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RAPPORT DE SYNTHESE

Cette thése a pour but de caractériser les microparticules isolées a partir des concentrés
érythrocytaires et plus précisément de déterminer la présence d’antigénes de groupes
sanguins a leur surface. Elle est divisée en trois parties, sous forme d'articles publiés a partir

d’un travail de recherche mené au Centre de Transfusion Sanguine d’Epalinges.

Dans l'article « Microparticles in stored red blood cells : an approach using flow cytometry
and proteomic tools » publié dans Vox Sanguinis en 2008, il est question de la lésion de
stockage des globules rouges. Grace a des techniques alliant la cytométrie de flux et la
protéomique, il a été montré que la génération de microparticules augmente au cours du
stockage des concentrés érythrocytaires et que leur composition se modifie au cours du

temps.

L’article de revue « Analysis and clinical relevance of microparticles from red blood cells »
publié dans Current Opinion in Hematology en 2010, explique les mécanismes de formation
et d’élimination des microparticules de globules rouges. Il fait une revue des implications
cliniques liees a la genération de microparticules et discute leur conséquences potentielles

dans le domaine de la médecine transfusionnelle.

L'article « Red blood cell microparticles and blood group antigens : an analysis by flow
cytometry » publié dans Blood Transfusion en 2012, décrit I'étude des antigénes de groupe
sanguins a la surface des microparticules générées a partir de concentrés érythrocytaires
aprés ajout de calcium jonophore. Les résultats de cette étude indiquent que les antigénes
de groupes sanguins appartenant aux systémes RH, KEL, JK, FY, MNS, LE et LU sont
présents a la surface des microparticules. Ces antigénes pourraient potentiellement étre

source d’allo-immunisation aprés transfusion.
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Microparticles in stored red blood cells: an approach using flow

cytometry and proteomic tools
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'Service Régional Vaudois de Transfusion Sanguine, Lausanne, Switzerland

2laboratoire d'Electrochimie Physique et Analytique, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Background and Objectives Microparticles (MPs) are small phospholipid vesicles of
less than 1 um, shed in blood flow by various cell types. These MPs are involved in
several biological processes and diseases. MPs have also been detected in blood
products; however, their role in transfused patients is unknown. The purpose of this
study was to characterize those MPs in blood bank conditions.

Materials and Methods Qualitative and quantitative experiments using flow cytometry
or proteomic techniques were performed on MPs derived from erythrocytes con-
centrates. In order to count MPs, they were either isolated by various centrifugation
procedures or counted directly in erythrocyte concentrates.

Results A 20-fold increase after 50 days of storage at 4°C was observed (from
3370 + 1180 MPs/ul at day 5 to 64 850 = 37 800 MPs/ul at day 50). Proteomic
analysis revealed changes of protein expression comparing MPs to erythrocyte
membranes. Finally, the expression of Rh blood group antigens was shown on MPs
generated during erythrocyte storage.

Conclusions Our work provides evidence that storage of red blood cell is associated
with the generation of MPs characterized by particular proteomic profiles. These
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results contribute to fundamental knowledge of transfused blood products.
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Introduction

Millions of blood products are transfused worldwide every
year; many lives are thus directly concerned by transfusion.
Since the beginning of blood transfusion, numerous efforts
have been made to secure blood products and gain knowledge
about their molecular structures. The progress of proteomics
allows re-examining important issues in blood research [1]
and transfusion science [2] with the tools of large-scale
biology [3].

The three main labile blood products used in transfusion
are erythrocyte concentrates (ECs), platelet concentrates and
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fresh-frozen plasma. Each of these products has to be stored
according to its particular components. However, during
storage, modification or degradation of those components
may occur and are known as storage lesions. Among these
lesions, the generation of microparticles (MPs) has been
identified [4-6].

Ageing erythrocytes in blood bank conditions differ from
in vivo, therefore, it has been suggested that erythrocyte
physiological ageing process may be accelerated by storage
conditions [7]. Indeed, during storage, several biochemical
and physiological changes occur in ECs, including an
increase in the concentration of free haemoglobin, lipids,
MPs and a pH reduction, Concerning red blood cells (RBCs),
they lose adenosine triphosphate, 2,3-diphosphoglycerate or
potassium and their membrane undergoes various modifica-
tions, such as more rigidity, disruption of phospholipids
asymmetry, protein clustering, lipid raft rearrangement, loss
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of fragments or even release of MPs [8-10]. The exact effects
of storage lesions on transfusion are still unknown.

Microparticles are small phospholipid vesicles of less than
1 pm in size, also known as microvesicles [11] or ectosomes
[12]. They are released from a variety of cells, such as
platelets, RBCs and white blood cells, or endothelial cells [13].
They contain a subset of proteins derived from their parent
cells. However, MPs are heterogeneous and vary in size,
phospholipid and protein composition. Release of MPs is a
highly controlled process prompted by various stimuli, such
as shear stress, complement attack, proapoptotic stimulation
or damage [14].

Microparticles have long been considered as cell fragments
or ‘debris’ without any biological function. Although their
true biological function is still unknown, there are more and
more indirect evidence that MPs are involved in a broad
spectrum of biological activities, such as haemostasis [15],
thrombosis [13], inflammation [15], transfer of surface
proteins [16] or even angiogenesis [17].

An increase in the number of MPs in plasma has been
demonstrated under various pathological conditions, such as
heparin-induced thrombocytopenia [18], thrombotic throm-
bocytopenic purpura [19], diabetes [20,21], acute coronary
syndromes [22], cardio vascular disease [23] or sepsis [24].
Despite their potential important activities, only few studies
are available on MPs in blood products. It has been demon-
strated that the number of MPs increases with the age of
blood products [25] and that there is a link between the risk
of transfusion complication and the age of the transfused
blood products [26,27]. Thus, an appealing hypothesis is that
a high number of MPs in ECs is linked to adverse transfusion
reactions. In addition, Koch et al. recently demonstrated a
link between the age of transfused RBCs and post-transfusion
complications [28], indicating that progress in the knowledge
of stored RBCs biology is urgently needed.

In order to have a better understanding of MPs in stored
ECs, qualitative and quantitative experiments using flow
cytometry or proteomic techniques were developed and
performed. The goals of this study were: (i) to test centrifugation
methods for the isolation of MPs from ECs; (ii} to count MPs
directly in ECs and in their supernatant fraction; and (iif) to
gain insight into the protein content of MPs as compared to
RBC membranes, and (iv) to evaluate if erythrocyte-derived
MPs also express Rhesus antigens on their surface.

Materials and methods

Erythrocyte concentrates

Whole blood was collected and prepared at the Lausanne or
Bern blood banks, according to standardized procedures.
Only ECs that did not satisfy quality criteria for transfusion
were used for this study, notably those collected from donors
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presenting with elevated levels of alanine transaminases
(ALAT). Briefly, 450 + 50 ml of whole blood was drawn by
venipuncture and collected in blood bags (Fenwal, Lake
Zurich, IL, USA) containing the anticoagulant solution
(citrate-phosphate~dextrose). Leucocytes and platelets were
then removed by filtration. After separation of plasma from
erythrocytes by centrifugation, RBCs were finally suspended
in 100 ml of preservative solution sodium-adenine-glucose-
mannitol. For the experimental purpose of this study, ECs
were stored up to 50 days at 4°C instead of 42 days, the usual
expiration date for concentrates in sodium-adenine-
glucose-mannitol solution.

Flow cytometry analysis and microparticles counts
in erythrocyte concentrates

Samples were analysed on a FACScalibur flow cytometer
with CellQuest pro software (BD Biosciences, Franklin Lakes,
NJ, USA). Flow cytometer was daily calibrated with CaliBRIT™
3 kit (BD Biosciences) containing different fluorescent beads.
Size events were defined using flow cytometry size beads of
1-1-4 wm (Spherotech, Lake Forest, IL, USA). For the different
windows used, the flow cytometer was set on a logarithmic
scale.

Fluorescein isothiocyanate (FITC) anti-human CD47 (BD
Pharmingen, San Diego, CA, USA) and phycoerythrin (PE)
anti-human CD235a (or glycophorin A) (BD Pharmingen)
were the two antibodies used to tag erythrocyte MPs.
Moreover, experiments have been done with FITC human
annexin V (BD Pharmingen) that tags negative phospholipids
present on MPs surface.

Microparticles counts were determined in the supernatant
of a stored EC at 4°C for 38 days, after various centrifugation
conditions (870 g, 1850 g, 2550 ¢ and 3250 g). Four samples
of 50 ml from the EC were spun down twice for 20 min, and
100 wl of supernatant was then mixed with 3 pl of FITC
anti-human CD47 or 3 pl PE anti-human CD235a or both for
double staining. After 20 min of incubation on an orbital
shaker in the dark at 4°C, 400 u of phosphate-buffered saline
(PBS) was added and flow cytometry analysis was carried out
within 1 h in a Trucount™ tube (BD Biosciences). Isotypic
controls were performed with PE immunoglobulin G2b
(IgG2b) or FITCIgG1 (both from Diaclone, Besangon, France).
MPs were also determined in the supernatant of 13 different
ECs stored from 2 to 50 days at 4°C after two centrifugations
at 1850 g for 20 min. Measurements were done in triplicates.
The flow cytometer settings for counting MPs in supernatants
were as follows (detector: voltage): FSC: E00, SSC: 360, FL1:
500-600, FL.2: 500-600 and FL3: 570.

Finally, to avoid pre-analytical variability due to centrifu-
gation conditions, MPs counts were determined in ECs from
seven different blood donors (without centrifugation). For
each EC, six measurements were performed from day 2 to day

Jotrnal compilation © 2008 Blackwell Publishing Ltd., Vor Sanguinis (2008) 95, 288-297
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50 of storage at 4°C. Red blood cells were carefully mixed
with the storage solution, and 5 pl of the RBC suspension was
mixed with 4 ul of FITC anti-human CD47 for 5 seconds. The
mixture was then incubated for 20 min on orbital shaker in
the dark. Lastly, 4 pl of the solution was diluted to 1 ml with
0-9% NaCl in a Trucount™ tube, and was directly analysed by
flow cytometry. Isotypic controls were performed with FITC
IgG1 (Diaclone). The flow cytometer settings for counting
MPs in concentrates were as follows (detector: voltage): FSC:
E00, SSC: 300, FL1: 650, FL2: 520 and FL3: 600.

Proteomics

Proteomic analysis was done on MPs and erythrocyte
membranes of the same 42-day stored ECs. MPs were
obtained after three centrifugations (1850 g twice and 3200 g
once, 20 min at 4°C) and the supernatant containing MPs
was collected. Then, three ultracentrifugations at 120 000 g
for 90 min at 4°C were done, each time pellets were suspended
in PBS. To obtain erythrocyte membranes, RBCs were washed
in PBS 10x and spun at 1850 g for 20 min at 4°C three times,
Collected pellets were then washed in deionized water and
after another centrifugation at 1850 ¢ for 20 min at 4°C,
pellets were collected and prepared for future analysis.

To determine the quantity of sample to load, protein
concentration of each sample was measured according to the
Bradford’s method [29]. For sodium dodecyl sulphate-
polyacrylamide gel electrophoresis (SDS-PAGE), 30 ug of
proteins was loaded onto a 4-129% NuPAGE Novex Bis-Tris
polyacrylamide gel (Invitrogen, Carlsbad, CA, USA). The
migration was carried out at constant voltage (200 V).

For mass spectrometry (MS) analysis, SDS-PAGE was run
as previously described, but 300 g of proteins was loaded.
Upon electrophoresis completion, the gels were rinsed twice
with deionized water and stained with colloidal Coomassie
blue (National Diagnostics, Atlanta, GA, USA) overnight. The
gels were destained with deionized water, Bands of interest
were excised from the gels and transferred into an Eppendorf,
In-gel proteolytic cleavage with sequencing-grade trypsin
(Promega) was automatically performed in the robotic
workstation Investigator ProGest (Perkin Elmer Life Sciences)
according to the protocol of Shevchenko et al. [30]. Digests
were evaporated to dryness and resuspended in 3 pl of o-
cyano-hydroxycinnamic acid matrix [5 mg/ml in 60% (v/v)
acetonitrile : water), of which 0-7 ul was deposited in duplicate
on a target plate. Matrix-assisted laser desorption/ionization
MS (MALDI-MS)/MS analysis was performed on a 4700
Proteomics Analyser (Applied Biosystems, Framingham,
MA, USA). After MALDI - Time of Flight (TOF)/MS
analysis, internal calibration on trypsin autolysis peaks
and subtraction of matrix peaks, the 10 most intense ion
signals were selected for MS/MS analysis. Non-interpreted
peptide tandem mass spectra were used for direct interrogation

of the Uniprot (Swissprot + TrEMBL) database using Mascot
2:0 (http:/fwww.matrixscience.com). The mass tolerance for
database searches was 50 p.p.m. MASCOT was set up to only
report peptide matches with a score above 14, With the
parameters used, the threshold for statistical significance
(P < 0-05) corresponded to a total (protein) MASCOT score of
33. Proteins scores above 80 were automatically considered
valid, while all protein identifications with a total MASCOT
score between 33 and 80 were manually validated. Validation
included examination of the peptide root mean square mass
error and of individual peptide matches. Peptide matches
were validated only if at least an ion series of four consecu-
tive v ions were matched, in addition to ions belonging to
other series. Generally, only proteins matched by at least two
peptides were accepted.

Western blotting

From 20 to 50 ug of proteins from the samples described
before (MPs and erythrocyte membranes) were loaded onto a
4-129% NuPAGE Novex Bis-Tris polyacrylamide gel (Invitrogen).
After migration, carried out at constant voltage (200 V), pro-
teins were transferred to polyvinylidene fluoride membranes
using a Novex blot module (Invitrogen) for 1 h 45 min at
fixed voltage (30V), according to the manufacturer’s
instruction. After transfer, blotted membranes were soaked
overnight in blocking solution with PBS, 0-1% Tween-20 (v/
v), 5% milk and 1% BSA (w/v). Four Western blots were done,
each one with a different antibody, namely, anti-human
CD235a (Santa Cruz Biotechnology, Santa Cruz, CA, USA),
anti-human actin (Sigma, Saint Louis, MO, USA), anti-human
stomatin (Proteintech Group, Chicago, IL, IL) and anti-human
CD47 (from Santa Cruz or from AbCam, Cambridge, UK). All
antibodies were used at a dilution of 1 : 500. The goat
anti-rabbit and goat anti-mouse horseradish peroxidase-
conjugated secondary antibodies {(Dako, Baar, Switzerland)
were both used at a dilution of 1 : 10 000. Subsequent
visualization was performed using enhanced chemilumines-
cence (GE Healthcare, Uppsala, Sweden). The signal was
finally captured using X-ray film.

Expression of Rhesus antigens

Flow cytometry was used to determine the presence of Rh
antigens on MPs generated during storage. MPs were first
isolated from the supernatant of an EC after two centrifugations
at 1850 g at 4°C for 20 min. The supernatant was then spun
down at 18 000 g for 5 min to pellet MPs. Pellet was dissolved
in 100 ul of PBS. One ul of the primary antibody (anti-D,
anti-C, anti-c, anti-E and anti-e, respectively) was later
added and mixed on orbital shaker for 90 min. IgM anti-D
were obtained from Orthobiotech (Bridgewater, NJ, USA),
whereas IgM anti-C, IgM anti-c, IgM anti-E and IgM anti-e

© 2008 SRTS VD
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were obtained from Biotest (Dreichen, Germany). One ul of
the secondary antibody was then added, and after 1 h on
orbital shaker in the dark, 400 pl of PBS was added, and
samples were analysed by flow cytometry within an hour.
Secondary antibody directed against primary IgM was FITC
anti-human IgF(ab) from Chemicon (Melbourn, Australia). To
demonstrate the presence of various Rh antigens on MPs,
blood samples expressing different Rh phenotypes, such as
DCCee, DccEE or dcecee, were selected. The antithetical
phenotype was used with each antibody as a negative control.

Results

Microparticle counts

Using flow cytometry, MPs clearly were distinguished from
RBCs by their size as well as by the negatively charged
phospholipids on their outer membrane detected by annexin

V. Indeed, the great majority of MPs were annexin V-positive,
while merely a few percentage of erythrocytes were positive.
MPs were also identified using either anti-CD47, anti-CD235a
or both antibodies, without any differences in their numbers
according to the choice of the antibody (Figs 1 and 2).

In both methods used, an increase in the number of MPs
during storage of ECs was observed (Figs 2 and 3). The
number of MPs was clearly related to centrifugation conditions
(Fig. 2). In the measurements performed directly in the
concentrate, the number of MPs increases about 20-fold after
50 days of storage at 4°C and considerably varies among
different samples; it starts from 3370 + 1180/ul after 6 days,
up to 64 850 + 37 800/l after 50 days of storage (Fig. 3).
The intra-assay coefficient of variation was evaluated. With
both methods, the coefficient was less than 15%, even after
50 days of storage (data not shown). Nonetheless, and
without evident explanation, we observed a huge individual
variation of the MPs counted among different donors.

Counts
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Fig. 3 Count of microparticles directly in erythrocyte concentrates during
storage (without centrifugation). Data are expressed as the mean £ SD
experiment (n = 7). At day 5, 3371 + 1188 microparticles/pl were counted,
whereas at day 50, their numbers were 64 858 £ 37 846 microparticles/ul.
Anti-human CD47 was used to stain microparticles.

Proteomics

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis
showed a number of large as well as discrete bands obtained
after electrophoresis of RBC membranes (Fig. 4, lane A) and
MPs (Fig. 4, lane B). A major difference was observed in the
25-35 kDa region; thus, in order to perform protein identifi-
cation, bands of interest stained with Coomassie blue were
excised and proteins were identified by MS. Table 1 lists the
proteins identified in the three excised bands of lane A
{erythrocyte membranes) and lane B (MPs). Not surprisingly,

from 46 peptides, whereas it was identified in RBC membranes
with a score of 156, a sequence coverage of 14-9% from four
peptides, indicating that stomatin was largely enriched in MPs
compared to erythrocyte membranes.

Interestingly, some of the identified proteins did not have
molecular weights that corresponded to their respective
position on the gel. For example, haemoglobin subunits o
and B, which have a molecular weight of about 15-16 kDa,
were observed in the region corresponding to 25-35 kDa on
the gel. However, it has been documented that denatured and
cross-linked haemoglobin strongly binds to the cytoskeleton
during RBC storage in blood banking conditions [34]. It is
thus highly probable that the haemoglobin subunits identified
were present as homogeneous or heterogeneous dimers.
Additionally, Band 3 (a major membrane protein) as well as
Rhesus protein were identified in MPs only, from three and
two sequenced peptides, respectively. For Band 3, the identified
peptides correspond to the cytoplamic domain of the protein
(spanning the region 117-180), which means that the Band 3

© 2008 SRTS VD
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Coomassie blue

staining
kDa A B

Fig. 4 Sodium dodecyl sulphate-polyacrylamide

gel electrophoresis (SDS-PAGE) of erythrocyte 82 -
membranes and microparticles, both were from a )
42-day stored erythrocyte concentrate. The gel

was stained with Coomassie blue (for better

compatibility with mass spectrometry). Inset 63 -
shows enlargement of Coomassie blue-stained .
gel used for the preparation of the bands 48 -
submitted to mass spectrometry analysis. Western

blot analysis points out the variation of protein a7 -
expression. Thus, by comparing erythrocyte 26 -
membranes and microparticles, a clear reduction

of actin and an accumulation of stomatin were 19 .
observed on microparticles. The staining of 15 -

CD235a (glycophorin A) was similar in both gels.

fragment that appears on the gel in the 25-35 kDa region
belongs to the cytoplasmic domain of the protein. The Rhesus
protein was identified from two peptides covering the 17 last
amino acids on the C terminus of the protein sequence. Of
interest, Mascott allowed the identification of Rh peptides
(Table 1; lane B of Fig. 4). However, it was not possible to
discriminate between RhD and Rh(CE) proteins, a well-known
problem in proteomics [35]. Nevertheless, the presence of
various Rh antigens at the surface of MPs was confirmed by
flow cytometry (see below).

Western blots

Western blotting confirmed the presence of CD235a, actin
and stomatin on RBC membranes as well as on MPs, with a
clear reduction of actin and an accumulation of stomatin on
MPs (Fig. 4). However, using this technique and the antibodies
available, neither CD47 nor Rh-proteins could be detected
after SDP-PAGE. With blot techniques, no quantitative
difference was observed between MPs samples from ECs
stored for 5 or 42 days.

Rhesus systems

The presence of blood group antigens of Rhesus system on
MPs surface was investigated by flow cytometry using
specific antibodies. In each assay, positive and negative

© 2008 SRTS VD
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B : Microparticles

Excised bands for
mass spectrometry
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A

Actin

CD235a

Stomati

samples were selected for the corresponding antigen (Fig, 1e,f).
By this approach, the presence of C, ¢, D, E or e antigens was
observed on MPs when they were present on the RBCs from
which they derived. However, it was not possible to exclude
that a population of MPs was Rh negative.

Discussion

There is no standardized method to count MPs. Several
approaches have been proposed in the literature, the majority
dealing with platelet MPs from whole blood or platelet
concentrates. Centrifugation speeds, for MPs characterization,
varied from 200 g to 13 000 g [36). In our hands, complete
elimination of RBCs from supernatant at low centrifugation
was obtained after two centrifugation at 1850 g for 20 min.
Annexin V is frequently used to detect phosphatidylserine, a
negatively charged phospholipid known to be present on the
outer leaflet of apoptotic cells as well as on MPs of various
origins [18]. In this study, MPs were counted using flow
cytometry with different antibodies, notably anti-CD235a
and anti-CD47. These antibodies were chosen because both
are reactive towards RBC membrane molecules known to be
present on MPs [14,29].

Counting MPs directly within the homogenized ECs
appeared as the simplest approach, avoiding handling,
centrifugation and washing. The drawbacks were due to the
presence of a great number of RBCs, the need of quite large

Journal compilation © 2008 Blackwell Publishing Ltd., Vox Sanguinis (2008) 95, 288-297
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Table 1 Proteins identified in the region 25-35 kDa of RBC membranes (lane A of Fig. 4) and microparticles {lane B of Fig. 4). Reported are the sequence

coverage (%) and the number of sequenced peptides

RBC RBC MPs MPs
MW (sequence (identified (sequence (identified
AC Entry name Protein name (Da) coverage %)  peptide) coverage %)  peptide)
P31946 1433B_HUMAN 14-3-3 protein B/o 28082 252 7 167 4
P62258 1433E_HUMAN 14-3-3 protein epsilon 29174 349 " NO NO
P61981 1433G_HUMAN 14-3-3 proteiny 28303 NO NO 13-4 4
P27348 1433T_HUMAN 14-3-3 protein © 27764 143 5 NO NO
P63104 1433Z_HUMAN 14-3-3 protein ¢/ 27745 445 N 82 2
P02730 B3AT_HUMAN Band 3 anion transport protein 101792  NO NO 6-8 3
Q4TWB7  Q4TWB7_HUMAN  B-Globin chain (Fragment) 11487 933 15 NO NO
P0O7738 PMGE_HUMAN Bisphosphoglycerate mutase 30005 459 13 378 10
P00915 CAH1_HUMAN Carbonic anhydrase 1 28870 728 27 655 20
P00918 CAH2_HUMAN Carbonic anhydrase 2 29246 727 25 719 15
P0O7451 CAH3_HUMAN Carbonic anhydrase 3 29557 362 8 177 4
AONO71  AONO71_HUMAN  3-Globin chain (haemoglobin 8) 16055 551 10 551 9
P27105 STOM_HUMAN Erythrocyte band 7 integral membrane protein 31731 149 4 764 43
P17931 LEG3_HUMAN Galectin-3 26188 116 3 NO NO
P78417 GSTO1_HUMAN Glutathione transferase m-1 27566 332 10 79 2
P69905 HBA_HUMAN Haemoglobin subunit o 15258 711 9 711 9
P68871 HBB_HUMAN Haemoglobin subunit B 15998 830 16 939 15
Q16775 GLO2_HUMAN Hydroxyacylglutathione hydrolase 28 860 88 2 NO NO
P30041 PRDX6_HUMAN Peroxiredoxin-6 25035 259 6 161 4
P18669 PGAM1_HUMAN Phosphoglycerate mutase 1 28 804 83 2 NO NO
Q06323 PSME1_HUMAN Proteasome activator complex subunit 1 28723 165 4 NO NO
P25788 PSA3_HUMAN Proteasome subunit o type 3 28 433 67 2 NO NO
P25789 PSA4_HUMAN Proteasome subunit o type 4 29484 123 4 NO NO
P60900 PSA6_HUMAN Proteasome subunit o type 6 27 399 93 2 NO NO
014818 PSA7_HUMAN Proteasome subunit o type 7 27887 214 4 NO NO
P00491 PNPH_HUMAN Purine nucleoside phosphorylase 32118 595 16 17:6 4
QOKGO1 Q0KGO1_HUMAN RhD protein 45052 NO NO 41 2

AC, accession number; MW, molecular weight in Da; NO, not observed.

amount of antibodies and an intra-sample variability in the
number of MPs counted. In addition, samples cannot be
stored, contrasting with supernatants containing MPs, which
can be kept at 4°C or even be frozen before being evaluated
by flow cytometry. Disadvantages of working with supernatants
were related to the handling procedures and, more importantly,
to the influence of centrifugation conditions. After centrifu-
gation, residual RBCs were eliminated. However, a number of
MPs appeared to be pelleted together with RBCs (Fig. 2). In
any case, an increase in the number of MPs in ECs during
storage was observed, even if the number of MPs counted
differs according to the method. From our results, it is really
clear that the number of MPs counted in EC was dependent
on the centrifugation protocols.

Whereas it cannot be excluded that MPs from platelets,
white blood cells or endothelial cells be present in the starting
EC, this increase in total of MPs count can be attributed only
to the shedding of MPs from RBCs present in the concentrate.

Noteworthy, the increase varied quite importantly from
donor to donor. The reason of such a variation is unknown,
but factors like ABO blood group, age, fasting or sex of blood
donor may have a role and should be investigated. Finally,
the most important parameter associated with the number of
MPs in ECs was the duration of storage at 4°C.

A set of experiment with three ECs satisfying quality criteria
for transfusion (normal ALAT level) was done and gave very
similar, if not identical MPs count when compared to ECs
with elevated ALAT level (data not shown).

Microparticle tend to aggregate at high concentration,
either related to the methods used for their isolation or to
their ‘intrinsic’ adhesion properties, which have been already
evidenced with platelet-derived MPs [16]. We observed heaps
of erythrocyte MPs by electron microscopy (data not shown),
thus erythrocyte MPs may also have adhesion properties.
This observation is important for the quantitative results,
because MPs counts are evaluated according to their sizes
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tsing flow cytometry. Thus, in samples with high concentrations
of MPs, their number are probably underestimated due to the
fact that MPs tend to form more heaps and flow cytometry
does not distinguish between big MPs or aggregated MPs,
even if the technique is the method of choice to study MPs
[36]. So, the counting approach of MPs presented in this
study (as well as in other published studies) should be
considered as semiquantitative.

According to our proteomic and Western blot studies, MPs
from stored RBCs appeared to be enriched with stomatin.
Remarkably, the enrichment in stomatin, depletion in actin
and stability of glycophorin A (as compared to erythrocyte
membranes) were the same at day 7 and day 40. In this
respect, MPs generated after a few days of storage or at the
end of storage appear equivalent. Those results are well in
line with previous reports [37,38]. Stomatin is a membrane
protein involved in regulation of monovalent cation transport
through lipid membranes [39]. Interestingly, stomatin {which
has a structure similar to caveolin) is a major lipid-raft
component of erythrocytes [40]. Precise reasons of stomatin
enrichment in MPs are not well known and are still subject
of investigation, but may have a role in membrane microdo-
mains modulation leading to membrane budding and MPs
release [38]. The cell membrane plays a key role in the
formation of MPs. Indeed, following a stimulus, increase in
intracellular Ca** occurs and activates proteases that cleave
cytoskeleton proteins {actin and spectrin). Membrane is thus
less rigid and can bud until formation of MPs. Furthermore,
the asymmetry between the neutral phospholipids on the
outer membrane and the negatively charged phospholipids
on the inner membrane held by translocases is broken [37].
Consequently, phosphatidylserine, a negatively charged
phospholipid, is also located on the outer side of MP
membrane, Using annexin V, flow cytometry confirmed that
phosphatidylserine was present on MPs derived from
erythrocytes but essentially lacked from fresh RBCs and was
externalized in only a small fraction of old RBCs. Finally, as
shown by Western blots, actin was not a dominant protein of
MPs when compared to RBC membranes.

The precise reasons for the huge increase in MP counts
during storage of EC observed in this study are unknown.
Although controversial, it has been speculated that MPs
could be a means for erythrocytes to prevent a premature
removal from circulation when they are still functional or
when lesions are reversible [41]. According to this hypothesis,
MPs would allow erythrocytes to clear away non-functional
molecules that would trigger an apoptosis-like pathway, or
to get rid of autologous IgG binding senescent erythrocytes
for removal by spleen macrophages [8,10,42]. Indeed, Willekens
et al. have recently shown that MPs contain erythrocyte
removal proteins such as bound IgG and altered Band 3, and
thus concluded that microvesiculation serves as a removal
pathway for damaged proteins [42]. Complementarily, a

© 2008 SRTS VD

detailed proteomic investigation of RBCs and MPs generated
during storage led Bosman et al. to hypothesize that there are
two possible mechanisms at work in MPs generation: first,
immunoglobulins could bind to senescent surface proteins,
thereby triggering microvesiculation. Alternatively, oxidatively
damaged proteins could bind to or disrupt normal inter-
actions within the cytoskeleton, thereby altering the tight
balance between the cytoskeleton pressure and the membrane
bending stress [10]. These two passive mechanisms could well
be only one part of the picture, because activation of protein
kinases has been demonstrated to trigger phosphatidylserine
exposure in erythrocytes [43], as well as tight concomitant
regulation of microvesiculation and Band 3 phosphorylation/
dephosphorylation [44]. Lastly, lysophosphatidic acid, an
important lipid mediator, has been shown to be able to trigger
phosphatidylserine exposure and microvesiculation in
erythrocytes [45]. These studies show that MP generation can
be triggered by various processes, including senescence or
protein alteration, external or internal exposure to lipid
mediators, and that phosphorylation plays a role in microve-
siculation control.

In this study, we also showed evidence that Rhesus blood
group antigens are located on erythrocyte MPs. The presence
of theses proteins was evidenced by determination of Rh
peptides by MS and by flow cytometry, indicating that the
antigenic parts of the Rh proteins are located outside MPs
membranes. The presence of the Rh complex is also reinforced
by the expression of CD47 (shown by flow cytometry), which
is a member of the complex within the RBC membrane. Those
blood group antigens present on MPs are likely immunogenic,
and thus may play a potential role in RBC alloimmunization
after transfusion.

As recently shown by Koch et al., there is a link between
duration of RBC storage and complications after cardiac
surgery [28]. According to the result of this research, trans-
fusion of erythrocytes that have been stored for more than
14 days in patients undergoing cardiac surgery significantly
increases the risk of postoperative complications and reduces
survival time. Reasons for such complications remain unclear;
however, storage lesions may be a possible mechanism.
Physicochemical changes occurring during storage of ECs are
indeed known to affect RBCs function and viability, Our
results confirm that important changes occur during storage
of RBCs and that storage techniques allowing a better con-
servation of the integrity of the membrane should be thus
developed in the future,
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Purpose of review

The mechanisms involved in the formation of red blood cell (RBC) microparticles in vivo
as well as during erythrocyte storage are reviewed, and the potential role of
microparticles in transfusion medicine is described.

Microparticles release is an integral part of the erythrocyte ageing process, preventing
early removal of RBCs. Proteomics analyses have outlined the key role of band 3~
ankyrin anchoring complex and the occurrence of selective RBC membrane remodelling

mechanisms in microparticles formation. The presence of several RBC antigens,
expressed on microparticles, has been demonstrated. The potential deleterious effects
of RBC microparticles in transfused recipients, including hypercoagulability,
microcirculation impairment and immunosuppression, are discussed.

Formation and role of RBC microparticles are far from being completely understood.
Combining various approaches to elucidate these mechanisms could improve blood
product quality and transfusion safety. Implementation of RBC microparticles as

biomarkers in the laboratory routine needs to overcome technical barriers involved in

microparticles, proteomics, red blood cells, transfusion
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Introduction

Microparticles, also described as microvesicles [1] or
ectosomes [2], are heterogeneous populations of phos-
pholipid vesicles of less than 1 wm, released in circulating
blood by erythrocytes, platelets, white blood cells or
endothelial cells [3]. The production of microparticles
is a highly controlled process, triggered by various

stimuli, including cell stimulation and apoptosis [4]. If

microparticles have been first described as cell dusts [5],
they are now recognized as being involved in a broad
spectrum of biological activities, such as thrombosis and
haemostasis [3,6], inflammation [6], vascular and immune
function [7°], apoptosis [4] or even intercellular com-
munication by the transfer of surface proteins [8]. Micro-
particles are detected in healthy individuals and their
increase has been observed in a variety of diseases with
elevated thrombotic risk, vascular involvement or metas-
tasis [9,10,11°].

Proteomics analysis has been recently applied to the
study of red blood cell (RBC) microparticles (reviewed
in [12]) and allows identification of numerous different
proteins in biological samples. Proteomics has been suc-
cessfully used in the field of transfusion medicine [13—

1065-6251 © 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins

[16]. Nevertheless, and whatever methods are employed
to characterize microparticles, preanalytical issues remain
of major importance to correctly assess microparticles in
blood [17]. The lack of standardized methods has
impaired microparticles analysis implementation in the
clinical setting [18°].

Formation and clearance of red blood cell
microparticles

The normal erythrocyte has a unique membrane and
cytoskeleton organization with redundant surface area
and sufficient flexibility to undergo extensive defor-
mation during its transit through the spleen [19]. Under
physiological conditions, the asymmetric distribution of
RBC membrane phospholipids is maintained by the
cooperative action of translocases (flippase, floppase and
scramblase), concentrating negatively charged aminopho-
spholipids, like phosphatidylserine on its inner leaflet

[20].

Microvesiculation
Rapid externalization of phosphatidylserine after cell
activation or apoptosis modifies the neutral membrane

DOI:10.1097/MOH.0b013e32833ec217
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charge into negative with loss of phospholipid asymme-
try, leading to a cascade of events which disrupts the
interactions between membrane and cytoskeleton pro-
teins, specifically spectrin and protein 4.1R. The stability
of the membrane is thus directly affected, becoming less
rigid and allowing the formation and release of micro-
particles [21,22]. During their lifespan, RBCs lose
approximately 20% of their haemoglobin (Hb) content,
and similar surface area through vesicles emission, thus
decreasing their favourable surface-to-volume ratio
[23°°]. Microvesiculation occurs throughout the erythro-
cyte lifespan and is triggered by different types of stimuli
[23°°], such as shear stress, complement, attack, oxidative
stress and pro-apototic stimulations [4]. As shown during
complement activation, microvesiculation prevents
immediate killing of RBCs by eliminating the membrane
attack complex C5b-09; this survival strategy is especially
used when expression of complement regulatory proteins
on the cell surface are decreased [24]. It remains obscure
how the spleen facilitates microparticles formation during
the second half of the erythrocyte lifespan; interestingly,
improvement of RBC osmotic fragility due to increase of
surface area has been described in patients with heredi-
tary spherocytosis after splenectomy [25,26].

Erythrocyte ageing models

Microparticles formation has been described as an inte-
gral step of RBC senescence [23°°]. Two major models of
erythrocyte ageing have been proposed so far; the eryp-
tosis and the band 3 clustering. The eryptosis model,
which is similar to apoptosis of nucleated cells, could be
regarded as the RBC response to various stresses, whereas
the band 3 model may explain the physiology of RBC
ageing [27°]. In the eryptosis model, intracellular flux of
calcium through possibly altered nonspecific cation chan-
nels leads to activation of several enzymes, such as
scramblases, calpains and transglutaminase 2. This
results in phosphatidylserine externalization, degradation
and cross-linking of cytoskeletal proteins, followed by
modifications in the phosphorylation status of band 3
[28°,29,30]. The band 3 clustering model is characterized
by protein oxidation [31]. The oxidation of Hb contrib-
utes to hemichrome formation, which is constituted Hb-
derived products (likely met-Hb) linked to the inner
leaflet, followed by the clustering and aggregation of
band 3 multimers in the membrane [32]. Band 3 cluster-
ing forms or uncovers senescent neoantigens, probably
because of relatively small structural modifications that
are recognized by naturally occurring autologous IgG
with subsequent complement activation [33-35].

Both models share the similar final outcome that leads to
modifications of band 3 and induces perturbations of the
inner leaflet microenvironment, which could alter the
tight balance between the membrane and cytoskeleton
forces, thus resulting in microvesiculation. It has been

shown that modifications of the band 3—ankyrin anchor-
ing complexes could enhance lateral compression forces
of the cytoskeleton, making the RBC membrane prone to
distortion. Thereby, band 3 anion exchanger should be
considered as a key protein in the regulation of erythro-
cyte structure and function [23°°], through binding cyto-
skeleton proteins, glycolytic enzymes and Hb [36].

Microparticles composition

Reviews of proteomic analysis of microparticles have
been published elsewhere [17,37,38°°,39]. The compo-
sition of RBC microparticles may vary according to
the stimulus and differs from their parental cell by
nearly complete absence of cytoskeletal-linked mole-
cules, decrease of membrane proteins content, presence
of more metabolic proteins and Hb and exposure of
removal signal molecules such as phosphatidylserine
and autologous IgG [23°°,40]. Furthermore, enrichment
of several erythrocyte membrane components has been
described, especially band 3, glycophorins, complement
receptors, glycosyl-phosphatidylinositol (GPI)-anchored
proteins and lipid-raft markers, suggesting selective
membrane lipids and protein sorting. In lipid-raft origin
of RBC microparticles, the oxidation of cytoskeleton
proteins may promote lateral movement of stomatin
oligomers in the membrane, which serve as nuclei for
lipid-raft aggregation and extension, leading to the bud-
ding of membrane lipid-patches detached from cytoske-
leton and segregation of molecules, including stomatin
and GPI-anchored proteins [39,41].

Clearance mechanisms

Once generated in circulating blood, phosphatidylserine-
exposing RBC microparticles are rapidly and efficiently
removed by binding to the macrophage’s scavenger
receptors of the organ in which they originate [40].
Alternatively, RBC microparticles carrying senescent
neoantigen-specific autoantibodies are recognized by
Fcy-receptors and eliminated through the mononuclear
phagocyte system [42].

According to the limited capacity of RBCs for self-repair,
vesicles formation, which is an ATP-free mechanism
even faster than translocation back of phosphatidylserine
[40], may not only help to remove membrane-damaged
molecules, postponing the phagocytosis of otherwise
functional erythrocytes, but also prevents the exposure
of potentially dangerous molecules [39]. Once microve-
siculation capacity is exceeded, old erythrocytes are most
likely phagocytosed.

Red blood cell microparticles and transfusion
medicine

Under blood bank conditions, RBCs undergo progressive
structural and biochemical changes commonly referred to



pigure 1 Observations of microparticles by microscopy give
information about their size and shape

By confocal differential interference contrast microscopy, itis possible to
observe forming microparticles (arrows) from spicules of echinocytes
(magnification x4000).

as ‘the storage lesion’ [39]. As shown in Fig. 1, erythro-
eytes show progressive cell shape transformation from
biconcave disk to rigid spheroechinocyte [42], accom-
panied by the release of microparticles from the tips of
spicules [6,43]. In addition, there is a depletion of ATP,
pH acidification, haemolysis and microparticles accumu-
lation observed in the medium [41]. Although differences
have been reported between in-vitro and in-vivo RBC
senescence such as denaturation of spectrin, changes in
carbohydrate part of the membrane and increased mean
cellular volume, the storage lesion shares similar features
with the cell ageing process [38°°,44°]. RBC membrane
modification during storage is triggered by ATP deple-
tion and oxidation and is centred on changes in band
3 leading to membrane detachment and disorganization
that probably affect RBC deformability, osmotic resist-
ance and survival after transfusion [45,46°].

Microparticles in erythrocyte concentrates

RBC microparticles formation represents a continuous
process of membrane remodelling, which occurs early
during blood banking [41,47°], and prevents the exposure
of phosphatidylserine on RBC [48]. Almost all micro-
particles found in erythrocyte concentrates originate from
RBCs and their number gradually increases with storage
time [37,42,49°°]. The level of vesiculation in erythrocyte
concentrates may vary not only with the length of storage
butalso according to the product and the storage solution:
RBC microparticles are increased in washed blood pro-
ducts [50,51], whereas they could be lowered with addi-
tive solutions that manage effectively the oxidative stress
[44°]. The level of circulating microparticles could sig-
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nificantly increase, as already observed in transfused
patients presenting with paroxysmal nocturnal haemo-
globinuria [50].

The composition of RBC microparticles in erythrocyte
concentrates is nearly similar to those generated /7 vivo,
except for the increased levels of stomatin, making it
likely that a raft-based process is responsible for micro-
vesiculation at low temperatures [41]. As those generated
in vivo, the vesicles found in erythrocyte concentrates are
devoid of most of the RBC integral membrane proteins or
cytoskeletal components, with the exception of actin and
band 3, found in aggregated or degraded forms [6,39,41].
Proteomics data confirm exposure of phosphatidylserine,
binding of immunoglobulins and partial activation of
complement on their surface. The significant difference
observed in membrane composition between RBCs and
microparticles outline that vesicles are generated by
specific processes, which allow sorting of lipids and
proteins [39]. Nonetheless, the pathways responsible
for membrane lipids remodelling before microvesicula-
tion remain mostly unknown. According to the absence of
immunologic removal, microparticles in erythrocyte con-
centrates become more heterogeneous over time with a
gradual increase of their size and of their content of
proteasome components, and a decrease of phosphati-
dylserine exposure [38°°,42], suggesting that either
microparticles structure or nature of vesicle formation
may vary with storage time.

Microparticles and blood group antigens

Half of the RBC transmembrane proteins carry various
blood group antigen specificities [52]. Some of them, such
as the rhesus (Rh) proteins, contribute to membrane
stabilization through their link with protein 4.1R [53].
Blood storage is associated with the generation of soluble
ABH antigens in the bag, parallel to the decrease of their
expression on erythrocytes [54]. Various studies have
shown that blood group antigens are located on micro-
particles [55,56]. The identification of Rh peptides by
mass spectrometry and Rh antigens by flow cytometry
(Fig. 2) indicates that the protein is present within the
membrane and that the antigenic part is located at the
outer side of the microparticles membrane [37]. Our flow
cytometry analyses demonstrated the presence of several
antigens such as RH2 on microparticles (Fig. 2) as well as
RH1, RH3, RH4, RHS, FY1, FY2, JK1, JK2 and KEL1
(data not shown). Despite their cytoskeletal dissociation,
Rh antigens on microparticles keep the property to react
with the corresponding antibodies. However, it is not
known whether they are able to elicit an immune
response.

Another striking feature is the suppression of RBC anti-
gens during autoimmune haemolytic anemia and during
transfusion of incompatible blood [57,58]. It has been
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Figure 2 General scheme presenting the most used analysis methods of microparticles
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The upper left corner of the figure shows part of a red blood cell and microparticles (scanning electron microscopy; magnification, x 37 000). By flow
cytometry technique, it is possible to sort microparticles from erythrocytes according to size and shape. Panels (A) and (B) show the region of
microparticles sorted according to their fluorescence. Microparticles issued from a RH:2,-4 typed erythrocyte concentrate were tagged by RH2
antibodies (B), but not with RH4 antibodies used as negative control (A) (tagged microparticles are on right and nontagged on the left) (adapted from
[37]). Microparticles were double labelled with anti-CD235a (glycophorin A) which binds to the vast majority of erythrocyte microparticles (histograms
show ‘MP region’ according to their fluorescence; the tagged microparticles are on the right and nontagged on the left of panel A and B). Flow
cytometry analysis also may reveal other red blood cell antigens on microparticles {such as Duffy or Kell). Microparticles proteins can be separated by
different techniques such as SDS-PAGE (one-dimensional gel electrophoresis) or two-dimensional gel electrophoresis combined either with image
analysis or mass spectrometry. Using this approach, various microparticles proteins were identified. Of note, two-dimensional gel electrophoresis of
microparticles is hampered by the presence of large amounts of haemoglobin, which can be removed by off-gel electrophoresis, allowing a resolution

sufficient for comparison image analysis. GE, gel electophoresis. Adapted with permission from Rubin et al. [12].

reported that antibody binding could induce disruption of
membrane organization as well as vesicle formation with
consequently the loss of the corresponding blood group
antigens [59]. The exact mechanism of antibody-induced
antigen suppression, which allows transfused RBC to
escape haemolysis, is not known but it is tempting to
speculate that selective loss of antigen might occur
through RBC vesiculation.

Clinical relevance

A large proportion of Hb is enclosed in RBC micropar-
ticles [60°,61] and, with free Hb, participates in the
increase of extracellular Hb during storage. Hb compo-
sition of microparticles resembles that of the oldest RBC
and is enriched in denatured and high molecular weight
fractions [39,42]. Due to their small size and the lack of
most of the cytoskeletal proteins, it is expected that RBC

microparticles could localize near the endothelium and
will probably scavenge nitric oxide as effectively as cell-
free Hb [62,63°]. This reduction of nitric oxide bioavail-
ability will affect adversely the microcirculation by pro-
moting platelet aggregation and endothelial adhesion,
impairing vasodilatation and generating reactive oxygen
species [60°].

Moreover, phosphatidylserine exposure on RBC micro-
particles surface offers a binding site for prothrombinase
and tenase enzyme complexes [12,64] and is associated
with increased activity of factors VIII, IX and XI [65°],
thus participating in thrombin generation and amplifica-
tion. Hypercoagulable state associated with enhanced
microparticles levels has been observed in chronic hae-
molytic anemia, including in sickle cell patients [65°,66].
Although the relationship between RBC microparticles



concentration and increased risk of arterial or venous
¢chrombosis events after blood transfusion is not evident,
¢his question has been raised recently in cancer patients

(67,

The RBC microparticle potential role of cell-to-cell com-
munication has not been investigated so far, RBC micro-
particles, as other cell-derived microparticles, could trans-
fer molecules and modify cell phenotype such as
ilfustrated by the transfer of GPI-anchored proteins
CD55 and CD39 from vesicles found in erythrocyte
concentrates to erythrocytes and granulocytes of parox-
ysmal nocturnal haemoglobinuria transfused recipients
[50]. Moreover, the recruitment of RBC microparticles by
nucleated cells allows the transfer of removal signals such
as phosphatidylserine to innocent bystanders [68], label-
ling them with an apoptosis marker. These data offer a
perspective of further investigations in the field of cell-to-
cell communication capacity of RBC microparticles.

In addition to activating the classical complement path-
way through IgG on their membrane, storage vesicles
may affect the innate immune response by inhibiting the
production of pro-inflammatory cytokines such as tumour
necrosis factor-a and interleukin-8 [49°°]. T'o what extent
this anti-inflammatory signal may explain some of the
immunosuppressive effects of blood transfusions remains
to be clarified.

Although vesiculation contributes to erythrocyte homeo-
stasis in eliminating sorted oxidized proteins [42], the
impact of RBC microparticles on the microcirculation
coupled with their immunomodulation and thrombo-
genic activities could potentiate adverse clinical out-
comes observed in susceptible recipients transfused with
older blood [69,70]. Undeniably, these observations raise
important questions about the clinical impact of RBC
storage lesions; however, this topic remains a matter of
debate and needs strong epidemiologic data to clarify its
role in transfusion medicine.

Conclusion

Extensive proteomic analyses of RBC microparticles
have enabled a better comprehension of erythrocyte
changes during ageing and blood storage and outlined
the pivotal role of band 3—ankyrin anchoring complex.
Indisputably, vesicle formation represents an integral
part of the erythrocyte ageing process. RBC microparti-
cles could be considered as the ‘Dr Jekyll and Mr Hyde’
in the field of transfusion: on one hand, improving RBC
survival in transfused recipients by allowing the elimin-
ation of toxic molecules and removal signals; on the other
hand, enhancing the deleterious events like microcircu-
lation impairment, thrombosis and immunosuppression
in susceptible patients.
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Despite the currently available proteomics and immuno-
chemical data, the exact and complete mechanisms of
erythrocyte microvesiculation remain only partially elu-
cidated. Combining comparative and qualitative proteo-
mic analysis with other different approaches including
immunochemical data or flow cytometry will help to
discover the precise components involved in RBC micro-
particles formation and may identify the potential role of
microvesicles in transfusion medicine. Therefore, pro-
teomic analysis will provide a tool for the development of
methods that could enhance RBC quality and survival
after transfusion. Nevertheless, the use of microparticles
as biomarkers in clinical routine or blood banking needs
the technical barriers involved in their analysis to
be overcome.
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Red blood cell microparticles and blood group antigens:
an analysis by flow cytometry
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Background. The storage of blood induces the formation of erythrocytes-derived
microparticles. Their pathogenic role in blood transfusion is not known so far, especially the
risk to trigger alloantibody production in the recipient. This work aims to study the expression
of clinically significant blood group antigens on the surface of red blood cells microparticles.

Material and methods. Red blood cells contained in erythrocyte concentrates were
stained with specific antibodies directed against blood group antigens and routinely used in
immunohematology practice. After inducing erythrocytes vesiculation with calcium ionophore,
the presence of blood group antigens was analysed by flow cytometry.

Results. The expression of several blood group antigens from the RH, KEL, JK, FY, MNS,
LE and LU systems was detected on erythrocyte microparticles. The presence of M (MNS1),
N (MNS2) and s (MNS4) antigens could not be demonstrated by flow cytometry, despite that
glycophorin A and B were identified on microparticles using anti-CD235a and anti-MNS3.

Discussion. We conclude that blood group antigens are localized on erythrocytes-derived
microparticles and probably keep their immunogenicity because of their capacity to bind specific
antibody. Selective segregation process during vesiculation or their ability to elicit an immune

response in vivo has to be tested by further studies.

Keywords: microparticles, erythrocytes, blood group antigens.

Introduction

Microparticles (MPs) are membrane vesicles
teleased by various cells, including red blood cells
(RBCs). They are defined by a size of less than 1 pum!
and contain proteins derived from their parent cell.
Microvesiculation represents a controlled process?
which is triggered by various stimuli and initiates with
externalization of negatively charged phospholipids.
Erythrocyte-derived MPs (EMPs) represent the most
abundant source of MPs in certain pathological states,
such as sickle cell disease’.

Cell activation or apoptosis promote calcium influx
and lead to a cascade of events which breaks the links
between the membrane and the cytoskeleton proteins,
specifically spectrin and protein 4.1R. Therefore, the
membrane becomes unstable, allowing the release
of MPs*?, During their lifespan, RBCs lose a certain
amount of their haemoglobin content and surface area
through this mechanism®. As RBCs are exposed to a
constant oxidative stress and have a limited capacity
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for self-repair, vesicle formation certainly represents
one of the solution to clear senescent antigens and
prevent the exposure of dangerous molecules on
their surface’. MPs formation has been considered
as an integral step of RBC aging, as outlined by
two recent models of erythrocyte senescence and is
strongly correlated with spectrin oxidation®®*1, Once
vesiculation capacity is exceeded, old erythrocytes
are removed by the reticuloendothelial system!”3,

The composition of EMPs has been established
through proteomic analysis. EMPs proteome differs
from its parental cell by the decrease of cytoskeletal-
linked molecules, the enrichment of several components
(especially hemoglobin, band 3, glycophorins,
complement receptors, glycosyl-phosphatidylinositol-
anchored proteins and lipid-raft markers) and the
exposure of removal signal molecules such as
phosphatidylserin and autologous IgG®”!71%2° These
differences are explained by a process of selective
sorting during microvesiculation process’.

s35



Under blood bank conditions, RBCs undergo
structural and biochemical changes?!??, described as
the "storage lesion""?3-26, This lesion shares similar
features with RBC aging, with the peculiarity that
oxidation of cytoskeleton proteins plays a central
role’?731 It has been shown that the number of
glycophorin A (GPA) positive EMPs increases in
blood units over time and that their structure gradually
change with accumulation of stomatin, compared to
EMPs generated in vivo®!82%32 These observations
make likely a raft-based process responsible for
vesiculation under these conditions’!"?23, EMPs
structure becomes also gradually more heterogeneous,
according to the absence of their immunologic
removal in the bag!®?®,

There are 31 RBC group systems identified so
far*, five of which hold antigens with carbohydrate
structures (ABO, H, GLOB, P, LE) while the
others consist of proteins®. Up to half of the RBC
transmembrane proteins carry blood group antigens,
including proteins that are major constituents of the
RBC membrane, such as band 3 (ABO and DI), GPA
and glycophorin B (MNS), glycophorins C and D
(GE), Rhesus polypeptides (RH) and Aquaporin 1
(COY*%*7, These highly-expressed molecules are of
two types: either transporters proteins with multiple
membrane spanning domains (band 3, RH, CO) or
sialylated glycoproteins with a single transmembrane
domain (GPA, GPB). Due to their density, it would
be expected that they play important structural or
functional roles®’. RBC cytoskeleton network is
essential for membrane stability and consists of
spectrin backbone anchored to the lipid membrane
through interaction with actin, protein 4.1R and
ankyrin®®. Some of these erythrocyte proteins, such
as the antigens of the RH and FY systems, belong
to macromolecular complexes and contribute to
membrane stabilization, through their link with
protein 4.1R*°.

During storage, RBCs show a decrease of
blood group antigens expression, concomitant to
the progressive increase of soluble blood group
concentration in the plasma**!, Evidence of blood
group antigens activity on MPs originated from
erythrocyte concentrates (ECs) has been reported by
some authors, using agglutination/inhibition tests,
Western blotting, immunoelectron microscopy or
radio-labeled anti-D antibodies?**!-* In a previous
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study on EMPs, we identified RH peptides by
mass spectrometry from SDS-PAGE of proteins
isolated from EMPs?, Thus, our work aims to study
the presence of clinically significant blood group
antigens on MPs. We induced microvesiculation of
RBCs stored in ECs after activation with calcium
and performed the flow cytometry analysis with
antibodies routinely used in immunohematology
laboratories for agglutination tests.

Materials and methods
‘Whole blood collection, processing and storage
Whole blood was collected from normal volunteer
donors, attending the Service Régional Vaudois de
Transfusion Sanguine and held in bags containing an
anticoagulant solution (citrate-phosphate-dextrose) for
a maximum of 24 hours at room temperature, prior to
processing. The bags were centrifuged, plasma was
removed and the packed RBCs were suspended in 100
mL of SAG-M (sodium-adenine-glucose-mannitol)
additive solution, afterwards leukocytes were removed
by filtration. The ECs were finally stored at 4 °C.
Donor selection was based on homozygous
expression of RH, JK, FY or MNS antigens except
for KEL3 (Kp*) and LU1 (Lu®). Only ECs that did not
satisfy quality criteria for transfusion were dedicated
to this study (particularly those from donors with
elevated liver enzymes).

Labeling

The experiment consists in an indirect staining of
RBCs with specific blood group antibodies, followed
by the generation of RBC-derived MPs via calcium
ionophore activation and their analysis by flow
cytometry. Samples with anti-RH antibodies undergo
a double labelling with anti-CD235a (anti-GPA).

Samples of stored ECs were washed in phosphate-
buffered saline solution (PBS) and centrifuged at
1,000 x g for 30 seconds at 4 °C. The residual RBC
pellets were incubated with antibodies against blood
group antigens according to their phenotype (Human
IgM Monoclonal anti-RH2 [anti-C], anti-RH4
[anti-c], anti-RH3 [anti-E], anti-RHS5 [anti-e], anti-
MNS3 [anti-S]; Human IgM Polyclonal anti-JK1
[anti-Jk?], anti-JK2 [anti-Jk®]; Human IgG Polyclonal
anti-KEL3 [anti-Kp*] anti-KEL4 [anti-Kp®],
anti-FY1 [anti-Fy*], anti-FY?2 [anti-Fy®], anti-MNS4
[anti-s], anti-LU1 [anti-Lu?], anti-LU2 [anti-Lu®];
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Mouse IgM Monoclonal anti-MNS1 [anti-M],
anti-MNS2 [anti-N], anti-LE1 [anti-Le?], anti-LE2
[anti-Le®]; all from Biotest, Dreieich Germany),
adjusted to 100 pL of PBS and mixed constantly for
00 minutes. Excess of antibody was removed by two
washing steps in PBS.

As the primary antibodies are not fluorochrome-
conjugated, the remaining RBC pellets were
incubated with a secondary antibody (100 pl of
diluted fluorescein isothiocyanate (FITC)-conjugated
antibody), namely FITC-conjugated anti-human
IgM (Caltag Laboratories, Burlingame, CA, USA),
FITC-conjugated anti-human IgG (Chemicon,
Temecula, CA, USA) or FITC-conjugated
anti-mouse IgM (BD Biosciences, Franklin Lakes,
NJ, USA). The samples were agitated continuously
for 60 minutes in the dark. The excess of antibody
was removed as described above with centrifugation
and washing steps.

Generation of microparticles

Calcium inophore solution (2.6 pg of Ca ionophore
A23187; Sigma-Aldrich, St-Louis, MO, USA) and 5
uL of CaCl, (Fluka, Buch, Switzerland) in 1 mL of
PBS were added to the remaining pellet and agitated
in the dark for 60 minutes, at 37 °C. Five pL of
phycoerythrin (PE)-conjugated anti-human CD235a,

diluted 1/10 (BD Pharmingen, San Diego, CA,
USA) were added only to the samples labelled with
anti-RH antibodies and these were agitated 20 minutes
in the dark at room temperature. All the samples were
then diluted with 50 pL, of PBS and spun down at
1,000 x g for 30 seconds to remove RBCs and keep
the supernatant containing EMPs. The supernatants
were transferred to 5 mL plastic tubes (Falcon, BD
Biosciences, Franklin Lakes, NJ, USA).

Flow cytometry

Supernatants were diluted in PBS. MPs size
was determined using flow cytometric light scatter
(FACScalibur, BD Biosciences, Franklin Lakes, NJ,
USA). The flow cytometer was calibrated using beads
(CaliBRIT™ 3 kit, BD Biosciences, Franklin Lakes,
NJ, USA) to ensure standard instrument settings for
each analysis. MPs were defined as particles less
than 1 um. Sizing beads of 1-1.4 pm (Spherotech,
Lake Forest, IL, USA) were used to verify the
appropriateness of the gate. EMPs were gated on the
basis of their forward scatter and side scatter signals
with logarithmic fluorescence scales (Figure 1).
Results of blood group antigens expression were
analysed on dot plots and histograms (Figure 2) with
negative threshold defined by EMPs obtained from
RBCs lacking the corresponding antithetic antigen.
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Figure 1 - Flow cytometry analysis of micropatticles in erythrocyte concentrate's. ‘
Size of events is defined by calibration beads of 1 pm. Two gating regions are
represented: on the left, the events smaller than 1 pm swhich contains the microparticles

and on the right, the erythrocytes. The expression of Rhesus )
RH4 (c) (depending on the Rhesus phenotype of the donots) and glycophomn

(anti-CD235a) is illustrated.
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Figure 2 - Detection of clinically significant blood group antigens on microparticles derived

from erythrocyte concentrates.

The red blood cells were selected according to their homozygous expression
of blood group antigens (vertical axis), except for KEL3 (Kp* and LUI (Lu®).
Flow cytometric histograms show the expression of RH2 (C), RH3 (E), RH4
(c), RH5 (¢), KEL3 (Kp), KEL4 (Kp®), JK1 (Jk%), JK2 (Jk®), FY'1 (Fy"), FY2
(Fy"), MNS3 (S), LUl (Lu®) and LU2 (LuP) antigens on the erythrocyte-derived
microparticles. The absence of the antithetic antigen on microparticles originated
from homozygous erythrocytes served as negative control.

Results

Activation of RBCs with calcium allows the
generation of MPs which are less than 1 pm (Figure
1). The erythrocyte origin of the MPs is confirmed
by the anti-GPA staining. Intensities of detection of
blood group antigens are shown on flow cytometric
histograms (Figure 2). Using this method, the following
antigens were detected on EMPs: RH2 (C), RH3 E),
RH4 (c) and RHS5 () antigens, KEL3 (Kp*) and KEL4
(Kp®) antigens, JK1 (Jk?) and JK2 (Jk*) antigens, FY1
(Fy®) and FY2 (Fy®) antigens, MNS3 (S), Le* (LE1)
and Le® (LE2), and finally LU1 (Lu?) and LU2 (Lu®)
antigens. The presence of M (MNS 1), N (MNS2), and
s (MNS4) antigens could not be demonstrated because
of agglutination of RBCs after the addition of the
primary antibody, despite successive dilutions of the
latter. However, glycophorin A was clearly identified
on the surface of EMPs, either by flow cytometry or
immunoblot analyses®. Gylcophorin B was detected
with MNS3 antibodies (Figure 2).
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Discussion

This study shows that MPs generated from ECs
express clinically significant blood group antigens.
Detecting their expression by flow cytometry
indicates that most of them keep the property to react
with the corresponding antibodies despite cytoskeletal
dissociation during vesiculation. The activities of M
(MNS1), N (MNS2), and s (MNS4) antigens have
not been demonstrated owing to technical difficulties.
For caution, these findings are based on artificially
induced microvesiculation in blood bags and request
verification in human models.

Our results did not determine whether the
antigenic sites density on MPs corresponds to
those of the parent cell. Thus, the question of the
selective segregation (or even enrichment) of blood
group antigens into MPs cannot be answered. Prior
imunoelectron microscopy analysis of EMPs has
ruled out the clustering of FY monomeric chains
formation during vesiculation*?. However, antigen
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selection could arise in MPs, as suggested by the
loss of specific RBC antigens during autoimmune
hemolytic anemia or transfusion of incompatible
blood?*> *6, In these examples, antibody binding
could induce disruption of membrane organization.
Therefore it is reasonable to speculate that selective
loss of antigen may occur through RBC vesiculation,
although the exact mechanism involved has not been
elucidated so far?’.

Duffy protein, also named DARC protein, is
a receptor for chemokines. RBCs without DARC
protein have lost the Duffy-dependent chemokine
binding capacity. This may partly explain the
tendency of FY:-1,-2 sickle cell patients to chronic
inflammation and alloimmunization®’. Some authors
have shown maintenance of blood group antigens
function on EMPs, especially the chemokine binding
activity of DARC protein®?, The hypothetic role of
Duffy positive MPs in clearing local inflammation
mediators has to be further investigated.

As their antigenic activity is oriented outwards and
recognized by specific monoclonal antibodies, blood
group antigens located on MPs may elicit an immune
response in vivo. EMPs are easily phagocytised by
antigen-presenting cells and despite their small size
and low total volume, may represent a significant
immunogenic load during transfusion'”- '35, Recently,
Rhesus immunization originating from EMPs was
suspected in an aphaeresis platelet recipient””. However,
the capacity of EMPs to induce alloimmunization
after transfusion needs to be demonstrated, especially
whether they are more immunogenic and over which
threshold they may trigger antibody formation.

The level of EMPs in blood of sickle cell patients
is significantly elevated and strongly correlates with
the degree of intravascular hemolysis and premature
aging of RBCs* %!, Red cell antibody development is
awell recognized complication of chronic transfusion
in sickle cell patients, with an incidence of 10-40%
in prior published reports®*>*, Transfusion of RBCs
with phenotype matching for C (RH2), ¢ (RH4),
E (RH3), e (RH5) and K (KEL1) antigens have
reduced to six fold the immunization rate’**. Several
factors contribute to RBC alloimmunization in these
patients. Therefore it will be important to define if
EMPs contained in blood units will participate to
the stimulation of the immune system and which
strategies need to be developed by blood banks for
its prevention. '
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Conclusion

Our work has brought further insights in the
composition of EMPs generated during ECs storage
upon calcium stimulation and raised questions about
their potential immunogenicity. Nevertheless, the
MPs capacity of immunization during transfusion
needs animal models to investigate the immune
effectors side. As well, determining antigen density
on EMPs using antibody calibration kit will provide
further information about the hypothesis of selective
sorting during erythrocyte microvesiculation®.

Although EMPs contributes to erythrocyte
homeostasis in eliminating sorted oxidized proteins'®,
they represent a "two-edged sword" with the
capacity to induce adverse clinical outcomes in
transfused recipients through their immune effects
(immuno-modulation and alloimmunization),
thrombogenic activities and negative impact on
the micro-circulation®3? 586°. The analysis of EMPs
generated during blood processing and aphaeresis
techniques will permit to improve the quality of
blood products®%2, Understanding the real impact of
EMPs and minimizing their formation during blood
processing represent a future challenge in the field
of transfusion.
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