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Towards predicting 
the geographical origin of ancient 
samples with metagenomic data
Davide Bozzi 1,2*, Samuel Neuenschwander 1,3, Diana Ivette Cruz Dávalos 1,2, 
Bárbara Sousa da Mota 1,2, Hannes Schroeder 4, J. Víctor Moreno‑Mayar 4,5, 
Morten E. Allentoft 5,6 & Anna‑Sapfo Malaspinas 1,2*

Reconstructing the history—such as the place of birth and death—of an individual sample is a 
fundamental goal in ancient DNA (aDNA) studies. However, knowing the place of death can be 
particularly challenging when samples come from museum collections with incomplete or erroneous 
archives. While analyses of human DNA and isotope data can inform us about the ancestry of an 
individual and provide clues about where the person lived, they cannot specifically trace the place 
of death. Moreover, while ancient human DNA can be retrieved, a large fraction of the sequenced 
molecules in ancient DNA studies derive from exogenous DNA. This DNA—which is usually discarded 
in aDNA analyses—is constituted mostly by microbial DNA from soil‑dwelling microorganisms that 
have colonized the buried remains post‑mortem. In this study, we hypothesize that remains of 
individuals buried in the same or close geographic areas, exposed to similar microbial communities, 
could harbor more similar metagenomes. We propose to use metagenomic data from ancient samples’ 
shotgun sequencing to locate the place of death of a given individual which can also help to solve 
cases of sample mislabeling. We used a k‑mer‑based approach to compute similarity scores between 
metagenomic samples from different locations and propose a method based on dimensionality 
reduction and logistic regression to assign a geographical origin to target samples. We apply our 
method to several public datasets and observe that individual samples from closer geographic 
locations tend to show higher similarities in their metagenomes compared to those of different 
origin, allowing good geographical predictions of test samples. Moreover, we observe that the genus 
Streptomyces commonly infiltrates ancient remains and represents a valuable biomarker to trace the 
samples’ geographic origin. Our results provide a proof of concept and show how metagenomic data 
can also be used to shed light on the place of origin of ancient samples.

The extraction and sequencing of DNA from ancient samples using shotgun sequencing techniques is becoming 
more and more common thanks to the advancements in ancient DNA (aDNA) laboratory protocols and the 
drop in sequencing  costs1,2. Shotgun sequencing of ancient bones and teeth not only allows the study of ancient 
animals but also permits the recovery of aDNA from host-associated microorganisms. This has fuelled an entirely 
new field of research that focuses on the study of ancient microbes:  paleomicrobiology3,4.

However, DNA degradation tends to reduce the amount of endogenous DNA that can be obtained from 
ancient  samples5. Furthermore, microbes colonize the remains post-mortem, and their DNA is usually sequenced 
alongside the endogenous DNA, resulting in most aDNA sequencing experiments containing a lot of data from 
exogenous  microorganisms6. This DNA is usually discarded in aDNA studies interested in the host or host-
associated microbes as it mostly reflects the community of microorganisms that live in the surrounding soil, 
including those that actively colonize the bones (hereafter the bone necrobiome)7–9.

To the exclusion of recent excavations, the exact sampling location of ancient human remains might be 
unknown. Numerous samples were excavated decades or centuries ago and, since then, a lot may have happened, 
including change of ownership, international shipments and change of storage site. Thus, for some old museum 
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collections, information regarding the sampling location might be missing or misleading. This poses major 
challenges to the aDNA field which heavily relies on such collections.

To reconstruct the human past and study human migrations, it is fundamental to correctly trace the place 
of birth and death of an individual. Discrepancies between the two locations can provide information about 
human mobility patterns in the past. The analysis of human DNA can give clues about the ancestors of a given 
person identifying the putative place of origin of an individual or of its ancestors, however, it does not allow us 
to identify the place where the individual died. Consequently, ancestry analysis on human DNA alone cannot 
distinguish genuine patterns of human migration from cases of samples mislabeling or remains moved after 
death, and it cannot make use of samples with unknown sampling location. Isotope data (e.g., strontium 87Sr/86Sr 
ratios) can help identify the place where an individual was born and  lived10,11 and have proved useful to identify 
 migrants12–16. However, their application is limited to few geographical areas where reference data are available 
and can be deceived if different locations harbor similar isotope values. Moreover, it has been demonstrated 
that human agricultural practices can bias the common strontium isotope analyses by affecting the accuracy of 
strontium reference  maps17.

Besides human genetics and isotopes, another promising lead to trace human migrations is the study of host-
associated microorganisms. Seminal studies have shown that microorganisms exhibiting patterns of co-evolution 
with the human  host18,19, or pathogens that are environmentally acquired during  life20, hold potential to elucidate 
human migrations. However, while useful to trace human movements, these data have not been used to assess 
the individuals’ place of death.

Methods that can specifically trace the location of death of an individual would allow us to identify the geo-
graphical origin of displaced remains with unknown sampling location and identify mislabeled ones, assisting the 
analysis of ancient human remains in archaeogenetic studies and/or helping with the repatriation  processes21,22. 
In addition, such tools could hold potential to serve other disciplines, such as forensic analyses.

Based on the observation that most of the non-human DNA in ancient bone metagenomes is of exogenous 
origin, we hypothesize that remains of individuals buried in the same or close geographic areas, exposed to 
similar microbial communities, could harbor more similar metagenomes. Here we propose to use metagenomic 
data from shotgun sequencing to locate the place of death of a given individual which can also help to solve 
cases of sample mislabeling.

To infer the geographic origin of a given sample, we rely on published reference data that includes individuals 
with known geographical locations. The approach we then propose relies on two steps; first, the computation of a 
distance matrix to measure how dissimilar the sample of interest is compared to a reference set. Second—based 
on this computed matrix—and using a logistic regression model trained on the reference set, the individual is 
classified into one of the represented geographical locations.

Inter-sample similarities can be computed in several ways. Often, reads classification steps are involved to 
generate taxa relative abundance tables, which are in turn used for the computation of inter-samples similar-
ity scores. One of the disadvantages of this method is that some of the reads remain unclassified, as they are 
not represented in the reference database used for the classification, or because they cannot be traced to a 
specific group of microorganisms. The data loss caused by this procedure is related to the amount of unknown 
microorganisms present in the studied metagenome and, therefore, more strongly affects poorly characterized 
environments like the  soil23. In the last decade, several alignment-free approaches relying on k-mers have been 
developed to compute metagenome similarity scores in a fast and scalable way without the need for a sequence 
classification  step24–26, and different studies have demonstrated their accuracy and  usefulness27–29. Hence, to take 
advantage of all the metagenomic reads from the ancient human samples, we opted for a k-mer-based approach 
to compute similarity scores.

We analyzed previously published datasets and trained a model capable of discriminating individuals from 
two different geographic locations, allowing us to determine the place of death of each given individual when 
excluded from model training. We then revisit a potential case of museum mislabeling in which two individuals 
were identified as non-locals based on human DNA ancestry  analysis30. Furthermore, we considered the potential 
impact of batch effects that would result from the way the experiments were set up. And finally, we evaluated 
how well our method would perform when applied to a single, soil-dwelling, microbial genus, an approach that 
allows us to mostly bypass batch effects.

Results
To determine whether ancient metagenomic data can be used to inform on the place of death of ancient humans, 
we selected published datasets from five different studies, each including individuals from distinct geographic 
locations (see method section for more details). We used these data to compile two binary dataset each one 
including individuals from two distinct geographical locations. In one dataset (hereafter called Brazil-Polynesia 
dataset) we included ancient individuals from different areas in  Brazil31 and ancient individuals from  Polynesia32. 
The second dataset (hereafter Denmark-England dataset) included ancient individuals from Denmark and 
 England33. Both datasets comprise bone and tooth dentine/cementum samples. For the Brazil-Polynesian dataset 
two different extraction protocols were  used34,35. These differences were taken into consideration in the analysis 
of the Brazil-Polynesia dataset to inspect the potential impact of batch effects on the analysis. We note that the 
extraction protocol and sample type variables correlate partially, but not perfectly, with the geographic origin 
variable. For the Denmark-England dataset all the data were generated in the same study and samples were 
subjected to the same laboratory procedure, avoiding the risk of a laboratory-induced batch effect, enabling us 
to test our method in an ideal scenario. For both datasets, the Illumina shotgun data (raw FASTQ files) were 
preprocessed to remove human reads and possible lab contaminants prior to any analysis (see methods). In 
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other words, we filtered the data to analyze only the samples’ microbial metagenome (i.e. the exogenous com-
ponent)—(Supplementary Fig. 1).

The ancient bone metagenome is enriched in soil‑derived microorganisms
As a first step to our analysis, we inspected the bacterial composition of the used datasets. We wanted to better 
understand which microbiome sources contributed the most to the ancient bones and teeth metagenome.

Compositional analysis of the metagenomes revealed Pseudomonadota (previously Proteobacteria) to be 
the most common phylum (highest median value across the samples) in both investigated datasets, followed 
by Actinomycetota (previously Actinobacteria), Bacillota (previously Firmicutes) and Bacteroidota (previously 
Bacteroidetes) (Fig. 1, panels a and b). At the genus level, the most represented clade (highest median value across 
the samples) was Streptomyces (~ 5.7% of the total number of classified reads in the two datasets), a group of soil-
dwelling microorganisms known to be involved in organic matter  degradation36, followed by Pseudomonas and 
other soil/water-dwelling or ubiquitous genera like Nocardioides, Mycobacterium, Microbacterium, Burkholderia, 
Lysobacter, etc. (Fig. 1, panels c and d). This suggests that the soil microbiome plays a crucial role in the ancient 
remains’ microbial colonization, likely representing a major source for the bone necrobiome composition, and 
the long-term storage in the museum is not erasing this signal.

Figure 1.  Compositional analysis of ancient samples. The microbial composition of the ancient samples at 
the phylum (panels a and b) and genus (panels c and d) level for the Brazil-Polynesia dataset (left) and the 
Denmark-England dataset (right). We observe an overall enrichment of soil-dwelling bacteria genera. MDS 
plot (e) including bones and teeth samples from the Brazil-Polynesia dataset with microbiomes from publicly 
available data from other sources:  soil37, human oral  cavity38,  skin39, and  gut40. The MDS based on the Jaccard 
distance matrix shows that ancient bones and teeth cluster with modern soil samples and not with other sources, 
indicating that the metagenomic composition of the buried remains is more similar to the one found in the soil.
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We then assessed where these ancient samples would fall on a classical multidimensional scaling (MDS) plot 
that included microbiome communities from different environments that could have contributed to the bone 
metagenome. As reference data, we used previously published data from different sources, including  soil37, human 
oral  cavity38,  skin39, and  gut40. We then taxonomically classified the reads and clustered them into taxa at the 
species and genus levels. We used the taxa table to compute inter-sample Jaccard distances and then performed 
dimensionality reduction. In this analysis, teeth and bone samples clustered with previously published soil sam-
ples to the exclusion of the other environments (Fig. 1e). Specifically, the first MDS dimension explained 47.99% 
of the variance and perfectly separated soil (reference microbial data) together with bone and teeth samples (from 
the ancient individuals analyzed) from the other sources (oral, skin, and gut microbiomes). Such a pattern is 
consistent with those reported in the  literature41 and suggests a similar microbial colonization of the two sample 
types from environmental bacteria of the surrounding soil. This is likely related to the organic composition of 
bone and tooth dentine/cementum; both tissues present a very similar composition and are mostly constituted of 
Type I  collagen42,43. Some teeth samples separated less well from the host associated environments (human oral 
cavity, skin, and gut) on dimension 1 (Fig. 1e), presumably because they also experienced contamination from 
oral microbiome species. To explore this further, we performed microbial source tracking with  SourceTracker244 
to infer the role of different potential sources of microorganisms. In the modeling we included the same samples 
used in the MDS plot and inferred the contribution of the following potential sources:  soil37, human oral  cavity38, 
 skin39, and  gut40. We also included ancient bone samples as a proxy for bone-specific taxa (i.e., taxa better mod-
eled as part of the ancient bones rather than any other modeled source)45,46. Our results showed that, among the 
classified reads, soil and bones are the most common sources for our datasets with very little contribution of the 
other sources (Supplementary Fig. 2). An exception were some teeth samples where the oral cavity seems to con-
tribute with a relevant number of taxa, suggesting that oral microbiome species DNA can leach into the sample 
dentine/cementum, in agreement with the previous MDS results. We also note that most of the taxa cannot be 
traced to any modeled source. This is likely a consequence of the high soil microbial biodiversity and suggests 
that the reference microbiome samples used in the modeling are not sufficient to give a complete description 
of all the possible soil communities. Together these observations support the hypothesis that the bone/tooth 
necrobiome is enriched in soil-derived species suggesting its potential use for geographical tracing of the samples.

The invasion of bone and teeth samples from soil-dwelling microorganisms is likely a continuous process that 
starts soon after death and continues until the samples is eventually unearthed. Therefore, we should expect the 
DNA recovered from these samples to be a mixture of DNA from different periods. To determine the antiquity 
of the DNA constituting these metagenomes, we assessed the presence of typical aDNA damage patterns with 
 MetaDamage47. We detected a positive increase of cytosine deaminations (C to T transitions) at the 5’ end of 
the reads compared to the rest of the sequences in almost all the considered samples (Supplementary Fig. 3) 
suggesting the presence of aDNA damage in the analyzed reads, in agreement with the fact that all the samples 
were unearthed long ago and subsequently stored in a museum. We also note that filtering out reads longer than 
80 bp does not lead to a large increase in damage at the last base at the 5’ end (only + 4.5% as median value), 
suggesting that there was relatively little modern DNA contamination or that the initial reads collapsing step, 
in which all the long reads that cannot be collapsed were discarded, already removes most of the modern con-
taminants (Supplementary Fig. 3).

K‑mer‑based similarities reveals geographic‑dependent samples clustering patterns
For each dataset we computed k-mer-based metagenome similarities scores (k-mer size = 21 bp). Dimensional-
ity reduction is a powerful approach that transforms high dimensional data to a lower dimensional space while 
keeping relevant properties of the original data. In MDS, similarity scores between multiple samples are projected 
into the Euclidean space where each dimension constitutes an independent variable (i.e., the dimensions are 
not correlated between each other). When dimensionality reduction is performed on the k-mer-based similar-
ity matrix, we observed that, for all datasets, there are dimensions that separate the samples according to their 
geographic origin (see Fig. 2, panels a,b,c,d for some examples). This suggests that the metagenomic data harbor 
a location-specific signature and that the MDS dimensions can be utilized for classification purposes. While a 
perfect separation of the groups using only two dimensions could be achieved for both datasets (Fig. 2, panels b 
and d), we wanted a quantitative way of predicting the origin of a test sample given a reference panel with indi-
viduals whose origins are known. One way to do this is to train logistic regression (logit) models on reference 
datasets to perform classification of test samples. Logit models can be trained on one or multiple independent 
variables to perform binary or multinomial classification tasks. The trained model can then be used to predict 
the class of a test sample. For each test sample, the model returns its probability of being classified to one of the 
tested groups. In our case, we trained the model to predict a sample geographic origin using the MDS dimen-
sions as input to the model. To solve the problem of feature selection (i.e., which dimension to include in the 
model training) and to avoid overfitting problems due to the low sample size, we trained a penalized logistic 
regression model with lasso regularization while providing as input all the MDS dimensions. By design of this 
approach, informative features (MDS dimensions) are selected by the model as input for the training step while 
uninformative dimensions are discarded. The model can then be used to predict the origin of target samples. 
Specifically, the output of the model prediction is the probability of a sample to be part of one of the two groups 
used for the model training.

Accuracy assessment of sample geographic origin prediction
The method classification accuracy was assessed with leave-one-out cross validation (jackknifing). At each itera-
tion, one sample was left out of the training and used for testing. We first assessed the classification accuracy when 
the model was trained to predict the sample geographic origin and evaluated how confident the classifier was. To 
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Figure 2.  MDS based on the kmer data and accuracy assessment of the logistic regression approach. Some 
dimensions in the MDS plot visually separate the samples according to geography. Panels (a) and (b) show 
the first 3 dimensions for the Brazil-Polynesia dataset MDS. Panels (c) and (d) show the first 3 dimensions for 
the Denmark-England dataset MDS. Logistic regression. A logistic regression model was trained for both test 
datasets (Brazil-Polynesia and Denmark-England) using MDS dimensions as input. After training, we assessed 
the model accuracy with leave-one-out cross-validation. The accuracy curves (panel e) show the decrease in the 
number of individual samples correctly classified at increasing thresholds of classification probability. At higher 
thresholds, more individual samples are correctly classified for the Brazil-Polynesia dataset (green line). For the 
Denmark-England dataset better classifications are obtained when including only the samples with more than a 
million reads (blue line) compared to including all the available samples in the dataset (magenta line), indicating 
that the geographical origin of low-depth samples cannot be predicted with good confidence.
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do this we calculated how many samples were correctly classified at increasing thresholds of probability. In the 
Brazil-Polynesia dataset, ~ 92% of all the samples were correctly classified (Fig. 2e) (i.e., assigned to the correct 
class with probability ≥ 0.5), indicating that only very few samples were misclassified by the model (very few false 
positives). However, we want a model that not only correctly classifies a sample to its group, but that it does so at 
high probability. For this dataset ~ 60% of the samples were classified to the correct class with probability ≥ 0.95 
(Fig. 2e). For the Denmark-England dataset, the accuracy at a probability threshold of 0.5 was ~ 94% but fewer 
samples (~ 51%) were correctly classified with probability ≥ 0.95 (Fig. 2e). Interestingly, for this dataset, when 
samples with less than 1 million reads were included, the confidence of the method dropped (Fig. 2e, magenta 
line), indicating that low-depth samples cannot be classified with good confidence. In this case, only ~ 14% of the 
samples were correctly classified with probability ≥ 0.95, and 12% of the samples were mis-classified.

For the Brazil-Polynesia dataset we also evaluated to which degree our method could be trained to predict 
other variables such as the extraction protocol and the type of sample from which the DNA was extracted (i.e., 
bone vs tooth) (Fig. 3). We trained the model to predict the extraction protocol and estimated its accuracy at 0.5 
probability threshold to ~ 92%, the same value obtained for geography. However only ~ 10% of the samples were 
correctly classified with probability ≥ 0.95 (Fig. 3c). Note that the extraction protocol in the Brazil-Polynesia data-
set partially correlated with geography (Fig. 3a). When the model was trained to predict the sample type (bone 
vs tooth), 90% of the samples were correctly classified at 0.5 probability threshold and only ~ 5% of the samples 
were classified to the correct sample type with probability ≥ 0.95 (Fig. 3c), indicating that a lower classification 
accuracy could be achieved for the sample type compared to the other examined variables. This is in line with a 
similar bacterial colonization of bones and teeth dentine/cementum and suggests a more limited contribution 
of sample type compared to geographic location or the extraction protocol to the metagenome composition.

As a negative control, we trained the model with a mock variable after permuting the samples from different 
locations in two groups with equal proportions. In this case, informative dimensions cannot be found and the 
model cannot be trained to classify the samples according to the mock variable. This suggests that our results 
were likely driven by a biological signal and not by overfitting.

While the results presented above were obtained by selecting a k-mer size of 21 bp, we assessed the effect of 
k-mer size choice on the classifier performance by testing four other k-mer sizes: 11 bp, 15 bp, 25 bp and 31 bp 
(Supplementary Fig. 4). We note that, while for k-mer sizes of 15 bp, 21 bp, and 25 bp the results are qualita-
tively similar, the choice of k-mer size is relevant and, at the same time, not obvious, with different k-mer sizes 
performing differently on different datasets. This was especially true for the geographic origin prediction, while 
smaller differences were observed for the other two variables, namely the extraction protocol and the sample 
type (Supplementary Fig. 4). In general, based on our results, we discourage using very short k-mers (e.g. 11 bp), 
likely because of reduced specificity in the sequence information, or very long k-mers (e.g. 31 bp), as this reduces 
the similarity scores between samples as it increases the chance of two samples not sharing any k-mer. In general, 
assessment of k-mer size on model performance is advised to identify the optimal value.

As an alternative to logistic regression, we also trained and tested in the same way a random forest classifier 
and compared the performance of the two methods. ROC curves show how the two approaches performed 
similarly in many cases (Supplementary Fig. 5). However, logistic regression usually outperformed random forest 
classifiers for samples’ geographic origin prediction, except in the case of the Denmark-England dataset when 
including low depth samples. In contrast, random forest performed better on the other tested variables for the 
Brazil-Polynesia dataset (Supplementary Fig. 5).

Overall, our results demonstrate that at least in some cases (here two distinct datasets from several published 
studies), sample geographic origin can be predicted with accuracy using metagenomic data and k-mer-based 
similarities scores. We also show that other variables such as the extraction protocol and the sample type, which 
for our datasets partially correlate with geography, can be predicted, warning of potential biases that they might 
induce. However, we note that predictions for the variable "geographic origin" outperforms the predictions for 
the other two tested variables in terms of number of samples correctly classified with high probability (> 0.8).

Assessing the effect of shared long‑term museum storage
We also investigated the possible effect of long-term storage in the same museum by classifying, with the model 
trained on the Brazil-Polynesia dataset, three Fuego-Patagonian  individuals48 that have been stored in the same 
museum (Musée de l´Homme—Paris, France) as the Polynesian individuals that were used to train the model. 
For all three Fuego-Patagonian samples, the Polynesian classification probability was ≤ 20%, thus providing little 
support for a potential storage-induced bias. This suggests that, for the data we analyzed, the museum-derived 
contamination was either small or controlled by the laboratory and bioinformatic procedures.

Geographic origin prediction of individuals with Polynesian ancestry found in Brazil
After training the model and assessing its accuracy we tested it on a real case scenario, using two mysterious 
samples of Polynesian ancestry allegedly found in Brazil and stored at the National Museum of Rio de Janeiro. 
Genomic analysis of these two individuals previously revealed that they were fully Polynesian in their  ancestry30. 
We sought to test whether metagenomic similarities would place them with people from Brazil, suggesting that 
the individuals died and were buried there, or with people from Polynesia, suggesting that the remains were 
brought to Brazil only afterwards and that they were mislabeled. To do so, we classified them using the logistic 
regression classifier trained on all the data available for the Brazil-Polynesia reference dataset. Both samples were 
placed by the classifier with the Brazilian samples. In one case (Bot17) the classification was at high probability 
(> 99%), while for the other (Bot15) the probability was ~ 80%. Therefore, for both Polynesians, our results 
suggest that a scenario in which the individuals were buried in Brazil cannot be rejected (but see also below).
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Streptomyces genus is a potential biomarker for sample geographic origin prediction
Global metagenome similarities seem a promising avenue for detecting an ancient sample origin, however, as with 
all compositional studies they are susceptible to contamination or batch effect driven biases. Analyses restricted 
to specific soil-dwelling genera could in principle provide unbiased, less noisy, and potentially more powerful 
results, allowing for a more generalizable tool for sample geographic origin detection.

In our compositional analysis we identified some specific genera of soil-dwelling bacteria that are consistently 
found at high relative abundance in all ancient bone and teeth dentine/cementum samples offering potential for 

Figure 3.  Model prediction of other variables in the Brazil-Polynesia dataset. We evaluated the possibility of 
training a model on the Brazil-Polynesia dataset to also predict the extraction protocol (a) and the sample type 
(b). Data for the Brazil-Polynesia dataset were generated using different extraction protocols and by extracting 
the DNA from two different sample types: bones and teeth. To test the potential effect exerted by such variables 
we assessed to which degree of accuracy they could be predicted. MDS was used to extract dimensions with 
which to train the model (panel a and b, in green individual samples from Brazil, in blue individual samples 
from Polynesia) and the classification accuracies were evaluated with jackknifing and compared to those 
obtained for the geographic origin classification (c). We note that both extraction protocol and sample type 
can be predicted with good accuracy warning for potential batch effects. Panel (a) and (b) show that the three 
variables partially correlate, indicating that the prediction of irrelevant variables might be driven by the relevant 
ones. We note that model predictions for the variable “geographic origin” outperforms the predictions for the 
other variables in terms of number of samples correctly classified with high probability (> 0.8) (c).
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sample geographic origin prediction (Fig. 1). Among these genera we highlight the Streptomyces genus, previously 
reported in Neanderthal  bones49 and found in all our samples with the highest relative abundance median value 
(~ 5.7% of the total number of classified reads in the two datasets after processing). Streptomyces are soil-dwelling 
filamentous bacteria belonging to the phylum Actinomycetota (previously Actinobacteria), a group of gram-
positive bacteria known to be involved in organic matter  decomposition36. They are also known to be producers 
of a wide range of antibiotics and to play important roles in soil  ecology36. This microorganism seems, according 
to our data and previous  analyses49, to be a typical member of the bone necrobiome. We report its presence in all 
the analyzed individual samples. Previous studies have reported a latitude-dependent diversity  gradient50 for the 
Streptomyces genus, further suggesting its potential use for sample geographical tracing. Another advantage of 
this group of bacteria is that it does not include any known laboratory reagents  contaminant51,52 and, as such, it 
should be robust to any laboratory contamination derived bias. Moreover, C to T transitions are increased a the 
5’ end of the sequenced reads, a sign of cytosine deamination and a pattern that is typical of ancient DNA (Sup-
plementary Fig. 6). Overall, all these characteristics, namely its soil-derived origin, its ubiquity and prevalence 
in ancient remains together with the certainty of it not being a laboratory contaminant, made this genus an ideal 
candidate to be further investigated for its potential use as a biomarker for sample geographic origin prediction.

We repeated the same analysis we ran for the whole metagenomes on the reads assigned to the Streptomy-
ces genus. We restricted this analysis to the individual samples that contained a high number of Streptomyces 
reads (> 100.000). This limited the analysis to the Brazil-Polynesia dataset which contains samples that were 
sequenced at a higher depth. In this dataset, seven samples (all from Brazil) were discarded after this filtering 
step, leaving ~ 82% of the individual samples for the analysis. Moreover, the reads classified as Streptomyces in 
the Brazil-Polynesia dataset cumulatively account only for 0.7% of the whole metagenomic data. As before, we 
first computed k-mer-based inter-sample similarity scores and computed an MDS from the similarity matrix 
(Supplementary Fig. 7) and used its dimension as input for the logistic regression model. We then assessed the 
accuracy of the method in the same way we did for whole metagenomes data and evaluated how well the two 
approaches performed in predicting different variables such as geographic origin of the individual sample, extrac-
tion protocol used, and sample type (bone vs tooth) analyzed. Interestingly, we noted that the predictive power of 
our method for sample geographic origin was similar when using all the metagenomic data or when using only 
Streptomyces reads. Specifically, when using only Streptomyces data, the method was performing slightly better 
(Fig. 4a and Supplementary Fig. 8a). As expected, the extraction protocol could not be as well predicted on the 
Streptomyces genus compared to the whole metagenomes, suggesting this approach is more robust to experi-
mental batch effects: no sample extraction protocol was correctly classified with a probability > 0.9 in this case, 
while, with the same probability, ~ 47% of the samples were correctly classified when using whole metagenomes 
(Fig. 4b and Supplementary Fig. 8a). We also noted that limiting the data to the Streptomyces genus affected the 
sample type predictions. Also in this case, no sample was correctly classified with probability > 0.9 compared 
to the ~ 18% when using whole metagenomes (Fig. 4c and Supplementary Fig. 8a). These results were expected 
since, in this case, all the DNA derived from oral microbiome species is being discarded leaving no information 
to differentiate the sample type. We demonstrated that the change in the model performances was not due to 
the removal of some samples (Supplementary Fig. 9) nor that a random subsampling of the reads to the median 
number of Streptomyces reads would lead to similar results (Supplementary Fig. 10), indicating that the selec-
tion of Streptomyces-specific reads was the reason behind the observed differences in prediction performances.

Figure 4.  Comparison of the method prediction accuracy when using whole metagenomes or Streptomyces 
reads only. Accuracy assessment for geographic origin prediction in the Brazil-Polynesia dataset when using 
whole metagenomes (continuous lines) and when using Streptomyces reads only (dashed lines) for three 
different variables: geographic origin (a), extraction protocol (b) and sample type (c). When the method 
is applied to Streptomyces reads only, good sample geographic origin predictions are achieved while better 
controlling for batch effects (i.e., lower classification accuracy for the extraction protocol and the sample type).
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When comparing the performance of logistic regression with that of random forest classifiers in the case 
where only Streptomyces data were used, we observed that logistic regression led to better performances for 
samples’ geographic origin prediction (Supplementary Fig. 8). Interestingly, for both the methodologies, the use 
of Streptomyces data mitigated the bias introduced by the extraction protocols and sample type as the prediction 
accuracy of these two variables were reduced (Supplementary Fig. 8).

When trying to classify the two Brazilians with Polynesian ancestry using the model trained on Streptomyces 
reads only, we retrieved a less confident classification as Brazilians compared to the model trained on whole 
metagenomes data. Specifically, one of the two individuals (Bot17) had ~ 67% probability of being Brazilian while 
the other (Bot15) had only ~ 51% probability of being a Brazilian, indicating that, for the latter, the two tested 
locations had similar probability.

Discussion
Most of the DNA sequenced from ancient remains is very often of microbial  origin6. These data are usually 
discarded by ancient human DNA studies by isolating the reads that map to the human reference genome. In 
recent years, the study of these ancient metagenomes has allowed the recovery of DNA from human-associated 
microorganisms (such as human-infecting  pathogens4 or human associated microbial  communities53) and the 
identification of DNA from plants and animals that were part of the diet of ancient  humans54,55. Depending on 
the type of sample targeted for aDNA extraction and sequencing, different metagenomes can be obtained. For 
example, dental calculus has been shown to contain precious information regarding the human oral microbiome 
and the human diet as its progressive calcification throughout the life of the individuals traps and preserves DNA 
from such  sources55–57. Highly vascularized tissues, such as the tooth pulp chamber, are optimal sources to access 
DNA from blood-borne  pathogens58. Other samples, such as the petrous bone and tooth dentine or cementum, 
tend to harbor less human-associated microorganisms’  DNA57,59. In these samples, most of the microbial DNA 
is likely derived from the surrounding soil. Here, we showed, in agreement with previous  observations41, that the 
metagenome extracted from ancient bones and teeth dentine/cementum is enriched in soil-derived microorgan-
isms that have colonized the remains after the death of the individual (Fig. 1). Furthermore, we show that the 
metagenomic reads successfully blasted by MetaDamage display the classical aDNA damage patterns in line with 
the fact that the samples were unearthed a long time ago and, afterwards, stored in a museum (Supplementary 
Fig. 3). However, contamination of the sample from soil-dwelling microorganism can occur at any time point 
during the period the sample was buried. As such, the presence of aDNA damage patterns might not be observed 
in metagenomes from recently excavated remains where present-day microbes can also infiltrate the  remains49.

We hypothesized that these metagenomic data contain information about the place of death of ancient indi-
viduals. We then proposed to use this information to locate burials and solve cases of sample mislabeling.

To test our hypothesis, we presented a simple comparative framework that takes advantage of reference panels 
of ancient metagenomic samples from different locations to identify the origin of target samples. The method we 
propose uses a k-mer-based approach to compute between-sample metagenome similarities and then perform 
dimensionality reduction to generate independent input features to train models such as logistic regression or 
random forest for binary classification.

We trained and tested the method with samples from four different geographic locations that were assem-
bled into two binary datasets (i.e., each one including samples form two geographic locations). We then trained 
a model to predict the samples’ geographic origin and assessed the accuracy of the method with a jackknife 
approach. One dataset included samples from Denmark and  England33. These individual samples were processed 
together with the same laboratory protocols, allowing us to test the model on an ideal setting, minimizing the 
risk of batch effects (i.e. samples processed together and/or with the same protocols being more similar). This 
is however an unlikely scenario, as most dataset generated in different studies are not processed using the exact 
same protocols. Therefore, meta-analyses of metagenomic data are always prone to laboratory-induced biases. To 
assess the effect of different extraction protocols on our method we incorporated another dataset that included 
deeply sequenced samples from Brazil and Polynesia in which samples were subjected to different extraction and 
library preparation protocols. The extraction protocol variable was partially, but not perfectly, correlated with the 
sample geographic origin. This allowed us to assess how the model would perform in predicting the two variables.

We demonstrated that, for both the test dataset, the model can predict with good accuracy the geographic 
origin of a sample excluded from the model training (Fig. 2e). This suggests that geographic-dependent similari-
ties in the soil microbiome translate into similarities in the ancient bone/teeth metagenomes that can be detected 
even after long-term storage in a museum. Furthermore, we show that k-mer-based approaches are appropriate; 
they can reveal these similarities and be employed to devise models for ancient sample geographic identification 
when reference samples for a given location are available (Fig. 2e).

Interestingly, we find that individual samples from different locations but stored in the same museum are not 
assigned to the same location by the model. This indicates that the long-term museum storage experienced by 
these samples did not play a major role in determining the composition of the sequenced metagenome or that 
the methodological procedures readily controlled for such a bias. However, it is worth noting that we examined 
a limited number of individuals and a single museum. Further analyses will probably be needed to thoroughly 
exclude the possibility of a museum storage bias.

While sample metagenomes harbor a wealth of information, they are prone to batch effects due to laboratory 
 procedures60 and/or contamination  biases51. This is a major caveat for analysis interested in reusing and merging 
data from multiple studies. In our study we demonstrate that the model could predict the extraction protocol 
used for the Brazil-Polynesia dataset (Fig. 3c). The extraction protocol and geographic location variables are 
partially correlated in the Brazil-Polynesia dataset (Fig. 3a). Interestingly, we note that the geographic location is 
more accurately classified than the extraction protocol, suggesting that the extraction protocol predictions could 
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be partially driven by the correlated variable “geographic origin”. However, in this case, an extraction protocol 
bias cannot be fully excluded. We argue that the use of reads from specific microbial genera, not listed among 
the usual laboratory contaminants, could provide an unbiased source of information. While different extrac-
tion protocols can lead to different extraction efficiencies between major groups of bacteria (e.g. shifts in gram 
positive vs gram negative relative  abundance61), we expect little compositional bias within the single genera.

While not much research has been conducted to study the biogeography of single soil-dwelling bacterial 
genera, some studies have demonstrated the existence of phylogeographic patterns and isolation by distance 
processes within some terrestrial bacteria genera and  species50,62, 63. This raises the possibility of using sequencing 
data coming from specific ubiquitous and abundant genera as an alternative to whole metagenomes.

Here we report the presence of Streptomyces genus in all our samples. The data we analyzed come from four 
different studies with various protocols and storage conditions, so the prevalence of Streptomyces bacteria is likely 
common in the bone necrobiome community. For instance, the Brazil-Polynesia dataset ~ 82% of the samples 
(32 out of 39) had > 100.000 reads classified to the Streptomyces genus. We used these samples to train a model 
to predict sample location with even higher accuracy than when using whole metagenomes, showing that the 
same approach we developed for whole metagenomes can be devised on a specific subset of reads (Fig. 4 and 
Supplementary Fig. 10). Interestingly, we also show that using only Streptomyces-classified reads reduces the risk 
of extraction protocol biases compared to the whole metagenomes analysis as we register a reduction in its clas-
sification accuracy (Fig. 4 and Supplementary Fig. 10), indicating that the Streptomyces genus can be a valuable 
biomarker for ancient samples geographical tracing in meta-analyses.

Another highly represented genus in our datasets was Pseudomonas. However, this genus contains known 
laboratory reagents contaminant  species51 that could lead to a contamination-dependent bias when comparing 
samples from different batches or from different studies. Hence, we refrained from applying our logit model on 
this specific genus.

We then applied our method to a real case scenario and predicted the geographic origin of two Brazilian 
individuals with Polynesian  ancestry30 to ponder the likeness of a museum mis-labeling. When using whole 
metagenomes, our method found no evidence for a Polynesian origin of the samples as they are classified as 
Brazilian with higher probability. However, the model trained on Streptomyces data only, provides a less confi-
dent classification compared to the whole metagenome analysis. The probability of being Brazilian is reduced 
from > 0.99 to ~ 0.67 for one individual (Bot17), and from ~ 0.80 to only 0.52 for the other (Bot15), indicating 
that the latter has almost the same probability of being Brazilian as it has of being Polynesian, cautioning the 
interpretation of the results based on whole metagenomes.

As the method relies on reference panels for the classification, it is essential that the individual samples used 
to train the model exemplify the general expected necrobiome composition for a given location. In the real case 
scenario, it is unclear where in Brazil or Polynesia one should look for as the samples have been assigned a Poly-
nesian origin in terms of genetic ancestry and a very general sampling location in Brazil (Minas Gerais state). 
Therefore, we cannot exclude the existence of other locations that would serve as better geographical proxies for 
the origin of the two investigated individuals.

Furthermore, we observe that it is useful to have a large number of metagenomic reads to be able to have a 
good classification accuracy. We observed a reduction in the logit classification performance when samples with 
a low number of metagenomic reads (< 1 million)—after preprocessing—are included (Fig. 2e). These samples 
apparently do not contain enough information to be correctly classified. Therefore, we discourage applying this 
method on too shallow datasets. Having enough data (samples in the reference panel and sequencing data) is 
therefore of importance to apply our method.

For the Brazil-Polynesia datasets we also show that our method can predict other variables. The sample type 
(bone vs tooth) is among the variables that can be predicted, even though it provides less confident classifications 
compared to geography. This could be explained by a colonization/contamination from oral microbiome species 
in teeth samples as opposed to bone samples. When using Streptomyces only reads the sample type classification 
accuracy is strongly reduced. This indicates that our method, while suited for both kinds of samples tested, could 
be subject to sample type biases due to oral microbiome contamination when applied to dataset including ancient 
teeth whole metagenomes. Approaches that could identify and remove reads (or k-mers) from other non-soil 
environments (e.g., DNA from oral microbiome species) could help to control for sample type induced biases.

Current methods of ancient sample geographic prediction based on metagenomics data will face challenges 
due to the low number of dataset available, as most of the metagenomic data generated during aDNA studies are 
not made readily available on public databases. This was a limitation in this study as well. We were indeed not 
able to conduct analysis using large reference datasets. We believe that sharing all the raw sequencing data is a 
really important step that should become the norm in ancient DNA research. Currently, most studies only share 
the subset of reads that map to the human genome, rather than the entire metagenomes (raw FASTQ files). This 
approach not only introduces biases in the human data—as they are affected by the mapping algorithm used—
but also prevents the sharing of metagenomic data, which we have shown to contain valuable information, for 
instance about the necrobiome community. In our specific case, if more datasets from different locations were 
made available, this would allow for a better description of these communities and their variability in space and 
across different environments. This could potentially lead to the development of geographic origin prediction 
methods with increased power and versatility.

A major challenge for such meta-analysis will be to account and control for procedures-derived biases. 
Sequencing of extraction and library negative controls is a standard procedure in modern DNA microbiome 
studies and, if adopted also for aDNA sequencing experiment, could help to better control for the presence of 
laboratory contaminants. Moreover, a better understanding of the bone necrobiome community composition 
could allow us to identify other microbial biomarkers that can be used for geographical tracing of bone samples.
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In this study, we evaluated the method using 90 samples from four distinct geographical locations. In some 
ways, this is a small dataset, and we cannot make general statements about which classification methods (e.g. logit 
or random forest) or parameters (e.g. k-mer length) is most appropriate for a new dataset, nor can we assess the 
degree of generalizability of our results or the behavior of our method when samples from more or less distant 
locations are included. Further studies will be needed to ultimately assess the general applicability and robustness 
of the proposed method at different locations and geographic scales. Another limitation of the present study is 
the absence of environmental metadata, such as information regarding the climate and the soil type in which 
the remains were buried. This prevented us from assessing the potential impact of such external factors on the 
inter-sample similarities and the classifiers performance. Another interesting aspect that we could not probe 
with the analyzed datasets is the effect of temporal variation on such metagenomes. Temporally stratified data 
and data from specific climates or soil types could help to elucidate the effect of time and environment on the 
microbial composition and on the classification methods performance.

To conclude, our study provides a proof of concept that shows how metagenomes from ancient samples can 
be used to trace the sample geographic origin when reference panels are available. This offers potential to solve 
major challenges in the archaeogenetics field, such as identifying the place of death of an individual, pinpointing 
museum mislabel cases and hence providing valuable information for repatriation decisions.

Methods
Description of the datasets used in this study
We tested our methodology using previously generated datasets, including samples from five different locations: 
Brazil, Polynesia, Denmark, England, and Argentina (Table 1).

We used these data to compile two binary datasets to be used for model training and testing: The first dataset 
(referred to as “Brazil-Polynesia dataset”) included individual samples from Brazil (n = 24)31 with age ranging 
from the 1st to the  19th centuries CE, but with most of the radiocarbon dated samples (n = 22) being from 
the 18th and 19th  n centuries (n = 19), and from Polynesia (n = 15) dated to the 19th century.32 All the indi-
vidual samples in this dataset were deeply sequenced with a median number of ~ 5.55 ×  108 reads per sample. 
The second dataset (referred to as “Denmark-England dataset”) included samples from Denmark (n = 29) and 
samples from England (n = 22)33 dating from the 11th to the 19th century. This dataset was subjected to a shal-
lower sequencing. The median number of reads was 4 ×  106 per sample. The two datasets included both bone 
and tooth samples. For the tooth samples, DNA was extracted either from the dentine or from cementum. For 
the Brazil-Polynesia dataset two different extraction protocols were  used34,35. For further information about the 
two datasets used for the model training and testing in this study see Supplementary file 2 and 3. To inspect 
the effect of long-term museum storage we used the model trained on the Brazil-Polynesia dataset to classify 
three Fuego-Patagonians individuals (Argentina) from the 18th century whose remains were stored in the same 
Museum as the Polynesians in the reference dataset (Musée de l’Homme—Paris, France)48.

Finally, we applied one of our models to a case of potential museum mislabeling. We used the model trained 
on the Brazil-Polynesia dataset to classify two 17th century individual samples from Brazil (according to the 
museum label) that were found to be of Polynesian  ancestry30.

Removal of human DNA and lab contaminants
All the samples were preprocessed through the custom pipeline implemented in  snakemake64.

The first steps of the analysis included multiple mappings against the human and the bacteriophage Phi X 174 
(used as control for Illumina sequencers) reference genomes to filter out reads of potentially human origin and 
artificial DNA fragments introduced at the sequencing step. FASTQ files were initially processed using Mapache 
pipeline (version 0.3.0)65 to map against the human reference GRCh38 assembly using default parameters and 
bwa aln (v0.7.17)66 as mapping tool with seed disabled (-l 2024).

When possible, reads were collapsed with AdapterRemoval ver. 2.3.267. The collapsing step is expected to 
reduce the risk of modern DNA contamination by removing longer—and hence likely modern—molecules. 
Unmapped reads were saved in a separate bam file which was reconverted into a FASTQ with  samtools68 (v1.9) 
“fastq” command and low complexity regions were filtered out with  komplexity69 (v0.3.6) using a threshold value 
of 0.7. The complexity filtered reads were then mapped a second time to the human reference with bwa  mem66 
(default parameters) to filter out as many human reads as possible. Unmapped reads were extracted from the 
bam file using  samtools68 view -b -f 4 command and converted to FASTQ as described above. Reads were then 
mapped against the Escherichia phage Phi X 174 reference genome (NC_001422.1), commonly used as control in 

Table 1.  Samples included in the study.

#n of samples Location Samples age range Median number of reads

24 Brazil 18th–19th century 3.2 ×  108

15 Polynesia 19th century 1.8 ×  109

2 Brazil (?) 17th century 3.9 ×  109

3 Argentina 18th century 1.3 ×  107

29 Denmark 11th–19th century 4 ×  106

22 England 11th–19th century 4 ×  106
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Illumina sequencing  experiments70, with bwa  mem66 and all the unmapped reads were recovered and converted 
into FASTQ with  samtools68 as described above.  FastQC71 v0.11.9 was run at each filtering step.

To reduce the risk of modern DNA contamination biases, reads longer than 80 bp were discarded from the 
subsequent analysis using  seqkit72 seq v2.2.0. Reads shorter than 30 bp were also removed as short reads are 
hard to confidently classify or map. aDNA damage patterns were inspected both before and after filtering for 
fragment length with  MetaDamage47, a newly developed tool that specifically inspect deamination patterns in 
metagenomic samples, after subsampling each sample to 100.000 reads (for speed purposes) with seqtk-1.3 
“sample” command (r106) (https:// github. com/ lh3/ seqtk). As the end of the reads are usually affected by aDNA 
damage patterns, we trimmed 4 bp from each end of the read using the trimfq command from seqtk-1.3 (r106). 
For the Denmark-England dataset we repeated the analysis twice to test the effect of shallow depth sequencing: 
once including all the samples and once discarding the samples with less than one million reads. Sample MN0008 
from Brazil-Polynesia dataset was discarded from the subsequent analysis because the data contained adapters 
even after adapter removal and no clear sign of aDNA damage.

Reads classification and compositional analysis
We compared the microbial composition of the ancient bones and teeth samples with the microbiome found in 
other environments to understand the likely sources of the bone necrobiome. To do so, we downloaded previously 
published shotgun metagenomics data from four different terrestrial and host-associated environments which 
could serve as sources of microorganisms, including  soil37 (encompassing two different soil biomes: grassland 
and forest), human oral cavity (plaques and tongue swab samples)38, human  skin39 (palm swab samples), human 
 gut40 (feces samples), together with other ancient  bones45,46 (Supplementary file 4). To identify the dataset to be 
used for this analysis we took advantage of previously published resources such as  AncientMetagenomeDir73 
and  TerrestrialMetagenomeDB74. These resources provide metadata-curated collections of metagenomes from 
ancient samples and terrestrial environments respectively.

Samples from these five sources were processed through the same preprocessing pipeline described above.
For all the preprocessed metagenomes, the remaining non-human reads were classified with  Centrifuge75 

against the bacterial RefSeq genome database plus the human reference. A kraken-style report was then gener-
ated and converted into a biom-table with kraken-biom76 specifying the maximum and minimum operational 
taxonomic unit (OTU) level to genus and species: –max G –min S. This table was imported in R (version 4.1.1)77 
for the compositional analysis. We filtered out Homo sapiens (taxonID = 9606) and all the low abundant taxa (< 10 
reads in all analyzed samples). We collected full taxonomic information for each taxonID using taxonomizr (ver-
sion 0.9.3)78. The genome size information for all available bacteria was downloaded from NCBI while filtering for 
completeness and including only complete genome assemblies (https:// www. ncbi. nlm. nih. gov/ genome/ browse# 
!/ proka ryotes/, accession date: 05/04/2022). We computed species and genus level average genome sizes and used 
this information to normalize each taxon to its average genome size. Taxa lacking genome size information or 
with poor taxonomic characterization were removed. Samples were then rarefied to the lowest sample depth 
using GUniFrac (version 1.6)79. Distance matrices were computed with vegan (version 2.6-2)80 vegdist function 
using Jaccard distance metric and dimensionality reduction was performed using prcomp R function and plotted 
using autoplot function with ggplot2 (version 3.3.6)81 and ggfortify (version 0.4.14)82 libraries. Compositional 
stacked barplot for the Brazil-Polynesia dataset and the Denmark-England dataset were created with reshape2 
(version 1.4.4)83,  ggplot281 and RColorBrewer (version 1.1-3)84 and the aid of other R packages, including dplyr 
(version 1.0.9)85, tidyr (version 1.2.0)86 and tidyverse (version 1.3.2)87.

Microbial source tracking with SourceTracker2
We then predicted the potential sources for the microorganisms present in the ancient bones and teeth metage-
nomes with  SourceTracker244 using the same samples described above as sources and our two datasets (see 
above) as sinks (Supplementary file 5). In addition, bone samples from Campana et al.46 and Willmann et al.45 
were used to model the bone necrobiome specific composition. SourceTracker2 was then run with the biom-
table previously computed by kraken-biom76 and results were plotted in  R77 using ggplot2 (version 3.3.6)81 and 
reshape (version 0.8.9)83 packages.

K‑mer based similarity score computation
We aimed at developing a method to discriminate samples from two different geographic locations that took 
into account inter-sample metagenome similarities. In this study we relied on a fast and powerful k-mer-based 
approach. We analyzed the metagenomics reads left from the preprocessing pipeline with  sourmash26. Sourmash 
computes k-mers sketches (hashed versions of the k-mers) and inter-samples k-mer-based similarity scores. We 
used the following command to compute k-mer sketches (also called signatures):

sourmash sketch dna -p k = 21,abund "$filename" --output "$filename".sig
Where the parameter k defines the desired kmer length (here 21 bp) and "abund" parameter allows us to 

compute abundance-weighted sketches. While most of the results presented in this study were obtained using a 
k-mer length of 21 bp as a compromise between specificity and sensitivity, we have assessed the effect of k-mer 
size choice on the results by repeating the analysis for five different k-mers sizes: 11 bp, 15 bp, 21 bp, 25 bp, 31 bp. 
Longer k-mers increase the specificity but reduce the sensitivity as fewer shared k-mers are detected. Conversely, 
short k-mers increase the sensitivity but lose specificity by losing taxonomic information.

A matrix of samples angular similarities was then computed and saved into a csv file with the following 
command:

sourmash compare *.sig --csv matrix.csv
The similarity matrix produced by sourmash was imported in R (version 4.1.1)77.

https://github.com/lh3/seqtk
https://www.ncbi.nlm.nih.gov/genome/browse#!/prokaryotes/
https://www.ncbi.nlm.nih.gov/genome/browse#!/prokaryotes/
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Model to identify the sample geographic origin
We took the k-mer-based similarity matrix as input to train a model that performed sample geographic origin 
identification. Logistic regression (logit) is a powerful statistical approach for binary classification problems 
that is robust to deviation from normality and homoscedasticity of the input data. The result of a binary logistic 
regression classification is a probability of being assigned to one or the other class. As logit requires independ-
ent input features, we trained a binary logit to predict the variable "geography" using the principal coordinates 
obtained with dimensionality reduction.

Dimensionality reduction was performed using the “prcomp” R function. Samples coordinates for each 
dimension were extracted and used to train a logistic regression for binary classification. Given the low number 
of samples available (a common feature in aDNA studies) we decided to use a penalized logistic regression with 
lasso regularization with “glmnet” R package (version 4.1-4)88 to reduce overfitting problems. glmnet alpha 
value was set to 1 to use lasso regularization and the best lamba value was selected using cross-validation. Lasso 
regularization allows for the automatic selection of the relevant coordinates taken in input by the model. As an 
alternative option to logistic regression, we trained a random forest model using  randomForest89 R package.

We independently tested the method on the two datasets described above: the Brazil-Polynesia dataset and the 
Denmark-England dataset. Target individuals (Brazilians with Polynesian ancestry and Fuego-Patagonians) were 
excluded from the model training and testing. We assessed the accuracy of the classifiers in predicting the variable 
“geography” using leave-one-out cross validation (jackknifing). After dimensionality reduction we trained the 
model n times (with n equal to the number of samples in the dataset), each time one sample was excluded from 
the model training and used for model testing. We compared the models’ predictions to the geographic origin 
reported in the studies to get classification accuracy scores. We evaluated the models’ performance by comput-
ing the proportion of samples misclassified and by assessing how confident the classifier was (i.e., with which 
probability each sample was assigned to its correct class). We then plotted accuracy curves with the proportion 
of samples correctly classified above any given probability using ggplot2 (version 3.3.6)81.

For the Brazil-Polynesia dataset we also trained and tested the model classification accuracy for other vari-
ables including the sample type (bone vs tooth) and the extraction protocol used.

We compared the performance of the logistic regression models with the random forest models using ROC 
curves.

Next, we assessed the effect of long-tem museum storage and classified three Fuego-Patagonians individuals 
whose remains were stored in the same Museum as the Polynesians (Musée de l’Homme—Paris, France)48. We 
then applied the model to a real case scenario and analyzed two 17th century individual samples from Brazil 
with Polynesian ancestry (see above). Classification of these individuals of interest was achieved by performing 
a MDS of each target individual together with the reference samples (Brazil-Polynesia dataset). The logit model 
was trained on the coordinates of all the available reference individuals to the exclusion of the target sample. 
The trained model was then used for predicting the geographic origin of the individual of interest using the 
“predict” R function. We repeated this procedure for each one of the target samples separately to obtain their 
classification probabilities.

Model to identify the sample geographic origin using Streptomyces reads
To test the possibility of using Streptomyces as a biomarker to trace sample geographic origin we trained another 
logit model after isolating reads from the Streptomyces genus. All the reads classified as part of the Streptomyces 
genus by  KrakenUniq90 against the RefSeq database of prokaryotic genomes (plus Homo sapiens), were isolated 
using  KrakenTools91 (cloned from github: https:// github. com/ jenni ferlu 717/ Krake nTool s/# extra ct_ kraken_ 
reads py on date 10/01/2023). aDNA damage patterns for Streptomyces classified reads were inspected with 
 MetaDamge47 after subsampling each sample to 10.000 reads with seqtk-1.3 “sample” command (r106) (https:// 
github. com/ lh3/ seqtk). K-mer sketches and a similarity matrix were computed on the Streptomyces reads with 
 sourmash26 as described above. The similarity matrix was then imported into  R77. Samples with less than 100.000 
reads classified as Streptomyces were removed. All the subsequent steps, including logit model training, accuracy 
assessment, target sample predictions and data plotting were done as described above with the same R packages.

To test the effect of sample removal we repeated the same analysis for the whole metagenomes while remov-
ing the same samples removed here (i.e., those with less than 100.000 reads classified as Streptomyces). Then, to 
test the effect of subsampling we repeated the analysis after randomly subsampling each sample to the median 
number of Streptomyces reads in the dataset (661.375 reads) with seqtk-1.3 (r106) (https:// github. com/ lh3/ seqtk) 
"sample" command.

Data and code availability
The raw data for the datasets from Denmark and England have been previously  published33 and were downloaded 
from NCBI (Accession number: PRJEB18722). NCBI accessions for the individual samples are provided in Sup-
plementary file 6. The Brazilian dataset was generated as part of another  study31 (see the related study for details 
regarding the data). The related non-human metagenomic data are made available as part of the current study 
following the Fort Lauderdale Agreement  principles92 (Accession number: PRJEB67998). We ask users to observe 
these principles for this dataset, which entitles the data producers to make the first presentation and publish the 
first analysis of specific microbial genomes/genes present in that dataset (see the related bioRxiv reference for 
some results: Cruz Dávalos, D. I. et al.31. Data from the Polynesian dataset was generated as part of this  study32. 
As detailed in the related  publication32, “following consultation with the Comisión Asesora de Monumentos 
Nacionales (CAMN) in Rapa Nui, [the human and non-human Ancient Polynesian] sequencing data will not 
be deposited in a public repository and will be made available upon request to J.V.M.-M. and A.-S.M. Access 
requests will be managed jointly with CAMN representatives. Ancient [Polynesian] sequencing data are available 

https://github.com/jenniferlu717/KrakenTools/#extract_kraken_readspy
https://github.com/jenniferlu717/KrakenTools/#extract_kraken_readspy
https://github.com/lh3/seqtk
https://github.com/lh3/seqtk
https://github.com/lh3/seqtk
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for population history research and not for public posting, medical research or commercial purposes.”. The code 
for the preprocessing pipeline in snakemake is provided in Supplementary file 7. The R code used for the analysis 
is provided as an R  Markdown93 report (Supplementary file 8).
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