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Abstract: The renowned van der Waals (VDW) state equation quantifies the equilibrium relationship
between the pressure P, volume V, and temperature kBT of a real gas. We assign new variable
interpretations adapted to the economic context: P → Y, representing price; V → X, representing
demand; and kBT → κ, representing income, to describe an economic state equilibrium. With this
reinterpretation, the price elasticity of demand (PED) and the income elasticity of demand (YED) are
non-constant factors and may exhibit a singularity of the cusp-catastrophe type. Within this economic
framework, the counterpart of VDW liquid–gas phase transition illustrates a substitution mechanism
where one product or service is replaced by an alternative substitute. The conceptual relevance of
this reinterpretation is discussed qualitatively and quantitatively via several illustrations ranging
from transport (carpooling), medical context (generic versus original medication), and empirical data
drawn from the electricity market in Germany.

Keywords: van der Waals state equilibrium equation; price elasticity of demand; non-constant
elasticity

1. Prologue

In 2023, the van der Waals (VDW) equation, a cornerstone of thermodynamics, cel-
ebrated its 150th anniversary. Originating from the doctoral thesis of the Nobel laureate
Johannes Diderik van der Waals in 1873, this equation extends the ideal gas equation
(PV = RT) and offers profound insights into gas–liquid phase transitions and the under-
lying interplay of molecular forces. For an ideal gas at equilibrium, a decrease in volume
corresponds to an increase in pressure, akin to dynamics observed in markets where price
increases tend to dampen demand. As a modest tribute at the 150th anniversary occasion,
we tentatively extend this economic analogy to real gas state equilibrium. To our surprise,
the relevance of this a priori incongruous analogy has also been recently discussed by the
late French astrophysicist François Roddier (1936–2023) in a paper entitled “L’équation de
van der Waals appliquée à l’économie” [1].

2. Introduction

At thermostatic equilibrium, “the absolute pressure P exerted by a given mass of an ideal
gas is inversely proportional to the volume V it occupies if the temperature and amount of gas
remain unchanged within a closed system” [2]. Formally, this ideal gas equilibrium (IGE) is
encapsulated in the state equation Rg(V, P):

Rg(V, P) := PV = κ (Boyle − Marriott law), (1)

where κ ∈ R+ is a proportionality constant. Equation (1) quantifies the interplay between
the macro-variables P and V and the constant κ is proportional to the gas temperature T
at the thermostatic equilibrium. We observe that in Equation (1), the P and V variables
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play a perfectly symmetric role. Ceteris paribus, one may view P as a V-dependent variable,
namely, P ≡ P(V); conversely, one may write V ≡ V(P). For a given κ (or equivalently T),
the relation Rg(V, P) = κ defines an isotherme line lying in the positive quadrant of the real
plane R2.

The thermostatic equilibrium given by Equation (1) bears more than a passing resem-
blance to market equilibrium (i.e., market clearance), which correlates price Y ∈ R+ with
demand X ∈ R+. Since the ideal gas equilibrium theory stated in Equation (1) has been
very successively extended to the van der Waals (VDW) real gases, it looks natural to infer
the potential relevance of the VDW equation in the economic context. This analogy has
already motivated several previous discussions [3–6], and more particularly François Rod-
dier’s recent work [1], which is closely related to the present paper. However, while in [1],
the focus is on macro-economic aspects, here we discuss the micro-economic implications.

Depending on whether we consider the dependent or independent variables, we have
dual interpretations:

(i) When there is a price increase, equilibrium is maintained through a decrease in demand
and vice versa. This is exemplified by sales, which help to sustain demand during
price shifts.

(ii) When there is an increase in demand, equilibrium is maintained by an increase in price
and vice versa. This is exemplified by the scarcity of resources, which triggers competi-
tive bidding.

Mirroring the gas equilibrium of Equation (1), the market equilibrium is assumed to
follow a state relation Rm(X, Y) = κ. For fixed κ, the state equation Rm(X, Y) = κ defines
iso-κ lines, and in the current context, these lines are situated in the positive quadrant of the
Cartesian plane R2.

A couple of basic, relevant measures in economics are the elasticity factors:
EY/X := {d ln Y}

{d ln X}

EX/Y := {d ln X}
{d ln Y} = 1

EY/X

(2)

Hence, the elasticity EY/X is a sensitivity factor that quantifies the relative variation of Y in
response to a relative variation of X and vice versa for EX/Y.

For example, let us consider constant elasticity and the state equilibrium relation
Rm(X, Y) = XαYβ, with (α, β) being two positive constants. In this case, for a fixed iso-κ
line (i.e., dκ = 0), the resulting elasticity reads

d ln[Rm(X, Y)] = d ln(κ) = 0 ⇒ α{d ln X}+ β{d ln Y} = 0

EY/X = {d ln Y}
{d ln X} = − β

α = constant.
(3)

Note that by a suitable rescaling of X and Y, without loss of generality, we can express
Rm(X, Y) = XY; therefore, EY/X = −1, which is the standard behavior in market equi-
librium. For limited variation ranges of (X, Y), the constant elasticity behavior given by
Equation (3) is perfectly appropriate. However, for extended parameter ranges, it becomes
imperative to generalize Equation (3) and allow elasticity to become state-dependent; this is
developed in Section 3. In Section 4, economic variable interpretations—i.e., price elasticity
of demand (PED) and income elasticity of demand (YED) —is exposed. Several illustrations are
provided in Section 5. Concluding remarks are given in Section 6.
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3. Non-Constant Elasticity—General Framework

Here, let us free ourselves from the sole market interpretation of the (X, Y) variables
and develop a purely algebraic description directly inspired from the VDW thermostatic
theory. Accordingly, we focus on state equations of the following types:

(i) Rm(X, Y) = XY +N(X,µ)(X) = κ,

(ii) Rm(Y, X) = XY +N(Y,µ)(Y) = κ,
(4)

where µ stands for one (or possibly a set) of exogenous control parameter(s). The extra
nonlinear contributions N(X,µ)(X) and N(Y,µ)(Y) are introduced to model non-constant
elasticity responses.

Taking inspiration from the VDW generalization of the ideal gas equation, namely,

(ideal gases) ⇒ PV = RBT 7−→ (real gases) ⇒
[

P +
a

V2

]
(V − b) = RBT, (5)

let us explore the modeling relevance offered by the class of state equations
(i) N(X,µ)(X) := aX

(X+b)2 ,

(ii) N(Y,µ)(X) := aY
(Y+b)2 ,

(6)

where µ := {a, b}, a ∈ R+, and b ∈ R+.
With the specific choice in Equation (6), Equation (4) reads

(i) Y = Y(X) = κ
X − a

(X+b)2 = ⇔ Rm(X, Y) :=
[
Y + a

(X+b)2

]
X = κ,

(ii) X = X(Y) = κ
Y − a

(Y+b)2 = ⇔ Rm(Y, X) :=
[

X + a
(Y+b)2

]
Y = κ.

(7)

Equations (6) and (7) follow straightforwardly from Equation (5) with the identifications
V 7→ X + b, P 7→ Y, and RBT 7→ κ. In particular, in Equation (7), the parameter a quantifies
the degree of inelasticity. For the iso-κ line to remain in the positive quadrant, we further
impose κ > a

4b ; the explicit derivation of this lower bound is postponed to the proof of
Lemma 1 below. Due to the symmetric roles played by X and Y, we limit the analytical
discussion to case (i) (the dual case (ii) follows identically from a Yr ↔ Xr substitution). Let
us now introduce the rescaling (X, Y, κ) 7→ (Xr, Yr, κr) defined as

Yr := Y
Yc

, Xr := X
Xc

and κr := κ
κc

,

Xc = 2b, Yc =
a

27b2 and κc =
8a

27b .
(8)

Standard algebra shows that when plugging Equation (8) into Equation (7), we obtain a
form that is independent of any parameters:

R(Xr, Yr) :=
[

Yr +
27

(2Xr + 1)2

]
Xr = 4κr ⇔ Yr =

4κr

Xr
− 27

[2Xr + 1]2
. (9)

A selection of the iso-κr lines obtained from Equation (9) are drawn in Figure 1. Like for the
VDW equation, the following features can be highlighted.
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Figure 1. Sketch of iso-κr lines Yr (ordinate) as a function of Xr (abscissa), as given by Equation (9).
Here, the iso-κr lines are sketched for κr =

27
32 (red), κr = 0.9 (green, below), κr = 1.0 (green, above,

in this case the iso-κr line exhibits a triple point at Xr = 1), and κr = 1.1 (blue).

Lemma 1. Equation (9) possesses the following properties:

(i) On the iso-κr line with κr = 1, the position (Xr, Yr) = (1, 1) defines an equilibrium triple

point characterized by dYr
dXr

= d2Yr
dX2

r
|Xr=1= 0.

(ii) For κr >
27
32 , all iso-κr lines remain in the positive quadrant.

Proof of Lemma 1. (i) is immediately verified by direct calculation. For (ii), one verifies
that for κ = 27

32 , we have 
Yr

(
1
2

)
= dYr

dXr
|Xr=

1
2
= 0,

d2Yr
dX2

r
|Xr=

1
2
= 14.75 > 0,

which shows that at Xr = 1
2 , the iso-κr line reaches its minimum and Yr(

1
2 ) = 0. For all

κr >
27
32 , the minimum of the corresponding iso-κr line is positive, implying the iso-κr line

to remain in the positive quadrant. This in turn implies that κr >
27
32 ⇒ κ > a

4b , as already
expressed in Equation (7).

Proposition 1. ( EYr/Xr and EXr/κr elasticities). For the state equilibrium given by Equation (9),
and with the notation Z(Xr) := 1

(2Xr+1) , we have the following:

(i) On iso-κr lines, the corresponding elasticity reads (a selection of the elasticities obtained from
Equation (10) are drawn in Figure 2):

EYr/Xr := {d ln Yr}
{d ln Xr} = −

[
4κr
Xr −108Xr [Z(Xr)]3

4κr
Xr −27[Z(Xr)]2

]
, (10)

(ii) On iso-Yr lines, the corresponding elasticity reads

EXr/κr :=
{d ln Xr}
{d ln κr}

=
1

1 − 108Xr [Z(Xr)]3

Yr+27[Z(Xr)]2

. (11)
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Figure 2. Sketch of the elasticity EYr/Xr according to Equation (10) for κr = 0.9 (red), κr = 1.0 (green)
and κr = 1.1 (orange). For κr < 1, we systematically have EYr/Xr > 0. According to Lemma A1 (see

Appendix A), we have EYr/Xr=
1
2
= −1 and EYr/Xr < 0 for Xr ∈

[
0, 1

2

]
.

Proof of Proposition 1. (i) Fix an iso-κr line and take the logarithm of both sides of
Equation (9). Then, perform the corresponding variations; we have

ln[Yr] = ln
[

4κr

Xr
− 27

(2Xr + 1)2

]
⇒ dYr

Yr
= −

 4κr
Xr

− 108 Xr
(2Xr+1)3

4κr
Xr

− 27
(2Xr+1)2

dXr

Xr
,

and, with the notation Z(Xr) := 1
(2Xr+1) , the assertion follows.

(ii) Fix an iso-Yr line and take the logarithm of both sides of Equation (9). Then, perform the
corresponding variations; we have

ln
{[

Yr +
27

(2Xr + 1)2

]
Xr

}
= ln(4κr) ⇒ dXr

Xr

[
1 − 108Xr[Z(Xr)]3

Yr + 27[Z(Xr)]2

]
=

dκr

κr
,

and the assertion follows.

Proposition 2. (Cusp catastrophe singularity). (i) Under the change of variables:

x :=
[

2
2Xr + 1

− 2
3

]
⇔ Xr =

3
3x + 2

− 1
2

, (12)

Equation (9) reduces to the cubic relation:
x3 + u2x + u1 = 0,

u2 := 4
27 [8κr + Yr − 9] and u1 := 16

81 [4κr − Yr − 3] = 0.
(13)

(ii) For ∆ := −
[
4u3

2 + 27u2
1
]
, the cubic equation of Equation (13) admits one, respectively three,

real solutions. The limiting case u1 = u2 = 0 ⇒ ∆ = 0 describes a cusp catastrophe singularity,
as sketched in Figure 3.
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Figure 3. On the left panel [7], the position (x, u1, u2) = (0, 0, 0) corresponds to a triple point
singularity. On the right panel, the red line is determined by ∆ = 0. This shows the projection of
the sheet fold on the (u1, u2) plane and corresponds to a cusp catastrophe. For example, the couple
of points u2 = −3 and u1 = ±2 lies on the red curve. In the region u2 ∈ R+, we have ∆ > 0; here,
the relation R(Xr, Yr) of Equation (9) is one-to-one, yielding EYr/Xr < 0. For u2 < 0, the relation
R(Xr, Yr) is surjective in regions II and III, where ∆ < 0 and EYr/Xr < 0. In regions I and IV, we have
∆ > 0 and EYr/Xr < 0.

Proof of Proposition 2. (i) is verified by direct calculation and (ii) is the direct consequence
of the Cardan classical theory for cubic equations.

An additional list of properties of Equation (9) can be found in Appendix A.

4. Price Elasticity of Demand (PED) and Income Elasticity of Demand (YED)

For a comprehensive description of the economic equilibrium state equation given by
Equation (9), with Xr being the demand (or the inverse demand) and Yr being the price, it
is mandatory to assign an ad-hoc meaning to κr (i.e., the temperature in the nominal VDW
model). The yet missing variable in the economic modeling context is a budget (or income)
variable; therefore, it is natural to assign to κr this complementary dimension. Summarizing,
from Section 3, one concludes that the state equilibrium binding the price Yr, the demand
Xr, and the budget κr are geometrically encapsulated within a sheet S := S(Xr, Yr, κr)
immersed within the 3D space (see Figure 3). According to Equation (13), this sheet
possesses a fold singularity located at the triple point (Xr, Yr, κr) = (1, 1, 1). From this
description, a couple of elasticity factors can be naturally defined:

(i) PED-elasticity. For iso-budget lines (i.e., fixed budget κr), the PED-elasticity EYr/Xr

denotes the price elasticity of demand; it is given by Equation (10) and it is sketched in
Figure 2.

(ii) YED-elasticity. For iso-price lines (i.e., fixed price Yr), the YED-elasticity EXr/κr is the
income elasticity of demand; it is given by Equation (11). As shown in Figure 4, the YED
factor enables to distinguish between the normal goods, for which EXr/κr > 0, and the
inferior goods, which correspond to situations where EXr/κr < 0.

Substitution Phenomena and Maxwell-Type Plateau of Prices

Let us now focus on a usual economic state equilibrium where an increase in demand
triggers an increase in prices. In this situation, the corresponding price elasticity of demand
will be positive definite (a practical illustration for this is the German electricity market,
which is further discussed in Section 5.3). To qualitatively recover the typical VDW behavior
of Equation (9), let us interpret Xr as the inverse demand (i.e., rather than the demand itself)
while keeping Yr to represent the price. With this inverse demand convention and since
ln[Xr] = − ln[1/Xr], the corresponding price elasticity of the inverse demand becomes
systematically negative for κr > 1, as sketched in Figure 1 (the state equilibrium description,
in terms of the inverse demand rather than the demand itself, is actually adopted in
applications as in [8]). For κr < 1 however, EYr/Xr > 0 within a κr-dependent range of
the inverse demand Xr. Hence, this would describe a range of economic equilibriums in
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which increases in the demand generate increases in the price that do not reflect the actual
reality. Inspired directly from the VDW liquid–gas phase transition, instead of following
the z-shape iso-budget line, we describe the state equilibrium by constructing, for each
iso-budget line with κr < 1, a price plateau at a κr-constant level Yr := yκr . In the VDW
case, extra physical considerations fix the position of the plateau level yκr by using the
renowned Maxwell construction:

Yr(lκr ) = Yr(hκr ) = yκr ,

lκr ≤ Xr,min and hκr ≥ Xr,max∫ hκr
lκr

Y(Xr)dXr = [hκr − lκr ]yκr

(14)

where lκr ≤ hκr denotes the intersection abscissa of the yp horizontal line with the iso-budget
line κr < 1, and Xr,min and Xr,max are the abscissa of extrema of the same κr iso-budget line.
While the Maxwell construction given in Equation (14) also arises in economic contexts
(see, for example, Figure 2 in [9], with related explanations), a more rigorous justification
yet remains open in general. The important feature is the necessity to construct a plateau
for iso-budget lines with κr < 1. This plateau behavior in the economic context effectively
models a substitution mechanism during which a nominal product (or service) is, due
to a demand modification, progressively replaced by an available substitute. The actual
position on the plateau itself informs on the relative proportion of the nominal product
with respect to its substitute. This stands in full analogy with the VDW context where the
plateau describes the liquid and gas mixture of phases.

2

2

4

4

6

6

8

- 2

Figure 4. The YED EXr/κr (ordinate) as a function of κr (abscissa), according to Equation (11),
for Yr = 0.8 (gray), Yr = 1.0 (red), and Yr = 5 (blue). For large price Yr, we have limYr→∞ EXr/κr = +1,
showing that at high price we systematically have a normal good behavior, namely, EXr/κr > 0; for
intermediate Yr, there exists a Yr-dependent range where EXr/κr < 0, which is the signature of an
inferior good behavior; for low Yr, the normal behavior EXr/κr > 0 is recovered.

5. Illustrations

Far from exhaustive, yet aimed at sparking imagination, we now present a few ex-
amples where the VDW equation of state provides insightful modeling perspectives in an
economic context.

5.1. Transportation Context—Carpooling Substitution

In the context of transportation, specifically regarding a carpooling commuting policy,
let us consider the variables as follows: Yr represents the transportation price, Xr signifies
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the inverse transportation demand, and κr denotes the per-capita budget. Given these
definitions, we can describe the qualitative stylized behavior as follows:

(a) Wealthy commuters are characterized by κr > 1. We assume that these individuals
consistently choose to travel alone in their private cars. In this case, an increase in
transport demand (which is represented by a decrease in Xr, the inverse transportation
demand) leads to an equilibrium state through an increase in Yr, the transportation
price, as governed by Equation (9). In the context of the nominal VDW equation, this
state of equilibrium can be analogized to a condition of high temperature.

(b) For ordinary commuters, characterized by κr < 1, the high cost of transportation is a
significant burden. These individuals are, thus, more inclined to embrace a carpooling
policy as a more economical but also environmentally friendly option. This shift
towards carpooling helps stabilize both transportation prices and the ecological foot-
print, creating a scenario corresponding to the plateau phase in the VDW equation for
real gases. Within the transportation context, a substitution is struck between individ-
ual commuting and carpooling. As the demand for transportation increases (indicated
by a decrease in Xr), there is a corresponding rise in the proportion of commuters
opting for carpooling. This dynamic is represented by a movement to the right on
the plateau, where the transportation price Yr remains constant despite the changing
demand. This analogy extends to the nominal VDW model for real gases, where the
position on the VDW plateau indicates the ratio of liquid to gas in a mixture. Similarly,
in the transportation model, the position on the plateau reflects the balance between
individual commuting and carpooling, illustrating how economic and environmental
considerations can lead to a stable equilibrium in commuter behaviors.

(c) When all opportunities for carpooling have been fully utilized and the demand for
transportation continues to rise, the scenario leads to a sharp increase in transportation
prices. This situation in the transportation context mirrors the behavior observed in
the liquid phase of the VDW state equation for real gases. In the VDW model, once
the gas is compressed to a point where it becomes liquid (which represents the end
of the plateau phase), any further reduction in volume (or, analogously, any further
increase in demand in the transportation context) results in a significant increase in
pressure (or prices in the transportation scenario). This is because the liquid phase is
much less compressible than the gas phase, just as the transportation system becomes
much less flexible once carpooling capacities are maximized.

Extending the carpooling analogy to incorporate a multi-agent or microscopic perspec-
tive, like for the ideal gas concept, provides a nuanced view of individual decision-making
in the context of commuting. In the VDW context, phase transitions between gas and liquid
states are influenced by intermolecular attractive forces. Drawing a parallel to carpooling,
ecological incentives to share rides can be viewed as analogous to these attractive forces,
encouraging individuals to pool together in a single vehicle. Envisioning an “ideal gas” of
commuters, where each commuter shares common socioeconomic characteristics, allows
for an exploration of the individual decision to commute alone or to carpool. This decision-
making process involves balancing personal wealth against ecological consciousness. In this
analogy, κr, representing the average wealth or economic capacity of commuters, plays a
role similar to temperature in the VDW context. At high values of κr (analogous to high
temperatures), individualistic tendencies outweigh ecological considerations, leading to a
preference for traveling alone. This scenario aligns with the gas phase in the VDW model,
where high temperatures mitigate the effects of attractive forces, preventing the formation
of a liquid phase or, in our analogy, a cohesive carpooling group (the VDW plateau). Con-
versely, for κr < 1, mirroring lower temperatures in the VDW framework, the conditions
become favorable for the emergence of a substitution plateau. This plateau represents a
phase where individual and pooled commuting behaviors coexist and interchange. In this
extended analogy, the parameter b reflects the limitation on how many commuters can
realistically share a single vehicle, which corresponds to the volume exclusion principle
in the VDW equation. The parameter a quantifies the strength of the ecological incentives
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or social pressures that encourage carpooling, analogous to the attractive forces between
molecules in the VDW context.

5.2. Medical Context—Generic and Original Medication

Consider the scenario where two treatments, A (an original medication) and B (a generic
version), are available for a specific disease. Both treatments contain the same active
molecules, but they may have different excipients, with B being more cost-effective. Despite
this, patients tend to prefer A due to its established reputation and the perceived added
value of its excipients.

Here again, an analogy with the VDW state equation may help understand patient
preferences and economic dynamics in healthcare. Let Yr represent the cost to cure the
illness and Xr the inverse demand for treatment, which inversely correlates with the
spread of the illness. The parameter κr measures the available healthcare budget. For high
healthcare budgets (κr > 1), patients predominantly choose the more expensive treatment
A, analogous to the single gas phase in the VDW state equation where there is little to
no compression of particles, representing the minimal economic pressure to switch to
a more cost-effective option. As the budget constraint tightens (κr < 1), a portion of
the patient population shifts to the generic treatment B. This shift creates a substitution
equilibrium, similar to the liquid–gas equilibrium in the VDW model, where there is a
balance between the original and generic treatments. During this phase, the overall cost
of treatment stabilizes, in line with the constant pressure observed on the VDW plateau
during a phase transition. Once the entire patient population has switched to the generic
option B (analogous to the complete transition to the liquid phase in the VDW model),
any further increase in demand (conversely, a further decrease in the inverse demand Xr)
necessitates finding new, potentially costly alternatives. This could involve developing
new supply chains or treatments, leading to a sharp increase in Yr. This phase mirrors the
incompressibility of the liquid phase in the VDW equation, where further compression (or
increased demand in our context) leads to a significant rise in pressure (or cost).

5.3. Electricity Demand—Actual Data Fitting

To explore the possibility of applying a state equation similar to Equation (9) (or
equivalently Equation (7)) for data fitting purposes, we draw inspiration from study [8],
which focuses on the electricity demand market.

In their study, the authors successfully employ a cubic polynomial equation to fit
actual market data within a specified range. The price-and-demand equation they propose
is as follows:

Y = a0 + a1X + a2X2 − a3X3, a3 > 0 (15)

Here, Y represents the price and X represents the demand. The coefficients {a0, a1, a2, a3}
are determined through data fitting (see Figure 2 in [8]), effectively capturing the rela-
tionship between price and demand in the electricity market. Inspired by this approach,
we can consider applying the VDW state equation, Equation (7), to a similar data fitting
exercise. Considering the cubic polynomial applied in [8] and the nonlinear properties
of the VDW equation, this method could provide a robust framework for modeling the
intricate relationships between variables such as price and demand across different mar-
kets. The critical step involves meticulously gathering and examining data, followed by
adjusting the equation’s coefficients to achieve the best fit. Ultimately, this process would
lead to insightful interpretations of market dynamics.

Refer to Figure 2 in [8], particularly the shaded area. The inverse electricity demand at
the center of this shaded area is approximately located at X ≈ 30,000 [MWh]. At this point,
the corresponding price is roughly Y = 45

[
EUR
MWh

]
. Therefore, the slope dY

dX of the straight
line (the slope of the blue curve in Figure 2 of [8]) is approximately given by

Y′(30, 000) =
50

36, 000 − 20, 000
= 0.003

[
EUR

MWh2

]
. (16)
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From Equation (16), we observe a very small slope. Within a VDW modeling frame-
work, this strongly indicates that the iso-line described by Equation (16) is closely aligned
with the critical VDW isotherm. Consequently, we can approximately equate the values
Yc = 45 [EUR][GWh] and Xc = 30 [GWh] to those at the VDW critical point, facilitating
direct model calibration. The corresponding VDW parameters a, b, and the variable κc can
then be directly identified using Equation (8), namely ( for clarity, note that we use the
conversion 1 [GWh] := 1000 [MWh].):

Yc ≃ 45 [EUR/MWh] = 4.5 · 10−2 [EUR/GWh],

b = Xc
2 = 15 [GWh],

a = 27Yc b2 = 37 · 53 · 10−2 = 273, 375 [EUR][GWh],

κc =
8a

27b = 5.4 [EUR].

(17)

Based on the parameters {a, b, κc} obtained from Equation (17), it is straightforward to
formulate a cubic equation model that replicates the identical triple point. The model is
expressed as follows:

YVDW = 45
[

8
X
15

− 27
( X

15+1)2

]
, (van der Waals modeling),

Ycub = −(X − 30)3 + 45, (cubic polynomial modeling).

(18)

The couple of inverse demand curves YVDW and Ycub are drawn in Figure 5.

Remark 1. It is important to note that the cubic polynomial relation in Equation (18) has a limited
range of applicability. This is because it predicts negative prices for large values of inverse demand
X, which is not realistic. In contrast, the VDW model maintains positive prices for all values of X,
making it a more robust framework for pricing. Additionally, the elasticity behavior in the VDW
model remains coherent across the entire range of inverse demands X, unlike the cubic model, which
further highlights the VDW model’s superior capacity for modeling.

Figure 5. Fitting of the cubic polynomial (blue) and VDW (green) curves at the quasi-plateau level
κc . From Figure 2 in [8], one qualitatively estimates that we are close to a plateau (i.e., close to the
VDW triple point). Assume that we are at the critical level with the triple point at demand level
Equation (18) with price Y in [EUR/MWh] as ordinate and demand X in [GWh = 1000 MWh] as
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abscissa. There is virtually no usable distinctions between the two curves in the range considered
in [8]. However, the VDW curve appears to be steeper away from the plateau, which matches the
actual monitoring displayed (with black dots) in Figure 2 of [8].

5.4. Giffen and Veblen Behaviors—Luxury and Inferior Goods

Let us assume here that the input variable is the price, and with each price increase,
the equilibrium imposes a drop in demand. Accordingly, the adapted modeling can be
described by line (ii) of Equation (7), where Y → Yr is the price, X → Xr denotes the
demand, and κ → κr stands for the income, namely the average available budget (here,
and contrary to Section 4, the variable Xr is the demand itself and not the inverse demand).
From Equation (7), a few corresponding iso-budget lines for a selection of κr are derived in
Figure 6.

1 2 3 4 5 6 7

1

2

3

4

5

Figure 6. Iso-budget lines, as given by line (ii) of Equation (7) for κr = 1.1 (blue), κr = 1.0 (green),
κr = 3.6 (gray), and κr =

27
32 (red, corresponding as before to the κr lower bound). The abscissa stands

for the demand Xr and the ordinates for the price Yr. For κr < 1, a Z-shape behavior emerges. This
corresponds to the economically counter-intuitive response where a reduction in the price induces a
reduction in the demand.

With line (ii) of Equation (7), the corresponding elasticity EYr/Xr is given by
Equation (10), with an Xr ↔ Yr exchange of the variables, and we have

EYr/Xr :=
{d ln Yr}
{d ln Xr}

= −
[ 4κr

Xr
− 27[Z(Xr)]2

4κr
Xr

− 108[Z(Xr)]3

]
. (19)

We again observe a singularity at κr = 1 ⇒ EYr/Xr = ∞. For κr > 1, the resulting elasticity
EYr/Xr is systematically negative, thus describing a standard behavior. For κr < 1 however,
the iso-budget lines exhibit Z-shaped curves. As in Section 4, a (here, vertical) plateau can
also be constructed. However, it is worth pointing out that, in this case, the Z-shape itself
offers a natural modeling framework for the so-called Veblen and/or Giffen behaviors
(see, among others, [10,11]). Veblen/Giffen effects are induced by the absence of economic
substitution alternatives. Hence, the full Z-shape behavior is needed here instead of a VDW-
type plateau. The Veblen effect is observed in luxury markets, where the prestige associated
with luxury goods means that a decrease in price can lead to reduced demand, as the goods
lose some of their prestige value. On the other hand, the Giffen effect pertains to certain
inferior goods, such as staple foods like rice and bread. In this scenario, a price increase
paradoxically boosts demand because, for consumers with limited budgets, the alternatives
become prohibitively expensive. For example, a typical consumer might balance their
daily food intake between bread and meat. With a reduced budget (i.e., κr < 1), they may
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no longer be able to afford meat, compelling them to consume more bread to meet their
dietary needs.

6. Conclusions and Perspectives

The Van der Waals (VDW) state equilibrium equation, with its minimal reliance on
exogenous parameters, offers a comprehensive and unifying framework for analyzing
both substitution effects in economics and the peculiar phenomena of Giffen and Veblen
behaviors. In general, the VDW model, with its capability to accommodate non-constant
elasticity curves, emerges as a compelling and natural alternative to the commonly used
cubic and exponential models for quantitative fitting. Furthermore, the VDW theory,
characterized by its depiction of a cusp catastrophe singularity, is well-suited for capturing
market equilibria, involving key variables such as price, demand, and budget. Drawing
on approaches from physics, VDW modeling bridges micro- and macro-economic models
and perspectives through the possibility of a mean-field description of multi-agent systems.
In this context, the VDW intermolecular attractive forces manifest a propensity among
agents to adopt common consensual behaviors, as seen for example in carpooling practices.
With over 150 years of successes in thermostatics, the VDW state equation may now be
poised for a new cross-disciplinary life—a potential that was already highlighted by the
late François Roddier [1].
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Appendix A

In this section, we describe additional analytical properties that follow from
Equation (9).

Corollary A1. (i) For κr > 1, we have ∆ < 0, and R(Xr, Yr) = κr defines a one-to-one
relation leading to EYr/Xr < 0.

(ii) For κr > 1, we have ∆ > 0, and R(Xr, Yr) = κr defines a surjective relation allowing

EYr/Xr < 0 within a region W(κr) :=
]

Xg
r (κr), Xd

r (κr)
[
, where Xg

r (κr) ≤ Xd
r (κr) are the

respective abscissae of the Yr-extrema.

Proof of Corollary 1. This corollary is an immediate consequence of Proposition 2.

Lemma A1. Miscellaneous properties of the elasticities EYr/Xr and EXr/κr .

(i) lim
Xr→0+

EYr/Xr = lim
Xr→∞

EYr/Xr = −1.

(ii) EYr/Xr=
1
2
= −1 for all κr.

(iii) κr >
27
32 ⇒ EYr/Xr =


< 0 for Xr <

1
2 ,

−1 for Xr =
1
2 .

(iv) κr > 1 ⇒ EYr/Xr < 0.
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(v) elasticity at the triple point: EYr=1/Xr=1 = ∞.

(vi) for Yr > 1 ⇒ EXr/κr > 0.

(vii) for all Yr ⇒ lim
Xr→+∞

EXr/κr = lim
Xr→0+

EXr/κr = 1.

References
1. Roddier, F. L’équation de van der waals appliquée à l’économie. Res-Systematica 2017, 16, 2.
2. Levine, I. Physical Chemistry; McGraw-Hill: New York, NY, USA 1978.
3. Gumjudpai, B. Towards equation of state for a market: A thermodynamical paradigm of economics. J. Phys. Conf. Ser. Siam Phys.

Congr. 2018, 1144, 012181. [CrossRef]
4. Jammernegg, W.; Fischer, E.O. Economic applications and statistical analysis of the cusp catastrophe model. Z. Oper. Res. 1986,

30, B45–B58. [CrossRef]
5. Rashkovskiy, S. Economic thermodynamics. Phys. A Stat. Mech. Its Appl. 2017, 582, 126261. [CrossRef]
6. Saslow, W.M. An economic analogy to thermodynamics. Am. J. Phys. 1999, 67, 1239–1247. [CrossRef]
7. Huang, Q.; Liu, Z.; Zhoua, Y.; Zhang, D.; Wang, F. Study on mechanisms of CO2 bleve based on the cusp-catastrophe model.

Energy Procedia 2014, 61, 1343–1347. [CrossRef]
8. Wan, Y.; Kober, T.; Densing, M. Nonlinear inverse demand curves in electricity market modeling. Energy Econ. 2022, 107, 105809.

[CrossRef]
9. Guimaraes, B.; Sheedy, K.D. Sales and monetary policy. Am. Econ. Rev. 2011, 101, 844–876. [CrossRef]
10. Dougan, W.R. Giffen goods and the law of demand. J. Political Econ. 1982, 90, 809–815. [CrossRef]
11. Philbois, G.; Block, W.E. The z curve: Supply and demand for giffen goods. MISES Interdiscip. J. Philos. Law Econ. 2018, 6, 503–508.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1088/1742-6596/1144/1/012181
http://dx.doi.org/10.1007/BF01919499
http://dx.doi.org/10.1016/j.physa.2021.126261
http://dx.doi.org/10.1119/1.19110
http://dx.doi.org/10.1016/j.egypro.2014.12.123
http://dx.doi.org/10.1016/j.eneco.2022.105809
http://dx.doi.org/10.1257/aer.101.2.844
http://dx.doi.org/10.1086/261090

	Prologue 
	Introduction
	Non-Constant Elasticity—General Framework
	Price Elasticity of Demand (PED) and Income Elasticity of Demand (YED)
	Illustrations
	Transportation Context—Carpooling Substitution
	Medical Context—Generic and Original Medication
	Electricity Demand—Actual Data Fitting
	Giffen and Veblen Behaviors—Luxury and Inferior Goods

	Conclusions and Perspectives
	Appendix A
	References

