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Abstract  
 In this review, we discuss genetic evidence supporting Guyton’s hypothesis stating that 

blood pressure control is  critically depending on fluid handling by the kidney. The review is 

focused on the genetic dissection of sodium and potassium transport in the distal nephron and 

the collecting duct that are the most important sites for the control of salt and potassium balance 

by aldosterone and angiotensine II. Thanks to the study of Mendelian forms of hypertension and 

their corresponding transgenic mouse models, three main classes of diuretic receptors 

(furosemide, thiazide, amiloride) and the main components of the aldosterone- and angiotensin-

dependent signaling pathways were molecularly identified over the past 20 years. This will allow 

to design rational strategies for the treatment of hypertension and for the development of the 

next generation of diuretics. 

 

Introduction  
Hypertension is the most common disease in the human population, affecting over 1 billion 

individuals worldwide, and is one of the major treatable risk factors in cardiovascular diseases 

including stroke, myocardial infarction, heart and kidney failure. Despite the importance of 

hypertension as a cause of cardiovascular-renal disease, its pathogenesis is largely unknown. 

Four lines of evidence have verified Guyton’s 30-year old hypothesis stating that blood pressure 

(BP) is critically dependent on salt handling by the kidney: i) physiological evidence: the 

pressure-natriuresis relationship established by Guyton; ii) pharmacological evidence: the 

introduction of diuretics (thiazide) in the early 60 as first line and, for the first time, effective 

treatment of essential hypertension; iii) genetic evidence in animal experiments (rodents): 

kidney cross transplantation between hypertensive strains and their corresponding “wild type” 

strains indicated that the hypertensive phenotype always “follows the kidney” from the 

hypertensive strain; iv) genetic evidence in humans: mutations with Mendelian transmission in 

18 genes have now been identified as genes causing a salt- loosing (hypotensive) or a salt -
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retaining (hypertensive) phenotype. All genes map to the renin-angiotensin-aldosterone system 

(RAAS). Molecular and genetic approaches have begun to define the key players and molecular 

pathways determining variations in BP. The major sodium (NKCC2, NCC and ENaC) and 

potassium (ROMK) transporters are expressed in the distal nephron and are the targets for all 

of the clinically useful diuretics - furosemide/bumetanide inhibit NKCC2, thiazides inhibit NCC 

and amiloride blocks the ENaC. Importantly, molecular/genetic approaches have also begun to 

define the signalling pathways regulating and integrating these cation transporter activities and 

their roles in determining blood pressure. Aldosterone and Angiotensin II signaling pathways are 

expressed in the distal nephron and some of their components have been found to be mutated 

in some Mendelian form of human hypertension (mineralocorticoid receptor MR, the 11β−HSD2 

that protects MR from illicit occupation by cortisol, WNK1, WNK4, Cullin3, KHEL3). Several 

mouse transgenic animals (classical transgenic, knock-in and knockout) have been generated 

to validate and study the role of these key players in both renal salt handling and blood pressure 

regulation. A number of relevant and extensive reviews have been published covering different 

aspects of the genetics of hypertension in human and animal models [1-6]. In the present 

review we will discuss recent advances that have been made in this field focusing on the control 

of sodium and potassium balance along the renal distal nephron and the collecting duct that are 

tightly regulated by aldosterone and angiotensin. We will focus on experimental evidence 

obtained by genetic dissection of sodium and potassium transport along these nephron 

segments using knock out or knock in transgenic mouse models that mimick human salt 

retaining or salt loosing syndromes with an hyper- or hypotensive phenotype respectively. 

These human diseases and their corresponding animal models have defined the most 

significant steps that are limiting in the action of aldosterone and angiotensin. These limiting 

steps represent the best drug targets for the development of novel therapies specifically for the 

next generation of diuretics that remain a class of drugs of major clinical importance for the 

treatment of hypertension. 

  

Distal nephron and collecting duct: the Aldosterone- Sensitive Distal 
Nephron 
  The nephron is the functional unit of the kidney (Figure 1). In human, 180 liters of fluid is 

filtered per day  through the glomerulus (G). Around 60% will be reabsorbed in the proximal 

tubule (PCT and PST) (2), 30% in the Henle’s loop (TL and TAL) (4), 9% in the Distal 

Convoluted Tubule (DCT), the Connecting Tubule (CNT) and the Collecting Duct (CD) leaving 

1.8 liter/day of final urine. Over 90% of renal ATP is used for fluid reabsorption driven by the 

Na,K-ATPase. Sodium and potassium balance are achieved through the final regulation of 

sodium and potassium transport in the distal nephron and the collecting duct under hormonal 
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control (aldosterone, vasopressin, angiotensin, insulin, etc). DCT cells, CNT cells and CD 

principal cells are the main cells involved in hormonal regulation. Most of the fine regulation of 

sodium and potassium transport takes place in the Thick Ascending Limb (TAL) (or Distal 

Straight Tubule), the Distal Convoluted Tubule (DCT), the Connecting Tubule (CNT) that branch 

10 to 12 nephrons onto one collecting duct (CD) (Figure 2). Aldosterone is a mineralocorticoid 

hormone that plays a critical role in achieving sodium and potassium balance by controlling 

sodium reabsorption and potassium secretion in the kidney. Glucocorticoid receptor (GR) is 

ubiquitously expressed in the glomerulus, the entire nephron and in the collecting duct whereas 

the mineralocorticoid receptor (MR) is expressed in specific segments of the nephron: the Thick 

Ascending Limb (TAL), the Distal Convoluted Tubule (DCT1 and DCT2), the Connecting Tubule 

(CNT) and in the Collecting Duct (CD). Ackerman et al. [7] using highly specific antibodies 

against MR and GR showed that MR is coexpressed with GR in TAL, DCT, CNT and CD. 

Mineralocorticoid specificity is insured by the coexpression of 11β-HSD2 that metabolize cortisol 

or corticosterone in an inactive metabolite preventing the illicit occupation of MR by 

glucocorticoids. The expression of 11β-HSD2 is strong in DCT2, CNT and CD but decreases 

sharply in DCT1 and TAL. Based on the criteria of MR/11β-HSD2 coexpression, the 

Aldosterone Sensitive Distal Nephron (ASDN) (Figure 2) has been defined [8, 9] as comprising:  

the distal part of DCT (DCT2), the CNT and the CD, anatomically and developmentally distinct 

from the nephron but expressing similar regulation by aldosterone. The role of aldosterone in 

TAL is not yet well defined but it is interesting to note that the Angiotensin II receptor (AGTR1) 

expression fully overlaps that of MR suggesting that some of the synergistic action of the two 

hormones depend on the coexpression of MR and AGTR1 in TAL and downstream to the end of 

CD. Here, we will focus primarily on the role of NKCC2, NCC, ROMK, BK and ENaC on sodium 

and potassium transport and their regulatory proteins (MR/GR, 11β-HSD2, Sgk-1, Nedd 4-2, 

WNK1, WNK4, CUL3, KLHL3). 
 

Transporters   
 

Salt loosing syndromes 
Bartter syndrome 

As reviewed  by Hebert [10] and Jentsch [11] Bartter syndrome represents a group of 

autosomal recessive disorders that are characterized by markedly reduced or absent salt 

transport by the thick ascending limb of Henle. Consequently, individuals with Bartter syndrome 

exhibit renal salt wasting and lowered blood pressure, hypokalemic metabolic alkalosis and 

hypercalciuria with a variable risk of renal stones. Five genes have been associated with the 

disease (Table 1). These include i) SLC12A2, the sodium-potassium-chloride co-transporter 
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(NKCC2) (Type I Bartter) ; ii) KCNJ1, the potassium ion channel (ROMK) (Type II Bartter); iii) 

CLCNKB, the basolateral chloride ion channel (ClCKb)(Type III Bartter) ; iv) BSND barttin (Type 

IV Bartter). Barttin is a β subunit that is required for the trafficking of CLCNKB channel to the 

plasma membrane in both the thick ascending limb and the marginal cells in the scala media of 

the inner ear that secrete potassium ion-rich endolymph. Loss-of-function mutations in BSND 

thus cause Bartter syndrome with sensorineural deafness ; v) CASR a extracellular calcium ion-

sensing receptor. Gain-of-function mutations in this receptor can result in a Bartter phenotype 

(Type V Bartter) because activation of this G protein-coupled receptor inhibits salt transport in 

the thick ascending limb. As shown in Table 1, transgenic mouse models mimic Bartter 

syndrome well Type I [12], Type II [13], Type IV [14] and to some extent Type III [15].  

 

 Gitelman syndrome 

As recently reviewed by Knoers and Levtchenko [16] Gitelman’s syndrome (GS), also referred 

to as familial hypokalemia-hypomagnesemia, is characterized by hypokalemic metabolic 

alkalosis in combination with significant hypomagnesemia and low urinary calcium excretion. 

Mutations in the solute carrier family 12, member 3 gene, SLC12A3, which encodes the 

thiazide-sensitive NaCl cotransporter (NCC), are found in the majority of GS patients [16]. At 

present, more than 140 different NCC mutations throughout the whole protein have been 

identified. As shown in Table 1, the corresponding mouse model shows a mild Gitelman like 

phenotype. In a small minority of GS patients, mutations in the CLCNKB gene, encoding the 

chloride channel CLCNKB have been identified [16] but the corresponding mouse knock in 

model has not yet been engineered. This could help to understand why some mutations in 

CLCNKB generate a Bartter like phenotype while others generate a Gitelman like phenotype.  

 

PHA-1 

As reviewed by Bonny and Rossier [17] and Zennaro et al. [18] loss-of-function mutations in two 

key components of the aldosterone response, the mineralocorticoid receptor (MR) and the 

epithelial sodium channel ENaC, cause type 1 pseudohypoaldosteronism (PHA-I), a rare 

genetic disease of aldosterone resistance characterized by salt wasting, dehydration, failure to 

thrive, hyperkalemia and metabolic acidosis. The renal form of PHA-I is caused by mutations in 

MR. The phenotype tend to be milder with age [18].  The systemic form of PHA-1 is caused by 

mutations in ENaC either α or β or γ subunits. It combines a severe perinatal salt loosing 

syndrome, metabolic acidosis, life threatening hyperkalemia with a failure to clear fluid from lung 

(wet lung syndrome) [17]. As shown in Table 1, constitutive germ line inactivation of either 

α [19], β [20] or γ [20, 21] ENaC subunit  in mice causes  perinatal lethality (100% 48 h after 

birth) with a renal [19-21]  combined with a lung phenotype [19, 21]. The data indicate that there 
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is no redundancy beween any of the 3 homologous subunits of ENaC confirming in vitro 

experiments in Xenopus Laevis oocytes. The early lethality precludes any observation of the 

relative role of each subunit in adult kidney. Nephron and/or collecting duct specific promotor 

allows to conditionally inactivate any gene of interest along the nephron or the collecting duct . 

This approach allows a true « genetic dissection » of the role of ENaC α subunit along the 

ASDN. Using a HoxB7 promotor exclusively expressed in the entire collecting duct combined to 

Cre/lox technology, it was possible to delete conditionaly and efficiently the ENaC α subunit in 

this part of ASDN [22]. Surprisingly neither sodium nor potassium balance were impaired even 

when the mice were challenged with low salt or high potassium diet. The activity of ENaC in CD 

(at least in mice) is dispensable and could be compensated by other transport systems (see 

below). Interistingly, ENaC expressed in the CD plays a critical role in  lithium-induced 

nephogenic diabetes insipidus (NDI) since CD specific deletion of α ENaC fully protect against 

lithium toxicity [23]. To investigate the relative importance of ENaC-mediated sodium absorption 

in the CNT, mice lacking α ENaC in the aquaporin 2-expressing CNT and CD were generated. 

With dietary sodium restriction, these mice experienced significant weight loss, increased 

urinary sodium excretion, and hyperkalemia [24]. Plasma aldosterone levels were significantly 

elevated under both standard and sodium-restricted diets. α ENaC expression within the 

CNT/CD is crucial for sodium and potassium homeostasis and causes signs and symptoms of 

systemic PHA-1 if missing [24]. However the phenotype was relatively mild compared to the 

neonatal human or mice phenotype raising the question of the importance of DCT2 the 

remaining nephron segment still expressing ENaC under this experimental condition. Since 

ENaC is co-expressed with NCC in DCT2 under the control of the aldosterone dependent- 

signaling pathway (Figure 1), this very short segment could play a major role in achieving 

sodium and potassium balance.  Recently, it has been possible to induce gene inactivation 

along the entire nephron and the collecting duct (excluding the glomerules) using a doxycycline- 

inducible system under the control of the Pax8 promotor [25]. With this technology it was shown 

that the induction of α ENaC deletion in adult kidney causes   a severe salt loosing syndrome 

with life threatening hyperkalemia and death if not rescued by a high sodium low potassium diet 

[26] confirming the key role of DCT2 in ASDN.  

 

Salt retaining syndromes 
Liddle syndrome 

Gain-of-function mutations in ENaC β or γ subunits cause pseudoaldosteronism (Liddle's 

syndrome), a severe form of salt-sensitive hypertension, hypokalemia, metabolic alkalosis, low 

plasma renin activity and suppressed aldosterone secretion with a Mendelian autosomal 

dominant mode of transmission [1, 27]. As shown in Table 1, Pradervand et al [28] generated a 
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transgenic mouse model expressing the human mutation identified in the princeps case, i.e. the 

deletion of a C terminal regionof the β subunit (R566Stop) comprising the critical consensus  

PPXY motif that bind to the WW domains of an E3 ubiquitylation enzyme (NEDD4L or Nedd4-

2). Under normal salt diet, mice heterozygous (L/+) and homozygous (L/L) for Liddle mutation 

(L) develop normally during the first 3 months of life. In these mice, BP is not different from wild 

type despite evidence for increased sodium reabsorption in distal colon and low plasma 

aldosterone, suggesting chronic hypervolemia. Under high salt intake, the Liddle mice develop 

high BP, metabolic alkalosis, and hypokalemia accompanied by cardiac and renal hypertrophy. 

This animal model reproduces to a large extent a human form of salt-sensitive hypertension and 

establishes a causal relationship between dietary salt, a gene expressed in kidney and 

hypertension [28]. A subsequent study [29] investigated the renal sodium transport in vivo, ex 

vivo (intact perfused tubules), and in vitro (primary culture of cortical collecting ducts [CCD]) 

bringing three independent lines of evidence for the constitutive hyperactivity of ENaC in CCD 

from mice harboring the Liddle mutation. In another study [30] whole cell currents through 

epithelial Na channels (ENaCs) were measured by patch clamp of ex vivo cortical collecting 

duct (CCD) isolated from mice homozygous for the Liddle mutation (L/L) and from wild-type 

(WT) littermates. Mineralocorticoid regulation of ENaC is maintained in a mouse model of 

Liddle's syndrome and the highest currents were recorded in L/L CCD from animal kept under 

low salt diet. The increase in whole cell current was attributed to a difference in the density of 

conducting channels, in agreement with the proposed molecular and pathogenic mechanism for 

the Liddle mutation [31, 32]. 

 

Potassium channels : ROMK and BK 
As discussed above, the critical role of ROMK is underscored by mutations causing the 

antenatal Bartter Type II, one of the most severe salt loosing syndrome. Holtzclaw et al. [33] 

have recently reviewed  the physiological importance of  potassium large conductance calcium-

activated  channels (Maxi K or BK), and their potential secretory roles in flow-induced K 

secretion and in the control of blood pressure. BK channels are also fundamental to the control 

of smooth muscle tone and neuronal excitability. BK channels can be formed by two subunits: 

the pore-forming α subunit, which is the product of the KCNMA gene family , and the 

modulatory β subunit product of the KCNMB gene family. Intracellular calcium regulates the 

physical association between the α and β subunits. In the kidney the most important BK 

channels are the αβ1 heteromer expressed in the apical membrane of CNT whereas αβ4 

heteromers are predominantly expressed in intercalated cells (Figure 1). Constitutive  germ line 

inactivation of BK α subunit results in extreme aldosteronism, hypertension, and an absence of 

flow-induced potassium secretion. Inactivation of the BK β1 subunit results in decreased 
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handling of a potassium load, increased plasma potassium, mild aldosteronism and 

hypertension that is exacerbated by a high potassium diet [34, 35]. Inactivation of BK β4 subunit 

leads to insufficient potassium handling, high plasma potassium, fluid retention, but with milder 

hypertension [36]. As discussed by Holtzclaw et al. [33] BK β1 hypertension may be a 'three-hit' 

hypertension, involving a potassium secretory defect, elevated production of aldosterone, and 

increased vascular tone. To distinguish between these three factors (adrenal, vessels, kidney), 

inducible nephron specific deletion of α1 or  β1 or β4 genes will be highly informative. 

We have considered so far the transporters (NKCC2, ROMK,  BK, NCC and ENaC)  whose role 

in sodium and potassium balance is well established. In most ASDN model little attention is paid 

to the role of intercalated cells classically involved in pH homeostasis and acid-base regulation. 

As reviewed by Eladari and Hubner [37] and Wall and Pech [38, 39], recent data, however 

indicate, that a more integrative view of the role of intercalated and principal cells along the CD 

and the CNT should be proposed.  

 

Chloride transporters : SLC26A4(pendrin) and SLC4A8 
As discussed above, the critical role of the chloride channel CLCNKB and its associated subunit 

(BDSN/ barttin) are underscored by mutations causing  Bartter Type 3 and Type 4. We will now 

discuss the role of two exchangers expressed in intercalated cells that play a role in blood 

pressure control. The protein encoded by SLC4A8 is a membrane protein that functions to 

transport sodium and bicarbonate ions across the cell membrane. Leviel et al. [40]  

demonstrated that besides the classic electrogenic amiloride-sensitive, ENaC dependent- 

sodium transport,  much of the sodium absorption in the CCD was actually amiloride- insensitive 

but thiazide- sensitive. The authors demonstrated the presence of an electroneutral, amiloride-

resistant, thiazide-sensitive, transepithelial NaCl absorption in mouse CCDs, which persists 

even with genetic disruption of ENaC [40]. The data suggested that the parallel action of the 

sodium-driven chloride/bicarbonate exchanger (NDCBE/SLC4A8) and the sodium-independent 

chloride/bicarbonate exchanger (pendrin/SLC26A4) accounted for the electroneutral thiazide-

sensitive sodium transport. Further evidence for the importance of this novel electroneutral 

transport was obtained by genetic ablation of SLC4A8 that fully abolished thiazide-sensitive 

NaCl transport in the CCD. SLC26A4 (solute carrier family 26, member 4) or pendrin is a 

membrane protein that functions as chloride/ bicabonate exchanger and mutations in this gene 

are associated with Pendred syndrome, the most common form of syndromic deafness, an 

autosomal-recessive disease. The role of  SLC26A4/pendrin in the regulation of extracellular 

fluid volume and blood pressure has recently been reviewed [39, 41]. Royaux et al. reported 

that Slc26a4 (-/-) mice were severely impaired in their renal bicarbonate secretion [42]. Next it 

was shown that a renal phenotype could become unmasked by challenging Slc26a4 (-/-) mice 
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with the mineralocorticoid DOCP. Mice devoid of pendrin develop metabolic acidosis and 

isolated CCD tubule and were unable to secrete bicarbonate. Interestingly these mice were 

« resistant » to DOCP and did not develop salt retention and hypertension was prevented [43] . 

Conversely, under salt restriction, Wall et al. reported that Slc26a4 is upregulated and is critical 

in the maintenance of acid-base balance and in the renal conservation of Cl- and water [44].   

 
Aldosterone and Angiotensin signalling pathways 
 

NKCC2 regulation 
As recently reviewed by Ares et al. [51], NKCC2 dependent-sodium chloride reabsorption in 

TAL is subject to exquisite control by hormones like vasopressin, parathyroid, glucagon, and 

adrenergic agonists that stimulate NaCl reabsorption. Atrial natriuretic peptides or autacoids like 

nitric oxide and prostaglandins (PGE2) inhibit NaCl reabsorption, promoting salt excretion. At 

least, three molecular mechanisms : membrane trafficking, phosphorylation, and protein-protein 

interactions have recently been described as mechanisms that modulate NKCC2 activity in 

TALs and heterologous expression systems [51].  

According to NCBI, SORL1 (SORLA) encodes a mosaic protein that belongs to at least two 

families: the vacuolar protein sorting 10 (VPS10) domain-containing receptor family, and the low 

density lipoprotein receptor (LDLR) family. In this context, a recent study [52] (Table 2) shows 

that the mouse Sorl1 (sorting protein-related receptor with A-type repeats) plays an important 

role in functional activation of NKCC2. Sorl1-/-  mice are unable to interact with SPAK (Ste-20-

related proline-alanine-rich kinase) that normally allows the proper trafficking of Spak to the 

apical membrane of TAL cell and the NKCC2 phosphorylation. The phenotype of the Sorl-/- 

mice is a salt losing syndrome mimicking a Bartter syndrome Type 1 indicating that this protein 

is one of the limiting factor in this signaling pathway [52]. Until now, no human SORL1 

mutations have been described. 

As reviewed by Breyer and Breyer [53],  prostaglandin PGE(2) is a major renal cyclooxygenase 

metabolite of arachidonate and interacts with four G protein-coupled E-prostanoid receptors 

designated EP(1), EP(2), EP(3), and EP(4). Through these receptors, PGE(2) modulates renal 

hemodynamics and salt and water excretion. The authors propose that the capacity of PGE(2) 

to bidirectionally modulate vascular tone and epithelial transport via constrictor EP(1) and EP(3) 

receptors versus dilator EP(2) and EP(4) receptors allows PGE(2) to serve as a buffer, 

preventing excessive responses to physiological perturbations. Along this line of thought [54, 

55], it has been shown that gene inactivation of the EP(2) receptor lead to a salt sensitive 

hypertensive phenotype. EP2-/- mice develop normally and have slightly elevated baseline 

systolic blood pressure. In EP2-/- mice, the characteristic hypotensive effect of intravenous 

PGE2 infusion was absent; PGE2 infusion instead produced hypertension. When fed a high salt 
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diet, the EP2-/- mice developed profound systolic hypertension, whereas wild-type mice showed 

no change in systolic blood pressure [54]. In another study however, a reduced blood pressure 

phenotype was observed [55]. The reason for this discrepancy remains unclear. 

 

ASDN and RAAS 
The role of the Renin Angiotensin Aldosterone System (RAAS) has been extensively reviewed 

and the role of each of its component studied by establishment of transgenic mouse models for 

renin, angiotensinogen, ACE, angiotensin II receptor, aldosterone synthase [3-5, 56]. In the 

context of the present review, a few important references will be outlined : 

Renin  

As reviewed by Corvol et al. [3] there are important differences between human and mouse 

RAAS. For instance human have one renin gene (REN) wheras some mouse strains (i.e 

C56BL6) have one copy of renin gene (Ren1c) and others (i.e SV129) have two (Ren1d and 

Ren2). Deletion of Ren2 does not modify BP [57] whereas deletion of Ren 1d decrease BP in 

heterozygote and homozygote females but not in males [58]. In mice, inactivation of any of the 

components of the renin-angiotensin system (i.e. renin, angiotensin-converting enzyme, 

angiotensinogen and AT1 receptor) is dispensable for survival at birth. Animals can survive 

although they are more sensitive to salt depletion than the wild type mice. By contrast, Renal 

Tubular Dysgenesis (RTD) is a human disease consisting of severe abnormalities of renal 

tubular development and resulting in profound anuria and perinatal death. Familial RTD is an 

autosomal recessive disease due to genetic defects in any of the constituents of the renin 

system [3]. Complete gene inactivation of the renin system in RTD leads to neonatal anuria and 

death. Proximal tubules are almost absent; renal artery hyperplasia is found in all cases of RTD. 

An intense stimulation of renin gene expression is noted in the kidney of patients with mutations 

affecting angiotensinogen, angiotensin-converting enzyme and AT1 receptor. The more severe 

phenotype in humans compared to mice devoid of a functional renin system may be attributable 

to the difference in nephrogenesis between mice and humans. In mice, nephrogenesis is 

completed 2 weeks after birth, whereas in humans it is completed before birth, at 38 weeks of 

gestation [3].  

Angiotensinogen 

As reviewed by Takahashi [59] and Smithies [5],  potentially causative variations associated 

with quantitative differences in the expression of the angiotensinogen gene (AGT) have been 

identified. Experiments to directly test causation are possible in mice is possible,  establishing 

that blood pressures are indeed altered by genetic changes in AGT expression (gene disruption 

« zero copy », heterozygous mutants « one copy », wild type « two copies », gene titration by 

gene duplication « 3 to 4 copies ». Thus, angiotensinogen-deficient mice generated by 
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homologous recombination in mouse embryonic stem cells do not produce angiotensinogen in 

the liver, resulting in the complete loss of plasma immunoreactive angiotensin I. The systolic 

blood pressure of the homozygous mutant mice is drastically reduced by >30% [60]. Gene 

titration experiment show that blood pressure rises linearly as the number of copies of the Agt 

gene increases [61]. 

 Angiotensin Converting Enzyme (ACE) 

Angiotensin-converting enzyme (ACE) is a dipeptidyl carboxy-peptidase that generates the 

vasoconstricting peptide angiotensin II and inactivates the vasodilating peptide bradykinin. The 

gene encoding ACE is composed of two homologous regions and codes for both a somatic and 

testis isoenzyme. The role of the Ace gene in blood pressure control and reproduction was 

investigated using mice generated to carry an insertional mutation that was designed to 

inactivate both forms of Ace [62]. When the Ace gene was disrupted, the BP of heterozygote 

was normal in males and lower in females despite a equal reduction of 50% of plasma enzyme 

activity in both gender. When the Ace gene was duplicated with a corresponding linear increase 

in ACE activity, there was no change in BP [62].  

Angiotensin II receptor (AGTR1) 

Angiotensin II receptors (AGTR)  are expressed in tissue compartments involved in blood 

pressure control (heart,kidney, blood vessels, adrenal glands and brain) [63]. Stimulation of 

AGTR by Angiotensin II causes potent vasoconstriction, release of aldosterone by the adrenal 

gland in turn promoting sodium absorption in ASDN [63]. In the brain Angiotensin II triggers a 

dramatic hypertensive response while in the kidney it triggers renal vasoconstriction and 

antinatriuresis. A first study showed that pressor responses to infused angiotensin II were 

virtually absent in Agtr1a(-/-) mice and were qualitatively altered in Agtr1a(+/-) heterozygotes. 

This study demonstrated clearly that mouse type 1A angiotensin II receptor function is required 

for vascular and hemodynamic responses to angiotensin II and that altered expression of the 

Agtr1a gene has marked effects on blood pressures [64]. In order to distinguish the 

physiological role of AGTR in individual tissue compartment, the authors designed an elegant 

experimental approach i.e a kidney cross transplantation strategy [63, 65]. Although actions of 

the RAAS in a variety of target organs have the potential to promote high blood pressure and 

end-organ damage, the authors showed convincingly that angiotensin II caused hypertension 

primarily through effects on AGTR1 receptors in the kidney [65]. Importantly renal AGTR1 

receptors were absolutely required for the development of angiotensin II-dependent 

hypertension and cardiac hypertrophy [65]. When AGTR1 receptors were eliminated from the 

kidney, the residual repertoire of systemic, extrarenal AGTR1 receptors was not sufficient to 

induce hypertension or cardiac hypertrophy [65]. Recently RAS actions in the epithelium of the 

proximal tubule were shown to have a critical and non redundant role in determining the level of 
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BP [66]. Abrogation of Agtr1 angiotensin receptor signaling in the proximal tubule alone is 

sufficient to lower BP, despite intact vascular responses. Elimination of this pathway reduces 

proximal fluid reabsorption and alters expression of key sodium transporters, modifying 

pressure-natriuresis and providing substantial protection against hypertension [66]. 

 

ASDN and NCC 
 WNK4 

PHAII (or Familial hyperkalemic hypertension (FHHt) or Gordon Syndrome) is a Mendelian form 

of arterial hypertension that is partially explained by mutations in WNK1 and WNK4 that lead to 

increased activity of NCC in the distal nephron [67]. PHAII is characterized by salt-, thiazide- 

sensitive hypertension, variable degree of hyperkalemia and metabolic acidosis. The 

transmission is autosomal dominant with an important genetic heterogeneity (4 genes 

identified). To study the pathophysiological mechanisms underlying the human phenotype 

caused by WNK4 mutations, WNK4 hypomorphic mice were generated by deleting exon 7 of 

the Wnk4 gene [68]. These mice did not show hypokalemia and metabolic alkalosis, but they 

did exhibit low blood pressure and increased sodium and potassium excretion under low-salt 

diet. Phosphorylation of OSR1/SPAK and NCC was significantly reduced in the mutant mice as 

compared with their wild-type littermates. Protein levels of ROMK and Maxi K (BK) were not 

changed, but ENaC appeared to be activated as a compensatory mechanism for the reduced 

NCC function [68]. Mutations in the gene encoding the kinase WNK4 cause 

pseudohypoaldosteronism type II (PHAII), a syndrome featuring hypertension and hyperkalemia 

[67]. Physiology in mice transgenic for genomic segments harboring wild-type (WT) or PHAII 

mutant WNK4 is changed in opposite directions [69]: PHAII mice have higher blood pressure, 

hyperkalemia, hypercalciuria and marked hyperplasia of the distal convoluted tubule (DCT), 

whereas the opposite is true in wild type mice. Genetic deficiency for the sodium chloride 

cotransporter of the DCT (NCC) reverses phenotypes seen in PHAII mice, demonstrating that 

the effects of the PHAII mutation are due to altered NCC activity [69]. To mimic more precisely 

the molecular pathophysiology of human PHAII in mice, Wnk4(D561A/+) knockin mice were 

generated [70]. The knockin PHAII mice showed increased apical expression of phosphorylated 

Na-Cl cotransporter (NCC) in the distal convoluted tubules. Increased phosphorylation of the 

kinases OSR1 and SPAK was also observed in the knockin mice. Apical localization of the 

ROMK and transepithelial chloride permeability in the cortical collecting ducts were not affected 

in the knockin mice, whereas activity of ENaC was increased. This increase, however, was not 

evident after hydrochlorothiazide treatment, suggesting that the regulation of ENaC was not a 

genetic but a secondary effect [70].  Overall these two studies nicely establish mouse models to 

study the molecular physiopathology of PHAII or Gordon syndrome. Small differences between 
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the two studies are probably due to the different methodological approach (bac transgene vs 

knock in). 
STK39  (SPAK) 

Serine Threonine kinase 39 (STK39) or Ste20-like proline/alanine-rich kinase (SPAK) encodes 

a serine/threonine kinase that is thought to function in the cellular stress response pathway. 

STK39/SPAK interacts with WNK kinases to regulate NKCC2 and NCC. SPAK-null mice were 

generated by targeting disruption of exons 9 and 10 of SPAK. Compared with SPAK(+/+) 

littermates, SPAK(+/-) mice exhibited hypotension without significant electrolyte abnormalities, 

and SPAK(-/-) mice not only exhibited hypotension but also recapitulated Gitelman syndrome 

with hypokalemia, hypomagnesemia, and hypocalciuria [71]. To define the importance of the 

WNK/SPAK in regulating blood pressure, knock-in mice in which SPAK cannot be activated by 

WNKs were generated [72]. The SPAK knock-in animals are viable, but display significantly 

reduced blood pressure that was salt-dependent. These animals also have markedly reduced 

phosphorylation of NCC and NKCC2 cotransporters at the residues phosphorylated by SPAK. 

This was also accompanied by a reduction in the expression of NCC and NKCC2 protein 

without changes in mRNA levels. On a normal sodium diet, the SPAK knock-in mice were 

normokalaemic, but developed mild hypokalemia when the renin-angiotensin system was 

activated by a low sodium diet [72]. 

WNK1 
As reviewed by Bergaya et al. [73],  the WNK1 gene gives rise to a ubiquitous kinase (L-WNK1) 

and to a shorter kinase-defective isoform, KS-WNK1 (for kidney-specific WNK1), expressed 

only in the distal convoluted tubule (DCT) and connecting tubule (CNT) (see Figure 1). WNK1 

first intron deletion leads to overexpression of L-WNK1 in the DCT and ubiquitous ectopic 

expression of KS-WNK1. The increased expression of L-WNK1 in the DCT results in increased 

activity of the Na-Cl cotransporter (NCC) and thus hypervolemia and hypertension. The 

mechanisms underlying the hyperkalemia and metabolic acidosis remain unclear [73]. 

Hadchouel et al. [74] inactivated KS-WNK1 expressed only in DCT (Figure 1) and showed that 

this isoform is an important regulator of sodium transport. KS-WNK1(-/-) mice display an 

increased activity of NCC, expressed specifically in the distal convoluted tubule, where it 

participates in the fine tuning of sodium reabsorption [74]. The authors suggest that the 

activation of NCC is not sufficient by itself to induce a hyperkalemic hypertension and that the 

deregulation of other channels, such as ENaC, is probably required [74]. In another study Liu et 

al. [75] came to similar conclusions 

KLHL3 and CULLIN 

 Recently two studies using exome sequencing  identified mutations in Kelch-like 3 (KLHL3) [76, 

77] or CULLIN3 (CUL3) [76] in PHAII patients. KLHL3 mutations are either recessive or 
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dominant, whereas CUL3 mutations are dominant and predominantly de novo. CUL3 and BTB-

domain-containing kelch proteins such as KLHL3 are components of CULLIN -RING E3 ligase 

complexes that ubiquitylate substrates bound to kelch propeller domains. Dominant KLHL3 

mutations are clustered in short segments within the kelch propeller and BTB domains 

implicated in substrate and cullin binding respectively [76]. Polymorphisms at KLHL3 were not 

associated with blood pressure [77]. KLHL3 is coexpressed with NCC and downregulates NCC 

expression at the cell surface [77]. Both studies establishes a role for KLHL3-CUL3 as new 

members of the complex signaling pathway regulating ion homeostasis in the distal nephron 

and indirectly blood pressure [77]. Three publications have recently identified WNK4 as a major 

substrate of the KLHL3-CUL3 complex [78-80]. Collectively, the data demonstrate that CUL3-

RING ligases that contain KLHL3 target ubiquitylation of WNK4 regulate WNK4 levels, which in 

turn regulate levels of ROMK. 

 
ASDN and ENaC 

MR and GR 

Mineralocorticoid receptor (MR)-deficient mice have a normal prenatal development but die 

within 10 days after birth from a salt-losing syndrome mimicking human PHA 1 [81]. Interistingly 

this phenotype could be rescued by subcutaneous infusion of saline and this treatment enables 

the animals to develop through this critical phase of life, after which they adapt their oral salt 

and water intake to match the elevated excretion rate. However, the renal salt-losing defect 

persists [82]. Due to the obvious experimental limitations of germline inactivation of MR, 

Ronzaud et al. [83]  generated mice with MR deficiency in principal cell using the Cre-loxP 

system driven by regulatory elements of the mouse aquaporin 2 (AQP2) promotor. This strategy 

should inactivate MR in the late portion of CNT and CD (Figure 2). The authors demonstrated 

that inactivation of MR in CD and late CNT can be compensated under standard diet but no 

longer when sodium supply is limited. Because the mutant mice show preserved renal ENaC 

activity, this study provides evidence that the late distal convoluted tubule and early CNT can 

compensate to a large extent deficient ENaC-mediated sodium reabsorption in late CNT and 

CD [83]. Since AQP2 is already expressed during renal development, MR ablation took place 

long before the analysis performed at the adult stage leving open the possibility of non defined  

long term compensatory mechanisms. To investigate whether the early onset of MR ablation 

affected the adult renal sodium handling,  Ronzaud et al. [84] have recently used a inducible 

somatic gene inactivation strategy by developing a transgene expressing the CreER(T2) fusion 

protein under control of the regulatory elements of the AQP2 gene (AQP2CreER(T2)). Under a 

low-salt diet and at adult stage, the induced ablation of MR at the adult stage recapitulates the 

renal sodium wasting observed in mice with constitutive early-onset MR ablation [84]. In human, 
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a S810L mutation in the mineralocorticoid receptor (MR) causes early-onset hypertension that is 

markedly exacerbated in pregnancy as described by Geller et al. [85]. This mutation results in 

constitutive MR activity and alters receptor specificity, with progesterone and other steroids 

lacking 21-hydroxyl groups, normally as MR antagonists, becoming potent agonists [85]. To our 

knowledge, no mouse knock in model have been developed to mimick this highly interesting 

pathophysiological situation. 

Experiments in Cushing patients and healthy control subjects receiving 

adrenocorticotropic hormone (ACTH) indicate that transient renal sodium retention may 

contribute to the generation of hypertension [86]. Bailey et al. [86] have investigated the effect of 

chronic ACTH infusion on renal sodium handling in adult male C57BL/6J mice using selective 

antagonists to dissect mineralocorticoid and glucocorticoid receptor-mediated pathways. ACTH 

caused an increase in blood pressure and a reduction in fractional sodium excretion associated 

with enhanced activity of ENaC. ACTH excess promotes renal sodium reabsorption, 

contributing to the increased blood pressure; both glucocorticoid and mineralocorticoid receptor 

pathways are involved. These in vivo data are interesting and relevant to the relative occupancy 

of MR vs GR by aldosterone and cortisol that is controlled by 11β-HSD2. In vitro studies 

indicate that aldosterone occupies both MR and GR under physiological conditions to mediate 

the sodium transport response but cortisol or corticosterone may also occupy MR and GR under 

extreme stress [87].  

HSD11B2 (11β-HSD2) 

HSD11B2 (11β-HydroxySteroidDehydrogenase Type 2 = 11β HSD2) controls ligand access to 

the mineralocorticoid receptor, and ablation (or inhibition by drug or toxic) of the enzyme causes 

severe hypertension in human (Apparent Mineralocorticoid Excess =AME) [88]. Bailey et al. [89] 

generated a Hsd11b2 null mouse on an inbred C57BL/6J genetic background, allowing survival 

to adulthood. Initially, impaired sodium excretion associated with increased activity of the 

epithelial sodium channel was observed. Later KO mice had BP approximately 20 mmHg higher 

on average compared with wild-type mice but were volume contracted, not volume expanded as 

expected. Volume contraction was not attributable to intrinsic vascular dysfunction but rather to 

high catecholamine levels, an important pathogenic factor since alpha1-adrenergic receptor 

blockade rescued the hypertensive phenotype, suggesting that vasoconstriction contributes to 

the sustained hypertension in this model. It was proposed that renal sodium retention remains a 

key event in apparent mineralocorticoid excess but that the accompanying hypertension 

changes from a renal to a vascular etiology over time [89]. In a subsequent study Bailey et al. 

[90] used mice heterozygote for a null mutation in Hsd11b2 to define the mechanisms linking 

reduced enzyme activity to salt sensitivity of blood pressure. A high-sodium diet caused a rapid 

and sustained increase in blood pressure in heterozygote mice (leading to increased heart 



	   15	  

weight) but not in wild-type littermates. Interistingly, mineralocorticoid receptor antagonism 

partially prevented the increase in heart weight but not the increase in blood pressure. 

Glucocorticoid receptor antagonism prevented the rise in blood pressure suggesting a novel 

interaction among 11β-HSD2, dietary salt, and circulating glucocorticoids [90]. 

SGK1 

The serum- glucocorticoid induced-kinase 1 (SGK1) belongs to the superfamily of AGC protein 

kinase [91]. Sgk1 is an early aldosterone- induced gene (see review in ref [92, 93]). No 

Mendelian form of human salt-losing or salt retainig syndromes have been mapped to mutations 

of the SGK1 gene. However, the physiological role of Sgk1 has been extensively studied in 

mouse models in vitro and in vivo. Wullf et al. [94] showed that under a standard NaCl intake, 

renal water and electrolyte excretion was indistinguishable between Sgk1(-/-) mice and wild-

type mice. In contrast, dietary NaCl restriction reveals an impaired ability of Sgk1(-/-) mice to 

adequately decrease sodium excretion despite increases in plasma aldosterone levels and 

proximal-tubular sodium and fluid reabsorption, as well as decreases in blood pressure and 

glomerular filtration rate. Overall a mild PHA-1 phenotype was observed. In a second study, 

Huang et al. [95] studied the importance of Sgk1 in renal elimination of potassium. 

Electrophysiological and immunohistochemical studies under high potassium diet indicated that 

reduced epithelial sodium channel ENaC and/or Na,K-ATPase activity in the aldosterone-

sensitive distal nephron accounted for the impaired response in Sgk1-/- and that an enhanced 

apical abundance of renal outer medullary potassium channel ROMK partly compensated for 

the defect.  The authors concluded that the acute and chronic regulation of renal potassium 

elimination involves Sgk1. Vallon et al. [96] studied the contribution of Sgk1 to the regulation of 

renal function, salt intake, and blood pressure during DOCA-salt excess in Sgk1 deficient mice. 

There was no difference in DOCA salt induced increased blood pressure and in creatinine 

clearance. A more pronounced increase of proteinuria in Sgk1(-/-) mice was observed. Overall 

the observed phenotype was mild and the authors concluded that SGK1 contributes to the 

stimulation of salt intake, kidney growth, proteinuria, and renal potassium excretion during 

mineralocorticoid excess [96]. More recently, Faresse et al. [97] used a somatic nephron 

specific inducible gene deletion strategy to study the role of renal nephron specific Sgk1 in adult 

kidney. Under a standard sodium diet, renal water and Na/K excretion had a tendency to be 

higher in doxycycline-treated Sgk1 KO mice compared with control mice. The impaired ability of 

Sgk1 KO mice to retain Na increased significantly with a low-salt diet despite higher plasma 

aldosterone levels. On a low sodium diet, the Sgk1 KO mice were also hyperkaliuric and lost 

body weight. This phenotype was accompanied by a decrease in systolic and diastolic blood 

pressure. This phenotype mimics a mild human PHA-1 phenotype indicating that Sgk1 is, to 

some extent, limiting in the action of aldosterone in ASDN. In another study, Fejes-Toth et al. 
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[98] also showed a mild salt-losing phenotype under salt restriction and concluded  that SGK1 

was essential for optimal processing of ENaC but was not required for activation of the channel 

by aldosterone [98]. 
 NEDD4L (Nedd4-2) 

NEDD4L encodes a member of the Nedd4 family of HECT domain E3 ubiquitin ligases. HECT 

domain E3 ubiquitin ligases transfer ubiquitin from E2 ubiquitin-conjugating enzymes to protein 

substrates, thus targeting specific proteins for lysosomal degradation. The encoded protein 

mediates the ubiquitylation of multiple target substrates and plays a critical role in epithelial 

sodium transport by regulating the cell surface expression of the epithelial sodium channel, 

ENaC [32]. Single nucleotide polymorphisms in this gene may be associated with essential 

hypertension [32]. Shi et al. [99] generated Nedd4-2 null mice. The knockout mice had higher 

BP on a normal diet and a further increase in BP when on a high-salt diet. Overall, the authors 

concluded that in vivo Nedd4-2 is a critical regulator of ENaC activity and BP. The absence of 

this gene is sufficient to produce salt-sensitive amiloride sensitive hypertension mimicking 

Liddle syndrome[99]. This data are consistent with a genetic interaction between ENaC β or γ 

subunit and Nedd4-2, in turn, in agreement with a large number of in vitro expression studies 

demonstrating biochemical and physiological interactions between the two proteins [32]. 

Ronzaud et al. [100] generated doxycycline-inducible, nephron-specific Nedd4L KO mice. 

Under standard and high sodium diets, conditional KO mice displayed decreased plasma 

aldosterone but normal Na/K balance. Under a high sodium diet, KO mice exhibited 

hypercalciuria and increased blood pressure, which were reversed by thiazide (but not amiloride 

treatment). Unlike the constitutive germ line model by Shi et al. [99]  the results demonstrate 

that loss of NEDD4-2 in adult renal tubules causes a new form of mild, salt-sensitive 

hypertension without hyperkalemia that is characterized by upregulation of NCC, elevation of 

βγ ENaC, but not α ENaC, and a normal Na/K balance maintained by downregulation of ENaC 

activity and upregulation of ROMK, a phenotype approaching more  that of a PHA II than a 

Liddle syndrome. The reasons for this difference may be due to one or a combination of the 

following factors i) the constitutive “chronic” deletion Nedd4L in all organs and tissues could 

trigger a number of compensatory mechanisms that could contribute to the Liddle-like 

phenotype;  ii) the “acute” deletion (within two weeks) of Nedd4-2 exclusively in the nephron 

could trigger different compensatory mechanisms and unmask an unexpected but interesting 

PHA II (normokalemic) phenotype demonstrating that Nedd4-2 might not only control ENaC 

activity but also NCC; iii) despite of the fact that in the two studies the same floxed allele was 

used (inactivation of exon 6 to 8), differences in genetic background and/or recombination 

efficiency in adult versus embryo could be one of the uncontrolled factor of this kind of 

experiment; iv) the generation of tissue specific spliced variant at N terminal start could also be 
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a confounding factor. Along this line, two other Nedd4L knockout models have been reported. 

Boase et al.  generated a total knockout of Nedd4L by inactivating Exon 15 and Kimura et al. 

[101] a lung-specific KO of exon 15 and downstream regions of the HECT (catalytic) domain to 

avoid possible splicing around the N-terminal start site. Boase et al. [102] observed increased 

ENaC activity and partial lethality due to premature lung fluid clearing.  Kimura et al. reported 

the development of a cystic fibrosis-like lung disease, with airway mucus obstruction, goblet cell 

hyperplasia, massive inflammation, fibrosis, and death by three weeks of age. These effects of 

Nedd4L loss are likely caused by enhanced ENaC function as described in cystic fibrosis. The 

lung defects were rescued with administration of amiloride into the lungs of young knockout 

pups via nasal instillation [101]. This is the first demonstration that ENaC activity in the lung is 

controlled by E3 ubiquitylation. These lung phenotype(s) were not observed in the original  

model of Shi et al., the major difference being the targeted allele. 

USP2-45  (Ubiquitin Specific Peptidase2-45)  
The deubiquitylation (DUB) enzyme USP2-45 is an aldosterone early induced gene [103, 104] 

and was identified in the kidney of animal stimulated by aldosterone for 30 minutes. USP2-45 is 

also cycling according to a circadian rhythm. Based on in vitro experiment [105-107], It was 

proposed that the effect of aldosterone on the deubiquitylation of ENaC could be synergistic 

with the effect of Sgk1 on Nedd4-2 whereas another study suggested that USP2-45 might down 

regulate the aldosterone response by interacting with the mineralocorticoid receptor [108]. 

Recently, Pouly et al [109] investigated the effect of Usp2 gene inactivation. USP2-45 protein 

has a rhythmic expression with a peak at ZT12. Usp2-KO mice did not show any differences to 

wild-type littermates with respect to the diurnal control of Na or K urinary excretion and plasma 

levels neither on standard diet, nor after acute and chronic changes to low and high Na+ diets, 

respectively. Moreover, they had similar aldosterone levels either at low or high Na+ diet. Blood 

pressure measurements using telemetry did not reveal variations as compared to control mice. 

The authors suggest that USP2 does not play a primary role in the control of Na+ balance or 

blood pressure [109]. One interpretation of these negative results is redundancy between DUBs 

and or interactions with other compensatory mechanisms.  

TSC22D3 (TSC22 domain family, member 3  or GILZ) 

As annotated, the protein encoded by this gene shares significant sequence identity with the 

murine TSC-22 and Drosophila shs, both of which are leucine zipper proteins, that function as 

transcriptional regulators. The expression of this gene is stimulated by glucocorticoids and 

interleukin 10, and it appears to play a key role in the anti-inflammatory and immunosuppressive 

effects of this steroid and chemokine.  

GILZ was identified in the transcriptome of a kidney cell line stimulated by aldosterone [110]. In 

an in vivo rat model, Muller et al. [111] showed that the Induction of GILZ may play a permissive 
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role in the enhancement of the early and/or late responses; these effects may be necessary for 

a full response but do not by themselves promote early changes in urinary sodium and 

potassium excretion. 

Suarez et al. [112] used Cre/loxP technology to generate mice deficient for Tsc22d3-2. Male 

knockout mice were viable but surprisingly did not show any major deficiencies in 

immunological processes or inflammatory responses. Tsc22d3-2 knockout mice adapted to a 

sodium-deprived diet and to water deprivation conditions but developed a subtle deficiency in 

renal sodium and water handling but, unexpectidely,the analysis of the Tsc22d3-2-deficient 

mice demonstrated a previously uncharacterized function of glucocorticoid-induced leucine 

zipper protein in testis development [112]. 
 
Conclusions and Perspectives 
 
 The genetic dissection of sodium and potassium transport along the ASDN allowed to 

define the most important limiting factors (transporters,hormone receptors, kinases, 

ubiquitylase) that are involved in the aldosterone- and angiotensin- dependent signaling 

pathways specifically expressed in the kidney. These limiting factors are, by definition, good 

candidate as drug targets for the treatment of hypertension. For example, ROMK, BK, Nedd4-2, 

WNK1, WNK4, Cullin 3, Kelch like 3, SPAK, ClCK/barttin, pendrin, SLC4A8 and to some extent 

Sgk1 are potential receptors for the development of new antihypertensive drugs. Conversely 

genetic evidence in transgenic mouse model indicate that Usp2-45 or GILZ are not limiting and 

thus not good potential drug targets.  

 The genetic dissection has also helped to begin to understand the molecular 

mechanisms underlying the « aldosterone paradox » (see recent reviews in references [115, 

116]. Aldosterone promotes different and somewhat opposed effects either in promoting 

potassium secretion (with minimun sodium retention) in case of hyperkalaemia or in promoting 

sodium reabsorption (with minimum potassium loss) in case of hypovolemia.  WNK4 

phosphorylation has been proposed as potential molecular switch [67]. It is likely, however, that 

other molecular switches will soon be discovered (MR phosphorylation ? E3 enzyme 

phophorylation ?) and thus defining two separate phoshorylation states of the signaling 

cascade(s) triggered by either aldosterone or angiotensin that could explain the aldosterone 

paradox. This would be a significant step for the successful development of the next generation 

diuretics that should have the following characteristics : i) block synergistically ENaC and NCC; 

ii) no change in efficacy in presence of high salt intake; iii) no effect on potassium balance (no 

hypo- or hyper- kalemia). These ideal diuretics would qualify for the name of anti-salt pill.  As 

shown in the ALLHAT study [117],  the present diuretics specially the thiazides were 

unsurpassed in long-term drug adherence, controlling elevated blood pressure and were 
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superior to other therapies in preventing one or more forms of cardiovascular events, having 

lower drug cost. Thiazides, however, have still significant side effects i.e. no control of 

potassium balance (hypokalemia and metabolic alkalosis), Type 2 diabetes and hyperuricemia. 

To minimize the side effects of an anti-salt pill, the following criteria should be met: i) 

pharmacodynamically, the anti salt pill should bind to its receptor with stereospecific, very high 

affinity (nM range), have high selectivity (no cross reactivity with related gene products), display 

nephron segment/tubular or cell specific expression of the receptor; ii) pharmacokinetically, the 

aim would be to maximally increase urinary apical  drug concentrations in ASDN for instance by 

active secretion of the drug by the proximal tubule. 

 What are the future developments that could contribute to our knowledge of ASDN function? 

The present mouse models have obvious limitations: i) despite of the fact that RAAS seem to 

operate to a great extent similarly in mouse and humans, the fine regulation of blood pressure is 

different (heart rate of 500 beats/min!); ii) in in most mouse models, the precise mutation(s) 

observed in human disease were often not introduced in the mouse genome due to 

methodological difficulties; iii) the cardiovascular phenotyping of the mouse remains 

challenging; iv) some pathologies (for instance nephrotic syndrome) are difficult to reproduce in 

mouse but possible in rats. Before the introduction of transgenic mouse models, the best 

characterised animal model for renal physiology and pathophysiology was the rat. The recent 

development of the zinc finger technology should allow, in a near future, to obtain transgenic rat 

models that could be useful for drug development. 

Finally, due to space limitations, important signaling pathways contributing significantly to the 

control of blood pressure could not be discussed here but should also be considered as a 

source of novel drug targets for the treatment of hypertension : circadian rthythm [118, 119],  

insulin [120], vasopressin [121, 122], endothelin [123], ANP [124, 125], TGFβ [126] to mention 

the most important. 
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Legend to Figure 1 
Model of a nephron, the functional unit of the kidney. 
The nephron is composed of a filtering apparatus the Glomerulus (G) (1), the proximal tubule 
(Proximal Convoluted Tubule (PCT)(2) and Proximal Straight Tubule (PST)(3), the Henle’s loop 
(Thin descending Limb (TL) (4) and Thick Ascending Limb (TAL) (5)), the Distal Convoluted 
Tubule (DCT)(6), the Connecting Tubule (CNT)(7). 10 to 12 nephrons branch on one Collecting 
Duct (CD) (8 to 11) made of the Cortical Collecting Duct (CCD), Outer medullaray Colecting 
Duct (OMCD) and the Inner Medullary Collecting Duct (IMCD). Adapted from Kritz and Kaissling 
[127]   
In human, 180 liters of fluid is filtered per day  through the glomerulus (G). Around 60% of the 
filtrate will be reabsorbed in the proximal tubule (PCT and PST) (2),30% in the Henle’s loop (TL 
and TAL) (4), 9% in DCT, CNT and CD leaving 1.8 liter/day of final urine. Over 90% of renal 
ATP is used for fluid reabsorption drivent by the Na,K-ATPase. Sodium and potassium balance 
are achieved through the final regulation of sodium and potassium transport in the distal 
nephron and the collecting duct under hormonal control (aldosterone, vasopressin,angiotensin, 
etc). DCT cells, CNT cells and CD principal cells are the main cells involved in hormonal 
regulation.  See for details linear model in Figure 2    
 
 
Legend to Figure 2 
Linear model of the distal nephron and collecting duct. 
The distal nephron is composed of the Straight Distal Tubule or Thick Asending Limb (TAL), the 
distal convoluted tubule (DCT1 and DCT2, the connectiong tubule (CNT) and the collecting duct 
(CD). The Aldosterone sensitive Distal Nephron (ASDN) is composet of DCT2, CNT and CD 
that co express 11bHSD2 and MR. The corresponding cells (TAL cells, DCT celles, CNT celles, 
CCD cells are shown above tehier corresponding nephron segments (drawings adapted from 
Kritz an Kaissling [127]. The nephron segment/cell specificexpression of the relevant 
transporters and the aldo and angiotensin dependent siganling pathways are shown (see text 
for discussion)   
	  
	  
	  



Table 1 Phenotype of transgenic mouse models mimicking salt- retaining and salt- losing phenotypes along the distal 
nephron (TAL, DCT,CNT) and collecting duct (CD) : Transporters 
Human  
gene 

Human 
disease 

Mouse gene Mouse Phenotype Ref 

SLC12A2 Bartter  
 type I 

Slc12a2 
Null allele 

Bartter I-like :severe extracellular volume depletion, hyperkalaemia, metabolic acidosis, 
hydronephrosis, and high plasma renin and aldosterone concentrations.   

[12] 

KCNJ1 Bartter   
Type II 

KcnJ1 
Null allele 

Bartter II -like :ROMK-deficient mice exhibit polyuria, natriuresis, and kaliuresis similar to individuals 
with type II antenatal Bartter syndrome 

[13] 
[45] 

CLCNKB Bartter   
Type III 

Clcnkb 
Null allele 

The mouse phenotype is distinct from that Bartter III : overt nephrogenic diabetes insipidus with a 
decrease of approximately 27% in body weight. 

[14] 
[11] 

BSND Barrter  
Type IV 
 

Bsnd 
R8L 
  

Bartter IV-like : Hypokalemia, metabolic alkalosis, and decreased NaCl reabsorption in distal tubules 
under a low-salt diet. aberrant intracellular localization of R8L barttin 

[15] 
 
 

CASR Bartter  
Type V 
 

 No mouse model available : expected phenotype is a Bartter-like syndrome associated to autosomal 
dominant hypocalcemia 

[46] 
[47] 

SLC12A3 Gitelman 
syndrome 
 

Slc12a3 
Null allele 

 Gitelman-like : subtle perturbations of sodium and fluid volume homeostasis, but renal handling of 
Mg2+ and Ca2+ are altered, as observed in Gitelman's syndrome. 

[48] 

SCNN1A PHA Type I  
(sytemic)  

Scnn1atm1/tm1 
Null allele 

 Systemic PHA 1 like : Severe PHA-1 phenotype with100% perinatal lethality [19] 

SCNN1B PHA Type I  
(sytemic) 

Scnn1b 
Null allele 

PHA-1 like : Severe PHA-1 phenotype with100% perinatal lethality [20] 

SCNN1C PHA Type I  
(sytemic) 

Scnn1c 
Null allele 

PHA-1 like : Severe PHA-1 phenotype with100% perinatal lethality [21] 

SCNN1A  Scnn1a lox/lox No phenotype [49] 

SCNN1A  Scnn1a lox/lox 
Hoxb7Cre 

No phenotype as far as sodium and potassium balance 
Full protection against lithium induced NDI 

[22] 
[23] 



SCNN1A  Scnn1a lox/lox 
Aqp2Cre 

Mild PHA-1 phenotype in adult mice 
 

[24] 

SCNN1A  Scn1a 
lox/loxPAX8 
rtTA/LC1 

Severe renal PHA-1 phenotype with salt loosing syndrome and 
life threatening hyperkalaemia. 100% lethality within 10 days without treatment 
 

[26] 

SCNN1B 
SCNN1C 

Liddle 
Syndrome 

Scnn1bLid/Lid Liddle syndrome-like : Salt sensitive hypertension, metabolic alcalosis, hypokalemia [28-30] 

KCNMA1 
KCNMB1 
KCNMB4 

No human 
disease 
reported 

Kcnma1 
Kcnmb1 
Kcnmb4 

Disorders observed in BKa1, BKb1 or BKb4 KO mice have shed new insights on the importance of 
proper renal K handling for maintaining volume balance and blood pressure 

[33-35, 50] 

SLC26A4 Pendred 
syndrome 

Slc26a4 Aldosterone and angiotensin II modulate the renal regulation of blood pressure, in part, by regulating 
pendrin-mediated Cl- absorption and ENaC-mediated Na+ absorption. 

[38, 39, 41, 
42] 

SLC4A8 no human 
disease 

Slc4a8 Evidence for a novel electroneutral, amiloride-resistant, thiazide-sensitive, transepithelial NaCl 
absorption in mouse CCDs, which persists even with genetic disruption of ENaC 

[37, 40, 42] 

 

	  
  



Table 2 Phenotype of trangenic mouse models mimicking salt – retaining and salt- losing phenotypes along the distal nephron (TAL, DCT,CNT) and 
collecting duct (CD) :Aldosterone and Angiotensin dependent signaling pathways 

Human gene Human 
disease 

Mouse gene Mouse Phenotype Ref 

SORL1 
 

None 
described 

Sorl1 (SORLA) 
null allele 

Barrter-like : intracellular trafficking of SPAK by the sorting receptor SORLA (i.e Sorl1) is 
critical for proper NKCC2 activation 

[52] 

PTGER2  Ptger2 null allele PGE2, acting through the EP2 receptor, exerts potent regulatory effects on blood pressure 
homeostasis  

[53-55] 

REN 
 

 Ren 1c null 
Ren 2 null 

Hypotensive phenotype in females 
No BP phenotype 

[58] 
[57] 

AGT  Agt  
Null allele 

Profound hypotension in angiotensinogen-deficient mice demonstrates an indispensable role 
for the renin-angiotensin system in maintaining BP 

[60] 
[61] 

ACE  Ace  
Null allele 

 Heterozygous males but not females low blood pressures although both male and female 
heterozygotes had reduced serum ACE activity. 

[62] 

AGTR1 
 

 Agtr1a  
null allele 

Angiotensin II receptor Type 1 gene ablation 
Hypotensive phenotype and resistance to Angiotensin II administration 

[64] 

  Kidney cross 
transplantation 

Critical role of the kidney in the pathogenesis of hypertension and its cardiovascular 
complications.  Evidence supporting Guyton’s hypothesis 

[113] 

   Targeting Agtr1a receptor of the proximal tubule of the kidney decreases BP and could be a 
useful therapeutic strategy in hypertension. 

[66] 

WNK4  Wnk4 
hypomorphic 
 

Gitelman-like Salt loosing hypotensive phenotype : wt WNK4 is proposed to be a positive 
regulator for the WNK-OSR1/SPAK-NCC cascade 
 

[68] 

STK 39 
(SPAK) 

 Stk 39/SPAK 
Disruption of exon 
9 and 10 

Gitelman-like :Stk39/SPAK-null mice have defects of NCC in the kidneys and NKCC1 in the 
blood vessels, leading to hypotension through renal salt wasting and vasodilation.  

[71] 

  Stk39/SPAK 
kinase-dead ki 

SPAK plays an important role in controlling blood pressure in mammals. SPAK inhibitors 
would be effective at reducing blood pressure  

[72] 

WNK4 
 

PHAII 
 

Transgenic Wnk4 
PHAII  

PHAII like : Wnk4 is proposed to be a molecular switch that regulates the balance between 
NaCl reabsorption and K+ secretion 

[69] 

WNK4 PHAII Knock in 
Wnk4 D56A/+ 

PHAII like : WNK4 mutant activates NCC through activation OSR1-SPAK-NCC 
phosphorylation cascade. 

[70] 

WNK1  KS-Wnk1 -/- PHAII like : mild intermediate phenotype [74] 



CUL3 
KLHL3 

PHAII Cullin 3 
Kelch-like 3 

No mouse model reported. [76, 77] 

NR3C2 PHA-1  Nrc32 null allele PHA-1 like (renal) :  high perinatal lethality but rescued by saline infusion  [81] 
[82] 

NR3C2  Nrc32 
 

DCT2 and early CNT can compensate to a large extent deficient ENaC-mediated sodium 
reabsorption in late CNT and CD. 

[83] 
 

NR3C2  Nrc32 Under a low-salt, tamoxifen induced ablation of MR at the adult stage recapitulates the renal 
sodium wasting observed in mice with constitutive early-onset MR ablation.  

[84] 

NR3C2 (S810L) MR gain of 
function 

 No mouse model reported. Salt sensitive hypertension exarcebated during pregnancy [85] 

 Cushing  Cushing-like ACTH induced hypertension involves both MR and GR 
 

[86] 

HSD11B2 AME Hsdb2 Renal sodium retention remains a key event in apparent mineralocorticoid excess (AME) but 
that the accompanying hypertension changes from a renal to a vascular etiology over time. 

[89] 

11BHSD 2  Hsdb2 Salt sensitive hypertension is mediated by complex interactions between MR and GR in 
haploid insufficient mice 

 
[90] 

SGK1  Sgk1 Mild PHA-like phenotype under salt restriction 
Slight protection against DOCP induced hypertension. Overall, Sgk1 is not absolutely 
required for sodium reabsorption and potassium secretion in the ASDN. 

[94] 
[95, 98] 

[114] 
  Sgk1 Nephron specific inducible deletion in adult animals generates a mild PHA-1 phenotype under 

salt restiction together with low blood pressure 
[97] 

NEDD4L  Nedd4l 
Exon 7-9 

Salt-, amiloride- sensitive hypertension mimicking many features of Liddle syndrome 
No lung phenotype 

[99] 

  Nedd4l 
Exon 7-9 

Nephron specific inducible deletion in adult animals generate a novel mild salt sesnitive 
thiazide- sensitive, amiloride-insensitive hypertension mimicking some features of PHAII  

[101] 

  Nedd4l 
Exon 15 

Lung specific deletion generates a CFTR like phenotype [100] 

  Nedd4l 
Exon 15 

Constitutive germ line KO : severe respiratory distress and perinatal lethality in Nedd4-2-
deficient mice 

[102] 

USP2-45  Usp2-45 USP2 does not play a primary role in the control of sodium balance or blood pressure [109] 

TSC22D3  Tsc22d3 
 

 GILZ does not play a primary role in the control of sodium balance or blood pressure [112] 
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