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The age-dependent choice between expressing individual learning (IL) or social learning (SL) affects cumulative cultural evolution.

A learning schedule in which SL precedes IL is supportive of cumulative culture because the amount of nongenetically encoded

adaptive information acquired by previous generations can be absorbed by an individual and augmented. Devoting time and

energy to learning, however, reduces the resources available for other life-history components. Learning schedules and life history

thus coevolve. Here, we analyze a model where individuals may have up to three distinct life stages: “infants” using IL or oblique

SL, “juveniles” implementing IL or horizontal SL, and adults obtaining material resources with learned information. We study the

dynamic allocation of IL and SL within life stages and how this coevolves with the length of the learning stages. Although no

learning may be evolutionary stable, we find conditions where cumulative cultural evolution can be selected for. In that case, the

evolutionary stable learning schedule causes individuals to use oblique SL during infancy and a mixture between IL and horizontal

SL when juvenile. We also find that the selected pattern of oblique SL increases the amount of information in the population, but

horizontal SL does not do so.
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Many organisms can change their behaviors and/or select novel
actions among alternatives during their life span when exposed
to novel environmental conditions (Dugatkin 2004). Individual
learning (IL) is a generic term for the cognitive processes un-
derlying such a change in behavior in the absence of interac-
tions with conspecifics (Boyd and Richerson 1985; Rogers 1988;
Dugatkin 2004). It comprises processes such as trial-and-error
learning, statistical inference, induction and deduction, or in-
sight. But individuals from many species can also acquire from
others information about the appropriate phenotype(s) to ex-
press in a given environment. Social learning (SL) is a generic
term for the psychological processes underlying the acquisition
of information from others (Cavalli-Sforza and Feldman 1981;

Boyd and Richerson 1985; Rogers 1988; Dugatkin 2004). It in-
volves processes such as imitation, instructed learning, and local
enhancement.

Individuals equipped with the ability to perform both IL and
SL may obtain information from others and then build on it.
This is likely to result in cumulative cultural evolution, where the
phenotype(s) of one individual will depend on the implementation
of IL and SL by other individuals in past time periods. Cumulative
cultural evolution results in the acquisition of behaviors and other
phenotypes that would not be possible to obtain by an individual
performing learning in isolation. This underlies the ecological
success of the human lineage (Klein 2009) and may occur in
other animals (Tennie et al. 2009; Pradhan et al. 2012).
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A necessary but not sufficient condition for the evolution
of cumulative culture is that organisms use a composite learning
strategy in which SL precedes IL (Boyd and Richerson 1985;
Enquist et al. 2007; Aoki 2010). SL may precede IL when in-
dividuals can acquire information obliquely, from others living
in the parental generation. But SL may also occur horizontally,
between individuals of the same generation. In both cases, if SL
precedes IL, the joint expression of these learning modes may re-
sult in cumulative information build up. But only vertical and/or
oblique SL allows for a gradual increase in cultural complexity
across generations.

If a reliance on vertical and/or oblique SL is necessary to
absorb the extant culture, natural selection is expected to act dif-
ferentially on the ontogeny of IL versus SL. This raises the ques-
tion of what is the optimal resource allocation schedule toward IL
and SL during an individual’s development and its consequences
for the pattern of cumulative cultural evolution within and across
generations. Will selection favor SL at a young age to absorb in-
formation about the environment generated by individuals living
in previous time periods? Primates seem to increase their reliance
on IL as they grow (Reader and Laland 2001), and they take sev-
eral years of SL alternated with practice (IL) to acquire tool-use
techniques (Lonsdorf et al. 2004). Young honeybees foragers are
more likely to rely on SL than mature individuals (Biesmeijer and
Seeley 2005). This suggests that a reliance on SL at a young age
may be a learning pattern common in natural populations.

But no species expresses as much SL at early ages as humans
do (Konner 2010). The acquisition of nongenetically encoded
information by learning to exploit hard to acquire food of high
energetic value may lead to substantial fitness gains (Kaplan et al.
2000; Kaplan and Robson 2002). A learning intensive way to
forage requires a long apprenticeship (Blurton Jones and Marlowe
2002), which may last up to 20 years (Gurven et al. 2006). If
information acquired by the parental generation can be useful
in this context, one expects selection to increase the reliance on
learning during an individual’s life span and to favor transfer
of information across generations. This circumvents the need to
innovate all solutions to environmental conditions de novo.

Learning is also costly in terms of time and energy (Kaplan
et al. 2000; Mery and Kawecki 2004; Snell-Rood et al. 2011).
Thus, IL and SL schedules are likely to impact on survival and
fecundity trade-offs (Kaplan et al. 2000; Kaplan and Robson 2002;
Kaplan et al. 2009). In other words, cumulative cultural evolution
is expected to coevolve with the life history of a species.

Although the coevolution of IL and SL has been inten-
sively studied (e.g., Rogers 1988; Stephens 1991; Boyd and
Richerson 1995; Feldman et al. 1996; Wakano et al. 2004; Enquist
et al. 2007), and cumulative cultural evolution increasingly inves-
tigated (e.g., Enquist et al. 2008; Lehmann and Feldman 2009;
Strimling et al. 2009; Mesoudi 2011; Pradhan et al. 2012), there

are but a few quantitative studies addressing the coevolution of IL
and SL in the context of cumulative culture. Some investigations
consider the evolution of social-learner-explorer strategies (where
SL precedes IL), which can produce a change in nongenetically
encoded phenotype(s) across generations (Boyd and Richerson
1995; Borenstein et al. 2008; Aoki 2010). But these studies do
not consider explicitly the dynamics of culture within generations,
which is taken into account in studies that either neglect intergen-
erational transfers of information (van Schaik and Pradhan 2003;
Lehmann et al. 2010) or offer only the possibility of oblique SL
(Aoki et al. 2012).

The trade-offs between no learning and learning, IL and SL,
and oblique and horizontal SL, have thus not been simultane-
ously taken into account, and their consequences for life-history
evolution have not been studied. But for understanding the con-
ditions under which cumulative cultural evolution is likely to be
an evolutionary stable strategy (ESS, Maynard Smith 1982), SL
should coevolve with IL in a situation where alternative learning
schedules are possible.

In this article, we use evolutionary game theory that we cou-
ple with optimal control theory to identify optimal learning sched-
ules in a model where organisms have three distinct life stages.
These are “infants,” “juveniles,” and “adults.” IL and/or oblique
SL may occur during infancy so that information generated in past
generations can be acquired, while IL or horizontal SL can take
place among juveniles. Resources are gathered during adulthood
according to the amount of nongenetically encoded information
acquired during the learning stages. Because the length of these
stages as well as the behavioral options can evolve, our model
allows for no learning as well as a schedule of learning supportive
of cumulative cultural evolution both within and between gener-
ations to be a possible evolutionary stable strategy.

Model
LIFE-HISTORY ASSUMPTIONS

We consider a haploid population of constant but very large size.
We assume that the individuals in this population are endowed
with physiological mechanisms allowing them to produce non-
genetically encoded information by IL, and to acquire such infor-
mation from others by SL. For ease of presentation of the basic
components of our model and to gain an intuitive understanding
of the intergenerational explicit cultural dynamics, we present the
life history of the individuals by assuming a population where all
individuals express the same phenotypes (no genetic variation).
This assumption is relaxed when the evolutionary analysis is car-
ried out in Supporting Information Appendices A and B, so that
our results do not rely on it.

We measure nongenetically encoded information on a contin-
uous scale and denote by A(t) the amount of adaptive information
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Table 1. List of symbols.

Symbol Definition

K Length of the infant period.
L Length of the juvenile period.
G Length of a generation.
A(t) Information carried by an age 0 ≤ t ≤ G

individual.
P(t) Total information in an age 0 ≤ t ≤ G population.
ϕ Conversion factor of amount of resources into

offspring number.
α Oblique SL learning rate of infants.
β Horizontal SL learning rate of juveniles.
ε Decay rate of information.
ρ Nonoverlapping fraction of information produced

by different ILs.
γ Fraction of information of the parental generation

acquired by the infants of the descendant
generation at equilibrium of the learning
dynamics.

φ Dependence of resource intake on cultural
information.

held by a representative individual of age t in the population (see
Table 1 for a list of symbols). This variable can also be inter-
preted as the number of units of adaptive knowledge held by the
individual, and may be obtained as the size (minimal) of the set
describing this information (Reiter 2001). The units of adaptive
knowledge may involve information about the abundance and lo-
cations of preys and predators, items such as techniques to build
arrows or tailored clothes, lists of poisonous foods, methods to
obtain sources of heat. We assume that the environment is con-
stantly and smoothly changing so that each unit of information
becomes obsolete at rate ε per unit time. Alternatively, ε may also
be interpreted as the rate of forgetting of individuals.

The life cycle of the organism is as follows. (1) During a
period of infancy of length K , every individual in the population
may learn information about the environment from the individuals
in the parental generation through oblique social transmission. At
the end of this period, each individual has acquired A(K ) units
of information and individuals of the parental generation die. (2)
During a juvenile period of length L , each individual can pro-
duce novel information by IL or acquire information from others
by horizontal SL. At each time t ∈ [K , K + L], an individual
devotes fractional effort u(t) to IL, while allocating the comple-
mentary fraction of effort 1 − u(t) to acquiring information from
others by SL. (3) Juveniles reach adulthood. During a period of
time of length G − K − L , where G is the generation time, each
adult gathers resources according to the amount of information
obtained by the end of the juvenile learning period (see Fig. 1
for an overview of learning in the life cycle). (4) Each individual

social learning
from parental 
generation

individual and social 
learning within generation

infant juvenile adult

infant juvenile
period of time allocated
to resource exploitation

adult

0 K K+L G

reproduction
(semelparous)

Figure 1. Cultural transmission and partition of an individual’s
life span into three stages.

produces a large number of offspring. Density-dependent com-
petition occurs and the population is regulated back to its census
size. The cycle starts again, but adults survive after giving birth at
age G and serve as exemplars for the infants of the next generation
(post-reproductive period of length K ).

Our aim in this article is to determine the coevolutionary sta-
ble candidate learning schedule u∗(t), K ∗, and L∗. This requires
that we specify the dynamics of information A(t) held by an indi-
vidual of age t ∈ [0, G]. This will be carried out by assuming that
the information dynamics has already reached an equilibrium so
that A(t) denotes the amount of information held by an individual
of age t in the parental generation as well as that in the offspring
generation.

INFORMATION DYNAMICS

Adults
Right at the start of adulthood, an individual of age t = K + L
has A(K + L) units of information. Because it decays at rate ε, an
individual of age t = K + L + τ carries A(K + L)e−ετ units of
information (τ ∈ [0, G − K − L]). We assume that the individual
gathers energy at rate 1 + φA(K + L)e−ετ at age t = K + L + τ.
Here, “1” is the baseline unit of energy obtained without express-
ing culturally acquired information, while the parameter φ de-
notes the dependence of foraging efficiency on acquired cultural
information. The energy is stored and consumed at age G to pro-
duce offspring with a conversion factor ϕ. This gives total energy
amount

∫ G−K−L
0 [1 + φA(K + L)e−ετ] dτ and offspring number

produced (fecundity) as

f = ϕ

[
(G − K − L) +

(
1 − e−ε(G−K−L)

ε

)
φA(K + L)

]
. (1)

Infants
A surviving offspring is assumed to acquire information only by
SL and from a single exemplar individual randomly sampled from
the parental generation so that it can be thought of as acquiring
information from an average individual in the population. The
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information held by such an infant of age t = 0 is A(0) = 0,
whereas that of its exemplar individual is A(G). When the in-
fant is of age t = τ, the exemplar individual has A(G)e−ετ units
of remaining information, because initial information decays at
rate ε. We assume that the infant acquires information accord-
ing to the difference A(G)e−εt − A(t) between the information
it has, A(t), and that of the exemplar individual, A(G)e−εt , at
rate α per unit time. The parameter α may capture various cul-
tural acquisition processes such as imitation, instructed learning,
or collaborative learning (Tomasello et al. 1993). This leads for
infancy (t ∈ [0, K ]) to the information dynamics

Ȧ(t) = −εA(t) + α[A(G)e−εt − A(t)] (2)

whose solution is

A(K ) = [1 − e−αK ]A(G)e−εK . (3)

Juveniles
When an individual produces adaptive information by IL, each
unit of effort u(t) allocated to producing leads to µ novel units of
information. Different individuals may produce different pieces
of information and the total amount of information in the popu-
lation at time t is denoted P(t). We have P(t) − A(t) ≥ 0, which
is the amount of information in the population a representative
individual has not yet acquired. When an individual performs SL,
we assume that each unit of effort 1 − u(t) allocated to that task
leads to the acquisition of β(P(t) − A(t)) novel units of informa-
tion, where β is the rate of social transmission of information. To
track the dynamics of A(t), we thus need to specify the dynamics
of P(t). The information dynamics is assumed to be given for
t ∈ [K , K + L] by the system

Ȧ(t) = −εA(t) + u(t)µ + (1 − u(t)) β (P(t) − A(t))

Ṗ(t) = −εP(t) + u(t)µ (1 + ρ) .
(4)

where ρ describes the overlap among individuals of production
of information in the population. When ρ = 0, every individual
produces exactly the same type of information. However, when
ρ is approximately as large as population size, every individual
would produce different pieces of information at rate µ.

The initial condition A(K ) for the juvenile learning dynamics
(eq. 4) depends on the amount of information A(G) that can be
obtained from the past generation (eq. 3), which itself depends
on the amount of information at the end of the juvenile period:
A(G) = A(K + L)e−ε(G−K−L). This gives A(K ) = γA(K + L),
where

γ = [1 − e−αK ]e−ε(G−L) (5)

and allows us to close the cycle of information dynamics across
generations at the individual level.

To obtain the initial condition P(K ) for the juvenile infor-
mation dynamics (eq. 4), we assume that there is no loss of
information in the population due to stochastic sampling when
infants copy their exemplar individual. In other words, we as-
sume that the ratio of the amount of information carried by
an individual to that carried by the whole population, A/P ,
is kept constant during the infancy and adult periods and can
only change during the juvenile period according to equation 4.
This gives P(K ) = γP(K + L), which closes the cycle of in-
formation dynamics across generations at the population level.
These dynamics of information describe cumulative cultural evo-
lution in a quantitative sense, where innovations accumulate by
spreading throughout the population by oblique and horizontal
transmission.

Results
Having specified the information dynamics within and across gen-
erations, we now have all the elements to evaluate the fecundity of
an individual expressing mutant trait values in u(t), K , or L , and
thereby determine the selection pressure on these evolving phe-
notypes. The characterization of the optimal learning strategies
is carried out in the Supporting Information by using evolution-
ary game theory (e.g., Maynard Smith 1982; Eshel 1983; Lessard
1990; Dercole and Rinaldi 2008) coupled with optimal control
theory (e.g., Iwasa and Roughgarden 1984; Perrin 1992; Bulmer
1994; Day and Taylor 1998; Sydsaeter et al. 2008).

OPTIMAL JUVENILE LEARNING SCHEDULE

We start by evaluating the candidate ES level u∗(K + τ) of effort
allocated to IL at time τ ∈ [0, L] of the juvenile period. An in-
dividual increasing its level of IL at time τ by one unit causes a
change in its reproductive output that is proportional to

µ − β [P(τ) − A(τ)] . (6)

This provides the selective pressure on IL (eq. A-10 in Supporting
Information), where µ is the information obtained by increasing
IL at time τ, which thus gives the marginal benefit of IL. The
marginal cost of IL is given by the second term, β[P(τ) − A(τ)],
which is the amount of information obtained if SL was increased at
time τ by one unit. When the benefit exceeds the cost, IL is favored
and u(K + τ) should go to one. Conversely, when the selection
pressure is negative, the cost of IL exceeds the benefit and more
information would be gained by expressing SL. Now, u(K + τ)
should go to zero. It may also be the case that the benefit exactly
balances the cost, in which case a mixed strategy can be selected
for, the value of which depends on how the control schedule
affects trait dynamics at the individuals and population level (P(τ)
and A(τ)). Whether a pure strategy (u(t) = 0 or u(t) = 1) or a
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mixed strategy (0 < u(t) < 1) is favored, equation 6 shows that
the selection pressure on IL depends on a direct trade-off between
acquiring information by IL and SL, with IL being favored when
β tends to be small because only scant information can then be
obtained by SL.

Pure strategy
We find that when the horizontal SL learning rate β is below the
threshold value

β <
ε(1 − γe−εL )
ρ(1 − e−εL )

, (7)

which tends to decrease with ρ, γ, and L , and to increase with
ε, IL should be applied throughout the whole juvenile period:
u∗(K + τ) = 1 for all τ ∈ [0, L] (eqs. A-10–A-18 in Supporting
Information for a proof). This inequality will be satisfied when
the juvenile learning length is small and ε high so that no useful
information has the time to accumulate at the population level to
be successfully obtained by SL. For this pure IL schedule, the ES
amount of information carried by an individual at the beginning
of adulthood is

A∗(K + L) = µ(eεL − 1)eαK+ε(G−L)

ε[1 + (eεG − 1)eαK ]
, (8)

which is a decreasing function of G if ε > 0 and of ε, but is
an increasing function of µ, α, K , and L (eqs. A-23–A-24 in
Supporting Information).

Mixed strategy
When inequality (7) is reversed, which is likely to occur when the
rate β of horizontal SL is high, the optimal control for a juvenile
of age t = K + τ is given by

u∗(K + τ) =






1 0 ≤ τ ≤ ts

ε + β

(1 + ρ)β
ts < τ ≤ L .

(9)

Here, an individual first allocates all its effort into IL until a
switching time ts is reached. After that, the individual expresses a
mixed strategy, where only a fraction of each unit of time is spent
on IL. This occurs if enough information has been generated by
IL so that it pays to perform SL (eq. 6). The switching time is
given by

ts = 1
ε

log
[

βρ − γε

βρ − ε

]
, (10)

which is a decreasing function of ρ (eqs. A-25–A-33 in Support-
ing Information for a proof). Thus, when different individuals
generate different pieces of information (ρ > 0), the switching
time to SL is reduced because an individual performing SL can
usefully obtain more adaptive information.

For this mixed control schedule, the ES amount of informa-
tion carried by an individual of age t = K + τ is the same as
under the pure IL schedule, in particular A∗(K + L) is still given
by equation 8 (eq. A-34 in Supporting Information). Hence, even
if SL is selected for, the amount of information held by an indi-
vidual at any point in time at an evolutionary equilibrium is not
increased relative to the case where pure IL occurs. This is an
example of the so-called Rogers’ paradox for the evolution of SL
(Boyd and Richerson 1995; Enquist et al. 2007; Rendell et al.
2010).

Rogers’ paradox occurs when the parameter values of a
model are such that (1) a stable equilibrium exists with SL and
IL, (2) a monomorphic equilibrium of pure IL also exists, and
(3) the two equilibria result in the same mean fecundity and/or
survival in the population. In this case, cultural transmission does
not increase the vital rates of the individuals in the population.
Hence the “paradox,” which was first observed in a model where
individuals had to learn an optimal solution in a one shot learning
period (Rogers 1988). In our model Rogers’ paradox occurs be-
cause the total time devoted to learning during the juvenile period
is fixed, and SL is selected to increase (which concomitantly de-
creases IL in the population) up to the point where an individual
gains the same amount of information is if it would implement
pure IL.

ES LEARNING LENGTHS

We now present the results on the optimal length of the infancy
and juvenile learning periods (K ∗ and L∗) by holding the learning
schedule u∗(t) at the candidate ES derived in the previous section.
Importantly, the results presented below hold for both the pure and
mixed control schedules discussed above, and the ES values K ∗

and L∗ depend on u∗(t), which is itself solved as a function of
K ∗ and L∗ (see Supporting Information Appendix B). Hence,
K , L , and u(t) coevolve because the trait values adjust to each
other through the action of natural selection. The results presented
below thus characterize the ES infancy and juvenile learning peri-
ods at the candidate coevolutionary stable learning pattern (u∗(t),
K ∗, L∗).

Juvenile learning
The infancy learning period (K ) cannot evolve if there is initially
no juvenile stage (L = 0), because in this case there is no informa-
tion to be acquired from the parental generation. Hence, we first
assume that there is no infancy period (K = 0) and consider the
evolution of the juvenile period. To highlight the main marginal
costs and benefits of varying L , we assume that ε → 0. In this
case, an individual increasing its juvenile learning length by one
unit in a population fixed for L causes a change in its reproductive
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output that is proportional to

µφ (G − L) −



1 + φ (µL)︸︷︷︸
A(K+L)



 (11)

(eq. B-8 in Supporting Information). The first term of this se-
lection gradient on juvenile learning is the marginal benefit of
increasing the juvenile learning period. This leads to an increase
of information µ that can be used throughout the resources gath-
ering period (length G − L) according to the extent φ to which it
increases fecundity. The second term in the selection gradient is
the marginal cost, which stems from the reduction of the resource
gathering period when more time is devoted to learning, and where
resources are harvested at rate 1 + φA(L) with A(L) = µL being
the amount of information obtained during juvenile learning.

When K = 0, the amount of information gained during in-
fancy is zero and equation B-8 in Supporting Information shows
that L will be selected for provided life span is not too short
(G ( 0) in which case it is likely that φGµ > 1. More generally,
when there are environmental fluctuations, selection favors learn-
ing at the juveniles stage when the innovation rate multiplied by
the reliance on nongenetically encoded information exceeds the
decay rate (µφ > ε) and life span is not too short (G ( 0). If
this is the case, the juvenile stage evolves to a period of positive
duration

L∗ = G
2

− 2 + Gε

4µφ
+ O(ε2), (12)

where O(ε2) is a term of order ε2, which can be neglected when
there is a low rate of environmental change, that is, adaptive infor-
mation decays slowly (eqs. B11–B-13 in Supporting Information).
From equation 8, we then find that the associated ES amount of
information held by an individual at the end of the juvenile period
is

A∗(L∗) = Gµ

2
− 1

2φ
− ε(1 + G2µ2φ2)

8µφ2
+ O(ε2). (13)

This is an decreasing function of ε and an increasing function of
the other parameters when positive L is selected for.

In the absence of environmental fluctuations (ε → 0), one ob-
tains L∗ = G/2 − 1/(2µφ) and A∗(L∗) = Gµ/2 − 1/(2φ). Se-
lection thus supports the evolution of learning even in the absence
of environmental fluctuations (ε = 0). This may seem to contra-
dict the standard result that learning should be selected against in
the absence of environmental fluctuations (e.g., Stephens 1991;
Wakano et al. 2004). But this is likely to be the case only in
an “absolutely fixed environment” (Stephens 1991), where every
feature of the environment, whether biotic (e.g., the abundance
and spatial position of every single prey and predator) or abiotic
(e.g., the velocity of the wind in every food patch) remains for-
ever constant and the same. In this case, the cost of learning may

outweigh its benefit if the appropriate phenotype(s) to express can
be genetically encoded and the learning machinery is expensive.
This not only implies ε = 0 in our model, but that investment
into learning is not beneficial, which can be captured by setting
φ = 0. Now, learning is selected against and our model is indeed
consistent with previous formalizations.

Infancy learning
When selection favors reliance on learning in juveniles, there
is information to be acquired by oblique SL during infancy be-
cause mature individuals carry adaptive information. To analyze
the selection pressure on the infancy period (K ), we again start
by assuming negligible environmental fluctuations. Then, an in-
dividual increasing its infancy learning length by one unit in a
population fixed for K causes a change in its reproductive output
that is proportional to

αA(G)e−αK φ (G − K − L) − [1 + φA(K + L)] (14)

(eq. B-15 in Supporting Information). The first term is the
marginal benefit of increasing the infancy learning period because
this leads to an increase of αA(G)e−αK units of information used
throughout the resources gathering period (length G − K − L).
The second term is the concomitant cost stemming from the re-
duction of the resource gathering period.

When the infancy learning rate (α) is large enough, the in-
formation taken up at the end of the infancy learning period may
balance the cost of reducing the total time of gathering resources.
This occurs when

α >
2µφ

Gµφ − 1
, (15)

which decreases with G, µ, and φ, and entails that the infancy
learning period is selected for and also implies positive selection
on L . Then, the candidates ES learning periods are obtained as

K ∗ = G − 1
µφ

− 1
α

−
W

(
eαG−1− α

µφ
)

α

L∗ = 1
α

,

(16)

where W (·) is the principal solution of the Lambert function (eqs.
B-18–B-21 in Supporting Information). Here, L∗ depends only on
the infancy learning rate and varies inversely with it, whereas K ∗

depends on all the model’s parameters, except β. The ES amount
of information associated to these learning periods is

A∗(K ∗ + L∗) = µL∗eαK ∗
, (17)

which depends on two components. First, the number of units of
information µL∗ generated by IL during a single juvenile period
of length L∗. Second, the amount of such information that can
be amalgamated across generations and is measured by the factor
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eαK ∗
. This is equal to 1 when α = 0. Hence, αK ∗ can be thought of

as the growth rate of information, which is repeatedly generated
by IL and then transmitted by SL across generations.

Because the infancy learning period goes to zero (K ∗ → 0)
as oblique SL becomes perfect (α → ∞), that is, an individual
instantly absorbs all the extant culture of its exemplar individ-
ual, the total amount of information A∗(K ∗ + L∗) will remain
bounded even if the efficiency of oblique SL becomes maximal.
In this case, we obtain from equation 17 that when learning be-
comes perfect (α → ∞), the amount of information held by an
individual is

A∗(K ∗ + L∗) = Gµ − 1
φ

. (18)

This is an upper bound for the amount of information that can
be acquired by cumulative cultural evolution under our model’s
assumption. Comparing equation 18 with equation 13 shows that
the gain in information due to oblique SL (during the infancy
period of length K ∗) only results in at most a doubling of that
acquired by IL.

The general dependence of the learning periods and amount
of information on parameter values is illustrated in Figure 2, which
shows that A∗(K ∗ + L∗) is an increasing function of µ, α, and G.
Hence, the selected pattern of oblique SL increases the amount
of information held by individuals at steady state relative to the
case where only the juvenile period is selected for, and which
entails that only horizontal SL occurs. This was not the case
for the selected pattern of horizontal SL. Hence, SL now leads
to cumulative cultural evolution across generations and Rogers’
paradox is not observed under oblique SL.

When environmental change is negligible (ε → 0), informa-
tion is lost only through imperfect transmission across generations
(α < ∞). Roughly speaking, the dynamics of cultural evolution
as α varies can then be classified into three regimes (Fig. 2). (1)
When oblique transmission is not efficient, the infant learning
period is not selected for (K ∗ = 0). But the juvenile learning pe-
riod can be selected for, which results in individuals acquiring
some amount of knowledge by SL. (2) When oblique transmis-
sion becomes more efficient, K is selected for at the expense of
the optimal juvenile period L∗, which is reduced in length. The
accumulation of knowledge is now enhanced due to oblique SL.
(3) As the efficiency of oblique SL becomes even higher, not
only is L∗ reduced in length but also K ∗. This occurs because a
shorter learning period allows the accumulation of an otherwise
equal amount of information that is already close to its maximum,
and which can be used in an extended adulthood period to gather
resources.

Overall, increasing α causes a decrease of the total learning
period K ∗ + L∗ and an increase of the length of adulthood (Fig. 2).
A larger innovation rate µ tends to increase both learning periods.
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Figure 2. Candidate ES learning length predicted by equation 16
as a function of α for φ = 1. In the first column of panels, one has
µ = 0.1, and from the top to the bottom line G = 30, 40, 50. In the
second column of panels, one has G = 30, and from the bottom
to the top line µ = 0.1, 0.2, 0.4. In all panels, the horizontal strait
lines give the values for L ∗ and A∗(K∗ + L ∗) when α does not
satisfy inequality 15. Hence, the infancy learning period is not
selected for and only horizontal SL may occur during the juvenile
period. This can also be seen in the panels for K∗, which takes the
value of zero in such cases.

In regime (1), a high innovation rate contributes relatively little
to cultural evolution, while it has a larger effect when cumulative
cultural evolution has evolved (regimes 2, 3). Generation time, or
life expectancy, has the same tendency as innovation rate (Fig. 2).

More generally, there will be environmental fluctuations
(ε > 0). For this case, we were unable to derive analytically the
evolutionary stable learning periods (K ∗ and L∗) and thus relied
on numerical work. In Figure 3, we show how ε affects K ∗, L∗,
and A∗(K ∗ + L∗). The dynamics of cultural evolution as ε varies
can approximately be classified into two regimes (Fig. 3). (1)
When ε first increases, it causes a reduction in K ∗ and an increase
in L∗ because less information can be learned from the parental
generation and more effort needs to be devoted to IL to sustain the
total amount of information. This results in an overall increase in
the total period devoted to learning (Fig. 3). (2) Above a threshold
value of ε, the overall time devoted to learning is selected against
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Figure 3. Candidate ES learning length obtained by solving equation B-7 in Supporting Information Appendix B and graphed as a
function of ε. In all panels, G = 30, φ = 1, µ = 0.1, while we have α = 1, 0.5, 0. The monotonic decreasing line in the panels for L ∗ and
K∗ + L ∗ is for α = 0, in which case K∗ is zero.

and both K ∗ and L∗ decrease, eventually reaching a value of zero
in which case learning is selected against altogether. This occurs
because the rate of decay of information is too large for individ-
uals to acquire enough information to counterbalance the cost of
learning, and accords with the view that when the environments
becomes too unpredictable, learning should be selected against as
no regularity can be exploited by it (Stephens 1991).

Our analysis shows that a learning schedule supportive of
cumulative cultural evolution can be selected for. But it may be
felt that we should have taken into account the possibility for IL
during infancy for the analysis to be really convincing. Taking
this into account will not change qualitatively our results because
allowing for IL during infancy results in a situation where SL is
selected against only if an infant at birth can learn more informa-
tion on its own than it can acquire from the parental generation
(see Supporting Information Appendix C, eqs. C-1–C-4, for a
formal argument). It is natural, however, to assume that the rate
of IL during infancy is lower than that during the juvenile period
(Striano et al. 2001). In this case, if IL is selected for during in-
fancy, the length of the infancy period is likely to be selected
against as more traits are learned during the juvenile period.
Hence, assuming only SL during infancy is unlikely to affect
our qualitative results that oblique SL comes first if learning from
the parental generation can evolve.

Discussion
We have investigated the coevolution of an infant and a juvenile
learning period, where individuals can allocate effort to both IL

and/or SL. Our model, where the environment is constantly but
smoothly changing within and between generations allows for
the possibility that no learning is selected for or that only IL is
evolutionary stable. It also allows for a situation where oblique
SL evolves during infancy or that a mixture of IL and horizontal
SL occurs in juveniles. A possible outcome of our model is thus
a learning schedule that is favored by natural selection to support
cumulative cultural evolution both within and across generations,
an outcome that has not been taken into account in previous
formalizations.

We find that when the innovation rate weighted by the impor-
tance of using nongenetically encoded information for gathering
resources is larger than the rate of environmental change, juvenile
IL can be selected for provided the generation length (G) is not
too small. At equilibrium, an individual will thus allocate energy
to IL and express a positive ES amount of adaptive information
gathered during its life span (eq. 13).

Once juvenile IL has been selected for, individuals carry in-
formation that can be learned by others. Hence, it may become
beneficial to perform SL horizontally or obliquely. When the in-
fancy learning rate (α) is large enough to overcome the opportu-
nity cost of spending time on learning, individuals are selected to
acquire information from the parental generation (eq. 15). Both
the optimal infant and juvenile learning periods then coevolve
and the coevolutionary optimal learning schedule should unfold
according to the following sequence. (1) Pure oblique SL during
infancy from age zero to K ∗. (2) Pure IL during the juvenile pe-
riod from age K ∗ to L∗. This is a learning schedule supportive of
cumulative cultural evolution across generations.
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Alternatively, when the horizontal transmission rate (β) is
large individuals may gain from horizontal SL, in which case the
optimal learning schedule unfolds according to the following se-
quence. (1) Pure oblique SL during infancy until age K ∗. (2) Pure
IL from age K ∗ to age K ∗ + ts, where ts is a switching time to
a mixed strategy. (3) Mixed allocation to individual and SL from
age K ∗ + ts to L∗. This is again a learning schedule supportive
of cumulative culture across generations. Here, however, SL oc-
curs twice, once obliquely from individuals of the parental to the
offspring generation and once horizontally.

Our analysis suggests that the ES amount of information
acquired during the juvenile period by horizontal SL does not
increase the amount of information held by an individual, relative
to the case where only IL occurs. Thus, the amount of informa-
tion held by an individual does not depend on the efficiency β

of horizontal transmission (eq. 8, Rogers’ paradox obtains). By
contrast, when oblique SL evolves through selection of an ex-
tended infant learning period, the outcome of evolution is a net
increase in the amount of information (Fig. 2). Here, the transfer
of information across generations causes individuals to accumu-
late more information than if they were to perform only IL. The
ES amount of information thus depends on the efficiency α of
oblique transmission (Fig. 2, Rogers’ paradox does not obtain).

That horizontal SL during the juvenile period does not in-
crease the ES amount of information can be understood by noting
that the selection pressure on horizontal SL involves a direct trade-
off between SL and IL (eq. 6). SL is selected to increase as long as
an individual can gain more information by SL than by IL. As the
total time spent on IL decreases, the total amount of information
generated by IL in the population decreases and thereby the selec-
tion pressure on SL. Eventually, a point is reached where selection
for increased SL vanishes. This corresponds to a situation where
an individual would not gain more information by expressing SL
than pure IL and Rogers’ paradox obtains.

By contrast, the selection pressure on oblique SL does not
directly involve a trade-off between SL and IL, but a trade-off be-
tween acquiring information by learning and gathering resources
(eq. 14). Increasing the time spent on SL may thus only partially
impart on a reduction of time devoted to IL, because it can also
reduce the time spent gathering resources. Here, oblique SL is
selected for as long as oblique SL results in an increase of the
amount of information obtained by an individual, relative to the
case where it can only acquire information during the juvenile
period. Because the increase in the length of oblique SL does not
result in an equivalent reduction of IL length (as the total life span
is fixed), Rogers’ paradox is no longer expected to obtain.

Suppose, on the other hand, that adulthood length is fixed and
that the life span can vary freely as K and L evolve. Although this
is not biologically realistic, one expects in this case that oblique
SL would be increased to the point where the total amount of

information held by an individual is the same as if it performed
only IL. This is so because the length of adulthood is fixed, the
selection pressure on oblique SL now involves a direct trade-off
between SL and IL. This is a situation qualitatively similar to that
for horizontal SL and Rogers’ paradox should now obtain. This
intuition can be confirmed by calculation because if the length
of life span (G) is allowed to vary freely, the selected oblique
and horizontal SL schedule does not increase the amount of in-
formation in the population, relative to pure IL (see Supporting
Information Appendix D, eqs. D-3–D-5).

If SL does not involve a direct trade-off with IL, cultural
transmission can result in an increase of the amount of infor-
mation in the population. But SL can only lead to a doubling
of this amount relative to the case of pure IL (compare eq. 13 to
eq. 18). It can also be shown that SL does not optimize the amount
of information from the perspective of the population. Moreover,
allowing infants to learn from the total pool of information in the
population (by using P(G) instead of A(G) in eq. 2) does not lead
to more information accumulation across generations.

The moderate effect of SL on information accumulation rel-
ative to pure IL may stem from the fact that SL does not in itself
increase the likelihood to find optimal solutions. It mainly de-
creases the cost of IL because more information can be acquired
by SL than by IL (eqs. 2 and 4), which stems from the fact that
information is a public good that is nonrival and nonexcludable,
and is accumulated across time by oblique and horizontal SL. This
results in cumulative culture in a quantitative sense, which is a
situation that is more prone to Rogers’ paradox than if SL is nec-
essary to find optimal phenotypic solutions (Boyd and Richerson
1995; Enquist and Ghirlanda 2007). In such a case, which could
be described as a situation where culture is cumulative in a quali-
tative sense, we found that the ES learning schedule optimizes the
phenotype of individuals from the perspective of the population in
a presence of only two discrete learning stages (Aoki et al. 2012).
This suggests that the type of culturally transmitted information
can have an effect on the extent to which cultural transmission
increases the vital rates of individuals in a population. To have
a better understanding of the conditions when this will be the
case, it seems necessary to consider more explicitly the learning
mechanisms behind cultural evolution.

Despite its simplifying assumptions, in particular the neglect
of vertical transmission that would require a kin selection anal-
ysis to be taken into account, our model predicts some broad
guided patterns of cultural acquisition. It shows that the evolu-
tion of the age-dependent expression of IL and SL results in a
schedule where SL precedes IL. This seems indeed to be the
case in primates (Reader and Laland 2001; Lonsdorf et al. 2004;
van Schaik 2004) and may occur in honey bees (Biesmeijer and
Seeley 2005). Further empirical work is necessary to delineate
whether this is a general trend and also the extent to which various
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species use information acquired by individuals living in past
generations.

Our model also predicts a mixed expression of IL and SL dur-
ing the juvenile’s period, which makes it overall very consistent
with the pattern of learning observed in humans during childhood.
This consists of the acquisition of information from the parental
generation during infancy and early childhood (to until about
age 6), and then a period of horizontal transmission (SL) and ex-
ploration (IL) during middle childhood until adolescence (Konner
2010, chapters 24–26, Hewlett et al. 2011). Our “infancy” stage
can be interpreted as corresponding to the periods of real infancy
and early childhood, whereas our “juvenile” stage correspond to
a period of learning until individuals have enough information to
produce resources on their own. This may actually involve the
stages of adolescence and early adulthood in natural population
as it may take up to 10 or 20 years of IL and SL for developing
successful hunting skills (Gurven et al. 2006).

Our model is also a general step in the direction of taking into
account the age variability of learning patterns, which affects the
information flow within a population and has so far been neglected
in evolutionary analysis (Demps et al. 2012). But future work is
needed to gain a better understanding of the coevolution between
learning and other life-history features as the human life cycle may
have been critically shaped by this dynamic interaction (Kaplan
et al. 2000; Kaplan and Robson 2002).
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Appendix A: evolutionarily stable schedule u(t)

Here, we derive the candidate ES control schedule u⇤(t) by using evolutionary game theory
(e.g., Maynard Smith, 1982; Eshel, 1983; Lessard, 1990; Dercole and Rinaldi, 2008) that
we couple with optimal control theory (e.g., Iwasa and Roughgarden, 1984; Perrin, 1992;
Bulmer, 1994; Day and Taylor, 1998; Sydsaeter et al., 2008).

We are only interested in evaluating the candidate ES control u⇤(t) for an individual of
age t = K + ⌧ with ⌧ 2 [0, L]. We thus simplify the notations so that we don’t need to
include K in all equations. To that aim, we write any function h(t) = h(K+⌧) for ⌧ 2 [0, L]
as h(⌧). Hence, we replace u(K + ⌧) and A(K + ⌧) by u(⌧) and A(⌧). This means that
in this Appendix A, the boundary conditions of the form u(0) and A(0) refer to u(K) and
A(K) in the original process.

Mutant control

In order to evaluate u⇤(t), we introduce into a resident population a mutant individual
expressing a deviant control um(t). We then ask under what conditions is the resident
immune to invasion by the mutant.

When the population is small, the mutant may a↵ect the dynamic of A(t) of di↵erent
individuals in the population, but we assume that the population is large enough so that we
can neglect the e↵ect of a single individual on P (t). Under this assumption, the amount of
information held by a mutant, denoted by Am(t) for t 2 [0, L], satisfies

Ȧm(t) = �✏Am(t) + um(t)µ+ (1� um(t))� (P (t)�Am(t)) (A-1)

with boundary condition

Am(0) = �A(L), (A-2)

where the dynamics of A(t) and P (t) are assumed to be given by the resident system (eq. 4 of
the main text). With the time notation of this Appendix, the resident system is for t 2 [0, L]

Ȧ(t) = �✏A(t) + u(t)µ+ (1� u(t))� (P (t)�A(t))

Ṗ (t) = �✏P (t) + u(t)µ (1 + ⇢) , (A-3)

where

A(0) = �A(L)

P (0) = �P (L). (A-4)
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Importantly, eq. A-2 not only implies that the population is large but also that a mu-
tant can acquire information from the parental generations only from resident individuals.
This rules out the possibility that it learns information from its parents. We endorse this
assumption because taking into account pure vertical transmission of information would re-
quire to track intergenerational e↵ects of mutant-mutant interactions, which is much more
complicated.

Before proceeding to the invasion analysis, we note that according to eq. A-3, an individ-
ual may gain from SL only insofar there is information D(t) = P (t)�A(t) in the population
it lacks. From eq. A-3, this quantity satisfies

Ḋ(t) = � [✏+ (1� u(t))�]D(t) + u(t)µ⇢. (A-5)

We will use the variable D(t) in our analyses below (instead of P (t)) as it leads to more
compact formulations.

Maximum principle

Standard end constraints optimal control problem

In order to find the ES learning schedule, we use optimal control theory under the form of
Pontryagin’s maximum principle (see Sydsaeter et al., 2008 for a detailed overview). From
eq. 1 of the main text, the objective function of the mutant is

f(Am) = '


(G�K � L) + �Am(L)

✓
1� e�✏(G�K�L)

✏

◆�
(A-6)

subject to the dynamic constraint eqs. A-1–A-2, which themselves depend on the resident
system eq. A-3. This is an optimal control problem with only a terminal payo↵ (or scrap
value), where um(t) 2 [0, 1] is the control, and Am(t) and P (t) are the state variables with
Am(L) and P (L) free (Sydsaeter et al., 2008, p. 364–365).

A candidate ES control u⇤(t) of a control triple (u⇤(t), A⇤(t), P ⇤(t)) is a mutant pheno-
type um(t) that for all t 2 [0, L] maximizes the Hamiltonian

H(um(t), u(t), A
⇤(t), P ⇤(t)) = �A(t) [�✏A⇤(t) + um(t)µ+ (1� um(t))� (P ⇤(t)�A⇤(t))]

+ �P(t) [�✏P ⇤(t) + u(t)µ (1 + ⇢)] , (A-7)

whose maximum is evaluated at um(t) = u(t) = u⇤(t). The state variables satisfy eq. A-3
evaluated at (u⇤(t), A⇤(t), P ⇤(t)) and the co-state variables satisfy

�̇A = �@H(u⇤, u⇤, A⇤, P ⇤)

@A⇤

�̇P = �@H(u⇤, u⇤, A⇤, P ⇤)

@P ⇤ (A-8)
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with terminal conditions

�A(L) =
@f(A⇤)

@A⇤ � 0

�P(L) =
@f(A⇤)

@P ⇤ = 0. (A-9)

Applying the maximum principle

From eq. A-7, the change in the Hamiltonian due to an individual expressing the mutant
control and evaluated at a candidate ESS is

@H(t)

@um

����
um(t)=u⇤(t)

= �A(t) [µ� �D⇤(t)] , (A-10)

which gives the selection pressure on increasing the level of individual learning at time t.
From eq. A-5, D⇤(t) satisfies

Ḋ⇤(t) = � [✏+ (1� u⇤(t))�]D⇤(t) + u⇤(t)µ⇢ (A-11)

with boundary condition

D⇤(0) = �D⇤(L) < D⇤(L). (A-12)

Hence, from eqs. A-10–A-11, an evolutionarily stable (ES) control must satisfy:

u⇤(t) =

8
>><

>>:

0 when D⇤(t) > µ/�
✏+�

�(1+⇢) when D⇤(t) = µ/�

1 when D⇤(t) < µ/�,

(A-13)

which shows that u⇤(t) can be a step function.

Candidate ES schedules

Here, we find candidate ES schedules among di↵erent alternatives. To that aim, we will use
the explicit solution of eq. A-11 with u⇤(t) = u being constant and boundary condition D(0)
at t = 0, which produces

D⇤(t) =
⇢µu

✏+ (1� u)�
+


D⇤(0)� ⇢µu

✏+ (1� u)�

�
e�[✏+(1�u)�]t. (A-14)

Let us now consider some specific learning schedules.

(1) u⇤(t) = 0

From eq. A-14, D⇤(t) is monotone decreasing, which violates inequality (A-12). Thus,
this is not a candidate for an ES control.

(2) u⇤(t) = 1
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From eq. A-12 and eq. A-14,

D⇤(L) =
⇢µ

✏
+
h
D⇤(0)� ⇢µ

✏

i
e�✏L =

1

�
D⇤(0). (A-15)

Hence

D⇤(0) =
⇢µ

✏

1� e�✏L

��1 � e�✏L
<

⇢µ

✏
, (A-16)

Hence, D⇤(t) in eq. A-14 is monotone increasing. Thus, consistent with the third line of
eq. A-13 if

D⇤(L) =
⇢µ

✏

1� e�✏L

1� �e�✏L
<

µ

�
, (A-17)

in other words

⇢�

✏
<

1� �e�✏L

1� e�✏L
. (A-18)

Thus, u⇤(t) = 1 for 0  t  L is a candidate for an ES control.

Let us now calculate A⇤(t) associated with this learning schedule. From eq. A-3, this
satisfies

Ȧ⇤(t) = �✏A⇤(t) + µ, (A-19)

which gives

A⇤(t) =
µ

✏


1� e�✏t

✓
1� A⇤(0)✏

µ

◆�
. (A-20)

Using this equation and the boundary condition A⇤(0) = �A⇤(L), we have

A⇤(0) = �
µ

✏


1� e�✏L

✓
1� A⇤(0)✏

µ

◆�
, (A-21)

whose solution is

A⇤(0) =
�µ

�
eL✏ � 1

�

✏ (eL✏ � �)
. (A-22)

On substitution into eq. A-20 yields

A⇤(t) =
µ

✏


1� e✏(L�t)(1� �)

eL✏ � �

�
, (A-23)

which, when t = L, reduces to

A⇤(L) =
µ

✏


eL✏ � 1

eL✏ � �

�
, (A-24)

and on substitution of eq. 5 of the main text produces eq. 8.

(3) u⇤(t) = 0 for 0  t  ts and u⇤(t) = 1 for ts < t  L.
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This schedule requiresD⇤(0) > µ/� > D⇤(L), which contradicts inequality (A-12). Thus,
this is not a candidate for an ES control schedule.

(4) u⇤(t) = 1 for 0  t < ts and u⇤(t) = 0 for ts  t  L This schedule requires
D⇤(0) < µ/� for 0  t < ts, D⇤(ts) = µ/�, and D⇤(0) > µ/� for ts  t  L. But u⇤(t) = 0
entails that D⇤(t) is monotone decreasing in this interval. Hence, contradiction. Thus, this
is not a candidate for an ES control.

(5) u⇤(t) = 1 for 0  t  ts and u⇤(t) = (✏+ �)/ [�(1 + ⇢)] for ts < t  L.

Note that 0 < (✏+ �)/ [�(1 + ⇢)] < 1 entails that

⇢�

✏
> 1. (A-25)

Since u⇤(t) = 1 for 0  t  ts, eq. A-14 entails for this intervall

D⇤(t) =
⇢µ

✏
+
h
D⇤(0)� ⇢µ

✏

i
e�✏t, (A-26)

while

D⇤(t) =
µ

�
(A-27)

for ts < t  L. Continuity of D⇤(t) at t = ts entails

⇢µ

✏
� µ

�
=

h⇢µ
✏

�D⇤(0)
i
e�✏ts , (A-28)

where the left member must be positive from inequality (A-25). Hence, we must have

D⇤(0) <
µ

�
<

⇢µ

✏
. (A-29)

If this inequality holds, then D⇤(t) increases towards µ/� when 0  t  ts, which is a
necessary condition for u⇤(t) = 1 in this interval. Inequality (A-29) is also consistent with
the constraint given by eq. A-12, since D⇤(L) = µ/�. Thus, this is a candidate for an ES
control.

Let us now determine the switching time ts. Eq. A-12 and eq. A-28 entail D⇤(0) = �µ/�,
which, on substitution in eq. A-28, yields

⇢�

✏
� 1 =


⇢�

✏
� �

�
e�✏ts . (A-30)

Rearranging,

⇢�

✏
=

1� �e�✏ts

1� e�✏ts
, (A-31)

where the right member is monotone decreasing in ts. Hence, the valid solution

ts =
1

✏
log


�⇢� �✏

�⇢� ✏

�
(A-32)
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with 0 < ts < L exists only if inequality (A-18) is reversed; that is, if

⇢�

✏
>

1� �e�✏L

1� e�✏L
. (A-33)

Let us now determine A⇤(t) associated with this learning schedule. For, 0  t  ts, we
have from eq. A-3 and u⇤(t) = 1 that

Ȧ⇤(t) = �✏A⇤(t) + µ. (A-34)

For t > ts, we have D⇤(t) = µ/�. Hence, from eq. A-3 the trait number A⇤(t) still satisfies
eq. A-34. Therefore, eq. A-34 is satisfied by A⇤(t) for 0  t  L and the solution of this
dynamic was calculated before and is given by eq. A-23

Appendix B: ES learning periods, K and L

Here, we evaluate the candidate ES learning periods, K⇤ and L⇤, by holding u⇤(t) fixed
and performing an invasion analysis. In the original time index t 2 [0, G], the equilibrium
amount of information held by an individual of ageK+L in a resident population is obtained
from eq. A-24 with � =

⇥
1� e�↵K

⇤
e�✏(G�L), which gives

A(K + L) =
µ
�
e✏L � 1

�
e↵K+✏(G�L)

✏ [1 + (e✏G � 1) e↵K ]
. (B-1)

First order condition

From eq. 1 of the main text, the reproductive output of an individual with mutant trait
values Km and Lm is

f(Km, Lm) = '


(G�Km � Lm) +

✓
1� e�✏(G�Km�Lm)

✏

◆
�A(Km + Lm)

�
, (B-2)

where

A(Km + Lm) = A(G)
�
e↵Km � 1

�
e�[(↵+✏)Km+✏Lm] +

µ

✏

�
1� e�✏Lm

�
, (B-3)

where the first term is the number of traits obtained by an individual during the infancy
period (through oblique SL), while the second term is the number of traits acquired during
the juvenile period. Here

A(G) =
µ
�
eL✏ � 1

�
eK(↵+✏)

✏ [1 + (eG✏ � 1) e↵K ]
, (B-4)

which is the equilibrium amount of information of an individual of age G in the resident pop-
ulation (obtained from eq. B-1 and A(G) = A(K+L)e�✏(G�K�L)). In a resident population,
where Km = K, Lm = L, eq. B-3 reduces to eq. B-1.
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Eq. B-3 is obtained by assuming that a mutant individual a↵ects its reproductive output
only through the e↵ect on the length of its own learning periods (Km and Lm). For the
infancy learning phase, the amount of information held by a mutant in t 2 [0,Km] is obtained
from eq. 2 of the main text by solving

Ȧ(t) = �✏A(t) + ↵
⇥
A(G)e�✏t �A(t)

⇤
(B-5)

with initial condition A(0) = 0 and where A(G) is given by eq. B-4. For the juvenile learning
phase with optimal control schedule u⇤(t) = 1, one has

Ȧ(t) = �✏A(t) + µ (B-6)

for t 2 [Km,Km + Lm], whose solution gives eq. B-3 when the initial condition A(Km) is
obtained by solving eq. B-5.

Eq. B-6 also holds for a monomorphic population with mixed control u⇤(t) = (✏ +
�)/ [�(1 + ⇢)] schedule (eq. A-34). So we assume that introducing the mutant for this case
only a↵ects the boundary conditions of eqs. B-6–B-5, exactly in the same way as for the
pure strategy. Hence, we can use eq. B-3 in eq. B-2 for both the pure and mixed candidate
ES control schedules. That eq. B-3 can also be used for the mixed strategy in proved more
rigorously below (eqs. B-22–B-25).

In order to find K⇤ and L⇤, we have to find the maximum of f(Km, Lm) with respect
to both Km and Lm given the constraint Km + Lm < G. This is a nonlinear programming
problem with inequality constraints (Sydsaeter et al., 2008, p. 129). Because of the comple-
mentary slackness conditions, the first-order condition for 0 < K⇤, 0 < L⇤, and K⇤+L⇤ < G
is given by

@f(Km, L)

@Km
= 0

@f(K,Lm)

@Lm
= 0, (B-7)

where the derivatives are evaluated at Km = K = K⇤, Lm = L = L⇤. The candidate
optimal values K⇤ and L⇤ are then obtained by solving eq. B-7.

Note that the first order condition (eq. B-7) follow from the assumption that each of the
two trait values, K and L, evolve by holding the other control constant (i.e., no pleiotropy
or double mutants). In other words, we assume that only one mutant control, Km or Lm,
deviates from the resident control at any one time.

ES learning lengths

Evolution of L

From eq. B-2, the selection gradient on L is

f(Km, Lm)

@Lm
= '


�

✏

⇣
1� e�✏(G�K�L)

⌘ A(Km + Lm)

@Lm
�
⇣
1 + �A(K + L)e�✏(G�K�L)

⌘�
,
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(B-8)

where the derivatives are evaluated at Km = K and Lm = L. The first term in the brackets
is the fecundity benefit of acquiring more information from learning by increasing L, while
the second term is the concomitant cost because less time is spent on foraging. The benefit
depends on

A(Km + Lm)

@Lm
= e�L✏

⇣
µ� ✏A(G)

�
e↵K � 1

�
e�K(↵+✏)

⌘
. (B-9)

When K = 0 and the initial learning period is also zero (L = 0), we have A(G) = 0 and
the selection gradient reduces to

f(0, Lm)

@Lm
=

µ�

✏

⇥
1� e�✏G

⇤
� 1. (B-10)

Hence, positive L is selected for if

µ�

✏

⇥
1� e�✏G

⇤
� 1 > 0. (B-11)

Solving @f(0, Lm)/@Lm = 0 evaluated at Lm = L = L⇤, we find that

L⇤ =
1

✏
log

 
e

G✏
2

p
✏2eG✏ + 4µ2�2 � ✏eG✏

2µ�

!
. (B-12)

A first order Taylor expansion around ✏ = 0 yields

L⇤ =
G

2
� 2 +G✏

4µ�
+O(✏2). (B-13)

On substitution into eq. B-1 and Taylor expanding again around ✏ = 0 gives

A⇤(L⇤) =
Gµ

2
� 1

2�
�

✏
�
1 +G2µ2�2

�

8µ�2
+O(✏2). (B-14)

Coevolution K and L

From eq. B-2, the selection gradient on K is

f(Km, Lm)

@Km
= '


�

✏

⇣
1� e�✏(G�K�L)

⌘ A(Km + Lm)

@Km
�
⇣
1 + �A(K + L)e�✏(G�K�L)

⌘�
,

(B-15)

where

A(Km + Lm)

@Km
= A(G)

⇥
↵� ✏

�
e↵K � 1

�⇤
e�K(↵+✏)�L✏. (B-16)

Evaluating eq. B-15 at K = 0 and L = L⇤ by using eq. B-12 and letting ✏ ! 0 produces

f(Km, Lm)

@Km
=

(1 +Gµ�)(↵Gµ�� ↵� 2µ�)

4µ�
. (B-17)
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Hence selection increases K when

↵ >
2µ�

Gµ�� 1
. (B-18)

When this condition is satisfied, L and K coevolve, and the first order condition (eq. B-
7) informs us that at a candidate ESS we have @f(Km, L)/@Km � @f(K,Lm)/@Lm = 0.
Substituting eq. B-8 and eq. B-15 and taking the limit ✏ ! 0, we find from this equality
that the candidate juvenile learning period is

L⇤ =
1

↵
. (B-19)

Substituting this solution into the first order condition @f(Km, L)/@Km = 0 produces

K⇤ = G� 1

µ�
� 1

↵

h
1 +W

⇣
e↵G�1� ↵

µ�

⌘i
, (B-20)

where W (x) is the principal solution of the Lambert function defined as x = WeW . Using
the candidate solutions in eq. B-1 gives

A⇤(K⇤ + L⇤) = µL⇤e↵K
⇤
. (B-21)

Mixed strategy case

Here, we show that eq. B-3 can also be used to evaluate the optimal K⇤ and L⇤ for the mixed
control schedule u⇤(t) = (✏ + �)/ [�(1 + ⇢)]. For this case, the learning dynamics during
infancy still follows eq. B-5. For the juvenile learning phase, the amount of information
held by a mutant first follows eq. B-6 for t 2 [Km,Km + ts], where ts is held at the resident
control value owing to the assumption of no pleitropy. This means that only K or L varies,
while everything else is kept constant. From the switching time onwards; that is, for t 2
[Km+ ts, Lm], the amount of information of a mutant during the juvenile period is obtained
from eq. A-3 as

Ȧ(t) = a+ bA(t) + cP (t), (B-22)

where a = µ(�+✏)
�(1+⇢) , b = �⇢(�+✏)

1+⇢ , and c = �⇢�✏
1+⇢ . From this, we have

A(Km + Lm) = A(Km + ts)e
b(Lm�ts) +

Z Lm

ts

eb(Lm�⌧) [a+ cP (t)] d⌧. (B-23)

Because P (t) is evaluated at the resident phenotypic value, its value may change discontinu-
ously in t 2 [ts, Lm]. However, we do not need to evaluate the integral in eq. B-23 explicitly
in order to obtain the first order conditions (eq. B-7). To that aim, it is su�cient to evaluate
the derivatives of A(Km+Lm) with respect to Km and Lm at the resident phenotypic values.

In order to evaluate the variation of A(Km + Lm) in Km, it su�ces to set Lm = L in
eq. B-23 and substitute for P (t) (obtained from eq. A-3) and A(Km + ts) (obtained from
eq. B-5–B-6). Then, the right member of eq. B-23 reduces to the right member of eq. B-3
with Lm = L.
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In order to evaluate the variation of A(Km + Lm) in Lm, we have from eq. B-23

@A(K + Lm)

@Lm
=

@

@Lm

⇣
A(K + ts)e

b(Lm�ts)
⌘����

Lm=L

+ [a+ cP (L)] +

Z L

ts

@

@Lm

⇣
eb(Lm�⌧)

⌘����
Lm=L

[a+ cP (t)] d⌧, (B-24)

which depends only on resident phenotypic values. Substituting the values for P (t) and
A(K + ts), it can be shown that

@A(K + Lm)

@Lm
= e�✏L (µ� ✏A(K)) , (B-25)

which is equivalent as computing @A(K + Lm)/@Lm by using the right member of eq. B-3.
Hence, eq. B-3 can be used to evaluate the candidate L⇤ and K⇤ for both the pure and
mixed control schedules.

Appendix C: IL and SL during infancy

In this appendix, we show that allowing for IL during the infancy period does not qual-
itatively a↵ect our results. Our aim is to show that when the innovation rate µI during
infancy is small, pure SL will be favored at the beginning of infancy. This was our working
assumption in the main text.

In order to allow for both IL and SL during infancy (for t 2 [0,K]), we extend eq. 2 of
the main text along the lines of eq. 4. This gives

Ȧ(t) = �✏A(t) + u(t)µI + (1� u(t))↵
⇥
A(G)e�✏t �A(t)

⇤
. (C-1)

Applying the maximum principle as in Appendix A, the change in the Hamiltonian due to
an individual expressing a mutant control during infancy and evaluated at a candidate ESS
is

@H(t)

@um

����
um(t)=u⇤(t)

/ µI � ↵
⇥
A⇤(G)e�✏t �A⇤(t)

⇤
, (C-2)

where

Ȧ⇤(t) = �✏A⇤(t) + u⇤(t)µI + (1� u⇤(t))↵
⇥
A⇤(G)e�✏t �A⇤(t)

⇤
, (C-3)

with initial condition A⇤(0) = 0.

When A⇤(G) < et✏(µI + ↵A⇤(t))/↵, the right member of eq. C-2 is positive, whereby
u⇤(t) = 1. For t = 0, this inequality holds if A⇤(G) < µI/↵, which implies that the
inequality holds for all t 2 [0,K] since et✏ � 0 and A⇤(t) � 0. Hence, if u⇤(0) = 1, the
optimal control is pure IL throughout.

When A⇤(G) > et✏(µI + ↵A⇤(t))/↵, the right member of eq. C-2 is negative, which
implies u⇤(t) = 0. For t = 0, this inequality holds if A⇤(G) > µI/↵, in which case we
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have pure SL to begin with: u⇤(0) = 0. This is likely to obtains when µI is small. As a
consequence of social learning, A⇤(t) increases and may eventually reach the point where
A⇤(G) = et✏(µI + ↵A⇤(t))/↵. Can a mixed strategy be favored for some time interval when
this inequality is satisfied, and which entails that A⇤(t) = A⇤(G)e�✏t � µI/↵. The mixed
strategy must satisfy eq. C-3 with A⇤(t) = A⇤(G)e�✏t � µI/↵ and on substitution of the
latter equation, we have

1 + ✏/↵ = 0, (C-4)

which is in contradiction with the fact that ✏ � 0 and ↵ � 0. This suggests that we have a
bang-bang optimal control when A⇤(G) > µI/↵: u⇤(t) = 0 for t < ts  K, and u⇤(t) = 1
when ts  t  K, where ts is the switching time.

Appendix D: optimal learning length with G varying

In our analysis we assumed that the generation length G was a fixed value. Because L
and K evolved, selection determined the length M = G � L �K of adulthood (or mature
period). We now assume that M is fixed, and study the co-evolution of L and K under this
assumption. This entails that G = L+K +M is no longer fixed but will be an outcome of
selection on L and K by holding M fixed. For this case, the derivatives in the first order
condition (eq. B-7) will be evaluated atKm = K = K⇤, Lm = L = L⇤, andG = L⇤+K⇤+M .

Evolution of L

Evaluating @f(0, Lm)/@Lm = 0 at L = 0 and G = M , we find that L is selected for if

µ�

✏

⇥
1� e�✏M

⇤
� 1 > 0. (D-1)

A necessary condition for this inequality to hold is M > 0 and that the innovation rate
multiplied by the reliance on non-genetically encoded information exceeds the decay rate
(µ� > ✏). This is essentially the same result as in eq. B-11.

Solving @f(0, Lm)/@Lm = 0 evaluated at L⇤, we find that

L⇤ =
log

⇣
✏
µ� + e�✏M

⌘

log (e�✏)
(D-2)

and substituting into eq. B-1 by setting K = 0 gives

A⇤(L⇤) =
µ

✏

⇥
1� e�✏M

⇤
� 1/�. (D-3)

Coevolution of K and L

Given that eq. B-11 is satisfied, the juvenile learning period may evolve towards a candidate
ES learning length. Then, solving eq. B-7 at Km = K = K⇤, Lm = L = L⇤, and G =
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L⇤ +K⇤ +M , we obtain

K⇤ =
1

✏+ ↵


log

✓
↵


1� e�M✏

✏
� 1

µ�

�◆
�M✏

�

L⇤ =
1

✏
log

✓
↵� ✏e↵K

⇤
+ ✏

↵� ✏eK⇤(↵+✏)+M✏

◆
. (D-4)

Although these functions are relatively complicated they are analytic and allow us to evaluate
explicitly the amount of information held by an individual at equilibrium at the end of the
learning phases. This is

A⇤(K⇤ + L⇤) =
µ

✏

⇥
1� e�✏M

⇤
� 1/�, (D-5)

where the right member is identical to that of eq. D-3. This is independent of ↵. Hence,
whether oblique SL evolves or not results in exactly the same amount of information held by
an individual at steady state. In other words, Rogers’ paradox now applies to both oblique
and horizontal SL.
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