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ABSTRACT
Climate change leads to deep modifications of high Alpine
environments. Those modifications have significant consequences on
mountaineering itineraries and make them technically more difficult
and more dangerous. Although a growing number of studies have
recently documented this issue, they only list the processes affecting
the itineraries and do not document their characteristics. Therefore,
the acquired data lack relevance to be spread and for prevention
making among climbers. In the present study, on the basis of the
processes identified in previous studies in the Mont Blanc massif, we
developed a legend in order to map the processes related to climate
change that affect the itineraries and modify their climbing
parameters. Following the UNIL geomorphological legend and using
the same color code, 21 symbols were defined to map 23 processes. In
order to evaluate the applicability and interest of the legend
proposed, we present a first application in the Valais Alps
(Switzerland), based on 21 semi-structured interviews with local Alpine
guides and hut keepers. The map then allowed to list the processes
affecting each of the 36 itineraries studied. On average, an itinerary is
affected by 9 different processes and 25% of the itineraries have
greatly evolved, which means their ascent in summer cannot be
recommended anymore because of climate change. More generally,
this legend would provide a common methodological basis, destined
to be completed within future studies and to be relevant beyond the
European Alps. This basis would also ease the comparability and
compilation of results from different future studies.
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Introduction

Climate change leads to deep modifications of high Alpine environments (Beniston et al. 2018;
IPCC 2019), especially because of shrinking glaciers (Shannon et al. 2019; Hock and Huss
2021; Hugonnet et al. 2021) and permafrost degradation (Harris et al. 2001; Etzelmüller et al.
2020; Marcer et al. 2021). This implies a series of processes such as the retreat of glacier fronts
(GLAMOS 2020), the loss of ice thickness (Fischer et al. 2014), the erosion of moraines (Lukas
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et al. 2012), an increase in the frequency of rockfalls (Ravanel et al. 2017), etc. All these glacio-
logical and geomorphological processes have significant consequences on recreational mountain
activities and especially on mountaineering (Ritter et al. 2011; Temme 2015; Purdie and Kerr
2018; Mourey, Marcuzzi, et al. 2019a; Mourey, Ravanel, et al. 2019b), which has recently been
inscribed by UNESCO on the Representative List of the Intangible Cultural Heritage of Humanity
(Debarbieux 2020).

Ritter et al. (2011) proposed a list of 22 processes related to climate change that affects moun-
taineering and trekking itineraries in the Austrian Alps, and showed that they have numerous
impacts on the itineraries such as an increase in danger, technical difficulty and the period when
they can be climbed in fairly good conditions. However, they only identified these processes but
did not analyze in detail the evolution of a sample of itineraries and therefore did not identify
the processes that most affect the itineraries or that are the most determinant for the practice.
Temme (2015) proposed a comparison of guidebooks from different periods and showed that
the rockfall frequency in mountaineering itineraries has increased since 2000 in the Bernese
Alps. Purdie and Kerr (2018) made a detailed analysis of the modification of the classic itinerary
to climb Mount Cook (3724 m a.s.l.) in the Southern Alps of New Zealand, and showed that the
itinerary is mainly affected by the loss of ice thickness of the Tasman glacier in its lower part,
while it becomes steeper because of the melting of the Linda hanging glacier in its upper part. It
results in an increase of the technical difficulty of the itinerary and a decrease by half of the length
of the favorable period to climb it.

On a similar methodological approach as Purdie and Kerr (2018), Mourey, Marcuzzi, et al. (2019a)
studied the modification of the mountaineering itineraries described in G. Rébuffat’s iconic guide-
book The Mont Blanc Massif: the 100 Finest Routes (1973). The authors identified 25 geomorpholo-
gical and glaciological processes related to climate change affecting the itineraries in the Mont Blanc
massif (MBM, European Alps) and modifying their climbing parameters (level of exposure to objec-
tive dangers, technical difficulty and the optimal period for climbing – i.e. when the number/intensity
of processes affecting the itinerary is the lowest). On average, each of the 95 itineraries studied is
affected by 9 different processes such as rockfall, glacier slope angle increase, ice apron retreat, appear-
ance of smooth slabs of bedrock or serac fall. In other words, a climber attempting to climb one of
these itineraries has to consider and potentially adapt his behavior to, on average, nine different pro-
cesses related to climate change. As a result, 36% of the itineraries have become more dangerous and
difficult and are unclimbable during certain periods of the year, particularly in summer and during/
following heat waves – which are increasingly common (Della-Marta et al. 2007) – while 27% are no
longer climbable in summer, as the processes affecting them lead to an excessive level of danger and/
or technical difficulty. Finally, 3% of the itineraries have already disappeared, either due to glacial
retreat or rockfalls. For example, the Bonatti pillar on the west face of the Drus (3754 m a.s.l.), dis-
appeared in 2005 because of a 700 m high and 292 680 m3 rock avalanche (Ravanel and Deline
2008; Guerin et al. 2017). In such a context, mountaineers must consider these changes – which
are increasingly constraining – and must adapt their behavior to continue the practice of mountai-
neering and limit their risk-taking (Pröbstl-Haider et al. 2016; Mourey et al. 2020).

While the study by Mourey, Marcuzzi, et al. (2019a) is probably the most thorough that has been
realized up to now, it only lists the processes affecting each itinerary and does not document their
characteristics or location. Thus, the acquired data lack relevance to be spread and for prevention
making among climbers who need to know the characteristics of the processes and where they are
affecting the itineraries. Adding spatial information to the type of process affecting each itinerary
would therefore help to reduce these limitations and to better document the changes that affect
high mountain environments. Therefore, the main objective of the present study is to develop a
legend to map the processes related to climate change that affect mountaineering itineraries and
modify their climbing parameters. Such a legend should (i) ease data collection, (ii) make the
data analysis simpler, (iii) favor the knowledge transfer to the mountaineer’s community and
(iv) participate in improving knowledge on processes related to climate change in high mountains.
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More generally, this legend would provide a common methodological basis, destined to be com-
pleted within future studies and to be relevant beyond the European Alps. It would also enable
the comparability and compilation of results from different researches.

In order to evaluate the applicability and interest of the legend proposed, we thus present a
first application in the Valais Alps (Switzerland), allowing to assess the modification of
mountaineering itineraries for this Alpine region, following the scheme of the previous
study carried out in the MBM. A comparison of the results between these two massifs is
also carried out.

Study area

The Valais Alps, the 100 finest routes as the reference sample

The Valais Alps are located on the orographic left side of the Rhone River (Figure 1). The high-
altitude study area includes many summits above 3500 m a.s.l., 5 summits above 4000 m a.s.l.
and 27 glaciers. It belongs mainly to the Dent Blanche nappe (Austroalpine unit), where orthog-
neisses of the Arolla series (Arolla gneiss) are dominant, with the exception of the Aiguilles
Rouges d’Arolla, that belong to the Tsaté nappe (Upper Penninic unit) and are composed of
metagabbros. Climatically, the Valais Alps are under the influence of a semi-continental climate
of intra-Alpine shelter. The mean annual air temperatures and precipitations at 2800 m a.s.l. are
around −1°C and 1200 mm/yr according to MeteoSwiss data (Évolène weather station, 1825 m
a.s.l.).

Using the same general approach as the study conducted on the MBM by Mourey, Marcuzzi,
et al. (2019a), the present study focused on the itineraries presented in M. Vaucher’s guidebook
(1979) – The Valais Alps, the 100 finest routes – whose series was directed by G. Rébuffat. It pre-
sents all kinds of itineraries (rock, snow and mixed) in an increasing order of difficulty from F-facile
– easy – to ED-extrêmement difficile – extremely difficult – (see Cox and Fulsaas 2006). This makes
this guidebook a relevant and representative sample of popular itineraries in this massif, at least at
the date of publication.

The 100 itineraries presented in the guidebook dedicated to the Valais Alps are spread
over a very large area (3000 km2), extending from the Grand-Saint-Bernard pass (2469 m
a.s.l.) to the Simplon pass (2106 m a.s.l.). In this work, we have only studied the itineraries
present in the Bagnes, Hérémence, Hérens and Anniviers valleys (Figure 1). This
represents a region of 750 km2 in the French-speaking part of the Valais Alps and 36 different
itineraries are described (Figure 1). Each itinerary was divided into four parts: (i) the access to
the refuge, which starts down in the valley, (ii) the approach, which starts at the refuge and
ends either at the foot of the rockwall to be climbed or at the bergschrund (crevasse between
moving glacier ice and stationary ice or firn or rockwall above); (iii) the route itself and its
continuation to the summit and (iv) the descent, which starts at the summit and ends in
the valley.

For some cases, the guidebook proposes several different routes for the same itinerary number.
If the orientation and the type (rock, snow, or mixed) of the routes presented for the same itin-
erary are different and if they are far away from each other, they have been analyzed as different
itineraries. It is the case for itineraries 62 and 25 (see Appendix). For the itinerary 62, the guide-
book proposes three routes to climb the Mont Blanc de Cheilon (3870 m a.s.l.): the north face,
the Gallet ridge and the Jenkins ridge. Since the three routes have a different orientation, are of
different types (one ‘snow’ and two ‘rock’) and relatively separated in space, they have been ana-
lyzed separately. We did the same for the itinerary 25, which presents three different routes to
climb the Pointes de Mourti (3564 m a.s.l.): the north face, the south face and the west face.
On the contrary, when the routes have the same orientation, are of the same type, and are
close to each other, they have been analyzed as a single route. It is the case for the itineraries
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4 (Le Mammouth, 3215 m a.s.l.), 9 (Pointe de Tsalion, 3512 m a.s.l.) and 61 (Dent de Perroc,
3676 m a.s.l.). Accordingly, a total of 36 different itineraries were studied, 7 of them are
‘snow’ routes, 24 ‘rock’ and 5 ‘mixed’.

The Alpine environments in the context of climate change

In the current context of climate change, the study area undergoes deep modifications. Since the
end of the Little Ice Age (LIA), there has been a clear decrease in the number of snowfall days rela-
tive to the total precipitation days in the Alps (Serquet et al. 2011), together with earlier snow melt-
ing (Klein et al. 2016). In the Swiss Alps between 1139 and 2540 m a.s.l., snow cover duration
shortened by 8.9 days/decades during the period 1970–2015, with a snow season starting 12 days
later and ending 26 days earlier than in 1970 (Klein et al. 2016). This decrease is dependent on
the altitude and therefore less significant at high altitudes.

Glacierized areas in the Swiss Alps have decreased by 28% between 1973 and 2010 (Fischer et al.
2014) with an acceleration of the melting since the 1990s (Huss 2012; Vincent et al. 2017). Between
1900 and 2011, glacier volume in the Alps decreased by 49% (Huss 2012). In the study area, the

Figure 1. Location map of the Bagnes, Hérémence, Herens and Anniviers valleys in the Valais Alps (Switzerland). The 36 itiner-
aries studied are represented with the summits they reach and the refuges concerned (alt. are in m a.s.l.). DTM SwissTopo.
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Giétro, Breney and Otemma glaciers have lost respectively 43%, 61% and 63% of their mass between
1850 and 2009 (Lambiel and Talon 2019) and the Haut glacier d’Arolla has lost 40 (±5) × 106 m3 of
ice volume between 1999 and 2005, associated with a vertical loss of 35 m in the tongue area (Dadic
et al. 2008). At the same time, glacier fronts retreated dramatically, as for example, the Zinal glacier
for which the front retreat reached 400 m between 1990 and 2018 (Glamos 2020).

Another consequence of climate change on glaciers is a decrease in snow cover on glaciers, both
in area and depth, in relation with a 170 m rise of the glacier equilibrium line (ELA) altitude
between 1984 and 2010 in the western Alps (Rabatel et al. 2013) and a reduction in winter snow
accumulations (Beniston et al. 2018). As a consequence, crevasses masked by snow in winter appear
higher in altitude and earlier in spring and areas of bare ice, technically difficult to cross for a clim-
ber in steep terrain, are more extended, even above 3000 m a.s.l.

The decrease in snow cover on glacier, combined with a decrease in the frost frequency (Pohl
et al. 2019) and a rise in altitude of the 0°C isotherm in summer (167 m increase in the MBM
since 1960; Météo France and Snow Research Center data, analysis by the Research Center for
Alpine Ecosystems) probably leads to an earlier weakening of snow bridges in spring or during
heat waves. Moreover, the retreat of steep hanging glaciers may imply an increase in the frequency
of ice avalanches, as evidenced locally by Fischer et al. (2006). On annual and secular time scales,
they are occurring especially during the warmest periods (Deline et al. 2012). Glacial shrinkage also
leads to an increase in the surface and/or thickness of supraglacial debris covers for some glaciers
(Gomez and Small 2018; Scherler et al. 2018).

In response to the melting of glaciers, the Alps are currently in a paraglacial period (Church and
Ryder 1972; Ballantyne 2002; McColl, 2012). As a consequence, paraglacial processes – defined by
Ballantyne (2002) as ‘the non-glacial earth-surface processes, sediment accumulations, landforms,
landsystems and landscapes that are directly conditioned by glaciation and deglaciation’ – are inten-
sifying. In the Alps, the main paraglacial processes at work are rockfalls, debris slides and slumping
due to the erosion of recently deglaciated moraines (McColl 2012; Deline et al. 2015; Draebing and
Eichel 2018; Eichel et al. 2018; Ravanel et al. 2018) and rockfalls from recently deglaciated rock
slopes (Hartmeyer et al. 2020).

At the same time, permafrost undergoes accelerated degradation (Haeberli and Gruber 2009;
Biskaborn et al. 2019), which results in more frequent and voluminous rock slope movements
(rockfalls, rock slides) (Harris et al. 2001, 2009; Ravanel and Deline 2011; Ravanel et al. 2017). How-
ever, one must be careful not to consider every rockfall as due to permafrost degradation, since it is
a natural erosion process in high mountain environments.

Methods

Construction of the legend and mapping of the processes affecting the itineraries

The method used to map the processes affecting the itineraries is divided in 4 steps (Figure 2):

(1) A legend was developed on the basis of the 25 processes identified in the MBM (Mourey,
Marcuzzi, et al. 2019a). Following the UNIL geomorphological legend (Schoeneich 1993;
Lambiel et al. 2016) and using the same color code, 21 symbols were defined to map 23 processes
(Figure 2). The processes ‘Weakening of snow bridges’ and ‘Less frequent night freezing’, ident-
ified in theMBM, have not been considered in this work as they are impossible tomap at the scale
of a mountaineering itinerary and the two processes ‘Glaciers surface more often in bare ice’ and
‘Glaciers slope angle increase’ are almost always associated and are therefore represented using
the same symbol. The same applies for the two processes ‘Ice aprons surface more often in
bare ice’ and ‘Ice aprons slope angle increase.’ The processes were classified according to the ter-
rain in which they take place: (i) glacier margins, (ii) glaciers, (iii) unglaciated and/or permafrost
affected rock slopes and (iv) ice aprons, hanging glaciers and snow ridges.
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(2) In a first set of semi-structured interviews (16 interviews lasting 1–2 hours) carried out by the
same researcher, local mountain guides and refuge keepers were asked to draw on the most
recent topographic map available, with the help of the legend, the long-term modifications
of the itineraries (since the 1980s) they are able to identify. At the same time the interviewer
took notes to complete and clarify the mapped processes.

(3) The changes mapped during the interviews were then remapped using the Geographic Infor-
mation System (GIS) QGIS. This information was completed by a diachronic analysis of aerial
images from 1982 to 1983 and 2019 to 2020, together with the analysis of topographic maps and
the SwissAlti3D digital elevation model (DTM) of Swisstopo (2 m resolution) (Figure 2). The
latest aerial images allowed to accurately digitize the difference in ice surfaces related to the
shrinkage of glaciers and ice aprons, the development of debris covers on glaciers, the newly
formed proglacial lakes, the development of torrents in proglacial areas and the changes in
supra-glacial hydrology such as the formation/widening of bedieres and moulins. Overall,

Figure 2. The four steps of the mapping work of the climate-related processes affecting mountaineering itineraries.
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only the processes affecting the itineraries studied – or in the direct proximity with them – were
mapped. The digitization was carried out at a scale between 1:1000 and 1:5000. The scale of the
final map (Appendix 1) is 1:25,000, in accordance with the scale of the topographic map used. A
few days of field work were also needed to confirm some observations, as for example the limits
of debris-covered glacier, which are difficult to identify from aerial images.

(4) Finally, an evaluation of the map was completed through a second set of five interviews with
some other local mountain guides and refuge keepers, not interviewed during the first set.
They were asked to confirm/precise or invalidate the processes mapped if necessary.

From the final map, all the processes affecting each of the itineraries could be listed and orga-
nized in a database (Appendix 2), cross-referencing each of the itineraries with the 23 geomorpho-
logical and glaciological processes. A cross analysis between the number of processes that affect each
itinerary, their type, their level of modification, their orientation, etc., could then be performed.

During step 2, the identification by the interviewees of the processes affecting the itineraries was
generally influenced by the conditions encountered during their last ascent and/or their clients. The
interviewees identified in priority the processes that are the most relevant for their ascent, without
necessarily considering the season and the climate-related evolutions. For example, an alpine guide
will be more prone to notice a change such as a steeper glacier if he is with clients of a rather low
technical level. It was the interviewers’ role to encourage interviewees to identify only long-term
processes rather than focusing on their last ascent. For this reason, each of the itineraries was
studied during at least two different interviews.

Change in the climbing parameters for each itinerary

The interviewees were asked to evaluate the level of change of the climbing parameters for each itin-
erary, according to the 5-level scale used in the MBM (Mourey, Marcuzzi, et al. 2019a):

. Level 0: the itinerary is not affected by any process related to climate change. There is no change
in its climbing parameters.

. Level 1: the itinerary is affected by a few processes related to climate change, but they only affect a
small part of the itinerary and do not imply an increase in danger or in technical difficulty.

. Level 2: the itinerary is affected by processes related to climate change that imply a moderate increase
in danger and/or technical difficulty; as a result, the itinerary may not be climbable all the summer
long and the most favorable period to climb it shifts to spring and/or fall, sometimes winter.

. Level 3: the itinerary is affected by processes related to climate change that imply a strong increase in
danger and/or technical difficulty; the itinerary is thus generally no longer climbable in summer.

. Level 4: the itinerary is affected by processes related to climate change that led to the disappear-
ance of a large part of the itinerary (e.g. massive rockfall). It can no longer be climbed.

Results

Map of the climate-induced processes affecting mountaineering itineraries

The general map (Appendix 1) shows the glaciological and geomorphological processes related to
climate change that affect the 36 itineraries studied and an example is given in Figure 3. This map
was then used to list the processes affecting each of them and to perform a statistical analysis
(Appendix 2). For example, according to the local map extracted for the Cheilon glacier area (Figure
3), the itinerary 62 – the ‘Gallet ridge’ on the Mont Blanc de Cheilon (3870 m a.s.l.) – is affected by
12 different types of processes.

On average, an itinerary is affected by nine different processes. Eight processes are affecting more
than half of the itineraries: (i) glacial retreat and the appearance of bedrock or till (34 itineraries affected
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Figure 3. Extract of the general map of the climate-related processes affecting mountaineering itineraries: the Cheilon glacier
area (Hérémence valley). Twelve processes are affecting the itinerary 62, the ‘Gallet ridge’ on the Mont Blanc de Cheilon.
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out of 36 = 94%), (ii) the retreat of ice aprons and hanging glaciers and the appearance of bedrock, gen-
erally highly fractured (33/36 = 92%), (iii) the development of a supraglacial debris cover (26/36 = 72%),
(iv) the increase in the frequency of rockfalls in unglaciated rock slopes (26/36 = 72%), (v) steeper ice
aprons and hanging glaciers (24/36 = 67%), (vi) ice aprons more often in bare ice (24/36 = 67%), (vii)
the development of torrents in proglacial areas – in some cases associated with debris flows (23/36 =
64%) and (viii) the increase in the frequency of rockfall in recently deglaciated areas (19/36 = 53%).
Overall, these processes cause an increase in danger and technical difficulty for climbers.

Altitudinal distribution of the climate-induced processes affecting the itineraries

The different parts of the itineraries (refuge access, approach, route and descent) are not affected by
the same processes (Figure 4) which are generally altitudinally distributed.

Refuge accesses are affected by 15 different processes occurring mainly in glacier margins.
Glacier retreat and the appearance of bedrock or till is the process that mostly affects the refuge
accesses (23 over 36–64%). This observation is consistent with the fact that the 15 refuges concerned

Figure 4. Number of refuge access, approach, route and descent affected by each process.
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are located at a mean altitude of 3069 m a.s.l. (min.: 2462 m a.s.l.; max.: 3787 m a.s.l.; med.: 2954 m
a.s.l.), i.e. below the ELA. Their access follows and/or crosses glacier tongues, where the melting is
the highest (Berthier et al. 2014). This finding is in agreement with other studies carried out on cli-
mate-related evolution of the accesses to high mountain refuges in the Alps (Mourey and Ravanel
2017; Mourey, Ravanel, et al. 2019b).

The approach to the route start is the part of the itinerary affected by the highest number of pro-
cesses (17/23) and is also mainly affected by the glacier retreat and the appearance of bedrock or till
(23/36–64%). However, as they are located a little higher in altitude than the accesses to the refuges,
they are less affected by paraglacial processes and they are more affected by processes occurring in
unglaciated rock slopes such as the increase in the frequency of rockfalls (Figure 4).

The route itself is the part of the itinerary that is affected by the lowest number of processes (14/
23) as their environment is generally monotype (rock, snow or mixed), but these processes largely
define the level of change of the climbing parameters of the entire itinerary. Indeed, the route being
in general the steepest and the most technically difficult part of the whole itinerary, the slightest
modification of the environment quickly leads to a modification of its climbing parameters. The
process that mostly affects the routes is the retreat of ice aprons and hanging glaciers and the
appearance of bedrock, generally highly fractured (22/36–61%).

Level of change of the climbing parameters of the itineraries

The climbing parameters have not evolved for only 1 (3%) of the itineraries studied: the Traversée
des Petites Dents de Veisivi (3184 m a.s.l.; itinerary 34), located relatively low in altitude and without
glaciers. They have slightly evolved (level 1) for 12 (33%) of the itineraries, moderately evolved
(level 2) for 14 (39%) and strongly evolved (level 3) for 9 (25%). None of the studied itineraries
are at a level 4 of change.

Overall, snow and mixed itineraries are more affected by climate change, with an average level of
change of 2.5 and 2 respectively, than rock itineraries (1.6). North-oriented routes have the highest average
level of change (2.5) compared to the south-oriented routes (1.3). The samples of west- and east-oriented
routes are very limited (3 routes for each; Table 1) so they have not been considered in the later analysis.

Table 1. Comparison of the samples of itineraries studied in the Valais Alps and the MBM according to their type, orientation,
technical difficulty and level of change of their climbing parameters.

Valais Alps Mont Blanc massif

N % N %

Type of itinerary
Snow 7 19 24 25
Mixed 5 14 22 23
Rock 24 67 50 53
Orientation
N 15 42 29 31
S 15 42 39 41
E 3 8 10 11
O 3 8 16 17
Technical difficulty
Somewhat difficult 2 5 9 10
Fairly difficult 15 41 15 16
Difficult 12 32 30 32
Very difficult 8 22 33 35
Extremely difficut 0 0 7 7
Level of evolution
0 1 3 2 2
1 12 33 30 32
2 14 39 34 36
3 9 25 26 27
4 0 0 3 3
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Moreover, there is a link between the number of geomorphic changes affecting an itinerary and
its level of change. On average, for level 1, 7.5 changes were affecting the itineraries, 9.4 for level 2
and 11.2 for level 3.

Eight of the nine itineraries with a modification level of 3 show the same pattern of change.
For these 8 itineraries, the routes located on north faces are unclimbable during most of the sum-
mer period due to the melting of ice aprons. The laters re-form during winter and melt earlier in
spring, leading to the appearance of generally highly fractured bedrock and related frequent
rockfalls.

In our sample of itineraries, the following north-facing routes are presenting this pattern of
change and a level of change of 3: the Pointes de Mourti (3564 m a.s.l.; itinerary 25), the Petit
Mont Collon (3538 m a.s.l.; itinerary 43), the Pigne d’Arolla (3796 m a.s.l.; itinerary 46), the Mont
Blanc de Cheilon (Figure 3; 3869 m a.s.l.; itinerary 62), the Ober Gabelhorn (Figure 5; 4063 m
a.s.l.; itinerary 84) and the Dent Blanche (4357 m a.s.l.; itinerary 99).

Figure 5. Evolution of the Ober Gabelhorn (4063 m a.s.l., itinerary 84; modification level: 3). (A) Comparison of aerial images from
1983 and 2019 (Swisstopo) to build the map on GIS. (B) The North Face in 2019 with the processes affecting the itinerary mapped
(PoliceValais).
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Discussion

Climate-related processes versus seasonality

In this paper, we identified the processes related to climate change that affect mountaineering itin-
eraries on a climatic time scale (the last 40 years). In general, they lead to an increase in danger and
technical difficulty of the itineraries and a modification in the most favorable and stable time of the
year for mountaineering that tend to be more variable in summer and shift towards spring and fall.
However, those consequences can be reduced or increased by seasonal and meteorological factors.
The processes related to climate change identified in this work are generally less frequent and/or
intense at the beginning of the season and on the contrary, they are more frequent and/or intense
at the end of the summer season and/or during/following heat waves, which are becoming increas-
ingly frequent and intense (Della-Marta et al. 2007). Thus, it is possible that at certain periods of the
summer, depending on the conditions, the level of change of the climbing parameters of the studied
itineraries may be less or more important than in the results presented above.

It is also important to note that some sections may also become easier thanks to changing con-
ditions, notably in favor of a flatter and/or less crevassed glaciers. However, in the Valais Alps as
well as in the MBM, this observation never applies to a whole itinerary. In all cases studied, the
maximum technical level and/or the danger level has remained unchanged or increased.

Comparison between the Valais Alps and the MBM

Considering the main characteristics of the itineraries (type, orientation and technical difficulty),
the samples studied in the MBM (see Mourey, Marcuzzi, et al. 2019a) and the Valais Alps are rela-
tively similar (Table 1). Both have a majority of rock routes and a similar percentage of snow and
mixed routes. Similarly, the proportion of routes for each orientation and technical level are of the
same order (Table 1).

Results for the Valais Alps and the MBM are very similar. No new processes affecting and mod-
ifying the itineraries have been identified in the Valais Alps. On the contrary, no itinerary is affected
by the process ‘More frequent collapses of the front of hanging glaciers’ in this region. In both mas-
sifs, the itineraries are affected by an average of nine climate-related processes. The level of change
of the climbing parameters is also very similar (Table 1) with, in both massifs, a quarter of the itin-
eraries with a level 3 of change. The main difference is that there are no itineraries with a level 4 of
change in the sample studied in the Valais Alps. In both massifs, the process that mostly affects the
itineraries is the glacial retreat and the appearance of bedrock or till. In contrast, the second and
third processes in order of importance are not the same. In the Valais Alps, these are (i) the retreat
of ice aprons and hanging glaciers and the appearance of bedrock generally highly fractured (33/36–
91%), (ii) the development of supraglacial debris cover (26/36–72%) and (iii) the increase in the
frequency of rock slope movements in unglaciated rock slopes (26/36–72%). In the MBM, these
are: (i) more open crevasses and bergschrund (78/95–74%) and (ii) the increase in glacier slope
angle (73/95–70%). These differences are probably related to the differences in the topographical,
lithological and glaciological contexts between the two massifs. Indeed, compared to the Valais
Alps, the MBM has a higher average altitude, a higher proportion of glaciated areas and a more
humid climate. This explains that the processes that most affect the itineraries in the MBM are
related to the evolution of glacial environments, whereas in the Valais Alps the processes are
more diverse and also related to the evolution of unglaciated rock walls.

The differences in the identified processes may also be partly due to the two different methods
used for each massif and in particular to the fact that diachronic analysis of aerial images was sys-
tematically used in the Valais Alps to draw the map.

In the MBM, three main patterns of itinerary change were identified: (i) snow routes made more
difficult and dangerous, and sometimes unclimbable, by the melting of ice aprons, (ii) rock routes
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made inaccessible by the loss of glacier ice thickness and (iii) access to refuges made more difficult
and dangerous by the melting of glacier tongues. In the Valais Alps, we find the same patterns con-
cerning the snow routes and the access to the refuges. However, the pattern concerning the rock
routes has not been identified. This difference is probably linked to the lithology. In the recently
deglaciated areas of the MBM, the granite tends to form smooth rocky slabs that are particularly
difficult to climb, whereas the fractured gneiss in the Valais Alps limits the formation of such
unclimbable rocky slabs and instead produces ledges.

Finally, in both massifs, rock routes have the lowest average level of change (1.6 in both massifs)
and conversely, snow and mixed routes have the highest level of change (2.5 in the Valais Alps and
2.4 in the MBM). This finding is not in accordance with the events that are generally reported in the
press, which generally reports on events where climbers have been affected by rockfalls (examples of
the Matterhorn were two climbers were killed by rockfalls on Wednesday 25th of July 2019; https://
www.letemps.ch/suisse/canicule-accelere-lerosion-alpes-accentue-chutes-pierres). It is likely that
the media focuses on these types of events because they are known by the general public, easy to
illustrate and regularly at the origin of fatalities. However, our work shows that rockfalls, although
very dangerous and spectacular, are not the process that most affect mountaineering itineraries.

Interest of the mapping

Mapping the climate-related processes affecting the mountaineering routes with the method pre-
sented here greatly facilitated the data acquisition and analysis, compared to the method used by
Mourey, Marcuzzi, et al. (2019a) in the MBM. Indeed, it was easier for the interviewees to draw
on a map the modifications they identified than to list them during an oral discussion without any
physical support. The intellectual effort of visualizing the itinerary and identifying the processes
affecting it is much greater without a map, while drawing the changes also avoided repetition between
interviews and/or a too important focus on only one part of the itinerary. In addition, we chose to
have several interviewees drawing on the same extract of map. Therefore, from one interview to
the other, the interviewees could see the data already collected. This facilitated the validation of the
mapped processes from one interview to the next, but this methodological choice may also imply
a bias in the sense that an interviewee may be influenced by what he saw on the map. It was therefore
the researcher’s role to limit this bias during the interviews by asking each interviewee to have a criti-
cal look at the processes mapped during the previous interviews. In any case, the methodological
approach used in this work, based on semi-structured interviews, necessarily implies a certain amount
of subjectivity, as most of the information collected comes from the memories and appreciations of
the interviewees.

The map also facilitates the analysis of the data. Once the map was made, it was easy to identify
the processes (Figures 3–5) that affect each itinerary and then do a statistical treatment as presented
in the results. In addition, the map will make the update of the data easier compared to a table that
lists the processes for each route.

The use of topographic maps at the scale 1:25,000 is convenient and easy in Switzerland where
maps have a high level of accuracy and are freely available. Moreover, Swiss Alpine guides and refuge
keepers are used to read this type of document. However, in other parts of the world where maps are
not necessarily accessible and/or of lower quality and the resource persons not used to reading maps,
it might be necessary to use another type of support. One possibility could be tomap on ground-based
photographs as in Figure 5(B). However, this method would require a potentially large bank of
images, depending on the size of the study area, and would not necessarily be easy to collect.

Mapping the climate-related processes affecting mountaineering itineraries also allows to pro-
duce documents that promote the transfer of knowledge to mountaineers. The 1:25,000 topo-
graphic map is a tool classically used by mountaineers, on which we add information on the
change of the itineraries. In order to encourage awareness about the effects of climate change
and the adaptation of mountaineers, these maps could, for example, be displayed for free in high
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mountain refuges. The map has a strong informative power for the users and should be a valuable
planning and prevention tool in the future. Refuge keepers interviewed have already shown their
interest for such initiative.

Limitations

The mapping method we propose here has however several limitations. Mapping processes in two
dimensions is not optimal for representing elevation changes. For example, a glacier can lose several
meters of ice thickness without any significant surface changes. In this case, no processes will be
represented while the terrain and the climbing parameters of the itinerary have potentially deeply
changed. This limitation can be balanced by applying the legend to ground-based photographs.

The legend we propose does not allow the mapping of all the processes that affect mountaineer-
ing itineraries. The fact that freezing is less frequent in high mountains (Pohl et al. 2019), with for
example a projected decrease of 15–20% of the number of icy days (daily maximum temperature
<0°C) between 2300–2700 m a.s.l. by 2030 (Cremonese et al. 2019) will have a significant effect
on climbing parameters, but it is impossible to map. It is the same for the process ‘Weakening
of snow bridges’.

The snow conditions on the aerial images used during step 3 (GIS mapping) have necessarily
conditioned the digitization of glaciers and ice aprons. The presence of snow can hide some
changes. However, any process drawn on the map was identified in step 1 and confirmed in step 3.

The attribution of a process as a result of climate change is done by the interviewees and is sub-
ject to the appreciation of the researcher, especially during the stage 3 of the method. It is not the
result of a quantitative measurement with therefore a part of uncertainty on the exact causes of each
process. In order to limit this bias as much as possible, we insisted during interviews on the fact that
the interviewees have to identify changes over a long period of time and not during particular
events; anyway, there are some cases where the attribution of processes as a direct effect of the cli-
mate change remains uncertain. This is particularly true for rockfalls because they can be triggered
by several factors possibly combined.

As for the MBM, the present work does not take into account any ice gullies, which are defined as
seasonal (Faup 2003) ‘concealed and narrow ice couloirs’ (Jouty and Odier 1999). Those gullies
started to be climbed thanks to improvements in mountaineering equipment, after the guidebooks
used in the MBM and the present study were published. According to the interviewees those gullies
are also affected by climate change and form less frequently, with a lower ice quality because of a
diminution in winter and spring snowfalls and more intense melting of the ice/snow cover. It is
likely that new symbols will have to be added to the legend when studying this type of routes.

There is also a bias related to the itinerary sectorization. The fact that the descents start at the
summit and end at the bottom of the valley implies that they are statistically affected by a large num-
ber of processes.

Conclusions and perspectives

This study presents the first legend that enables to map the processes related to climate change that
affect mountaineering itineraries and modify their climbing parameters. This study responds to one
of the main limitations identified in several previous studies on this topic. It facilitates the acqui-
sition, analysis and update of the data, through the precise localization and quantification of the
processes related to climate change that affect mountaineering routes. Their modification and
the evolution of the possibility to practice mountaineering because of climate change are therefore
all the better documented.

Furthermore, the legend defines an analytical framework, which can be completed and reused
in other regions of the world, allowing for a better comparability and compilation of results. As
could be expected, the comparison of the results between the MBM and the Valais Alps shows
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very similar patterns with, in both massifs, (i) an average of nine processes affecting the itiner-
aries, (ii) itineraries mainly affected by glacial retreat and the appearance of bedrock or till and
(iii) a quarter of the itineraries that is no longer climbable in summer. This observation confirms
the robustness of the methodology used. In the future, similar studies on other massifs of the
world should be made. In this regard, a work by the authors on the Hurrungane massif and
the Lynguen Alps in the Scandinavian Alps should start soon. Another perspective would be to
quantify the processes mapped in particular by measuring at the scale of mountaineering itiner-
aries ice surface evolution and carrying out diachronic analysis of DTMs (loss of ice surface/thick-
ness, evolution of the slope angles, etc.) in GIS.

Finally, mapping makes it possible to produce documents that promote the transfer of infor-
mation to mountaineers and their adaptation to the effects of the climate change. They can there-
fore be used in this sense on many occasions and in particular during the training of Alpine guides
and conferences as well as being displayed in high mountain refuges.
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