquoise) for kidney (A) and
liver (B), and plotted as a function of increasing average expression levels. Briefly,
measurement errors within each bin were calculated as in Albert et al., 2015 (Albert
FW, Muzzey D, Weissman JS, Kruglyak  L,  2014.  PLoS Genetics,  10,  e1004692)
using the 12 timepoints as replicates for the measurement estimates (see Methods).
C to E Spearman correlation between liver and kidney for RNA and RPF data for (C)
genes showing the highest measurement errors (bin 1 in A, B), (D) bins 2-10, and (E)
genes that have higher measurement error in RPF-seq than in RNA-seq samples in
both organs (bins 7-10). Each boxplot contains the correlation coefficients between
organs for  each timepoint  and replicate sample.  Together  these analyses showed
that RPF-seq samples have a higher degree of similarity across organs (indicated
p-values are from paired t-tests on Fisher-transformed correlation coefficients), even
when considering lowly expressed genes with higher associated experimental error
(C), or when considering genes with higher RPF-seq than RNA-seq measurement
errors (E). These results thus ruled out that a systematic lower measurement error in
RPF-seq experiments could have been the underlying cause of the higher correlation
in RPF-seq than RNA-seq observed in Fig. 2C.
F and G Same as A and B, but with a filtered gene set in which specifically those
genes that showed very different expression levels/high variability between organs or
between datasets (RPF-seq, RNA-seq) were removed (see Methods). The reason to
also analyse such a filtered set was that we wished to be sure that genes that were
widely different in their gene expression level were not distorting the analyses (e.g.
specifically causing extreme measurement errors under a condition where expression
was  very  low).  Moreover,  because  the  binning  into  the  groups  was  based  on
expression level across all sets (calculated as the fourth root of the product of liver
RNA-seq, liver RPF-seq, kidney RNA-seq and kidney RPF-seq), the highly variable
genes made binning inaccurate. This filtered set thus contained genes with overall
better comparability across datasets; of note, the distribution of ME differences using
the filtered set was very similar to the full set in A-B.
H  to  L  Inter-organ  Spearman  correlation  in  RNA-seq  and  RPF-seq  samples  for
various  gene  bins  as  indicated,  using  the  filtered  set.  As  in  C-E,  even  when
considering for example the genes with the highest overall measurement error (H), or
the genes with higher RPF-seq than RNA-seq measurement errors in both organs
(L), a significantly higher correlation is observed in RPF-seq samples (paired t-test on
Fisher-transformed correlation coefficients).

Figure S7. Translational compensation detected in rat liver and heart.
A)  Spearman correlation coefficient between rat heart and liver samples calculated
from the data of Schafer et al., 2015 (Schafer S, Adami E, Heinig M, Rodrigues KE,
Kreuchwig F, Silhavy J, van Heesch S, Simaite D, Rajewsky N, Cuppen E, Pravenec
M, Vingron M, Cook SA, Hubner N, 2015. Nature Communications 8, 7200). Each
boxplot  contains  the  correlation  coefficients  of  all  possible  pairwise  comparisons
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between heart and liver replicates (remark: in this study, organs in each of the five
replicates did not necessarily come from the same animals, thus precluding defined
pairwise  comparisons  between same animals).  The indicated  p-value  is  the 95th
percentile  of  the  ensemble  of  p-values  resulting  from  all  possible  comparisons
between  RPF-seq  and  RNA-seq  correlation  coefficients  (paired  t-test  of
Fisher-transformed coefficients). This analysis extended our observation of a globally
higher  conservation  between  organs  at  the  level  of  translational  output  (protein
production) than at the level of transcript abundance. 
B and C Normalised CDS read counts (RPKM) in rat liver vs. heart at the RPF-seq
(B) and RNA-seq level (C), averaged over the five replicates used in the study of
Schafer et al.,  2015. Note the overall  higher Spearman correlation at the footprint
level as compared to the mRNA level. The difference between correlations is highly
significant  with  p=2.3e-201, Z value=-30.25;  Steiger  test  for  difference between 2
dependent  correlations  (Reference:  Steiger  JH,  1980.  Psychological  Bulletin,  87,
245-251).

Figure S8. Analysis of transcript features with predictive value for differential
TE.
A Cumulative distribution of the indicated transcript features for single isoform genes
that do not show differential TE (black, n= 5278), or that show differential TE and
either higher TE in kidney (yellow, N=193) or in liver (green, N=340). The indicated
p-values  are  Kolmogorov-Smirnov  test  results  of  each  group  vs.  ’all’.  Statistically
significant comparisons marked in red.
B Same as (A), but in the form of boxplots and using Wilcoxon rank-sum test for the
differences between group means (again, marked in red, significant results).
C Fraction of single isoform genes with (blue) or without (red) translated uORFs in
either organ. The group with differential and higher TE in liver contained significantly
more translated uORF-containing transcripts than the genes not showing differential
TE in either organ (p=6.08e-04; Fisher’s exact test); for kidney, there was a slight
depletion of uORF-containing transcripts (non-significant). This analysis indicates that
uORF usage may play a role in setting TE differences across tissues. Note that in this
analysis, we did not yet distinguish whether the uORF was translated in liver and/or
kidney, but we treated the 1377 genes with a translated uORF in at least one organ
as a single group.
D Organ-specific uORF usage and its association with differential TE. The group of
genes with uORFs specifically translated in liver was enriched for transcripts better
translated in in kidney, and vice versa, consistent with a role of tissue-specific uORF
usage in setting TE differences. However, due to the low number of  differential TE
genes exhibiting uORF translation that was exclusive to one organ for this analysis,
the enrichments and depletions did not reach statistical significance.
E  Scatterplot  of  upstream ORF vs.  CDS TE differences across organs for  genes
containing  translated  uORFs in  both  organs  and detected  as  differential  TE with

5



higher TE in kidney (yellow) or liver (green), or not showing differential TE (grey). An
anticorrelation between uORF usage and CDS TE was only observed for genes with
differential and higher TE in liver.

Figure S9. Relationship between transcript diversity and differential TE.
A  Cumulative distribution of the absolute kidney-to-liver  TE ratio for genes whose
transcript  diversity  is  present  or  absent only  in  the indicated feature.  The vertical
dotted grey line marks the 1.5-fold difference used to define differential TE. In this
Figure, all 7 groups are plotted (transcript diversity only/not in 5  UTR, CDS, 3  UTR;′ ′

all genes); for better visibility, the analyses of individual features are also shown in
separate panels, i.e. in Fig. 2G (5  UTR), Fig. S9B (CDS) and Fig. S9C (3  UTR).′ ′

Collectively, these results showed that transcript diversity that originated only within
the CDS (red), or that was excluded from the 5  UTR (purple), or that was present′

only within the 3  UTR (dark green), all showed smaller TE differences across organs,′

thus pointing towards variability within the 5  UTR as a contributor to tissue-specific′

TE.
B  As  in  (A)  showing  the  genes  with  transcript  diversity  present  (red)  or  absent
(orange) only  in the CDS. Note that  when transcript  diversity is only  in CDS (i.e.
UTRs are identical), there is a significant shift to more similar TEs in both organs.
This is consistent with the specific association of 5  UTR diversity with differential TE′

that is shown in Fig. 2G.
C  As in (A) showing genes with transcript diversity present (dark green) or absent
(light green) only in the 3  UTR.′

Figure S10. Analysis of phase differences in RNA and RPF rhythms in kidney
and across organs.
A  Histogram of phase differences (RPF – RNA, in hours) for all  genes that were
detected  as  rhythmic  in  the  kidney  RPF  and  RNA  data  (N=542;  see  Fig.  3A).
Although the distribution mean was not significantly different from 0, more genes had
their footprint abundance peak advanced (N=282) than delayed (N=260) with respect
to their mRNA abundance peak.
B and C  Histogram of  the phase differences  (footprints  to mRNA abundance,  in
hours) in kidney (B) and liver (C) for the 178 genes rhythmic in both organs (gene set
shown in Fig. 3C). We observed a broader distribution of phase differences in kidney
and  globally  a  phase  advance  of  RPF  with  respect  to  RNA  (-0.143  hours),  as
compared to overall stronger phase coherence of RPF and RNA in liver. See also
Figures 3D-E. 
D Histogram of the differential (kidney – liver) phase difference (RPF – RNA) for the
178 genes that were rhythmic throughout (Fig. 3C). Although statistically not reaching
significance,  the mean of -0.178 hours and the overall  more genes for which the
phase difference had negative values (96 vs.  82 genes) were consistent  with the
finding that RPF rhythms peak earlier than RNA rhythms specifically in kidney.
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Figure S11. Higher expression of deadenylase complex subunits in kidney.
A and B Daily expression profiles of the CCR4-NOT complex components in kidney
(A) and liver (B) at the RNA (orange) and RPF (blue) level.
C  RPF expression  of  the CCR4-NOT subunits  (averages  over  the day).  Boxplots
represent the interquartile range and whiskers extend to the minimum and maximum
expression within 1.5 times the interquartile range. Note that differences in protein
biosynthesis  are statistically  significant  for  all  subunits (p<0.05,  two-sample t-test)
apart from Cnot8.

Figure  S12.  Heatmaps  of  all  detected  RPF  and  RNA  rhythms  indicate
false-negatives of the rhythmicity detection method.
A Same as Fig. 3A, but re-plotted here for ease of comparison with (B-D).
B-D Heatmap of RNA-seq (left) and RPF-seq (right) expression for genes detected
as rhythmic only at the mRNA level (B, N=796), at both levels (C, N=542), and at the
ribosome  footprints  only  (D,  N=435)  in  kidney.  Gene  expression  levels  are
standardised by row (gene). Please note that even the panels that should represent
“non-rhythmicity” (i.e. right panel in B and left panel in D) clearly showed underlying
rhythmicity, albeit with more noise and/or lower amplitude. Many of these cases were
therefore probably not truly “non-rhythmic” but rather false-negatives of the detection
method (see Results section).

Figure S13. Core clock gene expression at RNA and RPF levels in both organs.
Left panels: Daily expression profiles of the 12 main core clock genes shown in Fig.
5A-C. Right panels: Hierarchical clustering of the organs’ RNA and RPF profiles for
each clock gene. Branch height represent the average Euclidean distance. Note that
for 7 out of the 12 core clock genes, protein synthesis profiles were more conserved
across organs than mRNA abundance and than RPF-RNA within organs.

Figure S14. Read distribution for uORF-containing core clock genes.
 A  Normalised read distribution for RPF (in blue) and RNA (in orange) along core
clock transcripts containing uORFs in kidney (top) and liver (bottom) for the timepoint
of maximal CDS translation. Red boxes indicate AUG-initiated uORFs as predicted in
our analyses.  For  scaling  issues and better  visualisation,  only  a portion of  the 3′

UTRs, corresponding to the same length as the full 5  UTR, is depicted (exception′

Nr1d1, for which the 3  UTR is so short that it is shown full length).′

B Read distribution to the three translation frames showed a frame bias of footprint
reads for most predicted uORFs that was in a similar range as the frame bias on the
CDS. This frame preference is indicative of active translation on the uORFs.
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Abstract

Translation initiation can be regulated through several mechanisms, including by upstream open reading
frames (uORFs). DENR-MCTS1 are reinitiation factors that promote efficient translation on a subset
of short and strong uORF-containing transcripts in Drosophila. We had previously identified uORF
translation and DENR-mediated reinitiation as a novel regulatory mechanism of circadian clock function,
but the DENR targets responsible for this phenotype are unknown. Here, we have used ribosome profiling
in NIH3T3 cells to annotate uORFs acting through reinitiation transcriptome-wide, and have characterised
the uORF specificities that confer DENR dependance through a comprehensive regression model. We
identified 240 transcripts that required DENR for efficient protein production, including genes associated
with increased proliferation and cancer. The presence of multiple uORFs, the start codon identity and
sequence context, and the distance to the CDS start, were correlated with the magnitude of translational
regulation, indicating a conserved mechanism of action. Finally, among circadian core clock genes, Clock
was found as a DENR target. Clock contains two AUG-initiated uORFs, the second of which overlaps
the main CDS and is followed by an additional start codon in frame with the annotated CDS one, that
could give rise to a 5’ alternative CLOCK protein. Systematic mutation of the uORF, annotated or
alternative CDS start codons revealed that DENR would be required for reinitiation and biosynthesis of
the alternative CLOCK isoform after translation of the overlapping uORF. Taken together, our study
provided insights into uORF-mediated translational mechanisms that can regulate circadian clock function
and gene expression at large.
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Introduction

Initiation is the main rate-limiting step in translation, allowing rapid, reversible and transcript-specific

control of gene expression [Jackson et al., 2010]. Translation initiation can be regulated by several

mechanisms, including through upstream open reading frames (uORFs), short translated sequences

defined by a start codon within the 5’ untranslated region (5’ UTR) of the transcript and an in-frame

stop codon. Since eukaryotic translation involves scanning of the 5’ UTR till a start codon is recognised,

uORF translation requires the ribosome to resume scanning after termination, and reinitiate at the

downstream coding sequence (CDS). Alternatively, the ribosome might skip certain uORFs, in a process

known as leaky scanning. Translation reinitiation and leaky scanning are poorly understood mechanisms

that may involve canonical and non-canonical initiation factors and can be regulated by several uORF

and transcript features (reviewed in Barbosa et al. [2013]; Wethmar [2014]).

Density regulated protein (DENR) and Malignant T-cell amplified sequence 1 (MCTS1) form an

heterodimer that binds the small ribosomal subunit and can promote eIF2-independent recruitment of

Met-tRNAi to the ribosome on viral mRNAs, as well as ribosomal subunit recycling in vitro [Skabkin

et al., 2010]. In Drosophila, DENR-MCTS1 was recently identified as a reinitiation factor required for

efficient translation on short and strong uORF-containing transcripts [Schleich et al., 2014]. Furthermore,

DENR targets in human cells have been predicted through an approach that used the DENR dependance

measured for several synthetic uORF-containing reporters – of varying length or Kozak strength – to

derive translational regulation genome-wide [Schleich et al., 2017]. However, an in vivo identification of

DENR targets and a direct and transcriptome-wide quantification of the translational regulation exerted

by DENR is still lacking.

uORF usage is pervasive in the mammalian transcriptome, with up to 40% of transcripts predicted to

contain at least one uORF [Calvo et al., 2009], and generally leads to a reduced translation efficiency on
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the main CDS due to the inefficiency of reinitiation and leaky scanning [Wethmar, 2014]. Previously,

we observed that, also among transcripts comprising the core circadian clock circuitry in mouse liver,

uORF translation was abundant. Moreover, loss-of-function of DENR led to a robust circadian period

shortening in cells, uncovering a new layer of regulation of circadian function [Janich et al., 2015], but

the DENR targets within the core clock that could underlie this phenotype remain unknown.

Here, we used ribosome profiling in murine NIH3T3 fibroblasts to quantify DENR-mediated transla-

tional regulation transcriptome-wide, and in particular, within core clock genes, and used a comprehensive

regression analysis to characterise uORF features associated with translational regulation exerted by

DENR.

Results

Ribosome occupancy is increased on 5’UTRs upon Denr knockdown

We hypothesized that if Denr is required for efficient protein production from transcripts that undergo

re-initiation at the main coding sequence (CDS) after uORF translation, we would be able to identify

DENR-regulated transcripts by comparing ribosome occupancies transcriptome-wide in DENR loss-of-

function vs. control cells by ribosome profiling. Conceivably, DENR target mRNAs should exhibit

decreased translation efficiencies (TEs) on their CDS when DENR is absent (figure 1a). We therefore

performed shRNA-mediated knockdown of Denr in murine NIH3T3 fibroblasts, a cell line in which we

had previously observed that Denr depletion led to a shortening of the period of circadian oscillations

[Janich et al., 2015]. After lentiviral transduction with two different Denr -targeting shRNAs (shRNA1,

shRNA2; in triplicate) or control RNAs (scramble shRNAs, in triplicate; Gfp shRNA in duplicate), cells

were grown to confluency and pretreated with cycloheximide (CHX) to stabilize elongating ribosomes.
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After preparation and sequencing of ribosome-protected mRNA fragment (RPF-seq) and total RNA

libraries (RNA-seq) as previously described [Janich et al., 2015], we obtained ribosome footprints that

were predominantly 29-30 nt in length (Supplementary figure S1a), that were enriched for protein coding

sequences (Supplementary figure S1b) and that showed the characteristic triplet periodicity expected

from high-quality footprint data (Supplementary figure S1c). Across replicates, CDS-mapping normalised

reads were highly correlated (R2 > 0.97, Supplementary figure S1d), indicating good reproducibility.

The RNA-seq and RPF-seq data also confirmed the efficiency of Denr knockdown, showing a 77-90%

reduction in Denr transcript levels, whereas the abundance of Mcts1 mRNA, encoding the DENR

heterodimerization partner, or of Eif2d, encoding a structurally and functionally related homologue of

the DENR-MCTS1 dimer [Skabkin et al., 2010], remained unchanged (Figure 1b, 1c and Supplementary

figure S1e).

As a first assessment of whether reduced Denr levels affected ribosome occupancies on the CDS and

on uORFs – as would be expected if reinitiation efficiencies were altered – we calculated relative 5’ UTR

translation as the ratio of 5’ UTR to CDS-mapping footprint reads for Denr -depleted and control cells in

a transcriptome-wide fashion. Of note, 5148 genes, corresponding to 48.9% of all expressed genes and

presumably enriched for translated uORFs (see later), had sufficient coverage on their 5’ UTRs to be

quantifiable in this analysis. Quantification of footprints from the full 5’ UTR thus served as a proxy

for uORF translation, consistent with the idea that translated uORFs would be the major source of 5’

UTR-mapping reads, and analogous to published methods [Sendoel et al., 2017; Blair et al., 2017]. For

this gene set, we observed a significant increase in relative translation of 5’ UTRs in Denr -deficient cells

(Figure 1d), reflecting a shift from CDS to 5’ UTRs that was specific for the ribosome footprints and

absent from the RNA-seq data (Figure 1e). Nevertheless, on pairwise comparisons, less than 500 genes

showed a translational shift that was statistically significant (FDR < 0.1, n = 493, Supplementary figure
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S2a), supporting evidence that DENR-MCTS1 regulate protein synthesis rates on a subset of transcripts

[Schleich et al., 2014].

The higher 5’ UTR footprint density upon Denr depletion, which was more pronounced for the

distal part of the UTR than for the proximal part (Figure 1f), suggested a redistribution of translating

ribosomes, conceivably due to the presence of uORFs. The change on the translational landscape likely

reflects alterations in the extent of leaky scanning and uORF usage, and is in line with a role of DENR in

translation reinitiation [Schleich et al., 2014].

DENR targets show decreased CDS translation efficiency, are enriched for

uORFs and associated with functional pathways

From the shift in the distribution of 5’ UTR vs. CDS footprints that was affecting the transcriptome

very broadly in Denr -deficient cells (Figure 1d), we wished to narrow down to DENR targets that were

potentially functionally relevant. We reasoned that changes in translation efficiency (TE) on the CDS

would represent an appropriate measure to identify such targets, as TE differences would alter the

amount of protein produced from the transcript. We therefore calculated transcriptome-wide translation

efficiencies (TEs), i.e. the ratio of CDS-mapping RPF-seq to RNA-seq reads, and then applied several

available algorithms to detect significant changes in TE. The four methods we employed, Xtail [Xiao

et al., 2016], RiboDiff [Zhong et al., 2017], Riborex [Li et al., 2017], and Babel [Olshen et al., 2013], are

all conceived for the quantification of translational changes that deviate from the variation expected due

to mRNA level differences. They differ in parameter estimation and modeling approaches, as well as in

sensitivity, false discovery rates and computational speed. Used with options that maximize comparability

of results (see Materials and Methods), we identified 240, 78, 41 and 30 genes that had a significant

change in TE between Denr -deficient and control cells in Xtail, RiboDiff, Riborex, and Babel, respectively
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(FDR < 0.1 for all four algorithms). Importantly, differential TE genes detected by Riborex, RiboDiff and

Xtail completely overlapped, while only about half of the genes detected by Babel were also found by any

of the other methods (Supplementary figure S3a). Moreover, most genes detected by Xtail, RiboDiff and

Riborex showed decreased TE in Denr -depleted cells, as expected for the knockdown of a reinitiation

factor, and they spanned the full range of expression levels (Figure 2a, and Supplementary figure S3b).

By contrast, Babel identified similar numbers of up and down-regulated TE genes and was biased towards

low abundance transcripts (Supplementary figure S3b). From these results, we concluded that Xtail was

likely the most suitable method to identify DENR targets, and further estimated the false discovery rate

of the algorithm by randomly shuffling the datasets, which eliminated nearly all differential TE genes

(Supplementary figure S3c).

Among the 240 differential TE genes identified by Xtail (see Supplementary file 1) were several for

which the presence of regulatory uORFs has previously been described, such as Atf5 [Watatani et al.,

2008], Rnaseh1 [Suzuki et al., 2010; Liang et al., 2016], Jak2 and Map2k6 [Schulz et al., 2018]. In

order to investigate whether uORF translation was generally associated with TE decrease among DENR-

regulated genes, we annotated uORFs transcriptome wide. Briefly, we included AUG and non-canonical,

near-AUG (i.e., CUG, GUG and UUG) initiation codons located in 5’ UTRs, and assessed the active

translation of the corresponding ORFs by their footprint coverage and periodicity (Supplementary figure

S4a). Using this approach, we detected translated uORFs in nearly half of all expressed genes (n = 4755

genes, Figure 2b). For the majority of genes, the uORFs were fully contained in the 5’ UTRs (51.8%, n

= 2464 genes), but genes with uORFs overlapping the CDS (19.5%, n = 926 genes), or that had both

overlapping and non-overlapping uORFs (28.7%, n = 1365 genes) were frequent, too (Supplementary

figure S4b). Notably, DENR targets were highly enriched for genes with translated uORFs (72.7%, p

= 5.73e-4, Fisher test) and, in particular, with non-overlapping uORFs (Supplementary figure S4b).
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Moreover, relative 5’UTR translation in Denr -depleted vs. control cells calculated over the full 5’ UTR

– as a proxy of uORF translation – was significantly higher for DENR targets than for the whole of

uORF-containing genes (Supplementary figure S4c, and S4d). In summary, these observations were in

line with an involvement of DENR in leaky scanning or reinitiation and efficient CDS translation of a

subset of translated uORF-containing genes.

We next analysed whether the 240 differential TE genes showed any functional enrichment. GO

term analysis revealed categories associated with translation and mRNA stability, as well as cellular

functions related to protein phosphorylation and catabolism, kinase binding and cell cycle (Figure 2c

and Supplementary figure S4e), in line with previous observations in Drosophila S2 cells [Schleich et al.,

2014] and indicating evolutionary conservation of DENR functions.

DENR-regulated genes included cancer-relevant genes, such as Klhdc8a, Etaa1, Map2k5, Slc20a1

or Vegfd [Mukasa et al., 2010; Childs et al., 2015; Diao et al., 2016; Sato and Akimoto, 2017; Thelen

et al., 2008], and individual inspection confirmed reduced CDS translation efficiency (Figure 3a), as well

as a shift of ribosome occupancy from the CDS to the 5’ UTR in Denr -depleted cells (Figure 3b). This

signature was characteristic of many differential TE genes (see Supplementary figure S5a and S5b), and

correlated with the presence of translated uORFs (Supplementary figure S5c).

In order to validate the DENR dependance for several of the identified targets, we cloned the 5’

UTR of the transcript of interest upstream of Firefly luciferase (FL) in a lentiviral vector that also

expresses Renilla luciferase (RL) from the same promoter, for internal normalisation (Figure 3c, top).

Denr depletion led to a 59 - 87% reduction in F/R luciferase signal, indicating that DENR was necessary

for efficient reporter expression. Furthermore, mutation of the uORF start codon, increased luciferase

signal and partially abolished DENR dependance (Figure 3c, bottom).

Taken together, we concluded that DENR regulates protein synthesis rates of a set of transcripts
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containing uORFs and involved in translation, RNA stability and kinase activity, by promoting uORF

by-passing and/or efficient reinitiation.

Linear regression analysis correlates DENR-dependence with uORF number,

start codon identity, and position within the 5’ UTR

There is evidence for a bewildering diversity of mechanisms through which uORFs can act. For

example, they can affect main ORF translation (by affecting start site selection/leaky scanning/re-

initiation/ribosome shunting), transcript abundance (by eliciting nonsense-mediated mRNA decay), and

in some cases produce bioactive small peptides (reviewed in Wethmar [2014]). However, rules that

would predict the specific mechanism from specific uORF features have not yet been established. Our

datasets could potentially allow identifying which features render certain uORF-containing transcripts

DENR-dependent, in contrast to the majority of uORF-containing transcripts whose TE was not affected

by DENR. Previous studies using synthetic uORF reporters in Drosophila S2 [Schleich et al., 2014] and

human HeLa cells [Schleich et al., 2017] showed that very short uORFs (coding for 1-2 amino acids) with

favourable Kozak contexts around the start codon were most strongly dependent on DENR for efficient

expression (via reinitiation) of the downstream main coding sequence.

Here, we used a multiple regression analysis that modeled the CDS TE change observed upon Denr

knockdown, considering nine features that could potentially regulate uORF TE and efficient translation

reinitiation on the CDS. These features included the number of uORFs, the uORF start codon identity

and context, the uORF length and GC content, the relative location within the 5’UTR, the presence

of overlapping uORFs, and the CDS start codon context (Figure 4a). The model was applied on all

translated uORF-containing genes, and yielded several features with significant predictive value for

regulation by DENR (Figure 3b-j, adjusted R2 = 0.057, F-statistic = 33.21 on 4731 DF, p < 2.2e-16). In
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particular, the number of uORFs present on a transcript was significantly associated with TE regulation

(Figure 4b, b = -0.019, p < 2e-16), with transcripts containing several uORFs being increasingly DENR

dependent, suggesting an additive effect of the presence of multiple uORFs for the need of efficient

reinitiation. On the other hand, the presence of CDS-overlapping uORFs was not associated with TE

fold change upon Denr depletion (Figure 4c, b = 0.005, p = 0.44), as expected, given that re-initiation

downstream of such uORF would already be within the body of the main CDS.

A second feature predictive of TE regulation by DENR was the uORF start codon. Selectivity of

translation initiation factors for uORF start codons has been previously reported; for example, eIF2A is

involved in CUG uORF translation [Starck et al., 2016; Sendoel et al., 2017], whereas eIF1 overexpression

promotes AUG initiation [Ivanov et al., 2010] and eIF1 knockdown reduces AUG uORF translation in

favour of non-canonical ones [Fijalkowska et al., 2017]. We computed the proportion of AUG uORFs

present on a transcript to account for the presence of multiple uORFs with different start codons, allowing

us to discriminate DENR preference for canonical vs. non-canonical start codons. The model showed that

AUG uORF-containing transcripts showed the strongest TE reduction upon Denr knockdown (Figure 4d,

b = -0.05, p = 1.15e-9), indicating that DENR could control the fidelity of start codon selection and,

contrary to eIF1, bypass AUG uORFs on its targets to ensure efficient protein production. Moreover,

DENR targets were enriched for AUG uORFs as compared to the ensemble of translated uORF-containing

transcripts (p = 0.0044, Fisher test, Supplementary figure S6a), and genes harboring only AUG uORFs

showed the strongest effect on CDS TE in Denr -deficient cells (Supplementary figure S6b). As shown

before [Schleich et al., 2014, 2017], stronger Kozak contexts around uORF start codons were also

associated with TE regulation (Figure 4e, b = -0.026, p = 0.013), suggesting that DENR allows leaky

scanning of otherwise strong AUG uORFs. By contrast, the kozak context around the main ORF start

codon bore no predictive value (Figure 4f, b = -0.0006, p = 0.38).
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The location of a uORF with respect to the main ORF can dictate the efficiency of reinitiation, with

longer spacing generally allowing the reacquisition of the necessary initiation factors to the scanning

ribosome [Kozak, 1987]. Our model recapitulated this notion for DENR-regulated transcripts, where

larger distances from the 3’-most uORF stop codon to the main ORF start were associated with a

downregulation of TE (Figure 4g, b = -0.0101, p = 7.89e-7). This finding indicates that uORFs located

further from the CDS are more strongly dependent of DENR for efficient reinitiation. This effect of

uORF-CDS distance was not caused by longer 5’ UTRs per se, as the distance from the 5’ cap to the

first uORF was not associated with DENR regulation (Figure 4h, b = -0.0018, p = 0.18). Moreover,

the uORF-CDS distance was only weakly correlated with 5’ UTR length (spearman rho = 0.16), and

the correlation of 5’cap-uORF distance with 5’ UTR length was even stronger (spearman rho = 0.27,

Supplementary figure S6c, S6d).

No linear relationship was found between uORF length and the CDS TE (Figure 4i, b = 0.0006, p

= 0.81), in agreement with previous results in human cells using synthetic uORFs of >9 nt in length

[Schleich et al., 2017]. Of note, the length dependance reported in Schleich et al. [2017] was only found

for 1 (or maximum 2) amino acid uORFs, which were excluded from our analyses (see Materials and

Methods), thus potentially missing the regulatory role that such short uORFs could exert.

Finally, the uORF GC content showed a significant relationship with TE fold change (Figure 4j, b =

0.058, p = 0.005), suggesting that potential weaker secondary structures (low GC) favour DENR-mediated

uORF translation, impairing efficient protein production from the main CDS.

We chose to use the CDS TE fold change as response – as opposed to a binary DENR-target vs.

non-target response – in order to account for DENR regulation in a continuous manner that would not

miss smaller magnitude cases of DENR control. Of note, however, such a logistic regression model also

recapitulated our predictions for the number of uORFs (b = 0.015, p = 1.01e-9), for the proportion of
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AUG uORFs (b= 0.02, p = 0.046) and for the distance from the last uORF to the CDS start (b = 0.005,

p = 0.034) (Supplementary figure S6e, whole model statistics: adjusted R2 = 0.0117, F-statistic =

7.278 on 4732 DF, p = 1.381e-10), further supporting our predictions for the strongest cases of DENR

translational control.

Together, our results showed that DENR facilitated efficient protein synthesis from transcripts

containing AUG uORFs in strong kozak contexts, and that the distance of the most downstream uORF

to the CDS start was critical for efficient reinitiation.

DENR-mediated reinitiation controls the levels of CLOCK protein biosynthesis∗.

We recently showed that uORF translation is pervasive within core clock transcripts, and that depletion

of Denr in NIH3T3 cells caused a robust circadian period shortening of 1-1.5 h, suggesting that circadian

function can be regulated by uORFs and DENR-mediated reinitiation [Janich et al., 2015]. We therefore

sought to uncover the specific core clock transcripts/uORFs acting through reinitiation that could explain

the circadian phenotype.

Most core clock genes showed changes affecting mostly transcript levels (e.g. Bmal1), or small and

unidirectional variations in both transcript abundance and absolute translation (e.g. Nr1d1, Per1/2,

Cry1/2, Rorα) that therefore did not lead to changes in translational efficiency (Figures 5a, 5b, and

Supplementary figures S7a, S7b). For Clock, however, the expression change was mostly translational

(Figure 5a and Supplementary figure S7a), resulting in a ∼20% reduction in Clock protein biosynthesis

rate (Figure 5b and Supplementary figure S7b). Of note, Clock did not pass the significance threshold

in our analysis of differential CDS TE (Figure 2a and Supplementary File 1); however, Xtail algorithm

evaluates differential TE statistical significance through two separate tests - one regarding differences

between the RNA FC and the RPF FC distributions, and a second one evaluating differences in TE
∗Results and conclusions from this section are not definite; experiments in progress.
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distributions directly - and then derives the final p-value from the most conservative of the two tests [Xiao

et al., 2016]. This additional test can therefore prevent false positives but miss differential TE genes

close to the threshold. Importantly, for one of the tests, the TE fold change for Clock was significant (p

= 0.025 in test 1; p = 0.19 for test 2; Supplementary File 1), and could thus represent a DENR target

at the borderline of statistical significance.

In our analyses, we annotated two translated AUG-initiated uORFs, the second of which overlaps the

main Clock CDS and could thus hamper translation of the annotated CDS. Downstream of this uORF 2

stop codon, there is an additional AUG in the coding frame of Clock cDNA, that could thus give rise

to an alternative 5’ truncated CLOCK protein, that would be 9 amino acid shorter, when uORF-2 is

translated (Figure 5c and Supplementary figure S7c). We observed increased translation on both uORFs

in Denr -deficient cells, leading to a reduced translation on the CDS (Figure 5d). In particular, uORF 2

showed ∼23% higher translation rate upon Denr depletion (Figure 5e), suggesting that DENR-mediated

leaky scanning of, or reinitiation after, uORF 2 is crucial for efficient CLOCK production. We looked

for further evidence of uORF 2 and alternative CDS translation using GWIPS-viz, an online genome

browser for the visualisation of ribosome profiling data from published studies [Michel et al., 2014].

Initiating ribosomes can be detected on both uORF 2 and alternative CDS start codons in human and

mouse data, and elongating ribosome profiling studies showed good footprint coverage on uORF 2 and

the characteristic accumulation of ribosomes at the start and stop codons (Supplementary figure S8).

Together, our and published data suggested abundant uORF 2 translation and CLOCK protein synthesis

from the alternative AUG.

In order to investigate uORF usage, effect, and DENR dependance for CLOCK biosynthesis from

the annotated and alternative CDS, we cloned Clock 5’ UTR and first 14 codons (containing both the

annotated and alternative ATGs) upstream of Firefly luciferase in our dual luciferase vector (Figure
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5f, top). We then systematically mutated the uORFs, annotated or alternative CDS start codons, or

combinations thereof (Supplementary figure S7d), and carried out dual luciferase assays in control and

Denr -depleted cells. Denr depletion resulted in a 20% reduction in luciferase signal for the Clock Wt

construct (Figure 5f, bottom), in line with the decrease in protein production quantified in vivo (Figure

5d). Interestingly, mutation of the annotated CDS initiation codon did not affect CLOCK synthesis or

DENR dependance when compared to Clock Wt; however mutation of the alternative ATG decreased

luciferase signal by ∼95% and abolished DENR dependance (Figure 5f, bottom), suggesting that most

CLOCK biosynthesis in NIH3T3 cells actually comes from the alternative ATG, and that DENR is required

for reinitiation after uORF 2. Mutation of uORF 1 led to a 14% increase in luciferase signal and partial

relief of DENR dependance. By contrast, uORF 2 mutation led to a 71% increase in protein synthesis

and a reduced DENR dependance by 50%, indicating that uORF 2 translation strongly downregulated

CLOCK biosynthesis and confers DENR dependance for efficient translation. Moreover, mutation of both

uORF 1 + 2 start codons resulted in a 95% increase in protein synthesis, suggesting additive effects. In

line with minor synthesis of the long CLOCK isoform, mutation of the annotated CDS start codon in

combination with uORF mutations led to similar results than mutation of the uORFs alone. Furthermore,

mutation of the alternative ATG in combination with uORF mutations led to strong decrease in luciferase

signals, consistent with the predominant synthesis of the short CLOCK isoform. In particular, the case

where both the alternative CDS and uORF 2 (or uORF 1+2) start codons were mutated – an scenario

that would lead to CLOCK synthesis from the annotated ATG without inhibitory effects – resulted in a

>80% reduction in CLOCK protein production (Figure 5f, bottom).

From these results we concluded that Clock requires DENR for efficient protein synthesis from the

9-codon shorter, alternative CDS, largely due to the strong translation of uORF 2. Moreover CLOCK

start codon is likely wrongly annotated, at least for the case of NIH3T3 cells.
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Discussion

DENR has been recently identified as a reinitiation factor in Drosophila, required for efficient translation

of a subset of short and strong uORF-containing genes [Schleich et al., 2014]. Using a series of

synthetic uORF-containing reporters, the effect of varying uORF lengths and Kozak context strength on

translational regulation were measured in human HeLa cells, and used to derive genome-wide DENR

targets and their predicted translational decrease upon Denr knockdown [Schleich et al., 2017]. Here,

we have used ribosome profiling in Denr -deficient NIH3T3 cells to quantify CDS TE changes in vivo,

identifying 240 transcripts that needed DENR for efficient protein production, and have characterised the

uORF features that are associated with DENR dependance using a quantitative model approach.

DENR and its heterodimerization partner MCTS1 are oncogenes [Reinert et al., 2006], upregulated,

for example, in prostate cancer CERAMI. Not surprisingly, many of the identified targets are therefore

genes involved in proliferation and upregulated in several cancer types. Kelch Domain Containing 8A

(KLHDC8A) protein is overexpressed in human gliomas that become resistant to epidermal growth factor

receptor (EGFR) silencing, commonly used as therapeutic approach, allowing aggressiveness maintenance

in these tumors through an unknown EGFR-independent pathway [Mukasa et al., 2010]. It is thus

possible that upon loss of EGFR-silencing sensitivity, KLHDC8A levels increase through DENR-mediated

translational control. Similarly, Vascular endothelial growth factor D (VEGF-D), or Mitogen-Activated

Protein Kinase Kinase 5 (MAP2K5) are upregulated in different cancers [Thelen et al., 2008; Diao et al.,

2016]. DENR could therefore be an attractive drug target candidate: decreasing DENR levels could, in

turn, reduce the oncogenic levels of the proteins it regulates in proliferating, but not in quiescent, cells.

A comparison of DENR targets found in this and previous studies returned little overlap. Notably,

Dock1, the mouse orthologue of Drosophila’s mbc shown in Schleich et al. [2014] to be a strong DENR

target, also showed DENR dependance in our reporter assays, although it was not detected in our
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differential TE analysis, indicating that our list might not be fully exhaustive. Of the eight targets

validated in HeLa cells in Schleich et al. [2017], all but one (Tmem60) were not expressed in NIH3T3

cells. Tmem60 was predicted to result in a 25% translational downregulation upon Denr knockdown,

whereas in our system a ∼8% decrease in CDS TE was quantified. Similarly, for the ensemble of 104

predicted targets by Schleich et al. [2017], > 90% were not expressed or lacked a mouse orthologue

in NIH3T3 cells, and others (e.g. Lca5, Mllt11 or Dsel) were downregulated to a lesser extent. It

is therefore likely that DENR targets are cell-type and organism-specific, but conceivably as well, the

differences in the magnitude of translational regulation observed across studies are the result of different

experimental and analytical approaches.

Several transcript and/or uORF features are known to regulate the efficiency of uORF skipping and

translation reinitiation. The start codon and context can dictate the strength of its recognition; sequences

upstream, within or downstream a uORF can be recognised by trans-acting factors affecting reinitiation

[Mohammad et al., 2017]; and uORF length and structural complexity, as well as the intercistronic

distance to the CDS, can influence reinitiation efficiency [Kozak, 1987, 2001]. What rules govern

DENR dependance on certain uORFs but not on others thus remain an intriguing question. Using all

uORF-containing transcripts annotated in our analyses, we have identified four prominent features that

added predictive value to a comprehensive model of CDS TE regulation exerted by DENR. The number

of uORFs, the start codon identity and sequence context, and the distance to the main ORF, were

associated to the magnitude of translational regulation. The presence of several uORFs is a well-known

modulator of CDS TE, by requiring successive reinitiation events [Calvo et al., 2009], and DENR-regulated

transcripts would not be an exception. Similarly, uORFs located further from the CDS would require

DENR for efficient reinitiation, consistent with the idea that longer distances allow loss of termination

factors and reacquisition of the initiation machinery on time for CDS translation [Kozak, 1987]. Finally,
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AUG-starting uORFs and those with strong Kozak contexts showed the strongest DENR dependance,

as had been shown in fly [Schleich et al., 2014] and human cells [Schleich et al., 2017], suggesting a

conserved mechanism of action.

On the other hand, the uORF length was not associated with DENR-mediated translational regula-

tion. Of note, already between Drosophila and human cells, DENR dependance on uORF length was

quantitatively different: in S2 cells, uORFs coding for up to 4 amino acids could be regulated by DENR

[Schleich et al., 2014], whereas only 1 amino acid-coding uORFs were strongly DENR dependent in HeLa

cells [Schleich et al., 2017]. Therefore, the uORF length specificities could differ across species, or reflect

essential differences in methodological approaches: deriving genome-wide dependance from synthetic

uORF-containing reporters [Schleich et al., 2017] could be biased to the results measured from a selected

number of constructs. It is therefore not unlikely that in vivo targets contain uORFs of varying lengths,

given that it is the time required for translation rather than the linear length per se what determines

scanning resumption [Poyry et al., 2004; Calvo et al., 2009; Barbosa et al., 2013].

uORF-mediated translational regulation can occur through several different mechanisms: leaky

scanning, in which uORFs are bypassed; reinitiation, in which the ribosome resumes scanning after

uORF translation termination; and other mechanisms that involve peptide or ribosome-induced ribosome

stalling and NMD [Wethmar, 2014]. Structural studies have recently shown that DENR-MCTS1 can

bind the small ribosomal subunit close to the P-site and the mRNA entry channel [Lomakin et al., 2017;

Weisser et al., 2017]. However iClip studies did not show DENR crosslinking to mRNAs (data not shown),

suggesting that DENR travels on the ribosome or transiently interacts with it, although recognition

and binding to specific motifs could occur through a yet unknown factor. DENR-MCTS1 presence

on the ribosome could sterically clash with that of canonical initiation factors, such as certain eIF3

subunits [Lomakin et al., 2017; Weisser et al., 2017]. Since eIF3 is involved in translation termination
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and ribosome recycling [Beznoskova et al., 2013], the recruitment of DENR-MCTS1 to the ribosome

could displace eIF3 to promote reinitiation on a downstream ORF via DENR’s SUI domain involved in

start codon recognition [Yoon and Donahue, 1992]. Alternatively, DENR-MCTS1 could compete with

and replace eIF1 for cap-dependent scanning, given that simultaneous presence of DENR-MCTS1 and

eIF2-tRNA-Meti is not incompatible [Lomakin et al., 2017]. In this scenario, overexpression of DENR

in proliferating cells would shift the balance to more DENR-MCTS1-containing ribosomes, leading to

increased CDS translation through skipping of strong uORFs that would normally be translated in a

eIF1-containing ribosome. Future studies that discern between leaky scanning and translation reinitiation

would gain insights into the precise mode of action of DENR-MCTS1.

[For Clock-related discussion see Thesis.]

Methods

Cell culture. NIH3T3 and HEK293FT cells were cultured under standard conditions (DMEM; 10%
FCS, 1% penicillin/streptomycin, all from Invitrogen; 37C; 5% CO2).

Lentiviral particles production in HEK293FT cells from pLkO.1puro-shRNA using envelope pMD2.G
and packaging psPAX2 plasmids, and viral transduction of NIH3T3 cells were performed following
published protocols [Salmon and Trono, 2007], with puromycin selection at 5 µg/ml for 4 days.

For dual luciferase assays, cells were lysed in passive lysis buffer and luciferase activities were quantified
using DualGlo luciferase assay system and a GloMax 96 Microplate luminometer (all from Promega).

Cloning and plasmids. For the generation of lentiviral shRNA expression vectors, two different
sequences targeting Denr were cloned into pLKO.1puro backbone vector (Addgene no. 10878, [Moffat
et al., 2006]): shRNA1: GTACCACAGAAGGTCACGATA, corresponding to clone TRCN0000308443
of the TRC shRNA Library from the Broad Institute; and shRNA2: GTGCCAAGTTAGATGCGGATT,
corresponding to clone TRCN0000098826. The empty pLKO.1puro vector, containing Gfp, and Scramble
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(Addgene no. 1864) shRNAs served as control.
For the generation of dual luciferase (Firefly/Renilla) reporter plasmids, fragments containing the

5’UTR and first 5-14 codons of the selected targets were amplified by PCR and cloned into the BamHI
site of the prLV1 dual luciferase reporter plasmid [Du et al., 2014]. The following primers were used
for PCR: Dock1, forward: aaaggatccCCATCCTGTCGCGGCGGGGAAGGAATG, reverse: tttggatccac-
tagtGACCCAGCGCGTCATGGTGGCGCTGG; Etaa1, forward: aaaggatccGACTTGCAAAGATGGCGCT-
GCAC, reverse: tttggatccactagtGTCCTTCAGCTGCATTCACATTT; Map2k5, forward: aaaggatccG-
GTTCCGGAGTAACAGCGGTCTAAC, reverse: tttggatccactagtGGCCAGCCACAGCATTACAGGTTAA;
Lrrc28, forward: aaaggatccGCCGCTGAGTGCCGGTCAGCGGGC, reverse: tttggatccactagtGATTTCG-
GATGCCATGACTGAACA; Klhdc8a, forward: aaaggatccGTCTCCGACCCTGTAGACACTGCAG, reverse:
tttggatccactagtATTGGGCACTTCCATGGCAGCCCGG; Clock, forward: aaaggatccGGGGAGGAGCGCG-
GCGGTAGCGGTG, reverse: tttggatccactagtAACAATTGAGCTCATTTTACTACAGCTTACGG.

The target 5’UTR mutants were generated by site-directed mutagenesis of the corresponding plas-
mid, using the following primers: Dock1-Mut, forward; GTCGCGGCGGGGAAGGAATGGgtaccGGCG-
GCCTAGGCGCAGAGTTTC, reverse: GAAACTCTGCGCCTAGGCCGCCggtacCCATTCCTTCCCCGC-
CGCGAC; Etaa1-Mut, forward: cgaaggatcCGACTTGCAAAGgtaccGCTGCACGGTGGCGCGCGGGCTC,
reverse: GAGCCCGCG CGCCACCGTGCAGCggtacCTTTGCAAGTCGgatccttcg; Map2k5-Mut, forward:
CTCTTACTCACAAGGACTACAGgctagcTTGTGGGTTCTGTTTTGTCCAC, reverse: GTGGACAAAACA-
GAACCCACAAgctagcCTGTAGTCCTTGTGAGTAAGAG; Klhdc8a-Mut, forward: GGCAGGGA GCC-
CGTGCAGCGCGgtaccGAGGCTGAGAGAGGGGACGCGCC, reverse: GGCGCGTCCCCTCTCTCAGC-
CTCggtacCGCGCTGCACGGGCTCCCTGCC; Clock-uORF1-Mut, forward: CCCAAAATCACCAGCAA-
GAGTTgctagcGTCAGTCACACAGAAGACGGCC, reverse: GGCCGTCTTCTGTGTGACTGACgctagcAAC
TCTTGCTGGTGATTTTGGG; Clock-uORF2-Mut, forward: AAAGTGAAAGAGGAGAAGTACAggt acC-
TACCACAAGACGAAAACATAAT, reverse: ATTATGTTTTCGTCTTGTGGTAGgtaccTGTACTTCTC-
CTCTTTCACTTT; Clock-AnnotCDS-Mut, forward: CAAGACGAAAACATAATGTGTTtcGGTGTT-
TACCGTAAGCTGTAG, reverse: CTACAGCTTACGGTAAACACCgaAACACATTATGTTTTCGTCTTG;
Clock-AlterCDS-Mut, forward: GTTTACCGTAAGCTGTAGTAAAcaGAGCTCAATTGTTactagtg, reverse:
cactagtAACAATTGAGCTCtgTTTACTACAGCTTACGGTAAAC.

Ribosome profiling. One 15-cm dish of confluent NIH3T3 cells was used per replicate. Ribosome
profiling and parallel RNA-seq was performed in triplicate for Denr shRNA1, Denr shRNA2 and scr
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shRNA, and in duplicate for Gpf shRNA, following the ART-Seq protocol by Epicentre-Illumina (Cat.no.
RPHMR12126) with minor modifications as described below. Cells were pre-incubated with cycloheximide-
supplemented media (100 µg/ml) for 2 min at 37C to arrest translation elongation. For the generation of
ribosome-protected fragments, cell lysates were treated with 5 units ART-Seq nuclease per OD260 and
monosomes were purified in MicroSpin S-400 columns (GE Healthcare). For both RPF and RNA-seq,
5 µg of RNA were used for rRNA depletion following the Ribo-Zero Magnetic Kit intructions from
Epicentre-Illumina (Cat.no. MRZH11124). Finally, libraries were amplified using 12 PCR cycles, and
were sequenced on a HiSeq2500 platform.

Sequencing pre-processing, alignment and quantification. Initial processing, mapping and quan-
tification of mRNA and footprint abundance were performed as in Janich et al. [2015]. Briefly, adaptor
sequence was trimmed with Cutadapt [Martin, 2011] and trimmed sequences were filtered using a
custom python script to keep 26-35 nt and 21-60 nt reads for RPF and RNA-seq, respectively. Reads
were then sequentially aligned to mouse rRNA, tRNA and cDNA (Ensembl mouse release 84) using
Bowtie2 [Langmead and Salzberg, 2012] and mouse genome using Tophat v2.0.11 [Trapnell et al., 2009].
Trimmed and filtered sequences from RNA-seq were also directly mapped against the mouse genome
with Tophat to estimate expressed transcript isoforms (using Cufflinks v2.2.1 [Trapnell et al., 2010]).
Transcriptome-mapping reads from the sequential alignment were counted towards their location on
5’UTR, CDS or 3’UTR per gene, using only the set of expressed isoforms as estimated above. The
location of the putative A-site of the footprint was used for RPF-seq counting (position +15 from the 5’
for reads ≤30 nt and position +16 for reads >31 nt), and the 5’end was used for RNA-seq reads. For
genes with multiple expressed isoforms, reads that did not map unambiguously to a single feature were
assigned to one in preference order: CDS, 5’UTR, 3’UTR.

RPF and RNA-seq read counts were normalized separately with the upper quartile normalization from
edgeR [Robinson and Oshlack, 2010] and then transformed to TPM values as read count per gene kilobase
per normalized library size. Genes with less than 10 reads in 2/3 of samples and mitochondrially-enconded
genes were removed before normalization.

Translation efficiencies were then calculated per sample as the ratio of RPF TPM to RNA TPM of
the region of interest (5’UTR, CDS or uORF), log2 transformed and averaged over all replicates.
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Differential translation efficiency analysis. Significant changes in TE between Kd and Wt cells were
assessed with several available algoithms: Xtail [Xiao et al., 2016] with options ’bins=10000’, RiboDiff
[Zhong et al., 2017] with options ’-d 1 -p 1’, Riborex [Li et al., 2017] with options ’engine=“DESeq2”’,
and Babel [Olshen et al., 2013] with options ’nreps=100000’.

Briefly, all four methods, with the options implemented in our study for consistency among them,
model raw read counts as following a negative binomial distribution, and use global normalization methods
for sequencing depth that would unaccount for global changes in TE if exisiting. RiboDiff and Riborex use
DESeq2 to estimate a single mean and dispersion for both RPF and RNA-seq, and detect differentially
translated genes by fitting RPF and RNA-seq read counts to a single GLM, whereas Xtail uses DESeq2
for mean and dispersion estimation separately for RPF and RNA-seq and fits two independent GLMs.
Xtail then derives probability distributions for fold changes of mRNA or RPF,or for RPF-to-mRNA ratios,
and evaluates statistical significance between conditions from one of the two (the most conservative)
pipelines. Babel relies on edgeR for parameter estimation and uses a errors-in-variables regression to test
for significant changes in translation within and between conditions.

Differential TE was set at FDR < 0.1 for all four methods and performance for false positive discovery
rate was further assessed by randomly shuffling Kd and Wt datasets which should not yield differential
TE genes.

uORF annotation and translation analyses. For uORF detection, a set of transcripts was used for
which reads can be unambiguously assigned to the 5’UTR, i.e. transcripts that are the only protein-coding
isoform expressed (n=4637). In order to include as many transcripts as possible for the annotation, genes
with multiple protein-coding isoforms were also considered if 1) an isoform represented > 65% of all
expressed (as derived from our transcript expression estimation, see above, n=3211) or 2) all expressed
isoforms had the same CDS start, in which case the transcript with the highest expression was selected
(n=1826). For the selected transcripts, uORFs were annotated and considered as translated with the
following criteria: 1) started with AUG, CUG, GUG or UUG, 2) had an in-frame stop codon within the
5’UTR or could overlap the CDS, 3) were at least 9 nt long, 4) had a coverage > 25%, 5) showed a
frame preference and 6) the preferred frame was the first one relative to the uORF 5’. Importantly, we
considered only uORFs coding for at least 2 aminoacids (i.e. 9 nt, including the stop codon), as for
shorter uORFs frame bias assessment could be more proned to false positives, and kozak context scoring
would be compromised (for 6 nt uORFs, the position +4 would always be the T of the stop codon, and
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thus cannot be a G of the strongest kozak context).

Multiple regression analysis. For the modelling, all transcripts containing translated uORFs in Denr-
knockdown or control cells were included (n = 4755) and the following uORF features were used as
predictors of the fold change in CDS TE across conditions: 1) the number of uORFs, 2) the uORFs
length, using the median length in transcripts with several uORFs, 3) the proportion of AUG uORFs, 4)
the uORF kozak context, scored relative to the consensus GccA/Gcc###G where upper-case letters
denote highly conserved bases (scored +3), lower-case letters indicate the most common nucleotides
(scored +1) and ### represents the start codon (not scored). The median kozak score was used when
several uORFs were present on a transcript. 5) the CDS kozak context, scored in the same manner,
6) the distance of the first uORF start codon from the 5’ cap, 7) the distance of the last uORF stop
codon to the CDS start, 8) the uORF GC content, using the median for transcripts with several uORFs,
9) the presence of overlapping uORFs in the transcript ( binary predictor). Predictors with skewed
distributions (number of uORFs, uORF length, distance from the cap and distance to the CDS start)
were log2 transformed. Partial regression plots were generated with the R package ’visreg’. Absence of
multicollinearity between predictors was assessed with the variance inflation factor using R function vif
(car package).

Functional enrichment analysis. Functional enrichment analysis was performed using g:Profiler
[Reimand et al., 2016], including Gene Ontology Biological Process and Molecular Function terms and
biological pathway information from Reactome. Functional categories of more than 2 and less than 1500
members were used and p-values were corrected by Benjamini-Hochberg FDR. Categories with FDR <
0.05 were considered as significant and were used for visualization with Cytoscape v.3.5.1 EnrichmentMap
tool [Merico et al., 2010].
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Castelo-Szekely et al. Figure 4
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Figure legends
Figure 1. Translation is shifted towards 5’UTRs upon Denr knockdown. A) Experimental setup:
ribosome profiling (and parallel RNA-seq) was performed on shRNA-mediated Denr knockdown NIH3T3 mouse
fibroblasts, using scramble and Gpf shRNA as controls (wild-type cells, Wt). Two different shRNAs were used for
knockdown experiments and ribosome profiling was carried out in triplicate for Denr shRNA1, Denr shRNA2 and
Scr shRNA, and in duplicate for Gfp shRNA. We hypothesized that if DENR is required for efficient reinitiation
after uORF translation, knocking down Denr would lead to a reduced translation efficiency on the main coding
sequence of DENR targets. B) Denr knockdown efficiency. Distribution of normalized RNA-seq read counts
along the Denr transcript. Different color shadings (light/dark orange) correspond to the different condition
replicates. C) RPKM values for CDS-mapping RNA-seq read counts for Denr (left), Mcts1 (middle), and Eif2d
(right). Each dot correspond to a sample and replicate and error bars indicate mean±sd. D) Histogram of
5’ UTR-to-CDS translation (from RPF-seq) between Denr Kd and control cells. Genes with a minimum of
20 RPF-seq reads in the 5’UTR in 3/4 of samples were used (n = 5148), to exclude noisy genes. Relative 5’
UTR translation was significantly higher in Denr Kd cells (median = 0.32, p < 2.2e-16, Wilcoxon signed rank
test), suggesting a ribosome footprint redistribution to 5’ UTRs upon Denr knockdown. E) Histogram of 5’
UTR-to-CDS transcript levels (from RNA-seq) ratio between Denr Kd and control cells, using same genes as
in D. In contrast to translation, relative 5’ UTR transcript levels did not change between conditions (median
= 0.03, p = 0.09). F) Metagene analysis of normalized RPF-seq read count on the 5’ UTRs quantified in (C,
D). 5’ UTRs were scaled to forty windows of equal size and RPF signal was averaged within each window and
across genes. Denr -deficient cells showed an accumulation of ribosome footprints on the 5’ UTR, likely due to
the presence of translated uORFs.

Figure 2. DENR targets show decreased CDS TE, are enriched for uORF-containing genes
and are involved in translation and mRNA stability. A) Scatterplot of Denr Kd-to-Wt ratio of mRNA
abundance vs. CDS translation efficiency (TE) for all expressed genes (n = 10516). Highlighted in orange are
genes with differential TE (detected by Xtail [Xiao et al., 2016], FDR < 0.1, n=240), the majority of which
showed a decreased TE in Denr Kd cells, in line with a role of DENR in efficient translation reinitiation. B)

uORF enrichment in DENR targets. Proportion of genes with translated uORFs transcriptome-wide compared
to that among the differential TE genes detected in (A). DENR targets showed an enrichment for translated
uORF-containing genes (p = 5.73e-4, Fisher test). C) Enrichment map for GO-Biological process, GO-Metabolic
function and Reactome functional categories of genes with differential TE. Only categories with an FDR < 0.05
in the GO analysis were considered. Node size is proportional to the number of genes associated with the GO
category, shading corresponds with the statistical significance, and edge width is proportional to the number of
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genes shared between functional categories.

Figure 3. Mutation of uORF start codons on selected targets relieves DENR dependance. A)

Representative examples of genes with differential TE. Panels show average CDS translation efficiency in Wt
(gray) and Denr Kd (red) cells. B) Denr Kd-to-Wt translation on the 5’UTR (brown) and on the CDS (grey) for
the same examples as in (A). DENR targets showed a decreased CDS TE (A) and an increased 5’UTR translation
concomitant with a reduced CDS translation in Denr -deficient cells. C) (Top) Schematic representation of the
dual luciferase reporter construct, where the 5’ UTR of the gene of interest – with the Wt or mutated uORF –
and first few codons of the CDS was cloned upstream of FL. (Bottom) Results of dual luciferase assay, where
influence of the 5’ UTR (Wt/mutant) on the expression of FL was measured in control and Denr knockdown cells,
and internally normalised to RL, expressed from the same bidirectional promoter. Note that, for all targets tested,
depletion of Denr reduced the F/R luciferase signal, indicating DENR dependance for efficient FL expression; and
mutation of the uORF start codon relieved the inhibition and partially abolished DENR dependance. For each 5’
UTR assayed, F/R signals were normalised to the scr-transduced non-mutated construct. Gray area correspond
to the background of the assay, reflecting Denr effects that were not due to the presence/absence of the 5’ UTR
of interest. Empty vector (“-”) contained only the vector-encoded 5’ UTR. Three additional constructs – not
detected as DENR targets – were used as negative controls.

Figure 4. uORF features predictive of translation efficiency regulation by DENR. A) Schematic
of the uORF features used as predictors for the modeling of CDS TE change. The number of uORFs, the start
codon and context, the presence of overlapping uORFs, the uORF length and GC content and the relative location
within the 5’UTR were considered. Distance to the 5’cap was computed for the first uORF, and distance to
the CDS start was quantified for the last uORF. B-J) Partial regression plots for the modeling of translation
efficiency fold change (Denr Kd vs. Wt) on each uORF feature. Indicated in blue are the coefficient of the slope
for the partial regression line and its significance level (t-test). Note that, both the response and, in several cases,
the predictor, are in log2 scale; thus the slopes of the partial regression models correspond to the log2 change in
TE FC when doubling the corresponding explanatory variable. The number of uORFs, the proportion of AUG
uORFs and the distance of the last uORF to the CDS start were the strongest predictors.

Figure 5. DENR-mediated reinitiation gives rise to CLOCK protein heterogeneity. A) Scatterplot
of Denr Kd-to-control transcript levels (RNA-seq) vs. footprint levels (RPF-seq), with circadian core clock genes
highlighted. Clock showed a decreased translation without changes in mRNA abundance. B) CDS translation
efficiency ratio between Denr Kd and control cells showed that Clock had a reduced TE upon Denr depletion.
C) Distribution of normalised RPF-seq (blue) and RNA-seq (orange) reads along the 5’ UTR and first 100 nt
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of Clock CDS, in control (top) and Denr -Kd (bottom) cells. Green shaded area indicates the AUG-initiated
uORFs; gray area corresponds to the annotated CDS; and brown are to the alternative CDS, in frame with the
annotated one. D) Quantification of relative translation ratio (Denr Kd-to-control) on both uORFs, and on the
CDS, showing increased uORF translation and reduced CDS translation in Denr -deficient cells. E) Quantification
of relative translation efficiency (Denr Kd-to-control) on both uORFs, and on the CDS showed higher TE on the
overlapping uORF (uORF2). F) (Top) Schematic representation of the dual luciferase reporter construct, where
Clock 5’ UTR and first 14 codons of the CDS (containing both the annotated and alternative start codons) were
cloned upstream of FL. (Bottom) Dual luciferase assay results for Clock Wt and mutants. Empty vector contained
only the vector-encoded 5’ UTR. FL signal was internally normalised to RL signal; all constructs and conditions
were first normalised to the empty vector/scr-shRNA, and all Clock mutant constructs were then renormalised to
Clock Wt/scr-shRNA. Signal from all Denr shRNA-transfected Clock constructs were also normalised to empty
vector/Denr -shRNA, to remove unspecific DENR effects.
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Supplementary figure legends
Supplementary Figure 1. Ribosome profiling in Denr knockdown NIH3T3 mouse fibroblasts.
A) Read length distribution for ribosome footprint (PPF-seq) and total mRNA (RNA-seq). Footprint length
peak was 29-30 nt, whereas RNA-seq reads showed a broader distribution, as expected. B) Read distribution
to transcript features. RPF-seq and RNA-seq compared to a distribution expected from the relative feature
size (gray). In both Denr-Kd and control cells, RPF-seq but not RNA-seq reads were depleted from 3’ UTRs
and enriched on the CDS. A significant amount of reads also mapped to 5’ UTRs. C) Metagene analysis of
ribosome’s A-site position relative to the start and stop positions. Read density at each position was average
across genes with a single protein-coding isoform, with a CDS RPF RPKM > 5 and longer than 400 nt (n =
3141). This analysis revealed the trinucleotide periodicity of RPF-seq, but not RNA-seq, reads. D) Tables of
Spearman correlation coefficients between samples for normalized CDS reads. On the right, one representative
example of normalised CDS reads correlation between replicate samples. E) RPKM values for CDS-mapping
RPF-seq read counts for Denr (left), Mcts1 (middle), and Eif2d (right). Each dot correspond to a sample and
replicate and error bars indicate mean±sd.

Supplementary Figure 2. Analyies of significant relative 5’ UTR translation. A) Histogram of
5’ UTR-to-CDS translation (from RPF-seq) between Denr Kd and control cells, for all genes as in Figure 1D
(gray). In blue, same distribution for genes with statistically significant change between conditions, as assessed
from pairwise comparisons (Wilcox test, FDR < 0.1). Although a global ribosome footprint redistribution to 5’
UTRs upon Denr knockdown is observed from the analysed genes, the difference was significant for 493 genes,
indicating that DENR affects the translational landscape of a subset of genes.

Supplementary Figure 3. Comparison of algorithms for differential translation efficiency analysis.
A) Venn diagram of differential TE genes detected by Xtail (n=240), RiboDiff (n=78), Riborex (n=41) or Babel
(n=30) with an FDR < 0.1. The analysis showed an accordance among the first three algorithms, with Xtail
detecting the largest number of significant cases. B) Scatterplot with marginal densities of average mRNA
abundance vs. TE fold change (Denr Kd/Wt), with differential TE genes highlighted for each algorithm. For
genes detected by several algorithms, the data-point is coloured according to the method detecting less genes;
however density lines correspond to the distribution of all detected cases. The majority of Xtail, RiboDiff and
Riborex detected genes showed a decreased TE in Denr deficient cells as expected, and spanned all levels of
expression, whereas Babel detected similar number of up- and downregulated TE genes and showed a bias for
lowly expressed genes. C) Volcano plot of differential TE genes detected by Xtail on the original data (n=240)
and on three condition-shuffled datasets. Sample permutation yielded nearly no significant genes, indicating
no/low false positive detection by Xtail.
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Supplementary figure 4. Analysis of differential TE genes. A) Proportion of translated uORF-
containing genes with non-overlapping uORFs only, overlapping uORFs only, or both, transcriptome-wide and
among DENR targets. The latter showed a depletion of overlapping uORFs and enrichment for non-overlapping
uORFs only-containing genes. B) Triplet periodicity of ribosome footprints within translated uORFs. Genes
containing a single uORF were included in the analysis (n = 1154 genes/uORFs) to avoid uORFs overlapping
to each other. C) Histogram of 5’UTR-to-CDS translation between Denr Kd and control cells, for all uORF-
containing genes (gray, n=3688) and for differential TE genes (orange, n=186). Genes with a minimum of 20
RPF-seq reads in the 5’UTR in 3/4 of samples were included for the analysis. D) Same as in (C) for RNA-seq
reads. Differential TE genes showed an increased relative 5’UTR translation, but equal transcript levels, in
Denr -deficient cells, that was higher than for the whole set of uORF-containing genes, suggestive of impaired
translation reinitiation among targets. E) Gene Ontology (GO) analysis for Biological process, Metabolic function
and Reactome functional categories of genes with differential TE. Bars show -log10 for categories with an FDR <
0.05.

Supplementary figure 5. Examples of differential TE genes. A) Representative examples of genes
with differential TE. Top panels show average CDS translation efficiency in Wt (gray) and Denr Kd (red) cells,
and bottom panels show Denr Kd-to-Wt translation on the 5’UTR (brown) and on the CDS (gray). DENR targets
showed a decreased CDS TE and an increased 5’UTR translation concomitant with a reduced CDS translation in
Denr -deficient cells. B) Normalized RPF (blue) and RNA (orange) read count distribution on several DENR
targets, in knockdown (top) and control (bottom) cells. Different blue and orange shadings correspond to each
replicate per condition. The first 1000 nt of the CDS are shown. Coloured boxes below profiles indicate translated
uORFs (red: AUG, blue: CUG, green: GUG, pink: UUG).

Supplementary figure 6. Regression analyses of TE regulation by DENR. A) Proportion of AUG,
CUG, GUG, and UUG uORFs detected as translated, untranslated and among differential TE genes. DENR
targets are enriched for translated AUG uORFs (p = 0.0044, Fisher test), indicating start codon specificity among
DENR-regulated transcripts. B) Density plot of the CDS TE ratio (Denr Kd/Wt) for genes containing only
AUG (n = 257), only CUG (n = 230), only GUG (n = 153), or only UUG (n = 59) uORFs. P-values indicate
wilcoxon test results for the difference between each distribution and that of genes without uORFs (or with
untranslated uORFs, n = 4899). Although the number of genes per category is low, this analysis showed that
AUG-containing genes have the strongest CDS TE regulatory effect upon Denr knockdown. C) Scatterplot
of 5’ UTR length vs. the distance from the last uORF stop codon to the CDS start for all uORF-containing
genes used for the regression model. No strong correlation was quantified between the two variables, ruling out
that the correlation of the intercistronic distance with the magnitude of DENR regulation was due to longer 5’
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UTRs. D) Scatterplot of 5’ UTR length vs. the distance from the 5’ cap to the first uORF start codon for all
uORF-containing genes used for the regression model. No strong correlation was quantified between the two
variables, but correlation was higher than in (C). E) Coefficients for the logistic regression model, with “detected
as differential TE, TRUE/FALSE” as binary response. Coefficients thus indicate the log odds change for being
detected as differential TE (by Xtail) per unit change in the predictor. Same genes as for figure 3 were used.
Asterisks indicate coefficient estimates significance as: p < 0.05 (*), p < 0.01 (**), p < 0.001 (***).

Supplementary figure 7. Clock as DENR target. A) Bar graph of the average RPKM ratio (Denr
Kd-to-control) for the main circadian core clock genes, at the level of mRNA abundance (dark shadings) and
footprint abundance (light shadings). B) Scatterplot of Denr Kd-to-control transcript levels (RNA-seq) vs. CDS
translation efficiency, with circadian core clock genes highlighted. C) Distribution of normalised RPF-seq (blue)
and RNA-seq (orange) reads along the Clock transcript, in control (top) and Denr -Kd (bottom) cells. Green
shaded area indicates the AUG-initiated uORFs; gray area corresponds to the annotated CDS. Only the first 500
nt of the 3’ UTR are shown for better visualisation. D) Schematic representation of the Clock Wt and mutants
tested for effect on CLOCK synthesis and DENR dependance. Clock Wt contains the whole 5’ UTR and first 14
aminoacids of the CDS. All other mutants tested were combinations of these.

Supplementary figure 8. Clock ribosome profiling data from published studies. All available data
from initiating and elongating ribosome profiling studies, gathered from GWIPS-viz [Michel et al., 2014]. An
overview of the whole Clock transcript and a zoom over the CDS start is shown, where reads mapping on the
overlapping uORF and annotated and alternative CDS starts are visualised. Both human (top) and mouse
(bottom) data are displayed. Initiating ribosomes can be seen at the start of the uORF and alternative CDS start,
as well as good uORF coverage from elongating ribosomes.
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