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Summary 

Recent discoveries of recurrent and reciprocal Copy Number Variants (CNVs) using genome-

wide studies have led to a new understanding of the etiology of neuropsychiatric disorders. 

CNVs represent loss (deletion) or gain (duplication) of genomic material.  This thesis work is 

focused on CNVs at the 16p11.2 BP4-BP5 locus, which are among the most frequent 

etiologies of neurodevelopmental disorders and have been associated with Autism Spectrum 

Disorders (ASD), schizophrenia, cognitive impairment, alterations of brain size as well as 

obesity and underweight. Because deletion and duplication of the 16p11.2 locus occur 

frequently and recurrently (with the same breakpoints), CNVs at this locus represent a 

powerful paradigm to understand how a genomic region may modulate cognitive and 

behavioral traits as well as the relationship and shared mechanisms between distinct 

psychiatric diagnoses such as ASD and schizophrenia.  

The present dissertation includes three studies: 1) The first project aims at identifying 

structural brain-imaging endophenotypes in 16p11.2 CNVs carriers at risk for ASD and 

schizophrenia. The results show that gene dosage at the 16p11.2 locus modulates global brain 

volumes and neural circuitry, including the reward system, language and social cognition 

circuits. 2) The second investigates the neuropsychological profile in 16p11.2 deletion and 

duplication carriers. While deletion carriers show specific deficits in language and inhibition, 

the profile of duplication carriers is devoid of specific weaknesses and presents enhanced 

performance in a verbal memory task.   3) The third study on food-related behaviors in 

16p11.2 deletion and duplication carriers shows that alterations of the reponse to satiety are 

present in CNV carriers before the onset of obesity, pointing toward a potential mechanism 

driving the Body Mass Index increase in deletion carriers. 
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Dysfunctions in the reward system and dopaminergic circuitries could represent a common 

mechanism playing a role in the phenotype and could be investigated in future studies. Our 

data strongly suggest that complex cognitive traits correlate to gene dosage in humans. Larger 

studies including expression data would allow elucidating the contribution of specific genes to 

these different gene dosage effects. In conclusion, a systematic and careful investigation of 

cognitive, behavioral and intermediate phenotypes using a gene dosage paradigm has allowed 

us to advance our understanding of the 16p11.2 BP4-BP5 locus and its effects on 

neurodevelopment.  
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Résumé 
	
La récente découverte de variations du nombre de copies (CNVs pour ‘copy number 

variants’)  dans le génome humain a amélioré nos connaissances sur l’étiologie des troubles 

neuropsychiatriques. Un CNV représente une perte (délétion) ou un gain (duplication) de 

matériel génétique sur un segment chromosomique. Ce travail de thèse est focalisé sur les 

CNVs réciproques (délétion et duplication) dans la région 16p11.2 BP4-BP5. Ces CNVs sont 

une cause fréquente de troubles neurodéveloppementaux et ont été associés à des phénotypes 

« en miroir » tels que obésité/sous-poids ou macro/microcéphalie mais aussi aux troubles du 

spectre autistique (TSA), à la schizophrénie et au retard de développement/déficience 

intellectuelle. La fréquence et la récurrence de la délétion et de la duplication  aux mêmes 

points de cassure font de ces CNVs un paradigme unique pour étudier la relation entre dosage 

génique et les traits cognitifs et comportementaux, ainsi que les mécanismes partagés par des 

troubles psychiatriques apparemment distincts tels que les TSA et la schizophrénie.  

 

Ce travail de thèse comporte trois études distinctes : 1) l’étude en neuroimagerie structurelle 

identifie les endophénotypes chez les porteurs de la délétion ou de la duplication. Les résultats 

montrent une influence du dosage génique sur le volume cérébral total et certaines structures 

dans les systèmes de récompense, du langage et de la cognition sociale. 2) L’étude des profils 

neuropsychologiques chez les porteurs de la délétion ou de la duplication montre que la 

délétion est associée à des troubles spécifiques du langage et de l’inhibition alors que les 

porteurs de la duplication ne montrent pas de faiblesse spécifique mais des performances 

mnésiques verbales supérieures à leur niveau cognitif global. 3) L’étude sur les 

comportements alimentaires met en évidence une altération de la réponse à la satiété qui est 

présente avant l’apparition de l’obésité. Un dysfonctionnement dans le système de 

récompense et les circuits dopaminergiques pourrait représenter un mécanisme commun aux 
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différents phénotypes observés chez ces individus porteurs de CNVs au locus 16p11.2. En 

conclusion, l’utilisation du dosage génique comme outil d’investigation des phénotypes 

cliniques et endophénotypes nous a permis de mieux comprendre le rôle de la région 16p11.2 

BP4-BP5 dans le neurodéveloppement.  

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Introduction 
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1. Copy Number Variants 
 
In recent years, research has moved from a “phenotype first” approach where group of 

patients were described based on their shared clinical phenotypes to a “genotype first” 

approach to study patients sharing similar molecular alterations (Watson et al., 2014). 

Advances in genomic techniques including comparative genome hybridization have made it 

possible to interrogate the whole genome for single nucleotide polymorphisms (SNPs) and 

copy number variants (CNVs, Watson et al., 2014). SNPs represent changes in an individual 

base of Deoxyribonucleic Acid (DNA). They are common (prevalence > 1 %) and contribute 

to phenotypic variation in the general population (Sachidanandam et al., 2001). The predictive 

value of one SNP is usually very small and genetic predisposition score associating multiple 

SNPs are often used to index genetic predisposition to a disease. Although research on rare 

SNPs associated with large effects in neuropsychiatric disorders is extremely active, they 

have not been investigated on a very large scale and designing genotype first cohorts remains 

difficult for most of these newly identified SNPs. CNVs differ from the SNPs in that they 

represent stretches of DNA with a deletion or a duplication ranging from a few hundred base 

pairs to several megabases (Figure 1; Morrow, 2010). There are on average >1000 CNVs 

widespread in the human genome, each one including none, a few or multiple genes (Conrad 

et al., 2010; Watson et al., 2014). CNVs significantly contribute to inter-individual variation 

and while some are benign, others predispose to diseases (Feuk et al., 2006; Watson et al., 

2014). There are two major types of CNVs: recurrent and non-recurrent. Recurrent CNVs 

arise by non-allelic homologous recombination events during meiosis, with breakpoints in 

large duplicated blocks of sequence flanking the CNV event, which can confer genomic 

instability. In contrast, non-recurrent CNVs have breakpoints that generally lie within unique 

sequences and do not result from a predisposing genomic architecture (Watson et al., 2014). 
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Figure 1: Recurrent Copy Number Variants: deletion or duplication 

 

 

 

 

 

 

 

 

 

Adapted	from	Morrow	et	al.,	2010	
	
Each chromosome contains two alleles: one copy of the paternal allele and one copy of the maternal allele. A 
segment of one allele containing few or many genes can be either deleted resulting in the presence of only one 
copy of the segment or duplicated resulting in three copies of the segment. Rectangles represent genes. Arrows 
represent flanking segmental duplications which underly the recurrent breakpoints.  

 

CNVs have been studied in neurodevelopmental and neuropsychiatric diseases and are now 

recognized as major contributors to mental disorders. Deleterious CNVs are identified in 

approximately 5-10% of patients presenting with autism spectrum disorders (ASD), 

schizophrenia, attention deficit/hyperactivity disorder (ADHD), developmental 

delay/intellectual disability (DD/ID), depressive and anxiety disorders (Doherty and Owen, 

2014 ; Malhotra and Sebat, 2012). Interestingly, some of the identified CNVs are shared 

across disorders (Morrow, 2010). However, mechanisms by which these CNVs lead to 

clinical manifestations remain unknown. Current research aims at establishing links between 

genomic variations and their underlying mechanisms predisposing to phenotypic differences 

or disease. This thesis project focuses on the recurrent CNVs (deletion and duplication) at the 

16p11.2 locus [BP4-BP5 or 29.6-30.2 – according to the human genome build 

GRCh37/hg19].  
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2.  Deletion and duplication at the 16p11.2 locus 
	

2.1 Genomic region 
	
The 16p11.2 BP4-BP5 region (Figure 2, Online Mendelian Inheritance in Man [OMIM]  

#611913) contains 28 genes excluding those within the segmental duplications BP4 and BP5: 

SPN, QPRT, C16orf54, ZG16, KIF22, MAZ, PRRT2, PAGR1 (C16orf53), MVP, CDIPT, 

CDIPT-AS, SEZ6L2, ASPHD1, KCTD13, TMEM219, TAOK2, HIRIP3, INO80E, DOC2A, 

C16orf92, FAM57B, ALDOA, PPP4C, TBX6, YPEL3, GDPD3, MAPK3 (Erk1), CORO1A 

(Walters et al., 2010; Zufferey et al., 2012). The majority of these genes is expressed in the 

brain and can potentially be important for neurodevelopment. Recent studies in humans and 

animal models point towards contributions of some genes in this region to specific 

phenotypes. Genotype-phenotype correlation studies in humans have found an association 

between PRRT2 and epilepsy (Dimassi et al., 2014 ), as well as TBX6 and vertebral 

malformation (Fei et al., 2010). Animal studies demonstrated an association between 

ALDOA/KIF22 or KCTD13/MVP and brain anatomy (Blaker-Lee et al., 2012; Golzio et al., 

2012) and TAOK2 has been found to be important for dendrite morphogenesis (de Anda et al., 

2012).  
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Figure	2:	The	16p11.2	Locus	

 

 
 
Adapted	from	Zufferey	et	al.	(2012)	
	
This	 figure	 shows	 the	proximal	600	kb	 region,	delineated	by	BP4	and	BP5	 coordinates	29.6	and	30.2	Mb,	
respectively.	 Striated	 blocks	 indicate	 breakpoint	 regions	 and	 common	 sequence	 stretches	 within	 the	
segemental	duplication	blocks.		

 
 

The prevalence of each CNV in the general population is 1/2000 individuals (Jacquemont et 

al., 2011; Zufferey et al., 2012). Deletion occurs de novo in 64% of the cases and is inherited 

in the remaining 36% (Zufferey et al., 2012). Maternal transmission is more frequent when it 

is inherited (Walters et al., 2010). Similar to several neurodevelopmental disorders, a gender 

bias is present in 16p11.2 CNVs with an overrepresentation of males (2:1) ascertained for 

DD/ID (Jacquemont et al., 2014).  

2.2 Psychiatry 
	
Deletion and duplication of this locus are among the most frequent genetic etiologies of 

mental disorders including DD/ID, ASD and schizophrenia (Bijlsma et al., 2009; Kumar et 

al., 2008; McCarthy et al., 2009; Weiss et al., 2008; Zufferey et al., 2012). Deletion was first 

described and associated with ASD in 2008 (Weiss et al., 2008) followed a year later by the 

association between duplication at the same locus and schizophrenia (McCarthy et al., 2009). 

We now know that both deletion and duplication carriers are at risk for ASD but only the 
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duplication is associated with schizophrenia and bipolar disorder (Malhotra and Sebat, 2012; 

McCarthy et al., 2009). Both CNVs represent one of the most frequent causes of ASD and 

explain about 1% of all ASD cases (Fernandez et al., 2010; Kumar et al., 2008; Marshall et 

al., 2008; Sanders et al., 2011; Weiss et al., 2008). While 15-20% of deletion carriers present 

with an ASD (Jacquemont et al., 2011; McCarthy et al., 2009; Zufferey et al., 2012), more 

than 70% of the carriers without ASD carry other mental diagnoses (APA, 2000) including 

ADHD, disruptive behavior as well as anxiety and/or depression (Zufferey et al., 2012). 

Although duplication carriers also have a significantly increased risk of developing ASD 

(McCarthy et al., 2009), the psychiatric phenotype is more complex with a 30-50% increased 

risk of presenting schizophrenia, bipolar, psychosis and related disorders (McCarthy et al., 

2009; Steinberg et al., 2014). More specifically, duplication carriers have a 14.5 fold 

increased risk of developing schizophrenia on top of the significant association with bipolar 

disorder and psychosis (McCarthy et al., 2009). 

 

2.3 Energy balance dysregulation 
	
Deletion and duplication have also been associated with obesity and underweight respectively 

(Jacquemont et al., 2011; Walters et al., 2010; Zufferey et al., 2012). Obesity is defined by a 

BMI > 30 kg/m2 in adults and > 2 standard deviation (SD) in children whereas underweight is 

characterized by a BMI < 18.5 kg/m2 and < 2 SD in children (WHO, 2000). The 16p11.2 

locus represents to date, with MC4R, the most frequent “mono-locus” form of obesity. The 

mechanism by which the deletion at this locus results in dysregulated energy balance remains 

unknown. While the deletion predisposes to obesity by increasing the risk 43-fold 

(Bochukova et al., 2010; Walters et al., 2010; Zufferey et al., 2012), duplication shows the 

reciprocal effect, leading to an 8-fold increased risk of being underweight in adulthood 

(Jacquemont et al., 2011; Shinawi et al., 2010). The penetrance of obesity in deletion carriers 
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is age-dependent (Jacquemont et al., 2011; Yu et al., 2011; Zufferey et al., 2012). While birth 

weight is below average (-0.61 SD), BMI z-score rapidly increases by 3.5 years of age and 

obesity is present in more than 50% of the carriers by age seven. 75% of adults are obese, of 

which 45% are morbidly obese (Zufferey et al., 2012). In duplication carriers, we know that 

birth parameters are normal but the natural history of the growth curve has not been described 

yet (Jacquemont et al., 2011). Studies using mouse models mimicking 16p11.2 deletion and 

duplication showed an inversed gene dosage effect on weight, with deletion mice being 

underweight whereas the duplicated mice are obese (Horev et al., 2011; Portmann et al., 

2014).  

Prevalence of obesity in the general adult population has doubled in the past two decades and 

prevalence of overweight has tripled in children and adolescents, making of obesity one of the 

current greatest healthcare problems (Chen et al., 2010; Kelly et al., 2008). Obesity has a 

multifactorial etiology including genetic and non-genetic factors. Although environment and 

life style play a significant role in obesity, heritability of BMI is 40 to 70% (Carnell et al., 

2008; Maes et al., 1997). Common SNPs within the FTO gene have been associated with 

obesity (Frayling et al., 2007; Scuteri et al., 2007). More than 30 obesity susceptibility loci 

have been associated with BMI, many of which are expressed in or influence the central 

nervous system (Speliotes et al., 2010). Although the predictive value of these SNPs is weak, 

they point toward genes or pathways that may harbor rare mutation with large effect (Phan-

Hug et al., 2012). Monogenic forms of obesity (e.g. MC4R, POMC) are thought to cause 

severe obesity through disruption of the hypothalamic functions (Valette et al., 2012) 

suggesting the implication of the central nervous system. The current literature suggests that 

obesity caused by genetic factors is associated with appetitive dysregulation and suggests that 

diminished satiety is one of the possible underlying mechanisms (Acosta et al., 2014; Ho-

Urriola et al., 2014; Llewellyn et al., 2014; Wardle et al., 2008). 
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2.4 Impaired cognition 
	
Since 2006, more than 20 recurrent CNVs have been associated with DD/ID (Watson et al., 

2014). The latter is defined by an impaired cognitive functioning along with decreased 

adaptive skills in everyday life (APA, 2013). Studies on the 16p11.2 deletion have 

demonstrated a 27 to 32 points decrease in global cognition (Full Scale Intellectual Quotient - 

FSIQ) in carriers when compared to intra-familial controls (Hanson et al., 2014; Zufferey et 

al., 2012). Language is the only cognitive domain that has been more specifically explored 

and deficits have been reported in several case series on the deletion (Hanson et al., 2010; 

Shinawi et al., 2010). Recently, Hanson and colleagues investigated a large cohort of deletion 

carriers and documented below-average performances in comprehension, expression and 

reading skills along with 71% rate of speech and language disorder as defined in DSM-IV-TR 

(Hanson et al., 2014). Case series on duplication carriers have reported an important 

variability in global cognitive functioning and adaptive skills encompassing cases with 

moderate to severe DD/ID as well as seemingly unaffected transmitting parents (Fernandez et 

al., 2010; Rosenfeld et al., 2010; Shinawi et al., 2010). Along with the DD/ID, deletion 

carriers (37.6%) present with a delayed age of walking (mean age = 20.5 months) and later 

diagnosis of developmental coordination disorders (Hanson et al., 2014). A recent case-

control association study showed that epilepsy - known to be associated with DD/ID - occurs 

at a rate of 18% in both CNVs, with the duplication being specifically associated with typical 

and atypical rolandic epilepsy (Reinthaler et al., 2014).  
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2.5 Brain development and structure  
	
Head circumference (HC) constitutes another reciprocal phenotype in 16p11.2 CNVs. While 

macrocephaly (HC ≥ 2 SD) is present in 17% of the 16p11.2 deletion carriers, microcephaly 

(HC ≤ 2 SD) is present in 26.7% of the duplication carriers (Jacquemont et al., 2011; 

McCarthy et al., 2009; Zufferey et al., 2012). Deletion carriers have an HC lowered by 0.57 

SD and at birth, which then increases during infancy (Zufferey et al., 2012). This pattern of 

brain growth is reminiscent of what has been reported in idiopathic ASD (Stanfield et al., 

2008). Typical brain growth trajectory in ASD consists of an early overgrowth in overall 

brain volume followed by a cortical dysmaturation during childhood-adolescence and normal 

brain volume in adulthood (Baribeau and Anagnostou, 2013 ; Stanfield et al., 2008).  

 

Animal models have given additional insight into the effect of the 16p11.2 locus on brain 

growth. Over- and under-expression of the KCTD13 gene in zebrafish induce mirror 

alterations in brain volume interpreted as correlates of micro- and macrocephaly (Golzio et 

al., 2012). Under- and over-expression of KCTD13 were also associated with increased and 

decreased neurogenesis in mouse	 (Golzio et al., 2012). Neuroimaging performed in murine 

models demonstrate reciprocal regional brain volume changes along with subtle changes in 

the midbrain (Horev et al., 2011).  

 

In conclusion, the literature on the 16p11.2 CNVs provides first descriptions of the disorders, 

but is still sparse particularly regarding the duplication, which seems to involve a more 

complex and variable phenotype. The associations between the 16p11.2 CNVs and 

psychiatric disorders such as ASD and schizophrenia make of the 16p11.2 CNVs an 

interesting paradigm to better understand shared mechanisms between distinct diagnoses. 

Because deletion and duplication of the 16p11.2 locus occur frequently and recurrently (with 
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the same breakpoints), CNVs at this locus represent a powerful paradigm to understand how a 

genomic region may modulate brain anatomy, cognitive and behavioral traits. 
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3. Aims of the Thesis  
	
Our main goal was to explore whether gene dosage of the 16p11.2 locus defined as the 

number of genomic copies (deletion =1, control =2, duplication =3) modulates brain structure 

as well as cognitive and behavioral traits. 

 

The aims specific to each of the studies are as follows: 

Study 1: 

1/ Explore whether gene dosage at the 16p11.2 locus modulates brain anatomy. 

2/ Identify neuroimaging endophenotypes in 16p11.2 CNV carriers at high risk for ASD and 

schizophrenia.  

 

Study 2:  

1/ Investigate the neuropsychological profile of both deletion and duplication carriers 

assessing specific cognitive domains (language, memory, attention, executive functions, fine 

motor skills) beyond global cognition. 

2/ Explore whether gene dosage at the 16p11.2 locus can modulate cognitive performances. 

 

Study 3:  

1/ Investigate eating behaviors traits in both CNV carriers as well as investigate the specificity 

of these behaviors by comparing with clinical cohorts presenting with obesity or eating 

disorders. 

2/ Investigate the relationship between BMI z-score and eating behaviors as well as inhibition 

skills. 
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4. General Methods  
	
The participants included in these studies are taking part in a larger phenotyping project 

(16p11.2 European Consortium). The study protocol was reviewed and approved by the local 

Ethics committee and signed consents were obtained from participants or legal representatives 

prior to investigation. Participants were assessed at Lausanne University Hospital, 

Switzerland. The clinical geneticist who had established the diagnosis of CNV at the 16p11.2 

locus in the context of a neurodevelopmental or mental disorder referred CNV probands to the 

study. Cascade testing allowed identification of additional relative carriers in the family. All 

had whole genome arrays confirming either a recurrent deletion or duplication in the 16p11.2 

BP4-BP5 region.  Inclusion criteria:  Presence of a 16p11.2 deletion or duplication 

comprising the BP4-BP5 region (29.6-30.2 – according to the human genome build 

GRC37/hg19). Controls were non-carriers in the same families. Exclusion criteria: Age < 3 

years.  

 

Methodology specific to each part of this project is described in each of the three studies.  

 



 
	
	
	
	
	
	
	
	
	
	
	
	
	

 

Study 1: The 16p11.2 locus modulates brain 
structures common to autism, schizophrenia 

and obesity 
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The 16p11.2 locus modulates brain structures common to autism, 
schizophrenia and obesity 
 
 
This article was recently published in Molecular Psychiatry (2014), article in press. 
 
The supplemental material is presented in Appendix 1. 
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Abstract 
	
Anatomical structures and mechanisms linking genes to neuropsychiatric disorders are not 

deciphered. Reciprocal copy number variants at the 16p11.2 BP4-BP5 locus offer a unique 

opportunity to study intermediate phenotypes in carriers at high risk for autism spectrum 

disorder (ASD) or schizophrenia (SZ). We investigated variation in brain anatomy in 16p11.2 

deletion and duplication carriers. Beyond gene dosage effects on global brain metrics, we 

show that the number of genomic copies is negatively correlated to grey matter volume and 

white matter tissue properties in cortico-subcortical regions implicated in reward, language 

and social cognition.  Despite the near absence of ASD or SZ diagnoses in our 16p11.2 

cohort, the pattern of brain anatomy changes in carriers spatially overlaps with the well-

established structural abnormalities in ASD and SZ. 

Using measures of peripheral mRNA levels, we confirm our genomic copy number findings. 

This combined molecular, neuroimaging and clinical approach, applied to larger datasets, will 

help interpret the relative contributions of genes to neuropsychiatric conditions by measuring 

their effect on local brain anatomy. 
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Introduction 
	
Copy number variants (CNVs) are major contributors to common neuropsychiatric disorders 

and cognitive deficits1. Investigations of cohorts with specific CNVs allow the 

characterization of endophenotypes2 associated with neuropsychiatric disorders such as 

autism spectrum disorder (ASD) and schizophrenia (SZ). The 16p11.2 CNV (breakpoint 4 to 

5, BP4-BP5, 29.6-30.2Mb- Hg19) phenotypes are characterized by both reciprocal and 

overlapping deficits that include energy imbalance, language impairment, ASD and SZ 3-8. 

Notably, both 16p11.2 deletion and duplication have been associated with ASD while only 

the duplication is enriched in SZ cohorts 9,10. Deletion carriers present with increased head 

circumference6,8 and body mass index (BMI)3,7, while duplication carriers show microcephaly 

and are underweight 5. Manipulations of zebrafish embryos and mouse models suggest a close 

relationship between gene dosage at this locus and brain anatomy. Over- and under-

expression of the KCTD13 gene in zebrafish induces mirror alterations interpreted as 

correlates of micro- and macrocephaly11. Murine models mimicking 16p11.2 deletion and 

duplication demonstrate reciprocal regional brain volume changes 12.  

The aim of this study is to identify imaging endophenotypes in a group of 16p11.2 CNV 

carriers at high risk for ASD and SZ. We investigate the effects of gene dosage, defined as the 

number of genomic copies at the 16p11.2 locus on brain structure using state-of-the-art 

structural magnetic resonance imaging (sMRI). We find a correlation between gene dosage 

and alterations in brain structure with diametrically opposite changes in both global and local 

brain volumes that parallel specific changes in tissue microstructure. The anatomical areas 

affected by gene dosage are also key areas involved in ASD, SZ and obesity, supporting the 

notion that common molecular mechanisms may be involved in these conditions.  
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Methods   
	
Participants: The study was reviewed and approved by the local Ethics committee and signed 

consents were obtained from participants or legal representatives prior to investigation. 

Participants (Table 1) were taking part in a larger phenotyping project on the 

deletion/duplication of the 16p11.2 region. Carriers were referred to the study by the clinical 

geneticist who had initially established the genetic diagnosis in the context of a neuro-

developmental disorder. Inclusion criteria: Participants were selected based on the presence of 

a 16p11.2 deletion or duplication comprising the BP4-BP5 region. Controls were non-carriers 

in the same families. Exclusion criteria: None beside an age < 6 years. Seventeen participants 

were unable to complete the scan due to incompliance related to moderate or severe 

intellectual disability, anxiety, significant behavioral issues or extreme BMIs with waist 

circumference beyond the limit of scanning safety standards.   

All had whole genome arrays confirming either a recurrent deletion or duplication of the BP4-

BP5 region. The larger project aims at phenotyping a European cohort of 16p11.2 

rearrangement carriers. It includes neuropsychological and behavioral assessments, medical, 

psychiatric and neurological examinations. 

Anthropometric measures, psychiatric and cognitive assessment: We collected 

anthropometric data such as height and weight to calculate the Body Mass Index (BMI). 

Obesity is defined as BMI > 30 kg/m2 in adults and > 2 standard deviations in children13. 

Underweight is considered significant < 18.5 kg/m2 and < 2 standard deviations in children13. 

Z-scores were computed for all data using gender, age, and geographically matched reference 

population as previously described in Zufferey et al.8. Overall cognitive functioning was 

measured using the Wechsler Intelligence scales for children (WISC-IV)14 as well as the 

Wechsler Intelligence scale for adults (WAIS-III)15. All assessments were performed by a 

board certified neuropsychologist. DSM-IV-TR16 diagnoses were made by licensed 
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psychologist and psychiatrist using history, parent report as well as the Diagnostic Interview 

for Genetic Studies (DIGS)17. An additional assessment was performed to investigate 

prodroms of schizophrenia using the Schizophrenia Proneness Instrument Adult version (SPI-

A)18.  The diagnosis of ASD was established by a certified clinician using the Autism 

Diagnostic Interview-Revised (ADI-R)19 and the Autism Diagnostic Observation Schedule 

(ADOS)20. Of note, only two duplication carriers were on medication: lithium, aripiprazol and 

valproate. 

Quantitative RT-PCR: For QPCR, 100 ng of high-quality total RNA isolated from Epstein-

Barr virus transformed lymphoblastoid cell lines was converted to cDNA using Superscript 

VILO (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s protocol. Primers 

were designed using PrimerExpress 2.0 software (Applied Biosystems, Foster City, CA, 

USA), with default parameters except for the primer- and minimal amplicon lengths, which 

were set at 17-26 bp and 60 bp respectively. The amplification factor of each primer pair was 

tested using a cDNA dilution series and only assays with amplification factors between 1.75 

and 2.00 were retained. A representative set of samples was tested for genomic 

contamination. QPCR experiments were performed in triplicates using SYBR-Green (Roche, 

Basel, Switzerland) as reporter. The reaction mixtures were prepared in 384-wells plates using 

a Freedom Evo robot (Tecan, Männedorf, Switzerland) and run in an ABI 7900HT sequence 

detection system (Applied Biosystems, Foster City, CA, USA) using the following 

conditions: 50°C for 2 minutes, 95°C for 10 minutes, followed by 45 cycles of 95°C for 15 

seconds and then 60°C for 1 minute, after which dissociation curves were established. 

Applicable normalization genes were included in each experiment to enable compensation for 

fluctuations in expression levels between experiments. Using SDS v2.4 software (Applied 

Biosystems, Foster City, CA, USA) the threshold and baseline values were adjusted when 

necessary to obtain raw cycle threshold (Ct) values. The Ct values were further analysed 
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using qBase plus software (Biogazelle, Zwijnaarde, Belgium), which calculates relative 

expression values per sample per tested gene upon designation of the normalization genes and 

corrects for the amplification efficiency of the performed assay.  

MRI Data Acquisition and processing: All participants were examined on a 3T whole body 

scanner (Magnetom TIM Trio, Siemens Healthcare, Erlangen, Germany) using a 12-channel 

RF receive head coil and RF body transmit coil. Participants presenting with moderate to 

severe clinical phenotype were unable to undergo the scanning procedure. A total of 57 

participants underwent the MRI protocol, which included T1-weighted (T1w) and diffusion-

weighted (DWI) data acquisition. Anatomical images were acquired using a multi-echo 

magnetization prepared rapid gradient echo sequence (ME-MPRAGE: 176 slices; 256x256 

matrix; echo time (TE): TE1: 1.64 ms, TE2: 3.5 ms, TE3: 5.36ms, TE4: 7.22ms; repetition 

time (TR): 2530ms; flip angle 7°). The DWI protocol consisted of 2 mm contiguous slices 

covering the whole brain (TE = 83ms, TR = 9020ms) along 60 spherically-distributed 

gradient directions with b-value = 700s/mm2 with 10 reference images with no diffusion 

weighting (b-value = 0 s/mm2). Due to movement artifacts, 3 out of 57 T1w images and 5 

DWI out of 45 who were able to complete the DWI protocol were excluded.  

Multi-echo T1w images were averaged then classified into probability of belonging to gray 

matter (GM), white matter (WM) or cerebrospinal fluid (CSF) using Gaussian mixture model 

within the “unified segmentation” framework21. Images were transformed non-linearly to 

standard Montreal Neurological Institute (MNI) space using the diffeomorphic spatial 

registration algorithm (DARTEL) implemented in SPM8 22. GM probability maps were 

subsequently “modulated” by the Jacobian determinants of the deformations to account for 

local compression and expansion due to linear and non-linear transformation 23. Finally, GM 

probability maps were smoothed with an isotropic Gaussian kernel of 8 mm full width at half 

maximum (FWHM).  
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Cortical surface extraction was performed on the averaged multi-echo T1-w images using the 

default settings of the Freesurfer software 24 (http://surfer.nmr.mgh.harvard.edu/). Individual 

images were examined for potential defects of surface reconstruction. Mean cortical thickness 

and cortex surface area were then computed for each subject. 

Diffusion-weighted images were corrected for Eddy current and motion artifacts with the 

Artefact correction in diffusion MRI (ACID toolbox) 25. Diffusion tensor based indices - 

fractional anisotropy (FA) and mean diffusivity (MD), were computed with the Camino 

Diffusion MRI toolkit 26. FA and MD maps were aligned to the T1w images using affine 

transformation. In order to enhance the specificity for a particular tissue class and to avoid 

diffusion indices value changes due to Gaussian smoothing kernel during the spatial 

registration to MNI space, we applied a previously described combined weighting/smoothing 

procedure 27.   

For voxel-based statistical analysis of gene dosage-dependent regional effects we used a 

linear regression model in the General Linear Model framework of SPM8. Age effects were 

analyzed separately for GM and WM sub-space by creating two corresponding design 

matrices. Explicit masking using binary masks of GM and WM ensured inclusion of the same 

number of voxels in all analyses. All GM/WM data were included in the same model with 

gender, total intracranial volume (the sum of GM, WM and CSF volume) and 1st order 

polynomial expansion of age as regressors. We tested for overall cognitive functioning 

(FSIQ), but as results did not show significant effect on whole brain or regional structures, we 

did not add it as a covariate in the SPM analyses. Statistical thresholds were applied at p<0.05 

after family-wise error (FWE) correction for multiple comparisons over the whole volume of 

the GM/WM mask. Trends were assessed by using an auxiliary uncorrected voxel threshold 

of p<0.00128.  



	 29

Multivariate linear models analysis: Multivariate Linear model (MLM) was used to discover 

high-order correlation mapping between the two datasets: gene expression and brain volume. 

The multivariate approach takes into account the full dimensionality of both data sets (all 

voxels and all mRNA levels for all individuals). The method simultaneously determines the 

best representations in each datasets in order to explain maximum covariance between gene 

expression and volume. The representation in the brain space is called eigenimage and show 

the level contribution (either positive or negative) for each voxel to the correlation mapping. 

Similarly, the gene loadings (positive or negative) show the contribution of each gene to the 

correlation mapping. The number of mappings and the significance of the mapping is assessed 

with Wilks’ Lambda statistic 28,29. 

Statistical Analyses: Statistical analyses were performed using Matlab and R 3.0.2. Plots and 

heat maps have been generated using R libraries ggplot2 and gplots, respectively. 

Results 
	
Study participants and MRI measures: We acquired data on fourteen 16p11.2 BP4-BP5 

deletion and seventeen duplication carriers as well as twenty-three intra-familial controls. The 

median age of participants was 34 years (range 7-58). The three groups were not significantly 

different in terms of age, gender or handedness (Table 1). Overall cognitive functioning (full 

scale intellectual quotient- FSIQ) in deletion and duplication carriers was 2 standard 

deviations (≈ 27 points) below that in the control group, which is consistent with previous 

studies 5,8. Two duplication carriers met diagnostic criteria for ASD and none of the 

participants had clinical signs of SZ (all clinical data and neuro-radiological findings are 

presented in Supplementary Tables 1 and 2). 
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Table	1:	Population	characteristics	
	

  Deletion 
n = 14 

Controls 
n = 23 

Duplication 
n = 17 

Age in years  
(mean± SD)  

24.6 ± 13.3 33 ±12.3 35.7 ±12.5 

Gender (M/F) 8 / 6 11/ 12 10 / 7 

Handedness 
(L/R) 

3 / 11 0 / 23 3 / 14 

BMI z-score  
(mean ±SD) 

2.37 ± 2.14 ¶  0.37 ± 1.07 -0.56 ± 1.61 

FSIQ (mean± 
SD) 

74 ± 14§ 98 ± 13 72 ± 16§ 

NVIQ 
(mean±SD) 

79 ± 11§ 102 ± 13 73 ± 15§ 

 
M,	male;	F,	 female;	L,	 left;	R,	right;	BMI,	body	mass	 index;	FSIQ,	 full‐scale	 intellectual	quotient;	NVIQ,	non‐
verbal	intellectual	quotient.		
¶	significantly	different	from	the	two	other	groups,	ANCOVA,	post‐hoc	group	comparisons,		p	<.05	Bonferroni	
corrected	
§	significantly	different	 from	the	control	group,	ANCOVA,	post‐hoc	group	comparisons,	 	p	<	 .05	 	Bonferroni	
corrected	

 

 

In an unbiased whole-brain approach we analyzed regionally derived sMRI estimates of gray 

(GM) and white matter (WM) volume, cortical thickness and surface area, and also total 

intracranial volume (TIV)24,30. We also investigated brain microstructure using an 

independent data set of diffusion-weighted images from the same subjects, from which we 

computed fractional anisotropy (FA) and mean diffusivity (MD) as indices of local tissue 

integrity 31. Gene dosage effects on brain anatomy were tested explicitly over the cohorts of 

deletion carriers, controls and duplication carriers using differential contrasts and conjunction 

analyses. 

Global brain differences: We first tested the sensitivity of our whole-brain imaging approach 

to detect global effects of gene dosage since early brain overgrowth is a feature common to 

both ASD and the 16p11.2 deletion8,32. We confirm the strong correlation between head 

circumference and gene dosage in the studied group (p=0.0001) 5,7 and demonstrate the 
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negative correlation between TIV and number of 16p11.2 copies (p=0.004, Fig. 1B). Both 

GM (p=0.009) and WM volume (p=9.8 e-05) contribute to the observed effect on TIV (Fig. 

1C, D). There is no significant correlation between gene dosage and cerebrospinal fluid 

volume (CSF) suggesting that there are no compensatory CSF changes secondary to brain 

atrophy. The analysis of cortical anatomy shows correlation between gene dosage and global 

cortical surface area (p=0.009, Fig. 1F). As opposed to global measures of volume and 

surface, which are all inter-correlated (Fig. 1A) and modulated by gene dosage, only cortical 

thickness is decreased in both deletions and duplication carriers (Fig. 1A, E). This may be 

related to previously reported relationship between intellectual disability and cortical 

thickness 33,34. Of note, adjusting for IQ does not affect our findings (Supplementary Fig. 1). 

Analyses on global metrics are detailed in Supplementary Table 3. 

There is a strong correlation between BMI and head circumference in 16p11.2 CNV carriers 8. 

We also find a negative correlation between BMI and gene dosage (p < 0.001, Table 1). Total 

GM volume (p=0.008) and TIV (p= 0.019) are correlated to BMI (Supplementary Table 4) 

and this relationship becomes borderline significant (p=0.06) after adjusting for the copy 

number effect on BMI.   
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Figure	1.	Effects	of	gene	dosage	on	global	brain	metrics	
	

 

(A):	Correlation	between	global	brain	metrics	 in	16p11.2	CNV	 carriers	and	 controls.	The	 intensity	of	blue	
lines	 represents	 positive	 r	 Pearson’s	 coefficient	 correlations	 at	 different	 statistical	 thresholds.	 	 All	 global	
measures	are	 inter‐correlated	except	 for	CT	and	CSF.	 (B	 ‐	F):	Boxplots	 representing	TIV,	GM,	WM	volume,	
cortical	surface	area	and	cortical	thickness	adjusted	for	age	and	gender	in	deletion,	duplication	carriers	and	
intra‐familial	 controls.	 **	 p	 ≤	 0.001;	 *	 p	 ≤	 0.05	 uncorrected.	 Gene	 dosage	 effect	 is	 estimated	 in	 a	 linear	
regression	analysis	using	the	number	of	copies	(1,	2	or	3),	and	including	age,	gender	as	covariates.	Significant	
differences	between	groups	after	Bonferroni	correction	(threshold	at	p<0.01)	are	represented	by	solid	black	
lines,	trends	–	by	dashed	lines.	
HC	 ‐	 head	 circumference;	 TIV	 ‐	 total	 intracranial	 volume;	 GM	 ‐	 gray	matter;	WM	 ‐	white	matter;	 CSF	 ‐	
cerebrospinal	 fluid;	CT	 ‐	cortical	 thickness;	CS	 ‐	cortical	 surface	area;	DEL‐deletion	carriers;	CTRL	 ‐	 intra‐
familial	controls;	DUP	‐	duplication	carriers	

 

Regional volume brain differences: Using the same statistical design and voxel-based 

morphometry, we analyzed local GM and WM changes beyond global volume effects. The 

spatial pattern of gene dosage associated changes overlaps with key areas of the reward 

system including the medio-dorsal thalamus, insula, ventral striatum, orbito-frontal cortex and 

white matter corresponding to fronto-striatal projections (Fig. 2A, C).  The language circuitry, 

comprising the left middle temporal gyrus, bilateral supramarginal and superior temporal gyri 
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and adjacent white matter connections, also shows strong gene dosage dependence (Fig. 2A, 

B, C and Supplementary Table 5). We further observe gene dosage effects on cerebellar 

anatomy, including lobules VIIb, VIII and crus II bilaterally (Fig. 2B). Subsequent gender-by-

gene dosage interaction analysis demonstrates that this effect is mainly driven by decreased 

volume in male deletion carriers (Supplementary Fig. 2). The analysis of an independent 

dataset of diffusion-weighted images sensitive to water diffusion properties of brain tissue in 

a subset of forty-five participants confirms a reciprocal gene dosage effect on reward and 

language circuit associated regions – striatum, middle and superior temporal gyrus (Fig. 2 E, 

F). The changes of diffusion-tensor derived indices (FA and MD) suggest a dosage dependent 

effect on brain microstructure beyond the volume changes already described 35.  

Figure	2.	Effects	of	gene	dosage	on	local	brain	volume	and	tissue	properties	

 

Results	of	voxel‐based	whole	brain	general	linear	analyses	showing:	(A)	negative	gene	dosage	effect	(DEL	>	
CTRL	>	DUP)	on	GM	volume	 in	ventral	 striatum,	 thalamus,	 superior	 temporal	region,	 fusiform,	precuneus,	
insula	and	calcarine	sulci	bilaterally	as	well	as	in	right	occipital	region.	(B)	positive	gene	dosage	effect	(DEL	
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<	CTRL	<	DUP)	on	GM	volume	in	the	middle	temporal	gyrus	and	in	cerebellar	lobule	VIII,	VIIb	and	crus	II.	(C)	
negative	gene	dosage	effect	on	WM	volume	within	fronto‐striatal	projections,	anterior	thalamic	and	superior	
longitudinal	 fasciculus.	(D)	absence	of	significant	positive	gene	dosage	effect	on	WM	volume.	(E‐F)	FA	and	
MD	changes	overlapping	with	GM	changes	in	superior	temporal	gyrus	and	caudate	bilaterally.			
For	 representation	purposes,	 results	 significant	at	a	 voxel	 level	at	 threshold	of	p	<	0.05	 family‐wise	 error	
corrected	for	multiple	comparisons	are	displayed	at	significance	threshold	of	p	<	0.001	uncorrected	at	voxel	
level	in	standard	Montreal	Neurological	Institute	space.	Color	bars	represent	T	scores.		
DEL	–	deletion	carriers;	CTRL	–	intra‐familial	controls;	DUP	–	duplication	carriers;	GM	‐	gray	matter;	WM	‐	
white	matter;	FA	–	fractional	anisotropy;	MD	–	mean	diffusivity		

We further investigated the contribution of the deletion and duplication to the gene dosage 

analysis (deletion > control > duplication) results on brain structure. We performed a 

conjunction analysis testing the intersection of the two differential contrasts: (deletion > 

control) ∩ (control > duplication) (Supplementary Fig. 3). This stringent analysis shows that 

both the deletion and duplication contribute to the negative correlation between gene dosage 

and putamen volume. The two differential contrasts suggest that changes in the reward system 

are driven by the duplication, while deletion carriers contribute to modifications in language 

and social cognition networks (Supplementary Fig. 3 and Supplementary Table 5). Due to 

the stringency of the conjunction analysis, we cannot exclude rejecting modest brain changes 

following the gene dosage dependent pattern. A larger sample size would be required to 

identify brain anatomy changes specific to either deletion or duplication carriers. 

Regional cortical thickness and surface area differences: We observed cortical thickness 

changes mainly driven by deletion carriers in the fronto-temporal regions, particularly in 

insula, supramarginal and superior temporal gyrus (Supplementary Table 6 and 

Supplementary Fig. 4). These regions overlap spatially with the cortical volume changes 

derived in the whole-brain voxel-based morphometry analysis. For measures of cortical 

surface area, the overlap is restricted to the frontal pole.  

16p11.2 dosage-related brain alterations common to idiopathic ASD and SZ. The 16p11.2 

CNVs that confer high risk for ASD and SZ exemplify the concept of shared genetic factors 

in psychiatric disorders. We formally tested the spatial overlap between the described brain 
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patterns and the results of a recent meta-analysis in ASD and SZ brain morphometry 36 (Fig. 

3).  Areas subject to strong 16p11.2 gene dosage effects overlap with six out of the eight brain 

structures most commonly affected in ASD and SZ - left and right putamen, insula, posterior 

cingulate, thalamus and superior temporal gyrus, but with none of the SZ-specific regions 36 

(Fig. 3 and Supplementary Table 7).  

Figure	3.	Spatial	mapping	of	meta‐analysis	data	in	autism	spectrum	disorders	and	
schizophrenia	on	to	16p11.2	gene	dosage	brain	pattern	

	

	

Projection	of	meta‐analysis	data	 in	ASD	and	SZ	36	on	the	statistical	map	of	16p11.2	gene	dosage	effects	on	
gray	matter	volume	in	deletion	and	duplication	carriers	(DEL	>	CTRL	>	DUP).	Pie	charts	represent	previously	
published	data	on	the	relative	contribution	of	ASD	and	SZ	to	brain	volume	change	at	particular	location	36.	
Orange‐blue	pie	charts	indicate	gray	matter	decreases;	cyan‐green	pie	charts	show	gray	matter	increases	in	
ASD	and	SZ.	Coordinates	correspond	to	Montreal	Neurological	Institute	standard	space.	
	
ASD	‐	Autism	spectrum	disorder;	SZ	–	schizophrenia;	STS	–	superior	temporal	sulcus	

  

mRNA expression levels and brain anatomy: 16p11.2 BP4-BP5 CNVs either delete or 

duplicate 28 genes. We therefore tested whether the effects of gene dosage on brain anatomy 
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are mediated by changes in gene expression measured in lymphoblastic cell lines of twenty-

seven of our participants. We investigated in a linear regression analysis mRNA levels of 

eighteen genes mapping within and one gene (SH2B1) outside the BP4-BP5 interval. While 

SH2B1 expression is not affected by changes in copies of the BP4-BP5 CNVs, mRNA levels 

for all eighteen genes within the interval are correlated to the number of genomic copies and 

twelve of these genes show strong correlation (Pearson r >0.75) with each other 

(Supplementary Fig. 5). 

mRNA levels of all assessed genes within the BP4-BP5 interval except GDPD3 and PRRT2  

show negative correlation with global metrics of brain volume (Fig. 4 A and Supplementary 

Table 8). To characterize the differential contributions of highly correlated gene expression 

levels on brain structure, we performed whole-brain multivariate analyses based on singular 

value decomposition. This method identifies the linear combination of brain voxels – 

eigenimages - that are best predicted by a linear mixture of gene expression levels. Despite 

the reduced subject sample size, this analysis replicated the anatomical pattern described by 

categorical analyses of gene dosage effects (Figs. 2, 4). The first eigenimage is characterized 

by negative loadings on the striatum, fusiform gyrus and thalamus bilaterally (Fig. 4B), as 

well as positive loadings on both cerebellar hemispheres (Fig. 4C). Put simply, voxels with 

negative loadings indicate that low mRNA levels are associated with increased GM volumes 

while those with positive loadings with GM volume reduction. In our cohorts the first three 

eigenimages explain more than thirty percent of variance in brain anatomy, and are mainly 

driven by the number of genomic copies (p=0.003, p=0.01, p=0.07 for the first three 

eigenvariates respectively). The correlation between gene expression and the number of 

genomic copies (Supplementary Fig. 5) as well as the high level of shared variance between 

genes at this locus preempts identification of the contributions of individual gene to specific 

anatomical patterns (Supplementary Table 9 and Fig. 6). 
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Figure	4.	Effects	of	mRNA	levels	on	global	and	local	metrics	of	brain	anatomy	

	

 

Brain	 anatomy	 changes	 explained	 by	mRNA	 levels	 of	 18	 genes	within	 the	 16p11.2	BP4‐BP5	 interval	 in	 a	
subset	of	27	participants.	(A)	Matrix	correlation	between	mRNA	levels	and	global	measures	of	brain	volume.	
The	color	key	represents	the	Pearson	correlation	coefficient.	Most	mRNA	levels,	except	for	SH2B1,	PRRT2	and	
GDPD3	 are	 correlated	 to	 TIV,	 GM	 and	WM.	 There	 are	 no	 correlations	 with	 cortical	 thickness	 and	 CSF.	
Statistical	p	values	 for	all	correlations	are	detailed	 in	Supplementary	table	7.	(B‐C)	Eigenimages	represent	
the	 statistical	 parametric	 maps	 resulting	 from	 singular	 value	 decomposition	 analysis.	 This	 method	
simultaneously	determines	 the	best	 combination	 in	 each	dataset	 (gene	 expression	and	 voxels)	 in	order	 to	
explain	maximum	covariance	between	gene	expression	and	 local	brain	volume.	Negative	 loading	 indicates	
that	low	mRNA	levels	are	associated	with	increased	GM	volumes	while	positive	loading	represents	the	inverse	
effect.	

 

Discussion 
	
Using an unbiased whole-brain approach, we demonstrate that genomic copy number at the 

16p11.2 BP4-BP5 locus is associated with brain anatomy changes in a dosage dependent 

manner, and that these structural changes are present in the absence of either an ASD or SZ 

diagnosis. Our findings including areas implicated in reward, language and social cognition 

allow generating new hypotheses on how gene dosage results in reciprocal and overlapping 

phenotypes observed in 16p11.2 deletion and duplication carriers. This provides a general 

framework to study the effects of CNV on cognition and behavior in common 

neuropsychiatric disorders such as ASD and SZ. This approach circumvents a number of 

confounders such as the effects of ascertainment, medication and clinical symptoms 2,37 and 
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has recently been used to investigate predefined anatomical regions related to early psychosis 

in 15q11.2 CNVs carriers 38. 

There is a strong correspondence between the changes in brain anatomy patterns and the 

phenotypic traits characterizing 16p11.2 deletion or duplication carriers. In particular, 

opposing volume changes in key nodes of the reward circuitry - striatum, medio-dorsal 

thalamus, orbito-frontal cortex and insula - which are associated with eating behavior 39-41, 

may explain the mirror BMI phenotype in 16p11.2 CNVs carriers. Similarly, the reciprocal 

changes in the language areas - middle, superior temporal gyrus and caudate 42 may underlie 

the language deficits reported in deletion but not in duplication carriers. Our results showing 

involvement of the striatum have recently been corroborated by the findings of Portmann et 

al. 43 in a mouse model of 16p11.2 deletion syndrome. 

Whole genome studies have identified genetic factors, including 16p11.2 CNVs, shared 

between ASD and SZ. This led to the assumption that the two disorders may represent 

opposite manifestations of the same underlying mechanism or trait 44. There is a large overlap 

in the reported patterns of gene dosage-dependent brain anatomy changes with well-

established structural signatures of ASD and SZ. Notably, alterations in reward system 

structure, influenced by 16p11.2 gene dosage, is also the main structural change shared by 

ASD and SZ 36,45,46. This finding supports the notion of a common abnormal mechanism 

underlying these two conditions. None of the studied participants met diagnostic criteria for 

SZ and only two did so for ASD (Supplementary Table 1), which suggests that the observed 

brain modifications are not the consequence of a long standing ASD or SZ diagnosis, but that 

they may be considered as intermediate phenotypes. This is also in keeping with previous 

findings of brain modifications predating the onset of psychosis 47. 

Obesity is a well-known comorbidity of ASD or SZ 48. It has been hypothesized that the 

reward system, and the striatum in particular, may underlie the frequent co-occurrence of 
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metabolic and psychiatric manifestations 37,39,41,49. This idea is in line with our findings and 

suggests that modulation of the reward system by genes at the 16p11.2 locus is driving a 

group of disorders as opposed to the notion that different genes lead to different symptoms in 

CNV carriers. 

Analyses of cortex anatomy showed cortical thickness reduction in 16p11.2 deletion carriers 

and a similar trend in duplication carriers. This shared feature may be explained by decreased 

IQ and risk for ASD in both deletion and duplication carriers. However, both cortical 

thickness and surface area are correlated to IQ and this relationship changes with age 50. Of 

note, SZ is also associated with widespread cortical thining51. The dissociation between 

cortical surface and thickness with regards to 16p11.2 gene dosage supports the notion of 

distinct genetic mechanisms regulating these cortical anatomy features52,53. As shown in the 

general population and ASD, it is most likely that the 16p11.2 gene dosage effects on brain 

volume are related to changes in total cortical surface52,54,55. Therefore, we refrain from 

drawing conclusions on topology overlap and causal links between regional thickness/surface 

changes and brain volume alterations54. 

In agreement with the known effect of gender in ASD and in carriers of 16p11.2 CNVs 5,56, 

we observe a volume reduction in both cerebellar hemispheres restricted to male deletion 

carriers (Supplementary Fig. 2). This finding supports the notion of differential 

neurodevelopmental effects of genetic variants in males and females as well as mounting 

evidence for cerebellar involvement in intellectual disability, language impairment and ASD 

57 58.  

The reciprocal effects of gene dosage on global metrics of brain volume and cortical surface 

area corroborate previous reports on head size measurements in humans and zebrafish 5,11. In 

the absence of gene dosage-dependent cortical thickness changes, we interpret the effects of 

16p11.2 CNVs on brain volume and cortical surface area as evidence of abnormal 
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neurogenesis 59. TAOK2, MAPK3, MVP, KIF22, ALDOA and KCTD13, are 16p11.2 genes 

previously linked to neurogenesis and/or apoptosis60,61, and could represent candidate genes 

implicated in the control of brain growth.  

Whole brain analysis using continuous measures of mRNA levels further validates results 

using the number of genomic copies (1, 2 or 3), and both approaches identify that the same 

anatomical structures are involved. Given the significant amount of shared variance between 

mRNA levels of the studied genes at the 16p11.2 BP4-BP5 locus we refrain from drawing 

conclusions about potential differential contribution of single genes on brain anatomy.  

One of the anticipated limitations of the study is the inability to acquire imaging data in 

participants with significant behavioral deficits and BMI/waist circumference beyond limits 

of MRI scanning safety standards. Results might not generalize to other 16p11.2 CNV 

carriers with extreme obesity or full-blown clinical symptoms of ASD or SZ. Nevertheless, 

with respect to global cognition, our cohort is highly representative of 16p11.2 with IQ 

measures identical to what has been previously published 4,8. 

Conclusion  
	
In this study, we demonstrate that gene dosage at the 16p11.2 locus modulates specific neural 

circuitry including foremost the reward system. The patterns of brain anatomy changes in 

fronto-subcortical networks could be interpreted as endophenotypes of ASD, SZ and obesity 

associated with 16p11.2 rearrangements in the absence of diagnostic criteria for ASD and SZ. 

The complementary analysis using peripheral measures of gene expression levels brings 

further evidence for the correlation between gene dosage and brain structure. This combined 

approach applied to larger datasets should allow dissection of the relative contributions of 

genes to human behavior and cognition through a fine-grained analysis of human brain 

anatomy. 
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Abstract 
 
Background: Deletions and duplications of the 16p11.2 BP4-BP5 locus are prevalent Copy 

Number Variants (CNVs), highly associated with autism spectrum disorders (ASD) and 

schizophrenia. Beyond language and global cognition, neuropsychological assessments of 

these two CNVs have not yet been reported. Methods: Our study investigates the relationship 

between gene dosage at the 16p11.2 locus and cognitive domains assessed in CNV carriers as 

well as in intrafamilial controls using neuropsychological tools. Results: Beyond the decrease 

of global cognition common to both CNV carriers, we demonstrate contrasting cognitive 

profiles in 16p11.2 deletions and duplications. Taking global cognition into account, deletion 

carriers present with particularly acute deficits in language and executive domains while 

duplication carriers are devoid of specific deficits, showing significantly enhanced 

performance in verbal memory. This is reminiscent of special isolated skills characterized in 

ASD and observed for the first time in individuals with an ASD-associated genetic variant. 

Neuroimaging analyses reveal that measures of inhibition co-vary with neuroanatomical 

structures previously identified as sensitive to 16p11.2 gene dosage. Conclusions:  The 

simultaneous study of reciprocal CNVs suggests that the 16p11.2 genomic locus modulates 

specific cognitive traits in a dosage sensitive manner. Further research is warranted to 

replicate these findings and elucidate the molecular mechanisms modulating these cognitive 

performances.  
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Introduction 
	
Deletions and duplications of the 16p11.2 ~600 kb breakpoints 4-5 (BP4-BP5) region are 

amongst the most frequent causes of neurodevelopmental and neuropsychiatric disorders (1-

5). While both Copy Number Variants (CNVs) are equally and highly enriched in autism 

spectrum disorders (ASD) cohorts, only duplications are associated with schizophrenia (4). 

Cognitive studies in 16p11.2 deletion carriers demonstrate a decrease of ~30 points in global 

cognition (full scale IQ or FSIQ) compared to intrafamilial controls (1, 6). Language 

impairment has been reported in several case series (7, 8) and specific assessments have 

shown below-average performance in comprehension, expression and reading skills with a 

71% rate of speech and language disorder as defined in DSM-IV-TR  (6 , 9). Little is known 

about the cognitive deficits in carriers of the reciprocal duplication: important variability in 

global cognition was occasionally reported and in several instances, with seemingly 

unaffected transmitting parents (8, 10, 11). The duplication has been estimated to decrease 

global cognition by 25 FSIQ points in probands and 16 points in their siblings who carry the 

same CNV (d’Angelo et al., submitted). 

 

While most studies of CNVs investigated deletions and duplications separately using a case 

control design, the simultaneous assessment of reciprocal CNVs of the same genomic region 

provides a unique opportunity to study how the number (1, 2 or 3) of genomic copies (defined 

hereafter as gene dosage) may modulate clinical phenotypes and endophenotypes. We and 

others have previously shown that body mass index (BMI) inversely correlates to the number 

of genomic copies at 16p11.2 locus (1, 8, 12-14). Gene dosage is also negatively correlated 

with global brain volume (15) and patterns of neuroanatomical structures involved in reward, 

language and social cognition circuits have been reported (16).  
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We therefore hypothesized that specific cognitive traits may also correlate with gene dosage 

of the 16p11.2 region, and that this relationship may be mediated by changes in brain 

structure. Our findings suggest that gene dosage of this locus modulates specific cognitive 

domains resulting in impaired as well as enhanced skills after adjusting for IQ in carriers of 

reciprocal CNVs. Analysis of structural neuroimaging data suggests that brain regions 

previously identified as correlating with gene dosage mediate cognitive alterations in 16p11.2 

CNV carriers.  

Methods 
	
	
2.1 Participants 

Participants were taking part in a larger research project on CNVs at the 16p11.2 locus which 

aims at phenotyping a European cohort of 16p11.2 rearrangement carriers. The final dataset 

comprised 56 deletion carriers (31 probands / 25 relatives), 38 duplication carriers (18 

probands / 20 relatives) and 45 intrafamilial controls. Participants’ main characteristics are 

presented in Table 1.  

Inclusion criteria: Presence of a recurrent 16p11.2 deletion or duplication comprising the 

BP4-BP5 region (29.6-30.2 Mb according to the human genome build GRCh37/hg19). 

Controls were non-carriers in the same families. Exclusion criteria: (i) Age < 3 years. 

Eighteen participants who were not able to perform complex cognitive tasks due to low 

cognitive functioning were excluded from the analyses (Table S1 in Supplement). 

Additional deleterious CNVs were identified in one deletion and 5 duplication carriers (Table 

S2 in Supplement). They were not removed from the analyses but their potentially 

confounding effects were taken into account in a sub-analysis. Deleterious CNVs were 

defined as: i) known recurrent genomic disorder or ii) CNV encompassing published critical 
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genomic region or disrupting a gene which is a known etiology of neurodevelopmental 

disorders or iii) rare (<1/1000) and large (>500kb). 

 

Table	1:	Population	characteristics	
 

  Deletion 
 (n = 56) 

Controls 
 (n = 45) 

Duplication 
(n = 38) 

Age in years (mean ± SD) 
[range] 

22.4 ± 15.8♦

[4.8-59] 
32.4 ±15.2 

[3.3-61] 
29.3 ±17.5 

[3.3-65] 

Gender (M/F) 29 / 27 22 / 23 22 / 16 

Handedness (R/L/U) 39 / 10† / 7 41 / 2 / 2 28 / 8† / 2 

Inheritance (De novo/In /U) 11 / 26 / 19 - 6 / 14 / 18 

Kinship (proband / relative) 31 / 25 - 18 / 20 

ASD (n) 1 0 3 

Schizophrenia (n) 0 0 0 

FSIQ (mean ± SD) 72±13.4§ 96 ±14.1 75 ±18.7§ 

NVIQ (mean ± SD) 78 ±11.7§ 98 ±14.3 76 ±15.9§ 

	
SD,	 standard	 deviation;	M,	male;	 F,	 female;	R,	 right;	 L,	 left;	U,	 unknown	 /	 undefined;	 In,	 inherited;	ASD,	
Autism	 Spectrum	 Disorder;	 FSIQ,	 full	 scale	 intellectual	 quotient	 (standard	 score);	 NVIQ,	 non	 verbal	
intellectual	quotient	(standard	score).	
♦	significantly	different	from	the	control	group,	ANCOVA,	post‐hoc	group	comparisons,	p	=	0.007,	Bonferroni	
corrected.	
§	significantly	different	from	the	control	group,	Linear	mixed	model,	ps	<	0.0001.		
†	signiϔicantly	increased	compared	to	the	control	group,	Logistic	mixed	model,	(del:	p	=	0.041;	dup:	p	=	0.03)		
 

The study was reviewed and approved by the local Ethics committee and signed consent 

forms were obtained from participants or legal representatives prior to investigation. 

Participants were assessed at Lausanne University Hospital, Switzerland. More than 87% of 

the CNV probands carriers were referred to the study by the clinical geneticist who had 

initially established the genetic diagnosis in the context of a neurodevelopmental disorder. 

Five probands (3 duplications) were identified in the general population and one duplication 

carrier was referred for psychiatric problems. 
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2.2 Cognitive assessment 

Trained neuropsychologists performed all cognitive assessments. Participants underwent age 

and developmentally appropriate neuropsychological tests assessing overall cognitive 

functioning, fine motor skills, language, memory and executive functions. All z-scores were 

derived from population norms, except where mentioned otherwise. We used the following 

psychometric tests:  

Overall cognitive functioning: The Wechsler Intelligence Scales or Abbreviated Scale of 

Intelligence (17-20) were used to obtain Full-scale intellectual quotient (FSIQ), non-verbal IQ 

(NVIQ) and verbal IQ (VIQ) as outcome measures when available. 

Fine motor skills: The Purdue Pegboard test (21) (≥ age 5) assessed 4 conditions: dominant 

hand, non-dominant hand, bimanual and assembly. Z-scores were used as outcome measures. 

Language: Phonological skills were assessed with non-word repetition (≥ age 5), oromotor 

sequences (≥ age 3) and phonological processing (≥ age 3) from the NEPSY battery (22). Z-

scores were used as outcome measures (for participants > age 14, based on an adult control 

group [n=35]). Participants ≥ age 16 performed a sentence repetition task including low 

frequency words. The outcome score was the number of sentences correctly repeated. Lexical 

skills were assessed with the Wechsler vocabulary subtest (≥ age 4), the Peabody Picture 

Vocabulary Test Revised (PPVT-R, (23), word comprehension, ≥ age 3), semantic (animal, ≥ 

age 3) and phonemic (letter M, ≥ age 5) fluencies. Total z-scores were used as outcome 

measures for word comprehension and word definition tasks, raw scores for verbal fluencies 

(number of words). Comprehension and verbal skills were assessed with a selection of 24 

items of the test for reception of grammar 2 (TROG-2 (24), syntax comprehension, ≥ age 15) 

and the Wechsler similarity subtest (≥ age 7). Total z-score (similarity subtest) and number of 

success (syntax comprehension) were used as outcome measures. Written language was 

assessed through a text reading (PC robbery (25), ≥ age 12) and a spelling task (ROC (26), ≥ 
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age 12). Reading fluency and reading comprehension z-scores were used as outcomes 

measures; the total raw score was used for the spelling task.  

Memory: Verbal short-term memory was assessed using the forward digit span task (18, 19) 

(≥ age 6). The total raw score was used as outcome measure. Verbal long-term memory was 

assessed using the California verbal learning task (CVLT (27), ≥ age 17). Two z-scores were 

used as outcome measure: the total number of words correctly recalled across all 5 learning 

trials (encoding) and the number of words recalled after a 20 minutes delay (delayed recall).  

Visuo-spatial short-term memory was assessed using the forward spatial span task (28, 29)  

(≥ age 6). The total raw score was used as outcome measure. Visuo-spatial long-term memory 

was assessed with the Rey-Osterrieth complex figure test (ROFC (30), ≥ age 5). Z-scores for 

immediate and delayed recall (20 minutes) were used as outcome measures.  

Executive Functions: Working memory was assessed using the backward digit span (18, 19) 

(≥ age 6) and the backward spatial span tasks (28, 29) (≥ age 6). The total raw scores were 

used as outcome measures. Planning skills were assessed with the tower of London test (31), 

(TOL, ≥ age 7). Z-scores for the total correct score and the total move score were used as 

outcome measures. Inhibition skills: Stroop task (32) (≥ age 8) was used to assess verbal 

inhibition. A computerized version of the GoNogo task (33) (≥ age 7) was used to assess 

motor inhibition. Z-scores for response time and raw score for errors number were used as 

outcome measures in both tasks. 

 

2.3 Psychiatric Assessments 

Experienced, licensed psychologists and psychiatrists performed the autism diagnostic 

interview-Revised (ADI-R) (34) and autism diagnostic observation schedule (ADOS) (35) to 

establish a categorical diagnosis in participants presenting symptoms of ASD. All adult 

carriers underwent the diagnostic interview for genetic studies (DIGS) (36). 
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2.4 Magnetic resonance imaging (MRI): data acquisition and processing 

We use structural MRI data acquired for a previously published study including 14 deletion 

carriers (age range 8-53 years, mean age 24 ± 13), 17 duplications carriers (age range 14-58 

years, mean age 36 ± 11) and 23 intrafamilial controls (age range 11-52 years, mean age 34 ± 

11) (16). The three groups did not differ in terms of age and gender (Table S3 in 

Supplement). MRI data was acquired on a 3-T Siemens Trio scanner (Siemens AG, 

Erlangen, Germany) using a standard 12-channel head coil. The protocol consisted of a multi-

echo magnetization prepared rapid gradient echo sequence (ME-MPRAGE: 176 slices; 

256×256 matrix; echo time (TE): TE1: 1.64ms, TE2: 3.5ms, TE3: 5.36 ms, TE4: 7.22 ms; 

repetition time (TR): 2530 ms; flip angle 7°). For structure-function analysis we use the 

default settings processed multi-echo T1-weighted images from the aforementioned study. 

The algorithm consisted of automated tissue classification into grey matter (GM), white 

matter (WM) and cerebrospinal fluid (CSF) using the ‘unified segmentation’ framework (37), 

within SPM12 (www.fil.ion.ucl.ac.uk/spm; Wellcome Trust Centre for Neuroimaging, 

London). Aiming at optimal anatomical precision, data was additionally spatially registered to 

the Montreal Neurological Institute (MNI) space using the diffeomorphic registration 

algorithm (DARTEL) (38). An isotropic Gaussian smoothing kernel (8 mm full-width-at-half-

maximum (FWHM)) was applied by convolution to the GM volume maps (39, 40).  

 

2.5 Statistical analyses 

Neuropsychological data analyses: Variables derived from normative data were converted 

into z-scores [mean (standard deviation, SD) = 0 (1)]. Raw scores of variables without 

available normative data were systematically detrended for age. We performed either linear 

regression or generalized regression analyses depending on the distribution of the data. 

Cognitive outcome measures were used as dependent variable.  
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To investigate the effect of gene dosage on cognition we used linear models with the number 

of genomic copies as a continuous variable (deletion = 1, control = 2, duplication = 3). For 

contrasts between groups, we used post-hoc t-test subsequently corrected for multiple 

comparisons. Uncorrected p-values ≤ 0.005 were considered significant and p-values >0.005 

up to ≤ 0.01 were considered as trends.  Appropriate linear mixed models (LMM) or 

generalized mixed models (GLMM) were performed taking the variable “family” as random 

factor to account for correlated measures within family. We also included in the statistical 

design IQ, gender and their interactions with gene dosage or group in order to control for the 

effects of these variables. These additional covariates were kept in the final models only when 

the effect was significant. Non-carrier participants’ results coming for deletion or duplication 

families were pooled, as they did not differ in term of age, gender and cognitive 

performances. Selected models, estimates and uncorrected p-values are reported in Table 2 

and Tables S4 - S7 in Supplement. Statistical analyses were conducted using IBM SPSS 

(Version 21.0, released 2012; IBM Corp., SPSS Statistics for Windows, Armonk, New York) 

and R 3.0.2 (The R Project for Statistical Computing; http://www.R-project.org/).  

Brain structure and behavior correlation analyses: We tested whether the effects of gene 

dosage on cognitive measures are mediated by changes observed in brain anatomy. Therefore, 

only cognitive measures (z-scores and raw scores detrended for age and IQ) with significant 

differences between CNV carriers and intrafamilial controls were subsequently used for 

regression analysis with brain anatomy. The statistical design included also age, gender and 

total intracranial volume as regressors. Voxel-based statistical analysis of the GM regional 

changes was assessed by creating voxel-wise statistical parametric maps (SPMs) for the 

whole extent of the search volume using the General Linear Model (GLM) and Random Field 

Theory (41). Given that gene dosage negatively correlates with GM volume in language and 

reward-related areas (16), the a priori hypothesis was to test whether the behavioral deficits 
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were associated with an increase of local brain volume. Consequently, one-tailed t-tests were 

used to identify the regions whose volume showed negative correlation with the cognitive 

score.  

We subsequently estimated the degree of overlap between brain areas correlating with 

behavioral scores and the previously identified regions sensitive to gene dosage (16). Clusters 

sharing both effects were obtained with a subtraction of the two statistical maps. We further 

examined how the number of genomic copies interacted with the brain-behavior correlation in 

these regions, using a multiple linear regression analysis of the summed voxel values for each 

group. For all whole-brain analyses, we applied a voxel-level threshold of p < 0.05 after 

family-wise error (FWE) correction for multiple comparisons. Trends were assessed by using 

an auxiliary uncorrected voxel threshold of p < 0.001 (41).  

	

Results 
	
Global cognitive impairment in deletion carriers is consistent with previous reports (1, 6) with 

a 23 points decrease of mean FSIQ compared to controls. Duplication carriers presented 

similar levels of impairment (deletion FSIQ = 72, duplication FSIQ = 75, Table S4 in 

Supplement). Thus, global cognition (Wechsler Intelligence Scale) is similarly decreased in 

both deletion and duplication carriers notably across non-verbal subscales (i.e. Block Design). 

Fine motor skills were decreased in both CNVs after adjustment for NVIQ and age. We 

performed all subsequent analyses adjusting for NVIQ in verbal tasks and FSIQ otherwise 

(Table 2 and Table S5 in Supplement; see Table S6 in Supplement for results not adjusted 

for IQ).  
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Table	2:	Group	contrasts	and	gene	dosage	effect	for	cognitive	measures	adjusting	for	IQ	

	
Std.	Err	‐	Standard	Error;	FSIQ	‐	full	scale	IQ;	NVIQ	‐	non	verbal	IQ;	VIQ	‐	verbal	IQ;	CVLT	‐	California	Verbal	
Learning	Test.		
Significant	p‐values	(corrected	threshold,	p	=	0.005)	are	highlighted	in	bold.	
Linear	mixed	models	were	used	to	account	for	the	correlations	of	measures	within	families.	When	only	one	
family	member	was	 included	 in	 the	 analysis,	 linear	models	were	 performed.	 P‐values	 represent	 post‐hoc	
unpaired	t‐tests	after	assessing	the	group	effect	with	the	ANOVA	analysis.		
	
§	In	the	absence	of	a	main	effect	of	IQ,	the	model	is	not	adjusted	for	IQ.	
͊	positive	estimate:	Deletion	carriers’	score	<	duplication.	
⃰	negative	estimate:	Deletion	or	Duplication	carriers’	score	<	controls.	

 Deletion versus 
Duplication 

Deletion versus 
Control 

Duplication 
versus Control 

Gene 
dosage 

 
Cognitive variables Estimate ͊  

(Std. err) 
P-value Estimate ⃰ 

(Std. err) 
P-value Estimate ⃰  

(Std. err) 
P-value Estimate 

(P-value) 
Language 

Phonological skills 1 

Non-word repetition (z-score)  1.97 
(0.56) 

0.0007  -1.74 
(0.54) 

0.0017  0.23 
(0.64) 

0.73 1.06 (0.0002) 

Oromotor sequences (z-score)  1.85 
(0.63) 

0.002  -2.52 
(0.61) 

1.9e-05  -0.67 
(0.7) 

0.3 1.07 (0.0005) 

Sentence Repetition (age adjusted 
raw score)  

0.79 
(0.25) 

0.0015  -0.75 
(0.24) 

0.0017  0.05 
(0.29) 

0.86 0.44 (0.0003) 

Lexical skills 2 

Word definition (z-score)  0.49 
(0.2) 

0.02  -0.69 
(0.22) 

0.002  -0.19 
(0.24) 

0.41 0.27 (0.009)  

Comprehension and verbal skills 3 

Syntax comprehension (age adjusted 
raw score)  

-0.09 
(0.18) 

0.62 -0.76 
(0.25) 

0.003 -0.85 
(0.27) 

0.002 -0.005 (0.96)  

Written language 4 

Reading fluency (z-score)  1.35 
(0.55) 

0.016  -1.75 
(0.55) 

0.002  -0.4 
(0.6) 

0.51 0.73 (0.012)  

Memory 
Verbal short-term memory 
Forward digit span (age adjusted raw 
score)  

1.58 
(0.42) 

0.0003  -0.8 
(0.48) 

0.09  0.76 
(0.52) 

0.13 0.79 (0.0002) 

Verbal long-term memory 
CVLT encoding (gender adjusted z-
score)  

1.41 
(0.31) 

3e-05  0.07 
(0.33) 

0.82 1.49 
(0.37) 

0.0002 0.65 (0.0001) 

CVLT delayed recall (gender 
adjusted z-score)  

1.39 
(0.34) 

0.0001  0.29 
(0.36) 

0.42 1.69 
(0.41) 

0.0001 0.62 (0.0009) 

Visuo-spatial short-term and long-term memory 5

Executive functions 
Working memory and planning 6 
Inhibition 7 

Stroop number of success (age 
adjusted raw score)  

0.52 
(0.25) 

0.037  -0.82 
(0.26) 

0.001  -0.3 
(0.3) 

0.32 0.31 (0.012)  

GoNogo response time (z-score)  § -0.94 
(0.3) 

0.003  0.31 
(0.29) 

0.28 -0.63 
(0.3) 

0.042  -0.47 (0.003) 

GoNogo number of success (age 
adjusted raw score)  § 

0.99 
(0.37) 

0.007  -0.69 
(0.01) 

0.012  0.29 
(0.4) 

0.45 0.55 (0.002)  

Fine motor skills 8

Purdue non dominant hand (z-score)  0.47 
(0.25) 

0.067  -1.1 
(0.29) 

0.004  -0.63 
(0.3) 

0.038  0.25 (0.067)  
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1‐7	For	space	constraints,	cognitive	variables	showing	no	significant	gene	dosage	effect	and/or	no	significant	
group	differences	(p‐values	corrected)	are	presented	in	Supplementary	Table	5.	
	
1Phonological	 processing;	 2	Word	 comprehension,	 Semantic	 and	 phonemic	 fluencies;	 3	Verbal	 reasoning;	 4	
Reading	comprehension	and	Spelling;	5	Forward	spatial	span	and	Rey‐Osterrieth	Complex	Figure	(immediate	
and	delayed	recall);	6	Backward	digit	span,	Backward	spatial	span	and	Tower	of	London	(total	correct	and	
total	move	scores);	7	Stroop	response	time;	8	Purdue:	dominant	hand,	bimanual	and	assembly	conditions.		
 

Phonology, written language and vocabulary are modulated by gene dosage  

Gene dosage positively correlates with phonology measures such as non-word repetition, 

oromotor sequences and sentence repetition. This effect is mainly driven by the deletion 

carriers who perform worse than controls and duplication carriers while these two later groups 

do not significantly differ (Figure 1A-C). There are also trends for a positive gene dosage 

effect on word definition (p = 0.009) and reading fluency (p = 0.01), mainly driven again by 

deletion carriers performing worse than the two other groups (Table 2). None of the measures 

assessing spelling, verbal fluencies, verbal comprehension and reasoning are impacted by the 

16p11.2 locus except for the syntax comprehension task in which controls outperform both 

deletion and duplication carriers (Table 2 and Table S5 in Supplement). 

 

Verbal short term and long term memory processes are modulated by gene dosage  

All verbal memory measures significantly and positively correlate to genomic copy number. 

The preferential contribution of the deletion or the duplication to this gene dosage effect is 

unclear and varies according to the sub-domains. Remarkably, the duplication carriers 

outperform both deletion carriers and controls in measures of verbal long-term memory 

(Figure 1D-F) while the deletion carriers score worse than duplication carriers on short-term 

memory.  

The 16p11.2 locus does not significantly affect either short- or long-term visuo-spatial 

memory. Of note, we corrected for the main effect of gender present in all groups for verbal 

long-term memory tasks (females > males, Table S7 in Supplement).  
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The 16p11.2 locus modulates inhibition skills but not working memory and planning 

Motor and verbal inhibition measures show a positive gene dosage effect (Figure 1G-I). 

Deletion carriers who perform or tend to perform worse than controls and duplication carriers 

mainly drive this effect (Table 2). We do not observe any group differences in working 

memory and planning skills (Table S5 in Supplement). 

 

	
Figure	1:	Gene	dosage	and	group	comparisons	on	language,	memory	and	executive	
measures	
 

 

Boxplots	represent	 language	measures	of	phonology	 (A‐C),	memory	 (D‐F)	and	executive	 functions	 (G‐I)	 in	
deletion,	 duplication	 carriers	 and	 intrafamilial	 controls.	Higher	 scores	 translate	 into	 better	 performance	
except	for	panel	I	where	better	is	represented	a	shorter	response	time.	The	bold	line	shows	the	median,	the	
bottom	and	top	of	the	box,	the	25th	(Q1)	and	the	75th	(Q3)	percentile,	respectively.	The	upper	whisker	ends	at	
highest	observed	data	value	within	the	span	from	Q3	to	Q3	+	1.5	times	the	interquartile	range	(IQR;	Q3‐Q1),	
lower	whisker	 ends	 at	 lowest	 observed	 data	 value	within	 the	 span	 for	Q1	 to	Q1	 –	 (1.5*IQR).	 Circles	 are	
outliers.	Gene	dosage	effect	(1,	2	or	3	copies)	and	group	contrasts	are	estimated	using	linear	mixed	model	to	
account	 for	 correlated	measures	within	 families	 (A,	B,	D,	G,	H,	 I)	and	 linear	model	when	only	one	 family	
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member	 is	 included	 in	the	analysis	(E	and	F).	Non	 linear	model	was	required	for	C.	Scores	are	adjusted	for	
NVIQ,	age	and	gender	when	 required	 (see	methods).	Significant	post‐hoc	group	 comparisons	 (p‐corrected	
threshold	=	0.005)	are	represented	by	solid	lines	with	exact	p‐values	above,	trends	by	dashed	lines	with	exact	
p‐values	above.		
	
NVIQ	–	non	verbal	IQ;	DEL‐deletion	carriers;	CTRL	‐	intrafamilial	controls;	DUP	‐	duplication	carriers	
 

 

Overall neuropsychological profile 

In order to illustrate the neuropsychological profiles of deletion and duplication carriers, we 

summarize a sample of the cognitive tasks presented above corrected and uncorrected for IQ 

(Figure 2A-B). Carriers’ data were converted into z-scores relative to the intrafamilial 

controls to highlight preserved skills (performance similar to controls after adjusting for IQ), 

specific deficits and enhanced performances (respectively lower and higher performances 

than expected for IQ level). Taken together, the cognitive findings in this cohort of carriers 

(excluding moderate to severe intellectual disability) show that deletion carriers present 

specific deficits in the language and executive domains, while the profile of duplication 

carriers is devoid of particular impairments. Remarkably, duplication carriers show enhanced 

performance in a verbal long-term memory task compared to intrafamilial controls (Figure S1 

in Supplement).  

 

ASD diagnosis and additional CNVs 

We considered possible confounders including a diagnosis of ASD (1 deletion and 3 

duplication carriers), additional deleterious CNVs (1 deletion and 5 duplication carriers) and 

inheritance status in deletion. The sub-analyses performed after exclusion of participants with 

additional CNVs did not change the results (Table S8 in Supplement). Analyses excluding 

participants with ASD also led to the same results. In the deletion group, de novo carriers’ 

performance did not differ from those of the inherited carriers (Table S9 in Supplement).  
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Figure	2:	Neuropsychological	profile	in	16p11.2	deletion	and	duplication	carriers	
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(A)	The	Y	axis	shows	mean	cognitive	residual	scores	for	deletion	(red	circles)	and	duplication	carriers	(blue	
square)	converted	 into	z‐scores	relative	to	the	 intrafamilial	control	group	represented	by	the	black	dashed	
line.	Error	bars	represent	 standard	error	of	 the	mean.	When	appropriate,	 scores	are	adjusted	 for	age	and	
gender.	The	X	axis	 lists	one	task	per	sub‐domain	with	the	most	complete	dataset:	NW	repetition,	non‐word	
repetition;	Word	def,	word	definition;	Word	 compr,	word	 comprehension;	V	 short‐term,	 verbal	 short‐term	
memory;	 S	 short‐term,	 spatial	 short‐term	memory;	 V	 long‐term,	 verbal	 long‐term	memory;	 S	 long‐term,	
spatial	long‐term	memory;	VW	memory,	verbal	working	memory;	Planning,	Tower	of	London	success	score;	V	
inhibition,	verbal	 inhibition	number	of	success;	M	 inhibition,	motor	 inhibition	number	of	success;	FSIQ,	 full	
scale	intellectual	quotient.		
B)	 This	 graph	 represents	 the	 neuropsychological	 profile	 of	 deletion	 and	 duplication	 carriers	 once	 the	
cognitive	residual	scores	(Y	axis)	are	adjusted	for	IQ.	
 

 

Correlation with brain anatomy  

Whole-brain analysis showed a positive correlation between GM volume and the verbal 

inhibition error rate in bilateral insula and transverse temporal gyri (Figure 3 and Table S10 

in Supplement). The subsequent regression analyses (left cluster: r2 = 0.14, p = 0.007; right 

cluster: r2 = 0.24, p = 0.0003) revealed that the effect was mainly driven by deletion carriers, 

who showed the greatest variance (Figure 3B-C). We report a trend (uncorrected p value < 

0.001 for all the clusters) for increased GM volume in the left inferior frontal gyrus, bilateral 

superior temporal gyri and bilateral caudate associated with deficits in two measures related 

to phonology: non-word repetition and reading fluency. Measures of memory did not co-vary 

with any brain structure. 
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Figure	3:	Brain	structure‐behavior	correlation	analysis	between	verbal	inhibition	
score	and	grey	matter	map	
	

	
	
	
	
A)	 Spatial	 overlap	 between	 negative	 linear	
correlation	 with	 Stroop	 score	 (red)	 and	 the	
neuroanatomical	 structures	 previously	 identified	
as	correlating	to	gene	dosage	of	the	16p11.2	locus	
(16)	 (yellow).	 Overlapping	 clusters	 are	
represented	 in	 orange.	 Maps	 are	 thresholded	 at	
the	 p	 <	 0.05	 family‐wise	 error	 corrected	 level.	
Lower	 panels	 correspond	 to	 the	 scatter	 plots	
showing	the	linear	correlation	between	GM	volume	
and	the	Stroop	performance	at	the	clusters	located	
in	the	left	insula	(B)	and	in	the	right	temporal	gyri	
(C).	 Both	 panels	 include	 the	 regression	 line,	
correlation	coefficient	and	p‐value	for	each	cohort.		
	
	

 

Discussion 
 
By assessing carriers of deletion and duplication at the 16p11.2 locus as well as intrafamilial 

controls, our study characterizes gene dosage effects of this genomic region on several 

cognitive domains. After adjusting for global cognition, which is decreased in both CNVs, 

specific cognitive functions including verbal memory, executive and phonological skills show 

a positive correlation with gene dosage. Most surprisingly, duplication carriers show either 

preserved or enhanced cognitive performance, particularly in verbal memory, when compared 

with intrafamilial controls.  

The same gene dosage approach to study cognitive traits was recently investigated in carriers 

of recurrent CNVs using batteries of neuropsychological tests to evaluate spatial working 
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memory, verbal fluency, inhibition and mental flexibility (42). Nevertheless, either the small 

sample size (n=7 for 16p11.2 deletion and duplication carriers respectively) or the small effect 

size (for 15q11.2 BP1-BP2) did not allow for the identification of any correlations between 

cognitive traits and copy number state.  

To date, molecular factors underlying cognitive functions have been investigated in animal 

models for memory. Recent data on mouse models of 16p11.2 reciprocal CNV corroborate 

the gene dosage effect we report for memory skills with duplicated mice performing better 

than wild type mice on an object recognition task (Abrogast et al.; personal communication). 

Also, findings on mouse model report worse performance in deleted mice compared to 

controls (Abrogast et al.; personal communication) (43).These observations in humans and in 

mice suggest that akin to other complex traits such as BMI or brain anatomy, cognitive 

processes may, in humans, co-vary to some extent with molecular mechanisms. Memory 

processes have also been linked to mechanisms regulating long-lasting synaptic potentiation 

and depression. These synaptic mechanisms require burst of local protein synthesis during 

training and stimulation (44). Both mTOR and MAPK3 signalling regulate local synaptic 

protein synthesis, which in turn modulates memory performances in murine models (45, 46). 

The expression levels of MAPK3, which maps within the BP4-BP5 interval and that of mTOR 

pathway members are significantly altered in 16p11.2 CNV carriers (47). These are therefore 

good candidate genes underlying or mediating the correlation between genomic copy number 

and memory performances.  

Both the deletion and the duplication are strongly and equally associated with ASD but our 

study shows that their cognitive profiles are distinct and in some cases opposed. This 

highlights the challenge in studying ASD as a diagnostic category. For example, there is a 

long-standing debate on whether ASD and specific language impairment (SLI) arise from 

similar genetic bases (48). This study demonstrates that the same genomic region 
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predisposing to ASD may or may not have a deleterious effect on structural language 

depending on the nature of the mutation. While language is preserved in the duplication, the 

deletion results in specific phonological deficits in children and partially compensated in 

adulthood. This dissociation between phenotypes observed in reciprocal copy number state is 

also corroborated by a recent study demonstrating that deletions, but not duplications 

encompassing ASD genes are primarily associated with impairments in language domains 

(49).  

Special isolated skills and cognitive strengths are also features defining subgroups of ASD 

(50) and the profile in 16p11.2 duplications is reminiscent of enhanced memory skills also 

reported in ASD (51, 52). We did not identify strengths in the Block Design test, which 

(together with enhanced pitch discrimination not investigated in this study) is the most 

replicated finding in ASD. The findings on the duplication group may represent the first 

example of an ASD-related genetic predisposition leading to specific cognitive strengths. The 

absence of any specific impairment beyond the IQ shortfall in duplication carriers at risk for 

schizophrenia echoes the non-specific cognitive deficit pattern observed in first-episode 

idiopathic schizophrenia (53, 54). Studies also suggest that the risk to develop schizophrenia 

is less likely to appear in CNVs associated with more severe cognitive deficits (55, 56).   

Our results also suggest that neuroanatomical structures previously defined based on their 

correlation to gene dosage at the 16p11.2 locus (16) may mediate alterations in measures of 

language and verbal inhibition, but not memory. These findings nicely dovetail with 

previously reported structural findings positing the insula as a key player in verbal inhibitory 

processes (57, 58), as well as the superior temporal gyrus, and caudate nucleus, implicated in 

SLI (59-61). Larger samples are however required to replicate these results and elucidate any 

specific association within groups. Interestingly, increased volume of the caudate has been 

observed in individuals who carry FOXP2 mutations, which is one of the few genetic forms of 
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SLI studied to date. These mutations lead to severe articulation deficits in word repetition 

measures (62, 63). Our recent work on chromosome conformation suggests that the FOXP2 

and CNTNAP2 genes are amongst the 16p11.2 chromatin interactions (Nicla et al., 

submitted).  

One of the limitations of the study is the exclusion of carriers with moderate to severe 

cognitive impairment (10% of deletion and 31% of duplication carriers) unable to perform the 

complete assessment. Whether these low functioning carriers represent a distinct subgroup 

with different profiles remains therefore unknown. Although we describe a link between 

quantitative aspects of behavior and qualitative anatomical correlates, this study remains blind 

to the directionality of the covariance between genomic copies, brain structure and behavior. 

Our results on language assessments are largely consistent with a previous study reporting 

phonological deficits in the context of general language impairment (6) possibly due to the 

lack of adjustment for NVIQ. The other assessments in our study have not yet been reported 

in 16p11.2 CNV carriers and should therefore be replicated. 

 

Conclusion 

This study suggests that basic cognitive skills may be modulated in a gene dosage sensitive 

manner in humans. Such effects are easily clouded by the global decrease in cognitive 

functioning that affects both deletion and duplication carriers. The strength of this study thus 

lies in the administration of an extensive cognitive test battery in both CNV carrier groups 

and their intrafamilial controls. This allows us to precisely assess cognitive functions relative 

to each participant’s global cognitive level. The enhanced performance in verbal memory and 

similar trends for inhibition skills are reminiscent of special isolated skills characterized in 

ASD and observed for the first time in individuals with an ASD-associated genetic variant. 

This is concordant with animal model data and may point towards the alteration of specific 
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molecular mechanism controlling memory. Further research is warranted to elucidate the 

contribution of specific genes within the 16p11.2 locus by studying the relationship between 

expression patterns of these genes and cognitive tasks, brain anatomy and brain function. 

These approaches may ultimately elucidate the mechanisms affecting specifically 

phonological, verbal memory and inhibition skills in a dose-dependent manner. This 

comprehensive characterization will also guide clinicians in the assessments and care of their 

patients with these CNVs. 
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Abstract 
 
Background: 600kb BP4-BP5 Copy Number Variants (CNVs) at the 16p11.2 locus have 

been associated with a range of neurodevelopmental conditions including autism spectrum 

disorders and schizophrenia. The number of genomic copies in this region is inversely 

correlated with body mass index (BMI): The deletion is associated with a highly penetrant 

form of obesity (present in 50% of carriers by the age of 7 years and in 70% of adults), and 

the duplication with being underweight. Mechanisms underlying this energy imbalance 

remain unknown. Objective: This study aims to investigate eating behavior, cognitive traits 

and their relationships with BMI in carriers of 16p11.2 CNVs. Design: We assessed 

individuals carrying a 16p11.2 deletion or duplication and their intrafamilial controls using 

food related behavior questionnaires and cognitive measures. We also compared these carriers 

with cohorts of individuals presenting with obesity, binge eating disorder or bulimia. Results: 

Response to satiety is gene dosage-dependent in pediatric CNV carriers. Altered satiety 

response is present in young deletion carriers before the onset of obesity. It remains altered in 

adolescent carriers and correlates with obesity. Adult deletion carriers exhibit eating behavior 

similar to that seen in the obese cohort without eating disorders such as bulimia or binge 

eating. None of the cognitive measures are associated with eating behavior or BMI. 

Conclusions: These findings suggest that abnormal satiety response is a strong contributor to 

the energy imbalance in 16p11.2 CNVs carriers and, akin to other genetic forms of obesity, 

altered satiety responsiveness in children precedes the increase in BMI observed later in 

adolescence.  

  



	 76

Introduction 
 
Copy-number variants (CNVs) are stretches of DNA with a deletion or duplication (1). They 

are important contributors to mental illness and affect cognition in general population (2-4). 

CNVs at the 16p11.2 locus (600 kb BP4-BP5 breakpoints; 29.6-30.2 Mb; GRCh37/hg19) 

have been associated with neurodevelopmental and psychiatric disorders including autism and 

schizophrenia (5-8). We and others also demonstrated that the number of genomic copies at 

this locus correlates with Body Mass Index (BMI) and brain volume (5, 9-14). Specifically, 

while deletion carriers present a 43-fold increased risk of morbid obesity, duplication carriers 

have an 8-fold risk of being underweight (12-14). Murine models engineered to carry 

deletions and duplications that are paralogous to the 16p11.2 rearrangements show BMI 

phenotypes that are inverse to those observed in human with deletion and duplication mice 

being under-and overweight respectively (15, 16).  

Obesity has been associated with cognitive as well as reward dysfunction in the literature 

(17). Numerous studies have investigated the relationship between cognition, behavior and 

BMI (18). More specifically, deficits in inhibition and decision-making have been associated 

with higher BMI in both children and adults (19-22). Study of these reciprocal CNVs with 

large effects is a unique opportunity to investigate high risk individuals before and after the 

onset of obesity as well as the relationships with cognitive and behavioral comorbidities. 

Recent studies suggest that diminished response to satiety is a strong contributor mediating 

genetic forms of obesity in childhood (23-26). To date, only one study (27) reported eating 

behavior in 16p11.2 deletion and duplication carriers. Using a parental report questionnaire 

investigating aspects of disinhibited eating, the authors found that the deletion was associated 

with eating in the absence of hunger and that this association was primarily driven by two 

factors: sensitivity to external cues and boredom. Interestingly, these findings were 

independent of parental feeding practices.  
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In this study, we aim to investigate eating behavior traits associated with BMI in both adult 

and child carriers of the 16p11.2 BP4-BP5 CNVs. The main aims were threefold: 1/ Assess 

eating behavior through self- and parent-report in deletion and duplication carriers, as 

compared to controls, 2/ Compare deletion carriers with individuals presenting with obesity or 

binge eating/loss of control disorder or bulimia, 3/ Investigate the relationship between BMI 

and cognition.  

Methods 
 
2.1 Participants 

2.1. Subjects 

The study was reviewed and approved by the local Ethics committee of each site conducting 

the study. Informed written consents were obtained from participants or legal caregivers prior 

to inclusion in the study. Clinical characteristics of the adult and pediatric samples are 

presented in Table 1. 

 

2.1.1. Pediatric samples 

We collected data on 73 deletion carriers (59 families), 42 controls (18 intrafamilial and 24 

extrafamilial) and 39 duplication carriers (31 families) ascertained through two different 

cohorts: 16p11.2 European Consortium and the Experiences of Children with Copy Number 

Variants (ECHO) study in Cardiff, UK (Supplementary Table 1).  

Participants from the 16p11.2 European Consortium were taking part in a larger phenotyping 

project on the deletion/duplication of the 16p11.2 region. Most carriers were referred to the 

study by the clinical geneticist who had initially established the genetic diagnosis (whole 

genome arrays) in the context of a neurodevelopmental disorder. Inclusion criteria: presence 

of a 16p11.2 deletion or duplication comprising the BP4-BP5 region (29.6-30.2 – according to 

the human genome build GRCh37/hg19). Intrafamilial controls were non-carriers sibling from 
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the same family. Extrafamilial controls were recruited in the general population. Intra and 

extrafamilal controls have a BMI z-score between -2.5 and 2.5 standard deviation. Given the 

absence of significant differences between intrafamilial and extrafamilial controls, we merged 

both samples into a single control group for statistical analyses (Supplementary Table 1). 

Exclusion criteria: None beside age < 3 years.  

 

Data was also available from the ECHO study which recruited through medical genetics 

clinics across the UK, various charities, word of mouth and the ECHO study website 

(http://medicine.cardiff.ac.uk/psychological-medicine-neuroscience/areas-research/copy-

number-variant-research/research-projects/). Presence of the 16p11.2 CNV was confirmed 

from medical records and/ or by the laboratory of the Institute of Psychological Medicine and 

Clinical Neurosciences at Cardiff University. Intrafamilial controls were non-carrier siblings 

closest in age to the child with the CNV (one invited per family).  

To examine the specificity of eating behavior in CNV carriers, we compared results with a 

group of 26 children who met criteria for loss of control over eating (LOC) according 

diagnosis criteria adapted for children (28). All children participated in a research project 

(Swiss University Study of Nutrition, SUN) at Fribourg University, Switzerland. Detailed 

description of the study and recruitment methods can be found in Kurz et al. (29). Children 

with LOC were older than deletion carriers (p= 0.005), but there were no difference in gender 

or BMI z-score (Supplementary Table 2). 

 

2.1.2. Adult samples 

We examined a total of 25 adult deletion carriers (21 families), 28 duplication carriers (21 

families) and 38 intrafamilial controls (spouse of carriers from 26 families) from the 16p11.2 
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European Consortium (Table 1). Inclusion and exclusion criteria were the same as the ones 

used for the pediatric sample.  

To examine the specificity of eating behavior in CNV carriers, we compared results to a 

group with Obesity (OB, N= 226), a group with diagnosis of Binge Eating Disorder (BED, 

N= 143) and a group with Bulimia Nervosa (BN, N= 241). They were diagnosed by 

experienced psychologists and psychiatrists according to DSM-5 criteria (30). The three 

cohorts were recruited from the Eating Disorder Unit in the Department of Psychiatry at the 

University Hospital of Bellvitge, Barcelona, Spain.  

Deletion carriers were younger than the OB group but did not differ from the two other 

clinical groups (BN and BED). There was no difference in education level. Deletion carriers 

had a higher BMI z-score compared to the BN cohort but they did not significantly differ 

from the OB or BED groups. Finally, there was a balanced gender distribution in the deletion 

group whereas there were considerably more females in the two clinical and obese groups 

(Supplementary Table 3). 

 

2.2. Anthropometric measures 

BMI z-scores were computed for all data using a gender, age, and geographically matched 

reference population as previously described in Zufferey et al. (14). 

 

2.3. Neuropsychological measures  

Overall cognitive functioning was measured using either the Wechsler Intelligence scales for 

children (WISC-IV) (31), the Wechsler Intelligence scale for adults (WAIS-III) (32) or the 

Wechsler Abbreviated scale of Intelligence (WASI) (33). We used the Full Scale Intellectual 

Quotient (FSIQ) as outcome measure. Verbal inhibition skills were assessed with the Stroop 
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test (34) (≥ age 8) and motor inhibition with a computerized version of the Go-Nogo task (35) 

(≥ age 7). Raw score for errors number was used as outcome measure in both tasks.  

 

2.4. Eating behavior assessment  

2.4.1. Pediatric cohort 

Parent-report was used to assess food related behavior in children or young adults (≤ 20 

years) unable to complete self-report due to low cognitive level.  

Child Eating Behavior Questionnaire (CEBQ, age ≥3) (36): This parent report instrument (35 

items) includes 4 subscales related to children’s food approach behaviors - Food 

Responsiveness (FR), Emotional Over Eating (EOE), Enjoyment of Food (EF), and Desire to 

Drink (DD) - and 4 subscales assessing avoidant-type responses - Satiety Responsiveness 

(SR), Slowness in Eating (SE), Emotional Under Eating (EUE) and Food Fussiness (FF). 

Response to each question is given on a 5-point Likert scale (1 = never to 5 = always). We 

used the mean raw score on each subscale as the outcome measure. 

2.4.2. Adult cohort 

Data on eating behavior were acquired through self-reports on the following measures: 

Eating Disorder Inventory-2 (EDI-2) referral form (≥ age 12) (37): This questionnaire is a 

self-report measure to assess symptomatology of eating problems (3 subscales) and more 

general psychological difficulties (5 subscales). In this study, we only used the subscales 

related to eating problems: Drive for Thinness (DT), Bulimia (B), and Body Dissatisfaction 

(BD). Responses are given using a 6-point Likert scale (1= never to 6= always). We used total 

raw scores of each subscale as the outcome measure.  

Dutch Eating Behavior Questionnaire (DEBQ) – Externality subscale (≥ age 10) (38): This 

10-item subscale assesses whether participants are attracted to food stimuli and tend to eat 
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regardless of the internal state of hunger or satiety. Each item consists of a 5-point Likert 

scale (1 = never to 5 = very often). We used the mean raw score as outcome measure. 

 

2.5. Statistical analyses 

Effect of CNVs on eating behavior traits: To estimate the effect of the 16p11.2 on eating 

behavior, we conducted linear mixed models to compare eating disorder behavior in the 

deletion versus control, deletion versus duplication and duplication versus control, while 

accounting for correlated measures within families (familial clustering). The group 

differences were systematically controlled for age, gender and FSIQ (Supplementary Tables 

4-5) and only significant covariates were included in the final statistical model. Linear 

regression model was used to compare deletion carriers with clinical groups (obesity, BN and 

BED), while controlling for age, gender and education level (Supplementary Table 6).  

Given the high collinearity between BMI z-score and the number of genomic copies, we 

subsequently added BMI z-score as an explanatory variable. Finally, we assessed the 

inheritance factor on eating behavior by introducing inheritance in the statistical model as a 

covariate (de novo or inherited from a parent). 

 

Relationship between BMI, eating behavior scores and cognition within CNV groups: Pearson 

correlation analyses explored the relationship between BMI and cognition (FSIQ, executive 

functions) as well as BMI and eating behavioral traits within a group. We used similar 

analysis to assess the correlation between FSIQ and eating behavior scores. 

 

Bonferroni-corrected p-values were obtained by multiplying the original p-values by the 

number of possible comparisons (n=3): p-values ≤ 0.016 were considered significant in the 

pediatric and adult cohorts when comparing CNVs carriers with controls, whereas p-values ≤ 
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0.0083 were considered significant when comparing adult deletion carriers with the clinical 

and obese groups (n=6 comparisons). Due to missing data, the sample size might differ 

between outcome measures. 

 

Statistical analyses were conducted using IBM SPSS (Version 21.0, released 2012; IBM 

Corp., SPSS Statistics for Windows, Armonk, New York) and R 3.1.1 (The R Project for 

Statistical Computing; http://www.R-project.org/). 

 

Results 
 
Children: Eating behavior differences between CNV carriers and controls 

Child Eating Behavior Questionnaire (CEBQ) scores are described in Supplementary Table 

7. Three out of the 9 CEBQ subscales show differences between deletion carriers and controls 

as well as duplication carriers (Figure 1 A-C, Supplementary Table 8). Deletion carriers 

show lower level of satiety responsiveness, increased responsiveness to food and higher 

sensitivity to emotional overeating compared to the two other groups. As previously reported 

in the literature (6), BMI z-scores are negatively correlated to the number of genomic copies 

(Table 1).  
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Table	1:	Clinical	description	of	the	pediatric	and	adult	samples	
	

Pediatric	sample	 Adult	sample	

	 Deletion	
n=	73	

Control	
n=42	

Duplication
n=39

Deletion
n	=	25

Control	
n	=	38	

Duplication
n	=	28

Age	in	years	
(mean±	SD)	 9.6	±	3.3	 11.1	±	3.1∞	 9.1	±	1	 34.7	±	11.9	 36.6±11.4	 37.5	±12.3	

Gender	
(M/F)	 46/27	 16/26†	 26/13	 12	/	13	 16/	22	 15/13	

BMI	z‐score	
(mean	±	SD)	 1.5	±	1.7	₪	 0.45	±	0.78	 ‐0.4	±	1.5§	 2.8	±	1.3*	 0.4	±	1.2	 ‐0.8	±	1.5	

FSIQ	
(mean	±	SD)	

70	±	15	
[n=62]	

104	±	14‡	
[n=18]	

64±	24	
[n=31]	

74	±	14	 92	±	15¶	 74±	20	

	
p‐values	are	uncorrected	
Pediatric	cohort:	
§	Significantly	different	from	controls	(p	=	0.004)		
₪	Significantly	different	from	the	controls	(p	=1.4e‐05)	and	the	duplication	(p	=	7.4	e‐08)	
∞	Signiϔicantly	different	from	deletion	(p	=	0.014)	and	duplication	(p	=	0.015)		
‡	Signiϔicantly	different	from	deletion	(p	=3.8e‐10)	and	duplication	(p	=	2e‐09)		
†	Signiϔicantly	different	from	deletion	(Fisher	exact	test,	p=	0.012)	and	duplication	(Fisher	exact	test,	p=	0.14)		
	
Adult	cohort:		
*	Significant	different	from	controls	(p	=	2.6e‐9)	and	duplication	(p	=	4.1e‐12)	
�Significantly	different	from	controls	(p=	0.002)	
¶	Significantly	different	from	deletion	(p	=	1.7e‐5)	and	duplication	(p	=	0.0004)	

	
	
 

When BMI z-score is included in the model, differences in satiety responsiveness between 

groups are no longer significant (Supplementary Table 9). None of the other subscales 

(enjoyment of food, emotional undereating, food fussiness, slowness in eating, desire to 

drink) showed significant difference between groups (Supplementary Figure 1 and 

Supplementary Table 8). 
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Figure	 1:	 Gene	 dosage	 and	 group	 comparison	 on	 the	 Child	 Eating	 Behavior	
Questionnaire	(CEBQ)		
 

 

Boxplots	 represent	 scores	 adjusted	 for	 age	 on	 satiety	 responsiveness	 (A),	 food	 responsiveness	 (B)	 and	
emotional	Overeating	 (C)	 in	deletion	 (red),	duplication	carriers	 (blue)	and	 controls	 (green).	The	bold	 line	
shows	the	median,	the	bottom	and	top	of	the	box,	the	25th	(Q1)	and	the	75th	(Q3)	percentile,	respectively.	The	
upper	 whisker	 ends	 at	 highest	 observed	 data	 value	 within	 the	 span	 from	 Q3	 to	 Q3	 +	 1.5	 times	 the	
interquartile	range	(IQR;	Q3‐Q1),	lower	whiskers	end	at	lowest	observed	data	value	within	the	span	for	Q1	to	
Q1	–	 (1.5*IQR).	Significant	group	differences	 (p‐corrected	 threshold	=	0.01)	are	 represented	by	 solid	 lines	
with	 exact	 p‐values	 above.	 Gene	 dosage	 effect	 and	 group	 contrasts	 are	 estimated	 in	 regression	 analyses	
models	(linear	mixed	model).	

 

 

Children who carry a deletion: Relationship between eating behavior, BMI and age 

 Age does not affect satiety responsiveness in deletion carriers whereas BMI z-scores increase 

progressively with age (p= 0.003) as we previously reported (14) (Figure 2A). Satiety 

responsiveness does not correlate with BMI z-score in children ≤10 years but a decrease in 

levels of satiety responsiveness is significantly associated with higher BMI z-score in 

adolescents > 10 years of age (p= 0.003, Figure 2B). The relationship between the satiety 

response and BMI z-score in adolescents is not specific to the deletion group and this 

correlation is also present in controls (p=0.002).  

 

 

 

 



	 85

 

Figure	2:	BMI	z‐score,	age	and	satiety	responsiveness		
 

 

Scatterplot	(A)	represent	age	on	the	X	axis,	satiety	responsiveness	score	on	the	Y	axis	and	BMI	z‐score	on	the	
Z	axis	for	deletion	group.	The	solid	black	line	represents	the	BMI	z‐score	over	the	years	while	the	solid	colored	
line	represents	the	satiety	responsiveness	along	time.	Scatterplot	(B)	show	the	relationship	between	BMI	z‐
score	and	satiety	responsiveness	for	children	and	adolescents	in	deletion	group.	R	squares	(R2)	and	p‐values	
(p≤0.1,	ns	otherwise)	are	provided.	Correspondent	shaded	areas	depict	the	95%	confidence	intervals.	

 

Similar analyses show that increased scores of food responsiveness and emotional overeating 

appear with age and do not correlate with BMI z-score in deletion carriers (Supplementary 

Figure 2). These two measures are correlated across all groups (r2 > 0.4), and both negatively 

correlate with satiety responsiveness in deletion carriers (Supplementary Figure 3).  

We further compared deletion carriers with a group of children with an eating disorder 

defined as loss of control over eating (LOC). We found no differences between these two 

groups on the CEBQ subscales (Supplementary Table 10, Supplementary Figure 4). 

 

Adults: Body perception and eating disorder traits differences between CNV carriers and 

controls 

Deletion carriers show increased body dissatisfaction and drive for thinness compared to 

controls and duplication carriers (Figure 3A-B, Supplementary Tables 11 and 12). Bulimia 
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score (Figure 3C) and externality scale from the DEBQ were comparable between the three 

groups (Supplementary Table 12). When BMI z-score is included in the model, group 

differences are no longer present, suggesting that the above mentioned effects are mainly 

related to BMI (Supplementary Table 13).  

 

Figure	3:	Gene	dosage	and	group	comparison	on	EDI‐2	measures	
	
	

	
 

Boxplots (A-B) represent scores adjusted for gender on Drive for Thinness and Body Dissatisfaction subscales 
(EDI-2) in deletion, duplication carriers and intrafamilial controls. The bold line shows the median, the bottom 
and top of the box, the 25th (Q1) and the 75th (Q3) percentile, respectively. The upper whisker ends at highest 
observed data value within the span from Q3 to Q3 + 1.5 times the interquartile range (IQR; Q3-Q1), lower 
whiskers end at lowest observed data value within the span for Q1 to Q1 – (1.5*IQR). Significant group 
differences are represented by solid lines with exact p-values above. Group contrasts are estimated in regression 
analyses models (binomial mixed model). Stackplot (C) illustrates the percentage of participants with an 
abnormal score (> 2) on the Bulimia scale (EDI-2) in each group. 
 

 

To further understand these eating disorder traits in deletion carriers, we compared them to 

three other groups including individuals with obesity (OB), bulimia (BN) or binge eating 

disorder (BED). Bulimia and Body dissatisfaction scores are similar in deletion carriers and 

the OB group, and both groups score significantly lower than the BN and BED cohorts 

(Figure 4A- B). Interestingly, deletion carriers show a significantly lower drive for thinness 

compared to the three other groups (Figure 4C; Supplementary Table 14 and 15). 
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Subsequently, we investigated whether the specificity of the relationship between BMI z-

score and eating disorder differs across groups (deletion carriers, BN, BED, and OB). A 

differential effect of BMI z-score across groups was only seen for body dissatisfaction: both 

eating disorder groups show a positive correlation between BMI z-score and body 

dissatisfaction (BN: r2 = 0.16, p=6.5e-11; BED: r2 = 0.04, p=0.01) whereas this relationship is 

not seen neither in OB nor in deletion carriers.  

 

Figure	4:	Group	comparison	between	deletion	carriers	and	clinical	groups		
	

	
 

Boxplots (A-C) represent scores adjusted for gender and BMI z-score on Drive for Thinness, Body 
dissatisfaction and Bulimia subscales (EDI-2) in the deletion carriers, “constitutional” obesity (n=226), and 
well known eating disorders such as binge eating disorder (n=143) and bulimia (n=241). The bold line in the 
boxes shows the median, the bottom and top of the box, the 25th (Q1) and the 75th (Q3) percentile, respectively. 
The upper whisker ends at highest observed data value within the span from Q3 to Q3 + 1.5 times the 
interquartile range (IQR; Q3-Q1), lower whiskers end at lowest observed data value within the span for Q1 to 
Q1 – (1.5*IQR). Significant group differences are represented by solid lines with exact p-values above. The solid 
lines flanked by the dashed lines represent the median, 1st and 3rd quartile of the extra-familial group control 
group (n=128). 

 

 

Global cognition, executive functions and BMI 

FSIQ of CNV carriers is about 2 standard deviations lower compared to intrafamilial controls. 

We did not find significant relationships between BMI z-score and FSIQ. Analyses of verbal 

and motor inhibition also showed no relationship with BMI.  There also was no correlation 

between cognitive scores and eating behavior scales in any of the groups.  
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Finally, we sought to explore the potential impact of family environment on eating behavior 

and obesity by comparing families where the deletion is de novo or inherited. In the latter 

case, transmitting parents also present cognitive impairments and obesity. The inheritance 

status was only available in children. Inheritance neither affects BMI z-score nor eating 

behavior. This analysis was not performed in the duplication due to small sample size (de 

novo = 7; inherited = 24, unknown = 7).  

Discussion 
	
The present study investigates the relationship between eating behavior and BMI in 

individuals who carry 16p11.2 BP4-BP5 CNVs, which are associated with obesity or being 

underweight. Children who carry a deletion present altered satiety responsiveness, which is 

already present before any diagnosis of obesity. The correlation between response to satiety 

and BMI z-score becomes significant in adolescents supporting the notion that satiety 

response in young deletion carriers is associated with future increase in BMI z-score. 

Evidence of the relevance of satiety responsiveness has been documented by longitudinal 

studies showing that appetitive traits in infancy are correlated with subsequent weight gain 

(39, 40). Our findings are also consistent with data on the relationship between satiety/satiety 

responsiveness and genetic factors associated with obesity (24, 26, 41). Recent studies in the 

general population using polygenic risk scores demonstrated that common genetic risk for 

higher BMI also correlates with satiety responsiveness in children even after the exclusion of 

FTO and MC4R, two major genes associated with obesity (25). Along with our results, this 

suggests that genes that are risk factors for obesity might act through appetitive mechanisms. 

 

Although we interpret our results as a primary effect of satiety, we also show alterations in 

food responsiveness and emotional overeating, two components related to reward sensitivity. 

A previous study on 16p11.2 deletion carriers also reported subjective alteration of reward 
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(eating in the absence of hunger and sensitivity to boredom or external cues in deletion 

carriers) (27). We recently demonstrated that CNV in the 16p11.2 region is associated with 

altered brain structures (orbitofrontal cortex, insula, putamen and thalamus) implicated in 

Reward (9). However, a large body of research has demonstrated that satiety influences the 

subjective value of reward (42). Our current interpretation of this data is that increased 

responsiveness to food and emotional overeating observed in 16p11.2 deletion carriers may 

be the consequence of altered satiety response. 

 

Adult deletion carriers do not present with eating disorder as defined in the DSM-5 (BN, 

BED). Body dissatisfaction and bulimia symptoms in deletion carriers are equal to that 

observed in individuals in the obese group and contrast with behaviors shown by BN and 

BED participants. Interestingly, deletion carriers present with significantly lower drive for 

thinness compared to the obese group with similar BMI. Future studies looking at personality 

traits known to positively correlate with drive for thinness (e.g. harm avoidance, anxiety) (43) 

will improve our understanding of this difference.  

 

Although several studies have demonstrated a correlation between BMI and executive 

dysfunction in obesity, we show no association between BMI z-score and overall cognitive 

functioning. These results replicate earlier reports in 16p11.2 CNV carriers (14). The fact that 

LOC children and deletion carriers do not differ on any of the behavioral CEBQ dimensions 

suggests similar underlying mechanisms for their energy imbalance. Similarly, we did not 

find any relationship between BMI z-score and inhibition, corroborating previous findings in 

extreme weight conditions such as anorexia nervosa and obesity (20). This is analogous to 

findings for the 22q11.2 deletion CNV showing that psychopathology and cognitive deficits 

are independent sequelae (44).  
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One of the limitations of this work is our reliance on parent- and self-report ratings of eating 

behavior, which are subjective in nature. Possible under- or over-reporting on these measures 

would have implications for our analyses on BMI z-scores. The lack of longitudinal data 

prevents us from concluding how response to satiety evolves over time. Furthermore, the 

measures of eating behavior varied between the pediatric and adult cohorts. However, the 

study of a high-risk pediatric cohort offers the possibility to explore behavioral phenotypes 

that are not the consequence of long-standing obesity. We observed fewer significant effects 

of the duplication on eating behaviors that may be due to smaller sample size of the 

duplication group. 

 

To conclude, our findings provide further insights into the behaviors underlying or associated 

with energy imbalance in 16p11.2 CNV carriers. Altered satiety response is potentially a 

primary mechanism contributing to later obesity in deletion carriers but co-occurring changes 

in the reward system may also play a role. Study of these reciprocal 16p11.2 CNVs and how 

they affect clinical traits is a powerful tool to shed light on common phenotypes such as 

obesity. For clinicians, a comprehensive characterization of eating behavior will guide care of 

patients presenting with this genetic disorder. 
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1. Summary of the results 
	
This thesis work shows that careful characterization of recurrent and reciprocal CNVs allows 

to investigate how a particular genomic locus may modulate cognitive, behavioral and 

intermediate traits in humans.  

Our neuroimaging study demonstrates that gene dosage inversely correlates with global brain 

measures (total intracranial, grey and white matter volumes) as well as specific brain regions 

including reward, language and social cognition circuits. These data also show that well-

established signatures of ASD and schizophrenia (such as changes in the putamen and insula) 

are identified in 16p11.2 CNV carriers in the absence of either an ASD or schizophrenia 

diagnosis.  

Our investigation of cognitive traits in 16p11.2 carriers (FSIQ > 55) shows that this locus 

modulates specific domains including language, memory and inhibition. While the deletion is 

associated with deficits in language and executive functions, the neuropsychological profile of 

duplication carriers is devoid of specific weaknesses and even shows enhanced performances 

in memory with results above what is expected for their global cognitive functioning. 

Investigation of eating behavior shows that the number of genomic copies at the 16p11.2 

locus modulates satiety and food responsiveness. Akin to other genetic forms of obesity, 

abnormal satiety in children seems to reflect one of the underlying mechanisms associated 

with later onset of obesity.  
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2. Gene dosage and traits correlated to gene dosage 
	
This project is one of the first attempts to systematically investigate the effect of gene dosage 

on brain structure, cognition and behavioral traits in humans. The impact of gene dosage on 

neuro-cognitive phenotypes has been previously hypothesized in case series (Merla et al., 

2010; Van der Aa et al., 2009) but sufficiently powered cohorts of deletion and reciprocal 

duplication carriers were not available before the advent of genome wide analyses.  

Stefansson et al.	 (Stefansson et al., 2013) were the first to report a negative correlation 

between gene dosage at the 15q11.2 BP1-BP2 locus and volume of regional structures defined 

by recent meta-analysis of first episode psychosis. Deletion carriers at risk for developing 

schizophrenia showed reduced volume in the perigenual anterior cingulate cortex, the insula 

and supra-marginal gyrus and in the temporal white matter. Duplication carriers showed 

reciprocal changes. A neuroimaging study of 16p11.2 CNV carriers (Qureshi et al., 

2014)conducted in parallel with our efforts described a gene dosage effect on global brain 

volume in a pediatric cohort of 16p11.2 CNV carriers without clear regional effects except for 

opposing volume differences in the thalamus. We confirm in our MRI study that the number 

of genomic copies at the 16p11.2 locus modulates global brain volume of grey and white 

matter and further demonstrate that this genomic region modulates specific brain structures 

involved in reward and language circuits (Maillard et al., 2014). 

 

The same gene dosage approach was applied by Stefansson et al. (Stefansson et al., 2013) to 

cognitive traits in carriers of 15q11.2 BP1-BP2 and 16p11.2 CNVs but either the small 

sample size (for 16p11.2) or the small effect size (for 15q11.2) did not allow to identify any 

correlations between cognitive traits and copy number state. To our knowledge, our 

neurocognitive study demonstrates for the first time that cognitive and behavioral traits may 

be under gene dosage dependence. Our findings are corroborated by studies in mice models of 
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16p11.2 CNVs. Recent data on mouse models of 16p11.2 reciprocal CNV (Abrogast et al., 

submitted) corroborate the gene dosage effect found for memory skills in our 16p11.2 

carriers’ cohort with duplication mice performing better than wild type and deletion mice in 

an object recognition task. 

Molecular factors underlying the neurobiology of cognitive functions have been studied in 

model organisms (Costa-Mattioli and Monteggia, 2013). In particular, memory has been 

linked to long-lasting synaptic potentiation and depression and these synaptic mechanisms 

require burst of local protein synthesis during training and stimulation. Both mTOR and Erk1 

(MAPK3) signalling regulates local synaptic protein synthesis which in turn modulates 

memory performances in murine models (Costa-Mattioli and Monteggia, 2013; Stoica et al., 

2011). MAPK3, which maps within the BP4-BP5 interval and mTOR pathway members, 

which expression levels are altered by 16p11.2 CNVs (Migliavacca et al., submitted) are 

candidates genes underlying the correlation between memory tasks and genomic copy 

number. 

3. Elucidating contribution of individual genes in CNVs 
	
The contribution of individual genes to cognitive and behavioral phenotypes is still 

unresolved in 16p11.2 rearrangements as in many CNVs, including 22q11.2 and Williams 

syndrome, suggesting that CNVs may be complex/oligogenic neurodevelopmental disorders 

in and of themselves (Jarvinen-Pasley et al., 2008; Squarcione et al., 2013). To investigate the 

contribution of promising candidates gene in the 16p11.2 region, we tested if changes in 

mRNA levels of 18 candidates genes measured in lymphoblastic cell lines mediated the effect 

of gene dosage on brain anatomy (Maillard et al., 2014). Because gene expression was highly 

correlated to gene dosage (70% of the variance of mRNA levels is explained by copy number) 

we were not able to identify the contribution of individual genes or sets of genes to specific 

anatomical patterns. However, this approach remains promising provided that genes under 
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investigation are expressed in peripheral tissue and larger datasets are assembled. Future 

studies might use a similar approach to further investigate the individual contributions of 

genes within this region.  

4. Genetic forms of obesity and eating behavior traits 
	
Obesity is a highly heritable trait and many genes have been associated with BMI (Speliotes 

et al., 2010). Alterations of satiety have been described in genetic forms of obesity (Acosta et 

al., 2014; Llewellyn et al., 2014; Wardle et al., 2008). A study conducted in 10 year old 

children of the general population has shown that a polygenic risk score including the top 28 

common SNPs validated in genome-wide association studies was correlated, as expected, to 

BMI and also satiety responsiveness (Llewellyn et al., 2014). This correlation with satiety was 

also present even after the exclusion of FTO and MC4R (two genes previously associated with 

obesity) from the score, indicating that this relationship may be a general phenomenon among 

genes involved in obesity. Our findings support this notion by showing a 16p11.2 gene dosage 

effect on satiety responsiveness in children. Remarkably, altered measures of response to 

satiety are present in young children before the onset of obesity suggesting that altered satiety 

response may mediate the association between the deletion and obesity. This has been 

observed in longitudinal studies showing that appetitive traits in infancy were associated with 

weight gain in early childhood (Parkinson et al., 2010; Van Jaarsveld et al., 2011). 

However, while these data strongly point towards dysregulation of appetitive mechanisms, it 

could also reflect disruption of any peripheral or central nodes of this energy balance loop.  

Our understanding of the mechanisms underlying obesity in 16p11.2 deletion carriers remains 

extremely limited. Mechanisms could implicate any central or peripheral primary alteration as 

well as secondary aggravating effect such as alterations of the gut microbiota, which we are 

currently investigating. 
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5. Shared genetic factors between mental disorders 
	
Genome wide association studies investigating rare and common variants in ASD and 

schizophrenia have documented shared genetic factors between these two mental disorders 

(Doherty and Owen, 2014; Malhotra and Sebat, 2012) although these two conditions do not 

segregate in the same families (Crespi and Badcock, 2008). Interestingly, at least four 

different loci (1q21.1, 16p11.2, 22q11.2, 22q13.3) show a reciprocal association with ASD 

and schizophrenia (Malhotra and Sebat, 2012). Namely, if the deletion is associated with one 

of the two conditions, the duplication is preferentially associated with the other. In addition, 

any given CNV is rarely associated with both ASD and schizophrenia. Recently, data has 

shown that the 22q11.2 duplication, which is associated with ASD also protects against 

schizophrenia (Rees et al., 2014). This has led to the hypothesis that these two conditions may 

be manifestations of opposite alterations of the same mechanism (Crespi and Crofts, 2012). 

Consistent with this notion, we show in our MRI study a significant overlap between the 

pattern of brain anatomy modifications seen in 16p11.2 CNVs with well-established structural 

signatures of ASD and schizophrenia. Notably, opposing alterations in the reward system 

structures, influenced by 16p11.2 gene dosage, are also the main structural changes shared by 

these disorders (Adolphs, 2003; Cheung et al., 2010; Nickl-Jockschat et al., 2012). 

6. Obesity and mental disorders 
	
Obesity is a frequent comorbidity of neuropsychiatric disorders (Chen et al., 2010) including 

ASD, ADHD and DD/ID. This association occurs independently of socio-economic factors 

suggesting potential common underlying mechanisms in these diseases (Broder-Fingert et al., 

2014; Chen et al., 2010; Cortese et al., 2008; Curtin et al., 2010; Doody and Doody, 2012; 

Pagoto et al., 2009).  It has been hypothesized that the reward system, and the striatum in 

particular, may underlie the co-occurrence of metabolic and psychiatric manifestations 

(Grimm et al., 2014; Kenny, 2011; Lopresti and Drummond, 2013; Pannacciulli et al., 2006). 
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Notably, dysfunction in the reward system and dopaminergic circuits have been found in 

obesity, ASD and schizophrenia (Avena and Bocarsly, 2012; Dichter et al., 2012; Fagundo et 

al., 2012). Consistently, our MRI study demonstrates that gene dosage at the 16p11.2 locus 

modulates neural circuitry and in particular the reward system. Portmann et al. (Portmann et 

al., 2014) recently provided further evidence for the involvement of the basal ganglia, 

striatum and dopaminergic circuitries in a mouse model of 16p11.2 deletion syndrome. 

Changes in reward-related behavior have not yet been investigated in 16p11.2 CNV carriers 

and will be the focus of future studies.  

7. Predictive value of the 16p11.2 CNVs on the clinical phenotype  
	
The predictive value of a genetic variant is important for clinicians to provide appropriate 

counseling. Ultimately, relevant genetic variants will also be actionable and will guide 

decision in medical care. One of the most challenging aspects of these newly identified CNVs 

is the degree of phenotypic variability. While the 16p11.2 deletion carriers’ profile is fairly 

consistent, the duplication carriers’ profile is more variable and complex, which is in 

accordance with the large phenotypic variance reported in duplications of most genomic 

regions (Malhotra and Sebat, 2012). We have observed the same phenomenon in our cohort: 

While deletion carriers present with a decrease in FSIQ distribution without any change in the 

variance (a simple shift of the mean), the distribution of FSIQ in duplication carriers 

demonstrates increased numbers at both extremes of the FSIQ distribution. There is a 19.4-

fold increase in duplication carriers with very low FSIQ ≤ 40 compared to 1/200 in deletion 

carriers as well as a 2.0-fold enrichment of duplication carriers above population average 

(FSIQ > 100) versus 20/200 of the deletion carriers (d’Angelo, submitted). Through our 

studies we were able to describe the neuropsychological and eating behavior phenotypes in 

16p11.2 CNV carriers showing increased cognitive variability in duplication along with an 

increased risk for language disorder in deletion carriers that can guide clinicians with the 
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counseling.  

8. Limitations 
	
Proband participants were recruited through a network of geneticists who saw the patients in 

the context of a neurodevelopmental disorder. Participants were thus symptomatic and may 

not fully represent the whole range of phenotype associated with 16p11.2 rearrangements. In 

contrast, the adults recruited in our studies are mostly transmitting parents which is a specific 

criteria selecting against significant neuropsychiatric disorders. Recruiting adult participants 

with psychiatric disorders was particularly difficult, as these patients are not referred to 

geneticists for etiological investigations. Other recruitement strategies (web-based recruitment 

method) used by our collaborators at the Simons’ Foundation for the Simon’s VIP cohort 

(USA) was associated with specific biases and selected strongly against disabilities in parents. 

As a result, they were unable to ascertain families where the deletion was inherited (Zufferey 

et al., 2012). Using multiple ascertainment methods will allow us to provide a comprehensive 

cognitive and behavioral characterization of the 16p11.2 population. Although some 

phenotypes (e.g. cognition) are sensitive to the ascertainment method, others seem more 

robust across cohorts such as the effect on BMI z-score and head circumference (Zufferey et 

al., 2012).  

Another anticipated limitation in the studies was the sample size. We were unable to acquire 

MRI data on participants with significant behavioral deficits and BMI/waist circumference 

beyond MRI scanning safety standards meaning that we were unable to scan participants with 

morbid obesity. In the cognitive study we were only able to collect data on a small group of 

severely affected individuals (mostly duplication carriers) impeding us from running 

statistical analyses on this subset of participants. Expanding the 16p11.2 deletion and 

duplication cohorts would allow more statistical power to study subgroups based on variables 

such as severity of the symptoms or kinship. Finally, we only have cross-section data on the 
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participants. Longitudinal studies would be of great interest to follow the natural history of 

brain development and clinical traits.  

Conclusion	
	
Study of reciprocal CNVs is a powerful method to investigate gene dosage effects on brain 

structure and clinical traits as well as to explore phenotypes commonly associated in 

neurodevelopmental disorders. Careful investigation of deletion and reciprocal duplication 

allowed us to demonstrate that global brain volumes and specific brain regions were 

modulated by gene dosage, further supporting what had previously been shown with measure 

of head circumference. We also reported for the first time a gene dosage effect on behavior 

and specific cognitive measures.  

This novel approach allows for understanding of how a trait may be modulated by a 

molecular mechanism and is relevant for neuropsychiatric disorders, which in this context 

may be studied as a set of dimensional measures. Future studies including transcription and 

biomarker data in larger samples will help understand the underlying mechanisms and 

whether these are specific to the 16p11.2 or shared by other genetic etiologies associated with 

ASD and schizophrenia. On the more practical side, our comprehensive characterization of 

the differential neuropsychological profile and food related behaviors of the duplication and 

deletion carriers will guide clinicians in the assessments and care of their patients presenting 

with these CNVs.  
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Appendix	1	
 
Supplemental Material : The 16p11.2 locus modulates brain structures common 
to autism, schizophrenia and obesity 
 

 
Supplementary Table 1: DSM-IV-TR diagnoses 

 
 Deletion 

N= 14 
Duplication 

N=17 

Communication 
disorder (315.31; 
315.32; 315.39) 

6 0 

Intellectual disability 
(317; 318) 

4 3 

Depression (296.3) 2 5 
Posttraumatic stress 
disorder (309.81) 

1 0 

Disruptive behavior 
disorder NOS (312.9) 

1 0 

Pathological gambling 
(312.31) 

0 1 

ASD (299) 0 2 

Social phobia (300.23) 0 2 
Bipolar disorder 
(296.6) 

0 1 

Anxiety disorder 
(300.01; 300.22) 

0 4 

DSM-IV-TR 1 diagnosis code is given in parentheses. 
 

Supplementary Table 2: Neuroradiological findings 
 

 Deletion 
N= 14 

Controls 
N=23 

Duplication 
N=17 

Arnold Chiari 
malformation, type 1 

3 0 0 

Posterior fossa 
arachnoïd cyst 

0 1 1 

Enlarged cisterna 
magna 

0 2 0 

Corpus callosum 
hypoplasia 

0 0 1 

Ventricular 
asymmetry 

1 0 2 

Enlarged ventricles 0 0 1 
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Legend: A senior board certified neuroradiologist reviewed all MRI images for brain 
abnormalities 
 
 
Supplementary Table 3: Global brain metrics: adjusted mean values for age and gender 

 
 Deletion 

N=14 
Controls 

N=23 
Duplication 

N=17 
Gene dosage 

effect 

 Mean ± SD  
HC z-score 0.73  ± 1 ¶ -.38 ± .96 -.73 ± 1.4 p= 0.0001 
GM (mm3) 792  ± 32 ♦ 762  ± 46 743 ± 69 p= 0.009 
WM (mm3) 468  ± 41 ♦ 454 ± 40 412  ± 46§ p< 0.0001 
CSF (mm3) 289 ± 30 285 ± 34 274 ± 40 ns 
TIV (mm3) 1563  ± 50 ♦ 1534 ± 97 1471  ± 127 p= 0.004 
CT (mm) 2.47 ± 0.07§ 2.53 ± 0.08 2.48 ± 0.07 ns 
CS (m2) 0.21 ± 0.01♦ 0.21 ± 0.01 0.19 ± 0.014§ p=0.009 

 
Legend:  Gene dosage effect tested with a linear regression analysis using the number of copies 
as a numerical variable. Results are presented uncorrected for multiple testing. 
 
¶ significantly different from the two other groups, p < 0.05 
§ significantly different from the control group, p < 0.05 
♦ significantly different from duplication carriers, p < 0.05 
 
HC - head circumference; GM - gray matter; WM - white matter; CSF - cerebrospinal fluid; 
TIV - total intracranial volume; CT - cortical thickness, CS - cortical surface area. 
 
 
 
 
Supplementary Table 4: Correlations between BMI z-score and global metrics 
 
 R p-value 

CS 0.165 0.236 
CT -0.103 0.465 
GM 0.367 0.008 
WM 0.233 0.094 
TIV 0.323 0.019 
CSF 0.118 0.403 

Legend: Correlations between BMI z-scores and global metrics adjusted for age and gender on 
the whole sample (n=54). Uncorrected p-values < 0.05 are highlighted in bold. 
CS - cortical surface area; CT - cortical thickness; GM - gray matter; WM - white matter; TIV - 
total intracranial volume; CSF - cerebrospinal fluid. 
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Supplementary Table 5: Voxel-based morphometry results 
 
 

Regions Side MNI coordinates 
Peak     

T-value 
  x y z  

GRAY MATTER1

DEL > CTRL > DUP      
Anterior insula, putamen, caudate 

 
L 
R 

-29 
30 

9 
9 

12 
10 

6.98 
8.03 

Superior temporal gyrus & 
supramarginal gyrus 

L 
R 

-38 
37 

-34 
-27 

22 
9 

5.60 
8.03 

Fusiform gyrus L -14 -57 1 5.35 
Orbit-frontal cortex L 

R 
-21 
18 

17 
18 

-17 
-21 

5.83 
5.37 

Medio-dorsal thalamus L 
R 

-9 
6 

-24 
-25 

0 
1 

4.80 
5.53 

Calcarine  & lingual sulcus 
 

L 
R 

-23 
18 

-60 
-67 

10 
3 

4.71 
4.95 

Inferior, middle and superior 
occipital gyrus 

R 21.0 -97.5 7.5 5.74 

DEL > CTRL      
Anterior insula, putamen, caudate* 

(*L: p=0.054) 
L 
R 

-32 
31 

9 
12 

15 
15 

5.09 
6.40 

Superior temporal gyrus, 
supramarginal gyrus 

L 
R 

-38 
42 

-34 
-28 

24 
25 

8.66 
7.94 

Area triangularis L -51 20 -5 5.96 
Calcarine sulcus, cuneus, inferior 

and middle occipital gyrus, lingual 
gyrus 

R 20 -93.0 10 5.16 

CTRL > DUP      
Caudate 

 
L 
R 

-20 
17 

14 
14 

10 
19 

3.76 
4.58 

Putamen 
 

L 
R 

-27 
30 

8 
8 

10 
9 

3.60 
4.31 

DEL < CTRL < DUP      
Lobule VIII of cerebellar 

hemisphere, crus II of cerebellar 
hemisphere, flocculus 

R 24 -50 -62 5.23 

Middle temporal gyrus L -51 -36 4 7.42 
Supramarginal gyrus L -44 -51 22 5.58 

Lobule VIII of cerebellar 
hemisphere, lobule VIIb of cerebellar 

hemisphere 
L -33 -69 -55 4.76 

Lateral fusiform gyrus L -39 -52 -14 5.03 
DEL < CTRL      

Lobule VIII of cerebellar 
hemisphere, crus II of cerebellar 

hemisphere 

L 
R 

-27 
29 

-66 
-72 

-57 
-57 

4.56 
4.86 
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Middle temporal gyrus 
 

L 
R 

-51 
48 

-36 
-30 

3 
-8 

7.25 
5.76 

WHITE MATTER2

DEL > CTRL > DUP      
Inferior fronto-occipital fasciculus, 

forceps minor, anterior thalamic 
radiation, superior longitudinal 

fasciculus, cingulate 

L 
R 

-40 
42 

25 
38 

4 
-6 

7.36 
4.72 

Forceps major, superior longitudinal 
fasciculus, inferior fronto-occipital 

fasciculus, anterior thalamic 
radiation 

L 
R 

-39 
42 

-30 
-42 

7 
10 

6.77 
5.01 

Inferior and superior longitudinal 
fasciculus 

L 
R 

-27 
27 

-70 
-61 

16 
19 

5.32 
5.79 

Inferior fronto-occipital fasciculus, 
uncinate fasciculus, cingulate, 

anterior thalamic radiation 

L 
R 

-20 
26 

25 
27 

-12 
-12 

5.32 
4.77 

DEL > CTRL      
Forceps major, inferior and superior 

longitudinal fasciculus, anterior 
thalamic radiation, cingulate 

L 
R 

-20 
27 

-76 
-60 

12 
19 

5.88 
5.82 

FRACTIONAL ANISOTROPY IN GRAY MATTER3

DEL > CTRL > DUP      
Middle and superior temporal gyrus 

 
L 
R 

-56 
60 

-36 
-39 

-1 
4 

6.27 
4.49 

Lateral fusiform gyrus 
 

L 
R 

-39 
39 

-49 
-49 

-14 
-11 

5.54 
5.14 

Middle occipital gyrus L -24 -90 7 5.54 
DEL > CTRL      

Middle temporal gyrus 
(*: p=0.067) 

L 
R* 

-56 
58 

-36 
-37 

-2 
4 

6.89 
4.18 

Lateral fusiform gyrus L -41 -49 -14 5.77 
MEAN DIFFUSIVITY IN GRAY MATTER4

DEL < CTRL < DUP      
Caudate*(L p=.052, R p=0.88) L* 

R* 
-18 
15 

23 
21 

0 
-2 

5.77 
5.20 

Middle and transverse temporal 
gyrus 

L 
R 

-60 
57 

-30 
-13 

-7 
-12 

5.10 
5.37 

Anterior cingulate gyrus L/R 0 39 0 4.43 
CTRL < DUP      

Caudate 
 

L 
R 

-15 
12 

21 
21 

-2 
-2 

5.36 
5.66 

 
Legend: Significant anatomical structures included in the statistical maps (FWE correction, 
cluster level, p<0.05). Trend (p< 0.09) are indicated by a *. 
1 No significant result for the pairwise comparison [CTRL< DUP]. 
2 No significant result for the following pairwise comparisons: [CTRL > DUP] or [DEL < 
CTRL < DUP] or [DEL < CTRL] or [CTRL < DUP]. 
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3 No significant result for the following pairwise comparisons: [CTRL>DUP] or [DEL < CTRL 
< DUP] 
4 No significant result for the following pairwise comparisons: [DEL< CTRL] or [DEL > 
CTRL > DUP]. 
Additionally, there are no significant results for FA or MD in white matter. 
DEL – deletion carriers; CTRL – intrafamilial controls; DUP – duplication carriers. 

 
 
Supplementary Table 6: Surface-based results 
 

Regions Side 
Cluster extent 
(nb vertices) 

Cluster 
p-value 

VBM 
overlap 

     

CORTICAL THICKNESS1 

DEL > CTRL > DUP     
Insula and Supramarginal gyrus R 4451 < 0.001 + 

Inferior pre- and postcentral gyrus R 4659 < 0.001  
Superior postcentral gyrus R 3053 0.005  

Supramarginal gyrus L 2273 0.03 + 
DEL > CTRL     

Inferior pre- and postcentral gyrus  
and supramarginal gyrus 

R 
3136 0.007 + 

Superior parietal gyrus L 2084 < 0.001  
Superior postcentral gyrus L 1876 0.04  

DEL < CTRL < DUP     
Orbitofrontal and rostral middle 

frontal gyrus 
R 

5193 < 0.001  

Middle temporal and fusiform 
gyrus 

L 
3330 0.002 + 

Orbitofrontal cortex L 3180 0.002  
Inferior temporal cortex R 2696 0.005  

Superior precentral and prefrontal 
gyrus 

R 
2913 0.008  

Lateral occipital cortex L 2191 0.04  
DEL < CTRL     

Middle temporal and fusiform 
gyrus 

L 
4115 < 0.001 + 

CTRL < DUP     
Medial obitofrontal cortex L 2778 0.02  

SURFACE AREA2 
CTRL < DUP     

Rostral middle frontal gyrus and 
frontal pole 

R 
2976 < 0.001  

Insula L 2256 0.002 + 
 

Legend: Significant cortical structures for cortical thickness and surface area (p value after 
FWE correction, cluster level) 
1 For the pairwise comparison [CTRL > DUP], there are no significant results surviving FWE 
correction. 
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2 For the following pairwise comparisons: [DEL > CTRL > DUP] or [DEL > CTRL] or [CTRL 
> DUP] or [DEL < CTRL < DUP] or [DEL < CTRL], there are no significant results surviving 
FWE correction. 
DEL – deletion carriers; CTRL – intrafamilial controls; DUP – duplication carriers. 

 
Supplementary Table 7: Shared brain structure alterations in ASD, SZ and 16p11.2 

 
Side Region MNI coordinates ASD SZ Overlap with 

16p11.2 CNV 
carriers 

  X Y Z % %  

Decrease in Gray Matter 

L Putamen -24 4 1 99.8 0.2 Yes 

R Parahippocampal Gyrus 31 -15 -20 42.9 57.1 No 

R Posterior Cingulate 24 -57 16 41.1 58.9 Yes 

R Putamen 31 2 1 38.9 61.1 Yes 

R Insula (anterior) 43 -20 -8 23.1 76.9 No 

L Thalamus -6 -19 9 23.1 76.9 Yes 

R Insula (posterior) 36 -15 13 22.6 77.4 Yes 

L Precuneus/Cingulate 2 -43 36 0.4 99.6 No 

R Cingulate Gyrus 12 27 28 0.2 99.8 No 

L 
Insula/Inferior Frontal 

Gyrus 
-40 25 -6 0.1 99.9 No 

L Superior Frontal Gyrus -1 41 51 0.1 99.9 No 

L Caudate (Head/Body) 3 15 1 0 100 No 

L Temporal Gyrus -64 -23 12 0 100 No 

L Uncus/Amygdala -17 -3 -28 0 100 No 

R Middle Frontal Gyrus 48 39 14 0 100 No 

Increase in Gray Matter 

L 
Superior temporal 

gyrus 
-35 -51 8 7.8 92.2 Yes 

L Putamen -23 3 9 5.6 94.4 Yes 

 
Legend: Overlap between brain structural alterations identified in a meta-analysis of 25 
autism spectrum disorders and schizophrenia studies 2 and our analysis of 16p11.2 CNV 
carriers. Talairach coordinates provided in the meta-analysis by Cheung et al. 2 were 
transformed into MNI space using the method described in the manuscript.  The ASD column 
shows, in percentage, the clusters contributed by ASD studies. The SZ column shows in 
percentage the clusters contributed by SZ studies 2. Blue and green colors represent a 
contribution > 1% for ASD and SZ respectively. 
The last column “overlap” indicates whether regions of the statistical maps defined by gene 
dosage of the 16p11.2 locus (GM) overlap with regions involved in ASD/SZ with Euclidean 
distance < 2cm. Directionality was not taken into account. 
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Supplementary Table 8: Correlation between brain global metrics and the 18 genes 
within BP4-BP5 region as well as SH2B1 
 
 

 TIV GM WM CSF CS CT 

 r	 p-value r	 p-value r	 p-value r	 p-value r	 p-value r	 p-value 

QPRT ‐0.5	 0.008 ‐0.4	 0.02 ‐0.4	 0.032 ‐0.2	 0.255 ‐0.3	 0.107 0.2	 0.314 

KIF22 ‐0.6	 0.001 ‐0.6	 0.003 ‐0.6	 0.002 ‐0.3	 0.076 ‐0.5	 0.011 0.3	 0.125 

MAZ ‐0.6	 0.001 ‐0.6	 0.003 ‐0.6	 0.002 ‐0.3	 0.078 ‐0.4	 0.034 0.3	 0.147 

PRRT2 ‐0.4	 0.042 ‐0.3	 0.088 ‐0.4	 0.073 ‐0.5	 0.014 ‐0.1	 0.701 0.1	 0.588 

C16ORF53 ‐0.5	 0.003 ‐0.5	 0.01 ‐0.5	 0.013 ‐0.4	 0.036 ‐0.2	 0.267 0.3	 0.167 

MVP ‐0.6	 0.001 ‐0.6	 0.002 ‐0.5	 0.003 ‐0.5	 0.018 ‐0.3	 0.106 ‐0.1	 0.798 

CDIPT ‐0.7	 6.87E-05 ‐0.6	 0.001 ‐0.7	 1.25E-04 ‐0.4	 0.05 ‐0.4	 0.021 0.2	 0.347 

KCTD13 ‐0.6	 0.001 ‐0.6	 0.002 ‐0.6	 0.002 ‐0.4	 0.05 ‐0.3	 0.1 0.2	 0.395 

TMEM219 ‐0.5	 0.004 ‐0.5	 0.008 ‐0.5	 0.005 ‐0.4	 0.063 ‐0.3	 0.143 0.2	 0.348 

TAOK2 ‐0.6	 4.15E-04 ‐0.5	 0.01 ‐0.6	 0.001 ‐0.6	 0.003 ‐0.4	 0.073 0.1	 0.529 

HIRIP3 ‐0.7	 1.08E-04 ‐0.6	 0.001 ‐0.7	 2.20E-04 ‐0.5	 0.018 ‐0.5	 0.01 0.2	 0.252 

INO80E ‐0.7	 1.14E-04 ‐0.6	 0.001 ‐0.6	 2.71E-04 ‐0.4	 0.057 ‐0.4	 0.025 0.1	 0.468 

ALDOA ‐0.5	 0.005 ‐0.5	 0.011 ‐0.5	 0.005 ‐0.3	 0.157 ‐0.3	 0.173 0.2	 0.386 

PPP4C ‐0.6	 0.001 ‐0.6	 0.002 ‐0.6	 0.001 ‐0.3	 0.089 ‐0.4	 0.056 0.2	 0.241 

YPEL3 ‐0.5	 0.01 ‐0.5	 0.012 ‐0.6	 0.002 ‐0.3	 0.088 ‐0.4	 0.073 ‐0.1	 0.695 

GDPD3 ‐0.3	 0.114 ‐0.2	 0.329 ‐0.4	 0.067 ‐0.2	 0.22 ‐0.2	 0.451 0.3	 0.111 

MAPK3 ‐0.5	 0.009 ‐0.5	 0.012 ‐0.5	 0.005 ‐0.3	 0.146 ‐0.3	 0.147 0.1	 0.719 

CORO1A ‐0.6	 0.001 ‐0.6	 0.002 ‐0.5	 0.004 ‐0.2	 0.217 ‐0.4	 0.044 0.3	 0.206 

SH2B1 ‐0.1	 0.5 0.0	 1 0.1	 0.8 ‐0.3	 0.1 0.0	 0.9 0.4	 0.02 

 
 

Legend: Uncorrected p-values from Pearson correlation tests assessing the relationship 
between global brain metrics and 18 genes within BP4-BP5 region as well as one gene 
(SH2B1) outside the interval. P-values in bold are those surviving Benjamini & Hochberg 
FDR correction. After adjusting for the number of genomic copies, none of the marginally 
significant correlations between expression levels and global metrics survive FDR correction. 
TIV – total intracranial volume; GM - gray matter WM - white matter; CSF - cerebrospinal 
fluid; CS - cortical surface area; CT - cortical thickness. 
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Supplementary Table 9: Relationship between mRNA levels of genes within the BP4-
BP5 interval and ROI identified in the first eigenimage 
 
 

 
 

Right 
putamen 

Left 
insula 

Left 
STS 

Right 
STS 

MAPK3 0.043 0.069 0.265 0.056 
KCTD13 0.021 0.034 0.140 0.059 
ALDOA 0.011 0.032 0.096 0.023 

MVP 0.492 0.363 0.860 0.569 
CDIPT 0.059 0.041 0.104 0.031 
PPP4C 0.052 0.027 0.090 0.016 
TAOK2 0.183 0.260 0.288 0.179 
INO80E 0.062 0.049 0.165 0.026 
KIF22 0.110 0.040 0.130 0.008 

TMEM219 0.020 0.027 0.059 0.034 
MAZ 0.078 0.023 0.120 0.007 

PRRT2 0.291 0.623 0.588 0.947 
YPEL3 0.318 0.111 0.218 0.234 

CORO1A 0.139 0.073 0.255 0.010 
GDPD3 0.003 0.019 0.012 0.011 
QPRT 0.003 0.008 0.012 0.006 

C16ORF53 0.019 0.031 0.082 0.026 
HIRIP3 0.350 0.118 0.318 0.054 
SH2B1 0.091 0.937 0.797 0.481 

 
 
Legend: Results show uncorrected p–values resulting from the univariate analysis testing the 
relationship between mRNA levels and ROI extracted from the first eigenimage (shown in 
Figure 4) of the MLM analysis. Significant p-values surviving Benjamini & Hochberg FDR 
correction are highlighted in bold. 
After adjusting for the number of genomic copies, none of the correlations between 
expression levels and ROI survive FDR correction. 
STS – superior temporal sulcus 
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Figures 
 

 
 
 
 
Supplementary Figure 1: Effect of Gene dosage adjusting for FSIQ 
 
 
 

 
 
 
 
Legend: Whole brain analysis using gene dosage (number of copies) as the main explanatory 
variable and FSIQ as a covariate. The color bar represents T scores. The statistical map 
overlaps with the patterns of the analysis presented in Fig 2. For presentation purposes results 
are displayed at significance threshold of p<0.001 uncorrected at voxel level 
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Supplementary Figure 2: Interaction between CNV and gender 
 
 
 
 

 
 
 
 

Legend: Whole brain analysis identifies a gender-by-CNV interaction in the Crus I and 
lobules VI, VIIb, VIII of the cerebellar hemisphere bilaterally. Male deletion carriers show 
significantly less GM volume in the cerebellum bilaterally compared to their female 
counterparts as opposed to the usually observed sexual dimorphism with larger cerebellums in 
males3,4. The color bar represents T scores. For representation purposes results are displayed 
at significance threshold of p<0.001 uncorrected at voxel level. 
DEL - deletion carriers; CTRL - intrafamilial controls; DUP – duplication carriers.  
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Supplementary Figure 3: Differential and overlapping contributions of 16p11.2 deletion 
and duplication to brain anatomy.  

 

 
 
 
Legend: The intersection represents the conjunction analysis looking at the intersection 
between between the two differential contrasts: DEL > CTRL and CTRL > DUP. Results 
show significant volume changes in the right putamen (pFWE =0.019). The comparison DEL > 
CTRL shows that deletion carriers have significantly more GM volume (FWE, p < 0.05) in 
the superior temporal region, supramarginal gyrus, putamen, insula bilaterally and left area 
triangularis compared to controls. The comparison CTRL > DUP shows that DUP have 
significant less GM volume in the caudate nucleus and putamen compared to CTRL. The 
color bar represents T scores. For presentation purposes, results are displayed at p<0.001 
uncorrected at voxel level. 
DEL – deletion carriers; CTRL – intrafamilial controls; DUP – duplication carriers. 
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Supplementary Figure 4: Effects of gene dosage and group comparisons analysis for 
regional cortical thickness and surface area 
 
 

 
 
 
Legend: Gene dosage and group comparisons on cortical thickness (A-E) and surface area 
(F).  (A) Gene dosage negatively correlates with regional cortical thickness changes in the left 
insula, inferior pre/postcentral gyrus,  superior postcentral gyrus and supramarginal gyrus 
bilaterally. (B) Gene dosage positively correlates with regional cortical thickness changes in 
the right rostral middle frontal gyrus, inferior temporal cortex, superior precentral and 
prefrontal gyri, left middle temporal and lateral occipital cortices and the orbitofrontal cortex 
bilaterally.  (C - D) group comparison  DEL > CTRL with increased  cortical thickness in the 
DEL in the left superior postcentral and parietal gyrus, right inferior pre-and postcentral gyrus 
in addition to the supramarginal gyrus. There is also a decrease in cortical thickness for the 
DEL in the left middle temporal and fusiform gyrus.  (E) group comparison CTRL<DUP  
with increased cortical thickness in the DUP in the medial orbitofrontal gyrus.  (F) group 
comparison CTRL< DUP with cortical surface in DUP  in the left insula, right rostral middle 
frontal gyrus and frontal pole.  
Only clusters surviving family wise error correction (cluster level) are presented. The color 
bar represents the family wise error corrected p-values. If no clusters are identified, the gene 
dosage or contrast analysis is not presented. 
DEL – deletion carriers; CTRL – intrafamilial controls; DUP – duplication carriers.  
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Supplementary Figure 5: Expression levels of 18 genes at the 16p11.2 locus 
 
 
 
 

Legend: (A) Boxplots of the gene expression levels measured by qPCR in lymphoblastoid 
cell lines of 18 genes located on Chr16 (BP4-BP5) and ordered according to their 
chromosomal coordinates. Strip charts were overlaid to the boxplots: each dot represents the 
expression level of a sample and it is colored according to the CNVs. (B): Heat map 
representing the Pearson correlation coefficients among the gene expression levels of the 
same 18 genes. (C): Heat map representing the Pearson partial correlation coefficients 
adjusting for copy number. Corresponding color keys are reported. 
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Supplementary Figure 6: Contribution of individual genes to anatomical pattern 
 

 
Legend: (A-B) Correlation between the log2 mRNA levels and relative volume of the right 
putamen (MAPK3: r = 0.15, p = 0.04; KCTD13: r = 0.2, p = 0.02).  Correlations between the 
relative volumes of other anatomical structures and mRNA levels are detailed in 
Supplementary Table 8. (C) Relative contribution of individual expression levels to the first 
eigenimage (Fig.4 main text). High rates of shared variance between mRNA levels of genes 
within the16p11.2 BP4-BP5 interval result in similar contributions of most genes to the first 
eigenimage.  
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Appendix	2	
 
Supplemental Material Study 2: Gene dosage at the 16p11.2 locus modulates language, 
verbal memory and inhibition 

 
 

	
Supplementary Table 1: Characteristics of the participants excluded from the cognitive 
analyses 
 
  Deletion 

N = 6 
Duplication 

N = 12 

Mean age± SD  
[range] 

13 ± 4.8 
[7.8-18.4] 

13.2 ± 8.7 
[3.8-31.5] 

Gender (M/F) 6 / 0 8 / 4 

Handedness: R/L/Un 1 /5/ 0 5 / 5 / 2 

Inheritance: N / In / U 2 / 4/ 0 2 / 9 / 1 

Kinship (proband / relative) 4 / 2 11 / 1 

ASD  2 8 

Schizophrenia 0 0 

Mean FSIQ ± SD 
[range] 

47 ± 4 (n=4) 
[42-51] 

37 ± 6.7 (n=11) 
[30-45] 

Mean NVIQ± SD 
[range] 

56 ± 9 (n=5) 
[47-67] 

40 ± 9.9 (n=11) 
[30-54] 

Mean VIQ ± SD 
[range] 

57 ± 7.6 (n=3) 
[45-59] 

38 ± 8.9 (n=10) 
[30-51] 

 
SD - standard deviation; M - male; F -female; L - left; R - right; Un - undefined; N - de novo; 
In - inherited; U - unknown; ASD, Autism Spectrum Disorder; FSIQ - full scale IQ (standard 
score); NVIQ -non verbal IQ (standard score); VIQ - verbal IQ (standard score). 
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Supplementary Table 2: Additional deleterious CNVs in 16p11.2 carriers 
 
  

   16p11.2 
carriers 

Case Chr Boundaries (HG19) 
Primary        Distal 

CNV   Size 
(Kb) 

Genes Gene symbols 

Duplication 1* 16 28491925 29040000 16 548 18 IL27,APOBR,NURP1,
CCDC101,SULT1A2,S
ULT1A1,NPIPB8,EIF3
C,NPIPB9,ATXN2L,T
UFM,SH2B1,ATP2A1,
RABEP2,CD19,NFAT

C2IP,SPNS1,LAT 

2* 16 28492125 29040000 16 548 18 IL27,APOBR,NURP1,
CCDC101,SULT1A2,S
ULT1A1,NPIPB8,EIF3
C,NPIPB9,ATXN2L,T
UFM,SH2B1,ATP2A1,
RABEP2,CD19,NFAT

C2IP,SPNS1,LAT 

3* 16 28492125 29040000 16 548 18 IL27,APOBR,NURP1,
CCDC101,SULT1A2,S
ULT1A1,NPIPB8,EIF3
C,NPIPB9,ATXN2L,T
UFM,SH2B1,ATP2A1,
RABEP2,CD19,NFAT

C2IP,SPNS1,LAT 

4 X 31574736 31843530 1 268 1 DMD 

5 15 30938215 32438943 1 1,500 10 ARHGAP11B, FAN1, 
MTMR10, TRPM1, 
KLF13, OTUD7A, 

CHRNA7, HERC2P10, 
MIR211, RP11-

16E12.1 

Deletion 1 7 72740000 74140000 3 1,400 29 ZNF658B, FAM74A3, 
LOC101927448, 
LOC101927475, 

KGFLP2, FAM95B1, 
LOC101930147, 

LOC100133920, RP11-
327I22.6, RP11-

475I24.8, FAM27E, 
KGFLP1, RP11-

475I24.8, MGC21881, 
LOC100126582, 

CNTNAP3, 
SPATA31A1, 
SPATA31A2, 

SPATA31A3, ZNF658, 
SPATA31A4, 
SPATA31A5, 
ANKRD20A2, 

CBWD7, FOXD4L2, 
ANKRD20A3, 
SPATA31A6, 
CNTNAP3, 

LOC101928102 

 
* For case 1, 2 and 3, patients have a larger duplication including the BP1-BP3 500kb region 
containing the SH2B1 region. In these cases, the region extending beyond the BP4-BP5 
interval is presented as the equivalent of an additional deleterious CNV. 
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Supplementary Table 3: Characteristics of the participants performing the MRI 
 
 

  Deletion 
N = 14 

Controls 
N = 23 

Duplication 
N=17 

Age in years (mean± SD)  24.6 ± 13.3 33 ±12.3 35.7 ±12.5 

Gender (M/F) 8 / 6 11/ 12 10 / 7 

Handedness (R/L) 11 / 3 23 / 0 14 / 3 

FSIQ (mean± SD) 74 ± 14 98 ± 13§ 72 ± 16 

NVIQ (mean±SD) 79 ± 11 102 ± 13§ 73 ± 15 

 

SD, standard deviation; M, male; F, female; R, right; L, left; FSIQ, full scale intellectual 
quotient (standard score); NVIQ, non verbal intellectual quotient (standard score). 
§ significantly different from the two other groups, ANCOVA, post-hoc group comparisons, 
p <0.05 Bonferroni corrected. 
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Supplementary Table 4: Cognitive results for each of the groups 
 

Cognitive variables Deletion 
mean ± SD (n) 

Control 
mean ± SD (n) 

Duplication 
mean ± SD (n) 

Overall cognitive functioning
FSIQ (standard score) 71.5±13.4 (51) 95.9 ±14.1 (45) 74.7 ±18.7 (38) 
NVIQ (standard score) 77.9 ±11.7 (55) 98.2 ±14.3 (45) 76 ±15.9 (38) 
VIQ (standard score) 73.3 ±14.2 (40) 94.9 ±17.9 (21) 82.9 ±18.7 (23) 

Language
Phonological skills 
Non-word repetition (z-score)  -3.5 ±2.7 (48) -0.8 ±1.4 (41) -1.5 ±2 (26) 
Oromotor sequences (z-score)  -3.9 ±2.4 (43) -0.7 ±1.4 (43) -2.1 ±2.8 (27) 
Phonological processing (z-score) -2.3 ±2.5 (33) -0.4 ±1.2 (31) -2 ±2.3 (21) 
Sentence Repetition (age adjusted §)* -1 [-1.7 / -0.7] (22) 0.8 [0.3 / 1.4] (35) 0 [-1.1 / 0.9] (14) 
Lexical skills 
Word definition (z-score) -1.6 ±1 (51) -0.3 ±0.9 (43) -1.2 ±1.1 (38) 
Word comprehension (z-score) -0.4 ±1.2 (28) 0.8 ±1 (19) -0.6 ±1.2 (17) 
Semantic fluency (age adjusted §)  -2.2 ±6.1 (40) 3.3 ±6.7 (33) -0.8 ±6.9 (28) 

Phonemic fluency (age adjusted §)  -1.9 ±4.6 (32) 2.7 ±4 (31) -1.1 ±3.5 (23) 
Comprehension and verbal skills 
Syntax comprehension (age adjusted §)*  -0.8 [-1.3 / 0.3] (19) 0.9 [0.7-2.3] (26) -0.8 [-1.9 / -0.5] (14) 
Verbal reasoning (z-score) -1.3 ±1 (44) -0.3 ±1.1 (42) -1.1 ±1.2 (33) 
Written language 
Reading fluency (z-score)  -1.8 ±2.2 (24) 0.4 ±1.2 (30) -0.5 ±1.9 (17) 
Reading comprehension (z-score)  -0.9 ±1.5 (16) 0.4 ±1.1 (21) -1.3 ±1.9 (15) 
Spelling (age and gender adjusted §)*  -0.2 [-1.3 / 0.4] (27) 0.6 [-0.8 / 1.4] (32) 0 [-0.3 /0.4] (15) 

Memory
Verbal short-term memory 
Forward digit span (age adjusted §) -1 ±1.3 (45) 1 ±2.2 (37) 0.3 ±2 (34) 
Verbal long-term memory
CVLT encoding (gender adjusted z-score)  -0.7 ±1.2 (23) 0.3 ±0.9 (27) 0.5 ±1.5 (15) 
CVLT delayed recall (gender adjusted z-score) -0.7 ±1.2 (23) 0.2 ±1.2 (27) 0.6 ±1.3 (15) 
Visuo-spatial short-term memory 
Forward spatial span (age adjusted §) -0.8 ±2.2 (29) 1.6 ±1.9 (23) -0.6 ±2 (22) 
Visuo-spatial long-term memory 
ROCF immediate recall (z-score) -1.7 ±1.2 (19) -0.4 ±1.5 (22) -1.7 ±1.1 (17) 
ROCF delayed recall (z-score) -1.8 ±1.2 (18) -0.5 ±1.4 (21) -1.9 ±1 (17) 

Executive functions
Working memory 
Backward digit span (age adjusted §) -0.4 ±2.1 (43) 0.9 ±2.4 (35) -0.5 ±1.7 (29) 

Backward spatial span (age adjusted §) -0.5 ±2 (28) 1.4 ±2.6 (23) -0.9 ±2.2 (20) 
Planning  
ToL total correct (z-score) -0.3 ± 0.9 (26) 0.3 ± 1.1 (21) -0.6 ± 0.7 (21) 
ToL total move (z-score) -0.9 ± 1.1 (26) 0.2 ± 1.1 (21) -0.8 ± 1.1 (21) 
Inhibition  
Stroop response time (z-score)  0.2 ± 1.6 (36) 0.5 ± 1.1 (37) 0.2 ± 1.8 (28) 
Stroop number of success (age adjusted §)* -0.3 [-2.3 / 1] (36) 1.4 [-0.2 / 2.4] (37) 1.1 [-0.1 / 1.9] (29) 
GoNogo response time (z-score) 0.6 ± 0.9 (26) 0.3 ± 1 (27) -0.3 ± 1.2 (23) 
GoNogo number of success (age adjusted §)* -0.6 [-1.7 / 1.5] (27) 1.1 [0 / 1.4] (27) 1 [0.1 / 1.6] (23) 

Fine motor skills
Purdue dominant hand (z-score)  -1.5 ±1.2 (30) 0.1 ±1.1 (26) -1 ±0.9 (24) 
Purdue non dominant hand (z-score) -1.5 ±1.2 (30) 0.2 ±0.8 (26) -1 ±0.8 (25) 
Purdue bimanual (z-score) -1.5 ±0.9 (29) 0 ±1 (26) -1.5 ±1.3 (23) 
Purdue assembly (z-score) -2.4 ±1.3 (29) -1 ±1.3 (26) -2.5 ±1.1 (22) 
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FSIQ - full scale IQ; NVIQ - non verbal IQ; VIQ - verbal IQ; CVLT - California Verbal 
Learning Test; ROCF - Rey-Osterrieth Complex Figure; ToL - Tower of London.  
 
* median [25th – 75th percentile] presented for non linear models 
§ raw score 
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Supplementary Table 5: Group contrasts for cognitive measures showing no significant 
gene dosage effect and/or group differences 
 

 
 
 

 Deletion versus 
Duplication 

Deletion versus 
Control 

Duplication 
versus Control 

Gene 
dosage 

Cognitive variables Estimate ͊  
(Std. Err) 

P-value Estimate ⃰ 
(Std. Err) 

P-value Estimate ⃰  
(Std. Err) 

P-value Estimate 
(P-value) 

Language 
Phonological skills 
Phonological processing (z-score) a 0.62 

(0.57) 
0.28 -0.68 

(0.61) 
0.27 -0.06 

(0.71) 
0.93 0.34 (0.23) 

Lexical skills 
Word comprehension (z-score) a -0.16 

(0.34) 
0.63 -0.37 

(0.41) 
0.36 -0.54 

(0.46) 
0.24 -0.07 (0.68) 

Semantic fluency (age adjusted) a 2.11 
(1.71) 

0.22 -3.26 
(1.9) 

0.09 -1.15 
(2.13) 

0.59 1.21 (0.16) 

Phonemic fluency (age adjusted) a 0.76 
(1.21) 

0.53 -2.24 
(1.23) 

0.07 -1.47 
(1.4) 

0.29 0.51 (0.41) 

Comprehension and verbal skills 
Verbal reasoning (z-score) a 0.06 

(0.23) 
0.79 -0.24 

(0.23) 
0.31 -0.18 

(0.26) 
0.48 0.05 (0.68) 

Written language 
Reading comprehension (z-score) b -0.38 

(0.48) 
0.42 -0.23 

(0.54) 
0.66 -0.63 

(0.54) 
0.25 -0.19 (0.42) 

Spelling (age and gender adjusted)c 0.71 
(0.36) 

0.05 -0.21 
(0.27) 

0.42 0.49 
(0.38) 

0.19 0.32 (0.057) 

Memory 
Visuo-spatial short-term memory 
Forward spatial span (age adjusted) 

a 
0.23 
(0.59) 

0.7 -1.5 
(0.76) 

0.047 -1.3 
(0.74) 

0.08 0.09 (0.77) 

Visuo-spatial long-term memory 
ROCF immediate recall (z-score) b 0.07 

(0.37) 
0.84 -0.17 

(0.42) 
0.68 -0.09 

(0.44) 
0.83 0.04 (0.82) 

ROCF delayed recall (z-score) b -0.09 
(0.34) 

0.78 -0.19 
(0.42) 

0.64 -0.29 
(0.43) 

0.52 -0.04 (0.81) 

Executive functions 
Working memory  
Backward digit span (age adjusted) 
a 

0.24 
(0.46) 

0.6 0.11 
(0.53) 

0.83 0.36 
(0.58) 

0.54 0.11 (0.64) 

Backward spatial span (age 
adjusted)a 

-0.55 
(0.62) 

0.37 -0.03 
(0.76) 

0.97 -0.58 
(0.75) 

0.44 -0.23 (0.34) 

Planning 
ToL total correct (z-score) a -0.35 

(0.25) 
0.17 0.05 

(0.34) 
0.87 -0.29 

(0.34) 
0.39 -0.17 (0.16) 

ToL total move (z-score) a 0.07 
(0.31) 

0.81 -0.41 
(0.43) 

0.34 -0.33 
(0.42) 

0.44 0.04 (0.81) 

Inhibition 
Stroop response time (z-score) a, § -0.06 

(0.4) 
0.87 -0.17 

(0.34) 
0.63 -0.23 

(0.38) 
0.5 -0.02 (0.91) 

Fine motor skills 
Purdue dominant hand (z-score) a 0.55 

(0.27) 
0.048 -0.86 

(0.31) 
0.008 -0.3 

(0.33) 
0.35 0.29 (0.043) 

Purdue bimanual (z-score) a 0.009 
(0.29) 

0.97 -0.72 
(0.33) 

0.036 -0.73 
(0.34) 

0.037 0.03 (0.86) 

Purdue assembly (z-score) a -0.15 
(0.33) 

0.66 -0.69 
(0.39) 

0.08 -0.84 
(0.39) 

0.037 -0.06 (0.71) 
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Std. Err - Standard Error; ROCF - Rey-Osterrieth Complex Figure; ToL - Tower of London.  
a Linear mixed model; b Linear model; c Generalized linear mixed model 
§ model not adjusted for IQ. 
͊ positive estimate: Deletion carriers’ score < duplication.   
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Supplementary Table 6: Group contrasts on cognitive measures not adjusting for IQ. 

 Deletion versus 
Duplication 

Deletion versus 
Control 

Duplication versus  
Control  

Cognitive variables Estimate ͊ P-value Estimate ͊ P-value Estimate	͊ P-value 

Overall cognitive functioning 
FSIQ (z-score) 3.5 0.33 -25.7 6.8e-14 -22.2 1.6e-09 
NVIQ (z-score) -2.01 0.51 -21.34 7.7e-13 -23.4 3.9e-12 
VIQ (z-score) 6.03 0.2 -18.76 4.7e-06 -12.73 0.008 

Language
Phonological skills 
Non-word repetition (z-score)  1.87 0.0016 -2.33 1.8e-06 -0.46 0.42 
Oromotor sequences (z-score)  1.78 0.003 -3.01 1.6e-09 -1.28 0.02 
Phonological processing (z-score) 0.37 0.55 -2 0.0002 -1.67 0.007 
Sentence Repetition (age adjusted §) 0.64 0.008 -1.23 7.9e-10 -0.59 0.009 

Lexical skills 
Word definition (z-score) 0.47 0.046 -1.3 1.5e-09 -0.83 0.0003 
Word comprehension (z-score) -0.18 0.62 -1.4 7.8e-05 -1.56 9e-05 
Semantic fluency (age adjusted §)  1.56 0.37 -5.59 0.0009 -4 0.024 

Verbal fluency (age adjusted §)  0.39 0.75 -3.83 0.0007 -3.43 0.005 

Comprehension and verbal skills 
Syntax comprehension (age 
adjusted§) 

-0.18 0.29 -1.33 2.9e-10 -1.52 3.4e-12 

Verbal reasoning (z-score) -0.05 0.83 -0.86 0.0001 -0.91 0.0003 
Written language 
Reading fluency (z-score)  1.35 0.017 -2.21 1.8e-05 -0.88 0.11 
Reading comprehension (z-score)  -0.35 0.51 -1.27 0.01 -1.63 0.001 
Spelling (age and gender adjusted §)  0.55 0.11 -0.76 0.0014 -0.2 0.56 

Memory
Verbal short-term memory
Forward digit span (age adjusted §) 1.44 0.002 -1.94 1.7e-05 -0.49 0.27 

Verbal long-term memory
CVLT encoding (gender adjusted z-
score)  

1.26 0.002 -1.07 0.002 0.19 0.61 

CVLT delayed recall (gender 
adjusted z-score) 

1.24 0.004 -0.88 0.015 0.36 0.38 

Visuo-spatial short-term memory 
Forward spatial span (age adjusted §) 0.36 0.55 -2.51 0.0001 -2.15 0.001 

Visuo-spatial long-term memory 
ROCF immediate recall (z-score) 0 0.98 -1.28 0.003 -1.29 0.003 
ROCF delayed recall (z-score) -0.16 0.69 -1.3 0.002 -1.46 0.0006 

Executive functions
Working memory 
Backward digit span (age adjusted §) 0.04 0.93 -1.38 0.005 -1.33 0.01 

Backward spatial span (age 
adjusted§) 

-0.31 0.64 -2.01 0.003 -2.32 0.001 

Planning  
ToL total correct (z-score) -0.29 0.29 -0.66 0.017 -0.95 0.001 
ToL total move (z-score) 0.13 0.69 -1.05 0.001 -0.93 0.007 
Inhibition  
Stroop response time (z-score)  -0.06 0.87 -0.17 0.63 -0.23 0.5 
Stroop number of success (age 
adjusted §) 

0.52 0.04 -1.12 4.8e-08 -0.6 0.02 

GoNogo response time (z-score) -0.94 0.003 0.31 0.28 -0.63 0.042 
GoNogo number of success (age 
adjusted §) 

0.99 0.007 -0.69 0.012 0.29 0.45 
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⃰  negative estimate: Deletion or Duplication carriers’ score < controls. 
 
FSIQ - full scale IQ; NVIQ - non verbal IQ; VIQ - verbal IQ; CVLT - California Verbal 
Learning Test; ROCF - Rey-Osterrieth Complex Figure; ToL - Tower of London. 
͊ positive estimate: Deletion carriers’ score < duplication. 
⃰ negative estimate: Deletion or Duplication carriers’ score < controls. 
§ raw score 

Fine motor skills
Purdue dominant hand (z-score)  0.58 0.056 -1.62 4.4e-07 -1.04 0.001 
Purdue non dominant hand (z-score) 0.49 0.07 -1.68 2.5e-08 -1.2 8.3e-05 
Purdue bimanual (z-score) 0.05 0.87 -1.55 5.6e-06 -1.49 6.3e-05 
Purdue assembly (z-score) -0.09 0.79 -1.42 0.0001 -1.51 0.0002 
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Supplementary Table 7: IQ has a main positive impact on most of the cognitive variables 
while the effect of gender is significant in verbal long term and spelling variables, revealing a 
female advantage  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 IQ Gender 
Cognitive variables Estimate P-value Estimate P-value 

Overall cognitive functioning
FSIQ NA NA -3.07 ns 
NVIQ NA NA -4.5 ns 
VIQ NA NA -2.47 ns 

Language
Phonological skills 
Non-word repetition (z-score)  0.04 0.0004 0.05 ns 
Oromotor sequences (z-score)  0.06 1.1e-05 0.86 0.02§ 
Phonological processing (z-score) 0.07 3.4e-07 0.18 ns 
Sentence Repetition (raw score) 0.03 2.4e-09 0.16 ns 
Lexical skills
Word definition (z-score) 0.04 1.3e-12 0.08 ns 
Word comprehension (z-score) 0.04 5.3e-07 0.21 ns 
Semantic fluency (raw score) 0.15 0.0001 1.13 ns 
Phonemic fluency (raw score) 0.11 4.7e-05 0.79 ns 
Comprehension and verbal skills
Syntax comprehension (raw score) 0.04 4.5e-15 0.15 ns 
Verbal reasoning (z-score) 0.04 3.2e-11 -0.09 ns 
Written language 
Reading fluency (z-score) 0.04 0.0014 0.63 ns 
Reading comprehension (z-score) 0.05 6.5e-06 0.87 0.02§ 
Spelling (raw score) 0.04 1.5e-07 0.96 1.2e-07† 

Memory
Verbal short-term memory 
Forward digit span(raw score) 0.05 8.5e-08 0.17 ns 
Verbal long-term memory 
CVLT encoding (z-score) 0.04 1.3e-06 0.8 0.0014† 
CVLT delayed recall (z-score) 0.04 3.3e-05 0.97 0.0007† 
Visuo-spatial short-term memory
Forward spatial span (raw score) a 0.06 7.9e-05 -0.04 ns 
Visuo-spatial long-term memory
ROCF immediate recall (z-score) a  0.05 4.6e-08 -0.1 ns 
ROCF delayed recall (z-score) a 0.05 2.8e-08 0.39 ns 

Executive functions
Working memory 
Backward digit span (raw score) 0.07 2.2e-08 -0.55 ns 
Backward spatial span (raw score) a  0.08 1.6e-07 -0.38 ns 
Planning 
ToL total correct (z-score) a 0.03 1.1e-05 -0.22 ns 
ToL total move (z-score) a 0.03 0.0001 -0.2 ns 
Inhibition 
Stroop response time 0.001 ns 0.032 ns 
Stroop number of success (raw score)  0.02 1.6e-05 -0.15 ns 
GoNogo response time (z-score) a  0.007 ns 0.01 ns 
GoNogo number of success (raw score) a 0.01 0.09 -0.13 ns 

Fine motor skills
Purdue dominant hand (z-score) a 0.04 3.3e-09 0.19 ns 
Purdue non dominant hand (z-score) 0.04 1.6e-08 0.1 ns 
Purdue bimanual (z-score) 0.05 2.5e-09 0.16 ns 
Purdue assembly(z-score) a 0.04 3.8e-07 0.34 ns 
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FSIQ - full scale IQ; NVIQ - non verbal IQ; VIQ - verbal IQ CVLT - California Verbal 
Learning Test; ROCF- Rey-Osterrieth Complex Figure; ToL -Tower of London. NA - not 
applicable; ns - result not significant (p-value ≥ 0.1). 
Significant p-values (corrected threshold, p = 0.005) are highlighted in bold. 
§ Females > males, predictor not significant in the final model. 
† Females > males.  
a Main effect of FSIQ, if not specified NVIQ. 
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Supplementary Table 8: Group contrasts taking out additional deleterious CNVs in 
duplication (n=5) and deletion (n=1) carriers. Results are adjusted for IQ and we only show 
variables with reported group differences  
 

 Deletion versus 
Duplication 

Deletion versus 
Control 

Duplication versus  
Control 

Cognitive variables Estimate ͊ P-value Estimate ͊ P-value Estimate	͊ P-value 

Overall cognitive functioning 
FSIQ (z-score)  4 0.29 -25.4 2.7e-13 -21.4 2e-08 
NVIQ (z-score)  -1.5 0.64 -20.83 3.4e-12 -22.34 1e-10
VIQ (z-score)  5.42 0.28 -18.16 1.3e-05 -12.74 0.011 

Language
Phonological skills 
Non-word repetition (z-score)  2 0.0014 -1.82 0.0013 0.19 0.78 
Oromotor sequences (z-score)  2.24 0.0002 -2.78 1.1e-06 -0.54 0.39 
Sentence Repetition (age adjusted§) 0.69 0.013 -0.77 0.0014 -0.075 0.81 

Lexical skills 
Word definition (z-score) 0.56 0.009 -0.72 0.0012 -0.17 0.48 
Comprehension and verbal skills 
Syntax comprehension (age adjusted§)  -0.12 0.52 -0.77 0.003 -0.89 0.0013 

Written language 
Reading fluency (z-score)  1.17 0.051 -1.69 0.003 -0.52 0.39 

Memory
Verbal short-term memory 
Forward digit span (age adjusted§) 1.47 0.0009 -0.77 0.1 0.69 0.17 

Verbal long-term memory 
CVLT encoding (gender adjusted z-score)  1.3 0.0001 0.09 0.76 1.4 0.0003
CVLT delayed recall (gender adjusted z-
score) 

1.31 0.0005 0.31 0.38 1.62 0.0002 

Visuo-spatial short-term memory 
Forward spatial span (age adjusted§) -0.11 0.86 -1.21 0.11 -1.32 0.09 

Visuo-spatial long-term memory 
Executive functions

Inhibition  
Stroop number of success (age adjusted§) 0.45 0.083 -0.84 0.002 -0.38 0.21 

GoNogo response time (z-score)♦  -0.87 0.009 0.31 0.28 -0.56 0.089 
GoNogo number of success  
(age adjusted)§ ♦ 

0.96 0.024 -0.72 0.01 0.24 0.58 

Fine motor skills
Purdue dominant hand (z-score)  0.60 0.046 -0.88 0.009 -0.27 0.43 
Purdue non dominant hand (z-score) 0.44 0.095 -1.15 0.0003 -0.7 0.031 
Purdue bimanual (z-score) 0.009 0.97 -0.73 0.025 -0.72 0.037 
Purdue assembly (z-score) -0.2 0.57 -0.69 0.08 -0.9 0.036 

 
FSIQ - full scale IQ; NVIQ - non verbal IQ; VIQ - verbal IQ; CVLT - California Verbal 
Learning Test.  
Significant p-values (corrected threshold, p = 0.005) are highlighted in bold. 
♦ model not adjusted for IQ. 
§ raw score 
͊ positive estimate: Deletion carriers’ score < duplication. 
⃰ negative estimate: Deletion or Duplication carriers’ score < controls. 
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Supplementary Table 9: Analyses of de novo versus inherited deletion carriers adjusting for 
IQ. This analysis could not be performed in duplication carriers due to insufficient sample 
size 

 Deletion carriers 
De novo versus Inherited 

Cognitive variables N 
De novo / Inherited 

Estimate p-value 

Overall cognitive functioning
FSIQ (z-score) 9 / 25 0.72 ns 
NVIQ (z-score) 11 / 26 2.2 ns 
VIQ (z-score) 8 / 22 -6.97 ns 

Language
Phonological skills 
Non-word repetition (z-score)  8 / 25 -0.45 ns 
Oromotor sequences (z-score)  8 / 23 0.32 ns 
Phonological processing (z-score) 8 / 16 0.67 ns 
Sentence Repetition (age adjusted)§ 2 / 8 NA NA 
Lexical skills
Word definition (z-score) 9 / 25 0.14 ns 
Word comprehension (z-score) 7 / 16 0.06 ns 
Semantic fluency (age adjusted) § 9 / 18 0.5 ns 

Phonemic fluency (age adjusted) § 6 / 13 0.56 ns 
Comprehension and verbal skills
Syntax comprehension (age adjusted) § 2 / 7 NA NA 
Verbal reasoning (z-score) 7 / 20 0.006 ns 
Written language 
Reading fluency (z-score)  2 / 10 NA NA 
Reading comprehension (z-score)  2 / 6 NA NA 
Spelling (age and gender adjusted)§ 3 / 12 NA NA 

Memory
Verbal short-term memory 
Forward digit span (age adjusted)§ 7 / 22 -0.56 ns 
Verbal long-term memory 
CVLT encoding (gender adjusted z-score) 1 / 9 NA NA 
CVLT delayed recall (gender adjusted 
z.score) 

1 / 9 NA NA 

Visuo-spatial short-term memory
Forward spatial span (age adjusted)§ 8 / 12 -1.1 ns 
Visuo-spatial long-term memory
ROCF immediate recall (z-score) 5 /6 NA NA 
ROCF delayed recall (z-score) 4 /6 NA NA 

Executive functions
Working memory 
Backward digit span (age adjusted)§ 7 / 20 -1.16 ns 

Backward spatial span (age adjusted)§ 7 / 12 -1.19 ns 
Planning  
ToL total correct (z-score) 6 / 12 -0.26 ns 
ToL total move (z-score) 6 / 12 0.19 ns 
Inhibition  
Stroop response time (z-score)  4 /18 NA NA 
Stroop number of success (age adjusted)§ 4 /18 NA NA 
GoNogo response time (z-score) ♦ 7 /11 0.43 ns 
GoNogo number of success (age 
adjusted)§♦ 

6 / 12 -0.08 ns 

Fine motor skills
Purdue dominant hand (z-score)  6 /16 0.33 ns 
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FSIQ - full scale IQ; NVIQ - non verbal IQ; VIQ - verbal IQ CVLT - California Verbal 
Learning Test; ROCF- Rey-Osterrieth Complex Figure; ToL -Tower of London. NA - not 
applicable due to small numbers. 
♦ model not adjusted for IQ. 
§  raw score 
  

Purdue non dominant hand (z-score) 6 /16 0.9 ns 
Purdue bimanual (z-score) 6 /15 0.45 ns 
Purdue assembly (z-score) 6 /15 0.24 ns 
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Supplementary Table 10: GM Voxel-based morphometry results for brain structure-
behavior correlations  
 

Regions Side MNI coordinates 
Peak     

T-value 
  x y z  

Verbal inhibition (negative correlation)
Anterior insula & Opercular part of 
the inferior frontal gyrus§ 

L 
R 

-36 
31 

8 
-19 

4 
19 

6.25 
5.33 

Transverse temporal gyri§ R 42 -21 15 5.87 
Rolandic operculum* L -42 -18 12 5.20 

Non-word repetition (negative correlation) 
Caudate*  R 18 24 4 5.04 

 
L – left hemisphere; R – right hemisphere  
§ Anatomical structures which survive family-wise error correction at a cluster level p<0.05, 
marginal p-value (p <0.09) are indicated by a *.  
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Figures 
 
Supplementary Figure 1: Verbal memory measures as a function of Non Verbal IQ 
 

 
 

Association between verbal short-term memory (A), verbal memory encoding (B) or verbal 
memory delayed recall (C) measures and Non verbal IQ. All scores are presented adjusted for 
age. Panel B and C are also adjusted for gender. Red dots represent the deletion carriers, blue 
squares the duplication carriers and green triangles represent the intrafamilial controls. 
Colored solid lines represent the regression slopes between the memory tasks scores and 
NVIQ. The correspondent shaded areas depict the 95% confidence intervals. R squares (R2) 
and p-values (p≤0.1, ns otherwise) are given for each group. 
 
NVIQ - non verbal IQ; DEL - deletion carriers; CTRL - intrafamilial controls; DUP - 
duplication carriers. 
 
	
 
  



	 145

Appendix	3	
	
	
	
Supplemental Material Study 3: 16p11.2 locus modulates response to satiety before the 
onset of obesity 
 
 
	
	
Supplementary Table 1: Ascertainment of pediatric CNV 16p11.2 carriers and controls 
 

 16p11.2 EUROPEAN 
CONSORTIUM 

CARDIFF  UNIVERSITY 
ECHO STUDY 

Deletion (N) 43 30 
Mean age ± SD 9.19 ± 3.51 10.17 ± 3.02 
Gender (M/F) 27 / 16 19 / 11 
Inheritance: Dn / In / U 19 / 21 / 3 12 / 12 / 6 
Mean BMI z-score ± SD 1.66 ± 1.76 1.35 ± 1.54 
Duplication (N) 27 12 
Mean age ± SD 8.26  ± 4.19 11.01 ± 3.39* 
Gender (M/F) 17 / 10 9 / 3 
Inheritance: Dn / In / U 7 / 17 / 3 0 / 8 / 4 
Mean BMI z-score ± SD -0.49 ± 1.64 -0.11  ± 1.27 
Intrafamilial controls (N) 10 8 
Mean age ± SD 9.67 ± 4.89 12.12 ± 3.2 
Gender (M/F) 7 / 3 3/5 
Mean BMI z-score ± SD 0.34 ± 0.96 0.94 ± 0.61 
Extrafamilial controls (N) 24 - 
Mean age ± SD 11.45 ± 1.87 - 
Gender (M/F) 6 / 18 - 
Mean BMI z-score ± SD 0.35 ± 0.73 - 

 
SD - standard deviation; M - male; F -female; Dn - de novo; In - inherited; U – unknown 
* Duplication carriers from Cardiff ECHO study are slightly older than the ones recruited 
through the 16p11.2 European consortium (t= -2.16, p=0.039) 
Intrafamilial and extrafamilial controls do not differ in terms of age, BMI z-score and gender 
distribution.  
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Supplementary Table 2: Pediatric clinical cohort characteristics 
 

  Deletion 
n = 73 

LOC 
n = 26 

Age in years  
(mean ± SD)  

9.59 ± 3.33  10.96 ± 1.42♦ 

Gender (M/F) 47/ 26 12/14 

BMI z-score  
(mean ± SD) 

1.53 ± 1.67  1.52 ± 1.32  

 
LOC-Loss of Control eating group 
 
♦ Significant difference (p = 0.005) 
There are 5 missing values for BMI z-score in the deletion carriers (n=68) 
 
 
 
 
Supplementary Table 3: Adult clinical cohort characteristics 
 

OB –obesity; BN –bulimia nervosa; BED - binge eating disorder; BMI –body mass index. 
 
*Significantly different from OB cohort (p=0.01) 
♦Significantly different from OB (Fisher exact test, p=0.001), BN (p=1.8e-08) and BED 
(p=3.95e-08) cohorts 
†Significantly different from BN (p<2e-16) 

  Deletion 
n = 25 

OB 
n=226 

BN 
n=241 

BED 
n=143 

Age in years  
(mean ± SD)  

34.7 ± 11.9* 40.7 ± 10.6 34 ± 7.5 33.9 ± 9.7 

Gender (M/F) 12 / 13♦ 42/190 13/261 6/148 

BMI z-score  
(mean ± SD) 

2.8 ± 1.3† 3.4 ± 1.1 0.6 ± 1.4 2.4 ± 0.9 

Education years 
(≤12/ >13)∞ 

18/7 186/36 190/78 112/36 
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Supplementary Table 4: Main effect of age, gender and BMI z-score for deletion, controls 
and duplication carriers on the Child Eating Behavior Questionnaire (CEBQ) 
 

 
DD-desire to drink; EF-enjoyment of food; EOE-emotional overeating; EUE-emotional 
undereating; FF-food fussiness; FR-food responsiveness; SE-slowness in eating; SR-satiety 
responsiveness.  
*Sample size: deletion n= 62, intrafamilial controls n= 18, duplication n= 31 
Significant p-values surviving correction for multiple comparisons are highlighted in bold. 
Significant p-values or trends that do not survive correction for multiple comparisons are in 
italic.   
  

Age Gender BMI z-score Group  FSIQ* 

 estimate p-value estimate p-value estimate p-value estimate p-value estimate p-value 

DD 0.026 0.22 -0.282 0.060 0.116 0.011 -0.079 .398 -0.008 0.029 

EF 0.025 0.256 -0.071 0.662 0.154 0.001 -0.215 0.025 -0.012 0.003 

EOE 0.063 0.003 -0.188 0.208 0.219 2.6e-06 -0.455 7.6e-07 -0.005 0.118 

EUE 3.03e-03 0.896 -0.198 0.211 -0.119 0.018 -0.127 0.216 7.7e-04 0.852 

FF -0.046 0.078 -0.14 0.444 -0.035 0.55 0.046 0.69 8.8e-03 0.005 

FR 0.039 0.172 -0.221 0.278 0.281 3.7e-06 -0.445 0.0002 -0.009 0.073 

SE -0.049 0.042 -0.118 0.497 -0.196 0.0002 0.212 0.049 7.6e-03 0.11 

SR -0.023 0.259 0.058 0.687 -0.204 5.7e-06 0.346 8.06e-05 5.7e-03 0.157 
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Supplementary Table 5: Adult questionnaires : deletion, intrafamilial controls and 
duplication cohorts 
 

 
1 Logistic mixed model; 2 Binomial mixed model; 3Linear mixed model 
EDI-2 DT, Drive for Thinness; EDI-2 B, Bulimia; EDI-2 BD, Body dissatisfaction; DEBQ-
E, Externality scale 
Significant p-values surviving correction for multiple comparisons are highlighted in bold. 
Significant p-values or trends that do not survive correction for multiple comparisons are in 
italic.  
 
 
 
Supplementary Table 6: Adult questionnaires: deletion, BED, BN and OB cohorts 
 

 
* Female > Male 
Significant p-values surviving correction for multiple comparisons are highlighted in bold. 
Significant p-values or trends that do not survive correction for multiple comparisons are in 
italic.  

 Age Gender FSIQ Group 
 Odds p-value odds p-value odds p-value odds p-value 
EDI-2 B 1 1.049 0.461 3.197 0.448 1.053 0.389 -0.977 0.987 
 Estimate p-value estimate p-value estimate p-value estimate p-value 

EDI-2 DT 2 -0.007 0.386 1.161 2.15 e-11 
-0.009 0.167 

-0.776 1.35e-05 

EDI-2 BD 2 0.003 0.595 1.562 <2e-16 
0.001 0.732 

-0.681 3.82e-08 

DEBQ-E3 -0.005 0.387 -0.137 0.345 0.003 0.444 0.0023 0.842 

 Age Gender Education BMI z-score 

 estimate p-value estimate p-value estimate p-value estimate p-value 

EDI-2 DT 0.012 0.576 1.833 0.011 -0.193 0.162 0.265 0.124 

EDI-2 B -0.021 0.200 0.547 0.359 0.018 0.863 0.259 0.064 

EDI-2 BD -0.051 0.073 6.113* 7.44 e-10 -0.001 0.997 1.785 2.48e-14 



	 149

Supplementary Table 7: Mean raw scores and standard deviation on the CEBQ 
 

  Deletion 
n = 73 

Controls 
n = 42 

Duplication 
n = 39 

LOC 
n=26 

Mean ± SD 

DD 
 

2.50 ± 0.99 1.97 ± 0.73 2.50 ± 1.01 2.60 ± 0.97 

EF 
 

3.95 ± 0.96 3.39 ± 0.86 3.68 ± 1.15 4.09 ± 0.59 

EOE 
 

2.36 ± 1.10 1.56 ± 0.70 1.63 ± 0.86 2.26 ± 0.89 

EUE 
 

2.62 ± 1.03  2.38 ± 0.95 2.55 ± 1.04 2.69 ± 0.65 

FF 
 

2.91 ± 1.18 2.59 ± 0.89 3.14 ± 1.23 2.41 ± 0.81 

FR 
 

3.14 ± 1.28 1.98 ± 0.78 2.39 ± 1.19 3.01 ± 0.90 

SE 
 

2.39 ± 1.01 2.46 ± 0.85 2.87 ± 1.31 2.00 ± 0.81 

SR 2.35 ± 0.85 2.62 ± 0.74 2.96 ± 1.07 2.20 ± 0.60 

 
LOC-Loss of Control eating group 
 
DD-desire to drink; EF-enjoyment of food; EOE-emotional overeating; EUE-emotional 
undereating; FF-food fussiness; FR-food responsiveness; SE-slowness in eating; SR-satiety 
responsiveness.   



	 150

Supplementary Table 8: Group contrasts for the CEBQ controlling for age and family 
 

 
DD-desire to drink; EF-enjoyment of food; EOE-emotional overeating; EUE-emotional 
undereating; FF-food fussiness; FR-food responsiveness; SE-slowness in eating; SR-satiety 
responsiveness.  
a Deletion > controls ; b deletion > duplication; c Deletion < controls ; d Deletion < duplication. 

Significant p-values surviving correction for multiple comparisons are highlighted in bold. 
Significant p-values or trends that do not survive correction for multiple comparisons are in 
italic.  

 Deletion versus 
Duplication 

Deletion versus 
Control 

Control versus 
Duplication 

 estimate p-value estimate p-value estimate p-value 

DD -0.101 0.593 -0.060 0.001a 0.499 0.018

EF -0.338 0.074 -0.706 0.0002 a 0.368 0.086 

EOE -0.797 4.44e-06b -0.939 1.21e-08a 0.142 0.436 

EUE -0.184 0.378 -0.287 0.128 -0.01 0.642 

FF 0.186 0.423 -0.351 0.108 0.537 0.035 

FR -0.741 0.001b -1.288 4.26 e-08a 0.517 0.035 

SE 0.465 0.026 0.035 0.864 0.430 0.073

SR 0.688 0.001d 0.298 0.011c 0.287 0.136 
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Supplementary Table 9: Group contrasts for the Child Eating Behavior Questionnaire 
controlling for BMI z-score, age and family 
 
 

 

 

 

 

 

 

 
DD-desire to drink; EF-enjoyment of food; EOE-emotional overeating; EUE-emotional 
undereating; FF-food fussiness; FR-food responsiveness; SE-slowness in eating; SR-satiety 
responsiveness.  
a Deletion > controls ; b deletion > duplication; c Controls < duplication.  

Significant p-values surviving correction for multiple comparisons are highlighted in bold. 
Significant p-values or trends that do not survive correction for multiple comparisons are in 
italic. 
 
 
 
 
Supplementary Table 10: Group contrasts on the CEBQ controlling for age and BMI z-score 
 

 Deletion vs LOC 
 estimate p-value 
DD -0.008 0.91 
EF  0.079 0.631 
EOE  0.404 0.852 
EUE  0.073 0.689 
FF  0.0001 0.999 
FR  0.0001 0.999 
SE -0.091 0.679 
SR  0.033 0.833 

 
LOC-Loss of Control eating group 
 
DD-desire to drink; EF-enjoyment of food; EOE-emotional overeating; EUE-emotional 
undereating; FF-food fussiness; FR-food responsiveness; SE-slowness in eating; SR-satiety 
responsiveness.  

 Deletion versus 
Duplication 

Deletion versus 
Control 

Control versus 
Duplication 

 estimate p-value estimate p-value estimate p-value 
DD 0.0002 0.999 -0.525 0.007a 0.525 0.014c 

EF -0.202 0.356 -0.548 0.007 a 0.346 0.116 
EOE -0.644 0.001b -0.842 1.5e-06a 0.197 0.286 
EUE -0.438 0.056 -0.349 0.075 -0.089 0.681 
FF 0.304 0.25 -0.305 0.186 0.609 0.017 
FR -0.476 0.066 -0.105 2e-05a 0.573 0.029 
SE 0.315 0.187 -0.123 0.575 0.438 0.07 
SR 0.474 0.018 0.233 0.198 0.241 0.222 
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Supplementary Table 11:  Descriptive results on Eating Disorder Inventory 2 (EDI-2) and 
Dutch Eating Behavior Questionnaire – externality scale (DEBQ-E) in the adult cohort  
 

  
 

Deletion 
 

n = 25 

Intrafamilial 
Controls 

n = 38 

Duplication 
 

n = 28 

EDI-2 DT b 
median [1st -3rd quartile] 

5 [2-8] 2 [0-7] 1 [0-2] 

EDI-2 B c 
(> clinical threshold %) 

28 7.8 14.3 

EDI-2 BD b 
median [1st -3rd quartile] 

13 [6 - 21] 8.5 [2 - 15.7] 5 [1 - 6.5] 

DEBQ-E a  
mean± SD  

2.37 ± 0.73 
[n=19] 

2.63 ± 0.57 
2.49 ± 0.82 

[n=20] 
 

a Linear mixed model; b Binomial mixed model; c Logistic mixed model 
EDI-2 DT, Drive for Thinness; EDI-2 B, Bulimia; EDI-2 BD, Body dissatisfaction; DEBQ-
E Externality scale 
 
 
 
 
 
 
Supplementary Table 12: Group contrasts for the EDI-2 subscales and the DEBQ-E scale 
controlling for gender 
 

 
  

Deletion versus 
Duplication 

Deletion versus 
Control 

Control versus 
Duplication 

 estimate p-value estimate p-value estimate p-value 
EDI-2 B 1 -0.626 0.806 -0.672 0.733 0.045 0.985 

EDI-2 DT 2 -1.676 a 6.58e-05 -0.642 0.007 -1.033 b 0.009 

EDI-2 BD 2 -1.445a 2.51e-08 -0.669 c 5.28e-05 -0.775 b 0.001 
DEBQ-E3 0.029 0.901 0.256 0.180 -0.227 0.259 

 

 1 Logistic mixed model; 2 Binomial mixed model; 3Linear mixed model 
a Duplication < Deletion; b Duplication < Control ; c Control < Deletion, p-values are 
uncorrected for multiple testing. Values highlighted in bold are those surviving multiple 
testing correction.  
EDI-2 DT, Drive for Thinness; EDI-2 B, Bulimia; EDI-2 BD, Body dissatisfaction; DEBQ-
E, Externality scale 
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Supplementary Table 13: Group contrasts for the EDI-2 and DEBQ-E controlling for gender 
and BMI z-score 
 

 
  

Deletion versus 
Duplication 

Deletion versus 
Control 

Control versus 
Duplication 

 estimate p-value estimate p-value estimate p-value 

EDI-2 B 1 1.176 0.345 -0.072 0.946 1.249 0.197 

EDI-2 DT 2  -0.358 0.485 0.197 0.531  -0.555 0.158 

EDI-2 BD 2 0.211 0.535  0.433 0.050 -0.222  0.367 

DEBQ-E3 0.308 0.323 0.458 0.057 0.150 0.198 
 

1 Logistic mixed model; 2 Binomial mixed model; 3Linear mixed model 
EDI-2 DT, Drive for Thinness; EDI-2 B, Bulimia; EDI-2 BD, Body dissatisfaction; DEBQ-
E, Externality scale 
 
 
Supplementary Table 14: EDI-2 mean raw scores for deletion carriers, clinical (BN, BED) 
and obese cohorts 
  
 

Deletion 
n = 25 

OB 
n=232 

BN 
n=273 

BED 
n= 154 

 Mean ± standard deviation 

EDI-2 DT  5.7 ± 5.1 9.7 ± 5.1 14.4 ± 5.2 12.5 ± 4.8 

EDI-2 B  1.9 ± 2.6 0.7 ±1.1 10.4 ± 5.4 9.7 ± 4.3 

EDI-2 BD  13.2 ± 8.6 17.1 ± 6.9 18 ± 7.4   21.2 ± 5.9 

OB –obesity; BN –bulimia nervosa; BED - binge eating disorder 
EDI-2 DT, Drive for Thinness; EDI-2 B, Bulimia; EDI-2 BD, Body dissatisfaction 
 
 
Supplementary Table 15: EDI-2 linear regression models controlling for gender and BMI z-
score  
 

 
  

Deletion versus 
OB 

Deletion versus 
BN 

Deletion versus 
BED 

 estimate p-value estimate p-value estimate p-value 

EDI-2 DT 3.296a 0.002 8.562 b 2.02e-13 6.044 c 1.45e-07 

EDI-2 B -1.558 0.092 9.043 b <2e-16 7.780 c 2.18e-15 
EDI-2 BD 0.271 0.857 5.486 b 0.0005 5.271 c 0.0007 

OB –obesity; BN –bulimia nervosa; BED - binge eating disorder 
a   Deletion < OB; b Deletion < BN; c  Deletion < BED 
Significant p-values surviving correction for multiple comparisons are highlighted in bold. 
EDI-2 DT, Drive for Thinness; EDI-2 B, Bulimia; EDI-2 BD, Body dissatisfaction. 
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Supplementary Figures 
 
 
Supplementary Figure 1:  Group comparisons on the Child Eating Behavior Questionnaire 
subscales in deletion carriers, controls and duplication carriers 

 
 
 
The boxplots show adjusted scores for age on enjoyment of food (A), emotional undereating 
(B), food fussiness (C), slowness in eating (D) and desire to drink (E). The bold line shows 
the median, the bottom and top of the box, the 25th (Q1) and the 75th (Q3) percentile, 
respectively. The upper whisker ends at highest observed data value within the span from Q3 
to Q3 + 1.5 times the interquartile range (IQR; Q3-Q1), lower whiskers end at lowest 
observed data value within the span for Q1 to Q1 – (1.5*IQR). We represent significant group 
differences by solid lines with exact p-values above.  
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Supplementary Figure 2: Relationship between food responsiveness (A-B) and emotional 
overeating (C-D), with BMI z-score and age in deletion carriers 
 
 

 
 
 
Left Scatterplots (A and C) represent age on the X axis, food responsiveness (A)/emotional 
overeating (C) score on the Y axis and BMI z-score on the Z axis for deletion carriers. The 
solid black line represents the BMI z-score over the years while the solid colored line 
represents food responsiveness and emotional overeating along time, respectively. Right 
Scatterplots (B-D) show the relationship between food responsiveness (B) or emotional 
overeating (D) and BMI z-score for children and adolescents in deletion group. R squares (R2) 
and p-values (p≤0.1, ns otherwise) are given for each group. Shaded areas depict the 95% 
confidence intervals. 
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Supplementary Figure 3: Cross correlations per group between food and satiety 
responsiveness and emotional overeating in deletion carriers, controls and duplication 
carriers. 
 

 
 
 
Scatterplots showing correlation between satiety responsiveness and food responsiveness (A), 
satiety responsiveness with emotional overeating (B), and correlation between food 
responsiveness and emotional overeating (C). R squares (R2) and p-values (p≤0.1, ns 
otherwise) are given for each group. Red dots represent the deletion carriers, the blue squares 
represent duplication carriers and the green triangle the control group. Colored solid lines 
represent the regression slopes whereas the correspondent shaded areas depict the 95% 
confidence intervals. 
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Supplementary Figure 4: Differences between deletion carriers and LOC (loss of control 
over eating) group on the subscales of the CEBQ  
 
 

 
 
The boxplots show adjusted scores for age on each of the eight CEBQ subscales. The bold 
line shows the median, the bottom and top of the box, the 25th (Q1) and the 75th (Q3) 
percentile, respectively. The upper whisker ends at highest observed data value within the 
span from Q3 to Q3 + 1.5 times the interquartile range (IQR; Q3-Q1), lower whiskers end at 
lowest observed data value within the span for Q1 to Q1 – (1.5*IQR).  
 




