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Abstract
Objective. To decipher brain network dynamic remodeling from electroencephalography (EEG)
during a complex postural control (PC) task combining virtual reality and a moving platform.
Approach. EEG (64 electrodes) data from 158 healthy subjects were acquired. The experiment is
divided into several phases, and visual and motor stimulation is applied progressively. We
combined advanced source-space EEG networks with clustering algorithms to decipher the brain
networks states (BNSs) that occurred during the task.Main results. The results show that BNS
distribution describes the different phases of the experiment with specific transitions between
visual, motor, salience, and default mode networks coherently. We also showed that age is a key
factor that affects the dynamic transition of BNSs in a healthy cohort. Significance. This study
validates an innovative approach, based on a robust methodology and a consequent cohort, to
quantify the brain networks dynamics in the BioVRSea paradigm. This work is an important step
toward a quantitative evaluation of brain activities during PC and could lay the foundation for
developing brain-based biomarkers of PC-related disorders.
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AUD: auditory network
BNS: brain network state
DAN: dorsal attention network
DMN: default mode network
EEG: electroencephalography
ERP: event-related potential
GEV: global explained variance
GFP: global field power
GMD: global map dissimilarity
MOT: motor network
MS: motion sickness

MSP: motion sickness prone
MSS: motion sickness symptoms
MSSQ: motion sickness susceptibility
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NMSP: not motion sickness prone
PC: postural control
PLV: phase-locking value
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1. Introduction

The role of postural control (PC) is crucial in daily
life. Maintaining upright balance during postural
tasks, gait and orientation is demanding and relies
on PC (Massion 1994). PC is a complex mechan-
ism based on the interaction of dynamic sensorimo-
tor processes (Horak 2006). It is a central nervous
system feedback control system, where neural activ-
ity is essential to communicate with muscle activity
and physiological as well as visceral autonomic con-
trol systems to anticipate and react to gravity, move-
ments, and constantly changing posture (Sherrington
1911, Ivanenko andGurfinkel 2018). Thus, any events
provoking a dysfunction of neural activity will dis-
turb PC. Studying PC could help diagnose, or at
least differentiate healthy behavior from a patholo-
gical one, such as neurodegenerative disease (Buckley
et al 2019). This is why the identifying quantitat-
ive metrics regarding PC, on the neurophysiological
level, is highly interesting. However, even though
neural circuitry is prominent in ensuring a steady
PC, the underlying neural mechanism is still largely
unknown.

Using neuroimaging techniques such as fMRI or
functional near-infrared spectroscopy, several stud-
ies highlighted the role of brain activity in PC studies
(Mirelman et al 2014, Taube et al 2015), to study the
impact of brain traumatic injury on balance perform-
ance for instance (Caeyenberghs et al 2012). The same
approach has been used to study these injuries with
electroencephalography (EEG) (ShenoyHandiru et al
2021). EEG proved to be of high interest in PC stud-
ies during the control of balance to specific motor
stimulation (Solis-Escalante et al 2019) or to decipher
adaptation and habituation phenomena (Edmunds
et al 2019, Barollo et al 2020). Compared to other
imaging techniques, EEG is more flexible: it does not
require licensed training, it is inexpensive, but above
all, it enables mobile experiment setups and provides
a very high temporal accuracy (Cohen 2011), allow-
ing for tracking fast changes of cortical brain activ-
ity. For those reasons, EEG is very convenient for PC
experiments, where brain activity can be easily recor-
ded while a subject is undergoing different stimula-
tions challenging its balance. Based on EEG analysis,
it has been shown that spectral power extracted from
the different frequency bands of the brain is an indic-
ator of cerebral cortex involvement during PC tasks
(Hülsdünker et al 2015) or to differentiate a healthy
behavior from a pathological one (Thompson et al
2005). Other studies used evoked potentials to high-
light the correlation between cortical brain activation
and balance related tasks (Little andWoollacott 2015,
Goel et al 2018). Yet, more advanced techniques using
mathematical tools are built to deepen the analysis
and identify more accurate metrics.

An innovative methodology based on graph the-
ory has been emerging recently and has shown
encouraging results. Brain functional connectivity
uses the EEG time series at the scalp level to recon-
struct brain sources and compute brain networks. It,
therefore, studies the interplay between brain regions
as well as the strength of the connections. Its robust-
ness and usefulness have been observed inmany stud-
ies (Hassan et al 2014, Hassan and Wendling 2018)
and already showed promising results in terms of PC
analysis (Shenoy Handiru et al 2021, Barollo et al
2022). Brain network analysis helps to identify the
functional regions involved during a task, thus, the
cognitive processes involved. Previous works (Shirer
et al 2012) observed specific networks patterns dur-
ing common tasks (e.g. resting state, visual, auditory
tasks). The identification of these patterns and the
associated hubs involved during those tasks set the
foundation of resting state networks (RSN). Comput-
ing brain networks from EEG and comparing their
metrics to the known RS, is a concrete application of
brain functional connectivity to decipher functional
brain response to dynamic tasks. However, for now,
the functional connectivity associatedwith EEG inPC
did not fully exploit the high temporal resolution of
this measuring technique.

Based on previous studies (Lehmann 1971,
Lehmann et al 1998), the analysis of EEG time series
showed voltage topographies remain stable for a
period of around 80–120 ms. Those stable periods
have been mentioned as functional microstates. The
study of microstates helped to comprehend brain
states and to characterize brain functions in sev-
eral studies (Khanna et al 2015, Michel and Koenig
2018). More and more tools are available to pro-
cess and analyze microstates (Michel and Koenig
2018, Poulsen et al 2018). During dynamic tasks, the
review of microstates is a promising tool for decod-
ing brain cortical remodeling. From this aspect, we
are interested in studying the dynamicity of brain
networks (that are now mostly limited in time)
based on the method developed to compute EEG
microstates.

The current work will introduce an innovat-
ive workflow, combining the two approaches men-
tioned above. From the EEG time series, sequences
of brain connectivity matrices and dynamic brain
networks will be computed. Then, we will identify
states, by clustering network distributions, mainly
due to stable network configurations over time. These
resulting states will be called brain network states
(BNSs). Studying BNS evolution and characteristics
will help to validate this new methodology and open
new perspectives on the appreciation of brain func-
tion during dynamic tasks. This approach has already
been used with a few subjects at rest (Britz et al
2010, Yuan et al 2012) or more recently developed

2



J. Neural Eng. 20 (2023) 026030 R Aubonnet et al

Figure 1. Experimental setup, acquisition workflow.

in the study of Parkinson’s disease (Duprez et al
2022). Yet, the spatiotemporal dynamics of functional
brain networks during complex PC tasks are still
unclear.

As a model PC, we have recently developed the
‘BioVRSea’ (figure 1). This novel measurement setup
consists of a moving platform, a virtual reality (VR)
simulation mimicking the behavior of a boat in the
sea, and several biosignals measurements. BioVRSea
paradigm is a dynamic PC task where the stimulation
is modulated through time. It already showed prom-
ising results in terms of deciphering PC responses,
for instance with concussion (Jacob et al 2022), and
has been used as a first step toward the identification
of markers of motion sickness (Recenti et al 2021).
Here, our objective is to decipher the spatiotemporal
dynamics of brain networks during the BioVRSea
paradigm. We believe that this approach will allow us
to observe the dynamic remodeling of the brain dur-
ing a complex PC task by watching the dynamic net-
work evolution through the experiment. To do so, we
use advanced EEG analysis consisting of construct-
ing the time-varying functional brain networks at the
source level. The k-means clustering algorithm was
then used to segment these time-varying connectiv-
ity matrices into a set of BNS. Applied to a relatively
large sample size (N = 158) of healthy participants,
our results showed that this data-driven segmenta-
tion matches very well with different transitions dur-
ing the task.

Thework presented in this studywould be the first
to show spatiotemporal brain network dynamics in
158 individuals.

2. Material andmethods

2.1. Participants
Participants were recruited through snowball
sampling. Written information about the study was
provided, and all the participants had to sign a writ-
ten informed consent before starting the acquisition
procedure. At the time of the study, 158 individuals
(93 women, 65 men, age range = 19–72 years old,
mean age = 32.9 years old, std age = 13.2 years old)
completed the experiment.

2.2. Questionnaire
Before the acquisition, the participants were asked
to answer a Motion Sickness Susceptibility Ques-
tionnaire (MSSQ) based on the adult questionnaire
proposed by Golding (Golding 2006). Subsequently,
the participants had to fill out a motion sickness
symptoms questionnaire before and after the exper-
iment. This questionnaire evaluates 10 motion sick-
ness symptoms on a score from 0 to 3: General
discomfort, Fatigue, Headache, Eye strain, Diffi-
culty focusing or concentrating, Increased salivation,
Sweating, Nausea, Blurred vision, Dizziness, or ver-
tigo. From that information, two scores were calcu-
lated, the MSSQ score and the symptoms score. The
MSSQ score is calculated by using the same formula
explicated in Golding. This MSSQ is composed of 9
items (scores from 0 to 3), with a maximum score of
27. The symptoms questionnaire score is calculated
by subtracting the average of the symptoms before
the experiment from the average of the symptoms
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Figure 2. Data processing workflow. From the EEG time-series, ROIs are reconstructed. The functional connectivity between
those ROIs is computed. Then, BNS are segmented at the group level using clustering algorithm. Graph theory metrics are
extracted from the network to quantify and analyze their functions. Then, the segmentation is studied at the subject level to
investigate the prevalence of each BNS.

after the experiment, to obtain a final score between
0 and 3.

2.3. Acquisition
The acquisition procedure is the same one that has
been described in Jacob et al (2022) and Aubonnet
et al (2022). Before the acquisition started, the sub-
ject was equipped with a wet 64-electrode EEG cap
(Sampling frequency 4096 Hz, ANTNeuro, Hengelo,
The Netherlands). The participant was then asked to
step onto the platform. The subjects had to stand
quietly on the platform with their hands by their side
observing amountain view for 1min 45 s (the last 60 s
of this step were used as a baseline). Then, the scene in
theVR goggles would change, with awhite screen pre-
paring for the sea simulation (15 s). The participants
were instructed to stand quietly with their hands by
their sides for the first 40 s of the sea simulation.
There was no platform movement in this part of the
experiment, called task PRE. After 40 s of quiet stand-
ing watching the sea simulation, the participant was
instructed to hold onto the bars in front of them. The
platform then began a synchronized movement with
the sea scene in the VR goggles, with 25%, 50%, and
75% of maximal wave amplitude. In this central part,
each segment lasted 40 s and the participant held the
bars of the platform while continuing to observe the
sea simulation. Finally, the platform stopped moving
and the participant was asked to remove their hands
from the bars and attempt to stand quietly with their
hands by their side for the final 40 s of the experiment.
The participant still observed the sea scene for the
final 40 s. This is called the POST phase of the experi-
ment; it is performed identically to the PRE phase but
after the participant has performedmovements in the

Table 1.Mean and standard deviation number of IC components
rejected and interpolated channels.

Mean
Standard
deviation

IC components rejected 32 10
Channels interpolated 0.2 1

central part of the procedure. The total recording time
lasts around 318 s per subject. Figure 2 sums up the
data processing workflow.

2.4. Data preprocessing
The EEG was recorded using a 64-electrode channel
system. Data pre-processing and analysis were per-
formed with Brainstorm (Tadel et al 2011) and Mat-
lab2021b (MathWorks, Inc. Natick, 158 Massachu-
setts, USA), using the Automagic toolbox (Pedroni
et al 2019). The preprocessing pipeline was applied
per subject, on their whole recording. The data were
resampled to 1024 Hz. The data were notch filtered at
50Hz. A high pass and low pass filter were set respect-
ively to 1 and 45 Hz. Automagic was used to auto-
matically pre-process every dataset, with a manual
inspection at the end. The ICAMARA algorithm was
used (Winkler et al 2011, 2014). The residual bad
channels were eliminated, identifying the ones with
a standard deviation exceeding 20 µV. Finally, bad
electrodes were interpolated. Each subject requiring
interpolation ofmore than 15%of the total amount of
electrodes was rejected, leading to 158 complete EEG
recordings lasting around 318 s. Table 1 sums up the
information of the artifactual IC components and bad
channels.
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Table 2. Summary of variables describing matrices information.

Variable Description Value

N Number of dynamic connectivity
matrices

478

n Dimension of dynamic connectivity
matrices

56

Ai,j Element of one connectivity matrix —

2.5. Data processing—Dynamic network
computation
In the two following sections, several variables
are expressed to describe the matrices informa-
tion. Table 2 sums up the listed variables and their
description.

Brain networks were constructed from the
pre-processed EEG signals, using an approach
called ‘dense-EEG source connectivity’, which was
developed and used in previous studies (Hassan et al
2014, Kabbara et al 2017, Hassan andWendling 2018,
Duprez et al 2022). This method aims to solve the
inverse problem and reconstruct brain sources from
EEG time-series. The 45 first seconds of the acquisi-
tion have been used to constitute the noise covariance
matrix, whereas the sources will be reconstructed
from the 273 remaining seconds. Then, the weighted
minimum-norm estimation (wMNE) method was
used to obtain the source distribution (Hassan et al
2014). Here, we used the Boundary Element Method
head model fitted to the ICBM MRI template, com-
posed of three layers (scalp, outer skull and inner
skull), using the OpenMEEG plugin from the Brain-
storm toolbox. The model’s morphology was based
on a standard head model template provided by
BrainStorm (Tadel et al 2011), and has shown pertin-
ent results in previous studies (Edmunds et al 2019,
Kabbara et al 2021, Barollo et al 2022).

Based on the Desikan-Killiany atlas (Desikan et al
2006), 56 region of interest (ROI) were estimated.
The list of the ROI is provided in the supplementary
material. Finally, the connectivity matrices between
these 56 ROIs were computed, for the alpha band (8–
13 Hz), using the phase-locking value (PLV), a slid-
ing window approach, with a window size of six cycles
(Lachaux et al 2000), resulting in a window of 571ms.
It leads to N = 478 matrices per subject, (corres-
ponding to the 273 s of recordings), of dimensions
56× 56, where each element Ai,j of a matrix repres-
ents the weight of the connection from the node i to
the node j. This element is called edge.

2.6. Data processing—BNS identification
From this final dataset, BNSs segmentation was per-
formed using clustering algorithms to identify stable
periods over time. The analysis was done based on
some functions developed in the EEGLab Micro-
state toolbox (Poulsen et al 2018). This toolbox is
designed for EEG voltage topography, but we adapted
the pipeline to use it with functional brain network as

an input. Since the n× n connectivitymatrix (n= 56)
is symmetric, we vectorized it in a (n ∗ (n− 1)/2) =
1540 elements vector, leading a total of 158 matrices
of size 478 × 1540. Those matrices have been aver-
aged across the 158 subjects, to obtain a final aver-
aged matrix of size 478 × 1540, that will be used as
the input for the state segmentation. Then, the mod-
ified k-means algorithm (Pascual-Marqui et al 1995)
was used as a clustering algorithm, and the BNS were
sorted according to global explained variance (GEV)
(Murray et al 2008, Poulsen et al 2018). We tested the
segmentation from 2 to 20 BNS to identify the right
number of BNS. The number of random initializa-
tions was set at 500, and themax number of iterations
was set at 1000, with a default convergence threshold
of 10−6. To ensure an optimal segmentation, the pro-
cess has been rerun several times (in our case four
times). It has been compared qualitatively to select
the most suited amongst the ones presenting good
scores in validation criteria, such asGEV (Murray et al
2008), cross-validation (Pascual-Marqui et al 1995),
as detailed in Poulsen et al (2018). After the segmenta-
tion, a smoothing was performed to remove the small
peaks or unstable states. All states being present in less
than 20 consecutivematriceswere changed to the next
most likely BNS, based on global map dissimilarity
(GMD) (Murray et al 2008).

2.7. Data processing—BNSs and resting-states
network correspondence
Each segmented state was then computed from a vec-
tor to a 56× 56 symmetricmatrix. This represents the
functional network associated with the BNS. Based
on the studies published by Kabbara et al (2017),
and Shirer et al (2012), we associated each of the
56 nodes with seven RSN: DMN, DAN, SAN, MOT,
AUD, VIS, and Other. The affiliation of each node
and RSN is summed up in the supplementary mater-
ial. Then, using BrainConnectivity Toolbox (Rubinov
and Sporns 2010), the strength (sum of weights of
each link connected to the node) of each node was
computed. We then computed the strength of each
RSN by summing the values of each node associated
with this RSN and dividing it by the number of nodes
belonging to the RSN. To identify the dominant RSN
for each BNS, we elicited those with a value super-
ior to the sum of the average and standard deviation
of the seven RSN strengths. For visualization pur-
poses, only the nodes with a strength >0.1 were dis-
played, using BrainNetViewer (Xia et al 2013). Each
ROI defined from the Desikan-Killiany atlas is affili-
ated with the corresponding RSN.

2.8. Data processing—Quantification
After the BNS segmentation was performed on the
averaged matrix, we returned to the subject level by
performing a backfitting. Each sample is associated
with the most similar BNS, based on GMD (Murray
et al 2008, Poulsen et al 2018). As a result, we have
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a BNS distribution for each subject. To analyze it,
the percentage of BNS repartition per subject is com-
puted for each of the 478 matrices. Moreover, two
metrics are computed: first, the transition probabilit-
ies matrix, revealing the transition probabilities from
one state to another, and the occurrence, which indic-
ates the average number of times per second a BNS is
dominant (Poulsen et al 2018).

2.9. Data processing—Relation with questionnaire
or age
The relationship between metrics (global transition
matrix, global occurrence) has been investigated with
age groups and questionnaire results groups, dividing
them with the following criteria:

• Age: 30 youngest (age range = 19–22 years old,
mean age= 21.2 years old, std age= 0.7 years old)
compared to the 30 oldest individuals (age range
= 48–72 years old, mean age = 56.1 years old, std
age= 6 years old)

• MSSQ: 15 highest scores against 15 lowest
• Motion sickness symptoms (MSS): 15 highest
scores against 15 lowest

For the age, we chose the 20% top and 20% lowest
to observe the age difference impact and have enough
subjects in each group to draw a relevant statistical
analysis. For the MSSQ and MSS, we chose 10% of
the top and lowest scores, to remain coherent in the
groups, and not include people that were not feeling
sick or prone. Even though the number of individuals
is not high, it is enough to perform preliminary stat-
istical analysis, and therefore observe a trend in the
results.

2.10. Statistics
For the relationship between age or MS related ques-
tionnaire, a Wilcoxon rank sum test (α = 0.05) has
been performed. If a parameter was observed as stat-
istically significant, it was then corrected for multiple
comparisons using a false discovery rate (Benjamini
and Hochberg 1995).

3. Results

3.1. BNS segmentation
The functional brain networks were computed over
the entire experiment, in the alpha band—due to its
significance in previous connectivity and PC stud-
ies (Aubonnet et al 2022, Barollo et al 2022)—using
the EEG source connectivity method (Hassan et al
2014). Briefly, we estimated the dynamics of brain
sources, and then we computed the statistical coup-
ling between brain regional time series (N = 56). This
was done using a sliding-window approach (window
size of six cycles according to Lachaux et al (Lachaux
et al 2000). This yields 478 connectivity matrices for
the entire task. Then, using the k-means algorithm,

we wanted to cluster those matrices into BNSs, a set
of networks that dominate over time. The BNS seg-
mentation was performed on all the subjects’ aver-
aged dynamic networks. As detailed in the Material
andMethods section, the BNS segmentation has been
repeated several times. A qualitative inspection has
been done in each of them, to result in a final number
of clusters k= 5.

The segmentation leads to five BNS during this
PC paradigm (figure 3). The correspondence of each
BNS to a functional network (according to previous
studies (Shirer et al 2012, Kabbara et al 2017) is illus-
trated in figure 4. The baseline is composed of BNS
4 (default mode network—DMN-), BNS 1 (salience
network -SAN-), and BNS 5 (SAN). BNS 3 (audit-
ory and motor networks) appears slightly before the
transition phase, until slightly after the PRE phase.
Then BNS 1 appears again until the end of the PRE
phase. BNS 3 is present for the whole 25 and 50%
tasks, and switches to BNS 1 right before the 75% task.
A bit before the POST phase, BNS 1 switches to BNS
2 (Visual network -VIS-), until a third of the POST
phase, where it switches to BNS 5.

3.2. Quantification
Following this global average segmentation, we
investigated the presence of each state at the indi-
vidual subject’s level. This process is called backfitting
and consists of associating with each EEG sample the
state with which it is the most similar. The backfit-
ting allows us to compute several metrics to quantify,
for instance, the transition probability between one
state to another and the occurrence of each state per
phase of the experiment. Figure 5(A) shows the BNS
repartition (in %) after the backfitting. The men-
tioned metrics completes it, e.g. in figure 5(B), trans-
ition matrix probability from one state to another
(where the element Ai,j represents the probability of
switching from state i to state j), and in figure 5(C),
the global occurrence of each BNS which indicates
the average number of times per second a BNS is
dominant.

The BNS 1 (salience network) is the most present
state, being there in around 35% of the individu-
als during the whole experiment. The second most
present states are BNS 4 (default mode network) and
BNS 2 with around 15%–20% presence, then BNS
3 and BNS 5, around 10%. The highest transitions
(figure 5(B)) are from all states to BNS1, the state
with the highest occurrence in every phase, followed
by BNS 4.

3.3. Association between network states and
questionnaire and age
Here, we investigate the possible correlation between
the brain network dynamics metrics (transition mat-
rix and occurrence) as described above and some of
the participants’ information such as age and motion

6



J. Neural Eng. 20 (2023) 026030 R Aubonnet et al

Figure 3. Dynamic BNS segmentation over the fulltime experiment. This figure shows the results of the BNS segmentation on the
experiment, displaying their distribution over the time. Five BNS have been identified, and their respective networks are shown
below the distribution.

Figure 4. Affiliation of each BNS to the closest RSN. This figure shows the affiliation each BNS to the closest RSN, based on the
RSN strength. A histogram for each BNS is presenting the strength of the seven different RSN. To identify the dominant RSN for
each BNS, we elicited those with a value superior to the sum of the average and standard deviation of the seven RSN strengths.
BNS 1 highest strength is for the SAN network (1.45). BNS 2 highest strength is for the VIS network (1.44). BNS 3 highest
strength is for the MOT and AUD network (1.44). BNS 4 highest strength is for the DMN network (1.42). BNS 5 highest strength
is for the SAN network (1.41).
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Figure 5. BNS backfitting distribution, and their associated transition matrix and occurrence. Panel (A) shows the backfitting
distribution, the x-axis represents the time of the experiment, and the y-axis the percentage of the subjects where the BNS is
present. Panel (B) shows the transition matrix probability from one state to another (where the element Ai,j represents the
probability to switch from state i to state (j). Panel (C) shows the global occurrence of each BNS.

Figure 6. Correlation results between BNS metrics and age. Panel (A) shows the significant transition with the associated p-value.
Panel (B) shows the boxplot of the significant transition probability value for each group.

sickness assessments (as stated in section 2.9). No sig-
nificant differences were observed between subjects
with highMSSQ scores compared to subjects with low
MSSQ scores. The same outcome is observed regard-
ing the MSS scores. However, significant differences

were observed between the two age groups, regard-
ing the transition probability from BNS 5 to BNS 1
(figure 6(A)). Figure 6(B) shows a boxplot displaying
the significant transition probability value for each
group.
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It can be seen that most of the young cohort has
no transition from state 5 to 1, whereas the transition
is more present for the old group.

4. Discussion

The results from this study highlight a dynamic
remodeling of the brain during a complex PC task. A
novel methodology has been developed using micro-
state segmentation at the brain network level.

4.1. Group level
A BNS segmentation has been performed from the
average dynamic functional brain networks. The first
observation is the fact the BNS distribution is rep-
resentative of the experimental phases. Indeed, for
each phase change, a state transition happens slightly
before or after. The only exception is for the trans-
ition between 25% and 50%phases, which can be eas-
ily explained by the fact that there is no difference
in stimulation between the tasks, only a higher amp-
litude of movement. Going deeper into the analysis,
we break down each phase and observe the reparti-
tion of the BNS. It can be noted that only two states
appear only one time in the distribution: BNS 4, at
the beginning of the baseline, and BNS 2, between
75% and POST. From the results in figure 4, BNS 4
primary function is linked with DMN. The activa-
tion of this network at the baseline is coherent with
the paradigm phase: the baseline starts when the sub-
ject is already standing on the platform with the same
view for around aminute. DMN is a state that is activ-
ated when the subject is in the resting-state mode
and the focus is on the internal mental state pro-
cess (Andrews-Hanna et al 2010, Raichle 2015), or
mind wandering (Mason et al 2007), and is deactiv-
ated when a cognitive task starts.

BNS 2 primary function is linked with VIS. This
state occurs at the end of 75% and the beginning of
POST, so when the platform is moving at the max-
imal amplitude and then stopsmoving, while the sub-
ject is always seeing the sea simulation inside the VR
headset. The subjectmustmaintain its balance during
this phase, but its PC is not challenged by any motion
stimulus, only visual. The presence of a visual net-
work state during this period testifies to the cognitive
involvement into this task, as its prominence during
visual stimulations experiments has been highlighted
in previous works (Haynes and Rees 2005, Kamitani
and Tong 2005).

BNS5 appears two times, at the end of baseline
and the end of POST. Its primary function is
linked with SAN. BNS 1 appears in the middle of
the baseline, in the whole PRE phase, and in the
whole 75% phase. Its primary function is linked
with SAN. Studies showed that SAN interacts with
DMN and other executive networks (Menon 2015).
This explains the transition from state 4, DMN, to

state 1 from state 1 to state 5 in the baseline, as
during baseline, the brain is at rest and preparing
for what comes next. Moreover, SAN is also more
presents when the brain needs to be aware of what
it should focus on to move, quickly between inform-
ation gathering, decision planning, and execution
(Uddin 2015). State 1 is present shortly after the PRE
starts, which is the first actual PC disturbance: the
subject needs to maintain equilibrium even though
the platform is not moving, due to the visual stim-
ulation. It needs to adapt and understand where the
mismatch between what is seen and what is felt comes
from. This also occurs with BNS 5 in the POST phase.
Then, BNS 1 is present for the whole 75%, while the
platform is still in motion, after already moving for
more than a minute. We can hypothesize that the
motor cortex is less activated due to the habituation
of the phenomenon and that the SAN is dominant in
that case to anticipate the upcoming task. To differ-
entiate the 2 BNS, we can look at their second most
dominant RSN. For BNS 1, the second RSN is the
DAN, which is involved during passive viewing tasks
(Bray et al 2015), and in general a focus on a par-
ticular task, such as selective attention (Szczepanski
et al 2013). This has been experimented during the
75% task, where the subject responds to the platform
movements and focuses on a specific point of refer-
ence in the VR environment. For BNS 5, the second
BNS is Other, which corresponds to the 7 other RSN
identified by Shirer et al (Shirer et al 2012), but is
not illustrated in this study. However, the strength
of the other RSNs is in the same range. This BNS
does not have a second dominant RSN. This would
explain that it follows BNS1 in the baseline, as they are
both salience and prepared to switch to another state.
Moreover, this BNS is also at the end of the experi-
ment, in the second half of the POST phase, showing
that the subject is focused on information gathering,
and decisionmaking tomaintain the balance, but also
knowing that the experiment is coming to its term.
Then the salient network helps with the anticipation
of the end of the task.

BNS 3 is present during the whole Transition
phase, and the whole 25% and 50% phases. Its
primary function is linked to AUD andMOT. During
the Transition phase, the screen turns white and the
sound of the waves and environment appears, while
it is completely silent during the baseline. Since there
is no motion or visual stimulation, the presence of a
dominant auditory network is coherent, as previous
studies identified this network to be more activated
during audio stimulation (Laird et al 2011). Secondly,
state 3 is also present during the whole 25% and 50%
tasks, so when the platform activates and starts mov-
ing at different intensities. During this period, we
ask the subject to put his hands on the bar. Those
phases of the experiment are based on motion stim-
ulation, and the dominance of the motor network is
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perfectly illustrating this point, as the motor network
is primarily solicited during tasks requiring move-
ments (Seidler et al 2015).

Overall, a change in connectivity or BNS is
observed when a change in the perturbation is
observed. This is particularly striking for the changes
from the Transition phase to the PRE phase, which
is the start of a visual-only perturbation onset, and
then from the PRE phase to the 25% phase, where the
perturbation becomes mostly motor. This is in line
with results observed in the literature, where visual
perturbation showed changes in alpha connectiv-
ity during PC tasks, mostly during baseline stand-
ing (Peterson and Ferris 2019). It also confirms the
involvement of the alpha band in PC tasks coupled
with visually induced stimulation, as observed in
recent studies (Chang et al 2016, Aubonnet et al 2022,
Ma et al 2022).

4.2. Subject level
The global BNS segmentation based on the alpha
band network shows a clear dynamic brain remod-
eling during the experimental protocol. Thus, it is
interesting to observe the results at a subject-level,
and determine if a similar trend can be observed. The
backfitting results reveal a clear dominance of BNS
1 during the whole experiment. This BNS is asso-
ciated with a salience network, which is known to
interact between the cognition of DMN and the exec-
utive network (Menon 2015). Since our experiment
is dynamically composed of different stimulations
(visual, motor), the salience network plays a key role
in catching the attention of where the brain should
focus, and facilitating the transition between inform-
ation gathering, decision planning, and internal focus
(Uddin 2015). This is supported by the average trans-
ition matrix. It can indeed be seen that the highest
transitions occur from state 1 towards every state, and
from states 2 and 4 to state 1, confirming the role
of BNS 1 in regulating and orientating brain cortical
activity depending on the stimulation.

According to the occurrence metrics, after BNS
1, BNS 2 and 4 have a similar presence during the
whole experiment. As the visual stimulation is con-
stant during the experiment, through the VR head-
set, it is then expected to see an average occurrence
of state 2. Regarding state 4, since the DMN testi-
fies to internal focus and cognition (Andrews-Hanna
et al 2010, Raichle 2015), it can be hypothesized that
a good part of the participants was not challenged a
lot during the simulation, and therefore did not need
to be involved a big part of their cognition during the
experiment.

The analysis of the whole cohort gives prom-
ising results. The BNS segmentation reveals an expli-
cit remodeling of the brain during this dynamic PC
task. The prevalence of RSN depending on the phase
shows the pertinence of this approach.

4.3. Subgroups analysis
This study also aimed to study the potential differ-
ences in the cognitive behavior between two groups
based on different criteria: motion sickness suscept-
ibility and age.

On the age aspect, significance is observed in the
transition probabilities. The transition from BNS 5 to
BNS 1 is significantly higher in the 30 oldest people
than in the 30 youngest. The two states have a salience
network as the most dominant RSN, so they princip-
ally have the same primary function. However, the
second most dominant RSN is DAN for BNS 1 and
Other for BNS 5. Thus, since DAN is activated when
there is a particular focus on the task, we can speculate
that the oldest people, while their salience network
is activated, have increased activation of the atten-
tional network, as they need more attention to the
task and might suffer more from the experiment, due
to the age-related decline in PC, and a need of increas-
ing attention to maintain balance (Maki and McIlroy
1996).

4.4. Methodological considerations
4.4.1. Network reconstruction methods
To reconstruct brain connectivity matrices, the com-
bination of wMNE and PLV has been used, as shown
in the literature to be very efficient in precisely identi-
fying cortical brain networks from scalp EEG dur-
ing cognitive activity (Hassan and Wendling 2018).
We acknowledge that PLV is a measure that is more
sensitive to leakage. However, although this is not a
perfect form of control, we used source reconstruc-
tion before estimating PLV. Also, although zero-lag
methods (such as WPLI) help in this matter, they
can also remove true zero-lag connectivity which can
be present and even hold an important place in the
data (Roelfsema et al 1997, Palva and Palva 2012,
Viriyopase et al 2012, Gollo et al 2014, Finger et al
2016). We believe there is no perfect solution for this
specific matter. Still, we chose to keep such poten-
tial zero-lag connections, especially because recent
work from our lab showed good accuracy in source
connectivity using the wMNE-PLV combination in a
simulation study (Allouch et al 2022). However, we
believe that it does not affect the approach presented
in this paper, i.e. the combination of functional con-
nectivity and microstate segmentation.

4.4.2. Clustering algorithm
The modified k-means algorithm used to cluster the
BNS is stochastic, meaning that it will give different
results every time it is run. However, it should con-
verge to an optimal solution, thanks to the settings
used. In our study, we are setting the algorithm to
500 restarts and 1000 iterations, with a converging
threshold of 10-6, which is sufficient to obtain a reli-
able segmentation.
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Regarding the use of GEV andGMD for BNS sort-
ing and assignation, it is the gold standard measure
for EEG voltage time series microstates segmentation
(Murray et al 2008). It relies on global field power
(GFP), representing the standard deviation across all
electrodes. Since our approach is based on dynamic
connectivity matrices computation, we believe that
the use of GMD is pertinent, as our input data can
be assimilated to EEG times series (in our case, 478
matrices of 1540 elements each). Therefore, GFP can
be calculated across all the elements, and GMD can
be computed for our brain state segmentation.

Concerning the selection of the optimal num-
ber of clusters, as stated by Poulsen et al (2018),
there is no unique valid answer, because many
clusters can describe the data. Even though differ-
ent criteria exist, a final qualitative decision is still
required to define the number of clusters, also based
on the physiological coherence of the data. Our
work is empirical, and the resulting states segment-
ation obtained from the modified k-means algorithm
clustered our data into five BNSs. This segmentation
adequately describes the different phases of the exper-
imental protocol, with a suitable functional network
definition.

4.4.3. Variability of the results
In this work, we selected the modified k-means clus-
tering as it is the gold-standard in the segmentation
of EEG-based states. Nevertheless, as for other meth-
odological choices, there is a place for high analytical
variability. Here we did not aim to analyze this ana-
lytical variability related to the clustering algorithms.
Some other standard algorithms such as the global k-
means (Likas et al 2003) are not adapted to our data
due to the ratio between the higher number of chan-
nels compared to the number of samples, leading to
no satisfactory clusters.

The use of a stochastic approach used in the paper
is a limitation to the method; however, the modified
k-means approach has been proven to be an efficient
approach, and especially adapted to EEG microstate
segmentation.

We are confident that a stochastic approach is
still valid to cluster connectivity data, as several stud-
ies used k-means algorithm to identify functional
connectivity staters based on fMRI data (Allen et al
2014, Calhoun et al 2014). Indeed, the use of a very
high number of restarts help to diminish the variab-
ility of the results. On top of that, temporal smooth-
ing reduces the variability by removing the ‘artefact’
clusters with little appearance, and strengthen the res-
ulting segmentation. This is whywe believe it is coher-
ent with the global workflow of our approach, which
is the application of dynamic functional connectiv-
ity to the clustering method derived from the EEG
microstates.

We are aware about the high analytical variability
that can occur by changing one method in the whole

pipeline such as changing the clustering algorithm as
we have done. We expect different results using dif-
ferent clustering algorithms. Analyzing the analytical
variability related to the clustering algorithms can be
indeed of interest but it is out of the scope of our
paper. This is a key issue indeed in the EEG com-
munity (and the neuroimaging in general) and some
of the co-authors are investigating the analytical vari-
ability in the EEG analysis in their recent studies such
as the pre-processing (Kabbara et al 2022) and the
EEG network analysis (Allouch et al 2022). Therefore,
we believe that there is, at the moment, no perfectly
one validated approach to cluster BNS from EEG sig-
nals. In our specific case, this risk was reduced as we
have a priori (some kind of ground-truth) about the
different phases of the experiment that canmay guide
us to be more confident about the results.

4.4.4. BNS and RSN assignment
In our case, we reconstructed brain ROIs based on
the 68 ROIs of the Desikan-Killiany atlas (Desikan
et al 2006). However, we aggregated some regions to
get 56 ROIs (aiming at a lower number of ROIs than
the number of channels). Regarding their association
with RSN, we decided to use the non-overlapping
approach which is currently the most used in the net-
work neuroscience community. We acknowledge that
other atlases with different modalities (size, anatomy,
function, overlap) exist and could be of interest in the
frame of RSN attribution interpretation. Concerning
the present work, the aim of studying RSN was to
understand the dominant function of the resulting
BNS.

Regarding the transition between BNS, thanks to
the excellent time resolution of the EEG, the dynamics
of the brain network can be analyzed at different levels
going from sub-second to minutes and hours. The
minimum time window here is controlled by using
PLV in the alpha band (considering the condition of
having a specific number of cycles, in our case, six
cycles). Thus, no transition dynamic is expected in
a time window lower than 571 ms. In some condi-
tions such as the stimuli-related paradigm, we have
shown during a picture naming task that brain net-
work dynamics can be reconfigured quickly (Hassan
et al 2015). This was possible because PLV was com-
puted at an ms time scale (in an inter-trial synchron-
ization manner).

Here, our aim was to look at the network recon-
figuration and transitions over the entire task and we
tried to match these reconfigurations with the refer-
ence. This was done by several recent papers using
fMRI during a movie (Meer et al 2020) for instance.

4.4.5. Focus on the alpha band
This work is focused on the alpha band, due to its
significance in previous studies associated with PC
(Barollo et al 2022), and more specifically BioVRSea
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(Aubonnet et al 2022). Moreover, results from liter-
ature highlighted the prevalence of RSN in this fre-
quency band (Kabbara et al 2021). Thus, we aimed to
investigate more in depth this band, insisting on the
connectivity aspect. Future works will observe how
the brain network segmentation and the RSN assign-
ment result in the other frequency bands and on the
global frequency spectrum.

4.5. Limitations
No significance has been found in global metrics
related to motion sickness parameters. This aspect
should be pursued to adapt the group definition, as
well as the characterization of motion sickness in
people.

Lastly, this work has been done on healthy people
only. Future studies should compare this work with
groups suffering from pathologies affecting their
neural activity or PC. This distribution can also be
compared with new data from a healthy cohort to
confirm that the results obtained in this study are
consistent.

5. Conclusion

This study aimed to decipher brain network dynamics
during a complex PC task. 158 individuals underwent
the BioVRSea experiment. We demonstrated that, on
the alpha band, the BNS segmentation appropriately
illustrated the evolution of the different phases of
the experiment. Each BNS was studied to determ-
ine its dominant RSNs, giving a better insight into
functional connectivity and how it translates brain
behavior in PC. The BNS distribution has then been
monitored on the subject level, showing the preval-
ence of one state, which comports a dominant salient
network.

Finally, a proof of concept has been performed to
study differences between groups, based on age, and
motion sickness susceptibility. The results showed
statistical differences in some metrics and transition
probabilities for the age difference.

Thiswork validates an innovative approach, based
on a robust methodology and a consequent cohort,
to quantify the brain networks dynamics in the
BioVRSea paradigm. Further studies will confirm
those results by comparing new data to this dis-
tribution, and observing the distribution of people
presenting pathologies. This is the first step toward
defining a reference of brain network behavior in
dynamic PC.
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