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1 Introduction

The Hungarian national holiday on August 20th has been celebrated since decades with 
a spectacular evening firework show. In 2006 the event was washed away by a storm and 
took victims, and although the weather has been predicted accurately, no precautions have 
been taken. Since 2006 the weather  forecast for August 20th has gained political impor‑
tance, with a dedicated government task force (GTF) deciding on holding or postponing 
the celebrations. In 2022 the fireworks have been advertised as “Europe’s largest”. The 
synoptic weather situation in central Europe on 20 August, 2022 was particularly com‑
plex, shaped by a humid, wavy front system. Meteorological data and numerical simula‑
tions available by noon predicted precipitation for the evening with 80% probability. The 
Hungarian Meteorological Service (HMS) representatives reported these probabilities to 
the GTF, and the GTF decided to postpone the fireworks. In the evening, there was neither 
rain nor thunderstorms. On the next working day, the chairwoman and the deputy chairman 
of HMS were dismissed by the government. The official reason has not mentioned failure 
to comply with the festive forecast, but the coincidence has sent this message to society.

The authors, including several members of the editorial board of this journal, sum‑
marize here the sources, the nature and the interpretation of probability and uncertainty 
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inherent to Earth sciences, to shed light on the reliability of methodologies especially in 
Meteorology and Geophysics. We also stress the importance to communicate uncertainty 
to a broader audience, and the need for education and outreach to optimize the information 
transfer from science to society, from kindergarten to top‑level decision making.

2  The multiple sources of uncertainty

Uncertainty typically stems from multiple sources, which we group into three main catego‑
ries: limited observations, the non‑linear nature of processes on Earth, and the limited abil‑
ity and capacity of modelling. Uncertainties from these are always combined, for example 
even the best models of a poorly described process remain poorly interpretable, and even 
the best data can only be poorly constrained with inappropriate modelling approaches. We 
here develop on these three categories of uncertainty sources.

2.1  Limited observations

Due to the vast spectra of temporal and spatial scales on Earth compared to those of 
humans, our observations of the Earth system and its sub‑systems are only locally 
observed. The atmosphere is more easily accessible, but it is impossible to instrument 
every relevant cell at all times to track its dynamic variations. Changes in the solid Earth 
are in general slower, but direct observations are even more limited. The subsurface is not 
penetrable to instruments deeper than (so far) 12  km, while Earth’s radius is 6371  km, 
which is like scratching an apple’s skin. We thus must rely on various sorts of remote sens‑
ing techniques, let it be meteorological or geophysical, which comes with two inconven‑
iences. First: it remains impossible to image physical properties or status beyond a given 
resolution. Second: very often the observation system’s configuration is uneven in space 
and in time. This preconditions the outcome of numerical weather predictions (NWP) in 
the same way as geophysical surveys.

Improvement in 3D or 4D data collection can be achieved by using several types of 
observations. In meteorology, for example, land‑, sea‑ and atmosphere‑based data collec‑
tion is combined with data provided by satellite‑based instruments that is collected and 
processed e.g., by the European Centre of Medium‑Range Weather Forecasts (ECMWF). 
This, together with data assimilation techniques had a major contribution to improving the 
medium‑range weather forecasts after 1999 (e.g., Bauer et al. 2015), and also allowed high‑
lighting the importance of using parameters such as radiance (e.g., Eyre et al. 2021) as well 
as to quantify the relative contributions of observation types (e.g., Saunders 2021). Despite 
the huge amount of data assimilated and used in the NWP models, the state of the atmos‑
phere described is far from perfect during weather forecasting, which highly contributes to 
the uncertainty of the predictions.

2.2  The non‑linear nature of processes

The processes described by meteorology and geophysics are non‑linear, which means that 
little changes in the system can lead to forthcoming changes that are not proportional to 
the initial change. For example, minor changes in mechanical stress‑increase usually do 
not lead to an earthquake, but at one point they do. In practice, this means that the well‑
established linear tools of mathematics can only be applied by approximation to describe 
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these natural processes. If the system description is handled by linearization to achieve fast 
processing tools, the approximation induces uncertainties.

Another approach is to employ probabilistic methods, which include non‑linear inver‑
sion, aiming at estimating unknown parameters of the non‑linear system. Inverse meth‑
ods, relying on some implementation of the Bayes theorem, are widely used in meteorol‑
ogy, and in a wider context in other climate‑related scientific fields. They do not remove 
all uncertainties, but may help to reduce and  to better constrain them, which aids their 
assessment.

2.3  Limited ability and capacity of modelling

Natural processes are simulated by numerical models, which require physical equations. 
For example, NWPs employ equations from fluid dynamics and thermodynamics (together 
they are referred as the governing equations) to simulate atmospheric flows and the energy 
balance of the surface and the air. The equations plugged into numerical models are con‑
sidered the best to our knowledge, but research reveals new couplings and interactions 
which means the equations don’t exactly describe how nature works. Additionally, numeri‑
cal methods that are used to solve the equations in a computer code are also associated 
with some numerical error.

Because of the hitherto evoked reasons carrying uncertainty, researchers perform large 
numbers of model simulations, either to explore the range of plausible scenarios (e.g., 
weather forecast), or to estimate the likely set of parameters (e.g., of a reservoir, or for 
seismic hazard assessment). The number of simulations depends on the length of the cal‑
culation and the available time. Irrespective of these simulations being part of an ensemble 
technique (i.e., several model runs with perturbed initial conditions instead of a single run), 
or of a random or guided sampling of the parameter space (e.g., Monte Carlo method), the 
outcome is not one result but a considerable amount of results, which need to be interpreted 
together. It is not enough to discuss the best model, instead the set or sets of models with 
meaningful outcomes have to be assessed. This most often leads to a statistical description 
of probabilities, with models that are more plausible and others that are less. By assign‑
ing numbers to how plausible these results are, quantitative probabilities and uncertainties 
(variances, confidence intervals) are given.

3  Disciplinary examples

3.1  Meteorology

It is well recognized that the atmosphere is a chaotic and extremely complex system, thus 
NWP models inherently contain simplifications and are associated with considerable 
uncertainty. For modelling purposes, ensemble predictions were introduced in NWP to 
address the uncertainties to some extent (Buizza 2008); the approach gained popularity due 
to the recognition that the joint (forward) application of imperfect models is typically more 
successful than application of a single, well‑calibrated model. The ensemble method is 
inherently probabilistic, nevertheless it has become part of our everyday life (e.g., through 
smartphones) as the probability of weather events can be quantified. This is not the true 
probability, but a probabilistic estimate based on our current knowledge of how the atmos‑
phere works, based on the available observations, and based on the implemented numerical 
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methods – in other words: to the best of our knowledge (which is continuously improved 
and updated).

The ECMWF is the most important NWP centre in Europe, and runs global models 
twice a day. It issues an ensemble system comprising 50 members, called Ensemble Pre‑
diction System (EPS). It is important to note that the spatial resolution of EPS (which is 
associated with the scale of the resolved atmospheric motions) is always worse than that 
of the so‑called high‑resolution forecast (HIRES, frequently called deterministic forecast). 
This fact adds another level of uncertainty to the evaluation. We need to mention here that 
even the best NWP can provide false forecasts for a given location for precipitation even if 
the model is perfect (see Göber et al. 2008 for a great explanation). This is caused by the 
simple fact that the models work with a given grid geometry and provide data for the aver‑
age of the grid cell. In current NWP models this grid cell can be as large as a 100  km2 (and 
even larger for EPS) so there is no chance to capture small‑scale precipitation events that 
we see each Summer, that can sometimes provide large amount of rain over small areas 
that is not even captured by the observation network.

3.2  Geophysical exploration and reservoir modelling

The exploration and exploitation of geo‑resources (water, geothermal, hydrocarbon, ores) 
requires a particularly good understanding of the state and processes of the underground. 
The physical properties of geological formations are extracted from surface geophysical 
surveys and borehole logging, while reservoir‑related simulations are carried out by mod‑
elling. All these carry uncertainties.

In exploration, and in particular in the very valuable and high‑resolution well logging, 
model parameters such as petrophysical and geometrical quantities with their uncertainties 
are estimated by inverse modelling. In practice, several physical parameters are measured 
during wireline logging measurements. However, because of the acquisition type measur‑
ing once for all parameters at a time while the instrument is moved up the hole, the statisti‑
cal distribution of the observed physical parameters cannot be established. In this case it is 
often assumed that the measured data types follow a Gaussian distribution, and are uncor‑
related or even independent (e.g., Alberty and Hashmy 1984; Ball et al. 1987; Baker Atlas 
1996). This assumption inherently carries uncertainties, which may be reduced by further 
actions, such as repeated measurements in the depth points, specifying the full covariance 
matrix in the data space, or the so‑called interval inversion method in rock formations with 
similar properties. For example, with appropriate mathematical formulation, the estimation 
error of the reservoir parameters could be significantly reduced, by at least 20% depend‑
ing on the petrophysical parameters (Dobróka et al. 2016; Szabó and Dobróka 2020). The 
chances of avoiding local minima can be reduced by global optimization methods (e.g., 
genetic algorithm). The method of most frequent value (Steiner 1991) also provides a 
robust solution for a wide range of probability distribution types, and has been applied in 
other field as well, such as geophysical data processing (Nuamah et al. 2021) and astro‑
nomical geodesy (Völgyesi and Tóth 2021). These and other mathematical approaches help 
reducing (but not totally removing) the uncertainty and noise inherent to wireline logging 
data.

In a later stage of geo‑resource characterization, probabilistic models are commonly 
used to predict reservoir behaviour, with the help of history‑matching. Such models are 
usually very complex and computationally demanding, thus they require robust inver‑
sion techniques that are able to account for uncertainties of a large set of parameters and 
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immerse calibration data. Ensemble‑based techniques, that can predict a large number of 
potential scenarios instead of a single prediction, are becoming increasingly important in 
reservoir simulation as well. Due to the complexity and non‑linearity of reservoir models, 
methods that are capable of reproducing observations and correctly quantifying uncertain‑
ties with feasible computational costs are still rare. For instance, Emerick and Reynolds 
(2013) compared ensemble methods to evaluate their performance on a non‑linear reser‑
voir model. Their findings may help with selecting a suitable prediction technique for a 
specific reservoir engineering problem.

3.3  Earthquakes

Among natural hazards, earthquakes carry one of the largest destruction potential. Because 
they can neither be prevented nor precisely predicted, earthquakes have a high potential 
to cause casualties, injuries and damage in the built and natural environment. In order to 
reduce risks by appropriately constructing and preparing society, the first step is to deter‑
mine seismic hazard.

Probabilistic seismic hazard analysis (PSHA) is the standard method used, which 
is a framework that allows estimating the rate or probability of exceeding a given level 
of ground‐motion or intensity at a site within a specific time interval. Input parameters 
to PSHA, such as past and current seismicity patterns, seismic wave attenuation, local 
geology causing site effects, are all subject to significant uncertainty. Two types can be 
distinguished: the aleatory and the epistemic uncertainty. The existence of the alea‑
tory uncertainty is clear, which is the inherent randomness in earthquake occurrence and 
ground‑motion generation, while the epistemic uncertainty is related to the lack (or gap) of 
knowledge. For example, until March 11, 2011, the large Tohoku earthquake of magnitude 
9.1, residents of Japan’s Tohoku coast were proud of their tsunami defence system, they 
felt protected. The available history had no record of giant earthquakes at the Japan Trench 
off Tohoku, therefore the largest future earthquakes along different segments of the trench 
were expected at magnitude 7 to 8. The incompleteness of seismic catalogues is a gen‑
eral problem, especially in low‑to moderate seismicity regions where the available history 
of seismicity is almost always too short to reliably establish the spatiotemporal pattern of 
large earthquake occurrence.

Epistemic uncertainty is commonly handled through a logic tree framework, which is 
composed by either–or branches, with each branch representing a credible model at a given 
percentage of probability. This way, epistemic uncertainty is considered by specifying the 
credible alternative models for the probability density functions, transfer functions, attenu‑
ation relationfs, and activity rates (Abrahamson 2000). The main effort in hazard estima‑
tion is to handle aleatory variability and reduce epistemic uncertainty, nevertheless uncer‑
tainties persist; this must be considered by structural engineers and decision‑makers.

4  Decision making

All information, probabilities and uncertainties above constitute “only” half of the input to 
decisions made in relation with geosciences, which we can summarize as hazard. The other 
half input to decision making is the vulnerability and exposure of a group of people and 
their natural or built environment. Taken together, these form potential risks, and decision 
makers have to weigh the different inputs.
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The reasons for uncertainties on the hazard side have been detailed above. For deci‑
sion makers, who are often non‑specialists, the probabilities are often condensed into one 
(or few) decision variables (such as the probability of a thunderstorm, the probable geo‑
resource reserves, the probability of a given magnitude earthquake). Decision makers need 
to collect a similar (possibly also simplified) input on vulnerability and exposure for the 
range of the decision parameters, and, ultimately, compare the resulting risk with what 
level is tolerable and intolerable.

While these may sound logical, there is one further aspect: the decision makers need 
to request and assess the uncertainties of the inputs, and take those into account in the 
final decision. This is far from trivial, as the quantification of uncertainties can only be as 
good as the inherited uncertainties from observations, non‑linearity and model simulations. 
While it is relatively easy to communicate the most probable value, it is relatively hard to 
word the level of uncertainty.

In meteorology, NWP is a computer‑aided tool, and the human factor should always be 
present for the interpretation of the results. If there is a relatively small probability for the 
occurrence of a severe weather event that can threaten human life, additional factors need 
to be considered and a complex decision must be made. This is sometimes difficult, and 
sometimes it is not justified by the forthcoming real scenario; nevertheless, decisions are 
based on our actual state of knowledge which is inherently imperfect.

In geo‑energy applications such as hydrocarbon and geothermal production, mining 
activities, subsurface sequestration and storage, reliable predictions are necessary to assess 
future production or storage scenarios and associated risks, and to decide on the feasibility 
of a project. Considering the energy future of our society, geo‑resource estimates are sub‑
ject to non‑negligible political exposure.

Seismology also regularly experiences earthquake scenarios that reach beyond the 
research community and trigger public discussion. A relatively recent example is the trial 
in L’Aquila, Italy, related to a magnitude 6.3 earthquake in April 2009. This earthquake 
was preceded by very unfortunate communication from an official, and followed by tur‑
moil involving the media, the public, and scientists (see Cocco et al. 2015 for details). The 
outcomes of the trial process had great impact on how scientists communicate to decision 
makers and society.

In summary for decision making: while ensemble models are successfully used in risk 
management and decision making worldwide, results and uncertainties should always be 
interpreted by experts, and translated to the target audience.

5  Need for communication and education

The subsequent communication of probabilities and uncertainties is not straightforward, 
neither to formulate, nor to understand.

On the sender side, geoscientists are aware of the uncertainties, but don’t always com‑
municate about it. One of our motivations with this editorial is to encourage authors to dis‑
cuss uncertainties in their scientific publications, and to dedicate specific studies to it (see 
also the recent special issue on uncertainty: https:// link. sprin ger. com/ journ al/ 40328/ volum 
es‑ and‑ issues/ 56‑4). When it comes to communicating with the public, it is important to 
find good analogies, and to think of the communication as an educational exercise. A few 
examples:

https://link.springer.com/journal/40328/volumes-and-issues/56-4
https://link.springer.com/journal/40328/volumes-and-issues/56-4
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• A scenario with a given probability P also means that there is 1-P chance that it does 
not happen. People appreciate this as millions are playing lottery, hoping for an infini‑
tesimally low probability event to occur – and sometimes it does occur, at unpredict‑
able intervals.

• Already in kindergarten children must appreciate probabilities. Who draws the shorter 
stick to start a game? How often one throws a 6 with a dice?

On the receiver side, uncertainty is continuously communicated to us in everyday life, 
and not just in the weather forecast: we hear about the expected government budget defi‑
cit, expected arrival times or delays in transportation, expected number of pupils starting a 
given school year, etc. It is all about stating a present opinion of something that will happen 
or will be seen in the future – and, often, with a different outcome than one thought. This 
difference to what was expected is what we need to assume as the result of uncertainty.

We stress that education is a key element to provide a good basis for society to under‑
stand uncertainties. By education we don’t only mean STEM‑classes at higher level, but 
any subject at any level. At the time of writing this editorial, the famous École Normale 
Supérieure in Paris, France, is organizing a public event to discover, understand and tame 
uncertainty (https:// www. nuit. ens. psl. eu/ progr amme? start_ time= 0& end_ time= 1440). The 
rich program illustrates that uncertainty is present in everyone’s daily life, from biology to 
physics, from law to finances, from literature to music, and from geology to climate.

6  Conclusions

What is uncertainty? It is when the answer to a question is not black‑or‑white (Fig.  1). 
Uncertainty is inherent in geosciences because of the observation types, the non‑linear 
nature of processes, and the limited ability and capacity of modelling. Uncertainties from 
multiple sources add up, and we use mathematical tools to reduce them as much as pos‑
sible. Nevertheless, uncertainty persists, and has to be properly communicated to each tar‑
get audience. For the most efficient communication pathway, experts and decision makers 
must train how to explain uncertainty, and the public should receive appropriate education 
early on to perceive what uncertainty represents. The best defence against natural hazards 
remains prevention that should be based on hazard knowledge. This way, we – both as 

Fig. 1  What is uncertainty? It is when the answer is not black‑or‑white. The area under the Gaussian curve 
represents a linear distribution of grey shades

https://www.nuit.ens.psl.eu/programme?start_time=0&end_time=1440
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individuals and as groups – can learn and train when to organize or cancel events involving 
crowds, or simply which morning to take an umbrella.
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