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ABSTRACT

Extensive characterization of the human microbiota has revealed promising relationships between
microbial composition and health or disease, generating interest in biomarkers derived from
microbiota profiling. However, microbiota complexity and technical challenges strongly influenc-
ing the results limit the generalization of microbiota profiling and question its clinical utility. In
addition, no quality management scheme has been adapted to the specificities of microbiota
profiling, notably due to the heterogeneity in methods and results. In this review, we discuss pos-
sible adaptation of classical quality management tools routinely used in diagnostic laboratories to
microbiota profiling and propose a specific framework. Multiple quality controls are needed to
cover all steps, from sampling to data processing. Standard operating procedures, primarily devel-
oped for wet lab analyses, must be adapted to the use of bioinformatic tools. Finally, require-
ments for test validation and proficiency testing must take into account expected discrepancies in
results due to the heterogeneity of the processes. The proposed quality management framework
should support the implementation of routine microbiota profiling by clinical laboratories to sup-
port patient care. Furthermore, its use in research laboratories would improve publication repro-
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ducibility as well as transferability of methods and results to routine practice.

1. Introduction

Sequencing-based methods have been successfully
used to describe the microbial composition of complex
samples for 30years already (Stahl et al. 1984). The
advent of rapid, affordable and performant next-gener-
ation sequencing (NGS) technologies prompted a surge
in microbiota profiling studies (Sekirov et al. 2010), and
unveiled the complexity of microbial communities
inhabiting human niches (Escobar-Zepeda et al. 2015).
However, the uncoordinated and rapidly-evolving jar-
gon used to describe the many concepts in sequencing
methods and microbiota analyses is source of misun-
derstanding (Marchesi and Ravel 2015). In this review,
microbiota profiling will refer to the NGS-based analysis
of microbial composition, either by targeted (amplicon-
based) or untargeted (shotgun) metagenomics (Table 1).

1.1. Promises of microbiota profiling

Research on model organisms, microbiota transplant
experiments and large-scale metagenomics studies con-
tributed to evidence the possible role of microbiota in

health and disease (Sekirov et al. 2010; Yamashiro
2017), generating high expectations. Microbiota is now
viewed as a complex ecosystem, which can affect the
overall wellbeing of its host by modulating physio-
logical systems (Marchesi et al. 2016; Yamashiro 2017;
Durack and Lynch 2019; Fan and Pedersen 2021).
Furthermore, metagenomics-derived metrics have been
proposed as biomarkers (i) to screen for and diagnose
diseases, (ii) to prognose disease outcome (iii) to predict
treatment response or (iv) to follow therapeutic
response (Ziegler et al. 2012; Rogers and Wesselingh
2016; Zmora et al. 2016; Kashyap et al. 2017; Malla et al.
2019) (Figure 1(E)). Metagenomics-guided dietary inter-
vention for weight-management (Zmora et al. 2016;
Bashiardes et al. 2018), prognosis of pulmonary exacer-
bation in cystic fibrosis (Acosta et al. 2018) or prediction
of response to immune-checkpoint inhibitors in cancer
therapies (Routy et al. 2018) are examples of proposed
applications  for  microbiota-derived  biomarkers.
Microbiota is also regarded as a therapeutic target, for
example using faecal microbiota transplant to treat
recurrent or refractory Clostridioides difficile infections
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Table 1. Definition of sequencing-based microbial assays.

Normally sterile sample Complex sample Complex sample

Culture isolate or normally

sterile sample

Culture isolate

Input sample

Targeted amplification Random shredding Targeted amplification Random shredding

Random shredding

Library prep

Methodological
determinants

NGS

NGS

NGS

Sanger

NGS
WHOLE

Sequencing

AMPLICON-BASED
METAGENOMICS
Metabarcoding,

SHOTGUN

SHOTGUN METAGENOMICS

METAGENOMICS

BROAD-RANGE PCR

Eubacterial PCR,

GENOME SEQUENCING

WGS, Genomics

Whole metagenome sequencing,

Unbiased pathogen detection,

Alternative names

Details

Post-PCR metagenomics, metagenomics

clinical metagenomics

Panfungal PCR

16S rRNA metagenomics

Microbiota profiling:

Microbiota profiling:

Direct pathogen detection:

Genomic characterization: Conventional molecular

Application

diagnostic: Detect, identify and classify Describe taxonomically Describe taxonomically or

Detect, identify and classify

Taxonomic classification,

functionally (metabolism,

microbiota constituents.
Measure clinical biomarkers.

pathogens.
Identify virulence and

typing, phylogeny,

resistance, virulence) microbiota

constituents.
Measure clinical biomarkers.

Gut microbiota profiling

pathogens.
Identify virulence and

virulence, resistance

resistance factors

resistance factors
Strain identification, CNS

Gut microbiota profiling

CNS infection

Epidemiological investigation,

Examples of

infection, endocarditis
Limited by primer specificity

strain characterization

Limited by culture

applications

Spectrum

Limited by primers specificity, Different libraries required for

Different libraries required for

RNA viruses, limited by

RNA viruses amplicon

and amplicon

content of reference databases

Research

discriminative power

Research

discriminative power

Routine

Series of cases

Routine

Phase of Development

The definitions of terms used for sequencing-based microbiota assays lack strict consensus and, therefore, require clarification. Microbiota profiling approaches discussed in this review can rely either on amplicon-

based or shotgun metagenomics, as described in the last two columns of the table.
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(McDonald et al. 2018). Hence, microbiota profiling
could contribute to tailor transplanted faecal products
to the recipient and could become a routine safety
assessment of the transplanted product (Woodworth et
al. 2017; Smillie et al. 2018). Despite many applications
of microbiota profiling being envisioned to determine
biomarkers for tailored medical treatments in personal-
ised medicine (Ziegler et al. 2012; Rogers and
Wesselingh 2016; Zmora et al. 2016; Kashyap et al.
2017; Malla et al. 2019), their precise indications and
clinical utility remains to be established and significant
challenges must be addressed before their adoption in
routine practice (Quigley 2017).

1.2. Hurdles of microbiota profiling

The intrinsic complexity of the microbiota, added to the
complexity of metagenomics data and technical pitfalls
in metagenomic assays, explain the difficulties encoun-
tered by the field to meet expectations for clinical
applications (Schmidt et al. 2018). Indeed, the micro-
biota is a highly complex and dynamic assemblage of a
large diversity of eukaryotes, bacteria, archaea and
viruses (Lloyd-Price et al. 2016). Human microbiota
composition is the product of seeding at birth, followed
by complex symbiotic interactions among its microbial
constituents as well as with the host (Lloyd-Price et al.
2016). This equilibrium is constantly altered throughout
life by external factors including therapies (Maier et al.
2018), lifestyle (David et al. 2014), and diet
(Danneskiold-Samsge et al. 2019), leading to a high
level of inter-individual variability (Lloyd-Price et al.
2016; Wagner et al. 2018). In return, microbial constitu-
ents can modulate the host’s response to external stim-
uli including diet (Danneskiold-Samsge et al. 2019) or
therapies (Wilkinson et al. 2018). The influence of exter-
nal factors added to the crosstalk between a myriad of
microbial players within the host constitute as many
potential confounding factors to be considered in
microbiota studies. This intricacy renders difficult to go
beyond associations and to define causality between
microbiota composition and the occurrence of a dis-
ease or its evolution.

Metagenomics is used to describe the abundance of
thousands of taxonomical (e.g. variants, OTUs, species)
or functional (e.g. metabolic, resistance, virulence
genes) features (Figure 1(B)). To be used as clinical bio-
markers, these counts can be summarized in a variety
of metrics, including composite scores such as the
“Bacteroidetes to Firmicutes ratio” (Ley et al. 2005) or
alpha-diversity indexes (Figure 1(C)). Alpha-diversity
indexes are a group of metrics used to describe the
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Figure 1. Microbiota profiling metrics as biomarkers. Measurement of microbiota profiling-derived biomarkers applied to two
samples (pink and violet caps). A. Two main metagenomics approaches can be used to perform clinical microbiota profiling.
A.l. Amplicon-based metagenomics rely on the amplification and sequencing of a target gene used as a “barcode” to identify
microbial taxa. A.ll. In shotgun metagenomics, DNA is randomly shredded and sequenced allowing taxonomic but also functional

(e.g. metabolic) characterization of the samples. B.I. NGS reads are processed into data describing the taxonomic composition
(amplicon-based metagenomics) or B.Il. taxonomic and functional profiles (shotgun metagenomics). C. Various secondary metrics
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Figure 1. (Continued)

computed from metagenomics data can serve as biomarkers: C.l. the abundance of specific taxonomic ranks or functional fea-
tures; C.Il. composite scores based on taxonomic or functional entities; C.IIl. a-diversity measures describing the microbial diver-
sity for a given sample; C.IV. B-diversity approaches to compare patients’ samples (e.g. healthy and diseased populations) by
computing a matrix of pairwise distances between samples based on indexes such as Jaccard which equals the union (features
in common) divided by the intersect (total number of unique features in both samples). D. Metrics require interpretation methods
adapted to their nature: D.l. Abundance of specific features, a-diversity metrics or composite scores can be compared to pre-
established reference ranges; D.Il. Machine learning-based methods can be used to classify samples from pre-processed metrices
or directly from whole metagenomics data; D.lIll. Clustering or multidimensional scaling methods could be used in B-diversity
approaches. E. Microbiota profiling-based biomarkers could serve distinct clinical purposes: D.I. screen or diagnose diseases; D.II.
prognose patient outcomes; D.III. predict treatment response; D.IV. follow up patients; D.V. tailor and insure safety of fecal micro-
biota transplant. Tubes and plasmids in this figure are modified from “Servier Medical Art by Servier”, which is licensed under CC
BY SA 3.0 license. The “Salmonella” drawing is reproduced from www.Krobs.ch; copyrights are owned by “The Institute of
Microbiology (G.Greub)”, who allowed its use for this figure only.

richness (the number of distinct features), the evenness
(homogeneity of the distribution among features) or
the diversity (richness weighted by the evenness) con-
tained in a sample (Goodrich et al. 2014). These alpha-
diversity indexes represent distinct, potentially relevant,
dimensions of the microbiota which could provide
actionable clinical information, for instance to prognose
clinical outcome and predict therapeutic response of
cancers (Routy et al. 2018; Riquelme et al. 2019; Peled
et al. 2020) or to prognose long-term outcomes in cys-
tic fibrosis (Acosta et al. 2018). Nevertheless, alpha-
diversity indexes are reductive measurements that
could hamper the identification of true microbial deter-
minants of diseases (Hooks and O’Malley 2017; Shade
2017). To identify putative biomarkers from microbiota
profiling data counts, it is hence tempting to directly
correlate the abundance of all taxonomical or func-
tional features to clinical phenotypes (Figure 1(C)).
However, such correlations can lead to spurious results
due to the high dimensionality, compositionality and
sparsity of metagenomics data, requiring the use of
adapted statistical methods (Gloor et al. 2017; Luz Calle
2019). Alternatively, various beta-diversity indexes (e.g.
Jaccard, Bray-Curtis) can be used to assess the compos-
itional overlap of samples, for instance to compare sam-
ples collected longitudinally from one patient
(Goodrich et al. 2014). Stability or changes in microbiota
composition reflected by beta-diversity indexes could
support clinical follow-up and prognose exacerbations
in chronic respiratory (Carmody et al. 2015) or digestive
diseases (Kiely et al. 2018). Machine-learning models
and network analyses are rapidly developing as new
tools to identify microbial features as putative bio-
markers (Ren et al. 2019; Marcos-Zambrano et al. 2021)
or to prognose clinical outcomes directly from metage-
nomics data (Zhou and Gallins 2019; Lo and Marculescu
2019). While promising, machine-learning adds a new

layer of complexity, for instance regarding interpret-
ation, validation and performance reporting (Chen et al.
2019; Wiens et al. 2019; Cammarota et al. 2020;
Topcuoglu et al. 2020). Altogether, these different
approaches could be complementary to capture micro-
biota complexity. However, not all statistical methods
are adapted to metagenomics data and the multiplicity
of metrics and statistical methods limits comparisons
between studies (Hooks and O’Malley 2017; Wagner et
al. 2018).

Finally, the overlooked importance of methodo-
logical and technical determinants in metagenomics
protocols undermines the translation of microbiota
profiling into robust biomarkers. Recent observations
raised concerns regarding the validity, reproducibility
and comparability of metagenomics analyses (Pollock
et al. 2018; Poussin et al. 2018; Schloss 2018; Hornung
et al. 2019). For instance, associations between specific
microbiota composition and diseases potentially
resulted from contaminations in several studies testing
low microbial biomass samples (Salter et al. 2014;
Eisenhofer et al. 2019). In addition, simple protocol
modifications can significantly alter the observed met-
rics and taxa in microbiota profiles (Brooks et al. 2015;
Sinha et al. 2017; Pollock et al. 2018; Hornung et al.
2019) (Supplementary Table 1). Yet, despite the pro-
posal of unified protocols for example by the Human
Microbiome Project (Peterson et al. 2009), heteroge-
neous methods are still applied in research, which may
hamper the identification and validation of clinically
relevant biomarkers. Several reviews and initiatives
have recently called for a better characterization of the
effect of technical parameters on microbiota-derived
metrics, systematic inclusion of control samples and
standardization in the field (Kashyap et al. 2017; Pollock
et al. 2018; Leigh Greathouse et al. 2019).
Standardization will be critical to facilitate the
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identification of microbiota-based biomarkers but also
for their application in clinical laboratories which other-
wise would have to faithfully implement multiple ori-
ginal protocols to offer biomarker assays.

1.3. Anticipating the need for quality management
in clinical microbiota profiling

The establishment of clinically-validated microbiota-
based biomarkers requires the resolution of many chal-
lenges that entails extensive efforts in translational
research (Quigley 2017). Yet, we postulate that clinical
microbiology laboratories will eventually be requested
to provide microbiota profiling analyses for routine clin-
ical applications. In this setting, the characterization of
the microbiota must be based on appropriate analyses
of data generated by accredited metagenomics proto-
cols. Thus, laboratories will need quality management
(QM) schemes adapted to the specific challenges of
microbiota profiling by metagenomics. No recommen-
dation exists yet to guide the implementation of QM
for clinical microbiota profiling. The only existing qual-
ity recommendations for microbiota profiling by meta-
genomics have been tailored to the translational
research setting (Nayfach and Pollard 2016; Hugerth
and Andersson 2017; Sinha et al. 2017; Pollock et al.
2018; Poussin et al. 2018; Bharti and Grimm 2019;
Eisenhofer et al. 2019), or for pathogen detection by
metagenomics, which present distinct aims and require-
ments (Schlaberg et al. 2017; Chiu and Miller 2019;
Miller et al. 2019) (Table 1).

Motivated by the promises of microbiota profiling,
this review aims at proposing the basis of a QM
adapted to clinical microbiota profiling by metagenom-
ics. Building upon recommendations for microbiota
profiling in translational research (Nayfach and Pollard
2016; Hugerth and Andersson 2017; Sinha et al. 2017;
Pollock et al. 2018; Poussin et al. 2018; Bharti and
Grimm 2019; Eisenhofer et al. 2019) as well as for clin-
ical NGS-based assays, including metagenomics for
pathogens identification (Schlaberg et al. 2017; Chiu
and Miller 2019; Miller et al. 2019), our proposal covers
pre-analytical, analytical and post-analytical phases. Its
structure is based on classical QM, with validation and
quality assurance (QA) composed of standard operating
procedures (SOPs), quality control (QC), internal quality
assessment (IQA) and external quality assessment
(EQA). The principal factors identified as pitfalls for the
translation of microbiota profiling into a diagnostic tool
with identified solutions were summarized into
Supplementary Table 1.

2. Quality management for clinical
microbiota profiling

2.1. Validation

As for any routine diagnostic method, the implementa-
tion of novel microbiota profiling-based assays will
require analytical and clinical validations, completed by
an assessment of clinical utility (gray frames in Figure 2)
(Lundberg 1998; Jennings et al. 2009; Burd 2010;
Glossary — BEST 2020). While the cumbersome assess-
ment of microbiota-derived biomarkers will likely be
conducted by large laboratories, or even consortia, indi-
vidual clinical laboratories will have to verify that their
implementation of externally-defined protocols reaches
the expected level of analytical and clinical perform-
ance (Jennings et al. 2009; Burd 2010; Glossary — BEST
2020). In this context, the availability of reference sam-
ples and datasets for validation are key to assess
adequately the implementation of any new assay
(Gargis et al. 2016).

Formal guidance for the validation of microbiota
profiling-based biomarkers should be provided by
experts from the field and regulatory bodies. Existing
recommendations for NGS-based clinical assays in gen-
eral (Rehm et al. 2013; Aziz et al. 2015; Gargis et al.
2015; Endrullat et al. 2016), or in the specific setting of
oncology (Jennings et al. 2009, 2017), heritable diseases
(Centers for Disease Control and Prevention (CDC)
2009), clinical microbiology at large (Gargis et al. 2016)
or specifically orientated towards metagenomics-based
pathogen detection (Schlaberg et al. 2017; Chiu and
Miller 2019; Miller et al. 2019) and forensics (Budowle et
al. 2014) could serve as a basis to establish guidelines.
Validation processes will have to be adapted to the spe-
cificities of the planned methodological approach and
clinical purpose. Many putative clinical applications of
microbiota profiling have been envisioned (Carmody et
al. 2015; Kashyap et al. 2017; Woodworth et al. 2017;
Kiely et al. 2018; Routy et al. 2018; Smillie et al. 2018;
Riquelme et al. 2019; Peled et al. 2020), but to our
knowledge none have been submitted to formal clinical
validation yet. Hence, we propose at the end of this
review three case scenarios exemplifying the potential
pitfalls and existing solutions for the clinical validation
of diverse microbiota-derived biomarkers.

Clinical utility

A biomarker offered by clinical laboratories should not
only be clinically valid but also useful. In other words, a
result should be clinically accurate (e.g. correctly diag-
nose a disease), but also have a positive impact for the
patient (e.g. improve care) or the healthcare system
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Figure 2. Quality management for microbiota profiling. Comprehensive quality management covers all pre-analytical (light
green), analytical (green), and post-analytical (dark green) steps, from test prescription to clinical interpretation. These steps,
including bioinformatics, must be standardized and recorded in standard operating procedures. Quality controls (QC) are consti-
tuted of positive and negative controls to cover most of the workflow (red). QC also includes “checkpoints” based on acceptance
criteria (red hexagons representing stop signs): (1) Clinical indication; (2) Sample collection, transport and storage; (3) Extracted
DNA concentration; (4) DNA library length profile and concentration; (5) Sequencing quality and yield; (6) Reads passing bioinfor-
matic processing; (7) Reporting and clinical interpretation. External quality assessment (EQA) is either organized as “disease-specif-
ic” or as “method-based” proficiency testing. Internal quality assessment (IQA) completes EQA, especially in cases where an EQA
program is not available. Well conducted analytical and clinical validations are prerequisites for any proposed assay. Laboratories
must advise clinicians on the pre- and post-analytical steps to support adequate test ordering, sampling and results
interpretation.

(e.g. reduce costs) (Lundberg 1998). This last validation established. These, ideally prospective, studies are
stage is typically evaluated by clinical trials conducted designed to evaluate the benefit provided by the use of
once analytical and clinical validity have been a test (e.g. see Dobbin et al. (2016) for an example of



362 V. SCHERZ ET AL.

study design guidance adapted to predictive bio-
markers in oncology).

2.2. Standard operating procedures

The definition of strict standard operating procedures
(SOPs) for the entire microbiota profiling workflow
(green frame in Figure 2) is particularly important given
the known sensitivity of the results to the slightest
changes in both wet lab protocols and bioinformatics
pipelines (Kim et al. 2017; Sinha et al. 2017; Pollock et
al. 2018; Bharti and Grimm 2019; Hornung et al. 2019).
Indeed, simple inconsistencies, for instance in storage
conditions or DNA extraction could compromise intra-
laboratory reproducibility (Kim et al. 2017). Hence, loose
protocol implementation in routine laboratories could
render invalid the comparison of measured biomarker
values with externally defined reference ranges.

Besides the traditional requirements for SOPs (writ-
ten protocols, traceability), the stability of bioinfor-
matic tools and related reference databases is a
specific requirement for metagenomics. To facilitate
the many applications of microbiota profiling, soft-
ware for metagenomics analyses should be configur-
able and flexible, while remaining easy-to-use, rapid,
stable and traceable (Grining et al. 2018).
Commercial tools such as CLC microbial genomics
(Qiagen, Hilden, Germany) are an option to reach
these requirements (Gargis et al. 2016). However,
home-made or consortium-based pipelines are inter-
esting as they offer more flexibility through a con-
tinuous and tailored development. In such cases,
bioinformatic pipeline integration in open-source
workflow managers such as Snakemake (Koster and
Rahmann 2012) or Nextflow (Di Tommaso et al. 2017)
ensure performance by automating task parallelization
and usability with a single command to launch com-
plex analyses. The traceability of changes in
embedded bioinformatic tools and scripts must be
ensured by versioning systems such as Git (Perez-
Riverol et al. 2016). Furthermore, containers such as
Docker (Docker, Inc, San Francisco, USA) or Singularity
(Sylabs, San Francisco, USA) should be favoured to
ensure software stability and reproducibility (Piccolo
and Frampton 2016; Gruning et al. 2018).

2.3. Quality controls

Quality controls (QCs) are the cornerstone of QM. The
analysis of internal quality controls represented by
negative and positive samples allows to validate the
successful completion of the entire workflow, from

sampling to bioinformatics analyses (red bars in
Figure 2) (Pollock et al. 2018; Hornung et al. 2019). In
addition, QCs also include “checkpoints”, where the
process can only continue if acceptance criteria are
met (checkpoint in Figure 2) (CDC 2009; Jennings et
al. 2009; Rehm et al. 2013; Aziz et al. 2015). These
controls monitored with a strict application of accept-
ance criteria ensure the intra-laboratory reproducibil-
ity as well as external validity.

Internal quality controls

The most commonly used positive controls are stand-
ardized mock communities, composed of a known
proportion of complete microbes (cellular mocks)
(Pollock et al. 2018; Yeh et al. 2018; Hornung et al.
2019), such as those provided by the American Type
Culture Collection (ATCC, Manassas, USA).
Alternatively, pre-extracted controls composed of
standard microbial DNA (DNA mocks) or pre-gener-
ated sequencing reads (in silico mocks) can be used
as positive controls (Motro and Moran-Gilad 2018;
Pollock et al. 2018). However, only cellular mock com-
munities assess comprehensively all steps of the pro-
cess from DNA extraction to bioinformatic analysis.
The need for additional controls can be technology-
specific, like the PhiX spiked in libraries for Illlumina
sequencing (San Diego, CA, United States)
(IMlumina 2020).

Negative controls are central to metagenomics, due
to the constant occurrence of contaminants. These con-
taminants originate from the lab environment, reagents
(“kitome”) or neighbouring samples (cross-contamin-
ation) and add up during sampling, DNA extraction,
library preparation and sequencing (“index-hopping”)
(Salter et al. 2014; Minich et al. 2019). Adequate use of
negative controls has been well described in a review
by Eisenhofer et al. (2019). Briefly, extraction and library
preparation blanks, made from reagents without tem-
plate, are the minimal negative controls to detect con-
taminants (Pollock et al. 2018; Eisenhofer et al. 2019;
Hornung et al. 2019). Additional sampling negative con-
trols could be included (Hornung et al. 2019), for
instance aspirated water used for bronchoalveolar lav-
age (Charlson et al. 2011). It is recommended to
sequence all negative controls, even if no DNA is
detected, to assess the occurrence of stochastic con-
taminations (Salter et al. 2014; Kim et al. 2017). A sur-
veillance of biases and identification of unexpected
contamination events should be implemented by
recording laboratory contaminants over time into a
database (Chiu and Miller 2019).



The use and interpretation of results from negative
controls remain an open research field (Karstens et al.
2019), but the following strategies have been proposed;
Putative contaminants can be removed by filtering all
taxa found in negative controls, with the risk of gener-
ating false negatives, or taxa below a cut-off, either
arbitrarily hard coded or calculated based on the con-
tent of negative controls (Karstens et al. 2019). Recently
published tools such as decontam (Davis et al. 2017),
microDecon (McKnight et al. 2019) and Recentrifuge
(Marti 2019) proposed elaborate methods for the
identification of contaminants. These tools differ in their
compatibility with amplicon-based or shotgun metage-
nomics data, the method to identify contaminants
(based on taxa prevalence in negative controls or on
the inverse correlation of contaminant abundance with
library DNA concentration) and their filtering (blunt
removal of taxa classified as contaminants or subtrac-
tion of the proportion of counts explained by contam-
ination). However, only Recentrifuge is designed to
identify cross-contaminations (Marti 2019). Furthemore,
the need for careful evaluation of negative controls
depends on the specimen analysed and the intended
use. Low biomass samples such as skin or lower respira-
tory tract samples are more likely to be significantly
impacted by contaminants compared to faecal samples
(Eisenhofer et al. 2019; Karstens et al. 2019). Biomarkers
considering the number of distinct taxa, even at low
abundance (richness), are also more likely to be
affected by contaminants than broader biomarkers, for
instance based on Simpson alpha-diversity metrics
(Karstens et al. 2019).

Checkpoints

QC “checkpoints” determine at each step of the work-
flow if the process can be pursued based on accept-
ance criteria (checkpoints in Figure 2). There is currently
no consensus on metagenomics-derived metrics to
observe for quality assessment of wet-lab, sequencing
and bioinformatics steps and on acceptance criteria to
apply. Definition of objective, validated criteria is diffi-
cult to achieve since they depend on the applied
approach (amplicon-based versus shotgun metagenom-
ics), the sequencing technology and the bioinformatic
tools. Furthermore, their interpretation may depend on
the intended approach (e.g. a given sequencing yield
may be sufficient to generate a broad taxonomic profile
but not to assemble genomes from metagenomics data
(Hillmann et al. 2018)). In this context, laboratories have
to start with arbitrary criteria and then adapt these cri-
teria based on their experience, cut-off values adopted
in reference publications or expert opinions and

CRITICAL REVIEWS IN MICROBIOLOGY @ 363

conventions. To help other centres in establishing their
own workflow, we have complied acceptance criteria
currently applied in our laboratory in Table 2.

lllustrated by the first checkpoint in Figure 2, review-
ing the appropriateness of test ordering is critical to
ensure the analysis can provide an answer to the clin-
ical questions, given the complexity of microbiota
profiling interpretation and the costs of the analysis
(Dickerson et al. 2014). Appropriate test prescription
should be promoted by clear indications for testing,
ordering restrictions, mandatory counselling and critical
reviews of past orders (Riley et al. 2015). Second, sam-
ple type and quality must be assessed in view of the
clinical question (checkpoint 2 in Figure 2). A precise
sampling site could be needed due to the significant
differences in microbial profiles between anatomical
niches (Jones et al. 2018). Patient preparation (e.g. delay
after a therapeutic procedure, time of the day) could
also be relevant, due to potential confounding effects
of therapeutic procedures, meals or circadian rhythms
(Harrell et al. 2012; Liang and FitzGerald 2017; Takayasu
et al. 2017). Finally, adequacy of storage time and con-
ditions must be reviewed, given their effect on the
observed microbiota (Jenkins et al. 2018).

Measuring DNA yields after extraction (checkpoint 3
in Figure 2) is of interest but not always necessary since
indirectly assessed by the following quantification of
libraries. Concentrations of extracted DNA can be meas-
ured by gPCR, fluorescence spectroscopy (e.g. Qubit,
ThermoFisher Scientific Inc., Waltham, MA, USA), or
spectrophotometry (e.g. NanoDrop ThermoFisher
Scientific Inc., Waltham, MA, USA), with different advan-
tages and drawbacks (Simbolo et al. 2013; Hussing et
al. 2018). The need for systematic DNA quantification to
detect extraction failure could depend on the nature of
the sample. In high microbial biomass samples (e.g. fae-
ces), unexpectedly low library or sequencing reads
should be interpreted as a failure of DNA extraction or
library preparation. Retroactive quantification of
extracted DNA can be limited to these cases to disen-
tangle the cause of failure. Conversely, in samples with
low to moderate microbial biomass (e.g. respiratory or
skin), low library yields can occur frequently, which
could justify the prospective quantification of all
extracted DNA to assess the success of library prepar-
ation and sequencing. Furthermore, low biomass sam-
ples can generate significant quantities of sequencing
reads, but should be considered at higher risk of con-
taminations (Eisenhofer et al. 2019; Karstens et al.
2019). Targeted gPCR can quantify specific organisms
(bacteria with broad-rage 16S rRNA gPCR, fungi with
broad-range ITS gPCR), when quantification by
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fluorescence spectroscopy or spectrophotometry would
be impacted by host DNA concentrations. Another
benefit of bacterial or fungal quantification by targeted
gPCR is to transform sequencing counts (Jian et al.
2020). Indeed, some authors proposed to multiply the
bacterial or fungal loads by the relative distribution of
taxa to transform relative quantification into absolute
values (Jian et al. 2020) or to subtract contaminants
(Lazarevic et al. 2016).

DNA library quantification is needed to normalize libra-
ries prior to sequencing and, as mentioned above, may
also substitute quantification of extracted DNA yields to
check sample quality (checkpoint 4 in Figure 2) and to
roughly evaluate the original microbial loads. Libraries
obtained from each sample are normalized to equimolar
concentrations, usually after quantification by fluorometric
methods (e.g. Qubit) and DNA fragment length profiling
by capillary gel electrophoresis (e.g. Fragment Analyser,
Agilent, Santa Clara, USA) (lllumina Inc 2016).

NGS sequencers measure many quality metrics to
check during sequencing QC (checkpoint 5 in Figure 2).
In the case of lllumina, cluster density, sequencing yield,
error rate, proportion of reads over Q30 and passed fil-
ter clusters can be directly evaluated from their propri-
etary BaseSpace platform. Tools like FastQC help
completing this evaluation, with information on aver-
age read length, Phred score profiles, uncalled base
content and adapter or index contaminations (Andrews
2010). In our experience, review of sequencing yield
(reads per sample), quality (Q30 score and per base
sequence quality plots) and reads length (average read
length) are the most informative metrics to identify
problematic samples. Other metrics provided by these
tools can help identifying the origin of sequencing fail-
ure for isolated samples or the whole sequencing run.

Raw read processing into exploitable classified
sequences and counts require a combination of compu-
tational steps to perform quality controls, read filtering
(based on quality and/or length), trimming (read cut-
ting based on quality and/or length), clustering
(sequence grouping based on similarity), assembly
(reads merging into larger contigs), and mapping
(sequence alignment against references) (Bharti and
Grimm 2019). We recommend two reviews for in-depth
discussion of the numerous bioinformatic tools avail-
able to process raw amplicon-based or shotgun meta-
genomics reads into exploitable taxonomic, metabolic,
resistance or virulence data (Bharti and Grimm 2019;
Breitwieser et al. 2019). All of these algorithms generate
scores and logs that must be checked to assess the suc-
cessful completion of bioinformatic processing (check-
point 6 in Figure 2).

PROPOSED ACCEPTANCE CRITERIA

NA
NA

DETAILS

Representation of distance matrices into
samples (e.g. into diseased or healthy) should

be internally and externally valid. Classifiers
are trained on a training dataset and their
trained in (internal validity), but also in other

laboratories which could be willing to use it

performance is assessed on an independent
(external validity).

samples. Representation adequacy should
confirmation dataset. The trained classifier
should have a good performance on data
generated from the same laboratory it was

be controlled
Will depend on the actual score in use.

ordinations can be unable to faithfully
represent the actual distances between

Machine-learning classifier used to classify

VALUES
are accurate.
based classification
or prediction
is accurate

Composite scores
computed
Machine-learning

READ-OUT
classification/

Composite scores
Machine-learning
prediction

ITEM

Examples of acceptance criteria used in a laboratory for each step from the pre-analytical to the post-analytical stages.

Table 2. Continued.

PHASE



A final QC should be conducted before reporting
results to clinicians by a clinical microbiologist trained
in metagenomics (checkpoint 7 in Figure 2). As for any
routine assay, this final biomedical validation should
ensure the adequate completion of the workflow.
Furthermore, the adequacy of the reported metrics and
figures should be evaluated before transmission of the
report to the clinicians. For instance, rare taxa are usu-
ally hidden in graphical representation of microbiota
composition. However, some of these rare taxa could
be of interest in certain cases. Furthermore, microbiolo-
gists specialized in metagenomics will have to pro-
actively support clinicians in their interpretation of
metagenomics results. Indeed, in the initial times of
clinical microbiota profiling, physicians will have limited
knowledge and insufficient expertise to understand
complex microbiota-derived biomarkers. On the long
term, adapted teaching and education will be crucial to
democratize the understanding of microbiota dynamics
and favour critical interpretation of metagenomics
results (Gargis et al. 2016).

2.4. External and internal quality assessment

External Quality Assessment (EQA), also known as
Proficiency Testing (PT) programs, submit reference
material to participating laboratories and compare their
results (violet frames in Figure 2). EQA programs will
have to be adapted to the specificities of microbiota
profiling. Multiple microbiota-derived metrics can be
greatly influenced by minor modifications in protocols.
In response to these constraints, we propose to con-
sider two complementary forms of EQA for microbiota
profiling, adapted from those applied in NGS of host-
genetics: disease-specific and method-based (Kalman et
al. 2013; Schrijver et al. 2014).

Disease-specific EQA

The disease-specific EQA assesses the congruence of
clinical conclusions between laboratories (Kalman et al.
2013). It is expected that different laboratories, using
different protocols, would provide discordant inter-
mediate results (e.g. Shannon index of alpha-diversity).
These laboratories could even support their conclusions
based on different metrics. Yet, these laboratories could
agree on clinical conclusions (e.g. high risk of failure for
faecal microbiota transplant) when comparing the
results obtained to their internal reference ranges or
cut-off values. Nevertheless, the disease-specific
approach is currently limited by the absence of clinic-
ally validated indications for microbiota profiling.

CRITICAL REVIEWS IN MICROBIOLOGY @ 369

Method-based EQA

Conversely, a method-based EQA compares results dis-
regarding any clinical question but focusing on the raw
performance of one or more analytical steps (Kalman et
al. 2013; Schrijver et al. 2014). This EQA would assess if
identical protocols generate identical results when
starting from the same material. For instance, taxo-
nomic identification, quantification and extrapolated
metrics could be surrogates evaluated by method-based
EQA. Such an EQA program would allow laboratories to
verify that they have faithfully implemented shared pro-
tocols. As compared to disease-specific EQA, method-
based EQA could be more adapted to the current phase
of development of clinical microbiota profiling since it
can be conducted without any precise clin-
ical indication.

Internal quality assessment

Internal quality assurance (IQA) encompasses different
types of quality assessments, including reprocessing of
reference material or processing of split samples
(Scherz et al. 2017) (yellow frame in Figure 2). IQA and
challenges between local laboratories should be organ-
ized to complement or to compensate the current lack
of EQA programs for microbiota profiling (Kalman et al.
2013; Sinha et al. 2017).

3. Case scenario for validation of microbiota
profiling-based biomarkers

To our knowledge, none of the biomarkers recently pro-
posed by research studies has been considered suffi-
ciently promising to be implemented in routine
practice. Hence, validation of microbiota profiling-based
biomarkers remains an ongoing and cumbersome task.
Meanwhile, the three case scenarios presented here,
and an additional case available as Supplementary
material, anticipate some of the standing challenges
and practicable solutions in the validation of different
types of putative biomarkers.

Case 1: Akkermansia muciniphila as a predictive bio-
marker of check-point inhibitors therapeutic response
Several bacterial taxa found in gut microbiota were
associated to immune check-point inhibitors response
in different types of cancer (Chaput et al. 2017; Matson
et al. 2018; Routy et al. 2018). The presence of
Akkermansia muciniphila was for instance associated to
a higher probability of response to anti-PDL-1 therapy
in non-small cell lung cancer patients (Routy et al.
2018). The following case scenario considers the valid-
ation of Akkermansia muciniphila detection by
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metagenomics as a predictive biomarker for anti-PDL-1
therapy in non-small cell lung cancer.

Analytical validation of microbiota profiling in this
application would be relatively straight-forward and
would only require to assess the performance of the
workflow to recover, identify and quantify this sole
taxon. Existing guidelines for NGS-based pathogens
detection (Schlaberg et al. 2017; Chiu and Miller 2019;
Miller et al. 2019) and detection by molecular assays in
general would hence apply (Burd 2010). The analytical
performance could be assessed on spike-in samples or
by orthogonal testing with gPCR (Schlaberg et al. 2017;
Chiu and Miller 2019; Miller et al. 2019).

Clinical validation of the detection of Akkermansia
muciniphila by metagenomics as a biomarker to predict
treatment response should be provided by adapted
clinical trials designed following existing recommenda-
tion for clinical validation of predictive biomarkers
(Mandrekar and Sargent 2009; Dobbin et al. 2016). For
instance, the performance (e.g. sensitivity/specificity) of
Akkermansia muciniphila detection could be evaluated
in prospective studies conducting gut microbiota profil-
ing at treatment initiation and correlating results to a 6-
month treatment response (measuring features specific
to the clinical response to immune checkpoint inhibi-
tors (Nishino et al. 2017)). Importantly, the structure of
the investigated population should be carefully consid-
ered for the clinical validation of microbiota-derived
biomarkers to account for potential confounding fac-
tors such as ethnicity, geography or diet that can all
have a significant effect on microbial composition
(Gupta et al. 2017; Gaulke and Sharpton 2018).

Case 2: Alpha-diversity as prognostic biomarker in
allogeneic Hematopoietic-Cell transplantation

Clinical use of alpha-diversity-based biomarkers leads to
specific technical pitfalls and challenges in interpretation.
Alpha-diversity indexes summarises the distribution of fea-
tures (e.g. species, operational taxonomic units, sequence
variants or genes) in a sample in terms of richness (counts
of different features), evenness (homogeneity of their dis-
tribution) or diversity (richness weighted by evenness).
Various formula are used to weight or correct the
observed distributions (e.g. Chao and Fischer richness or
Shannon, Simpsons or inverse of Simpson diversity
indexes) (Goodrich et al. 2014). These indexes are com-
monly used as broad descriptive measures in research but
some associations with clinical evolution were observed
for instance in inflammatory bowel diseases
(Ananthakrishnan et al. 2017), cystic fibrosis (Cuthbertson
et al. 2020) or intensive care units (Lamarche et al. 2018).
In this case scenario, we will focus on a recent study by

Peled et al. who reported a significant correlation between
the inverse of Simpson diversity in gut microbiota before
hematopoietic-cell transplantation and overall patient sur-
vival (Peled et al. 2020).

Transformation of metagenomics data into alpha-diver-
sity metrics such as the Simpson index or its inverse will
require adapted analytical validation. Microbiota descriptive
metrics typically represent values for which the ground
truth is unknown (e.g. the actual number of species in a
faecal sample represented by richness indexes). Reference
material, for instance provided by EQA, could serve as gold
standard (Burd 2010). Alternatively, the clinical diagnosis
itself can serve as gold standard (Burd 2010). In this
example, one should test directly the correlation between
the inverse Simpson index measured by the workflow and
patient outcome. Once validated, the analytical workflow
should remain unchanged and applied under strict accept-
ance criteria for both wet-lab and bioinformatic processing
since both can have a significant effect on obtained alpha-
diversity results (Dybboe Bjerre et al. 2019; Prodan et al.
2020). In particular, the definition of minimal extracted
DNA concentration and sequencing coverage should be
strictly defined as both can lead to significant underappre-
ciation of the diversity (Rodriguez-R and Konstantinidis
2014; Multinu et al. 2018). However, changes in the bio-
informatics workflow could be validated retrospectively on
existing reference datasets used for the primary validation.

When used as clinical biomarkers, alpha-diversity met-
rics can be compared to reference ranges (or intervals) for
interpretation. In the present examples, Peled et al.
defined the median of diversity values as a cut-off
between two populations of high and low-diversity
patients. In reality, these reference values should be deter-
mined by dedicated studies evaluating metric distribution,
as recommended for molecular assays in microbiology
(Burd 2010) or clinical chemistry (Henny et al. 2016).

Clinical validation of microbiota-based biomarkers is
complicated by the large effect of confounding factors
on microbiota, including ethnicity, geography or diet
(Gupta et al. 2017; Gaulke and Sharpton 2018). In the
example provided by the Peled et al. study, the results
were generated over three continents, from subjects
suffering from different malignant diseases and with a
relatively balanced male-to-women ratio, which reinfor-
ces its transferability and generalizability. However, this
approach could hide relevant population-specific pat-
terns (Gupta et al. 2017).

Case 3: Machine-learning classification for hepato-
cellular carcinoma screening

Supervised and unsupervised machine-learning offers
novel applications for metagenomics but also raises



challenges for their clinical validation. Supervised
machine-learning algorithms could be trained on micro-
biota profiling datasets obtained from patients for
which the clinical outcome is known. These algorithms
could then theoretically be used on the microbiota pro-
files to diagnose a disease by categorizing patients as
healthy or diseased, or to prognose the outcome of a
disease (Zhou and Gallins 2019; Topguoglu et al. 2020;
Marcos-Zambrano et al. 2021). This case scenario will
focus on a recent study by Ren et al. who trained a ran-
dom forest classifier to screen for hepatocellular carcin-
oma based on gut microbiota (Ren et al. 2019).

Clinical validation of supervised machine-learning
classifiers based on microbiota profiling data is a com-
plex task. Once trained, classifiers should be rigorously
evaluated and tested (Chen et al. 2019; Wiens et al.
2019; Topguoglu et al. 2020). Whenever possible, factors
supporting classification (e.g. microbial or clinical fea-
tures) should be reviewed to identify potentially inad-
equate factors that could have been retained in
training, such as implicit indication of the clinical out-
come (i.e. “leaked labels”) (Wiens et al. 2019) or taxa
that will not be consistently found in microbiota pro-
files (e.g. contaminants). Then, the performance of the
trained model should be tested on data forming a val-
idation set distinct from the training set (Chen et al.
2019; Wiens et al. 2019; Topguoglu et al. 2020). In the
example of the study by Ren et al. a random forest clas-
sifier was first trained (discovery phase) on a subset of
patients and then tested on a different set of patients
from the same healthcare institution to validate its per-
formance (Ren et al. 2019).

Ideally, the clinical performance of the proposed
machine-learning algorithm should be evaluated on
large independent datasets (Topguoglu et al. 2020). In
this evaluation, the performance of the classifier should
be observed using relevant metrics, beyond the stand-
ard ROC curve (Wiens et al. 2019). In our example of
microbiota-based screening for hepatocellular carcin-
oma, suboptimal specificity would be less problematic
than imperfect sensitivity. Indeed, as for any screening
test, false positives that can be refuted by confirmation
tests are acceptable, while false negatives are more
problematic. The population tested should be large and
heterogeneous to ensure transferability of the model
(Chen et al. 2019). However, models could also be
adapted to some subpopulations of interest since
microbial determinants could vary, for instance upon
age group or geography (Wiens et al. 2019).

Machine-learning to diagnose diseases or prognose
their outcome is a promising approach that will cer-
tainly find applications in clinical microbiota profiling.
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However, many aspects remain to be explored and we
recommend recent publications that address the use of
machine learning in health-care in general (Chen et al.
2019; Wiens et al. 2019), in oncology (Cammarota et al.
2020) and in microbiota studies (Topcuoglu et al. 2020).

4, Conclusion

This review proposes adaptations of existing QM con-
cepts to the specificities of metagenomics-based micro-
biota profiling. The many aspects of QM discussed offer
a framework for the implementation of microbiota profil-
ing by clinical laboratories summarized in Figure 2. Some
QM aspects are already well established (need for nega-
tive QC samples) and some other practices could be dir-
ectly inspired from other clinical laboratory standards
(IQA, EQA). Conversely, the definition of acceptance crite-
ria or the validation of microbiota profiling assays raise
specific challenges that require further improvements to
reach maturity. To complete the translation of micro-
biota research into diagnostic analyses, the main actors
in the field of clinical microbiota profiling need to con-
firm the usefulness of metagenomics, precise the poten-
tial clinical indications for testing and overcome the
remaining challenges around microbiota profiling.

Besides anticipating the future need for clinical
microbiota profiling, the QM scheme proposed in this
review could also directly apply to research laborato-
ries. Indeed, the inclusion of comprehensive methodo-
logical descriptions (SOPs) and controls (QC samples,
acceptability criteria) in studies proposing new bio-
markers will accelerate the uptake by routine clinical
laboratories and help reaching similar clinical perform-
ance (Endrullat et al. 2016; Dirnagl et al. 2018), allowing
to translate fundamental research findings into applic-
able and actionable diagnostic tools for patients.
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