UNIL | Université de Lausanne

Unicentre
CH-1015 Lausanne
http://serval.unil.ch

Year : 2022

Genetic basis of common complex traits

Patxot Bertran Marion

Patxot Bertran Marion, 2022, Genetic basis of common complex traits
Originally published at : Thesis, University of Lausanne

Posted at the University of Lausanne Open Archive http://serval.unil.ch
Document URN : urn:nbn:ch:serval-BIB_4C2394C34F245

Droits d'auteur

L'Université de Lausanne attire expressément l'attention des utilisateurs sur le fait que tous les
documents publiés dans I'Archive SERVAL sont protégés par le droit d'auteur, conformément a la
loi fédérale sur le droit d'auteur et les droits voisins (LDA). A ce titre, il est indispensable d'obtenir
le consentement préalable de I'auteur et/ou de I’éditeur avant toute utilisation d'une oeuvre ou
d'une partie d'une oeuvre ne relevant pas d'une utilisation a des fins personnelles au sens de la
LDA (art. 19, al. 1 lettre a). A défaut, tout contrevenant s'expose aux sanctions prévues par cette
loi. Nous déclinons toute responsabilité en la matiére.

Copyright

The University of Lausanne expressly draws the attention of users to the fact that all documents
published in the SERVAL Archive are protected by copyright in accordance with federal law on
copyright and similar rights (LDA). Accordingly it is indispensable to obtain prior consent from the
author and/or publisher before any use of a work or part of a work for purposes other than
personal use within the meaning of LDA (art. 19, para. 1 letter a). Failure to do so will expose
offenders to the sanctions laid down by this law. We accept no liability in this respect.



UNIL | Université de Lausanne

Faculté de biologie
et de médecine

Département de Biologie Computationnelle

Genetic basis of common complex traits

Theése de doctorat és sciences de la vie (PhD)
présentée a la

Faculté de biologie et de médecine
de I"Université de Lausanne

par

Marion Patxot Bertran

Maitrise universitaire en sciences moléculaires du vivant, Université de Lausanne

Jury

Prof. Curdin Conrad, Président
Prof. Zoltan Kutalik, Directeur de these
Prof. Matthew Robinson, Co-directeur de these
Prof. Rachel Freathy, Experte
Prof. Sven Bergmann, Expert

Lausanne

(2022)






UNIL | Université de Lausanne

Faculté de biologie
et de médecine

Département de Biologie Computationnelle

Genetic basis of common complex traits

Theése de doctorat és sciences de la vie (PhD)
présentée a la

Faculté de biologie et de médecine
de I"Université de Lausanne

par

Marion Patxot Bertran

Maitrise universitaire en sciences moléculaires du vivant, Université de Lausanne

Jury

Prof. Curdin Conrad, Président
Prof. Zoltan Kutalik, Directeur de these
Prof. Matthew Robinson, Co-directeur de these
Prof. Rachel Freathy, Experte
Prof. Sven Bergmann, Expert

Lausanne

(2022)



UNIL | Université de Lausanne Ecole Doctorale

Faculté de biologie Doctorat és sciences de la vie
et de médecine

Imprimatur

Vu le rapport présenté par le jury d'examen, composé de

Président-e Monsieur Prof. Curdin Conrad
Directeur-trice de thése Monsieur  Prof. Zoltan Kutalik
Co-directeur-trice Monsieur Prof. Matthew Robinson
Expert-e-s Madame Prof. Rachel Freathy
Monsieur Prof. Sven Bergmann

le Conseil de Faculté autorise I'impression de la thése de

Marion Patxot Bertran

Maitrise universitaire &s Sciences en sciences moléculaires du vivant, Université de Lausanne

intitulée

Genetic basis of common complex traits

Lausanne, le 13 juillet 2022

pour le Doyen
de la Faculté de biologie et de médecine

Prof. Curdin Conrad



Pour ce qui est de l'avenir,
il ne s’agit pas de le prévoir mais de le rendre possible.

— Antoine de Saint-Exupéry






Acknowledgments

T une intrigue ou on fai n 5, Oll on T nti u on ri n
Le doctorat est une int e ou on fait les cent pas, ol on cherche ’essentiel, ou on rit et o
pleure aussi. Apres quatre ans, je suis fiere d’avoir vécu cette histoire. Ici, je tiens a remercier les

personnes avec qui je ’ai partagé et qui m’ont aidé tout au long de I'aventure.

First, I am grateful to my supervisor Mlatthew for giving me the opportunity to embark on this
journey. Thank you for being my mentor and for your guidance. I have learned a lot working with
you. I also thank past and present members of the group. Thanasis and Daniel for their advice.
Alex for his good humour and Australian accent. And especially Sven. You are a passionate, kind
and brilliant person. Tu t’es adapté a la vie lausannoise comme un poisson dans 'eau et je suis
heureuse d’avoir partagé ce chemin avec toi. Thank you for the countless explanations, the beers
by the lake and for being a good friend. I am also very grateful to Zoltan for his support over the
past two years. Thank you to the members of his group. It was a real pleasure to work with all
of you. I would like to specifically thank Ninon and Liza for their warm welcome, kindness and
the Schrodinger’s altar, a real highlight. Chiara et Marie, pour leur entrain et leur compétitivité
aux jeux de cartes. And, Eleonora for her advice and for comforting me at a difficult time in my
PhD. Last but not least, I am also thankful to the UK Biobank participants as well as David,
Milos and especially Rosanna without whom I would not have been able to work on genetics in

maternal health.

Ensuite, je tiens a remercier mes amis pour tous leurs encouragements sans jamais vraiment
comprendre mon sujet. L’équipe de Touch Rugby des Lakers, playing with you always gives me
lots of joy and energy to keep going in life. Flavia, avec qui j’ai commencé cette aventure en
lére année de Bachelor a 'UNIL. You are the most positive person I know, finding joy in the
smallest things. Un vero raggio di sole. Merci pour ton écoute, nos CP et MB du mercredi, le
top du top. J’attends avec impatience nos prochaines aventures post-PhD. Je tiens également a
remercier Nicolas pour sa bonne humeur et ses blagues tres astucieuses du mercredi. Ma famille,
mes parents et mes soeurs Anna, Juliette et Ines, pour leur soutien inconditionnel peu
importe la situation. Pour tous les appels et les vacances au soleil. T uppala, aquest doctorat s’esta
acabant i no puc esperar per celebrar-ho amb vosaltres. Yann, no habria terminado esta aventura
sin ti. Tu en as vu de toutes les couleurs pendant ce doctorat et je te remercie de m’avoir soutenu
et challengé dans toutes mes décisions. De m’avoir rappelé que pour aller de 'avant, il faut aussi
prendre le temps de s’amuser. Merci pour tous les rires, les high-fives motivants et pour ta joie de

vivre. Merci d’étre toi et de faire les cent pas avec moi.






Abstract

Common complex traits are driven by multiple genetic and environmental factors. The genetic
basis of such traits can be studied through their genetic architecture, which aims to describe
the underlying mechanism involved in the creation of phenotypic variation within the population.
Despite efforts to estimate the contribution of genomic regions to complex trait variation, the
distribution of effect sizes across functional annotations remains unknown. Most studies estimate
enrichment between annotations in downstream analysis following genome-wide association study
rather than using functional information to assess enrichment conditional on the rest of the genome.
In this thesis, I present BayesRR-RC, a scalable Bayesian model that utilizes genomic annotations
and individual-level data to jointly estimate marker effects while accounting for correlation among
genetic markers. I then introduce the CHUV Maternity Cohort, a unique cohort with haemato-
logical longitudinal measures to study maternal health and maternal-fetal outcomes at delivery.
The BayesRR-RC model is firstly applied to explore the genetic architecture of height, body mass
index, type-2-diabetes and coronary artery disease in the UK Biobank and secondly, to predict four
major pregnancy-related complications in the CHUV Maternity Cohort. This work provides LD-
unbiased estimates of annotation enrichment, determines which genomic regions are influential and
improves disease risk prediction. It also provide a comprehensive description of the haematological
changes that occur in pregnancies from the CHUV Maternity Cohort to improve differentiation
between normal physiological changes and disease pathology in pregnancy. Together, these studies
contribute to the improvement of quantitative genetic methods and their application in maternal

health, which may lead to promising advancements in personalised medicine.






Résumé

Les traits complexes communs sont déterminés par de multiples facteurs génétiques et environ-
nementaux. La base génétique de ces traits peut étre étudiée a travers leur architecture génétique,
qui vise a décrire le mécanisme impliqué dans la création de la variation phénotypique au sein
de la population. Malgré les efforts déployés pour estimer la contribution des régions génomiques
a la variation des traits complexes, la distribution des tailles d’effets entre les annotations fonc-
tionnelles reste inconnue. La plupart des études estiment ’enrichissement entre les annotations
avec des analyses a la suite d’une étude d’association pangénomique plutét que d’utiliser des in-
formations fonctionnelles pour évaluer I'enrichissement conditionnel au reste du génome. Dans
cette these, je présente BayesRR-RC, un modeéle bayésien qui utilise les annotations génomiques
et les données au niveau individuel pour estimer conjointement les effets des marqueurs, tout en
tenant compte de la corrélation entre les marqueurs génétiques. Je présente ensuite la Cohorte de
la Maternité du CHUV, une cohorte unique avec des mesures longitudinales hématologiques pour
étudier la santé maternelle pendant la grossesse et a l’accouchement. Le modele BayesRR-RC
est premiérement appliqué pour explorer I’architecture génétique de la taille, de 'indice de masse
corporelle, du diabete de type 2 et de la maladie coronarienne dans la UK Biobank. Il est ensuite
appliqué pour prédire quatre complications majeures liées a la grossesse dans la Cohorte de la
Maternité du CHUV. Cette recherche apporte des estimations non biaisées de I'enrichissement des
annotations, détermine quelles régions génomiques contribuent et améliore la prédiction du risque
de maladie. Elle apporte également une description complete des changements hématologiques
dans la cohorte de maternité du CHUV afin d’améliorer la différenciation entre les changements
physiologiques normaux et pathologiques pendant la grossesse. Ensemble, ces études contribuent
a amélioration des méthodes de génétique quantitative et a leur application a la santé maternelle,

ce qui pourrait conduire a des avancées prometteuses en médecine personnalisée.
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Introduction

SNP-trait association studies have greatly improved our understanding of the genetic architecture
of many common complex traits in the human population. Among the most studied traits are
human height (HT), body mass index (BMI), type-2-diabetes (T2D) and coronary artery disease
(CAD). However, most methods struggle to fully account for correlations in genetic data and ex-
plicitly model linkage disequilibrium (LD) when estimating contributions from genetic markers and
functional annotations. This introduction provides current knowledge in complex trait genetics, an
overview of the different methods implemented since the introduction of genome-wide association
studies (GWAS), and shows the need for better models to obtain unbiased and reliable estimates.
I specifically focus on methods developed to unravel the bridge between identified genomic signals

and the underlying biological pathways of disease.

Genetics of complex traits

The genotype is the set of genetic information of an individual that determines part of who we are
biologically and is encoded in DNA. DNA is a macro-molecule and consists of four very specific
bases called adenine (A), thymine (T), guanine (G) and cytosine (C) that work in base pairs, A-T
and G-C, to form a double-stranded structure. DNA is found in the nucleus of eukaryotic cells
where it is tightly packed into chromosomes. As diploid organisms, humans have two copies of
each chromosome, a maternal and a paternal one, and at each genetic position, we find alleles on
each chromosome copy. Chromosomes consist of approximately 3 billion base pairs, of which only
a small part is readable. These parts are genes, DNA sequences scattered throughout the genome
and encoding for specific molecules and proteins, which in turn perform one or more functions in
the body and can influence the phenotype. A phenotype refers to any trait that can be measured
or observed in an individual. In human quantitative genetics, we aim to study and explain the
phenotypic variance of complex traits among individuals and more precisely, we aim to better
understand the genetic basis of human diseases and continuous phenotypes |J Rowe and Tenesa,
2012]. A complex trait is determined by a mixture of multiple genetic and environmental factors.
Height is a good example, it is well known that children’s height resembles that of their parents,
even though it varies from one individual to another along a spectrum [Visscher, 2008]. This phe-
notypic variation can be explained by environmental factors such as nutrition, but more widely by
genetics, through genes and variations found in the human genome. In contrast to complex traits,
Mendelian traits are determined by single genetic changes that result in large phenotypic differ-
ences |Zwick et al., 2000]. Known examples of such single-gene diseases in the human population

are sickle cell anemia or Huntington’s disease.



Genetic variance can be further partitioned in three components [Falconer and Mackay, 1983].
The first is the additive genetic variance, in which we assume that genes contribute to the phe-
notype in an additive fashion. Additive genes provide a "what you see is what you get" approach
as the effect of individual alleles on the phenotype is continuous and becomes measurable. The
second and third are the dominance and the epistatic genetic variance. Both describe non-additive
effects. Dominance is driven by interactions within a single locus (genetic position). For example,
let’s consider the shape of a pea, as Gregor Mendel studied in the 19th century. The round and
wrinkled shapes are associated with the A and a alleles respectively. We observe that peas with the
AA and Aa genotypes are round while peas with the aa genotype are wrinkled. The presence of
the A allele cancels out the other and we can conclude that there is a complete dominance of the A
allele. This dominance effect may vary dependent on the phenotype studied. Epistasis is of greater
complexity and results from interactions within and between multiple loci. The proportion of phe-
notypic variance explained by genetics is called the heritability. It is also a measure of resemblance
among individuals and there are two perspectives to it [Falconer and Mackay, 1983|. The broad
sense heritability, which includes additive, dominant and epistatic effects and the narrow sense
heritability taking only additive effects into account. Traditionally, the broad sense heritability
has been measured in family or twin studies. However, non-additive effects are highly discussed in
the field because they are difficult to estimate and their contribution to the total genetic variance is
expected to be very small [Hivert et al., 2021]. Genetic quantitative studies mainly assume additive
effects only and estimate the heritability in the narrow sense to describe the genetic variance of

complex traits.

Human genome sequencing

Genome sequencing is the reading of base pairs and a great step forward in the study of genetics.
The first DNA sequencing technique was invented by Frederick Sanger in 1977, and since then,
it continues to progress with advances in genomics, information technology, computer science and
biotechnology. In the 90’s, the Human Genome Project, an international scientific research project
aiming to sequence the entire human genome, began. The first draft is published in 2001 before
completion of the project in 2003, suggesting that the human genome includes 30,000 to 40,000
protein-coding genes [Lander et al., 2001]. The sequencing of the first genome sparked others

large-scale projects to reference and study human genome variation such as the Haplotype Map-



ping Project (HapMap) in 2003, whose phases I |Altshuler et al., 2005], II [Consortium et al.,
2007] and III [GENOMICS, 2010] were published successively, and the 1000 Genomes Project
(1000G) |Durbin and Altshuler, 2010}/Consortium et al., 2015| initiated in 2008. Combined they
now include up to 3,901 individuals from 28 global populations with different ancestries. Following
the completion of 1000G in 2015, 88 million variant sites were identified, of which 84.7 million
are single-nucleotide variants (SNPs), 3.6 million short indels (insertions or deletions) and 60,000
structural variants such as large deletions or copy number variants |Consortium et al., 2015]. Ge-
netic variants are DNA changes as a result of mutations and are often identified using a reference
genome. Because genetic variants can be more or less common in the population, we use minor al-
lele frequency (MAF) to measure their frequency. Results from 1000G identified approximately 64
million autosomal rare variants with MAF<0.5% and 8 million common ones with MAF>5%. |Con-
sortium et al., 2015] report that we find variation in about 4 to 5 million sites with a majority of
common SNPs in a single human genome and that this number varies across different population

ancestries.

With a rapidly growing catalog of SNPs, researchers have naturally turned toward the possibil-
ity of using LD to study complex traits and human diseases. Using HapMap, recombination sites
were shown to be associated with boundaries of LD regions emphasizing that the human genome is
structured in blocks of varying size [Gabriel et al., 2002]. LD reflects non-random loci associations
and measures the correlation between neighbouring alleles. LD levels are affected by recombination
but also natural selection, genetic drift and mutations, which is why local and genome-wide LD
patterns are indicative of past events in the genetic and evolutionary history of populations |Ardlie
et al., 2002, Sawyer et al., 2005]. Since the recombination frequency is lower when genetic distance
is reduced, two neighbouring loci tend to be inherited together and to have higher LD. This is
extremely useful as it implies that we can sequence a subset of SNPs that may inform us about
other linked SNPs [Slatkin, 2008|. This approach is called SNP genotyping. Its goal is to determine
the genotype at specific positions, which allows to optimize the cost of generating human genetic
data. Genotyping micro-arrays target common SNPs as well as specific sets of clinically-relevant

SNP with different MAF. These micro-arrays are updated as genetic discoveries are made.

Today, several initiatives and consortia are focused on generating and aggregating data for
genomic research. Among these is the UK Biobank, which has been collecting a massive amount
of environmental, lifestyle and genetic data from 500,000 participants since 2006 [Sudlow et al.,
2015, Bycroft et al., 2018]. There is also the Haplotype Reference Consortium (HRC), which

describes over 60,000 human haplotypes (group of alleles on the same chromosome that are trans-



mitted together) [McCarthy et al., 2016]. Haplotypes are a valuable resource because they allow
imputation of genotypic data, which consists in completing the data with a number of SNPs in-
herited together thereby increasing the number of variants studied. Finally, a third and recent
initiative to mention is the Trans-Omics for Precision Medicine (TOPMed) program, a valuable
resource for personalized medicine research with approximately 180,000 participants |[Taliun et al.,
2021]. It aggregates sequencing data, omics data such as metabolic profiles or protein expression
patterns, and other types of environmental and clinical data with the goal of better understand-
ing heart, lung, blood, and sleep disorders. Taken together, these efforts have led to a better
understanding of the patterns of genetic variation in humans and have provided quality data for

estimating their contribution to phenotypic variation in the human population.

GWAS and the genetic architecture of traits

SNP-trait association studies play a powerful role in understanding the genetic basis influencing
an individual’s phenotype, disease risk and response to the environment. The objective of GWAS
is to identify genetic variants associated with a trait or disease |[Uffelmann et al., 2021] (Figure .

We want to test the association between an allele and a given phenotype, i.e. whether a particular
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Figure 1. Genome-wide association studies. GWAS consists in identifying SNPs associated with a
phenotype in a population. First, a number of individuals are genotyped. Genotyping micro-arrays mainly target
common SNPs. Second, genotype data is usually imputed. Imputation uses haplotypes to complete the data with a
number of SNPs that are transmitted together. These haplotypes are used as references and come from initiatives
such as 1000G |Durbin and Altshuler, 2010L/Consortium et al., 2015 or HRC [McCarthy et al., 2008|. Then, each
SNP is tested individually for association as described in the main text. Finally, the results are combined in a
summary statistics that is generally made publicly available.



allele is found more often than expected in individuals with T2D. The simplest and widely used

GWAS approach is to apply a linear regression model per SNP such as for each individual i:

Y=Za+XB+¢ (1)

where Y is a vector with the individual’s phenotypes, Z is a matrix of covariates for each indi-
vidual and « is a vector with the corresponding covariate effect sizes. GWAS typically adjust for
sex, age, genotyping batch, if any, and ancestry to account for stratification in genetic data but
these can vary according to the studied phenotype. X is a matrix with the genotype value coded
as the dosage effect allele 0, 1 or 2 at a single SNP for each individual. For imputed SNPs dosage
is between 0 and 2. 3 is a vector with the corresponding SNP effect size. ¢ ~ N(0,02) is a vector
of residual errors. GWAS linear models are applied to continuous complex traits, i.e. height. In
case of binary traits, i.e. presence or absence of T2D, we can (i) apply logistic regression instead
or (ii) assume that the trait is continuous with an underlying continuous liability. Heritability is
then estimated linearly on the observed scale and we can subsequently transform it to the liability
scale, taking into account the disease prevalence as cases could be over-represented relative to
the population prevalence |Falconer, 1965} Lee et al., 2011]. This second approach allows a better

comparison of the genetic basis between complex traits |Ojavee et al., 2022].

In the past 15 years, single-SNP GWAS has led to a substantial number of discoveries and
progress in complex-trait genetics and translational medicine [Visscher et al., 2017]. To date, over
4,300 GWAS papers have identified more than 55,000 SNPs associated with approximately 5,000
complex traits and diseases |Loos, 2020], raising several questions about their interpretatibility:
what can we say from a genome-wide significant SNP? How much do "top hits" actually contribute
to i.e. T2D or schizophrenia? Through which biological pathways? Numerous studies have focused
on answering these questions to better understand the genetic architecture of complex traits, by
taking a closer look at GWAS results. The genetic architecture refers to a more detailed under-
standing of the genetic contributions to a given trait through different characteristics such as: the
number of variants, their frequency, if there is a genomic function involved or interactions with
other genetic components [Timpson et al., 2018]. In the literature, genetic architecture is often
described as monogenic, oligogenic, or polygenic depending on the number of genetic contribu-
tions [Timpson et al., 2018]. Monogenic traits are characterized by single, rare genetic changes
with high penetrance, whereas complex traits are more polygenic involving multiple variants, and
GWAS typically identify common SNPs with low to moderate effect sizes [McCarthy et al., 2008].
Other proposed architectures include the omnigenic model, which suggests that a modest number

of core genes are directly involved in disease etiology and that an infinite number of small periph-
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Figure 2. From genetic data to the architecture of common complex traits. A chronological
overview of what has been done to better understand the underlying biology of common complex traits. The timeline
highlights key progress in method development with the different challenges encountered since the experimental
design of GWAS. It also describes the rapid increase of data experienced in the last 15 years.

eral contributions also influence disease through the core genes [Boyle et al., 2017]. This model

is much discussed |[Wray et al., 2018] and differs from the infinitesimal model, where each loci

influences and is useful to describe the polygenic architecture of complex traits. SNP estimates
obtained from GWAS hold great potential to better understand the underlying genetic architecture
of complex traits which remains one of the biggest challenge in the field. Figure 2] summarizes the
main models and challenges discussed in this introduction, for exploring genetic annotations or

functions involved in complex diseases.

So, as GWAS became popular to identify susceptible markers contributing to a phenotype,

GWAS-hits were further investigated using pathways analysis to discover potential causal genes

involved |Lango Allen and et al., 2010, Ripke and Neale, 2014}|Locke and et al., 2015, Hao et al.,|

|2018/|Gong et al., 2018|[Vésa et al., 2018]. For example, [Locke and et al., 2015] published a GWAS

meta-analysis of BMI, commonly used to define obesity, in 339,224 individuals. They identified 97
BMTI-associated SNPs and investigated the genetic architecture of BMI by (i) manually examining
SNPs in high LD (r-squared > 0.7) and all genes within +500 bp from all BMI-associated-SNPs;

(ii) applying DEPICT [Pers et al., 2015] and MAGENTA [Segre et al., 2010], two widely used

integrative tools for pathway analyses, to identify specific pathways and potential causal gene sets.
DEPICT was also used to identify specific tissues and cell-types based on gene expression near

the 97 BMI-associated SNPs and tested for significant enrichment. Using this complementary



approach [Locke and et al., 2015] showed strong enrichment in the central nervous system and
isolated the hypothalamus, pituitary gland, hippocampus and limbic system known to be linked
with appetite regulation, cognitive functions and emotions. Over the years, such complementary
approaches highlighted potential causal genes and provided strong genetic evidence for particular

biological pathways [Ripke and Neale, 2014, Locke and et al., 2015].

There are a variety of gene prioritization methods similar to DEPICT |Pers et al., 2015] and
MAGENTA [Segre et al., 2010] that also use different omics data. One of them is to perform a
transcriptomic association study (TWAS) [Gusev et al., 2016, Xu et al., 2017 to discover possible
functional annotations from the GWAS statistics. The idea behind this approach is to integrate
gene expression data mostly from GTEx |[GTEx Consortium, 2015] with GWAS summary statistics
and an LD reference panel from 1000G to find any evidence of expression-trait associations. An
example of TWAS application is a recent study on birth weight to identify any potential eQTLs
(quantitative trait loci affecting gene expression) underlying associations of birth weight with
maternal and fetal effects [Warrington and Beaumont, 2019]. However, TWAS mostly applies to
expression data only, although it can be extended to incorporate other plausible regulatory variants
such as splicing or histone marks [Gusev et al., 2016]. The results are dependent upon the quality
of the gene expression data and TWAS does not exclude the possibility that identified eQTLs

might be caused by the phenotype instead of the SNP.

Explicitly modelling LD

There are a number of issues in the experimental design of GWAS that prohibit a full characteri-
zation of genetic effects and how they might influence disease. Among these issues is the fact that
millions of markers are tested one at a time and so, the significance threshold needs to be adjusted
to account for multiple testing [Tam et al., 2019]. Typically, a threshold of P — value < 5-10e — 8
is used assuming 1 million independent tests and using Bonferroni correction (false discovery rate
at 5%). Due to the stringent threshold, smaller effects may be difficult to identify and larger
sample sizes are required. Moreover, a number of factors need to be considered when running a
GWAS such as population structure or assortative mating, which can affect the distribution of
genetic variance and bias the results if ignored. Another major concern is controlling for LD,
which utterly fails to comply with the independence assumptions made in GWAS, resulting in an
overestimation of SNP estimates [Vilhjdlmsson and et al., 2015, Maier et al., 2018|. Because of LD,
GWAS-lead SNPs found to be associated with a trait are not directly informative with respect to

the target gene or mechanism driving the studied phenotype [Visscher et al., 2017]. Any functional
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Figure 3. GWAS identified SNPs in a high-LD architecture. This example aims to illustrate
that lead SNPs identified from a typical GWAS are not directly informative with respect to the tagging genomic
region. Using 87,000 markers and 20,000 individuals from the UK biobank, we assigned every second marker to
group 1 while the others were assigned to group 2. Groups are thereby in high LD because for every marker in group
1, adjacent markers are in group 2. We simulated a genetic variance of 0.6 explained by 1000 randomly assigned
SNPs in group 1 only. Among the 194 SNPs to be considered independent (r2 measure of LD between SNPs < 0.1)
half of them belong to group 2, which does not contribute to the genetic variance simulated. Furthermore, we only
identify 23 out of the 1000 true causal SNPs.

annotations in the human genome might be correlated and complementary analyses cannot fully

account for this correlation structure, further resulting in biased enrichment estimates, i.e. [Locke

land et al., 2015] and [Ongen et al., 2017] highlight the central nervous system as a significantly

enriched tissue but how can we be certain that we are not just tagging regions in high LD? As an
example, I ran a single-SNP GWAS simulation of 20,000 individuals and 87,000 markers from the
UK Biobank (Figure [3)), where 1000 SNP effects are assigned to group 1 that is in high LD with
markers in group 2. Groups can be perceived as two functional annotations with all the genetic
variance explained by annotation 1. We identified 194 independent lead SNPs, of which 89 in
the zero-variance component group 2. This provides evidence that GWAS ignores LD and further

pathway analysis from these 194 trait-associated SNPs could show biased enrichment estimates.

With GWAS being so successful, there has been an overwhelming and continuous increase of

GWAS summary statistics available in the public domain [Visscher et al., 2017]. Consequently,

new methods such as LD score regression (LDSC) were developed to: (i) properly and explicitly

model LD and (ii) estimate the enrichment of specific genomic regions from summary statistics.

LDSC was first introduced by [Bulik-Sullivan et al., 2015] in 2015 to quantify SNP heritability

from summary statistics and then extended to stratified LDSC (s-LDSC) by |Finucane et al., 2015)




to partition the SNP heritability and estimate enrichment of heritability in functional annotations.
By combining LD reference scores and prior-biological information, s-LDSC has facilitated the
discovery of functional elements in the genome and provided us with key information about the

underlying genetic architecture of many complex traits. In 2018, a recent study on major depressive

disorder (MDD) [Wray et al., 2018 identified 44 SNPs associated with MDD clinical features. They

also provided potential clues to common biological mechanisms that may influence other common
psychiatric diseases using s-LLDSC. The study combined GWAS summary statistics from seven dif-

ferent cohorts and investigated the contribution of several functional annotations constructed from

two public projects on functional elements in the human genome, ENCODE [Consortium, 2012]

and Roadmap [Kundaje and Meuleman, 2015].

While s-LLDSC is able to detect enrichment, it remains an approximation and shows three major
limitations. First, it requires a well referenced LD panel that matches the population studied; i.e.

if you have a European ancestry population, you need an adequate European reference panel to

correct for LD in your data [Finucane et al., 2015, Bulik-Sullivan et al., 2015]. Second, it assumes

that a rigorous quality control of the genetic data was applied and that GWAS summary statistics

are properly combined. Any presence of heterogeneity in the data can easily affect SNP heritability

and enrichment estimates [Marees et al., 2018]. Third, recent work has shown striking differences

between LDSC and SumHer [Speed and Balding, 2019], implemented in the LDAK software to

estimate (i) SNP heritability, (ii) enrichment of heritability, (iii) confounding bias and (iv) genetic

based on data from Speed, D. and Balding D. J. (2019). Nature Genetics, 51(2):277...284
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Figure 4. Difference in s-LDSC and SumHer functional enrichment estimates. This
figure shows the difference in the estimates of functional enrichment from sLDSC (53-part model) and SumHer-
GC (25-part model). In Speed et al. (2019), average enrichment estimates where calculates for the 24 functional
categories from Finucane et al. (2015) and showed striking differences.
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correlations applied to GWAS summary statistics. When considering the 24 functional categories
described in |Finucane et al., 2015|, s-LDSC reports an average 13-fold enrichment of heritability in
conserved regions across 17 traits whereas SumHer shows no significant enrichment above two-fold
for any functional category (Figured)). However, if we look at their modelling assumptions, s-LDSC
assumes that each SNP contributes equally across the genome, whereas in SumHer, SNPs in high
LD regions are expected to contribute less than SNPs in low LD. These discrepancies indicate that

enrichment estimates are sensitive as to how we model LD [Speed and Balding, 2019).

Fitting SNPs jointly

Methods based on GWAS summary statistics as LDSC approximate a mixed effect model and
should perform similarly to a restricted maximum-likelihood (REML) model, which uses individual
level data and fits SNPs jointly. So, instead of considering a single SNP at a time as in equation
each SNP is estimated conditionally on the joint effects of all the other SNPs in the model, to

accommodate for linkage between them such as:

Y=Za+XB+g+e (2)

where g ~ N(0,0%W) is a random effect to account for other SNPs. 02 measures the additive
genetic variance and W is the genomic relationship matrix (GRM), describing the genetic rela-
tionship between individuals from SNP data. The software GCTA is commonly used and applies
a GREML (REML fitting a GRM) model [Yang et al., 2011aj. Initially developed to estimate
SNP-heritability, the software was subsequently extended to partition the genetic variance compo-
nent by chromosomes and genomic segments [Yang et al., 2011b,|Gusev and et al., 2014]. However,
GREML has its own limitations starting with the model specification. Like s-LDSC, it assumes
that we are in linkage equilibrium, which poorly reflects reality and might influence SNP estimates
particularly in high LD regions [Speed and Balding, 2019]. Second, because the number of variants
is much larger than the number of individuals included, running GREML becomes a computational
nightmare specially when analyzing multiple functional categories with tens of thousands of indi-
viduals |Finucane et al., 2015]. To overcome these issues, a paper introduced RHE-reg-mc a fast
and scalable method-of-moments to jointly estimate multiple variance components [Pazokitoroudi
et al., 2020]. Simulation work showed a 400 fold reduction in computation time compared to
REMUL-based methods. SNP heritability was computes in only 40 min for 300,000 individuals and
500,000 SNPs partitioned in 250 components. As a trade-off, RHE-reg-mc unfortunately shows

larger standard errors and is statistically less efficient.

11



On top of the computational challenge, the GREML model assumes an infinitesimal genetic
architecture where the genetic variance is explained by an infinite number of small effects from all
markers. Given the number of markers, several studies have proposed using prior distributions to
account for markers that may have no effect [Meuwissen et al., 2001} [Erbe et al., 2012]. BayesR,
a Bayesian mixture model for genomic data, was first developed to improve genomic phenotype
prediction in dairy cattle breeds [Erbe et al., 2012]. In 2015, [Moser et al., 2015a] further intro-
duced BayesR to estimates the number of trait-associated SNPs and their heritability from human
individual level data. BayesR is coupled with a Markov chain Monte Carlo (MCMC) scheme and
has shown robust results for inferring the genetic variation of traits |[Erbe et al., 2012/[Moser et al.,
2015a). In this framework, SNPs are jointly estimated and treated as random variables. SNP
effects () are then drawn from four mixture distributions: a spike at zero and three zero-mean
distributions, each with a fixed variance. This last feature allows the user to distinguish SNPs
according to their effect size. Some will not enter the model, some will have small effects, some
will have moderate effects and some will have larger effects. The advantage of using a Bayesian ap-
proach is that it is flexible and can be applied to sequencing data while including prior-information
on the distribution of effects. Modelling a spike at zero allows for selection and only non-zero SNPs
effects can be used if one wishes to predict the phenotype. BayesR simultaneously informs about
us on the number of variants involved and their contribution to the genetic variance at different

effect magnitudes.

BayesR was subsequently extended to BayesRC to estimate the variance explained of multiple
mixtures of SNP categories [MacLeod et al., 2016]. The model uses prior biological information to
divide SNPs into classes that are likely to be relevant and show enrichment for a trait. BayesRC
has mostly been applied to investigate complex traits in plant and animal breeding and an im-
portant caveat of this method is handling bigger sample sizes in human genetics. In 2020, [Banos
et al., 2020] introduced BayesRR to estimate associations between measured epigenetic marks and
disease risk in humans. In contrast to BayesRC coded in Fortran, BayesRR was implemented
in C++-11.0 and using the matrix algebra library Eigen |Guennebaud et al., 2015]. The imple-
mentation handled over 5,000 individuals and is computationally extremely promising for multiple
human genetic applications |[Banos et al., 2020]. A combination of the two Bayesian methods would
therefore provide a more complete characterization of the underlying biological pathways while re-
ducing computational cost. Moreover, if we integrate functional annotations into this Bayesian
framework, we could simultaneously estimate the SNP heritability, the genetic contribution of
these annotations and each SNP effect size while taking into account the correlation among all

parameters. With this strategy and as annotations accumulate, SNP and enrichment estimates
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would improve and the genetic architecture of common complex diseases could be fully explored

in an unbiased and objective manner [Moser et al., 2015a, MacLeod et al., 2016].

The first chapter of my thesis focuses on the development of a novel Bayesian model which in-
tegrates functional annotations to better understanding the genetic architecture of complex traits.
My interest then turn towards the application of association studies and more specifically to ap-

plications in maternal health.

From association studies to health care

As discussed, numerous pipeline investigate the genetic architecture of complex diseases from ge-
netic loci identified in GWAS. These pipelines aim to improve our understanding of disease etiology
and determine potential drug targets, that would then be validated in molecular experiments and
clinical trials |[Loos, 2020]. For example, in [Dwivedi et al., 2019|, they demonstrate through a
genotype study and metabolic profiling in vivo that a rare allele in the SLC30A8 gene has a
protective effect against T2D. They described that the allele is enriched in Western Finland and
that this protection comes from a better response to glucose leading to an insulin secretion that is
more efficient. Their findings on SLC30A8 provide candidate drug targets for maintaining insulin
secretion in patients with T2D. This is a follow-up study to a previous paper published in 2014
where [Flannick et al., 2014] identified 12 protein-truncating variants in SLC30A8. The gene also
has a common variant that is associated with T2D, glucose and proinsulin levels. These studies

are motivated by initial GWAS results on T2D.

Results from SNP-trait association studies have also been widely used in epidemiology. A pop-
ular application is to explore causality between an exposure, i.e. systolic blood pressure (SBP) and
an outcome, i.e. pregnancy-induced hypertension (PIH) through Mendelian randomisation (MR)
analysis where genetic variants robustly associated with the exposure, are used as a proxy to assess
causality, i.e. the causal effect of SBP on PIH. MR is an excellent alternative to randomized con-
trolled trials, where one would need to expose individuals to different exposures such as smoking
that are often neither practical nor ethical |[Lawlor et al., 2008]. MR draws its benefits from the
principle that alleles are transmitted randomly from parents to offspring, creating a framework
in which genetic instruments would be independent of any confounding factors. Furthermore,
because genotypes are assumed to be fixed from birth, associations with an outcome would not
be expected to be due to reverse causation [Lawlor et al., 2008]. The example mentioned above

has been studied by |Ardissino et al., 2022] who performed MR to explore the causal effects of
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maternal cardiovascular risk factors on preeclampsia and on eclampsia, two hypertension diseases
in pregnancy affecting both maternal and fetal health. They find evidence that SBP as well as

BMI and T2D contribute to cause both complications during pregnancy.

Finally, SNP estimates from association studies can be used to predict an individual’s disease
risk, a key feature in personalised medicine. Typically, disease risk prediction is quantified using
a polygenic risk score (PRS) where we aggregate the effect of genetic variants estimated using
SNP-trait associations [Loos, 2020]. Such scores have shown to be predictive for various complex
diseases. In a clinical setting, they are combined with other non-genetic risk factors like age,
cell blood count, disease family history or smoking status, to help physicians in their decisions
[Lambert et al., 2019]. Predictive analysis can also shed light on the underlying and overlapping
genetic architecture of complex traits. For example, [Steinthorsdottir et al., 2020] published a large
meta-analysis on preeclampsia which included a PRS analysis. They predicted preeclampsia and
gestational hypertension in Icelandic individuals from the deCODE cohort [Gudbjartsson et al.,
2015 using a PRS constructed from GWAS results on hypertension in the UK Biobank data. Their
results indicate a correlation between hypertension and preeclampsia suggesting a common genetic
background. However, the effect of the hypertension PRS on gestational hypertension was almost

twice as large, which probably implies the existence of other risk factors specific to preeclampsia.

Pregnancy and maternal health

Among the most studied pregnancy complications in genetics are preeclampsia, gestational dia-
betes mellitus (GDM), preterm birth (PTB), hyperemesis gravidarum (HG), placental abruption
(PA) and miscarriage. An overview of standard GWAS conducted in maternal health is given
in Table Current results show that having one complication most likely increases the risk of
another and the risk of adverse outcomes at delivery. They also suggest that complex maternal
traits have a genetic basis, which appears to be highly polygenic, and for this reason larger sample
sizes are needed to explore the role of genetics in maternal health [Barbitoff et al., 2020]. In a
study just published in March 2022, the Genetics of Diabetes in Pregnancy Consortium aggregated
several studies on GDM and performed the largest and most diverse GWAS meta-analysis avail-
able |[Pervjakova et al., 2022]. The study includes 5,458 cases and 347,856 controls. They identified
5 genes associated with GDM, 4 of which are also associated with other traits. For instance, the
gene MTNR1B has already been associated with T2D and fasting blood glucose characteristics
in non-diabetic individuals. Maternal SNPs at the MTNR1B gene were also associated with fast-

ing blood glucose in pregnant women and birth weight of the offspring. Following these results,
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they performed (1) an enrichment analysis in which they identified significant enrichment mapping

to protein-coding exons, chromatin immuno-precipitation sequence (ChIP-seq) binding sites for 3

transcription factors, and chromatin states marking enhancers and transcribed regions in adipose

tissue and skeletal muscle; and (2) an MR analysis where they identified a causal link between

BMI and GDM risk.

Table 1. List of GWAS in maternal health.

Trait Study Cases | Controls | Sample | Associations
Preeclampsia | |Johnson et al., 2012] 538 540 maternal | INHBB
[McGinnis et al., 2017] 4,380 310,238 fetal FLT1
[Steinthorsdottir et al., 2020] | 6,775 375,372 fetal FLT1
9,515 157,719 maternal | ZNF831
FTO
MECOM
FGF5
SH2B3
GDM [Kwak et al., 2012] 931 783 maternal | CDKALI
MTNRI1B
[Wu et al., 2021] 103 115 maternal | SYNPR
CDH18
CTIF
PTGIS
|[Pervjakova et al., 2022] 5,458 347,856 maternal | MTNRIB
TCF7L2
CDKALI1
CDKN2A-CDKN2B
HKDC1
PTB |Zhang et al., 2017| 3,331 39°237 maternal | FBF1
EEFSEC
AGTR2
[Rappoport et al., 2018| 1,349 12,595 fetal 2 SNPs
[Liu et al., 2019] 4,775 79'914 fetal 2 SNPs
[Tiensuu et al., 2019] 247 419 fetal SLIT2
[Taliun et al., 2021] 18797 | 260°246 maternal | 6 SNPs
HG [Fejzo et al., 2018] 1’306 15’756 maternal | GDF15
IGFBP7
PA [Workalemahu et al., 2018| 959 1,553 maternal | 12 candidate genes
Miscarriage [Laisk et al., 2020| 69,054 | 359,469 maternal | 5 SNPs

Our knowledge on the etiology of obstetric complications is currently limited, and there are

few ways to effectively prevent them [Barbitoff et al., 2020]. SNP-trait association studies can

help to better understand the mechanisms underlying these complications and identify promising

therapeutic targets. Such studies can also help predict complications even before pregnancy oc-

curs, using a PRS constructed from the mother’s genetics. Genetic scores could then be combined

with other risk factors to improve prediction, i.e. to predict preeclampsia one could combine PRS
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with maternal clinical factors such as BMI, parity, or history of preeclampsia, as well as biomark-
ers [Antwi et al., 2020]. PRSs would allow a better stratification of women in low and high-risk
pregnancies [Ma and Zhou, 2021], and would assist clinicians in improving maternal care to min-
imise adverse outcomes, i.e. your pregnancy risk status can help decide where to be monitored and
where to give birth. With the availability of genotyping, quantitative genetic research on maternal
health has increased in recent years. This topic is extremely important but also complex because
of ethical considerations related to maternal and fetal data, the context of the pregnancy itself,
and the modest sample sizes available |[Barbitoff et al., 2020]. In Table |1} some GWAS use a looser
p-value threshold of p<10-5 instead of p<10-8 to further explore associations. As we move forward,
larger studies will be needed to identify new genetic associations and take advantage GWAS in

obstetric medicine.

To date, there is very little emphasis on what makes a healthy pregnancy from the mother’s
perspective, the physiological changes she undergoes, and the genetic basis of maternal health. For
example, are physiological measurements in early pregnancy indicative of measurements later on?
Are women more likely to experience complications if measurements fluctuate? Can risk groups be
predicted early in pregnancy? In the second chapter of my thesis, I explore data from the Lausanne
maternity hospital and apply different statistical models with the aim of finding physiological and
genetic risk factors, to predict major pregnancy-related complications and support clinicians in

maternal health care.
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Chapter 1

Bayesian penalized regression for complex trait analysis

This first chapter outlines my contribution and involvement to the development of BayesRR-RC,

which builds on previous work from [Banos et al., 2020], and is presented in the manuscript:

Probabilistic inference of the genetic architecture underlying functional enrichment
of complex traits (Patxot et al. (2021) - see[Appendix A]). The project is motivated by the desire
to better understand the genetic architecture of traits, to identify genomic regions, functions or
genes that contribute most to a trait whilst accounting for all structure in the data. To achieve that,

we integrated functional genome annotation information into the BayesR framework, which uses

Bayesian statistics coupled with an MCMC scheme [Moser et al., 2015b], to jointly estimate the

contribution of SNP-marker groups to complex traits as described in Figure[§] As a starting point,

I adapted the BayesR algorithm of [Banos et al., 2020] to infer the variance explained of multiple

genetic components and implemented these changes in C++411.0. The software was developed
using hybrid-parallel algorithms by Etienne Orliac, an expert in HPC applications and Daniel
Trejos Banos, a postdoc in the group. I then contributed to testing the influence of increasing
parallelism in our algorithm, wrote a wiki description and implemented a user-friendly example on

GitHub.
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Figure 5. BayesRR-RC model design. Our extended BayesR method uses prior biological knowledge
to (1) partition SNPs into multiple annotations, i.e. coding, TSS and non-coding regions and (2) quantify their
unique contribution enabling us to improve our understanding of common complex diseases. We further assign
prior mixture distributions to each SNP-marker group including a discrete spike at zero to highlight the underlying
genetic architecture within each group in (3). In the manuscript, we demonstrate through large-scale simulation
that adding LD bins to each annotation group takes into account all levels of LD in the data, which further improves
the performance of the model.
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BayesRR-RC model validation

To evaluate the performance of the model, I initially completed a set of simulations as described
in Figure [f] With Prof. Matthew Robinson, we further validated the model including MAF and
LD sub-groups, in multiple simulation settings as described in the manuscript. I specifically con-
tributed to validating the inference of simulated genetic architectures using empirical annotations,
exploring effects of relatedness on the estimates obtained from the model, examining the ability of
BayesRR-RC to recover effect sizes in specific groups compared to BayesR, and validating the use
of the posterior probability window variance (PPWYV) approach for downstream analysis. In our
analysis, the latter provides the posterior inclusion probability of a genomic region to contribute

at least 0.001% to the SNP heritability.

In summary, BayesRR-RC allows us to accurately compare and contrast the inferred underlying
genetic distribution of complex phenotypes. When enrichment is specified using prior knowledge,

the genetic architecture is accurately inferred, except in a very low polygenic setting where the
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Figure 6. Initial simulation study. Simulation with N = 20,000 UK Biobank unrelated European
individuals and M = 328,385 markers from chromosome 2. We used epigenome E062, primary mononuclear cells
from peripheral blood from the Epigenome Roadmap Project, to split SNPs into 7 groups based on 15 chromatin
states: (1) transcription start site (TSS), (2) active enhancers, (3) untranslated transcribed regions (UTR), (4)
actively transcribed regions, (5) actively transcribed zinc finger genes (ZNF Repeats), (6) inactive states and (7)
others SNPs (Rest). 5% of the SNPs in each group are QTLs, except for the unmapped SNPs where we randomly
sampled 1000 QTLs, allowing different polygenicty level in each group. (a) Violin plot of genetic variance estimates
from 20 simulations replicates of BayesRR (chain length: 10500, burn-in: 500, thin: 4). We compare our software to
(1) multi-variance component methods, Bolt-REML [Loh et al., 2015] and RHE-mc [Pazokitoroudi et al., 2019|, that
use individual-level data but provide single heritability estimates per genetic component, and (2) the total genetic
variance estimated with BayesR and calculated post-analysis for each group. P2 > 0.01 consists in quantifying the
proportion of variance estimates above a threshold of 0.01; if less than 95% of estimates are > 0.01, we will consider
this group to have a null contribution at current sample size. (b) Mean and standard deviation of genetic variance
estimates from 10 simulations replicates of BayesRR (chain length: 2000, burn-in: 1000, thin: 1), specifying the
same annotations and using 1, 2, 4, 8 and 16 tasks at 1, 5 and 10 message passing rate for our sampling scheme.
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few contributing SNPs might randomly not be picked up by the MCMC chain, resulting in a loss
of power (Figure @ Inference is improved over other approaches with partitioning of SNPs by
genomic regions and especially by LD-informed bins, in a BayesR framework with a Dirac spike
and slab prior set for each group. Validating the PPWYV approach offers an alternative to standard
GWAS for locating genetic associations at the regional level. We explicitly demonstrate that sum-
mary statistics approaches are less efficient for variance component estimation and for SNP-marker
group enrichment, than individual-level methods. And finally, we reduce the computational com-

plexity of applying a Bayesian model to large-scale genomic data such as the UK Biobank.

Application to complex traits in the UK Biobank

After performing the simulation work, we investigated the genetic architecture of CAD, T2D,
BMI, and HT measured in 382,466 unrelated European individuals from the UK Biobank. We
used 8,433,421 imputed SNP markers with MAF >0.0002. Here, I applied BayesRR-RC to the
four traits along with other methods commonly used in quantitative genetics. Among them, the
Bolt-REML software |Loh et al., 2015] did not reach the end of the estimation after 7 days, il-
lustrating the importance of scalable solutions, especially with the forthcoming sequencing data.
In the manuscript, we report results obtained with RHE-mc [Pazokitoroudi et al., 2020] and two
widely used methods based on GWAS summary statistics, s-LDSC [Finucane et al., 2015] and
SumHer [Speed and Balding, 2019]. In addition, I performed all downstream analyses to identify
significant associations and compare the number of results between methods. Finally, we used
our estimates in the UK Biobank to predict the same four complex traits in the Estonian Genome
Centre data. I specifically contributed to the comparison with the MegaPRS software |[Zhang et al.,
2021] where T used a boltLMM prediction. Following this analysis, Prof. Matthew Robinson con-
ducted a follow-up study to further improve genomic prediction accuracy and put into perspective

the application of BayesRR-RC implemented in the GMRM software [Orliac et al., 2021].

The results showed a similar distribution of variance among the groups between the four traits.
Due to the Bayesian nature of BayesRR-RC, it is not obvious how our results can be directly
compared to frequentist methods. If we consider the associations based on a PIP > 95%, across
the four traits, we identified 391 SNP associations, of which 53% have already been listed by the
fastGWAS UK Biobank summary statistic data with a p-value < 5x10e-8 [Jiang et al., 2019|.
When comparing the estimated SNP heritability across the four traits using the PPWV approach,
we identified that 32 to 44% of the genetic variance is attributed to intronic regions and 12 to 25%

to coding regions with over 3,100 independent regions having > 95% probability of contributing
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> 0.001% to the genetic variance of these four traits. The distal 10-500kb regions appear to be
more polygenic with SNP heritability estimates ranging from 22 to 28% and more than 5,400
independent regulatory regions identified. Surprisingly, less than 10% of the genetic variance is
captured by proximal regions in the 10kb upstream of the genes. Finally, prediction results showed

that we obtained higher prediction accuracy compared to MegaPRS |[Zhang et al., 2021].
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Chapter 2

Maternal cohort study

We obtained local cantonal ethics approval from the CER-VD in May 2019 for the reuse of data
collected at the CHUV Maternity Hospital between 2009 and 2014 to study maternal and fetal
toxoplasmosis infections. The CHUV data extraction unit retrieved maternal medical records in
a de-identified format for 4,347 pregnancies and made available the corresponding maternal and
umbilical cord blood samples collected at delivery. Of the latter, 1,628 samples were processed for
SNP genotyping with the help of our laboratory technician, Rosanna Pescini Gobert, Microsynth
AG and iGE3 Genomics Platform. I was actively involved in setting up the maternity cohort to
better utilize existing data, I contributed to the application at the CER-VD, to the coordination
of the SNP genotyping and all the analysis tasks. In this second chapter, I present the manuscript:
Haematological changes from conception to childbirth: an indicator of major preg-
nancy complications (Patxot et al. (2022) - see [Appendix B)), in which I sought to delineate
the haematological changes during healthy pregnancies and pregnancies affected by hypertensive
disorders of pregnancy (HDP), GDM and post-partum hemorrhage (PPH) in our cohort. I then
present my work on the genetic data for which SNP genotyping was completed in January 2022.

This work is not included in the appendix.

Haematological changes in low and high risk pregnancies

In the manuscript - we used data on 14 cell blood count (CBC) parameters, which
are routinely performed and easily accessible in any prenatal clinic, to establish haematological
changes during pregnancy. We extensively describe these changes in healthy pregnancies and
assess differences in the variation of CBC during pregnancies with either HDP, GDM or PPH
using a cubic polynomial regression and a mixed effects model. We additionally apply a survival
model to define the association of CBC and pregnancies complicated by HDP or GDM, with
birth timing. The manuscript raises the following questions: are high measurements early in
pregnancy indicative of higher later measures? Are women more likely to experience complications
if measures fluctuate? Can risk groups be predicted in early pregnancy? The short answer is
most probably, by setting up large comprehensive and integrative cohorts for maternal and fetal
medicine. Results confirmed and refined previous findings in healthy pregnancies where pregnant
women present a net decrease in red blood cell parameters followed by a stabilisation in the third
trimester. White blood cell counts mainly rises because of the physiologic stress imposed on the

body. And finally, platelet count decreases continuously. We demonstrate that routine CBC can
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be sufficiently sensitive to identify pathophysiological mechanisms occurring in early pregnancy
that will later lead to the development of obstetric or postpartum complications, identifying the
10th to 20th weeks of gestation as the most informative period to do so. However, a larger, more
recent and complete dataset from the beginning of pregnancy would allow us to further study these
changes and attempt to predict pregnancy-related complications using CBC. I am the main author
of this article, I designed the study, performed the statistical analyses, and wrote the manuscript

with helpful feedback from the co-authors.

Genetic risk prediction of maternal complex diseases

Because of its rich phenotypic data, the CHUV maternity cohort aims to better understand mater-
nal health. Specifically, it has been set up, as effectively as possible, to study HDP, GDM and PPH.
In this section, I describe how we generated the genetic data and then present some preliminary

results where I explore the major obstetric complications using predictors from the UK Biobank.

Methods
DNA extraction and SNP genotyping

Blood samples from the mother and from the umbilical cord collected at delivery were stored
at -80°C at the CHUV Maternity ward. As samples were collected for a serological study 10
years ago, they consisted largely of circulating free DNA in blood cells, which was extracted by
Rosanna Pescini Gobert and Microsynth AG. The 1,628 samples processed only include women
whose pregnancy resulted in a single live birth and for whom we have a delivery report in the
phenotypic data. Stillbirths, multiple pregnancies, and women with ICD-10 codes for conditions
other than those classified as Pregnancy, Childbirth, and Puerperium (O00-O9A) were not included
in the cohort. As DNA was extracted, our laboratory technician shipped 48- and 96-well plates
to iGE3 Genomics Platform for genotyping. SNP genotyping was conducted using the Illumina
Infinium Global Screening Array (GSA) version 2 (v2, from 2019 to 2020) and version 3 (v3, from
2021 to 2022). GSA v2 is based on the GRCh37/hgl9 human genome assembly [Church et al., 2011]
while v3 is based on the GRCh38/hg38 assembly [Schneider et al., 2017]. Both arrays genotype
~ 654,027 genome-wide SNPs and ~ 100,000 identified clinical variants. The latter are updated
from v2 to v3 and come from the ClinVar |[Landrum et al., 2020], CPIC |Relling and Klein, 2011]
and PharmGKB [Whirl-Carrillo et al., 2021] projects.

Quality control of the genotype data

To carry out any SNP-trait association study, a quality assessment and control of the SNP genotype

data is necessary to identify markers or samples of low quality [Anderson et al., 2010]. For each
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Table 2. Steps to format genotype data.

Step Software

convert each .ped/.map files to .bed/'.bim/.fam format plink 1.9 [Purcell ot al., 2007]
merge files from the same array version (v2 or v3)

convert v3 plink file from hg38 to hgl9 assembly liftOverPlink [Ritchie, 2014]
remove any non-ACGT alleles plink 1.9 [Purcell et al., 2007]
strand and ambiguous alleles check snpflip [Stovner and Cole, 2019)

exclude identified ambiguous alleles

flip identified alleles on the reverse strand

set reference allele based on the genome assembly hgl9
update snp name to chromosome:position plink 1.9 [Purcell et al., 2007)

remove any multi-allelic snps

merge v2 and v3 formatted .bed/.bim/.fam files

plate sent together, the iGE3 genomic platform provided us with IDAT intensity data files and
SNP genotypes coded in .ped and .map plink format |[Purcell et al., 2007]. Table [2 describes the
first part of the quality control which consists of combining the data into a single file containing all
bi-allelic SNPs genotyped. These are first filtered then flipped on the direct strand and referenced
using the hgl9 human genome assembly. I then filtered the data according to the following 5
criteria: (1) excluded individuals with a missing genotype rate > 30%, which is more lenient than
the typical call-rate threshold of 3% [Anderson et al., 2010] because of the lower quality of the
extracted DNA, (2) excluded individuals with a heterozygosity rate £2 standard deviation from
the mean, (3) excluded SNPs with a missing genotype rate > 10% or more, (4) excluded SNPs
not passing the Hardy-Weinberg test at p-value < 0.00001, (5) excluded SNPs with MAF < 0.01.
A total of 137 individuals and 284’929 markers were removed. I performed a principal component
analysis (PCA) to ensure that there were no specific biases, i.e. batch effects. One additional
individual was excluded from the analysis due to a much higher missing genotyping rate than the

others, leaving us with a dataset of 1482 individuals and 389’717 SNPs to impute.

Genotype imputation

The data were imputed in collaboration with the group of Prof. Olivier Delaneau at the De-
partment of Computational Biology, UNIL. PhD student Robin Hofmeister did the imputation of
chromosome 1 to 22 in the following way: (1) ensuring SNPs are consistent with the hg19 reference
genome assembly using beftools [Danecek et al., 2021], (2) phasing to infer haplotypes from the
genotype data using SHAPEIT4 v4.2.1 [Delaneau et al., 2019] and the HRC reference panel [Mc-
Carthy et al., 2016], (3) imputing alleles using IMPUTES5 [Rubinacci et al., 2020] and the HRC

reference panel, and (4) filtering of imputed SNPs based on INFOscore > 0.8 using beftools, which
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rendered a total of 18,026,053 SNPs. I then applied the same filters as for the genotype quality con-
trol excluding 169,257 SNPs that failed the Hardy Weinberg test (p-value < 0.0001) and 9,715,525
SNPs with MAF < 0.01. In addition, 49 individuals were excluded for having opposite genetically
inferred gender from the X chromosome prior imputation (using plink 1.9 [Purcell et al., 2007]) and
reported gender in the phenotypic data. Finally, to validate the sufficient quality of the data, I per-
formed two additional checks. First, I compared MAF of SNPs present in our data and in the UK
Biobank which resulted in a correlation of 0.98 (p-value < 2.2e-16). Second, I predicted maternal
height in our data using GMRM |Orliac et al., 2021] predictors from the UK Biobank. Again, the
accuracy was reassuring with a correlation of 0.47 (p-value < 2.2e-16). As a comparison, this value

is approximately 0.6 when predicting height in the Estonian Genome Centre data (see|Appendix Al).

The final dataset includes 8,141,271 SNPs and 1470 individuals, of which 814 are babies, 649
are mothers, and 7 could not be linked to phenotypic information. Of the 649 mothers, 5 had
incomplete phenotypic information. These were not included, leaving 644 mothers in the following
analysis. We also validated 429 maternal-infant pairs from the phenotypic data that had a Kin-
ship coefficient > 0.17 and an IBSO < 0.0012 computed using the KING software [Manichaikul
et al., 2010]. Figure [7|shows the ethnic background across maternal samples and different sample
sizes according to four major pregnancy-related complications: PTB, PPH, HDP and GDM. These

complications are defined using the delivery report and ICD-10 classification, as described in the

methods section of the manuscript in

Prediction into the Maternity CHUV cohort

Given the low number of maternal samples (649 women) and as it is becoming increasingly evident
that the genetics of complex diseases are characterized by a large number of markers with tiny
effects, we would most likely have very limited statistical power to conduct any SNP-trait asso-
ciation study. To compare, a recent paper published a multi-ancestry GWAS of GDM in which
five loci were identified as genome-wide significant in a much larger sample: 347,856 controls and
5,458 cases [Pervjakova et al., 2022|. For this reason, I decided to investigate the genetics of GDM,

HDP, PTB and PPH cases through different prediction models.

Prediction of GDM, HDP, PTB and PPH - to predict the four complications in the maternal
samples, I used posterior mean effect sizes (mean of each SNP beta included in the model) obtained
for 30 UK Biobank complex traits and generated using the GMRM model as described in |Orliac

et al., 2021]. With Sven Erik Ojavee from, a PhD student in the group, we additionally applied
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Figure 7. The Maternity CHUYV cohort. (a) Upset plot showing the number of women in the data who
experienced premature birth (PTB), post-partum hemorrhage (PPH), hypertensive disorders of pregnancy (HDP),
gestational diabetes mellitus (GDM), a combination or none of the above. The data includes 277 women who had
none of these 4 complications and 367 pregnancies presenting one or more complications. Among these, there are
181 cases of GDM, 137 of HDP, 89 of PTB, and 117 of PPH. (b) I combined the 644 maternal genotypes with
the genotypes from the 1000G study and then did a PCA to map our genotyped individuals (data) to individuals
with known ancestries in the reference panel. The scatter plot shows the first two PC reflecting ancestry diversity
across maternal samples. GIH: Gujarati Indians in Houston, Texas, USA. CHB: Han Chinese in Beijing, China.
CHD: Chinese in metropolitan Denver. JPT: Japanese in Tokyo, Japan. CEU: Utah residents with ancestry from
northern and western Europe. TSI: Toscani in Italy. ASW: African ancestry in SW USA. LWK: Luhya in Webuye,
Kenya. MKK: Maasai in Kinyawa, Kenya. YRI: Yoruba in Ibadan, Nigeria.

GMRM to GDM for 187’299 women in the UK Biobank data genotyped at 2,174,071 pruned SNP
markers (LD R? > 0.8 within a 1Mb window, using plink 1.9 [Purcell et al., 2007]). Of the 187,299
women, 794 self-reported that a physician told them they had diabetes and that they had diabetes
only during pregnancy. These women were set as GDM cases. The remaining 186,505 controls
are women who self-reported having 1, 2 or 3 live births. We adjusted the phenotype for age, age
squared, east-west coordinates, UK biobank centre, genotype batch, top 20 genotypic PCs and
number of live births. We applied GMRM running one chain for 6000 iterations (burn-in 200)
with SNP markers split into 8 groups: 4 MAF quartiles, each split in 2 LD bins. Each group was
modelled with a mixture of four normal distribution with variance 0.0001, 0.001, 0.01. 0.1 and
a dirac spike at zero. The 31 traits with the number of SNPs overlapping the imputed maternal
genotypes, thus included in the prediction analysis are presented in Table [3] I then multiplied
the posterior means from each trait to the standardized maternal genotypes creating trait-specific
genetic predictors of GDM, PPH, PTB, and PPH for each woman. GDM, HDP, PTB, and PPH
were adjusted for maternal age, SNP genotype plate and top 10 PCs. The effects of GMRM mark-
ers are estimated from traits that were standardized to a z-score prior to analysis, which is why I
also standardized the maternal phenotypes. I predicted all four complications in 644 women and
repeated the analysis, restricting the sample size to 484 women of European nationality. In Figure
I show the correlation between the genetic predictors and the observed GDM, HDP, PTB and

PPH outcomes, for all traits and in both populations.

25



Table 3. GMRM predictors from the UK Biobank.

Phenotype | Complex trait SNP count
T2D Type-2-diabetes 1,151,856
Disease CAD Coronary artery disease 1,146,095
BP High blood pressure 1,153,045
GDM Gestational diabetes mellitus 1,154,257
HT Height 1,154,056
BMI Body mass index 1,152,423
Measure BMD Heel bone mineral density T-score 1,152,979
DBP Diastolic blood pressure 1,154,144
SBP Systolic blood pressure 1,153,217
FVC Forced vital capacity 1,152,603
RBC Red blood cell count 1,153,266
HMC Haemoglobin count 1,148,084
HAC Haematocrit count 1,153,408
MCV Mean corpuscular volume 1,139,850
MCH Mean corpuscular haemoglobin 1,150,445
MCHC Mean corpuscular haemoglobin concentration | 1,151,248
RCDW | Red cell distribution width 1,144,813
CBC WBC White blood cell count 1,131,373
NEUT Neutrophil count 1,154,029
LYMPH | Lymphocyte count 1,122,028
MONO | Monocyte count 1,122,956
EOSI Eosinophil count 1,151,763
PLATE | Platelet count 1,151,898
MPV Mean platelet volume 1,130,286
BASO Basophil count 1,138,607
HbAlc Glycated haemoglobin 1,152,760
GLU Glucose 1,149,618
Biomarker CRET Creatinine 1,148,941
CHOL Cholesterol 1,141,994
HDL High-density lipoprotein cholesterol 1,153,869
LDL Direct low-density lipoprotein cholesterol 1,152,929

Zooming in on GDM - here, I focus on the prediction of GDM only in 484 women of European
nationality. I combined the genetic predictors of women previously calculated from GDM, T2D,
GLU and HbAlc, to explore whether a combined genomic risk score would improve our prediction
of GDM. To do so, I combined these genetic predictors in a linear regression model, in which the
beta effects effectively weight the contribution of each genetic predictor to the phenotype [Maier
et al., 2018]. The square root of the r-squared then gives us the the correlation between the
observed and the predicted phenotype. I constructed a second combined genomic risk score called
metaGRS [Inouye et al., 2018|, which consists of a weighted average of the normalized genetic

predictors. As described in their supplementary information, I calculated the metaGRS from the

26



correlation between GDM, T2D, GLU and HbAlc genetic predictors and the independent effect
of each one on the phenotype, estimated from a linear regression model. In Figure [Bh, I compare
the correlation between the observed and predicted phenotype, obtained from the two multi-trait
models to our previous results. In Figure [Gp, I stratified the single- and multi-trait predictors to
select women in the top 10%, presenting a higher risk for GDM, and applied a logistic regression

of the top 10% on GDM to directly compare individuals at high and lower risk.
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Figure 8. Out-of-sample prediction of major maternal complications. Bar plots with error
bars giving 95% confidence intervals of the correlation between the observed and the predicted phenotype when
predicting GDM, HDP, PTB and PPH from GMRM predictors of 31 traits in the UK Biobank (on the x-axis).
The asterisk (*) indicates a correlation at p-value < 0.05. Results are presented for the prediction of the four
complications in 644 women of diverse ancestry and in 484 women of European nationality.
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Results
Prediction of GDM, HDP, PTB and PPH

Altogether, results show meaningful correlations, such as high genetic risk for T2D increasing the
risk of GDM (Figure [§). Indeed, we find a correlation at p-value < 0.05 of 0.093 (95% CI 0.016,
0.169) for T2D when predicting GDM in women of diverse ancestry. Although not significant,
we find a positive correlation for GDM too, which is promising given the lower sample size for
the GMRM model of GDM: 794 cases for 186,505 women against 28,230 T2D cases for 428,747
individuals. Similarly, we observe that a high genetic risk for BP increases the risk of HDP with a
correlation of 0.099 (95% CI 0.022, 0.175) at p-value < 0.05. For HDP, we also find two negative
correlations: -0.081 (95% CI -0.157, -0.003) for HbAlc and -0.90 (95% CI -0.166, -0.013) for GLU,
which indicates that the predictors associated with high HbAlc and GLU levels would decrease
the genetic risk of HDP. Moreover, we observe an overall improvement in prediction from the 31
traits when restricting the sample to women of European nationality. This is expected because
the GMRM models were applied in the UK Biobank to a sample of European-ancestry individuals.
For GDM, predictions from T2D, HbAlc and GLU in women of European nationality, are higher
and now all significant at p-value < 0.05 with correlations of 0.125 (95% CI 0.036, 0.211), 0.092
(95% CI 0.002 0.179) and 0.092 (95% CI 0.003 0.179) respectively. We also find stronger positive
and negative correlations for HDP with two new signals at p-value < 0.05. A positive correlation

of 0.095 (95% CI 0.006, 0.183) for DBP and a negative one of -0.098 (95% CI -0.186, -0.009) for T2D.

The prediction of PPH cases yielded a negative correlation at p-value < 0.05 of -0.109 (95% CI
-0.197, -0.020) for DBP. More interestingly, when using predictors associated with high PLATE
count, we see a more pronounced increase in the risk of PPH when including all women of diverse
ancestry. We find a correlation of 0.085 (95% CI 0.007, 0.161) with p-value = 0.032 against 0.067
(95% CI -0.023, 0.155) with p-value = 0.143 in women of European nationality only, which could
imply a lower genetic risk of PPH in women of European nationality. Finally, we find positive cor-
relations at p-value < 0.05 for BP, SBP, and RCDW traits when predicting PTB in both women
of diverse and European nationality. It is important to note that PTB is particularly difficult to
explore because it can occur spontaneously or be induced, i.e. in case of an emergency c-section.

In addition, PTB may also be associated with other maternal conditions such as HDP, which itself

can lead to premature pregnancy induction due to severe hypertension (see [Appendix Bj).

For significance testing I have used a nominal p-value of 0.05 and the correlations found in the

results show fairly wide confidence intervals, which is expected given the size of our sample and
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Figure 9. Maximising the prediction of GDM in European maternal samples.(a) Bar plots
with error bars giving 95% confidence intervals of the correlation between the observed and the predicted phenotype,
when predicting GDM from GMRM predictors of HbAlc, GLU, T2D, GDM and from the multi-trait

2018] and metaGRS [Inouye et al., 2018| models. (b) Bar plots with error bars giving 95% confidence intervals of

odds ratio of developing GDM for women with genetic predictors of HbAlc, GLU, T2D, and GDM in the top 10%.
The asterisk (*) indicates a correlation at p-value < 0.05. Results are presented for the prediction of GDM in 484
women of European nationality.

taking into account that maternal phenotypes occur in a very specific setting that is pregnancy
(Figure . Nevertheless, these preliminary results suggest several leads regarding a woman’s ge-
netic risk of having GDM, HDP, PTB, or PPH. They show (1) that it is possible to predict a
woman’s genetic risk of having a pregnancy-related complication, to a small extent, even before
she becomes pregnant based on her DNA and (2) that genes influencing the 31 different traits in

the general population might be associated with maternal complications.

Zooming in on GDM

I further explored the prediction of GDM by combining previously identified genetic predictors
at p-value < 0.05, namely T2D, HbAlc, and GLU, in addition to GDM in the 484 women of
European nationality (Figure E[) Results show that we can improve prediction if we combine

genetic predictors together in a sensible weighting. Indeed, we find a correlation at p-value < 0.05

of 0.131 (95% CI 0.043, 0.218) for the [Maier et al., 2018] predictor and 0.128 (95% CI 0.039, 0.214)

for the metaGRS predictor compared to 0.125 (95% CI 0.036, 0.211) for the T2D. Although the
difference is small, results also suggest a better weighting of genetic predictors for the
. When we stratify the single- and multi-trait predictors to select women at higher risk for
GDM (top 10%), we observe that the multi-trait models find a subset of individuals more prone
to GDM than the single models. We also observe in Figure Dp that T2D has a higher prediction
accuracy across individuals than HbAlc and GLU. However, in Figure [Op, the odds ratio is higher

for HbAlc and GLU, although not significant. This may indicate that the genetics of biomarkers
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directly involved in the mechanism of GDM may be more informative than a woman’s genetic
risk of T2D. Given the size of our 95% confidence intervals, this is obviously a hypothesis to be

explored.

Limitations of the prediction analysis

These results show that we can better understand maternal quantitative traits by examining which
genetic predictor correlates with pregnancy-related complications (Figure . For example, the re-
sults obtained from the prediction of GDM are in line with the latest published GWAS, where
they report a positive genetic correlation between GDM and other glycaemic traits including T2D,
GLU and HbAlc [Pervjakova et al., 2022]. In both analysis, the respective correlation was highest
for T2D, confirming once again that GDM and T2D share genetic risk factors. In addition, we
improve the genetic prediction of GDM by combining relevant predictors into a single multi-trait

predictor (Figure [9).

The negative correlation of -0.098 (95% CI -0.186, -0.009) between the HDP observed pheno-
type and the predicted phenotype from T2D highlights a limitation of the analysis (Figure . A
recent study found a genetic correlation of more than 0.3 between pre-eclampsia and BP, SBP,
DBP and T2D |[Steinthorsdottir et al., 2020]. Our results point towards a negative genetic cor-
relation between pre-eclampsia and T2D rather than a positive one. This is surprising and could
simply be due to chance as I use a nominal p-value of 0.05. It could also be due to the selection of
controls in the analysis. For each phenotype, I compared the cases to the rest of the women in the
cohort. This choice could be a potential issue for HDP because controls then included 277 women
who had no complications during their pregnancy and 168 cases of GDM. Moreover, the number of
cases overlapping the two complications is only 8 (Figure . As GDM is positively correlated with
T2D, the prevalence of GDM cases in the controls could explain the resulting negative correlation.
Another difference with [Steinthorsdottir et al., 2020] is the phenotype itself. We defined HDP
as all women who reported gestational pregnancy-induced hypertension, preeclampsia, HELLP
syndrome and unspecified maternal hypertension (ICD10 codes 013,014 and O16) to increase the
number of cases to 137. This highlights a second limitation related to study design, namely the
difference in phenotype definition and the limited number of cases available across studies. This
is particularly true for maternal health studies as there is a significant lack of data to study preg-

nancy [Barbitoff et al., 2020].

Moreover, the prediction of complications would most likely increase if pregnancy-specific ge-

netic associations were included. For example, for GDM, we would ideally want to use HbAlc
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mean posterior effect sizes estimated in pregnant women rather than in the general population.
Two questions we might ask are: are there pregnancy-specific effects? And is there a difference in
prediction when using genetic predictors calculated from HbAlc levels in the general population
and in pregnant women? We could also compare the prediction accuracy for GDM between poten-
tial SNP markers associated with high HbAlc in the first and in the second trimester of pregnancy.
In addition, to improve GDM prediction, we could add actual clinical measurements of HbAlc and
GLU in women in early pregnancy to the genetic risk scores. Finally, to further study the genetics
of pregnancy-related complications, we could apply an alternative and recently published method
named pleiotropic decomposition regression (PDR) [Ballard and O’Connor, 2022]. PDR identifies
genetic components that are shared across genetically correlated complex traits. This method
could help us clarify the relationship between pregnancy-related traits and other complex traits as

well as identify shared genetic risk factors involved.
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Discussion

The introduction outlines the substantial efforts in quantitative genetics to study the underly-
ing genetic architecture of complex traits. It also introduces quantitative genetics in maternal
health and how GWAS can contribute to obstetric medicine. Over the past four years, I have ex-
plored how to better model LD in genetic data with the BayesRR-RC method and contributed to
maternal research through the CHUV maternity cohort. In the discussion, I present potential ex-

tensions to BayesRR-RC and share perspectives on the work I have undertaken in maternal health.

BayesRR-RC: extensions and future directions

Fully described in the resulting BayesRR-RC model assumes additive genetic effects

B, € RMcx1 gplit into ¢ groups over a trait y € RN*1 such that:

g
yzlﬂ‘f'zxwl&p"‘f (3)

p=1

where there is a single intercept term 1p and a single error term e. We assume that the geno-
type matrices X, have been centered and scaled to unit variance. SNPs are allocated into groups
¢ = (1,...,9), each of which having it’s own set of model parameters ©, = {[ip, T, a?p}, where

By, is distributed according to:

By, ~ mopdo + T1,N (0, ai,) + ma N (0, U%W) . TN (O, 0%w¢> (4)

for each marker j from group ¢. For each ¢ group, {Wogpmw, . ,WLW,} are the mixture pro-
portions, {U%W agw, e J%w}} are the mixture specific-variances where for any mixture k, a,%w =

cy 037 and §g is a discrete probability mass at zero. The mixture proportions, the mixture con-

2

, are all unique and independent

stants C} and the group variance explained by the SNP markers o

across SNP marker groups.

With a single command line, BayesRR-RC provides (1) unbiased MAF-LD annotation-specific
joint genetic effect size estimates, (2) the total SNP heritability and the SNP-heritability of an-
notations, (3) the probability that each SNP, genetic region or annotation is associated with a
phenotype and (4) a posterior predictive distribution for each individual in genomic prediction.
This framework, informs us about the number of SNPs entering the model and their magnitudes.

SNPs entering the model can be fully explored with greater confidence because obtained proba-

32



bilities also convey the uncertainty of the estimates. The BayesRR-RC model is able to answer
core questions raised when it comes to the genetic architecture of complex traits, i.e. how many
SNPs and genes are involved? what is the contribution of coding and non-coding regions to the

phenotypic variance and to the susceptibility of an individual to a disease? [Loos, 2020].

The obvious next question is how best to use BayesRR-RC to explore the complex underlying
biology of traits? The model can be used in a general way to compare the architecture across multi-
ple traits, or on a case-by-case basis using the prior biological knowledge specific to each trait. For
instance, we could investigate T2D and CAD using trait-specific annotations from Gene Ontology
terms [Consortium, 2019] associated with each trait. However, inference on specific annotations
will depend on their quality and combination used in the model. As shown in simulation, randomly
assigning SNPs to different annotations does not fit any enrichment pattern and breaks the model
with the genetic variance being evenly split across groups. Furthermore, SNPs may contribute to
multiple annotations and one way to extend our model would be to accommodate for annotation
overlap. This could be implemented by allowing markers to swap groups. For instance, let’s con-
sider an overlap with SNP marker j assigned to groups 1 and 2. Then, from the BayesRR-RC

Gibbs sampling algorithm (see [Appendix Al), we would compute the inclusion probability of 3;,

where ; would be distributed according to:

2
Bj ~ Z(WW&O + MmN (0, Uip) + o, N (O,U%w) +.o TN (O, ino)) (5)

p=1

for marker j from group ¢ = (1,2). Here, we model §; with a prior that follows a mixture of
Gaussian probability densities including a discrete spike at zero, the Gaussian probability densities
set on group 1 and the Gaussian probability densities set on group 2. Modeling annotation overlap
has already been considered in GWAS summary-based methods, such as s-LDSC [Finucane et al.,
2015]. Modeling it in the BayesRR-RC model adds an additional layer of biological information to

the individual-level data, possibly improving our inference of genetic architectures.

Additional work may be carried out in different directions. First, computationally, to cope
with the increase in the number of markers tested, which with genome sequencing will exceed 150
million variants |[Loos, 2020]. This is key because, although we provide LD-unbiased estimates,
we use imputed genotype data from a specific population, which may poorly represent rare vari-
ants. And findings from 15 years of GWAS seem to suggest that SNPs yet to be discovered are

either common, with tiny effect sizes, or rare [Yong et al., 2020]. Second, a major criticism of
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GWAS is the diversity in ancestry of the populations studied. European individuals are clearly
over-represented and additional efforts are needed to include other ancestries. This is important
because health disparities may follow with inequalities in care based on genetic research |Loos,
2020]. Although we have shown that BayesRR-RC accounts for data structure and does a better
job than standard GWAS, it would be interesting to test it empirically and understand how best
to adjust for multiple ancestries in a sample. Third, with the increase of omics data, we could also
set up the model to estimate the contribution of other omics data, i.e. copy number variants or
transcriptomic data, as in |[Banos et al., 2020] where the contribution of SNPs and methylation
probes are jointly estimated in the BayesR framework. Finally, it is important to keep in mind
that markers in LD tagging the same effect are correlated and interchangeable in the model (we
cannot tell which SNP is causal), which is why we use the PPWV [Fernando et al., 2017] to control
for false positives and accurately fine-map regions that contribute to the phenotypic variance of

complex traits. Here, additional work could be conducted to fine-map causal SNPs.

Further extended in GMRM, multiple phenotypes can now be analysed simultaneously within
the BayesRR-RC modelling framework [Orliac et al., 2021]. GMRM can also use joint estimates to
improve marginal SNP effect estimation by adjusting the phenotype using LOCO (leave one chro-
mosome out) and return a marginal summary statistic for GWAS discovery. This extension allows
for easier usage of Bayesian model and will hopefully familiarise and expose users to a Bayesian

approach in quantitative human genetics.

Maternal complex traits

During pregnancy, women experience physiological changes to facilitate the growing foetus and to
prepare for labour [Soma-Pillay and Catherine, 2016). Understanding these changes is important
to improve prevention, early diagnosis and care for women during pregnancy, labour and post-
partum. In we demonstrated that routine CBC can be sufficiently sensitive to identify
unusual patterns linked to obstetric complications early in pregnancy and possibly improve the
stratification of high-risk pregnancies. Genetic predictors such as PRS have also been proven good
enough to stratify individuals in the extremes with high or low genetic risks [Yong et al., 2020].
By further combining PRSs in a multi-trait predictor for GDM, we are able to highlight those that
are most informative and improve the stratification of women who are more likely to experience

the complication (Figure [9).

34



Much like other maternal cohorts, the CHUV maternity cohort is limited by its sample size
to fully explore the genetic architecture of maternal traits. The small sample sizes available in
maternity research are a real challenge, largely due to study design |[Barbitoff et al., 2020]. First,
women have long been considered vulnerable individuals in research, which complicates ethical
considerations regarding maternal data and leads to extremely limited participation of pregnant
women in clinical trials [Biggio, 2020]. Second, there are disparities in data collection and analysis.
Diagnoses are not standardised and there are no clear guidelines on inclusion and exclusion criteria
for samples [Barbitoff et al., 2020]. For example, in my thesis, cases of GDM are defined using the
ICD-10 024 code classification. At the CHUV, pregnant women are screened for GDM by fasting
blood glucose test and if necessary by blood glucose at 1 hour and 2 hours after ingestion of 75 g
of sugar also known as an oral glucose challenge test. In the [Lamri et al., 2020] study, GDM was
diagnosed via an oral glucose challenge test whereas in the UK Biobank, cases are self-reported,
which may result in misclassification and limit the number of cases. In |[Lamri et al., 2020], they
redefine cases of GDM in the UK Biobank by selecting women who have had at least one preg-
nancy. Similarly, I have included women who have had 1 to 3 pregnancies reducing the number of
cases in the prediction analysis from GDM posterior mean effect sizes. These disparities complicate
comparisons between cohorts and across maternal studies. Finally, and as discussed earlier, it is
important to include populations of different ancestries so that translational research can be useful
worldwide and tailored to each individual. Interestingly, I have observed that maternal studies
are quite specific to one ethnicity, probably reflecting the considerable efforts around the world to
generate maternal data. GWAS design consists of discovery steps followed by replication steps,
achieved with strict thresholds for significance testing [Loos, 2020]. Few studies each on a specific
ancestry adds to the difficulty of making reproducible findings across maternal health, i.e. in [Kwak
et al., 2012|, the CDKAL1 and MTNR1B genes are found to be associated with GDM in Korean

women while the [Wu et al., 2021] study identifies four other genes in Chinese women.

In addition to large-scale genetic studies, the field needs data specific to pregnancy to un-
derstand molecular pathways and improve prediction of complex maternal traits. We show that
genetic risk factors influencing the 31 selected traits in the general UK Biobank population can
be predictive of maternal complications. However, pregnancy is a complex environment where
physiological, physical and metabolic changes occur in women and the prediction of complications
would benefit from genetic predictors specific to pregnancy such as SNP markers associated with
high GLU levels early in pregnancy. Moreover, both mother and child have an interest in staying
alive so they cooperate, but they are also in conflict [Boddy et al., 2015]. The child tries to receive

optimal resources through the placenta, while the mother will try to compensate for it to keep her
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metabolism functioning efficiently. Not only that, but the maternal and fetal systems are intrinsi-
cally linked as cells and tissues interact. For example, the [Rasmussen et al., 2022 study published
in January shows that it is possible to explore gene transcripts involved in pregnancy using cell-free
RNA taken from blood at different weeks of gestation. Their analysis is sensitive enough to track
maternal, fetal and placental changes and confidently predict pre-eclampsia before it occurs based
on RNA profiles. In line with our manuscript on haematological changes (see , this
study also shows that a simple blood test has enormous potential to monitor normal pregnancy
and identify complications as early as possible. Maternal and fetal genetics also interact and may,
independently or together, influence a maternal trait, which complicates the analysis [Zhang et al.,
2018]. In GWAS listed in Table |1} fetal effects have been associated with a maternal phenotype,
namely preeclampsia and preterm birth. Lastly, whole genome sequencing data might enhance
new discoveries in maternal health as some pregnancy complications leading to adverse outcomes

might be disfavored by evolution [Barbitoff et al., 2020].

Despite the limitations presented here, I have shown that we can use prediction to explore
the genetic basis of maternal health. Future directions could include addressing specific questions
such as: Does genetics tell us more than a blood test? Can genetics predict the changes in blood
measurements that we see during pregnancy? We could also explore other traits that may be
linked to complications, such as insulin levels for GDM, and potentially improve the multi-trait
prediction. A particular challenge in maternal health is that the clinic and research must work
in close collaboration, as pregnancy is a whole system where women undergo rapid changes that
vary between individuals. For instance, it would be interesting to integrate clinical factors into the
multi-trait predictor, i.e. HbAlc and GLU measurements taken at 20 weeks of gestation combined
with targeted regions of the genome associated with T2D, high GLU and high HbAlc levels, to
predict a woman’s risk of GDM. Moreover, the CHUV maternity cohort includes mother-infant
pairs that could be used to explore maternal and fetal effects in a prediction or replication analysis.
Indeed, this unique cohort is a valuable resource because it can be used as a validation dataset
in maternal-fetal health. Because it is phenotypically rich, maternal samples can also be used to
validate other outcomes such as the association between Rhesus blood group and haematological

traits [Auwerx et al., 2022].
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Conclusion

To conclude, BayesRR-RC is a new implementation of BayesR that overcomes the increased time
and memory cost of Bayesian inference while improving prediction accuracy. The inferred posterior
distributions help the user to directly fine-map and draw conclusions over the genetic architecture
of traits including maternal complex traits, and highlight the immense challenge of understanding

the molecular underpinning of each association.

GWAS have been carried out for 15 years and their popularity continues to grow with the
advances in technology and the increase in omics data [Loos, 2020]. Remarkably, the UK Biobank
has just published WGS for 200,000 participants in November 2021 and made it available to re-
searchers. As most of the genome remains to be explored, large-scale WGS data will bring new

insights into the genetic basis of complex traits and human health.

In the future, considerable efforts will be required to combine omics data in GWAS. Targeted
high quality data will be needed to fully explore the underlying molecular mechanisms of disease.
This is critical in the context of maternal health, where pregnancy is a complex, time-limited envi-
ronment with rapid changes that many women experience. Larger studies on diverse populations
will further increase discovery and reduce clinical disparities arising from quantitative genetics. Re-
searchers would also benefit from additional independent cohorts made publicly available. These
would give a wider perspective towards personalised medicine because we could evaluate at which
group of individuals a predictor is no longer recommended, i.e. populations with different ances-

tries or different pregnancy status for women.

A key step in personalised medicine will be the inclusion of genetic data in medical records to
provide the most appropriate individual PRS for a given trait or disease. To achieve this goal,
ethical and legal concerns need to be addressed, and the understanding of genetics by a wider
public needs to be improved. Quantitative genetics has made significant contributions to human

health encouraging the transition towards a genome-based precision medicine.
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ture underlying functional enrichment of complex traits
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s whole-genomes are collected for hundreds of thousands

of individuals, we require regression methods that are not

only computationally efficient, but which also provide
improved inference. Rather than relying on subsets of the SNPs,
methods should fully utilise the data, exploiting computational
power to facilitate discovery of additional genomic regions, to
improve understanding of the genomic architecture of common
disease, and to provide more informative genomic prediction.

For example, when estimating the proportion of phenotypic
variance attributable to different categories of genetic markers
(the SNP-heritability, h3y,p of a genomic region), recent studies! -
highlight the importance of accounting for minor allele frequency
(MAF) and LD structure of the genomic data. Generally, assess-
ment of the relative contribution of different genomic regions is
currently made assuming that markers within a category all
contribute to the variance, with enrichment defined as the esti-
mated share of the variance explained divided by its expected
share>®. However ideally, the estimated distribution of marker
effects for each category would be directly obtained, accounting
for MAF and LD structure and allowing for some of the marker
effects to be zero, as this would yield a better understanding of the
polygenicity of genomic effects across different genomic anno-
tation groups.

Furthermore, statistical inference usually follows a multi-step
approach. Current mixed-linear association models such as those
implemented in the software fastGWA7, BoltLMM?® and
REGENIE?, use a two-step approach, first estimating the variance
contributed by the SNP markers without the use of MAF-LD-
annotation information, and then estimating the marker effect
sizes one-by-one as fixed effects in a second step”-310. Following
this initial mixed-model association step, statistical inference
(variance components, fine mapping and risk prediction) is then
typically conducted on the summary statistics generated. The
advantage of a multi-step approach is that large sample size can
be easily obtained through meta-analyses, combining summary
statistics from different studies and avoiding the need for
individual-level data sharing. However, as large-scale biobank
data is increasingly available, methods that provide joint estimates
of the marker effects in a single step by estimating the effect sizes
as random under flexible prior formulations may become bene-
ficial as they: (i) can account for differences in the variance
contributed across MAF, LD or annotation groups providing
unbiased MAF-LD annotation-specific genetic effect size esti-
mates and héNP of different annotations, allowing for a con-
trasting of the genetic architectures of complex traits; (ii) give the
probability that each marker, genomic region, annotation, gene-
coding region, or SNP is associated with a phenotype, alongside
the proportion of phenotypic variation contributed by each,
yielding test statistics that describe the geme architecture of
complex traits and the uncertainty over the estimates; and (iii)
provide improved genomic prediction, whilst providing a pos-
terior predictive distribution for each individual.

Here, we outline the fastest Bayesian penalised regression
model to date, with a hybrid-parallel algorithm for analysing
large-scale genomic biobank using a single command-line tool
implemented in our grouped mixture regressions model
(GMRM) software. We validate our approach in large-scale
simulation study and provide an empirical example using four
traits measured in both the UK Biobank and Estonian
Biobank data.

Results

A Bayesian model for large-scale genomic data. We derive a
model that we call BayesRR-RC in Supplementary Note 1 and the
“Methods” section, which is based on grouped effects with

mixture priors, improving on the formulations of refs. 11-13. Like
these former methods, we consider a spike probability at zero
(Dirac delta function), and a scale mixture of Gaussian dis-
tributions as a slab probability density. Unlike these models, we
have genetic markers grouped into MAF-LD-annotation specific
sets, with independent hyper-parameters for the phenotypic
variance attributable to each group, so that the mixture propor-
tions, the variance explained by the SNP markers, and the mix-
ture constants are all unique and independent across SNP marker
groups. This enables estimation of the phenotypic variance
attributable to the group-specific effects, and differences in the
underlying distribution of the B, effects among MAF-LD-
annotation groups, with different degrees of sparsity. Assuming
N individuals and p genetic markers, our model of an observed
phenotype vector y is:

@
y=1lu+ > X B, +e, (1)
g oPe

where there is a single intercept term 1y and a single error term, a
vector (N'x 1) of residuals €, with €|o? ~ A (0I2). An N by p
matrix of single nucleotide polymorphism (SNP) genetic markers,
centred and scaled to unit variance, which we denote as X, The
effects are allocated into groups (1, ..., ®). Each group has a set of
model parameters ®, = {B,,7,, Uch)}, with B, as a p, x 1 vector
of partial regression coefficients, where [5% is the effect of a 1 SD

change in the jth covariate within the ¢th group. The spike and
slab prior, contains what is called a Dirac spike!*!> for B, which
induces sparsity in the model through a Dirac-delta at zero,
excluding variables from the model by setting their coefficients to
zero. A finite scale mixture of normal distributions centred at zero
constitute the slab component. The slab shrinks the non-zero
coefficients towards zero according to the slab’s width, and by
having a scale mixture of Gaussians, the distribution has heavier
tails and can accommodate big and small effects!6. Therefore,
each o is distributed according to:

,B‘Dy ~ T8 + nle(O,afq,) + nZ(PN(O, ng,) + .+ nLW/\/(O, Ufw),
(2

where for each SNP marker group {m,,,m, ... 77qu7¢} are the

mixture proportions and {aip,agw ,in¢} are the mixture-
specific variances proportional to
Uip Ciy
— a2, ,
oiﬂ’ CLW’

with O'ZG(P the phenotypic variance associated with the SNPs in
group ¢, which, like all the other parameters, is estimated directly
from the data. Here, we use 78 MAF-LD-annotation SNP marker
groups. SNPs are partitioned into seven location annotations
preferentially to coding (exonic) regions first, then to intronic
regions, then to 1 kb upstream regions, then to 1-10 kb regions,
then to 10-500 kb regions, then to 500-1 Mb regions. Remaining
SNPs were grouped in a category labelled “others” and also
included in the model so that variance is partitioned relative to
these also. Thus, we assigned SNPs to their closest upstream
region, for example if a SNP is 1 kb upstream of gene X, but also
10-500 kb upstream of gene Y and 5 kb downstream for gene Z,
then it was assigned to be a 1kb region SNP. This ensures that
SNPs 10-500 kb and 500 kb-1 Mb upstream are distal from any
known gene. We further partition upstream regions to experi-
mentally validated promoters, transcription factor binding sites
(tfbs) and enhancers (enh) using the HACER, snp2tfbs databases
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(see “Code availability” section). All SNP markers assigned to
1 kb regions map to promoters; 1-10 kb SNPs, 10-500 kb SNPs,
500 kb-1 Mb SNPs are then split into enh, tfbs and others
(unmapped SNPs) extending the model to 13 annotation groups
(Supplementary Data 1). Within each of these annotations, we
have three minor allele frequency groups (MAF<0.01,
0.01 < MAF £0.05, and MAF > 0.05), and then each MAF group
is further split into two based on median LD score. This gives 78
non-overlapping groups for which our BayesRR-RC model jointly
estimates the phenotypic variation attributable to, and the SNP
marker effects within, each group. For each of the 78 groups,
SNPs were modelled using five mixture groups with variance
equal to the phenotypic variance attributable to the group mul-
tiplied by constants (0, 0.0001, 0.001, 0.01, 0.1).

One of the major limitations preventing the application of
Bayesian approaches to large-scale genomic data is the view that
the computation of a posterior distribution is too expensive. In
Supplementary Note 2, we derive a Bulk Synchronous hybrid-
parallel (BSP) Gibbs sampling scheme for large-scale genomic
data that allows both the data and the compute tasks to be split
within and across compute nodes in a series of message-passing
interface (MPI) tasks. We extend previous sparse residual
updating schemes by deriving sampling steps to utilise whole
genome sequence or SNP genetic data stored in mixed binary/
sparse-index representation (see Supplementary Note 2), redu-
cing computational complexity of a single Gibbs step from O(n)
to O(n,), with n, the number of non-zero genotypes, as SNP-
phenotype covariance estimation (dot product calculation) is
conducted as a series of look-up tables. We provide publicly
available open source software (GMRM) that requires as little as
22s per MCMC sample to estimate 78 group-specific hgyp
parameters, and the inclusion probabilities and effect sizes of
8,433,421 markers in 382,466 individuals on standard Intel Xeon
CPU processors (see “Code availability” section, Supplementary
Note 2).

Simulation study. We first compare the model performance of
BayesRR-RC to existing approaches across 18 different genetic
architectures. We randomly selected 40,000 unrelated UK Biobank
individuals and used 596,741 imputed SNP markers from chro-
mosomes 19 to 22. We randomly selected either 1000, 10,000 or
100,000 LD independent (LD R2 < 0.1) causal SNP markers. For
each SNP marker set, we then simulated effect sizes from a normal
distribution with zero mean and variance of 0.1, 0.3 or 0.6 divided
by the number of causal variants and «N(0, [p(1—p)]~9-2%), with p
the allele frequency (see “Methods” section). This simulates
stronger effect sizes for rare variants in line with recent empirical
estimates and we simulated ten replicate phenotypes for each of
the nine different genetic architectures. We then additionally
repeat each simulation, sampling the SNP marker effects this time
from 13 different distributions, one for each of 13 different
genomic annotation groups with different proportions of ki, to
create nine further different genetic architectures. We compare
our BayesRR-RC model to the following statistical models: (i) a
restricted maximum likelihood (REML) model implemented in
the software BoltREML!7 with the same 78 MAF-LD-annotation
groups enabling a direct comparison, (ii) a Haseman-Elston (HE)
regression using the same 78 group model implemented in the
software RHEmc!8, (iii) summary statistic linkage disequilibrium
score regression (LDSC)!?, with LD scores calculated using the
same data, and the same 78 non-overlapping annotations in a 78
component LDSC annotation model, and (iv) summary statistic
SumHer® (LDAK) with the same 78 non-overlapping annotations.

We find that BayesRR-RC estimates the phenotypic variation
attributable to different genomic annotation groups comparable

with the BoltREML model, with similar correlation of the
estimated and simulated values within each simulation replicate
(Fig. 1a). In comparison, RHEmc, which also uses individual-level
data, yields estimates with lower correlation with the simulated
value, but higher than both summary statistic approaches
implemented in LDSC and Sumher (Fig. la). We calculate
estimates of enrichment, defined as the proportion of hgyp
attributable to the annotation divided by the proportion of SNPs
mapping to the annotation (for bayesRR-RC, because there is
sparsity in the SNP effects, we define enrichment as the
proportion of SNPs in the model that map to the annotation,
see “Methods” section) and we compare these to the true
simulated value. Compared to other approaches, we find that
BayesRR-RC gives a lower probability of false enrichment,
calculated as the proportion of times within a simulation replicate
that an annotation group was incorrectly assigned as having
enrichment greater than 2 (Fig. 1b). Thus, BayesRR-RC provides
accurate partitioning of genomic enrichment across the genome.

In Supplementary Note 3, we propose a posterior probability
window variance (PPWV) approach2, which provides a
probabilistic determination of association of a given LD block,
genomic window, gene, or upstream region, relative to the
amount of phenotypic variation attributable to that window. Our
PPWYV approach determines the posterior inclusion probability
that each region and each gene contributes at least 0.001% to the
hip» with theory outlined in Supplementary Note 3 suggesting
well controlled FDR. We determine the ability of our PPWV
approach to correctly localise an association to LD blocks
(defined as groups of markers with LD R2>0.1) that contain
causal variants, and compare this to using LD to clump mixed-
linear model association estimates obtained using the BoltLMM
software (Fig. 2a). We find that a PPWV approach identifies
associated LD blocks with higher probability as compared to
clumped MLMA associations, for all genetic architectures, with
the exception of simulated phenotypes with enrichment and low
polygenicity, where the small numbers of relatively large effect
size regions are better identified with a single-marker regression
approach (Fig. 2a). Thus, BayesRR-RC provides an alternative to
standard genome-wide association studies to localise SNP-
phenotype associations at the regional level, especially for traits
with high polygenicity.

We then also compare the prediction accuracy obtained in an
independent sample when creating genomic predictors using (i)
effect sizes estimated by BayesRR-RC, (ii) fixed-effect SNP effect
sizes estimated in the MLMA approach implemented in bolt, and
(iii) effect size estimates obtained from four different genomic
prediction models proposed in a recent paper?!, implemented in
the LDAK software, which are suggested to outperform all other
current approaches. In comparison to the best LDAK predictor,
we find that BayesRR-RC obtains similar or improved prediction
accuracy across all genetic architectures, with greater prediction
accuracy gains observed under genetic architectures where the
SNP effect distributions differed across genomic annotations
(Fig. 2b). We find that given sufficient power, BayesRR-RC can
obtain or even exceed the theoretical expectation of prediction
accuracy under ridge regression assumptions (Fig. 2b, see
“Methods” section).

We then conduct a number of follow-up simulation studies.
Recent work has highlighted differences in statistical model
performance depending upon the relationship of SNP marker
effect size, LD and MAF!34, We explore the performance of our
model in theory, with highly correlated genetic markers in
Supplementary Note 4. We also conducted another large-scale,
but well-powered, simulation study to explore the model
performance of BayesRR-RC as compare to existing approaches
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Fig. 1 Simulation study for the performance of our BayesRR-RC model implemented in the GMRM software against existing approaches for variance
component and genomic annotation enrichment estimation. a Correlation of the simulated and estimated SNP heritability across 13 genomic annotation
groups within each of 20 replicates for five different statistical models: a mixture of regression model with multiple group-specific variance components
described in this work (GMRM), Haseman-Elston regression with annotation-specific relationship matrices implemented in the RHEmc software (RHEmc),
a multiple group-specific variance component REML model implemented in the software bolt (BOLT), and two annotation summary statistic models
implemented in the software LDSC and LDAK. The column facets give the simulated heritability and rows give the number of causal variants. b Probability
of falsely assigning one of the 13 genomic annotation groups as explaining 2 times greater proportion of variance given the proportion of SNPs mapping to
the annotation. The column facets give the simulated heritability and rows give the number of causal variants. Boxplots give the median with 25th and 75th
percentile and 95% credible intervals for n = 20 simulation replicates in both panels.

across a wide range of 20 different effect size, LD, and MAF
relationships as described in Supplementary Table 1. For the
estimation of hg, and the proportion of h2yp attributable to
different annotation groups, we find that all statistical models
other than BayesRR-RC are sensitive to the underlying generative
genetic model, with no other approach providing consistent
estimates across the 20 generative genetic models (Supplementary
Fig. 1a). As in the previous simulation, BayesRR-RC estimates the
variance attributable to different genomic regions on the correct
scale, with higher correlation as compared with other approaches
(Supplementary Fig. 1b), and this results in the estimated average
effect size for each annotation group having high correlation with
the simulated value (Supplementary Fig. 1c). Again, summary
statistic approaches performed poorly for both variance compo-
nent estimation (Supplementary Fig. 1b) and quantification of
enrichment as compared to individual-level methods, often even
incorrectly selecting the group of highest average effect size
(Supplementary Fig. 1c).

We confirmed our genomic prediction results, finding that
BayesRR-RC outperforms all methods implemented in the LDAK
software across all generative models, with BayesRR-RC very
marginally outperforming a single variance component BayesR
model in the enrichment simulations of each of the 20 generative
genetic models (Supplementary Fig. 2).

We further explored the ability of our PPWV approach to
localise SNP-phenotype associations in the 20 generative models,
by comparing the z-scores of the marker effect estimates from
their true simulated value across the minor allele frequency
spectrum (Supplementary Fig. 3) and the area under the
precision-recall curve (AUPRC, Supplementary Fig. 4) for
BayesRR-RC and a series of MLMA methods. We find that the

4 NATURE

z-scores of the BayesRR-RC estimates are generally stable across
generative genetic models and that the MLMA estimates have
higher estimation error, especially when the causal variant is rare,
or in high-LD with many other SNPs (Supplementary Fig. 3). We
also find that our PPWV approach outperforms MLMA methods
in their precision-recall curves across the range of genetic
architectures (Supplementary Fig. 4). We confirmed that popula-
tion stratification and relatedness are well-controlled for using a
PPWYV approach, as compared to an MLMA model with the
leading PCs of the genomic data included (Supplementary Fig. 5).
We compared the ability of our approach to identify candidate
SNPs and to provide a probabilistic assessment of the most likely
associated set of SNP markers. Finally, we show that our PPWV
approach is analogous to the approach suggested in a recent
paper (SuSiE?2) of selecting credible sets of markers with high
probability of association, finding that BayesRR-RC has higher
power to localise associations to sets of SNP markers (Supple-
mentary Fig. 6). The advantage of BayesRR-RC is also that
assessment of associated regions is done genome-wide, with
estimates obtained through simple summary of the posterior
distribution instead of running numerous statistical models at
different genomic regions. Taken together, these simulation
results indicate that BayesRR-RC provides accurate estimates of
the underlying effect size distribution for different genomic
groups, yielding improved genomic prediction, across a wide
range of different underlying generative genetic models.

The genetic architecture of four complex traits in the UK
Biobank. We apply BayesRR-RC to cardiovascular disease out-
comes (CAD), type-2 diabetes (T2D), body mass index (BMI)
and height measured for 382,466 unrelated individuals from the
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Fig. 2 Simulation study for the performance of our BayesRR-RC model implemented in the GMRM software against existing approaches for
localisation of associations and genomic prediction. a Probability of detecting genomic regions containing simulated causal variants by a Bayesian
regional fine-mapping approach (GMRM: blue) versus standard mixed linear model association (MLMA) testing (BOLT: green). The column facets give the
simulated heritability and rows give the number of causal variants and whether the effect sizes differed across genomic annotation groups (enrich) or were
randomly assigned (random). b Correlation of a genomic predictor and a phenotype in an independent sample when the genomic predictor is created from
GMRM effects sizes (blue), MLMA effect sizes using BOLT (green), and the optimal effect sizes obtained from individual-level and summary statistic
models implemented in the Mega-PRS LDAK approach (purple). The column facets give the simulated heritability and the number of causal variants. The
row facets give whether the effect sizes differed across genomic annotation groups (enrich) or were randomly assigned (random). The red lines give the
expected prediction accuracy based on ridge regression theory. Error bars show the SD in both panels.

UK Biobank data genotyped at 8,433,421 imputed SNP markers.
These markers were selected as they overlap with the Estonian
Genome Centre data (see “Methods” section) and have minor
allele frequency >0.0002. We adjust each phenotype for age, sex,
year of birth, genotype batch effects, UK Biobank assessment
centre, and the leading 20 principal components of the SNP data.
We conducted a series of convergence diagnostic analyses of the
posterior distributions to ensure we obtained estimates from a
converged set of four Gibbs chains, each run for 6000 iterations
with a thin of five for each trait (Supplementary Figs. 7-10).

We find that 32-44% of the h3p is attributable to intronic
regions, 12-25% is attributable to exonic regions, 22-28% is
attributable to markers 10-500kb upstream of genes, with
proximal (within 10 kb) promotors, enhancers and transcription
factor binding sites cumulatively contributing <10% (Fig. 3b and
Supplementary Fig. 11, with estimates summed across MAF and
LD groups Table 1, and full results in Supplementary Data 2). The
large contribution of exonic and intronic annotations to variation
is in-line with the fact that these annotations account for ~40% of
the total genome length. All four traits show the same pattern of
group-specific variation, with the exception of height, where the
proportion of hgyp attributable to exons is almost twice as large as
the other phenotypes (Fig. 3b; Table 1 and Supplementary Fig. 11
and Supplementary Data 2). For all annotation groups in exons,
introns, and within 500 kb of genes across all traits, 260% of the
hip attributable to these groups is contributed by many
thousands of common variants, each of small effect (Fig. 3b
and Supplementary Figs. 11 and 12).
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Our estimates compare similarly to those obtained by RHEmc
and SumHer, but differ to those obtained by LDSC (Table 1 and
Supplementary Data 3, 4, and 5 for full results). In addition to
providing variance component estimates, our model facilitates
assessment of differences in the underlying effect size distribution
across annotation groups. For each group, we modelled the SNP
effects as coming from a series of five Gaussian mixtures, and we
find that at least 45% of the 3y, attributable to both introns and
500 kb upstream regions is underlain by many thousands of SNPs
that on average each contribute 0.001% (estimates summed across
MAF and LD groups in Fig. 3b and Supplementary Figs. 11 and
12). In contrast, the variance is spread more evenly across the
mixtures for the other groups, implying that 10-500 kb upstream
regions and introns are more polygenic than other groups. This is
especially so for BMI where 35% of the hp is attributable to
many thousands of intronic variants (Fig. 3 and Supplementary
Fig. 12). Therefore, we find that the polygenicity of the genetic
effects varies across different genomic regions, with remarkably
consistent patterns across traits in the partitioning of héNP across
the genome.

Across traits, posterior mean effect sizes scale to their
differences in hiyp, and we find that exonic and intronic region
effect sizes were higher than the rest of the genome, across all
mixture groups, followed by 10-500 kb upstream regions (Fig. 3¢).
We find little evidence that SNPs located in proximal promotors,
enhancers, and transcription factor binding sites within 10 kb of
genes showed average effect sizes that were higher than SNPs
located 1 MB away from genes, or those that were not mapped to
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Fig. 3 Genetic architecture of enrichment for height (HT), body mass in

o o

dex (BMI), cardiovascular disease (CAD) and type-2 diabetes (T2D) for

382,466 unrelated European ancestry UK Biobank individuals genotyped at 8,430,446 SNP markers. a \We partition SNP markers into seven location
annotations (coding regions, intronic regions, and windows 1, 1-10, 10-500 kb and 500 kb-1 Mb upstream of genes, with other SNPs grouped in a category
labelled “others"). Windows 1-10 kb, 10-500 kb and 500 kb-1 Mb upstream of genes are further split into SNPs mapped to enhancers (enh), transcription
factor binding sites (tfbs) and others. Within each of the 13 annotations, we have three minor allele frequency groups (MAF < 0.01 annotated as rare,

0.01< MAF <£0.05 annotated as low, and MAF > 0.05 annotated as common), and then each MAF group is further split into two based on median LD

score. This gives 78 groups for which our BayesRR-RC model jointly estima

tes the phenotypic variation attributable to, and the SNP marker effects within,

each group. For each of the 78 groups, SNPs were modelled using five mixture groups with variance equal to the phenotypic variance attributable to the

group multiplied by constants (mixture O = O, mixture 1 = 0.0001,2 =0
phenotypic variance attributable to the SNP markers that is contributed by

.0017, 3 = 0.01, 4 = 0.1). b Posterior distribution of the proportion of the total
each of the four non-zero mixtures within each MAF-annotation group for HT,

BMI, CAD and T2D. Within these, are boxplots of the posterior mean and 95% credible intervals. Values are summed over LD groups. ¢ Bar plots with error
bars giving the 95% credible intervals for the average effect size of markers in the model for each MAF-annotation group, split by mixture.

a specific category, with perhaps the exception of high MAF
variants (Fig. 3c). Generally, all phenotypes simply appear to be
predominantly underlain by very many common variants, with
SNPs within distal regulatory regions, coding and intronic regions
contributing more to the variance. We also re-scaled the marker
effects by the standard deviation of each marker, to give effect
sizes on the allele substitution effect size scale, and again we find
that rare variants have higher average allele substitution effects
than common variants for exonic, intronic, promotors and
enhancers (Supplementary Fig. 12b). An exception to these
patterns were BMI-associated intronic and 10-500kb group
SNPs, where we find no evidence that the allele substitution effect
size differs across frequency groups (Supplementary Fig. 12b). We

also did not find evidence that the allele substitution effect size
differed across frequency groups for transcription factor binding
sites, distal SNPs 1 MB upstream of genes, or those not mapping
to an annotation group (Supplementary Fig. 12b).

Discovery of associated genomic regions. We then partitioned
the variance attributed to SNP markers across 50kb regions of the
genome, then across SNPs annotated to genes, and then to LD
blocks of the DNA using our PPWV approach. We find 1660
50kb regions for height with >95% posterior probability of
explaining 0.001% of the h3yp, 520 regions for BMI, 70 regions for
CAD and 87 regions for T2D (Fig. 4a and Table 2). We then map
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Table 1 Proportion of genetic variance attributable to different genomic regions for height (HT), body mass index (BMI), type-2
diabetes (T2D) and cardiovascular disease (CAD).
Group Trait BayesRR-RC RHE-mc? sLDSC? SumHer?
Posterior mean h,, (se) % h2,, (se) % . (se) %
(95% CI)

Variance attributable to SNP markers genome-wide HT 57.66 (56.09, 59.14) 63.28 (3.57) 64.16 (2.86) 98.58 (0.69)

BMI 28.74 (27.62, 30.0) 26.76 (1.06) 31.03 (0.9) 44.98 (0.53)

CAD 5.94 (5.30, 6.67) 4.49 (>100) 473 (0.28) 7.33 (0.43)

T2D 8.45 (7.83, 9.18) 6.90 (0.47) 6.53 (0.3) 11.65 (0.44)
Proportion of genetic variance attributable to exonic HT 24.75 (23.39, 26.071) 27.09 3.00 16.74
regions of genes

BMI 12.98 (10.98, 14.84) 12.62 437 7.60

CAD 13.23 (8.40, 18.84) 18.68 1.69 15.34

T2D 14.49 (10.74, 18.54) 14.60 2.46 10.12
Proportion of genetic variance attributable to intronic HT 41,54 (39.91, 43.39) 41.60 46.07 43.03
regions of genes

BMI 4417 (41.36, 47.25) 47.87 44.61 48.19

CAD 32.05 (24.98, 39.51) 4115 47.22 41.94

T2D 37.28 (32.22, 42.57) 48.66 38.52 48.02
Proportion of genetic variance attributable to snps 1 HT 2.81(2.24,3.42) 176 1.46 174
kb upstream of genes

BMI 1.62 (0.75, 2.69) 0.36 1.90 115

CAD 4.20 (1.71, 7.55) 2.49 <0.00 1.26

T2D 3.58 (1.77, 5.86) 3.40 <0.00 1.57
Proportion of genetic variance attributable to snps 10 HT 6.60 (5.84, 7.40) 6.73 4.29 12.87
kb upstream of genes

BMI 5.28 (3.92, 6.87) 3.19 6.58 410

CAD 13.06 (8.70, 18.16) 570 6.02 8.91

T2D 9.08 (5.90, 13.28) 4.02 20.44 7.56
Proportion of genetic variance attributable to snps HT 22.13 (21.00, 23.40) 21.53 37.23 2414
500 kb upstream of genes

BMI 28.58 (26.41, 31.01) 28.81 35.86 3117

CAD 28.02 (21.24, 35.04) 30.23 38.90 29.58

T2D 27.42 (22.68, 32.36) 2433 32.49 27.47
Proportion of genetic variance attributable to exonic HT 72.09 (69.77, 74.14) 62.62 75.35 51.22
regions that is explained by common variants

BMI 69.41 (62.60, 76.42) 59.67 16.43 54.31

CAD 64.97 (43.08, 83.16) 61.72 >100 4917

T2D 68.57 (56.00, 79.82) 66.33 >100 64.11
Proportion of genetic variance attributable to intronic HT 81.19 (79.30, 83.02) 79.96 70.88 66.12
regions that is explained by common variants

BMI 85.05 (78.28, 91.49) 86.10 70.62 69.68

CAD 84.68 (65.64, 95.91) 96.55 611 7817

T2D 87.62 (75.65, 94.85) 87.63 67.93 71.39
Proportion of genetic variance attributable to snps HT 81.59 (78.91, 83.96) 80.66 71.86 77.28
500 kb upstream of genes that is explained by
common variants

BMI 86.78 (80.56, 91.60) 89.95 67.38 74.81

CAD 66.49 (49.11, 81.79) 88.51 60.52 79.91

T2D 72.35 (58.71, 83.75) 94.91 69.48 75.12
2RHEmC'8, LDSC'® and SumHer® provide the total SNP heritability observed (%) and single heritability estimates per genetic component (see Supplementary Data 2-5) that we summarised to obtain the
proportion of genetic variance attributed to exonic regions, intronic regions and windows 1, 1-10 and 10-500 kb upstream of genes.

SNPs to their closest gene (4+/—50 kb from SNP position) and we
use our annotations to label them (see “Methods” section). We
find 243 independent coding regions for height with 295% pos-
terior probability of explaining at least 0.001% of the hiyp, 29
independent coding regions for BMI, 5 for CAD and 13 for T2D.
We find many more associations in the cis region of genes with
1254 independent cis-regions for height with >95% posterior
probability of explaining 0.001% of the hgyp, 1765 independent
cis-regions for BMI, 1166 for CAD and 1221 for T2D. We
additionally find 9 independent promoter regions and 1072
independent introns for height with 295% posterior probability of
explaining at least 0.001% of the h2,p, 1162 independent intronic
gene regions for BMI, 307 for CAD and 347 for T2D. When we

calculate the number of exons, introns, promotors and cis regions
with 295% posterior probability of explaining 0.001% of the hiyp,
as a proportion of the total number within each chromosome, we
find that up to 24% of the genes on each chromosome are
associated with each of the four traits (Fig. 4b). Generally, we find
that only 1% or less of the available exons and promotor regions
of genes per chromosome show an association with each of the
phenotypes, but up to 14% of the available intronic regions and
up to 10% of the cis-regions surrounding genes contribute to the
phenotypic variance with >95% probability (Fig. 4b). The var-
iance contributed by each exonic, intronic, promotor, or cis
region is typically only a small fraction of a percent, with largest
effect sizes being the exonic region of GDF5 contributing 0.26%
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Fig. 4 Contribution of genes and 50kb regions to height (HT), body-mass-index (BMI), cardiovascular disease (CAD) and type-2-diabetes (T2D).
a We grouped SNPs in 50 kb-regions genome-wide and estimated the sum of the squared regression coefficient estimates for each 50 kb-region. We then
select the number of 50 kb regions that explain at least 0.001% of the variance attributed to all SNP markers in 80, 90 and 95% of the iterations. This gives
a measure called the posterior probability that the window variance (PPWV)20 exceeds 1/10,000 of the phenotypic variation attributed to SNP markers.
b We mapped SNPs to the closest gene +/—50 kb from the SNP position and labelled them as located in a coding region, an intron, 1kb upstream of a gene
using our functional annotations (Fig. 3a). Remaining snps are labelled as located in a cis-region (up to +/—50 kb from a gene). We then select the number
of regions where PPWV is higher than 95% and explains at least 0.001 % of the phenotypic variance attributed to all SNP markers. We then calculate the
number of significant coding regions, introns, 1kb regions and cis regions as a proportion of the total number of genes for each chromosome. Genic
associations that explain at least 0.001% of the phenotypic variance attributed to all SNP markers are again spread across chromosomes according to the
chromosome length. € Shows the mean of the phenotypic variance attributed to intron and cis regions (y-axis) and coding regions (x-axis) that explain at
least 0.001% of the phenotypic variance attributable to SNP markers in >95% of the iterations (PPWV > 0.95). These results provide joint estimates of the
proportions of variance contributed by different gene bodies and automatic fine-mapping of gene bodies and their cis-regulatory regions. For example,
introns and cis-regulatory regions of FTO respectively contribute 0.48% (95% Cl 0.29, 1.12) and 0.01% (95% CI 0, 0.01) to the phenotypic variance of
BMI. d We calculated the phenotypic variance contributed by exonic, intronic, promoter region and SNPs +/—50 kb outside of the exon and promotor
regions (cis) for each gene. Bar plots show the correlation among the variance explained by the groups across genes. Error bars show the SD.

(95% CI 0.21, 0.32) to the phenotypic variance of height, the
intronic region of FTO contributing 0.48% (95% CI 0.29, 1.12) to
BMI, both the exonic-region and intronic-region of LPA con-
tributing a combined 0.08% (95% CI 0.04, 0.13) to the risk of
CAD, and the intronic region of TCF7L2 contributing 0.28%
(95% CI 0.23, 0.35) to the risk of T2D (Fig. 4c, full results in
Supplementary Data 6-9). Taken together, these results support
an infinitesimal contribution of many thousands of genes to
common complex trait variation and give joint estimates of the
proportions of variance contributed by each gene and their
probability of association.

For each gene, we also calculated the phenotypic variance
contributed by exonic, intronic, promotor region, and cis SNPs
and then calculated the correlation among the variances
explained by the groups across genes. Across traits, we find small
positive correlations of the variance attributable to exonic and
intronic regions of 0.17 (0.09, 0.24 95% CI) for height, 0.02
(0.001, 0.05 95% CI) for BMI, 0.103 (—0.007, 0.71 95% CI) for
CAD, and 0.064 (0.01, 0.19 95% CI) for T2D. Similarly, we find
small positive correlations between introns and cis regions
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(Fig. 4d). With the exception of height, there was no evidence
for a relationship among the following groups: (i) SNPs in the
exons of each gene and SNPs +/—50 kb outside of the exon and
promotor regions; (ii) SNPs in the exons of each gene and SNPs
in proximal promotors; and (iii) intronic SNPs and SNPs in
promotor regions (Fig. 4d). This implies that trait associated
SNPs in proximal and distal regulatory regions are largely
independent of the effects of SNPs in their closest exon, as they
do not align in terms of the variance they explain (Fig. 4d). For
height, small weakly positive correlations across all gene regions
in their contribution to variance, implies a degree of alignment
across genes in regulatory variants and the closest exon (Fig. 4d).
These results suggest a regulatory link between introns and distal
cis regions outside of the promotor, or that introns may be
correlated with structural variation. They also imply that the
variance contributed by regulatory regions and those in the
closest coding regions are not strongly coupled for these common
complex traits.

Finally, our approach provides automatic fine-mapping of SNP
loci, and of these region-level and gene-level associations, 360
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Table 2 Summary of findings for height (HT), body mass
index (BMI), type-2 diabetes (T2D) and cardiovascular
disease (CAD).

Findings Method HT BMI CAD T2D
Associated SNPs COJO-plink2 1673 517 34 85
COJO- 2131 565 34 84
BoltLMM
COJO- 2134 555 34 82
Regenie
50 kb regions BayesRR-RC 1660 520 70 87
(PPWV > 95%)
Genic regions BayesRR-RC 2578 2956 1478 1581
(PPWV > 95%)
Exons 243 29 5 13
Introns 1072 M62 307 347
cis? 1254 1765 166 1221
SNPs (PIP > 95%) BayesRR-RC 360 20 2 9
Exons 216 16 1 4
Introns 73 2 1 5
10-500 kb 48 1 0 0
LD clumps with r2=0.1 BayesRR-RC 1220 206 16 19

(PPWV > 95%)

3SNPs located up to +/—50 kb from the closest gene.

SNPs for height, 20 for BMI, 2 for CAD and 9 for T2D could be
mapped to a single SNP with greater than 95% inclusion
probability across all four chains (Supplementary Data 10 and
Supplementary Fig. 13). Of these fine-mapped SNPs, only 53.45%
are top loci with a p-value < 5x 1078 from the fastGWAS UK
Biobank summary statistic data for standing height, BMI, angina/
heart attack and type-2 diabetes (fastGWA, see “Code avail-
ability”). This highlights that selecting on the top SNP markers
identified by standard association studies would give a different
set of variants than those obtained from selecting high PIP SNPs.

Out-of-sample prediction into another European healthcare
system. We generated a full posterior predictive distribution for
each trait in each of 32,500 individuals from the Estonian Gen-
ome Centre data, which allows the transmission of uncertainty in
the marker effect estimates from the UK Biobank to the genomic
predictors created in Estonia. First, despite this study having
almost half the sample size, we show improved genomic predic-
tion as compared to recently proposed summary statistic
approaches?3, when taking the mean of the predictor across
iterations and correlating this with the phenotype with correla-
tion of 0.62 for height, 0.34 for BMI, 0.16 for T2D, and 0.07 for
CAD (Supplementary Fig. 14a). The area under the receiver
operator curve (AUC) for T2D was 0.67 and 0.57 for CAD. In
comparison, using the 64 BLD-LDAK annotations recommended
by a recent study?!, the highest prediction accuracy obtained
from MegaPRS was 0.55 for height, 0.32 for BMI, 0.10 for T2D,
and 0.05 for CAD.

We then estimated the distribution of the partial correlations
between the trait and genomic predictors created from our
different annotation groups and find that exonic, intronic, and
10-500 kb upstream regions contribute proportionally more to
the prediction accuracy than other genomic groups, replicating
our results from the UK Biobank (Supplementary Fig. 14). We
find evidence for zero/low correlations of genomic predictors
created from different annotation groups, which supports our
results from the UK Biobank (Supplementary Fig. 14e). This
suggests that individuals have a different portfolio of risk variants,
with different genomic regions contributing for different

individuals to their overall genetic value, as expected under a
highly polygenic model.

Additionally, for height and BMI we also determined the
proportion of the posterior predictive distribution for each
individual that was within +/—1 SD of their true phenotypic
value. On average 67.5% of an individuals posterior predictive
distribution is within +/—1 SD of their true phenotype for BMI
and 75% for height, with similar prediction accuracy across
individuals (Supplementary Fig. 14c). For T2D and CAD, we
extended the PCF metric, typically defined as the proportion of
cases with larger estimated risk than the top pth percentile of the
distribution of genetic risk in the general population. For each
individual, we calculated the proportion of their posterior
predictive distribution that falls above the top 25% of the
distribution of genetic risk in the general population. The
distribution of these probabilities is shown for confirmed cases
and those without diagnosis in the Estonian Biobank (Supple-
mentary Fig. 14d). We find 25 individuals for T2D and 15
individuals for CAD where 290% of their posterior predictive
distribution is within the high risk group of which 40 and 18% are
currently defined as cases for T2D and CAD, respectively based
on recent medical records. This is compared to 1% and 2% case
rate for those with <10% probability of being in the high risk
group for T2D and CAD respectively, giving an odds ratio of 20
and 18 between the 290% and <10% groups. However, our results
clearly show that the individual-level sensitivity and specificity of
genomic prediction for these common complex diseases is very
poor, as 75% of T2D cases and 92% of CAD cases have <50% of
their distribution within the high-risk category. These results
highlight how variation contained within a posterior predictive
distribution that is typically ignored in human genomic
prediction can be used. We show that genomic prediction for
personalised medicine with patient-specific predictions or
stratification of patients is currently extremely limited.

Discussion

There is no single statistical model appropriate for all settings and
thus there will always be a situation where a model poorly fits the
data. We have provided theoretical and empirical evidence that a
grouped Dirac spike-and-slab model (which we term BayesRR-
RC), has a prior that is flexible enough to show robust model
performance across the data analysed here, improving inference
in many settings over commonly applied approaches. We develop
a range of computational and statistical approaches which allow
this, or any similar Gibbs sampling algorithm, to scale to whole
genome sequence data on many hundreds of thousands of indi-
viduals. This has enabled us to compare and contrast the inferred
underlying genetic distribution for four complex phenotypes
under this prior, providing novel insight into the genetic archi-
tecture of these traits. We observe that all phenotypes simply
appear to be predominantly underlain by very many common
variants, with SNPs within distal regulatory regions, coding and
intronic regions each contributing more to the phenotypic var-
iance and having higher allele substitution effects.

There has been debate on how to best estimate SNP heritability!-3#
and here we validate that one approach could be to split SNP mar-
kers by LD to improve genetic effect size estimates. Our results
suggest that the proportion of genomic variation attributable to
mutations in regulatory regions and mutations in the closest genic
regions are largely independent. Additionally our model tests asso-
ciation within groups in a probabilistic way and we find 290 inde-
pendent coding, 2888 independent intronic, and 5406 independent
cis regions with =95% probability of contributing at least 0.001% of
the SNP heritability. Understand how these coding, intronic and
proximal and distal regulatory regions combine to contribute to
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phenotypic variance remains a substantial challenge and our results
suggest a predominant role for introns and for distal, and thus likely
more global enhancers, rather than locally dominant proximal
expression QTL. The recent “omnigenic” model?4, suggests that trait-
associated variants in regulatory regions influence a local gene which
is not directly causal to the disease, and also co-regulate other disease
causal genes (or “core” gene). Our findings of little correlation of
exonic and proximal regulatory variance and a large number of trait-
associated intronic and cis regions do not rule this out, but suggest a
more complex infinitesimal picture with differences occurring among
traits, potentially due to their evolutionary history.

There are important caveats and limitations to consider. Here,
we present an approach for analysing large-scale biobank data,
which is becoming increasingly available, However, a substantial
number of GWAS have already been conducted, with associated
published genome-wide summary association statistic estimates.
Many methods have been developed to take advantage of these
estimates, with downstream analysis models making use of var-
ious summary statistics resources in efficient and flexible ways.
We show here that two leading summary statistic approaches
perform poorly as compared to individual-level models for esti-
mation of enrichment and genomic prediction. Despite this, the
sample sizes obtained in consortia study meta-analyses will
exceed those from single biobanks, especially for disease, and thus
the genomic prediction accuracy of consortia study meta-analysis
summary statistic prediction models may exceed those from
individual-level analyses. Combining the posterior distribution
obtained from BayesRR-RC across different individual-level bio-
bank studies would alleviate this issue.

Additionally, in this work we do not extend past a limited
number of functional annotations and thus we do not provide a
model capable of further partitioning the variation into specific
regulatory functions (eQTL, mQTL, pQTL etc.) or directly
modelling the relationships among components. LDSC functional
methods take the approach that SNPs can be assigned to different
categories (e.g., both coding and conserved), with the categories
competing against each other to explain the signal, with the
downside that enrichment is relative and that the total variance is
not partitioned. Here, the total variance is partitioned but this is
based on preferential allocation of SNPs to coding regions, then
introns, and then to their nearest upstream gene position. These
SNPs are most likely to be allocated accurately, with 1 and
1-10kb groups being more ambiguous in high gene density
regions and likely mislabelled. However, if this was the case then
variance would still be partitioned to these mislabelled groups and
it would just be evenly split across them, with experimentally
validated promotor, enhancer and tfbs regions assisting to some
degree in alleviating this. Rather, here we see a clear pattern of
increasing variance contributed, increasing average effect size,
and an increasing pattern of higher rare allele substitution effects
by individual markers as distance from the nearest gene increases.
10-500 kb distal regions may contribute more variance as marker
density and marker coverage is higher in these regions, with
missing variation within 10 kb upstream as causal variants are
poorly correlated with SNPs. The posterior distributions for the
variance explained by 1kb, 1-10kb regions, and 10-500 kb
regions are negatively correlated (Supplementary Fig. 8, meaning
that these groups are competing with each other, as if variance
goes to one then it is being taken away from the other because
they are in LD), and thus there is the risk that the model cannot
separate these effectively. However, this is true of any enrichment
analysis conducted to date and we can only make inference in the
data that we have currently available. Resolving this requires the
application of this model to whole genome sequence data where
the total variance can be partitioned across upstream regions
without marker coverage concerns. Irrespective of exactly which

upstream region variance is allocated to, our inference that genic
regions are uncorrelated in their contribution to variance with the
promotor and upstream regions still holds as does our prob-
abilistic inference on the associations of each gene and their
contribution to the phenotypic variation.

Our results provide evidence for an infinitesimal contribution
of many thousands of common genomic regions to common
complex trait variation and for a predominant role of intronic,
exonic, and distal regulatory regions. This highlights the immense
challenge of understanding the molecular underpinning of each
association and the difficulties in improving the estimation of
many tens of thousands of small-effect associations that are
required to improve genomic prediction. This work represents a
step toward maximising the probabilistic inference that can be
obtained from large-scale Biobank studies.

Methods
BayesRR-RC model. We extend the BayesR model to a BayesRR-RC model as
follows

o
y=1lu+ X Xp, +e€, (©)

p=1
where there is a single intercept term 1y and a single error term € but now SNPs
are allocated into groups (¢, ..., ¢o), each of which having it's own set of model

— 2 P . )
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Thus the mixture proportions, variance explained by the SNP markers, and
mixture constants are all unique and independent across SNP marker groups. This
extends previous models (known as BayesRC? and BayesRS?®), which have used
additional mixtures for different SNP groups, but kept a single global variance
component. Importantly, a single variance component with more mixtures serves
only to change the amount of mass allocated at different sizes of the distribution,
but does not alter the sizes of the effects themselves as there is still a single
distribution. In contrast, the formulation presented here of having an independent
variance parameter afiw per group of markers, and independent mixture variance

components, enables estimation of the amount of phenotypic variance attributable
to the group-specific effects and enables differences in the distribution of effects
among groups. In this work, we use 78 SNP marker groups, each with five mixture
components (including 0).

We can sketch the difference in the models by looking at the respective
conditional posteriors, again, assuming a single component for simplification
purposes. We have a BayesRC or BayesRS estimator by assuming different groups
of effects as described in Supplementary Note 4 Eq. 35, which yields:

1;3")“1',,,\\0},
(5)

where 7, are the group-specific mixture proportions and ||y,|lo is the cardinality

f(vt‘ g, . o, vﬁ.y) o exp {ﬁ Iy = Xyuoty0ll3 = 27 [lell3 — IOg(

of the group. The corresponding MAP estimate would amount to adding extra
penalisation on sparsity through the 7, terms, while keeping the same level of
shrinkage as the baseline BayesR.

In our model the conditional posterior is:

1 1 1—m

2 2 2 2

a0} 102y o exp{—zgguy—xy,oay,uuz——Zdﬁ Hauz—tag< - V)uyq,uo}
:

(6)
now each marker has a group-specific shrinkage o7 , which translates to a specific
o

Ay per group in the MAP estimate. This amounts to markers being shrunk
according to the scale of the effects of their group, instead of the scale of all other
markers. So instead of solving a single model selection and regularisation problem
we are solving ® model selection and regularisation problems, with shared
information only through the residuals. If we subset by MAF and LD bins, the
resulting groups of columns will have a correlation pattern similar to an
exponential decay (LD decays with distance). If we take the whole genotype matrix,
the pattern would be closer to a block diagonal matrix of correlations, in refs. 1627
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it is showed that the former case requires weaker conditions in order to recover the
true vector B consistently than the latter. Although the sampling scheme was
different, we have shown that a similar model with only two groups: genetic
markers and epigenetic markers, is successful in identifying BMI and smoking
epigenetic signatures!. The baseline model derivations for this model are outlined
in Supplementary Note 1, a BSP Gibbs sampling scheme and an assessment of its
performance is outlined in Supplementary Note 2, and an assessment of the model
performance with correlated covariates is outlined in Supplementary Note 4.

Simulation study
Genetic architecture. We first compare the model performance of BayesRR-RC to
existing approaches across 18 different genetic architectures. We randomly selected
40,000 unrelated UK Biobank individuals and used 596,741 imputed SNP markers
from chromosomes 19 to 22. We randomly selected either 1000, 10,000, or 100,000
LD independent (LD R? < 0.1) causal SNP markers. For each SNP marker set there
were two settings.

In the first setting, we simulated effect sizes from a normal distribution with zero
mean and variance of 0.1, 0.3, or 0.6 divided by the number of causal
variants & N(0, [p(1—p)]~025), with p the allele frequency. We sampled individual-level
environmental (residual) variance from a normal distribution with zero mean and
variance equal to 1 minus either 0.1, 0.3, or 0.6 to give phenotypes with zero mean
and unit variance. This gave hdy, = 0.1, 0.3, or 0.6 and simulates stronger effect
sizes for rare variants in line with recent empirical estimates. We simulated ten replicate
phenotypes for each of the nine different genetic architectures. In the second setting,
we repeat each simulation, sampling the SNP marker effects from 13 different normal
distributions, one for each of 13 different genomic annotation groups described in
the main text. The 13 groups were allocated different proportions of the héNP as follows:
for exonic variants P(hy,) = 0.167, intronic variants P(hgy,) = 0.334, 1 kb promotor
variants P(hap) = 0.0835, 1-10 kb enhancer variants P(h3y,) = 0.04175, 1-10kb
transcription factor binding sites P(hZy,) = 0.04175, 1-10 kb other variants P(h2y,)
= 0, 10-500 kb enhancers P(hZy,) = 0.0835, 10-500 kb transcription factor binding
sites P(héNP) = 0.0835, 10-500 kb other variants P(hENP) = 0, 500 kb-1 Mb enhancers
P(hgyp) = 0.0835, 500 kb-1 Mb transcription factor binding sites P(hgyp) = 0.0835,
500 kb-1 Mb other variants P(héNP) = 0, and other non-annotated SNPs P(héNP) =0.
For each of the 13 groups marker effects were simulated as & N(0, [p(1—p)] ~%2°) to give
hie = 0.1, 03, or 0.6, with stronger effect sizes for rare variants. Four of these 13
groups had zero variance indicating that no associations were created for these groups.

Thus, in the first setting we simulate variance explained by annotation groups
that is on average proportional to the number of SNPs within each annotation (due
to the random allocation of SNPs and effect sizes). In the second setting, the
variance and average effect size differ across annotation groups. We refer to these
as two different enrichment settings: “random”, or “enriched”.

For these 180 phenotypes, we ran the following individual-level models:

® A restricted maximum likelihood model implemented in the software
GCTA with a single relationship matrix providing an estimate of the
variance attributable to SNPs genome-wide.

® A restricted maximum likelihood model implemented in the software
BoltREML!7. Here, we used a 78 MAF-LD-annotation group model using
the non-overlapping genomic annotation groups described below in the
UK Biobank analysis providing an estimate of the variance attributable to
SNPs genome-wide and an estimate of the variance attributable to SNP
markers of each annotation group.

® A Haseman-Elston regression using the same 78 group model implemented
in the software RHEmc!S, providing an estimate of the variance
attributable to SNPs genome-wide and an estimate of the variance
attributable to SNP markers of each annotation group.

®  Mixed linear association model (MLMA), which is a two-stage approach
where the variance attributable to the SNP markers genome-wide is
estimated and this estimate is then used in a second generalised least
squares step to test for SNP-phenotype associations one marker at a time.
There are two forms of this model. In the first, the SNP is fitted twice as it is
included in both the fixed and random terms (MLMALI). In the second, the
SNP to be tested as fixed is removed from the random term alongside those
on the same chromosome (MLMA). We used the software BoltLMMS,
Regenie?, and GCTA to fit these models. These approaches provided
estimates of the SNP regression coefficients (marker effect sizes).

® Single marker marginal least squares regression using plink228, whilst
fitting 20 principal components of the marker data as covariates.

® Linkage disequilibrium score regression (LDSC!®), with LD scores
calculated using the same data, and the same 78 non-overlapping
annotations in a 78 component LDSC annotation model. We included
SNPs with MAF > 1% following the software instructions. This model is
intended to approximate an individual-level REML analysis with 78
annotations and provides an estimate of the variance attributable to SNPs
genome-wide and an estimate of the variance attributable to SNP markers
of each annotation group.

®  We used the software SumHer®. We calculated marker taggings under the
same 78 component annotation model. We ignored the LD weights when
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calculating the taggings as we found this gave the best estimates we could
obtain from the simulated data across all scenarios. We set the relationship
of effect size and minor allele frequency to be —0.25 as suggested by the
authors and which matches the simulation setting. This model is intended
to approximate an individual-level REML analysis with 78 annotations, but
using a different scaling of the relationship matrix, and provides an
estimate of the variance attributable to SNPs genome-wide and an estimate
of the variance attributable to SNP markers of each annotation group.

®  Our BayesRR-RC model implemented in GMRM with 78 SNP-marker
groups and run for 5000 iterations with a burn-in period of 2000 iterations.

®  Our BayesRR-RC model implemented in GMRM with only a single SNP-
marker group, which is equivalent to BayesR, run for 5000 iterations with a
burn-in period of 2000 iterations.

We then ran the following prediction models, using a testing set of 10,000 UK
Biobank unrelated individuals, that were also unrelated to the training data, and
focusing on the models proposed in a recent paper?!. These methods contain two
approximations to our BayesRR-RC model and the authors claim to outperform all
other existing methods, including individual-level models. The models are:

®  An individual-level bayesR model using genomic annotation SNP variance
estimates from the SumHer models as implemented in the software
MegaPRS2!. This provides estimates of the SNP marker effects for creating
a genetic risk predictor.

® An individual-level boltREML model using genomic annotation SNP
variance estimates from the SumHer models as implemented in the
software MegaPRS?!. This provides estimates of the SNP marker effects for
creating a genetic risk predictor.

® A summary statistic bayesR model using genomic annotation SNP variance
estimates from the SumHer models as implemented in the software
MegaPRS2!. This provides estimates of the SNP marker effects for creating
a genetic risk predictor.

® A summary statistic boltREML model using genomic annotation SNP
variance estimates from the SumHer models as implemented in the
software MegaPRS?!. This provides estimates of the SNP marker effects for
creating a genetic risk predictor.

First, we compared the correlation of the simulated and estimated proportion of
phenotypic variance attributable to the 13 genomic annotation groups across all
models in Fig. 1. We determined the ability of the approaches to correctly identify
enriched regions of the DNA by estimating the probability within each simulation
replicate that a SNP marker group would have an estimated enrichment of 22 (i.e.,
being described as having average effect sizes that are twice as large as expected)
when the simulated value was <1.1. As BayesRR-RC induces sparsity in the SNP
effect estimates, with some markers always remaining in the variance = 0 spike, we
propose a different enrichment definition where the proportion of h3y, is divided
by the proportion of markers that are in the model for the SNP group, rather than
the proportion of markers mapping to the SNP group.

In Supplementary Note 3, we propose a posterior probability window variance
(PPWYV) approach??, which provides a probabilistic determination of association of
a given LD block, genomic window, gene, or upstream region, relative to the
amount of phenotypic variation attributable to that window. Our PPWYV approach
determines the posterior inclusion probability that each region and each gene
contributes at least 0.001% to the thP, with theory and small-scale simulations
outlined in Supplementary Note 3 suggesting well controlled FDR. We partitioned
the 596,741 imputed SNP markers in LD blocks, defined as groups of markers with
LD R?>0.1. Within each simulation replicate, we estimated the probability that LD
blocks containing a causal variant were identified by PPWV. We compared this to
MLMA estimates obtained using the BoltLMM software, by estimating the
probability that LD blocks containing a causal variant were identified as having a
SNP with p-value <5 x 1078, the standard genome-wide significance threshold. We
present these results in Fig. 2a.

We then compare the prediction accuracy obtained in a testing set of 10,000 UK
Biobank unrelated individuals, that were also unrelated to the training data. We
predicted phenotype using SNP marker effect sizes obtained from BayesRR-RC, MLMA
effect sizes from BoltLMM, and the four MegaPRS methods outlined above
implemented in the LDAK software. While we would suggest that fixed-effect MLMA
estimates are improper for prediction we include this comparison as polygenic risk
scores have often been created from fixed-effect SNP estimates. We calculate the
correlation between the simulated phenotype in the testing set and the genomic
predictor within each simulation replicate and we compare the mean correlation across
the 18 different genomic annotations in Fig. 2. Additionally, to provide a benchmark,
we compare to the theoretical expectation under ridge regression approximations?’,
with the number of markers set to the number of causal variants.

Relationship between effect size, minor allele frequency and LD. We then conducted
another large-scale, but this time well-powered simulation study, where we
ascertained the causal variant SNP markers in different ways and varied the rela-
tionship between effect size, minor allele frequency and LD. We used the same
randomly selected 40,000 unrelated individuals and all 596,741 imputed (version 3)
genetic markers from chromosomes 19 through 22 from the UK Biobank. We
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simulated a wide-range of different possible underlying genetic effect size dis-
tributions as follows:

®  We chose either 5000 or 10,000 imputed SNP markers for which to assign a
genetic effect size, providing two different levels of polygenicity.

We selected these 5000 or 10,000 markers in two different ways. Either, we
selected SNPs at random, or we selected the marker of highest minor allele
frequency per LD block of the genome, with an LD block defined as a
group of SNP markers with absolute LD of at least 0.05. Randomly
allocating markers creates a set of associated variants with the same
distribution of LD and MAF as the SNP data, which is composed of
predominantly low frequency variants. Selecting only the highest frequency
marker per LD block creates a setting where for each set of markers in LD
with each other, there is only one causal genetic variant, and where the
distribution of associated markers differs to that of the SNP markers as
a whole.

Having created four different ways of selecting associated markers (5000 or
10,000 and high-MAF or random) we then created five different ways of
assigning effect sizes to them:

We simulated effect sizes from a normal distribution with zero mean and
variance 0.6 divided by the number of markers (5000 or 10,000) with no
relationship to the LD or MAF of the markers. Thus, effects had
variance o N(0, w?[p(1—p)]°) with w the LD score of the marker and p
the allele frequency.

We simulated effect sizes from a normal distribution with zero mean and
variance 0.6 divided by the number of markers (5000 or 10,000) o N(0, w
~025[p(1—p)]~9-2%). This simulates stronger effect sizes for rare variants
and those in low LD.

We simulated effect sizes from a normal distribution with zero mean and
variance 0.6 divided by the number of markers (5000 or 10,000) e N(0,
w0-25[p(1—p)]~9-25). This simulates stronger effect sizes for rare variants
and those in high LD.

We simulated effect sizes from a normal distribution with zero mean and
variance 0.6 divided by the number of markers (5000 or 10,000) o N(0, w
—025[p(1—p)]%75). This simulates equivalent effect sizes for common and
rare variants, and greater effects for markers in low LD.

We simulated effect sizes from a normal distribution with zero mean and
variance 0.6 divided by the number of markers (5000 or 10,000) e N(0,
w0-25[p(1—p)]97°). This simulates equivalent effect sizes for common and
rare variants, and greater effects for markers in high LD.

For each of the four different sets of markers, each with five different effect
size sampling schemes, we then created two additional settings. In the first
setting markers were sampled from the various normal distribution, as
described above, for the five different effect size sampling schemes. In the
second setting, for each of the five different effect size sampling schemes we
simulated effects from 13 different distributions, one for each of 13
different genomic annotation groups with different proportions of total
SNP heritability (h3yp). For each of the five different effect size sampling
schemes the relationship to LD and MAF remained the same, but the total
variance attributed to the SNP markers was partitioned across annotation
groups as follows for exonic variants (thP = 0.1), intronic variants (thP
= 0.2), 1kb promotor variants (kg = 0.05), 1-10 kb enhancer variants
(0.025), 1-10 kb transcription factor binding sites (héNP = 0.025), 1-10 kb
other variants (h3yp = 0), 10-500 kb enhancers (hiy, = 0.05), 10-500 kb
transcription factor binding sites (h3yp, = 0.05), 10-500 kb other variants
(hixp 0), 500kb-1Mb enhancers (h3, = 0.05), 500kb-1Mb
transcription factor binding sites (i = 0.05), 500 kb-1 Mb other variants
(hiyp = 0), and other non-annotated SNPs (hiy, = 0). Four of these
distributions had zero variance indicating that no associations were created
for these groups. In the first setting, this simulates variance explained by
annotation groups that is on average proportional to the number of SNPs
within each annotation. In the second scheme, the variance and average
effect size differs across annotation groups. We refer to these as two
different enrichment settings: “random”, or “enriched”.

This created four different sets of associated markers (5000 or 10,000 and high-
MAF or random), each with five different marker effect size sampling schemes,
which we refer to in the main text as the 20 different generative genetic models
(Table 1), each of which has two enrichment settings. This gave 40 different
sampling schemes for the genetic effects and we simulated ten replicates for
each setting, giving a total set of 400 simulated phenotypes.

For each generative model the total genetic variance was 0.6 and we
sampled individual-level environmental (residual) variance from a normal
distribution with zero mean and variance 0.4 to give phenotypes with zero
mean and unit variance.

This range covers generative genetic models discussed in the literature and
provides models that both fit and violate the assumptions of the range of variance
component statistical models. This includes both individual-level and summary
statistic approaches, that are currently applied in the literature for estimation of the

12

NATURE COMML

variance attributable to the SNP markers, for testing association of genetic markers
with phenotypes genome-wide, and for genomic prediction.

This simulation provides a range of different scenarios for which we can explore
the model performance of BayesRR-RC and compare it to existing approaches. In
Supplementary Fig. 1, we compare the h, estimation, estimation of the
annotation genetic variance along with the RMSE of the estimates, and the
estimated average effect size.

We then extend our model comparisons in a number of ways. While direct
comparisons of frequentist and Bayesian approaches are difficult and often ill
advised, we wished to show that BayesRR-RC provides accurate effect size
estimation in the presence of LD. We provide three simple comparable metrics to
assess model performance of BayesRR-RC against frequentist mixed linear
association models (MLMA) applied as two-stage approaches, where either the
SNP is fitted twice as it is included in both the fixed and random terms (MLMAi
implemented in GCTA), or the SNP to be tested as fixed is removed from the
random term alongside those on the same chromosome (MLMA implemented in
BoltLMM and Regenie).

First, we calculated z-scores of the marker effect estimates from their true
simulated value. As MLMA approaches estimate marker effects one-at-a-time, we
calculated the z-score of the estimate from the true simulated value for the causal
variants in each simulation replicate, across generative genetic models. For the
Bayesian methods, at any one iteration, LD among the markers is controlled for
(see Supplementary Note 4). However across iterations as the chain mixes, markers
in LD will enter and leave the model, with their posterior inclusion probabilities
reflecting their association with the trait. Thus, we summed the squared regression
coefficient estimates of SNPs in the model at each iteration for each LD block
(markers in LD R2>0.1 within 1 MB) of each simulation replicate, took the
posterior mean across iterations, and then calculated the z-score of the estimate
from the simulated value. This metric provides an assessment of the ability of
BayesRR-RC to accurately estimate the contribution of a genomic region to the
phenotypic variance as compared to MLMA approaches. We present these results
in Supplementary Fig. 2, where we find that the z-scores of the estimated BayesRR-
RC effects are generally stable across generative genetic models and comparable to
those obtained from BayesR but with slightly elevated variance in many cases as the
model is less sparse (Supplementary Fig. 2a). We find that SNP effect size estimates
from MLMA models have higher estimation error, especially when the causal
variant is rare, or in high-LD with many other SNPs (Supplementary Fig. 2a).
MLMAIi models show lower estimation error than MLMA approaches, likely as
they control for both distant and local LD (Supplementary Fig. 2a). We explore this
further in Supplementary Note 4.

Second, to further test our PPWYV approach we calculated precision-recall
curves, where associations are defined as LD blocks with PPWV of >95% at 0.001%
proportion of variance explained. True positives were the number of identified
5000 or 10,000 LD blocks that contained a causal variant. False positives were the
number of identified LD blocks that did not contain a causal variant. Precision was
defined as the ratio of true positives to the sum of true positives and false positives.
Recall was defined as the ratio of true positives to the sum of true positives plus
false negatives. The FDR was defined as the proportion of LD blocks with PPWV of
295% at 0.001% proportion of variance explained that did not contain a causal
variant. For the MLMA methods, following standard practice, we clumped the
marker effect estimates using Plink, as local LD is not controlled for, selecting LD
independent markers (LD R?<0.01 with other markers) across the genome. True
associations were defined as selected SNPs that were in LD with a simulated causal
variant (LD R2 > 0.01). False associations were defined as selected SNPs that were
not in LD (LD R2<0.01) with a simulated causal variant. Precision and recall were
calculated across thresholds of the chi-squared statistics of the selected markers,
and the area under the curve was calculated using the trapezoid rule for calculating
the integrals, assuming the curve is linear between the points. FDR is then
calculated as the proportion of markers with p-value <5 x 10~8 that were not in
LD with a causal variant (LD R?>0.01). This provides a way to directly compare
model performance for the discovery of associated genomic regions across Bayesian
and frequentist approaches and tests our hypothesis that a PPWV approach
controls FDR well in comparison with Bonferroni p-value correction
(Supplementary Fig. 2b, c). For both MLMA and Bayesian approaches our
definition of FDR is not strictly the FDR. Markers in LD R?<0.01 with the
clumped selected markers may still show a weak correlation with the simulated
causal variants, and likewise blocks of SNPs in LD R? < 0.1 may still be in weak LD
with the causal variants. Our approach instead captures the ability of MLMA and
Bayesian approaches to localise an effect within R? > 0.01 and R? > 0.1 respectively.
We present these results in Supplementary Fig. 2.

Third, we wished to determine the out-of-sample phenotypic prediction
performance of BayesRR-RC. We used the same randomly selected 10,000
individuals from the UK Biobank that were unrelated to those used in the
simulation. Using the same SNP markers and the simulated marker effects we
calculated a simulated genetic value for each individual across the replicates. Then,
using the effects generated by BayesR and BayesRR-RC, we calculated the predicted
genetic value and determined the correlation with the simulated genetic value. We
took the marker effect estimates from the MLMA approaches and conducted LD
clumping with p-value thresholding using Plink to find the set of markers that gave
the highest correlation of the genetic predictor and the simulated genetic value
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within the 10,000 UK Biobank individual selected for out-of-sample prediction. We
also used the MegaPRS methods implemented in the software LDAK running the
four different models described above. We compared the correlation of predicted
and simulated genetic value across approaches for each of the 400 simulated
phenotypes (Supplementary Fig. 2d).

The influence of population structure and relatedness. We then investigated the
importance of controlling for multicollinearity for the control of population genetic
and data structure effects. In principle, a MLMA approach will control for bias with
correlated markers (either local or long-range LD) fitted as random when testing
for the effects of a focal SNP. For two markers, X, and X, in LD correlation Px, x,>
with 8, =0 we can express the MLMA fixed effect solution as a partial regression
coefficient of the phenotype regressed onto the focal SNP after adjusting for X,

estimated as uy = Following our derivation above for a shrinkage esti-

Xy
XIX, AT
mator of a partial regression coefficient the effect size of X; is estimated as
5 _ X, X, M
Boxm, = xpx, - XY
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PX, X,y

'7PX, X,
collinearity acts to increase the o term of A, reducing the denominator X} X, + AI
in the estimation of uy , and increasing the variance of the estimates of common

and in this two-SNP example the bias is

accounted for in the term when the fixed effect is estimated. Multi-

markers in high LD, those with the highest average Fgr.

We conducted a simulation study using real genomic data from chromosome 22
where 10,000 individuals were selected from two UK Biobank assessment centres
(Glasgow and Croydon). First, causal variants were allocated to 5000 high-LD SNPs
with effect sizes simulated from a normal distribution with variance proportional to the
Fsr among the two populations at each SNP. Second, we selected the same high-LD
SNPs as the causal variants, but simulated effect sizes to have correlation 0.5 with the
allele frequency differences of the SNPs among the two populations, and thus not only
is the effect size proportional to the Fgr, but there is also directional differentiation (trait
increasing loci tend to be those with higher allele frequency in Croydon, trait decreasing
alleles have lower frequency in Croydon). For each of these two scenarios, we simulated
50 replicate phenotypes where the phenotypic variance attributable to the causal SNPs is
0.5, there is a phenotypic difference in which Croydon individuals have a phenotype
that is 0.5 SD higher than Glasgow individuals (contributing variance 0.05), and residual
variance was simulated from a normal with variance 0.45, to give a phenotype with
mean of zero and variance of 1. The data were then analysed using a mixed-linear
model association (MLMAi implemented in GCTA) and a grouped Bayesian dirac
spike and slab models (BayesR implemented in GMRM). In the analysis, we either
adjusted the phenotype by the first 20 PCs of the genetic data used in the simulation
study, or we did not adjust the phenotype for the PCs, to examine the effects of this
common methods of population stratification control. In a two-population scenario the
leading eigenvector encapsulates the allele frequency differentiation between the
populations and thus the expectation is that this should adjust for these differences
when estimating the marker associations. The results are presented in Fig. S5a, where
we find that an MLMA approach overestimates the variance attributable to the SNPs
under all scenarios, both with and without adjustment for PCs. BayesR returns accurate
estimates when the variance of the marker effects is proportional to Fgr and
underestimates the variance when there is a directional associations, with this
underestimation being less severe with PC adjustment.

Finally, we also assess the influence of relatedness on the estimates obtained
from a BayesR model using real genomic data from chromosome 21 and 22
(226,662 SNP markers) and 10,000 families randomly selected from the UK
Biobank (26,034 individuals). Here, we selected 2000 LD blocks with a single causal
SNP per block at random, where an LD block is defined as a group of SNP markers
with absolute LD of at least 0.01. We assigned effect sizes to these 2000 selected
SNPs, drawing them from a normal distribution with zero mean and variance 0.5/
2000. We then multiplied effect sizes by the simulated marker values scaled to zero
mean and unit variance to create the genetic values with variance 0.5. In addition to
the genetic component, we added a common environment component to simulate
effects coming from shared familial environment. We simulated four scenarios
where each family was assigned the same common environment effect drawn from
a normal distribution with variance 0 (no common environment), 0.1, 0.2, and 0.3.
Finally, we added an environmental component simulated from a normal
distribution with mean zero and variance 1 minus the genetic variance and minus
the common environment variance. We analysed 20 replicates of each of the four
scenarios with BayesRR-RC with six MAF-LD groups (terciles of MAF, each split
into two groups based on median LD score within each MAF tercile). In
Supplementary Fig. 5, we summarise 800 samples of the posterior distribution from
5000 iterations with a thin of five and removing the first 1000 iterations as burn-in.
We find that the variance attributable to the SNPs, the regression coefficients and
the posterior probability of window variance (PPWV) remain unchanged with
relatedness and with increasing family effects.

Localisation and fine-mapping of SNP-phenotype associations. We further validate
the use of PPWV in an another simulation study with 500 replicate data sets of
10,000 SNP markers for 5000 individuals for each of two scenarios. In the first
scenario, 1000 SNPs are randomly selected to be causal variants and all 10,000 SNP
markers are LD independent. In the second, the 1000 causal variants are each in LD
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with four other variants with LD = 0.95, with the remaining 5000 variants having
zero effect size and LD = 0. For each scenario, we simulate effect sizes as an equally
spaced sequence from an effect size of —0.04 SD, to 0.04 SD giving genetic variance
of 0.55, and we simulate residual variance from a normal distribution with zero
mean and variance 0.45, to give a phenotype with zero mean and unit variance. For
the first scenario, we calculate the posterior inclusion probability of each causal
SNP. For the second scenario, we calculate the PPWV for each 5-SNP group.
Across the 500 replicates of each scenario, we take the mean PPWV and mean PIP
for each of the 1000 different effect sizes and compare these in Fig. S6a. Addi-
tionally, we grouped SNPs in 50kb regions and selected the number of regions that
explain at least 0.1, 0.01 and 0.001% of the variance attributed to all SNP markers
in 0.8-100% of the iterations using the simulated data described above for the
multiple group enrichment scenario for chromosome 22 in the UK Biobank. We
then calculated the false discovery rate (FDR), defined as the proportion of 50 kb
regions identified that do not contain a causal variant, at PPWV thresholds ranging
from 0.8 to 100%. We compare these in Supplementary Fig. 6b where as we lower
the PPWYV variance threshold, the number of false discoveries in the model
increases but remains at <5% when the PPWV is 295%. This further demonstrates
that our proposed PPWV approach is an appropriate metric of summarising the
posterior distribution to identify associated genomic regions, irrespective of the
genomic region used.

We also focused on the ability of our approach to fine-map associated regions to
identify candidate SNPs and to provide a probabilistic assessment of the most likely
associated set of SNP markers. To do this we used our large-scale simulation data
and focused on seven focal regions within a blocks of chromosome 22. We
allocated effect sizes to the following SNPs: rs131529 with MAF 0.32 which had LD
R2>0.15 with 348 other SNPs, rs2096537 with MAF 0.14 which had LD R?>0.15
with 295 other SNPs, rs131538 with MAF 0.05 which had LD R?>0.15 with 82
other SNPs, rs141962840 with MAF 0.007 which had LD R2>0.15 with 11 other
SNPs, rs117873986 with MAF 0.02 which had LD R?>0.15 with 12 other SNPs,
1s9606483 with MAF 0.005 which had LD R?>0.15 with 1 other SNP, and
1578881648 with MAF 0.009 which had LD R?>0.15 with 1 other SNP. To these
seven SNPs, we assigned the same effect sizes in four different scenarios, either
0.05, 0.025, 0.0125, or 0.01 on the SD scale. On the remainder of chromosomes 19,
20, 21 and 22, we randomly selected 1000 SNPs as causal variants to give a
polygenic background, sampling their effects from a normal distribution with zero
mean and variance 0.5/1000. We repeated each of the four scenarios 20 times. We
selected these regions to compare the performance of BayesRR-RC to the fine-
mapping approach SuSiE as outlined in a recent paper?2. For BayesRR-RC, we
calculate the PPWV of the LD blocks containing the seven focal SNPs, and then
prune these blocks based on the LD among the markers in the block (described as
“purity” in the SuSiE paper??) to identify a credible set with LD R?>0.9. We then
count the proportion of times across the simulations that each causal variant was
contained with one of the credible sets. For SuSiE, we ran the model from the
individual-level data of the whole block of chromosome 22 using the suggested
settings and setting K= 10. We then calculate the proportion of times that the
identified credible sets contained one of the seven causal variants. We present these
results in Supplementary Fig. 6c.

UK Biobank data. We restricted our discovery analysis of the UK Biobank to a
sample of European-ancestry individuals. To infer ancestry, we used both self-
reported ethnic background (UK Biobank data code 21000-0) selecting coding 1
and genetic ethnicity (UK Biobank data code 22006-0) selecting coding 1. We also
took the 488,377 genotyped participants and projected them onto the first two
genotypic principal components (PC) calculated from 2504 individuals of the 1000
Genomes project with known ancestries. Using the obtained PC loadings, we then
assigned each participant to the closest population in the 1000 Genomes data:
European, African, East-Asian, South-Asian or Admixed, selecting individuals with
PC1 projection < absolute value 4 and PC 2 projection < absolute value 3. This gave
a sample size of 456,426 individuals.

To facilitate contrasting the genetic basis of different phenotypes, we then
removed closely related individuals as identified in the UK Biobank data release.
While the BayesRR model can accommodate relatedness similar to mixed linear
models, we wished to simply compare phenotypes at markers that enter the model
due to LD with underlying causal variants. Relatedness leads to the addition of
markers within the model to capture the phenotypic covariance of closely related
individuals, and this will vary across traits in accordance with the genetic and
environmental covariance for each phenotype. For these unrelated individuals, we
used the imputed autosomal genotype data of the UK Biobank provided as part of
the data release. We used the genotype probabilities to hard-call the genotypes for
variants with an imputation quality score above 0.3. The hard-call-threshold was
0.1, setting the genotypes with probability <0.9 as missing. From the good quality
markers (with missingness less than 5% and p-value for Hardy-Weinberg test
larger than 10-6, as determined in the set of unrelated Europeans) were selected
those with minor allele frequency (MAF) > 0.0002 and rs identifier, in the set of
European-ancestry participants, providing a data set 9,144,511 SNPs, short indels
and large structural variants. From these, we took the overlap with the Estonian
Genome centre data to give a final set of 8,430,446 markers. From the UK Biobank
European data set, samples were excluded if in the UKB quality control procedures
they (i) were identified as extreme heterozygosity or missing genotype outliers; (ii)
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had a genetically inferred gender that did not match the self-reported gender; (iii)
were identified to have putative sex chromosome aneuploidy; (iv) were excluded
from kinship inference. Information on individuals who had withdrawn their
consent for their data to be used was also removed. These filters resulted in a data
set with 382,466 individuals.

We then selected the recorded measures of BMI (UK Biobank variable identifier
21001-0.0) and height (variable identifier 50-0.0) collected during initial assessment
visit (year 2006-2010). BMI and height phenotypes six standard deviations (SD)
away from the mean were not included in the analyses. For Type 2 Diabetes (T2D)
in UKB, we selected cases very broadly as individuals who have main or secondary
diagnosis (UKB fields 41202-0.0-41202-0.379 and 41204-0.0-41204-0.434) of “non-
insulin-dependent diabetes mellitus” (ICD 10 code E11) or self-reported non-cancer
illness (UKB field 20002-0.0-20002-2.28) “type 2 diabetes” (code 1223). From
respondents self-reporting just “diabetes” (code 1220), we selected as cases those
who did not self-report “type 1 diabetes” (code 1222) and had no Type 1 Diabetes
(ICD code E10) diagnosis. Individuals with self-reported “diabetes” and “type 1
diabetes”/E10 were also left out from controls. We also defined coronary artery
disease (CAD) cases broadly as participants with one of the following primary or
secondary diagnoses or cause of death: ICD 10 codes 120 to 128; self-reported angina
(code 1074) or self-reported heart attack/myocardial infarction (code 1075).
Participants with self-reported “heart/cardiac problem” (code 1066) were not
included as cases but also excluded from controls. This gave a sample size for each
trait of 25,773 T2D cases and 359,730 T2D controls, 39,766 CAD cases and 344,054
CAD controls, 382,402 measures of height and 381,899 measures of BMIL.

UK Biobank has approval from the North West Multi-centre Research Ethics
Committee (MREC) to obtain and disseminate data and samples from the
participants (http://www.ukbiobank.ac.uk/ethics/), and these ethical regulations
cover the work in this study. Written informed consent was obtained from all
participants. Data from this project were held under UK Biobank project ID 35520.

All phenotypes were adjusted for age of attending assessment centre (UKB code
21003-0.0, factor with levels for each age), year of birth (UKB field 34-0.0, factor
with levels for each year), UK Biobank recruitment centre (UKB field 54-0.0, factor
with levels for each centre), Genotype batch (UKB field 22000, factor with levels for
each batch) and final 20 leading principal components of 1.2 million LD clumped
markers from the 8,430,446 markers included in the analysis, calculated using
flashPCA (see “Code availability” section). The residuals were then converted to z-
scores with 0 mean and variance of 1. Similarly as for relatedness, population
stratification is also accounted for within the BayesRR model through the addition
of a background of marker effects entering the model, however we also wished to
account for this in the standard manner by adjusting for the leading 20 PCs of the
SNP data to get as close as possible to the inclusion of markers in the model that
reflect LD with the causal variants. We note that as with any association model,
while we take steps to adjust for known spatial (UKB centre), batch, and ancestry
effects, and that the effects of each SNP is estimated jointly (and thus conditionally
on the effects of all the other SNPs) environmentally induced covariance between
SNP markers and a phenotype is still possible.

We partition SNP markers into seven location annotations using the
knownGene table from the UCSC browser data (see “Code availability” section).
We preferentially assigned SNPs to coding (exonic) regions first, then in the
remaining SNPs, we preferentially assigned them to intronic regions, then to 1kb
upstream regions, then to 1-10 kb regions, then to 10-500 kb regions, then to
500-1 Mb regions. Remaining SNPs were grouped in a category labelled “others”
and also included in the model so that variance is partitioned relative to these also.
Thus, we assigned SNPs to their closest upstream region, for example if a SNP is
1kb upstream of gene X, but also 10-500 kb upstream of gene Y and 5kb
downstream for gene Z, then it was assigned to be a 1kb region SNP. This means
that SNPs 10-500 kb and 500 kb-1 Mb upstream are distal from any known nearby
genes. We further partition upstream regions to experimentally validated
promoters, transcription factor binding sites (tfbs) and enhancers (enh) using the
HACER, snp2tfbs databases (see “Code availability” section). All SNP markers
assigned to 1 kb regions map to promoters; 1-10 kb SNPs, 10-500 kb SNPs,

500 kb-1 Mb SNPs are split into enh, tfbs and others (un-mapped SNPs) extending
the model to 13 annotation groups. Within each of these annotations, we have
three minor allele frequency groups (MAF < 0.01, 0.01 > MAF > 0.05, and

MAF > 0.05), and then each MAF group is further split into two based on median
LD score. This gives 78 non-overlapping groups for which our BayesRR-RC model
jointly estimates the phenotypic variation attributable to, and the SNP marker
effects within, each group. For each of the 78 groups, SNPs were modelled using
five mixture groups with variance equal to the phenotypic variance attributable to
the group multiplied by constants (mixture 0 = 0, mixture 1 = 0.0001, 2 = 0.001, 3
= 0.01, 4 = 0.1). We conducted a series of convergence diagnostic analyses of the
posterior distributions to ensure we obtained estimates from a converged set of
four Gibbs chains, each run for 6000 iterations with a thin of five and burn-in of
500 for each trait (Supplementary Figs. 7-10).

We calculate PPWV for LD blocks of the genome, by first calculating the minor
allele frequency of each SNP (p) and using 1 — p in a Plink clumping procedure to
select LD independent (correlation? < 0.1) blocks of SNPs. We then repeat the
estimation of the PPWV of 50 kb regions across the genome, then map SNPs to the
coding region of genes, and to the closest gene +/— 50 kb from the SNP position.
These are labelled as located in a coding region, an intron, 1 kb upstream of a gene
using our functional annotations. Remaining SNPs are labelled as located in a cis-
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region (up to 4/—50kb from a gene, Supplementary Data 6-9). Finally, we
mapped SNPs with greater than 50% posterior inclusion probability (PIP) across all
four chains labelling them using our seven location annotations (Supplementary
Fig. 13). We report SNPs with PIP > 95% and their corresponding p-value from
reported GWAS summary statistics (fastGWA, see “Code availability”) with “body
mass index” entry for BMI, “standing height” for HT, “angina/heart attack” for
CAD and “diabetes” for T2D (Supplementary Data 10).

We then compared our BayesRR-RC estimates for height, BMI, T2D and CAD
to RHEmc!® which also relies on individual level data. We ran RHEmc with ten
independent random vectors and 100 jackknife blocks on the 382,466 individuals
and 8,430,446 SNP markers assigned to our 78 non-overlapping groups. SNP
heritability estimates, enrichment and standard errors per genetic component are
reported in Supplementary Data 3. We intended to include SNP heritability
estimates from Bolt-REML!” in the method comparison but the run time and
memory usage exceeded 7 days and 900 GB which is the limiting run-time and
memory for our HPC system. Among the summary statistic methods, we ran
sLDSC!® and SumHer®. To do so, we created summary statistics containing
marginal associations for each of the 8,430,446 markers using plink22® for height,
BMI, T2D and CAD. For sLDSC, we computed univariate LD scores and
annotation-specific LD scores for the 78 non-overlapping groups using a window
size of 10,000 kb and a subset of 20,000 individuals randomly selected from the full
data set. We then partitioned heritability with our annotations and no restriction
on MAF. SNP heritability estimates, proportions of heritability, enrichment and
standard errors per genetic component are reported in Supplementary Data 4. For
SumHer, we computed LDAK weightings and created tagging files separately by
chromosomes using the full data set (M = 8,430,446 and N = 382,466) as reference
and a window size of 1000 kb. Because SNPs included in groups others and rare
IMBD tfbs are not present in all chromosomes, tagging files are constructed using 70
non-overlapping annotations only. The remaining SNPs are modelled together in
an extra partition. Finally, we merged the tagging files and regressed the summary
statistics onto this file assuming the LDAK model. SNP heritability estimates,
proportions of heritability, enrichment and standard errors per genetic component
are reported in Supplementary Data Table 5. The proportion of genetic variance
estimated genome-wide with RHE-mc, sSLDSC, and SumHer are shown in Table 1.
We also report the proportion of genetic variance attributed to SNPs located in
exons, introns, 1, 1-10 and 10-500 kb regions and the proportion of common
SNPs located in exons, introns and 10-500 kb regions computed from the single
heritability estimates observed (Table 1).

In addition to plink228 summary statistics, we also applied Bolt-LMMS and
Regenie” to height, BMI, T2D and CAD. In the first step, we pruned SNPs using
plink3® with a pairwise r2 threshold of 0.5 and a window size of 1000 kb, resulting
in a subset of 1,362,013 SNPs markers. We restricted the random effects in the
mixed model for bolt-LMM and the ridge regression predictors for Regenie to this
subset of pruned SNPs. In the second step, all 8,430,446 SNPs from the full
genotype data were then tested for association in both methods. Following
recommendations, we used the provided hgl9 genetic map file and 1000 Genomes
LD scores reference for Bolt-LMM and performed the default mixed linear model
association test. For Regenie, the 1,362,013 SNP markers are split in blocks of 1000
consecutive SNP markers and ridge regression predictors are computed for a range
of five shrinkage parameters within each block. For the association testing, we split
the 8,430,446 SNP markers in blocks of 400 consecutive SNP markers and set the
Firth correction p-value threshold to 0.01. We then applied an approximate and
joint association analysis called GCTA-COJO3! to the summary statistics obtained
with Bolt-LMM, Regenie and plink2. We ran GCTA-COJO using a subset of 20,000
individuals randomly selected from the 382,466 individuals as reference with a
window size of 10,000 kb and a r2 cutoff value of 0.5 for the LD among the SNPs in
the data. Finally, we set a p-value threshold to 5e—8 to report significant SNPs
associated with height, BMI, CAD an T2D in Table 2.

Estonian Genome Centre data. For the Estonian Genome Centre Data, 32,594
individuals were genotyped on Illumina Global Screening (GSA) arrays and we
imputed the data set to an Estonian reference, created from the whole genome
sequence data of 2244 participants2. From 11,130,313 markers with imputation
quality score >0.3, we selected SNPs that overlapped with the UK Biobank,
resulting in a set of 8,433,421 markers.

We selected height and BMI measures from the Estonian Genome Centre data,
in 32,594 individuals genotyped on GSA array and converted them to sex-specific
z-scores after applying the same outlier removal procedure as in UKB and
adjusting for the age at agreement. Prevalent cases of CAD and T2D in the
Estonian Biobank cohort were first identified on the basis of the baseline data
collected at recruitment, where the information on prevalent diseases was either
retrieved from medical records or self-reported by the participant. The cohort was
subsequently linked to the Estonian Health Insurance database that provided
additional information on prevalent cases (diagnoses confirmed before the date of
recruitment) as well as on incident cases during the follow-up.

All Estonian biobank participants have signed a broad informed consent form and
the study was carried out under ethical approval 1.1 12/2856 from the Estonian
Committee on Bioethics and Human Research (Estonian Ministry of Social Affairs).

As the UK Biobank marker effects are estimated from traits that were
standardised to a z-score prior to analysis, all effect sizes obtained are on the SD
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scale. Thus when we create a genomic predictor, for say coding SNPs, by
multiplying SNPs mapped to coding regions genotyped in Estonia to the effect sizes
obtained in the UK Biobank for each iteration, we obtain a genetic predictor for
each iteration, providing a posterior predictive distribution that is also on the SD
scale. For each trait, we created 2000 genomic predictors for each individual in the
Estonian Biobank, at each of the 13 annotation groups, by selecting effect size
estimates obtained every tenth iteration from the last 3000 iterations of each of the
four Gibbs chains and combining them together in a single posterior. We
calculated prediction accuracy as the proportion of phenotypic variation explained
by the genomic predictor, and area under the receiver operator curve (AUC) for
T2D and CAD using each individual’s mean genetic predictor. For each of the 13
annotation groups, we calculated the partial correlation of the genetic predictor of
each of the 2000 iterations and the phenotype. We then used this to estimate the
independent proportional contribution of each group to the total prediction
accuracy, providing a metric of replication for our UK Biobank enrichment results.

For height and BMI, we determined the probability that each Estonian
individual’s predictor accurately reflected their phenotypic value. To do this, we
calculated the proportion of posterior samples with abs (g — y) of less than 1 for
each individual, which gives a measure of the degree to which each posterior
predictive distribution overlaps with the phenotype within +-/—1 SD.

For T2D and CAD, we extended the PCF metric, typically defined as the
proportion of cases with larger estimated risk than the top p percentile of the
distribution of genetic risk in the general population. We calculated the proportion
of posterior samples for each individual with values in the top 25% of the
distribution of genomic predictors for each trait. Thus for each individual, we
calculate the probability that the posterior predictive distribution is in the top 25%
of the distribution of genetic risk in the general population.

As a comparison, we also estimated a boltLMM prediction model using
MegaPRS?! as recommended by the authors and as shown to have the best
prediction performance out of the MegaPRS approaches in our simulation study.
We clumped SNPs with r2 threshold of 0.5 resulting in 1,508,624 SNP markers to
be included in the analysis and randomly selected 20,000 individuals to compute
the LDAK weights. We then computed the tagging file using the same data set as
reference and the 64 BLD-LDAK annotations. Here, weights are models as an extra
annotation and we save the heritability matrix. We then regress the plink228
summary statistics for height, BMI, CAD and T2D onto the tagging file, saving the
per-predictor heritabilities. We then created four reference panels with the same
1,508,624 SNP markers but randomly selecting different 5000 related individuals
from the UK Biobank and we used these to: (i) calculate predictor-predictor
correlations with a window size of 3000 kb to estimate the LD structure; (ii)
compute pseudo summaries from the plink2 summary statistics including
ambiguous alleles, which creates pseudo training and test summary statistics to be
used in the construction of the prediction model; (iii) estimate effect sizes
specifying a Bolt-LMM model for height, BMI, CAD and T2D, using the
predictor—predictor correlations, the per-predictor heritabilities, the
plink2 summary statistics and training pseudo summary statistics, whilst including
ambiguous allele and specifying a 1000 kb window; (iv) test prior distributions to
determine the most accurate model and obtain the best effect sizes. These steps
resulted in 1,397,514 predictors for height, 1,471,586 for BMI, 1,397,514 for CAD
and 1,389,364 for T2D and we ensured that at no point was the Estonian genome
centre data used, nor was any overlapping individuals in the UK Biobank subsets
used to train the models and the data used to generate the summary statistics.
Finally, we then calculated genomic predictors for each individual in the Estonian
Biobank using the best effect sizes. We report the squared correlations between the
genomic predictor and phenotypes.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

This project uses UK Biobank data under project 35520. The Estonian Genome Centre
data are protected and are not available due to data privacy laws. The Estonian Genome
Centre data can be made available under restricted access upon request from the cohort
author RM. with appropriate research agreements. Summaries of all posterior
distributions generated in this study are provided in Supplementary Data tables. Full
posterior distributions of the SNP marker effects sizes and estimated variance
components for each trait are deposited on Dryad with https://doi.org/10.5061/
dryad.sqv9s4n51.

Code availability

Our BayesRR-RC model is implemented within the software GMRM, with full open
source code available at: https://github.com/medical-genomics-group/gmrm. UCSC
Table Browser https://genome.ucsc.edu/cgi-bin/hgTables. flashPCA https://github.com/
gabraham/flashpca. Plink1.90 https://www.cog-genomics.org/plink2/. GCTA https://
cnsgenomics.com/content/software. HACER database http://bioinfo.vanderbilt.edu/AE/
HACER/. snp2tfbs database https://ccg.epfl.ch//snp2ttbs/. fastGWA database http://
fastgwa.info/ukbimp/phenotypes/. Computing environment https://www.epfl.ch/
research/facilities/scitas/hardware/helvetios/.
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Supplementary Tables

generative model causal variant allocation causal variants effect size (b), LD (w), MAF (p) relationship
1 highest MAF per LD block 10,000 b N(0,w="Z[p(1 — p)]~0%)
2 highest MAF per LD block 10,000 b o< N(0, w25 [p(1 — p)]~0-2%)
3 highest MAF per LD block 10,000 b o< N(0,w=225[p(1 — p)]°75)
4 highest MAF per LD block 10,000 b oc N(0, w25 [p(1 — p)]0-75)

5 highest MAF per LD block 10,000 boc N(0,w0[p(1 — p)]°)

6 highest MAF per LD block 5,000 b o N(0,w=025[p(1 — p)]~0-2)
7 highest MAF per LD block 5,000 b oc N (0, w25 [p(1 — p)]~0-2%)
8 highest MAF per LD block 5,000 b o N(0,w=225[p(1 — p)]°-75)
9 highest MAF per LD block 5,000 b o N(0, w25 [p(1 — p)]0-75)

10 highest MAF per LD block 5,000 b o< N(0,w°[p(1 — p)]°)

11 random 10,000 b oc N(0,w223[p(1 — p)] ~02%)
12 random 10,000 b oc N(0,w%25[p(1 — p)]~2:25)
13 random 10,000 b o N(Ov w=0-25 [P(l - P)]0'75)
14 random 10,000 b o N(0,w%2%[p(1 — p)]°79)

15 random 10,000 boc N(0,w°[p(1 — p)]°

16 random 5,000 b oc N(0,w=925[p(1 — p)]~0-25)
17 random 5,000 b oc N(0,w%25[p(1 — p)]~2:25)
18 random 5,000 boc N(0,w= %25 [p(1 — p)]%-7%)
19 random 5,000 b o< N(0,w25[p(1 — p)]°-75)

20 random 5,000 b oc N (0,0 [p(1 — p)]°)

Supplementary Table 1. The generative genetic models used in the simulation study. Imputed
SNP marker data from chromosomes 19, 20, 21 and 22 of 40,000 randomly selected UK Biobank participants
were selected, giving 596,741 markers in total. Marker effects were simulated according to the 20 generative
models in two ways: (i) a single distribution of marker effects, and (ii) 13 distributions of marker effects for
13 different genomic annotation groups with different proportions of SNP heritability (hQS ~p) explained for
exonic variants (h%yp = 0.1), intronic variants (h3yp = 0.2), 1kb promotor variants (h%yp = 0.05), 1-10kb
enhancer variants (0.025), 1-10kb transcription factor binding sites (h%yp = 0.025), 1-10kb other variants
(h%np = 0), 10-500kb enhancers (h%yp = 0.05), 10-500kb transcription factor binding sites (h%yp = 0.05),
10-500kb other variants (h%y p = 0), 500kb-1Mb enhancers (h%, p = 0.05), 500kb-1Mb transcription factor
binding sites (h%yp = 0.05), 500kb-1Mb other variants (h%yp = 0),and other non-annotated SNPs (h%yp =
0). 10 simulation replicates were created for both (i) and (ii) giving a total set of 400 simulated phenotypes.
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Supplementary Figure 1. Simulation study of the variance component estimation performance
Table S1. For each generative genetic model we compare seven different statistical models: a mixture of regression model with a
regression with annotation-specific relationship matrices implemented in the RHEmc software (HE anot RHEmc), a single
in the software LDSC and sumHer. (b) The correlation of the estimated genetic variance for each of 13 genetic annotation
annotation across simulation replicates. Error bars give the SD.
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Supplementary Figure 2. Simulation study of the prediction performance of BayesRR-RC
implemented in GMRM. Average prediction accuracy in an independent sample, defined as the squared correlation
of the predicted and simulated genetic value, with error bars giving the SD. For each of the 20 different generative genetic
models described in Supplementary Table 1, we compare the prediction accuracy obtained in a testing set of 10,000 unrelated
individuals from the UK Biobank, selected at random and unrelated to the training data. We predicted simulated phenotypes
using SNP marker effect sizes obtained from nine different statistical methods: bayesR implemented in our GMRM software
(bayesR GMRM); the mixture of regression model with multiple group-specific variance components described in this work
(bayesRR-RC GMRM); three frequentist mixed-linear association models (MLMA) where the genetic marker tested for association
is removed from the relationship matrix (implemented in software Bolt and Regenie), or fitted both as fixed and random (MLMAi
implemented in the software GCTA); and four MegaPRS models using genomic annotation SNP variance estimates from SumHer
and implemented in the software LDAK: (i) an individual-level bayesR model (bayesR LDAK), (ii) an individual-level boltREML
model (bolt-REML LDAK), (iii) a summary statistic bayesR model (summary stat bayesR LDAK) and (iv) a summary statistic
boltREML model (summary stat bolt-REML).
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Supplementary Figure 3. Simulation study of the effect size estimation of BayesRR-RC imple-
mented in GIMRM. For each of the 20 different generative genetic models described in Supplementary Table 1, we compare
model performance of our approach (bayesRR-RC GMRM) to bayesR implemented in our GMRM software (bayesR GMRM)
and frequentist mixed-linear association models (MLMA) where the genetic marker tested for association is removed from the
relationship matrix (implemented in software Bolt and Regenie), or fitted both as fixed and random (MLMAi implemented in
the software GCTA). For bayesR (GMRM) and bayesRR-RC (GMRM), we summed the squared regression coefficient estimates
of all SNPs in LD with each causal variant (markers in LD R? > 0.1 within 1MB), took the posterior mean, and calculated the
z-score from the simulated value. For the MLMA approaches, we calculated the z-score of the causal marker estimate from the
simulated value. Violin plots for groups of minor allele frequency of the causal variant are shown, with values giving the variance
in each facet.
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Supplementary Figure 4. Simulation study of the effect size localization of BayesRR-RC
implemented in GMRM. (a) For each of the 20 different generative genetic models described in Table S1, we compare
the area-under the precision-recall curve (AUPRC) for bayesRR-RC (described in this work and implemented in GMRM),
bayesR (implemented in GMRM) and mixed-linear association models (MLMA). For Bayesian methods bayesR (GMRM) and
bayesRR-RC (GMRM), we use our PPWV metric (see Methods), with true positives defined as LD blocks that contain a causal
variant and false positives defined as LD blocks that did not contain a causal variant. For MLMA methods implemented in
GCTA (MLMAi GCTA), Bolt (MLMA Bolt) and Regenie (MLMA Regenie), we LD-clumped the results (LD R? > 0.01) using
the p-value of the chi-squared statistics. Markers in R? > 0.01 with simulated causal variants were defined as true positives
and those not in LD R2 > 0.01 as false positives. (b) False discovery rate (FDR), with the line giving the 5% threshold. For
the MLMA methods, FDR was calculated as the proportion of LD independent SNPs with p-value < 5x10~8 that were not in
LD R? > 0.01 with causal variants. For the Bayesian methods, we defined FDR. as the proportion of LD blocks with posterior
probability of window variance (PPWYV), of > 95% at 0.001% variance threshold that did not contain a causal variant.
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Supplementary Figure 5. Exploring effects of population stratification and relatedness among
samples. (a) Simulation study using real genomic data from chromosome 22 where 10,000 individuals were selected from 2 UK
Biobank assessment centres (Glasgow and Croydon). First, causal variants were allocated to 5000 high-LD SNPs with effect sizes
simulated from a normal distribution with variance proportional to the Fis among the two populations at each SNP (labelled
'variance’, see Methods). Second, we selected the same high-LD SNPs as the causal variants, but simulated effect sizes to have
correlation 0.5 with the allele frequency differences of the SNPs among the two populations, and thus not only is the effect size
proportional to the Fs7, but there is also directional differentiation (trait increasing loci tend to be those with higher allele
frequency in Croydon, trait decreasing alleles have lower frequency in Croydon). For each of these two scenarios, we simulated 50
replicate phenotypes where the phenotypic variance attributable to the causal SNPs is 0.5, there is a phenotypic difference where
Croydon individuals have a phenotype that is on average 0.5 SD higher than Glasgow individuals (contributing variance 0.05),
and residual variance was simulated from a normal with variance 0.45, to give a phenotype with mean of zero and variance of 1.
The distribution across simulations of the estimated phenotypic variance attributable to the SNP markers is shown for each
of the two causal effect size allocation scenarios when the data was analysed using a mixed-linear model association (MLMA,
distribution of the point estimates) and a grouped Bayesian dirac spike and slab models (BayesRR, distribution of the posterior
means). In the analysis, we either adjusted the phenotype by the first 20 PCs of the genetic data used in the simulation study
("adjusted") or we did not adjust the phenotype for the PCs ("unadjusted"). (b), (c¢) and (d) show BayesRR-RC simulation
results using real genomic data from chromosome 21 and 22 and 10,000 families randomly selected from the UK Biobank. We
simulated 20 replicates where we selected 2000 LD blocks at random, with an LD block defined as a group of SNP markers
with squared LD correlation of at least 0.15. We assigned a causal SNP per LD block and for each replicate, we simulated 4
phenotypes increasing the variance attributed to family effects from 0 (no common environment) to 0.3 (see Methods). (b)
Violin-plot of the root mean square error (RMSE) of the SNP-heritability estimates across simulation replicates. (c) For each
LD block of each simulation replicate, we summed the squared regression coefficient estimates of all SNPs in the block and
took the posterior mean. We then calculated the z-score of the LD block and plotted it against the minor allele frequency of
the causal variant of the block. (d) Shows mean and 95% credible intervals of the false discovery rate defined as the posterior
probability of window variance (PPWV), of > 95% at 0.001% variance threshold that did not contain a causal variant.
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Supplementary Figure 6. Posterior inclusion probability (PIP) and posterior probability of
window variance (PPWYV).(a) We validate the use of PPWYV in simulation study, first simulating 500 replicate data
sets of 10,000 SNP markers for 5,000 individuals for each of two scenarios. In the first scenario, 1000 SNPs are randomly selected
to be causal variants and all 10,000 SNP markers are LD independent. In the second, the 1000 causal variants are each in LD
with four other variants with LD = 0.95, with the remaining 5000 variants having zero effect size and LD = 0. For each scenario,
we simulate effect sizes as an equally spaced sequence from an effect size of -0.04 SD, to 0.04 SD giving genetic variance of 0.55,
and we simulate residual variance from a normal distribution with zero mean and variance 0.45, to give a phenotype with zero
mean and unit variance. For the first scenario, we calculate the posterior inclusion probability of each causal SNP. For the
second scenario, we calculate the PPWYV for each 5-SNP group. Across the 500 replicates, we take the mean PIP for each SNP
of the 1000 different effect sizes for the first scenario and the mean PPWYV of each of the 1000 5-SNP windows for the second
scenario, and these are the points on the figure. (b) Shows mean and 95% credible interval of the false discovery rate (FDR),
defined as the proportion of regions identified that do not contain a causal variant, at PPWV thresholds ranging from 0.8%
to 100%. Here, we grouped SNPs in 50kb regions and selected the number of regions that explain at least 0.1%, 0.01% and
0.001% of the variance attributed to all SNP markers in 0.8% to 100% of the iterations using simulated data for chromosome
22 in the UK Biobank (see Methods). We compare the FDR at these different PPWV thresholds and as we lower the PPWV
variance, the number of false discoveries in the model increases, but remains at < 5% at PPWV > 95%. (c¢) A comparison of
BayesRR-RC and SuSiE where we assigned effect sizes of either 0.05, 0.025, 0.0125, or 0.01 on the SD scale to seven SNPs. For
BayesRR-RC, we calculate the PPWYV of the LD blocks containing the seven focal SNPs, and then prune these blocks based on
the LD among the markers in the block to identify a credible set with LD R? > 0.9. We then count the proportion of times
across 20 simulation replicates that each causal variant was contained with one of the credible sets. For SuSiE, we calculate the
proportion of times that the credible sets identified contained one of the seven causal variants.
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Supplementary Figure 7. Convergence diagnostics of model chains for UK Biobank analysis.(a)
Traceplot of the phenotypic variance attributable to SNP markers for each trait across functional annotation of exonic regions,
intronic regions, promoters (prom) 1kb upstream of coding regions, enhancers (enh) 1kb to 10kb upstream of coding regions,
transcription factor binding sites (tfbs) 1kb to 10kb upstream of coding regions, other snps 1kb to 10kb upstream of coding
regions, enh 10kb to 500kb upstream, tfbs 10kb to 500kb upstream, other snps 10kb to 500kb upstream, enh 500kb to 1MB
upstream,tfbs 500kb to 1Mb upstream, other snps 500kb to 1Mb upstream and SNP markers elsewhere in the genome (other),
with colours representing the different chains. (b) A time series of the running mean of each chain, for each annotation group
and each trait showing all chains approach the same mean value for each parameter.
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Supplementary Figure 8. Convergence diagnostics of model chains for UK Biobank analysis.(a)

Lagged autocorrelation plot of each chain, for each annotation group and each trait and (b) Effective number of uncorrelated
sampled obtained for each annotation group and each trait. As phenotypic variance is being partitioned it is not expected that

posterior estimates obtained are entirely uncorrelated. (c) Geweke z-score statistic comparing the initial part of the chain to the
final part, for each annotation group and each trait.
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Supplementary Figure 9. Convergence diagnostics of model chains for UK Biobank analysis.(a)
Overlapped density plots to compare the target distribution by chain showing each chain has converged in a similar space, for
each annotation group and each trait. (b) Overlapped density plots comparing the last 10 percent of the chain (green), with
the whole chain (pink), showing that the initial and final parts of the chain are sampling the same target distribution for each
annotation group and each trait.
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Supplementary Figure 10. Convergence diagnostics of model chains for UK Biobank analysis.(a)
The potential scale reduction factor comparing the among- and within-chain variance for each annotation group and each trait.
(b) The cross-correlation between all parameters for each annotation group and each trait.
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Supplementary Figure 11. Genetic architecture of height, body-mass-index (BMI), cardiovas-
cular disease (CAD) and type-2-diabetes (T2D).(a) Shows violin plots with boxplots giving the 95% credible
intervals for the posterior mean of the phenotypic variance attributable to the SNP markers in each trait. We find that SNPs
contribute 57.66% (95%CI 56.09, 59.14) for height, 28.74% (95%CI 27.62, 30.00) for BMI, 5.94% (95%CI 5.30, 6.67) for CAD
and 8.45% (95%CI 7.83, 9.18) for T2D. Values are summed over annotation, MAF and LD groups. (b) Violin plot with boxplots
giving the 95% credible intervals of the proportion of the total genetic variance attributable to each annotation group. Values
are summed over MAF and LD groups. All four traits show the same pattern of annotation-specific genetic variance, with main
contributions from intronic regions, exonic regions, and SNPs located 10kb to 500kb upstream of genes to the genetic variance in
the population. (c) Bar plots with error bars giving the 95% credible intervals for the proportion of variance of each annotation
group that is attributable to each of the three MAF groups (rare, low, common) for each trait. Values are summed over LD
groups. (d) Bar plots with error bars giving the 95% credible intervals for the proportion of variance of each annotation group
that is attributable to each of the four non-zero mixtures (0.0001, 0.001, 0.01, 0.1) for each trait. Values are summed over
MAF and LD groups. Within each annotation, variation is (c) attributable predominantly to variants with MAF>0.05 and (d)
attributable predominantly to small (0.0001) to moderate (0.001) effect sizes variants with little differences across traits, except
for BMI which has higher polygenicity compared to height, CAD and T2D. Posterior summary of n = 6,000 iterations with a
thin of 5 and burn-in of 500 for each trait in all panels.
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Supplementary Figure 12. Marker inclusion and effect estimate overview.(a) Bar plots of the number
of markers entering the model for each mixture group (x-axis), within each MAF-LD group (y-axis facets, with top row MAF
and bottom row LD), within each annotation (x-axis facets). Mixture 1 = 0.0001, 2 = 0.001, 3 = 0.01, 4 = 0.1. (b) Bar plots of
the average effect size of markers in the model for each annotation group, scaling the effects to their frequency and split by
mixture. Posterior summary of n = 6,000 iterations with a thin of 5 and burn-in of 500 for each trait in (a) and (b). Error bars
give the 95% credible intervals in both panels.
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Supplementary Figure 13. Contribution of SNPs with posterior inclusion probability (PIP)
> 0.5 to height, body-mass-index (BMI), cardiovascular disease (CAD) and type-2-diabetes
(T2D).(a) Shows the distribution of mean effect sizes for SNPs with PIP > 0.5 attributed to exons, introns and 500kb upstream
of genes in each trait. (b) We then plot the relationship between mean effect size and posterior inclusion probability for SNPs
with PIP > 0.5 attributed to the annotation groups (exons, introns, SNPs located 1kb, 1-10kb, 10-500kb and 500-1Mb upstream
of genes and other un-mapped SNPs). We labelled the closest gene to the SNP with the highest mean effect size in each trait.
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Supplementary Figure 14. Cross-cohort prediction accuracy and the posterior predictive dis-
tribution. (a) Correlation of the posterior mean predictor and height (HT), body mass index (BMI), type-2 diabetes (T2D),
and cardiovascular disease (CAD). (b) the partial correlations of the phenotype and genomic predictors specific to different
genomic annotations. (c) For height and BMI, we calculate the probability that the distribution of genomic predictors obtained
for each individual is within 1 SD of the true phenotypic value. The density of these probabilities is shown. (d) For CAD and
T2D, we plot density plots of the proportion of the posterior predictive distribution for each individual that is within the top
quartile of the risk distribution. (e) Correlation of genetic predictors obtained across annotation groups.
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Supplementary Notes

Supplementary Note 1
Model Specification

We begin by outlining the basic model BayesR, before then presenting our extensions. Consider p single
nucleotide polymorphism (SNP) markers. If we gather samples for ¢ = 1,...N subjects in an N X p matrix,
G, in which the elements are coded as 0 for homozygous individuals at the major allele, 1 for heterozygous
individuals and 2 for minor allele homozygotes. Now, we wish to model their linear association with the

phenotype y = (y;) of subjects ¢ = 1,..., N in a standard linear regression model:
y=1u+XB+e€ (1)
We assume that the genotypes are standardized so that X; = % is the vector of genotypes for the

4" marker (j = 1, p) with zero mean and unit variance, i.e. the centered and scaled j** column of G. The

column’s mean p; =~ 2f; and the column’s standard deviation o; ~ /2f; (1 — f;) being f; the minor allele
frequency (MAF) of the SNP. We define 8 as a p x 1 vector of partial regression coefficients with j3; the
effect of a 1 SD change in the j** covariate, and € is a vector (N x 1) of residuals.

We estimate the model’s parameters using Bayesian inference, assuming that the error term €|o? ~
N (07 Iaf). The log-likelihood of this model can be written as

o (N = + (e~ XB)" (y. ~ X)) 2)

2Uepsilon

l (u,ﬁ,a?) = —g log (27r0€2) -

with y. = % a vector of centred and scaled responses (SD 1).

As we adopt a Bayesian approach, we place priors over the model parameters. For the covariate effects, 3,
we use a mixture prior with Dirac spike and slab components, which have been extensively used for variable
selection [1,2]. The prior induces sparsity in the model through a Dirac-delta at zero, excluding variables
from the model by setting their coefficients to zero. A slab component is centered at zero and shrinks the
non-zero coefficients towards zero according to the slab’s width. In our approach, the slab component is a
scale mixtures of normals and thus each 3; € B is distributed according to:

B; ~ mdg + mN (0, O’%) +.. TN (07 0'%)

where g = (7, 71, ...,71) are the mixture proportions, {Uf, ... ,cr]%} are the mixture-specific variances,
and dp is a discrete probability mass at zero. We further constrain the prior by assuming a single parameter
representing the total variance explained by the effects aé, with the component-specific variances proportional
to 0% multiplied by a constant {Cj,...,Cp} so that
g % C 1
| =ee |
g % C L

The remaining prior structure for the model is then

7 ~ Dirichlet (1)
o2 ~ Inv — Scaledy? (V07 Sg) ®)

062 ~ Inv — Scaledy? (V(), sg)

with weakly informative parameters for hyperparameters vo = s = 0.001.

For notational convenience, we will refer to the mixture membership labels as (lo, 1, ...,[r) and we define
a latent indicator of each SNP, j, v = (v, ...,7p)T with v;; = 0or 1, indicating whether or not the effect of
SNP j falls into the zeroth mixture y;; = 0, or follows a normal distribution with variance o7. We define the
"active set of coefficients" as those 8 such that 3; # 0 denoted as B0 with cardinality ||7,|lo. Thus the
objective of our inference scheme is to compute an estimate of the posterior distribution f ([377&07 2,02, yc).
This model has been termed BayesR [3,4] and an effective proposed Gibbs sampling scheme [4] follows the
following steps:
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2

N -
(i) sample p from N <M’ %‘)
(ii) sample B0 from its conditional as described below

2 2
(iii) sample o2 from Inv — Scaledx? (\ [ llo + Vo, M)

vo+|vello

2 2
(iv) sample o2 from Inv — Scaledy? (VO + N, lyezu=XByz0] +V°SO)

vo+N

From the former algorithm, steps (i), and (iv) are straight-forward applications of conjugacy and are
common to many Gibbs sampling algorithms for linear regression. Step (iii) follows from conjugacy and the
assumption that the individual mixtures represent fractions of the total variance explained by the coefficients.
Step (ii) is the biggest bottleneck in any linear regression problem, and in the next section we will proceed to
detail the derivations of the sampling scheme for this step.

While it is not uncommon to use non-proper priors for the residual’s variance o2, in our case we chose to
keep a proper prior for algorithmic and modeling reasons as: (a) conjugacy is amenable to Gibbs sampling
(b) we assume o2 and a?; are not nuisance parameters, and in some cases we possess prior information on its
distribution. It is also common to specify the distribution of ; having a variance depending on the residual’s
variance o2, which would make the estimates transformation-invariant. Recent results suggest the estimates
for o2 in this latter transformation-invariant formulation are biased [5]. Another concern may be that the
prior’s hyperparameters induce biased estimates for small variances [6], we acknowledge that may be an issue,
and allow parameters vy, s3 to be adjusted if deemed necessary. The scale mixture of Gaussians, allows the
prior distribution to have heavier tails than a single Gaussian, which allows big effects to be shrunk to a lesser

degree than small effects [7]. Finally, the original formulation of [3,4] assumes 0% = r2o, which for centered

Var[XB 2o]
Varl[y]

0f = h? = 1% = Var [XB,20] = 32,0 B34, but there is no constraint in the model ensuring o + 02 = o

, would mean
2
bt
As we will see, further assumptions are necessary for having unbiased estimates of 0% and h? under varying

LD and MAF. These estimates will achieve the equivalence aé = r2 = h? without relying in either using a

and scaled phenotypes and genotypes, with heritability h? equal to reliability r? =

2
. . 2 . . . 2 .. . . 2 . O‘G
point estimate of 7# [3], informative priors on 0¢, or normalising the posterior variances by h® = P 8]

Sampling the effects

For sampling 8, the challenge is two-fold: (a) determining if the effect §; is part of 8,0, and if so, to
which component it belongs; and then (b) sampling the vector 8,x¢ from a multivariate Gaussian with

2
covariance matrix ¥ = X/,(Xj20 + A where A is the diagonal matrix with entries \; ; = 75, with o7, the
j.l ’

variance of the mixture component to which marker 8; was assigned. For (a), marginalization of each effect
individually is required to compute the membership probability, which requires solving a determinant of the
size of [|7,|lo — 1 [2]. For (b), either a system of size ||7,||o must be solved through LU decomposition, or
Cholesky decomposition of size ||v,||o, and both operations are resource intensive when the size of ||7y,||o is
large. Instead, we determine the inclusion of a marker in the active set, along with its mixture membership
and its partial regression coefficient [3;, in single-site updates. Single-site Gibbs sampling, also known as
stochastic relaxation [9], has a long history given its equivalence to iterative Gauss Siedel methods to solve
matrix equations [10]. Although we choose to use the BayesR model, many alternative models can easily be
placed within the iterative solving and computational framework we outline here.

In this scheme, we sample each element, j, of 8 from the full conditional posterior f (,Bj\ﬂ\j,y) o
f (Bj,ﬂ\j,y) which can be written as f (ﬁj,ﬁ\j,y) = fylB)fB)f (B\j) where f (y|B) is the density
function of the conditional distribution of y|8 and f (5;) and f (B\j) are the densities of the prior distributions
of B; and B\ ; respectively, with notation \j representing all other covariates except j. The kernel of the full
conditional posterior for 3; is proportional to the product of the likelihood, the prior distribution for 8; and
the prior distributions of the variances, and thus ignoring factors that are constant with respect to 3; gives

(ye = XB)" (ye - Xﬂ)] oxp {_ B ]

202

2
20?2 !

where [; represents the mixture j3; is assigned, 6\; = {f\ ;, 02,02, 75, u} and 0]2-71 the corresponding mixture
variance. We can reduce the expanded form and drop terms that are free from §; as
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1 T 32‘752
F (85 115,0\5,y) ocexp | =55 (ve = X85 = X\;Byj) " (ve — X85 = X\;By;) + 202,
L € Js
[ 1 T T T o Bio?
x exp 307 (y ¥ -2X5¥6; + X X8 + 2;]%
Co ]
X exp 592 (YTY - 2X]TY5j + 5]2-23‘,1)}
Fo A A
X exp =55 (YTY —2B3;5518; + 8755 + BiSi0 — 5]2'2]',1)}
1(8: — B.)2
X exp —57(63 — ) (5)

~ Ts
with ¥ =y, — X\;B\;, Xj1 = XjTXj +Ajand B;; = % This gives the Gibbs sampling update for 3;
as
By ~ N (35X} 5,0255)) (6)

To avoid reducibility of the Markov chain, prior to drawing the effect 8;, we first need to select the
mixture K for each covariate j, and as above we can condition on the individual coordinates and to obtain
the probability that a coefficient j belongs to a given mixture.

Yk FF 1L =k 0,y)P(l; = k)

We integrate out the 3; coordinate following the equations above with

P(l;=K|6.y)

(7)

f(yuj,ay):/f(y\ﬂj,a?)f(ﬁj 1;,0%,) dB,;

5 — X8V (v — X, 8 2
By A = T8 ) PR A
. € 7l

where ¢ = 2. We then expand this equation using the relationship 3;; 5} = X]TSI from Eq. 6 and complete
the squares

fF11,0,y)= /(QW?J)*'I/Z(??TU?)*"/Q exp {—é (S’TS’ — 2311858 + B30 + B — Bizzj,l)} dp;
= (20?55 )"/ (2m03 )~ (2m07) exp [—% (iTi - sz,lzj,lﬂ x
/(QWIUEZ.{H)*I/2 exp {—% (5]' - Bj,z)22j,l)] dpB;
= (Witl) 2nod) o[- (575 - )| ®)

where the final reduction in Eq. 8 occurs as the integral component is now a normal distribution that
integrates to 1 and then terms are removed that do not contain, nor depend upon X;; nor 3;;. The probability
for inclusion in the model in the first mixture, as compared to the spike, then depends upon the ratio
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1 “n .

O (1353 @2ro2)E exp [~k (75 - 42,30 )]
= (IMs%520) " exp {f
= () e | o )| )

Analogous to equation 9, any comparison between mixtures has the same form and allows us to omit the
7% term. Thus placing Eq.9 into Eq.7 and re-arranging to a numerically more stable version [3] gives

1
1+ g explog(LK ) — log(LKy)]

P(l; = K|6\;,y) = (10)

with log(LKy) = log(mo) and log(LK;) = —1 {— log <|Al,jzjj;|) - 5072)} + log(m) for I in (1...L).

Having derived the regression coefficients and their inclusion probabilities, fully specifying the BayesR
model, we now proceed to: (1) extend this to a BayesRR-RC model in the Methods section; (2) derive
a computational implementation that facilitate the application of the model to biobank sized data in
Supplementary Note 2; and (3) derive the properties of the model parameters when applied to highly
correlated genomic data (under multicollinearity) and compare these to estimates made by other approaches
in the field in Supplementary Note 4.
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Supplementary Note 2
A Gibbs sampling scheme for biobank size data

For "p >> n" regimes, such as in genomics, where the number of covariates is greater than the number of
individuals, hierarchical models controlling assumptions over the sparsity of the model are typically proposed,
with examples of sparsity-inducing priors like the "spike and slab" prior [1,11], the Bayesian LASSO [12] and
the Horseshoe [13] prior. There are efficient tools to perform Bayesian regression analysis "out-of-the-box"
using MCMC and variational inference [14-16], but these methods are limited to problems with explanatory
variables in the low thousands of observations. Recent results show that Gibbs samplers for the Horseshoe
prior [17], or for the Bayesian LASSO [18], offer a competitive advantage when combined with approximation
schemes for problems of high dimensionality (over 100,000 covariates). These latter methods exchange the
inversion of the coefficient matrix, for a matrix multiplication, thus reducing complexity from cubic to almost
quadratic on the number of variables. However, despite these good properties, scaling these approaches up to
a factor of millions of variables remains prohibitive.

We now describe an effective algorithmic implementation of our BayesRR-RC model that scales to millions
of individuals, each genotyped at millions of genetic markers. We outline a Gibbs sampling algorithm that
enables all sampling steps to utilize genetic data stored in mixed binary/sparse-index representation, reducing
computational complexity of a single Gibbs step from O(n) to O(n;), with n, the number of non-zero
genotypes. We then outline a Bulk Synchronous Parallel Gibbs sampling scheme implemented based on a
hybrid MPI + OpenMP model, distributing data across MPI tasks over as many compute nodes as required
to hold all the data in memory. Uniquely, this enables large-scale genomic data to be split up into smaller
manageable segments, whilst still conducting the analysis in the same way, estimating the marker effects
jointly.

Algorithm 1: Serial Algorithm for sampling over the posterior distribution p (i, 8, €, ¢, 8). Xinarker,
represents column of X corresponding to the column j of the vector marker. Given that marker is
shuffled before sampling the effects, this is equivalent to permuting the order of the effects to be
sampled.

Data: Coefficient matrix X, measurement vector y, prior hyperparameters vo,s3, iterations I
Result: mean u, effects vector 3, residual vector e, residual variance o2 and variance contributed by
the marker effects, o2
1 Initialize ﬂ,,u,crf.,aéﬂw ;
2 ef fects=1,...,p;

3e=y — i
4 for i< 1to I do
5 Sample p;
6 Shuffle (ef fects);
7 for j < 1 to pdo
8 B9 = Bj;
A XT(e4x; 501
o | | 3= Xl
10 Determine mixture component and sample the new value 3;;
11 e = e+ (5;-’1‘1 - Bj) Xj;
12 Sample o2;
13 | Sample aé;

Algorithm 1 provides a full overview of the sampling scheme of the model as it has been previously
implemented. For each marker j, we must compute Bj,l to determine which mixture a marker belongs to,
before then sampling /3’j,l given the mixture group assigned. This quantity depends on the dot product X;‘.ch,
with y. the centred phenotype. If we keep in memory the vector of residuals € = y. — X3,-0, then we
can compute efficiently ye — X\j84z0,; by the update yo — X\;84z0,; = € + X;;, thus sampling from the
joint distribution with a complexity O (p). The most expensive operation in Algorithm 1 is computing the
numerator in step 9: X]T (€ + X B;ld). As the column vector X; contains the centered and scaled genotypes,
step 9 involves one sum of two dense vectors and a dot product of two dense vectors. However, if we store in
memory the mean, u;, and standard deviation o; of each column of the genotype matrix, we can express the
numerator in step 9 with these quantities and the j-th column of the original genotype matrix G as (with

21



0% = (G, — u;1)" (G; — pj1) /(n — 1) by definition):

J
—1)T s
num = (GJ Mjl) <6 + 5})[{1 (GJ Mjl))
O']' O'j
(G —m1)" - 5ozd( — 1) " (G — 1)
gj gj gy

T

— Gj ,&Zn old (,, _

= € €+ 55 (n—1)
i %=

and we can do the same for the ¢ update:

(11)

€new = €+ (ﬁ]o'ld - 57) ( (GJ - le) (12)

0j 0j
for which we only have to compute the difference of a sparse vector and a dense vector, and the sum
of two dense vectors. Finally, to avoid computing Y . ; €,ew for each marker, we assign a variable to this
quantity and update it after each € update as follows (with p; = > | G; j/n by definition):

Zenew—z + <ZG” nu]> :Ze (13)

meaning that the sum of € elements is constant during the algorithm execution (as expected as all involved
vectors are zero-mean). Therefore, the only quantity to be computed per run (apart from the € update) is the

T
dot product %e which can also be reduced, as the elements of G; can only be either {0,1, 2} with sequence

) =1
data or hard-coded genotype. We call Z; the indicator function such that €Z; = {(6)] xl] and similarly
else

€ T; =

ey = meaning that multiple O (n)

2 which then gives the dot product as G—?e = M
0 else %3 i
multiplications are now O (n,) sums, and also that instead of storing in memory a sparse matrix of elements
plus its indexes, we just need to store three ragged arrays of indexes, one for the "1" elements, a second one
for the "2" elements, and a third one for the "M"issing elements. Those arrays contain information for all
markers processed by a MPI task and are of unsigned integer type (32 bits). They store indices of the 1, 2
and M elements within the marker (i.e. ranging from 0 to N — 1). It corresponds to the smallest integer type
that allows us to scale to hundreds of thousands or millions individuals. On top of those 3 ragged arrays
there are two meta-data arrays for each element type which provide the starts and lengths of the 1, 2 and M
elements for each marker in the ragged arrays. They are loaded in memory from reading sparse data files
stemming from the conversion of the original Plink .bed file and accessed in parallel by the tasks with MPI
I/0.

Even though the sparse representation is optimal in number of operations, performance may vary
depending on hardware as a vectorised dot product may be faster than sparse dot product. Spatially, the
sparse representation is optimal as long as the columns are sparse. In genotype data, even though the
expected number of non-zeros per column is given by the average MAF (~ 20% in the UK Biobank data),
the distribution is long tailed (Supplementary Figure 15). These columns at the tail of the distribution can
dominate the total size of the data structure in memory. Encoding a single column has a constant size of
N X 2 bits in plink’s .bed file format (referred from now on as binary format), while in sparse representation
a column has varying size of n, x 32 bits. If we encode the columns with less than 6% of non-zeros as sparse
and the rest in the original binary format, we can have a total memory occupancy of 60% the size of the
original genotype matrix in Plink bed format. In Supplementary Figure 15, we represent on panel (b) the
distribution of the proportion non-zeros per column of a genotype matrix for ~ 4 x 10° individuals and
~ 1.5 x 107 SNPs, solid line representing the mean of the distribution and slashed line the median. In panel
(c) we show the total size of the data in memory as a function of the threshold used to split between binary
and sparse format, in purple we see how the binary representations dominates the total size up until the
mean of the distribution, after which, the size of the sparse data structure starts to dominate and ends up
being around four times bigger than the original .bed file size (dotted horizontal line). We found the optimal
threshold to be around 0.064 (6.4%, Supplementary Figure 15).
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Supplementary Figure 15. A mixed representation bulk synchronous hybrid-parallel Gibbs
sampling scheme for genomic data.(a) The minimum seconds per iteration achieved for 382,466 unrelated individuals
from the UK Biobank data genotyped at 8,430,466 markers, with an increasing number of message-passing interface (MPI) tasks
used. The total seconds is given in blue and this is subset into (i) the time taken to process the markers and estimate all of the
8,433,421 marker effects and hyper-parameters (proc), and (ii) the time taken to synchronise the estimates as they are being
obtained (sync). With increasing data parallelism parameter estimation times drop quickly to less than 5 seconds with 160 MPI
tasks, however the time taken to synchronise the estimates increases as the number of tasks increases. The SD was 1 second, with
variation in sampling times induced by fluctuations in networking speed that influenced the synchronisation times. Each MPI
task was able to used 4 CPUs. (b) the distribution of the proportion non-zeros per column of a genotype matrix for ~ 4 x 10°
individuals and ~ 1.5 x 107 SNPs taken from UKB, with solid line representing the mean of the distribution and dashed line
the median. (c) the size in memory in TB of the data as the coding of the SNP markers moves from binary to the sparse
indexed format, the optimal threshold is achieved between mean and median of the distribution of non-zeros in the genotype
matrix. Above this threshold columns are coded in binary format below in sparse index. Through a combination of a mixed
data representation and highly vectorized look-up tables, memory usage is reduced while maintaining fast computational speed.

Finally, we implement a vectorized dot product for genotype data stored in the raw binary format based
on a couple of look-up tables, by writing the dot product as:

T
(Gj - le) €= Z i €

9j 9j

i Z ai€; — fj Z bie;
75 i i
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with coefficients a; and b; being 0.0, 1.0 or 2.0 depending on the value of G; ; and following Table 2.

Gy 0 1 2 NA
2-bit 11 10 00 01

Py 0.0 1.0 2.0 0.0

b, 1.0 1.0 1.0 0.0
vi; | 0.0—1.0p; | 1.0 —1.0p; | 2.0 —1.0p; | 0.0 —0.0p;

Supplementary Table 2. a and b coefficient values used for building up the two look-up tables needed for
the vectorization of the dot product computation when processing binary data.

As 1 byte of plink’s .bed can contain 4* = 256 different combinations of information for 4 individuals, we
can setup two lookup tables with 256 x 4 entries each that will give for any byte the corresponding 4 a; and
b; coefficients, hence allowing for vectorisation of Eq. 14 by performing a;e; and b;e; and accumulating them
for 4 individuals at once. Additionally, we use OpenMP to parallelize the loop over the marker’s bytes. This
greatly extends previously proposed sparse residual updating schemes and also facilitates the synchronous,
fully parallel bulk-synchronous Gibbs sampling scheme that we describe in the next section below.

Bulk-synchronous parallel Hogwild Gibbs sampling with sparse data

Bulk-synchronous parallel Hogwild Gibbs sampling [19] assigns block of columns from X to workers that
then sample from f (6,\ ﬂ\j,y) for each of the columns in their block. Workers can communicate between
each other exchanging the current values of the variables they are sampling, or the whole state of variables
for workers in particular. If we perform global synchronisation steps the algorithm is called Bulk-synchronous
parallel Hogwild (BSP), if on the other hand, workers exchange messages without a global synchronisation,
the algorithm is called Asynchronous parallel Hogwild (ASP) [20].

Algorithm 2: Hogwild Gibbs with ’Ae-exchange’.
components : Define K parallel workers

1 Define global variables pu, 3, e,w,ag,ag;

2 Initialize variables;

3 for i+ 1to I do

4 Update p;

Update 8 in parallel using DEpsX(K);

Update hyperparameters 7, 02, 02;

5
6 yYgres

We propose Algorithm 2, which is a modification of a BSP algorithm where we sample the individual
coefficients in parallel conditioned on the hyperparameters. We assign workers (MPI tasks) subsets of
coefficients to sample, and each worker performs local Gibbs steps until a global synchronisation is triggered.
This global synchronisation happens many times in each iteration, during the phase in which we sample the
individual coefficients ;. For this algorithm, we developed a synchronisation scheme called 'Ae-exchange’as
outlined in Algorithm 3. In this scheme each individual worker is assigned a block of columns from X and is
in charge of sampling from f (6j| Bj y) for each of the columns in its block. We add an additional parameter
for the synchronisation rate Q. After  columns have been sampled in all workers (around 5-10 in practice to
avoid divergence occurring), a synchronisation move is executed.

The purpose of the synchronisation move is to update all of the workers’ state based on the coefficients
sampled from ¢ = 1 until ¢ = §2 in all workers. The sufficient statistic for this state is contained in the residual
vector €. Thus from ¢ = 1 until ¢ = w each worker computes f (5;|e;=1) and keeps track of its local change in
€ which we denote Ae = Z? X, Bw for w in the set of indexes for the current batch of variables in the workers
list of variables. For the synchronisation step, we use the MPI__Allreduce collective, meaning that each task
will receive the sum of locally accumulated Ae from all tasks to update its ez—1 = > " Ae,, for w = (1..W)
workers. With the new €;—1, the worker proceeds to sample the next §2-sized batch of columns from its set of
columns. This synchronisation scheme allows workers to exchange state information in compact form, as the
total size of memory occupied in total by the messages is O (NW).
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Algorithm 3: ’Ae-exchange’for synchronising changes in backfitted residuals in our BSP Gibbs
sampling algorithm.

1 DEpsX (K)

components: Set of K workers, each one (4, Set of K messages, each one Aeg, K sets of ~ &
columns, each set of columns assigned to a worker.

2 foreach worker 8 do

3 €L =€

4 Aeg, = 0;

5 foreach column i in a subset of size Q) of the columns assigned to By do
6 BoI=B;;

7 draw 3; from f (/3’1 | €, US,O’%JT);

8 Aep=Ae-X; (B — B3);

9 Wait until all workers are finished processing their Q2 sets;
10 e=e+ > ANey;

Previous results point to BSP Gibbs sampling for a multivariate Gaussian converging if the covariance
matrix is strictly diagonal-dominant [20] with zero covariance of the markers split across workers. The risk
for genomic data, is that two markers in LD get updated at the same time in parallel, double counting their
effects, and leading to € being mis-estimated after a synchronization has occurred. Suppose we have one
fixed causal marker and two other markers i and j that are assigned to different MPI tasks. Suppose that
the Pearson correlation between the causal marker and marker i or j is p; and p;, respectively. Finally,
let p denote the correlation between the markers ¢ and j. For simplicity in this example suppose that the
inclusion probability of the causal marker is ¢ and we make an assumption that the inclusion probability of
the marker ¢ is then P(53; # 0) = ¢p; and for marker j it is P(8; # 0) = gp;, that means that the inclusion
probability is proportional to the correlation between causal and other markers. In reality, the effect size
estimate is actually proportional to the causal effect: Bl = piBeausal @and the function between posterior
inclusion probability and causal effect size ¢(Beausal) is not linear for Beausar > 0 as described in Eq.(10) and
thus we cannot assume that P(3; # 0) = gp; in practice. In the case of parallelising the markers between two
tasks we are interested in the probability that two markers from different tasks will absorb the effect of a
same causal variant. Thus, we are interested in the probability P(8; # 0, 5; # 0li,j € U), where U is the set
of markers that are updated simultaneously in two different tasks. Thus, we can write:

P(Bi #0,8; #0li,j € U) = P(B; # 0)P(B; # 0) = ¢ pip;.-

We see that the probability of making a mistake is dependant on the product p;p;. The correlation matrix
R of the three markers

1 pi pj
R=1|pi 1 »p
pi p 1

has to be positive semi-definite and thus we can examine what are the possible values for the product
pip; given that we know p. Note that the value of p can be controlled by providing some blocking mechanism
that would assign SNPs to the tasks so that the correlation for the markers from different tasks would be
limited to p and this is what we advocate here, placing contiguous blocks of markers into different tasks,
so as to maximise the LD within a block (MPI task), but minimise the LD across blocks. The maximum
possible values for the product follow a linear function that depends on p as

max _= 0.5+ 0.5p.
pispjp=P
To get better estimates for the constraints for the product p;p; then we need to make further assumptions
about the distribution of p; or p;. Therefore, we can say that P(3; # 0, 8; # 0]i,j € U) < ¢?(0.5+0.5p). This
result and inequality only holds per sampled pair (4, 7). We then multiply this result with the probability of
sampling the pair (4, j) that both have correlations p;, p; > 0. Denoting a set of markers that have a positive
correlation with one specific causal marker as the causal radius C, The probability of sampling any pair (i, 7)
is
. 1
P (23‘7 € U) = ﬁ?
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where T is the number of markers per one task. The probability of pair (i,7) belonging to C' is P(i,j €

C) = ¢(<< 1), some reasonable values could be proposed or estimated for this (for example, ¢ =
(W)% Combining the results together we get that the probability of making a mistake

at one update of a pair (7,7):

. c c
P(B; # 0,8 # 0/(i. ) € U) 5 < ¢*(0.5 +0.5p) 5.
This result goes for one fixed causal marker and it also represents the expected number of mistakes per
sampled pair (7, 7) for one causal marker. If we want to find the expected number of mistakes per sampled
pair, we should sum across the P causal markers:

P P
C C
Errors <Y 205+ 0.50) 75 = (0.5 +0.50) 75 > q? < (0.5+0.5p)

i=1 i=1

P

c
T2

To provide some intuition, we can think of an extreme scenario and assume that there are 100,000 variants
in the SNP marker data that would enter the model as they are in LD with underlying causal variants, that
each of these variants has posterior inclusion probability of 1, and that for each variant there are two blocks
with 30,000 markers in total of which 100 markers have LD = 1 with the causal variant, and that both blocks
contain 30,000 markers. Placing these values into what we derive above and sampling over 10,000 iterations
leads to probability of an error ~ 0.1 throughout the sampling for this extreme example. Having derived a
stable highly parallel Gibbs sampling algorithm for large-scale genomics data, we then performed exhaustive
empirical validation of our algorithm in simulation study as described below.

Testing algorithm performance and parallelism in simulation

We explored the influence of increasing parallelism in our algorithm. We used the simulated data described
above for the randomly sampled 50,000 UK Biobank individuals with imputed genotype data for chromosome
22, where we sampled randomly 4988 evenly spaced markers as causal variants and randomly assigned the
effect sizes from a normal distribution with zero mean and variance 0.6/4988 (the fourth scenario). For each
of the 50 simulation replicates, we compared the three chains obtained by running the BayesRR-RC model
(with 20 MAF-LD groups) in serial, with a single MPI task and synchronisation rate of 1 (residual updating
after sampling each SNP), to three chains obtained by increasing the number of MPI tasks to 4 and then to 8,
with synchronisation rates of 10 and 20 sampling steps before residual updating. For each simulation, we ran
three chains of our BayesRR-RC model with different starting values for 3000 iterations. Like with all MCMC
chains of regression models, convergence and sampling properties will be problem specific and dependent
upon the LD of the markers, LD among the causal variants, the phenotypic variation attributable to the SNP
markers across the MAF and LD spectrum, the study sample size, the degree of data parallelism per total
marker number, and the synchronisation rate. Thus, the aim here is to simply show a series of diagnostic tests
that can be utilized to explore the properties of the posterior to highlight how the different metrics can be
used to identify convergence issues. We use the distribution, across simulations, of the proportion of effective
samples obtained for the hyperparameter estimate of the proportion of phenotypic variance attributable to
the markers of each group. This shows that for all ranges of parallelism, we achieve more effective samples for
low MAF and low LD variants. As high MAF SNPs are interchangeable in the model to a large degree, their
entry and exit from the model is correlated across iterations, and thus this is entirely expected and is actually
a consequence of the model mixing. With high synchronisation rates, where many marker updates occur
before residual updating by message passing a reduction in effective sample sizes occurs. We also use the
distribution of the Gelman-Rubin test statistic for the three chains, a general metric to monitor convergence
that compares within- and among-chain variance, as the number of iterations increases. Finally, a Geweke
statistic value can be used to test the equality of the means of the first and last part of the Markov chains. We
present the results of this simulation in Supplementary Figure 16 also including the distribution of z-scores of
the posterior distribution of the phenotypic variance attributable to the markers for each MAF-LD group
from the simulated values, which show stability of the estimates obtained with increasing data parallelism
(tasks), but that a very high synchronisation rate with high parallelism can lead to poor convergence rates,
meaning that the chains would have to be run for longer (Supplementary Figure 16).
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Supplementary Figure 16. Simulation study of increasing task parallelism and increasing
message passing rate for our hybrid-parallel sampling scheme. we aimed to compare (a) the offoctive samples

obtained, (b) the convergence rate of the algorithm, (c) the accuracy of the estimation, and (d) the stability of the estimates obtained as data parallelism
increases within a burn-in period of the initial 3000 iterations. For 50,000 randomly selected UK Biobank individuals, and 111,425 imputed SNP markers
of chromosome 22, we simulated 50 replicate phenotypes by randomly selecting 4,988 SNPs as causal variants and randomly allocating effect sizes from a
normal distribution, with SNP heritability of 0.5. For each simulation, we ran three chains of our BayesRR model with different starting values for 3000
iterations. The SNP marker data was grouped into deciles of the distribution of minor allele frequency (MAF) and within each decile the markers were
further grouped these into two groups based on the distribution of linkage disequilibrium (LD), giving twenty groups in total (11 = MAF decile 1, low LD;
1h = MAF decile 1, high LD; ...; 101 = MAF decile 10, low LD; 10h = MAF decile 10, high LD). We repeated the three chains, but with increasing data
parallelism: (1) in serial where one MPI task is used and the residual is updated after each marker is sampled (tasks_1_sync_1); (2) where the markers
were split across four MPI processes with synchronisation occurring by message passing after 10 markers have been updated (task_4_sync_10); (3) where
the markers were split across four MPI processes with synchronisation occurring after 20 markers have been updated (task_4_sync_20); (4) with 8 MPI
processes and synchronisation of 10 (task_8_sync_10); and (5) with 8 MPI processes and synchronisation of 20 (task_8_sync_20). (a) shows the distribution
across simulations of the proportion of effective samples obtained for the hyperparamter estimate of the proportion of phenotypic variance attributable to
the markers of each group. For all ranges of parallelism, we achieve more effective samples for low MAF and low LD variants. With high synchronisation
rates, where many marker updates occur before residual updating by message passing a reduction in effective sample sizes occurs. (b) gives the distribution
of the Gelman-Rubin test statistic for the three chains, a general metric to monitor convergence that compares within- and among-chain variance, as the
number of iterations increases. On the x-axis, 1 gives the distribution of the statistic across chains and MAF-LD groups for the first 500 iterations showing
divergence of the chains (y-axis value >> 1) across all MAF-LD groups, 2 gives the distribution for the first 1000 iterations, and 3 gives the distribution
for the whole chain showing convergence of the chains by the end of this initial 3000 iteration sampling period irrespective of the data parallelism, with
the exception of a few groups with infrequent synchronisation and high data parallelism which have yet to converge within this burn-in phase. (c) gives
the distribution of z-scores of the posterior distribution of the phenotypic variance attributable to the markers for each MAF-LD group from the simulated
values, showing stability of the estimates with increasing data parallelism (tasks), but not with infrequent synchronisation within the 3000 iterations run
here. (d) shows the distribution of the Geweke statistic value which is a test of the equality of the means of the first and last part of the Markov chains. On
the x-axis, 1 gives the distribution of the statistic calculated using all iterations across all MAF-LD groups, 2 gives the distribution discarding the first 500
iterations, and 3 gives the distribution discarding the first 1000 iterations. (a) - (d) suggest that our hybrid-parallelism sampling scheme achieves the same
accuracy and convergence rates as a serial sampling scheme, provided that frequent synchronisation occurs and data parallelism is kept moderate. At high
data parallelism and infrequent synchronisation, our theory shows that we are more likely to make a sampling mistake, preventing chains from converging
and requiring longer sampling times. Convergence and accuracy of the MCMC Gibbs sampling chain will be problem specific and dependent upon the LD of
the markers, LD among the causal variants, the phenotypic variation attributable to the SNP markers across the MAF and LD spectrum, the study sample
size, the degree of data parallelism per total marker number, and the synchronisation rate. Therefore, like with all MCMC chains, a series of diagnostic tests
can be utilized to explore the properties of the posterior and here we show how different metrics can be used to identify convergence issues.

Implementation and processing setup

We implement algorithms 2 and 3 in C++ as a pure CPU MPI + OpenMP hybrid solution. All data
structures were properly aligned in memory to assist vectorization and assembly code was examined to
ensure that the code was properly vectorized where expected. We utilize the scientific library boost (see
Code Availability) and we profiled and benchmarked the code with Intel performance analysis tools such as
Advisor and Ampflier. Current implementation requires to be compiled with Intel compiler on an architecture
supporting at least AVX2 although support for AVX512 is recommended for performance. UK Biobank
results were generated on the cluster Helvetios from EPFL (see Code Availability) using 10 compute nodes
and setting 8 MPI tasks per node and dedicating 4 (physical) cores to each task. 10 is the minimal number
of nodes that was required to hold all the data in memory in its mixed-representation. An overview of the
run times and memory use are provided in Supplementary Figure 15.
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Supplementary Note 3
Posterior summaries and discovery

The ability of the additive regression model outlined and applied here to infer the underlying distribution of
genomic effects is limited unless an additive model with many 0 coefficients holds as approximately true and
the true number of underlying nonzero coefficients is << n. Various ad hoc penalty functions in machine
learning, and the range of proper priors employed by members of the Bayesian alphabet and beyond, all
impose a restriction on the size of the regression coefficients, and while these restrictions differ, they all
provide shrinkage estimators that by their definition are biased as they are shrunk toward zero (this is true
of mixed-linear association models also). In other words, the penalty function (prior) will be important and
will influence the inference made here. Thus, the inference we obtain can only be made with respect to our
a priori assumption that many marker effects are zero, and that the effects of those that are not zero can
be reflected by a mixture of zero centred Gaussian distributions. Given this, we focused on comparing the
posterior distributions of different traits obtained under the same model, focusing on the hyper-parameter
estimates obtained for MAF-LD-annotation groups, and comparing these across traits. It has been shown in
Bayesian penalized regression models that what is learned about 3 is a function of what is learned about X3
and thus by placing separate hyper-parameters over different genomic groups we can obtain inference as to the
variance contributed by each group [21]. As we show through theory and simulation study described below,
MAF-LD-annotation specific hyper-parameters likely results in improved inference as to the distribution of
genetic effects. However, with the exception of very rare variants with LD ~ 0, we cannot treat each j3; as
independent and thus here we outline a strategy to identify associated genes, or genomic regions within a
probabilistic framework.

For a simple example, consider two markers in LD that are correlated with a single causal variant, where
either or both markers may be in the model at any one iteration and the expected posterior inclusion
probability of each SNP is 0.5. In this scenario, we cannot use the posterior inclusion probability of each
marker to assess association and thus instead, we take an approach of assessing the contribution of different
genomic regions to trait variation whilst controlling the posterior type I error rate (PER), which is more
suitable controlling for false positives, than controlling the genome-wide error rate (GER). Many papers have
discussed the advantages of controlling the false discovery rate (FDR), and related measures rather than
controlling GER [22] and here we follow [23] where the posterior probability that §; is nonzero for at least
one SNP j in a window or genomic segment is used to make inferences on the presence of an association in
that segment.

Briefly, following [23], we will refer to this probability as the window posterior probability of association
(WPPA). The underlying assumption is that if a genomic window contains a marker in LD with a causal
variant, one or more SNPs in that window will have nonzero 3;. Thus, WPPA, which is estimated by counting
the number of MCMC samples in which §; is nonzero for at least one SNP j in the window, can be used as a
proxy for the posterior probability that the genomic region contains a causal variant. Because WPPA for a
given window is a partial association conditional on all other SNPs in the model, including those flanking the
region, the influence of flanking markers on the WPPA signal for any given window will be inversely related
to the distance k of the flanking markers. Thus, as the number of markers between a causal variant and the
focal window increases, the influence of the causal variant on the WPPA signal will decrease and so WPPA
computed for a given window can be used to locate associations for that given window [23].

This measure can be shown to control the PER, which in frequentest statistics would be associated with
the test of a hypothesis. The null hypothesis in this case is that the genomic region does not contain any
SNPs associated with the trait. Using this notation, WPPA is the conditional probability that the null is
false given the observed data, while PER is the conditional probability that the null hypothesis is true given
that it has been rejected based on some statistical test. Suppose the test is based on WPPA and the null is
rejected whenever WPPA is larger than some value ¢t. Then, PER is the probability that the null hypothesis
is true given WPPA is larger than ¢, and it can be written as:

PER = Pr(Hyis true/WPPA > t) = E[(1 — WPPA)|WPPA > {] (15)

Thus, for any interval with WPPA > t the proportion of false positives among significant results will
be < (1 —t). Here, we are interested in detecting genes and genomic regions that explain more than some
proportion v of the total phenotypic variance attributable to the SNP markers (genetic variance). The
genomic segment variance is defined as the sum of the squared partial regression coefficient estimates at
each iteration and these are divided by the sum of all the squared partial regression coefficient estimates
genome-wide to give a proportion for each genomic region at each iteration. Then we simply count the
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proportion of MCMC samples where the proportion of genetic variance is greater than a thresholds of 0.001%
and we denote this metric as the posterior probability of window variance (PPWYV).

We extend this PPWV approach to develop an association metric for LD blocks of the genome. Currently,
association studies predominantly estimate SNP effects and test for association one marker at a time, which
does not control for local LD among SNP markers. Thus, the level of association determined is at the regional
level as results are reduced, using LD patterns, to a subset of the strongest associated LD-independent
variables. We can solve the problem of having a correlated posterior distribution by applying our PPWV
approach to the LD blocks of the genome providing a Bayesian probabilistic metric of association that is
equivalent to selecting the number of independent associated SNP markers. We define LD blocks as a group
of SNPs that have squared correlation greater that 0.15 and then for each iteration, we sum the squared
partial regression coefficient estimates for all the SNPs within the block, divide this by the sum of all the
squared partial regression coefficient estimates genome-wide to give a proportion for each genomic region at
each iteration. Then we simply count the proportion of MCMC samples where the proportion of genetic
variance is greater than a thresholds of 0.001% providing a probabilistic association metric for each LD block
that controls the FDR genome-wide. Within each associated region the individual SNP posterior inclusion
probabilities can then also be used to "fine-map" the associations, in order to select the base-pair position
that is most likely to be closest to the true underlying causal variant in imputed SNP data.
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Supplementary Note 4
Comparison to other approaches under collinearity

Genome-wide association studies have predominantly been conducted using single marker regression via
ordinary least squares (OLS). Recently, it has been proposed that if aggregation due to familial or molecular
similarity (e.g. population stratification) exists in the data, a better estimation approach is generalized least
squares (GLS), as it poses a more general covariance structure than OLS. GLS estimates can be obtained
within mixed-linear association models, which first declare all marker effects as random variables, for example,
assuming that u; ~ N(0,02), or from a mixture of distributions, with all markers in the set taken as
independently and identically distributed random variables. Second, when the markers are evaluated for
association, they are then treated as a fixed effect. The resulting model can be written as

y = X101+ Xqug + Xyjuyg + € (16)

where a focal genetic marker, here X; is fitted twice, first as a fixed effect to estimate the regression
coefficient 31, and also as part of all of the other markers with their effects, u, estimated as random (note
here \1 indicates all markers other than marker 1). Under this model the phenotypic covariance structure is

V =X, X[ 0g + X\, X{ 04 + 107 (17)

With orthogonal covariates, the estimated variance components that compose V can remain constant
when testing each marker in turn. However, with collinearity among markers the situation becomes more
complex. Below, we first describe the impact of multicollinearity on ridge regression estimates. We then
outline the equivalence of a ridge regression and a mixed linear model, before then demonstrating increased
variance of the estimates obtained from Eq. (16) under multicollinearity. Finally, we then go on to show that
estimates from BayesR are less subject to inflated variance, except under extensive multicollinearity, before
then describing how extending the model to provide minor allele frequency and LD specific hyperparameters
provides estimates with improved properties across a range of underlying generative data models.

In Eq. (16) if markers were all simply estimated as random, following a single distribution, then a ridge
regression estimator of Hoerl and Kennard 1970 [24] would be obtained, which was proposed to replace X7 X
in the OLS solutions by XX + AI, with A € [0,00] a tuning or penalty parameter. This gives the ridge
regression estimator

A

B\ = [XTX + A1 'XTY (18)
where X is strictly positive and the solution or regularization path of the ridge estimate 3 (A) : A €0, 00]
is the set of ridge estimates across the values of A\. The expectation of the ridge estimator
E[B(N)] = E[(XTX 4+ AI) ' XTY]
— (XTX + A XTE(Y) (19)
= (XTX + A1)~ YXTX)8
with B the maximum likelihood OLS estimator. If we consider an orthonormal design matrix X, with
XTX =1= (XTX)~! then we can express the relationship between 3, and the ridge estimator, B()), as
BN = (XTX + A1) 'XTY
=T+ M) 'XTY
= (1+A)IXTY (20)
=1+ M) I(XTX)"IXTY
=(1+A)7'B
If we define Wy = (XX + AI)~}(XTX) then the ridge estimator B(\) can be expressed as W/ for
W8 =W, (XTX)"'XTY
= [(XTX)"1(XTX + AI)]1(XTX) "' XTY
=XTX + ) XTY
5())

(21)

Il
™
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The variance of the ridge estimator is then

Var[B(\)] = Var[W ]
= W, Var[3|WT
= ?W L (XTX)"'WT
= (XTX + XD IXTX[(XTX + AT

and the mean square error of B()) is

MSE[B(\)] = E[(W,3)" (W,B)]
=E(BTWIW,\B) —E(BTW,5) - E(BTWIB) + E(BTH)
=E(B"WIW,8) — E(8"W{ W, ) — E(3"W{W,8) + E(8"W{ W,3)
—E(B"W{W,8) + E(BTW{ W, ) + E(B"W{W,3)
—E(B"W,B) - E(B"W1B) — E(87B) (23)
=E[(B- B)TWIW.A(B - B)]
— BTWIW,B+ BTWIW, B8+ BTWIW, 8 — BTW, 8- BTW,5+ 878
=E[(B-B)"WIWA(B-B)+B"(Wy-D)"(Wr-1)B
=2t [WH(XTX)T'WT + g7 (W —D)T(W, —1)3

The first summand is the sum of the variances of the ridge estimator, while the second summand is the
squared bias of the ridge estimator. With an orthonormal design matrix, X, Theorem 2 of Theobald 1974 [25]
shows:

2 2
o PO A
MSE[B()\)] = £ +
[BOV] (1+XN)2 1+
which achieves a minimum at A = po2/878 = o2/ 0[23, with 0[23 the variance of the 3 coefficients. This has
been stated in the genetics literature as the optimal shrinkage parameter [26] for a ridge regression. However,
this is derived under the assumption of uncorrelated covariates within the design matrix X.
To explore the effects of correlated covariates we use the ridge loss function, defined as

;878 (24)

n

p
Lriage(B:N) = [IY = XBI3 + NIBIE = S (¥ - XiB)2 + 2 Y 2 (25)

i=1 j=1

which is the sums-of-squares with a penalty, A Z?Zl ﬂ?, referred to as the ridge penalty, which shrinks
the regression coefficients towards zero. The radius of the ridge constraint, the squared Euclidean norm of 3,
|83, depends upon A, X and Y, and taking its expectation

E[[BOVIE] = E [[(XTX + A0 (X" X)B]" (XX + A1) (XTX)]
= E[YTX(X"X + AI)*X7Y] (26)
= o2tr[X(XTX + M) 2XT] 4+ BXTX(XTX + A\I)2XTX 3

provides a measure that can be evaluated given different properties of the design matrix X. With the same
A and the same B, Eq. (26) shows that the degree of collinearity among the covariates alters the variance
of the estimated effects. Thus, in a ridge regression penalization does not remove collinearity but simply
reduces its effects on the variance of the ridge estimator provided that the A value is sufficiently large (and
thus the 0'[29 is small). We explore Eq. (26) in a simulation study described below and presented in Figure S1,
Figure 1 and Figure 2. This theory is an extension of previous work [27] which showed that the inflation of
the SNP heritability is proportional to a ratio of the average LD among causal variants and the markers and
the average LD among all the markers, with inflation expected when causal variants are in higher LD with
the markers than on average. Eq. (26) is a function of X’X, with the LD values the off-diagonal elements in
X’X, but it suggests that inflation would be irrespective of the average LD across the genome, simply being
expected if high-LD markers had strong effects and showing that inflation would occur only for the estimates
of markers that are in LD with those causal variants. Thus, if SNP heritability is allocated across SNPs at
random then estimation will on average be correct, irrespective of the LD among SNPs. If the effects of SNPs

31



vary according to the MAF or LD of the SNP, and assumptions are made that all SNP effects are sampled
from the same distribution, then this will lead to bias as the estimates at high-LD markers in strong LD with
underlying causal variants will be inflated and this inflation will be sufficiently large and occur at a sufficient
number of genomic locations so as to impact upon the global estimate of SNP heritability.

This issue has been detected, and demonstrated in simulation, in a number of recent papers [28-31].
However, to date it has remained little understood from a theoretical perspective. The LD-MAF corrections
proposed in the literature all serve to alter the lambda value for SNPs, or sets of SNPs, so that it becomes
proportional to the LD and MAF of the marker, in essence reducing the o2, or making it more specific to the
markers in question, and increasing the A\ value for common, highly correlated covariates. The equivalence of
ridge regression and mixed-linear models has been shown many times, using well-established results from
prediction of random variables dating back to Henderson [32]. The model Y = g + €, with g the genetic
value of the individuals, and the model Y = X8 + €, with g = X3, g ~ N (0, XXT02%) with marker effects
thus 8 = XT(XXT)~!g, are equivalent. Following Henderson [32], assuming o2 and o are known, with no
fixed effect component, the log-likelihood can be shown to be proportional to:

oY —gl3 +g"Tog (27)

equating the partial derivatives of this mixed model loss function with respect to g to zero, yields the
estimating equations known as Henderson’s mixed model equations. Returning to the mixed linear association
model described in Eq.(16), using u to denote the marker effects estimated as random, 3 for the focal marker
effect estimated as fixed, and assuming independent marker effects, Henderson’s mixed model equations
(MME) take the form:

x'x, XIX, XXy, 1[5 XTy
X%T X, X{)§1 +1IA TXIT Xy u | = X%Ty (28)
XLX;  XTXy  XLXg 41 [y XLy

2
where A = Zs. Subtracting the u; from the 8 equations gives u; = 0 and thus the MME reduce to:

]
XI{XI TXP{X\l ] {51_ _ {X%T}’}
X1 X\l X\1X\1 + I)\ U\l_ X\ly

(29)

This has been derived previously [33], however there is an explicit assumption that any estimation error
of the random marker effect estimates go into the residual and does not influence the fixed estimate of the
marker. For the random effect component, the equivalence with the ridge regression estimator of Eq.(18)
is evident, as is the equivalence of Eq. (27) with Eq. (25) above. Thus an MLMAi model returns “ridge
regression” estimate of the marker effects, and as we show above ridge regression estimates are inflated when
effect sizes are higher for high LD markers. It then follows that mixed model effect size estimates could be
biased when effect sizes are higher for high LD markers.

Seen in this light, we can now explore the influence of multicollinearity on the BayesR dirac spike and
slab model described above and compare it to that of a ridge regression. If we denote a measure of fit, such
as the ridge loss function described above, being composed of I(8) and a penalty function peny(3), then
from a Bayesian perspective these correspond to the negative logarithms of the likelihood and the prior
distribution, respectively. We can parameterize the BayesR dirac spike and slab model described above using
the latent indicator of each SNP, j, v = (y;,...,7)T with v;; = 0 or 1, indicating whether or not the effect
of SNP j follows a normal distribution with variance o7 (I = 1,2,3,4). Then p(v;; = 1|m) = 7 and the prior
distribution of each SNP effect 5; conditional on the indicator «;; is

1 _exp(—2a), ity =1 (1=2,3,4
£ (Byli0) = { Ve P =1 (=234 (30)
d0(B;), ify;; =0
The joint distribution p(f;, ;) conditional on mg is
7 (Bisvilms 03) =TTy £ (i) f (i = 1m)
(31)

o Vil
= (o(Bj)m) ™ TTi (ﬁ,;exp(—%m)
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to simplify the following, we assume only a single normal distribution with 7 + 72 = 1 and we redefine
the regression coefficient as 3; = vja; with a;|oj ~ N(0,03). then:

o2 Yi.2
f (asslmno3) = Gotegm)s (—Aexpl-5m)

‘ 27'rcr{i i (32)
= TP (L= m) e —Lexp(— 52%)

B

Now as above, if we define an active set of markers, X, as those columns of X where 3¢, with an
active set of v, and ||v|]p = le 7; be its cardinality. The joint prior on the vector v, o then factorizes
across all the markers as

f (a,vlﬂﬁ,df;) :Hizlf(aj7ryf‘7rﬁ7o—[23>

(33)
= 7l (1 = 7 yp=lllo(2702) - exp {,ﬁ P, ajz}
as above we can express the likelihood in terms of 7, « as
2\-2 1 2
f (y‘f% Q, T3, Ué) = (271’0-6) 2 exp _ﬁny - X’y;ﬁ()a'y#OHQ (34)

and then under this reparamterisation the posterior is given as
[ (avlms,05,02,y) o f (o, v|ms,03) [ (ylv. @, s, 00)
1 , 1 ) 1-m (35)
o exp {203“’ = Xspwasol = 5 zllol ~tog (=) Il

The regularized maximum a posterior estimator is equivalent to minimising over «, a the least squares
objective function as

min, o

1—7I'1
1= X g0l + Al + 202105 (=) Il (36)

In comparison to the ridge loss function described above, the first two terms are very similar and the
third term imposes a sparsity constraint on the model. The term A||r||2 has the same expectation as in Eq.
(26) but with X replaced with X ..o. To give some insight into the influence of collinearity on E[||v||]o and
on the active set, we explore a two SNP scenario.

In a single site updating scheme, the probability that the first marker enters the model is given by Eq. 10.
We seek to derive the probability that the second marker enters the model conditional on the first marker
being in the model. We consider a scenario where we observe our standardised outcome y, and two correlated

predictors X; and X,. We assume that y., X; and X, are scaled with zero mean and unit variance. We
xTy
21,1 ’
with ¥, = XTX; + M1, then a residual vector €y, X, = Ye — Puy,y. X1 is the vector left after backfitting

Bz, g, and we define ex, x, = X2 — px,,x, X1 as the additional information in X, left to fit 61276%}(1, with
Px,,x, the correlation of X; and X,. The correlation between the two residuals €, x, and €x, x, can be
used to estimate By, ¢, «, , since By, e, = S17Pevexs The correlation is a ratio between a covariance and a

variance as

can then derive the partial least squares regression for y. regressed on Xy, adjusting for X;. If 3, 5 =

1

CoveyDleEXl,XQ = N Z (yc - 6Z177JCX1) (XZ - le,szl)
1 _
= N Z (YCXQ - pm,szlyc — 611,y}X1X2 + Nﬂz] ,y“chl.,Xg)
Y1
= Peye,xy — pX17X2/811~,y_CT - /lev?ich17X2 + ﬁzlyy_cpxlyx2
Y1

= Peyexs ~ PX1. X B

1 _
= pﬁyc,Xz — PX1,X2 NleC (37)
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The variance in the correlation denominator is Sexl_ x = 17X, x, which gives

1 .
pEyC,XQ — PX1,Xo ﬁlec

Bymxﬂxl = E (38)

L=p §(17X2

Eq. 38 can then be used in Eq. 9 and Eq. 10 to determine the posterior inclusion probability of the
second covariate conditional on the first covariate being in the model. From this, the expectation, E[||y]|o] for
a two SNP scenario is then

E[llvllo] = p(lh = 1|0,y) + p(l2 = 110, y)
1

1+ exp tog(ma) — (- [-log(As ) - (Hey )| (39)
1
1+ exp [log(mo) — (—§[—log(|AT5 }[) — (Peeabnety)]

With the dirac spike and slab and ridge regression estimators minimizing the same sum-of-squares, the
key difference with the constrained estimation formulation of ridge regression is not in the explicit form of
A but in what is bounded the domain of acceptable values for a. For the BayesR estimator the domain is
specified by a bound on the {ynorm of the regression parameter, while for its ridge counterpart the bound
is applied to the squared fonorm of 5. Multicollinearity will reduce the likelihood of the second covariate
entering the model as it’s inclusion is dependent upon px,,x, the correlation among covariates and pe,_ ,
the correlation of the second marker and the residual vector after backfitting the first marker. This will limit
the range of possible estimates to be lower than those obtained from ridge regression, reducing inflation of
Aller]|3 under high collinearity, but not entirely removing it. Due to the sampling of markers from a series of
normal distributions, collinearity will still inflate A||c||2, however, the degree to which this occurs will depend
upon the number of correlated markers, the degree of correlation among them and the strength of the effects.
Therefore, our aim here is not to derive a general solution predictive of all situations, merely it is to highlight
that in order to make some inference as to the underlying distribution of genetic effects, it is required to
extend the model as outlined in the following section.

J’_

Small-scale simulation example

While we assess the performance of our model in the large-scale simulation work, smaller-scale focused
simulation work was also conducted to support and test the inference made. Our theory suggests that there
will be increased variance of the regression coefficient estimates and, as a result, an inflated estimate of
the phenotypic variance attributable to SNP markers under high multicollinearity for both mixed linear
model approaches and a Dirac spike and slab mixture model. To create a toy example of this, we conducted
a simulation study where for each of 50 replicates, we simulated 50 independent genomic regions, each
containing two SNP markers. In each simulation replicate, we simulated values for 5,000 individuals at
each of the 50 SNP marker pairs, by first simulating from a standard multivariate normal distribution with
correlation set to either 0 or 0.99. From this, we obtained the integral from —inf to g of the probability
density function, where ¢ is the z-score of the values obtained for each individual from the multivariate
normal. From these integrals, we then made two draws from the inverse of the cumulative density function
of the binomial distribution to obtain the marker value for each individual, with frequency 0.3. This gave
marker values (0, 1, or 2), with the pairs of SNPs having either all LD = 0, or all LD = 0.99. For each of the
50 pairs of SNPs, we assigned effect size 0 to the first marker and 0.1 to the second marker. We then scaled
the SNP markers to zero mean and unit variance and multiplied the markers by the effect sizes to obtain the
genetic values for the 5,000 individuals, with variance 0.5. We then simulated the environmental component
of the phenotype from a normal distribution with zero mean and variance 0.5 and then created a phenotype
as the sum of the genetic values and the environmental values, with zero mean and unit variance.

We then analysed these 50 data sets using different methods of single-marker OLS regression (OLS),
mixed-linear model association (MLMA), ridge regression (Ridge), and a Dirac spike and slab mixture of
regressions model (BayesR), all of which are described above. For the frequentist approaches, we directly
solved the estimation equations, scaling the SNP markers to have zero mean and unit variance. For BayesR
we sampled the effects for 5000 iterations, with burn-in period of 2000 iterations to obtain the posterior
mean effect sizes, again scaling the SNP markers to zero mean and unit variance. We repeated these analyses
many times, each time fixing the estimated phenotypic variance attributable to the markers o to be a
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Supplementary Figure 17. Theory and simulation study of SNP marker model parameters. (a)
accompanies Eq. (26) and shows the distribution of the point estimates of the effect sizes of two correlated markers of effect size
(0,0.1) under orthogonality (LD = 0) and collinearity (LD = 0.99) across 2500 replicates (50 independent genomic regions for
5,000 individuals within each of 50 replicates) for a range of different models: a dirac spike and slab mixture of regressions model
(bayesR), a mixed linear association model (MLMA), single-marker ordinary least squares (OLS), and ridge regression (Ridge).
Panels give the lambda shrinkage parameter of the model, the error variance divided by the phenotypic variance attributable
to the SNP markers, showing that as lambda decreases the variation of the estimates increases under multicollinearity. (b)
accompanies Eq.(29) and shows the marker estimates obtained from Henderson’s mixed model equations for a MLMA with
the focal marker as fixed (beta) and random (ul), with four other markers in the model. Markers were either uncorrelated
(orthogonal, LD=0) or the focal marker was correlated with the first two out of the four other markers (collinear, LD=0.99).
Panels give the lambda shrinkage parameter, showing that as lambda decreases the variation of the estimates increases under
multicollinearity. (c) shows the prior density of the BayesR model for different hyperparameter values of the phenotypic variance
attributable to genetic effects (variance), showing that as the variance attributable to the markers decreases, the prior has higher
mass around zero. Thus, with a grouped mixture of regressions model (BayesRR-RC), each hyperparameter estimate will be
smaller and thus there will be higher prior density around zero. This then has consequences for marker inclusion in the BayesRR
model. Higher prior mass around zero makes little difference for the inclusion of uncorrelated markers, but it results in reduced
posterior inclusion probability for correlated markers as shown in (d). For (d), we calculated the inclusion probability (PIP) of
two markers with LD = 0 and LD = 0.99, as the variance attributable to the SNP markers, and thus the prior distribution,
changes assuming a background inclusion probability of 0.1, a sample size of 5000, and an effect size of 0.01 SD for marker 1 (see
Methods). (d) shows that the PIP of the second marker is reduced across a range of possible effect size values (the average of
1000 replicated simulations for 1000 marker 2 effect values for each line) as the hyperparameter estimate decreases, and thus
the smaller hyperparameter estimates in a BayesRR model means that correlated markers are less likely to enter the model,
controlling better for the effects of multicollinearity.

different value. We selected (2, 1, 0.5, 0.1, and 0.01) and fixed the residual variance o2 to be 0.5, to give
2
different lambda values A = 52 , giving A = 0.25,0.5,1,5,and 50. Our aim here was to explore the pattern

of effect sizes that we obtain under these A values. So first, we plotted the effect sizes obtained for each
of the 50 SNP pairs obtained across the 50 simulation replicates in Supplementary Figure 17a, to show
the differences in the variance of the estimates obtained across approaches when the pairs of SNP markers
were orthogonal (LD=0), or collinear (LD=0.99), under different lambda values. Second, we then plot the
distribution of the sum of the squared regression coefficients in Supplementary Figure 18c across approaches,
when the pairs of SNP markers were orthogonal (LD=0), or collinear (LD=0.99), under different lambda
values, where the expectation is 0.5 (sum of the 50 squared 0.1 SD effect sizes). This simulation confirmed,
that regression coefficient estimates have higher variance under multicollinearity, resulting in inflation of the
sum of the squared coefficient estimates for all approaches when the variation attributable to SNP markers is
overestimated, resulting in a reduction in the lambda values.

We then further explored the performance of the MLMA and BayesR models under multicollinearity to (i)
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Supplementary Figure 18. Theory and simulation study for genetic penalized regression models
under multicollinearity. (a) Smaller-scale simulation study then that presented in the main text using real genomic data
from chromosome 22 where 50 replicate phenotypes were generated by either allocating 5000 LD-independent causal variants to
high LD SNPs (y-axis panel: high LD), or randomly allocating 5000 SNPs as causal variants (y-axis panel: random), and then
either randomly allocating effect sizes to those SNPs (x-axis: random), or allocating effect sizes proportional to their LD and
MAF (x-axis: MAF-LD, see Methods). In this simulation every LD block of chromosome 22 contributes to the trait variance.
SNP heritability estimation error is plotted as the difference of the estimate and the true simulated value across the 50 replicates.
(b) We then investigated this further for the scenario where causal variants are allocated to high-LD SNPs. While the 5000
causal variants are LD-independent, they are each correlated with a large number of SNPs of simulated effect size 0. For each
causal variant, we took all the markers in LD > 0.05 and summed the squared estimated regression coefficients of these markers.
The true simulated value is simply the square of the effect size allocated to the causal variant, and we subtracted this from the
sum of the squared regression coefficients divided by the SD of the simulated genetic effects, to give a z-score for each causal
variant and this is plotted on the y-axis for MLMA, BayesR, and BayesRR-RC. (c¢) Our theory outlines how this overestimation
is the result of the effect of multicollinearity (see Methods) and an example is shown here, where 50 pairs of SNP markers with
LD = 0.9 were simulated for each of 50 simulation replicates, where only one marker of each pair has an effect (0,0.1 SD), giving
the sum of the squared regression coefficients as 0.5 for each simulation (dotted red line). lambda is the shrinkage parameter,
the ratio of the error variance and the variance attributable to the SNP markers, used for MLMA, ridge regression (Ridge) and
the BayesR model to estimate the effects. (d) Simulation of a genetic architecture (dotted red line) using real annotations
from the Epigenome Roadmap Project [34] (active states, inactive states, other snps). We compared BayesRR-RC to other
recent approaches providing annotation-specific variance component estimates in individual-level data when SNPs are randomly
assigned to an annotation (labelled: misspecification of groups), or when specifying enrichment using prior knowledge (labelled:
multiple group enrichment)

better understand the interplay between the fixed GLS estimate obtained and the random marker effects, and
(ii) to better understand how the prior of the BayesR model changes with lambda and how this constrains the
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inclusion probabilities of correlated markers. We first examined the influence of varying lambda and varying
the collinearity of markers on the variation of the effect size estimates obtained from the Henderson’s mixed
model equations, where one focal marker is estimated as fixed, and a further five markers are estimated
as random, with LD between the markers estimated as fixed and random. To do this, we simulated five
markers in the same manner as described above that were either (i) entirely orthogonal with LD = 0, or (ii)
had LD = 0.99 among the first three markers, with the final two markers having LD = 0 with all others.
We assigned effect sizes to the five markers as 8 = (0.25,0, 0,0.25,0.25), multiplied these effect sizes by the
simulated marker values scaled to zero mean and unit variance to create the genetic values, and then added
an environmental component simulated from a normal distribution with mean zero and variance 1 minus the
variance of the genetic values (0.1875) to give a phenotype with zero mean and unit variance. We directly
solved the Henderson’s mixed model equations, fixing the lambda value at different levels (the appropriate
lambda from theory assuming orthogonal covariate would = (1 — 0.1875)/0.1875 = 4.333). We find that even
with high shrinkage, a lambda value of almost 20 times greater than the theoretical orthogonal expectation is
required to produce effect sizes under collinearity, with similar variance to those obtained under orthogonality
(Supplementary Figure 17b).

For BayesR, we first explored the density of the posterior distribution by simulating draws from the prior
as we change the variance attributable to the SNP markers. Supplementary Figure 17c shows these densities,
revealing how the prior becomes strongly centred on zero and almost exponentially distributed as the variance
becomes small. This is in contrast to the almost flat prior observed with high variance, which will do little to
constrain effect size estimates toward zero. We then conducted 1000 simulation replicates of paired SNP
markers for 10 different scenarios of variance attributable to the SNP markers of 0.01, 0.05, 0.1, 0.2, and 0.5,
for pairs of SNPs with correlation of either 0 or 0.99. For each of these 10,000 data sets, we simulate a pair of
SNPs for 5000 individuals, assuming error variance of 0.5, effect size for the first marker of 0.01 SD and then
we simulated a sequence of 1000 different effect sizes from -0.05 to 0.05. Of these 10 million phenotypes and
pairs of SNPs obtained, we then determine the posterior inclusion probability of the second marker, given
that the first marker is in the model, with the effect size correctly estimated as 0.01, from the BayesR model
derivations presented above. The lines presented in Supplementary Figure 17d go through the mean posterior
inclusion probability of the second SNP marker across the 1000 simulation replicates, for each of the 1000
different effect sizes from -0.05 to 0.05 for marker 2, with a different colour for each scenario of the variance
attributable to the SNP markers. The plot shows a reduction in the posterior inclusion probability of the
second SNP marker as the variance attributable to the SNP markers decreases under multicollinearity. Thus,
if the hyperparameter estimates of the variance contributed by markers is kept small, by having different
hyperparameters for different groups of markers, then the BayesR model acts to constrain the inclusion of
any additional correlated markers in the model.

Having confirmed our theory, we then conducted a further simulation study to replicate these observations
using real genomic data. We randomly selected 50,000 individuals from the UK Biobank study data and used
the imputed SNP data from chromosome 22 as supplied in the data release. We simulated phenotypes under
contrasting generative models:

e We chose markers of high LD with other SNPs to be the causal variants and we assigned effects
proportional to the LD score of those markers and their minor allele frequency. To do this, we first
grouped the SNPs using the clumping procedure in Plink (see Code Availability) based on 1 - MAF,
selecting the highest frequency variants and removing any variants with LD < 0.01, to obtain 4988
independent SNPs. For these 4988 SNPs we calculated the LD score of the markers. We then assigned
effect sizes to these selected SNPs, drawing them from a single normal distribution with variance
~LD_score!MAF~!. We multiplied these effect sizes by the simulated marker values scaled to zero
mean and unit variance to create the genetic values with variance 0.5, and then added an environmental
component simulated from a normal distribution with mean zero and variance 1 minus the variance of
the genetic values to give a phenotype with zero mean and unit variance.

e We then took the same 4988 SNPs but assigned effect sizes to the markers at random from a normal
distribution with zero mean and variance 0.5/4988. We multiplied these effect sizes by the simulated
marker values scaled to zero mean and unit variance to create the genetic values with variance 0.5,
and then added an environmental component simulated from a normal distribution with mean zero
and variance 1 minus the variance of the genetic values to give a phenotype with zero mean and unit
variance.

e We then sampled randomly 4988 evenly spaced markers as causal variants, but assigned effect sizes
proportional to the LD score and minor allele frequency of the markers as described above. We
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Supplementary Figure 19. Classification power of BayesRR-RC. Grouping effects in a BayesRR-RC
model improves the power of BayesR to estimate effect sizes and infer the genetic architecture of common complex traits and
diseases. This setting compares 10 simulations of 5 chains with different starting values (chain length : 2500, burn-in : 500,
thin : 5) executed using BayesRR-RC. (a) Each simulation has two groups in high LD with an interdigitated structure where
one in two SNPs is assigned to group 1 and all genetic variance is assigned to group 1 with 1000 QTL. Annotation-specific
estimates for BayesR are calculated post-analysis for each group. (b) Estimation of markers effects in an independent data set.
BayesRR-RC improves on correlation between predicted and simulated genetic values. This increase in prediction implies that
adding functional information to BayesR better fits the data and improves prediction accuracy. (c) Genetic variance and (d)
proportion of markers entering the model at posterior inclusion probability (pip) thresholds summarized across 10 simulations
for group 1 and group 2. The proportion of markers included in the model is closer to the truth (dotted grey line) when using
BayesRR-RC compared to BayesR. Effects are thus more likely attributed to the correct group using our approach, which also
explains why we estimate more accurately the group genetic variance compared to the baseline. Simulation setting: N = 20, 000
unrelated European individuals from the UK Biobank, M = 328, 385 markers (chromosome 2). Dots in box plots show the mean
of the correlation between predicted and simulated genetic values.

multiplied these effect sizes by the simulated marker values scaled to zero mean and unit variance to
create the genetic values with variance 0.6, and then added an environmental component simulated
from a normal distribution with mean zero and variance 1 minus the variance of the genetic values to
give a phenotype with zero mean and unit variance.

o Finally, we then sampled randomly 4988 evenly spaced markers as causal variants and randomly assigned
the effect sizes from a normal distribution with zero mean and variance 0.5/4988. We multiplied these
effect sizes by the simulated marker values scaled to zero mean and unit variance to create the genetic
values with variance 0.5, and then added an environmental component simulated from a normal
distribution with mean zero and variance 1 minus the variance of the genetic values to give a phenotype
with zero mean and unit variance.

This replicates our main simulation study, but creates a situation where there is an association at every
LD block on chromosome 22 and thus the results seen in the main simulation study should be magnified
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here. We analysed 50 simulation replicates of each of the four scenarios with BayesR, BayesRR-RC with 20
MAF-LD groups (deciles of MAF, each split into two groups based on median LD score within each MAF
decile), and a MLMAI model implemented in software GCTA. For the Bayesian methods we ran three chains
with different starting values for each of the 200 simulation replicates for 3000 iterations, removing the first
1500 iterations as burn-in and taking the posterior mean across the three chains. In Supplementary Figure
18a we plot the distribution of the posterior mean for BayesR and BayesRR-RC, and the MLMA point
estimates, of the proportion of variance attributable to the SNP markers minus the true simulated value
obtained across the 50 simulation replicates for each of the four scenarios, showing inflation of the MLMA
estimates when selecting high LD variants, and inflation of the BayesR estimates with high LD and random
effect size estimates. In contrast, estimates obtained from BayesRR-RC were unbiased across all scenarios.
By simulating an effect size MAF relationship ~ LDscore! MAF ™!, we are assigning the smallest absolute
effect size values to the most common SNPs, which appears to limit the inflation of the estimates for BayesR,
when selecting high LD SNPs as causal variants (Supplementary Figure 18a). We then examined the effect
size estimates obtained from these three approaches across the MAF spectrum under the second scenario
of high LD causal variant selection, but random effect size allocation, to show using z-scores calculated
as the estimated effects minus the simulated effects, divided by the SD of the simulated effects. We find
overestimation of common variant effect sizes under BayesR, and dramatic inflation of effect size estimates
under MLMA showing poor recovery of the underlying effect size distribution (Supplementary Figure 18b).
Grouping effects by MAF and LD in a BayesRR-RC model resolved this overestimation issue (Supplementary
Figure 18b) as seen in our original large-scale simulation study.

We then explore the ability of the model to recover a different set of annotation-specific effect sizes using
the same set of 50,000 randomly selected UK Biobank individuals and imputed genotype data for chromosome
22 grouped by chromatin state annotations (15-state ChromHMM model) from the epigenome of primary
mononuclear cells from peripheral blood (E062) of the Epigenome Roadmap Project [34]. We simulated the
genetic architecture as follows :

e We first mapped SNPs to active and inactive chromatin states from the mnemonic bed files for E062
(see Code availability). 37,187 SNPs mapped to active chromatin states including transcription start
site (TSS) and their flanking regions, genic and other enhancers, untranslated transcribed regions
(UTR) and actively transcribed regions and zinc finger genes states. 27,224 SNPs mapped to inactive
states including heterochromatin, bivalent/poised TSS and their flanking regions, bivalent enhancers
and repressed polycomb states. The remaining 47,018 SNPs were grouped and labelled as Other SNPs.

e To simulate enrichment in both chromatin states, we randomly sampled 2000 SNPs as causal variants
from variants mapped to active chromatin states and another 2000 SNPs from variants mapped to
inactive chromatin states. We then assigned effect sizes to these 4000 selected SNPs, drawing them
from a normal distribution with zero mean and variance 0.35/2000 for active states and 0.15/2000 for
inactive states.

¢ We multiplied annotation-specific effect sizes by the simulated marker values scaled to zero mean and
unit variance to create the annotation-specific genetic values with variance 0.35 for active states, 0.15
for inactive states and 0 for other SNPs. We finally added an environmental component simulated from
a normal distribution with mean zero and variance 1 minus 0.5 (the sum of the genetic values) to give a
phenotype with zero mean and unit variance.

We analyzed 20 simulation replicates with our BayesRR-RC software specfiying annotations (active
states, inactive states and other SNPs) with 2 LD groups based on median LD score within each annotation.
We compared our software to BoltREML [35] and RHEmc [36] both multi-variance component methods
that also use individual-level data but provide single heritability estimates per genetic component. For
BayesRR-RC we ran three chains with different starting values for each of the 20 simulations replicates for
3000 iterations, removing the first 1000 iterations as burn-in and taking the posterior mean across the three
chains. We then performed the same analysis but randomly assigning SNPs to each annotation resulting in
mis-specification of the underlying genetic architecture. In Supplementary Figure 18d, we plot the estimated
sum of the squared regression coefficients that is evenly split across the three annotations when misspecifying
the underlying genetic architecture (labelled : Misspecification of groups) and shows enrichment when we
properly assign SNPs to annotation (labelled : Multiple group enrichment). We find that BayesRR-RC
performs as BoltREML and RHEmc, with RHEmc estimates showing higher variability, supporting our main
simulation results.
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We also further examined the ability of BayesRR-RC to recover effect sizes compared to BayesR by
comparing 10 simulations of 5 chains with different starting values where each simulation has two groups in
high LD with an interdigitated structure where one in two SNPs is assigned to group 1 (Supplementary Figure
19a). We then simulated phenotypes as previously described, randomly selecting 1000 causal variants in group
1 only, using 20,000 randomly selected UK Biobank individuals and imputed genotype data for chromosome 2
(with MAF > 0.05). In Supplementary Figure 19, we compare the proportion of markers entering the model
in group 1 and group 2 at different posterior inclusion probability thresholds. Annotation-specific estimates
for BayesR are calculated post-analysis for each group. We also compare the correlation of estimated genetic
values with the truth when using BayesRR-RC and BayesR. For this, we conducted estimation of marker
effects in an independent data set to compare prediction accuracy. We simulated 10 new phenotypes and
computed the genetic value § = X B where X is the genotype matrix and B is a vector of estimated marker
effects for each individual. Supplementary Figure 19 shows BayesRR-RC has improved model performance
over BayesR to recover effect sizes and infer underlying genetic architectures.
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Abstract

About 800 women die every day worldwide from pregnancy-related complications, including excessive blood
loss, infections and high blood pressure (World Health Organization, 2019). To improve screening for
high-risk pregnancies, we set out to identify patterns of maternal haematological changes associated with
future pregnancy complications. Using mixed effects models, we established changes in 14 complete blood
count (CBC) parameters for 1,710 healthy pregnancies and compared them to measurements from 98
pregnancy-induced hypertension, 106 gestational diabetes and 339 postpartum hemorrhage cases. Results
show inter-individual variations, but good individual repeatability in CBC values during physiological
pregnancies, allowing the identification of specific alterations in women with obstetric complications. For
example, in women with uncomplicated pregnancies, haemoglobin count decreases of 0.12 g/L (95% CI
-0.16, -0.09) significantly per gestation week (p-value < 0.001). Interestingly, this decrease is 3 times more
pronounced in women who will develop pregnancy-induced hypertension, with an additional decrease of 0.39
g/L (95% CI -0.51, -0.26). We also confirm that obstetric complications and white CBC predict the likelihood
of giving birth earlier during pregnancy. We provide a comprehensive description of the associations between
haematological changes through pregnancy and three major obstetric complications to support strategies for
prevention, early-diagnosis and maternal care.

Introduction

During pregnancy, women experience physiological changes to facilitate the growing foetus and to prepare for
labour [1]. Understanding these changes as well as improving prevention, early-diagnosis and care for women
during pregnancy, labour and post-partum, requires increased efforts to generate data and large reference
samples. While reference values for maternal health are established to avoid unnecessary interventions [2, 3],
very few studies focus on blood cell count changes from conception to childbirth. Physiological changes,
including haematological changes, that may be perceived as pathological outside of pregnancy are poorly
understood as the participation of pregnant women is extremely limited in clinical trials [4-6] and large-scale
cohort data are lacking. It is therefore important to fully characterise what makes a healthy pregnancy as the
pregnancy progresses, to facilitate identification of unusual patterns of obstetric complications and improve
the stratification of high-risk pregnancies.

In this study, we used data on 14 complete blood count (CBC) parameters, collected from 2003 to 2009 at
the Lausanne University Hospital (CHUV), to establish haematological changes during pregnancy. CBC is
routinely performed to assess any abnormal fluctuations in blood values that help to screen for clinical risk
factors associated with pregnancy [7]. For example, gestational thrombocytopenia in pregnant women, a
common haematologic complication of pregnancy, is identified by a platelet count below 150,000/pL no earlier
than 100 days before delivery [8]. Intra- and inter-individual CBC may thus fluctuate during pregnancy and
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be influenced by maternal life-style factors and pregnancy-related complications (Supplementary Figure S1).
To characterise haematological changes, we first set up a reference for the 14 CBC parameters from healthy
pregnancies. We then assessed differences in the variation of CBC during pregnancies with three major
complications: (i) hypertensive disorders of pregnancy (HDP) including pregnancy-induced hypertension,
preeclampsia, HELLP (Hemolysis, Elevated Liver enzymes and Low Platelets) syndrome and unspecified
maternal hypertension, (ii) gestational diabetes mellitus (GDM) and (iii) post-partum haemorrhage (PPH).
Finally, we estimate the association of CBC parameters and pregnancy-related complications, namely HDP
and GDM, on birth timing using a Cox proportional hazards model.

Methods
1 Study design and participants

The Lausanne University Hospital (CHUV) maternity cohort aims to study maternal health, and maternal
and fetal outcomes. We obtained local canton ethical approval from CER-VD [9] under the project ID
2019-00280 for re-use of data initially collected for a serological surveillance study to investigate the prevalence
of maternal and fetal toxoplasmosis infections between 2009 and 2014. The data consists of maternal medical
record information for 4,347 pregnancies including haematological measures of which CBC taken at prenatal
visits and described in Table 1. Our central laboratory uses an automated blood counter (Sysmex XN®),
which rely on complementary techniques to determine CBC; (i) photometry after total red blood cell lysis for
HB; (ii) impedance for ERY and PLATE counts (cell type being discriminated by size cut-offs), MCV, and
MPV; and (iii) flow-cytometry for LEUC counts and differentiation. Other CBC parameters (HT, MCH,
MCHC, RDW) are derived from these measures. The data also includes (i) intrapartum measures (reason
for admission, age, maternal weight, maternal height, blood pressure, gestational age, fetal position, fundal
height, method of delivery, contraction number, interventions to assist with birth, delivery date and delivery
time), (ii) newborn measures (sex, birth weight, birth height, pH of umbilical cord, Apgar score), (iii) ICD-10
classification for diagnosis and medical procedures, and (iv) blood samples from the mother and from the
umbilical cord collected at delivery.

In this study, we focus on the CBC measures taken throughout pregnancy (Table 1). We considered
a longitudinal cohort study of 2,253 pregnancies with a single live birth (ICD10 Z370). From these, 42
pregnant women have data for two consecutive pregnancies. The study includes 1,710 control pregnancies
with single spontaneous full-term uncomplicated delivery live births (ICD10 O80), 98 cases of HDP including
pregnancy-induced hypertension, preeclampsia, HELLP syndrome and unspecified maternal hypertension
(ICD10 codes 013, O14 and 016), 106 cases of GDM (ICD10 024) and 339 cases of PPH (ICD10 O72). Still
births (ICD10 Z371), liveborn twins (ICD10 Z372), multiple pregnancies (ICD10 O30) and complications
specific to multiple gestation (ICD10 O31) were excluded from the analysis. Women with ICD-10 classifi-
cations unrelated to pregnancy, childbirth and the puerperium were filtered out excluding pre-pregnancy
diseases of which pre-existing hypertension (ICD10 O100). To better compare cases of HDP, GDM and PPH
in our analysis, pregnancies with two or all three complications studied and women with additional ICD-10
classifications for edema, proteinuria, and hypertensive disorders of pregnancy, delivery and puerperium
(010-016), other maternal disorders primarily related to pregnancy (020-029), polyhydramnios (O40), other
amniotic fluid and membrane disorders (O41), placental disorders (043-O44), and maternal care for fetal
abnormality (035-036), were excluded. In addition to the ICD10 codes, we also used reports at delivery.
Women with an indication of hypertension were added to HDP cases and those with blood loss greater than
500 ml following delivery to PPH cases. The distributions for maternal age at birth, maternal weight at
birth, gestational age, parity and nationality of the selected participants are shown in Supplementary Figures
S52-S3. Distributions for each CBC parameter included in our study are shown in Supplementary Figure S4
and reported in Supplementary Tables S1-S2.
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2 Statistical analysis

Haematological changes throughout low and high-risk pregnancies. We applied a cubic polynomial
regression model with a random intercept for each woman to (i) define a reference for the evolution of CBC
measures taken throughout control pregnancies and (ii) to assess CBC changes in women with major obstetric
complications. For each CBC measure, we have:

CBCij =~0 + 1 - I(group; = GDM) + 2 - I(group; = HDP) + 5 - I(group; = PPH)
+ (81 - week;; + B2 - week?j + B3 - weekfj)
+ (B4 - week;; - I(group; = GDM) + s - weekfj - I(group; = GDM) + S - weekf’j - I(group; = GDM))
+ (B7 - week;j - I(group;, = HDP) + fs - weekfj - I(group; = HDP) + f39 - weekfj - I(group; = HDP))
+ (Bio - week;j - I(group; = PPH) + P11 - weckfj - I(group; = PPH) + B12 - week?j - I(group; = PPH))
+ Zi§ +up + ey
(1)

where C'BC' is the outcome variable, i =1,...N and j =1,...,n;, with N the number of women and n;
the number of measurements done for women i. Variable u; ~ N(0,02) is the random intercept for individual
i and g;; ~ N(0,02) is the random error for individual’s 4 jth measurement. Z are the covariate values and &
is a vector with each of the covariate parameters including maternal age at birth, maternal weight at birth,
parity, gestational age at birth and nationality. Of these, 0.09% of women had missing nationality, 0.04% had
missing values for gestational age and 12.2% of pregnancies had no maternal weight reported. Nationality
is categorized into European coded as 0 and non-European coded as 1. Variable week is the timing of the
CBC measure in gestation week (GW). ~ is the intercept parameter, describing the woman’s initial blood
count value of CBC measure at the start of a control pregnancy. 1, 2 and 3 are the fixed-effect regression
coefficients describing the difference from the intercept in GDM, HDP and PPH pregnancy groups. /31 to (12
are the fixed-effects regression coefficients of the polynomial terms in each pregnancy group.

When dividing CBC measurements by trimester, 581 measurements were taken up to GW 14, 480 between
GW 15 and 28 and 3,196 after GW 28 in control pregnancies. We included cases of HDP with 35, 44, and
677 CBC measurements collected in trimesters 1, 2, and 3, respectively; cases of GDM with 47, 31, and
289 CBC measurements collected in trimesters 1, 2, and 3, respectively; and cases of PPH with 112, 102,

and 1,229 CBC measurements collected in trimesters 1, 2, and 3, respectively (Supplementary Figure S4b).

To assess CBC changes in women with the latter obstetric complications, we specified an interaction term
between the timing of CBC measurements and a categorical variable specifying the pregnancy group. CBC
measures, parity, gestational age, maternal age and weight at birth were centered and scaled with respect
to their standard deviation prior analysis. Missing values were imputed using multiple imputation with
predictive mean matching in the R package mice [10] and including case-control groups, maternal age at
birth, the newborn’s weight and height and a binary variable for premature birth (gestational age < 37 weeks)
in the imputation model. We analysed 5 sets of complete data and pooled the results. Differences in the
evolution of CBC between control and high-risk pregnancies are shown in Figure 1. Complete results from
each polynomial regression model are reported in Supplementary Table S3 and S4. We primarily chose the
cubic polynomial as it had the lowest Akaike information criterion (AIC) and Bayesian information criterion

(BIC) for most CBC, reflecting a flexible but parsimonious number of parameters (Supplementary Table S5).

We additionally applied a linear mixed effect model with random intercepts for each pregnancy describing
woman’s initial blood count value, similarly to the cubic polynomial model, as follows:
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CBCij =~ +m - I(group; = GDM) + o - I(group; = HDP) + 3 - I(group; = PPH)
+ b1 - week;;
+ B2 - week;; - I(group; = GDM)
+ B3 - week;; - I(group; = HDP)
+ Ba - week;; - I(group; = PPH)
+ Zi§ +ui +¢€ij
(2)

where the coefficients 5, to 84 give us an overview of the direction of change during pregnancy and the
additional effect of having one of the three obstetric complications (Figure 2 and Supplementary Figure S5).
Regression coefficients from each linear mixed effect model are reported in Supplementary Table S6. Linear
and polynomial models are fit using the R package Ime4 [11].

Effect of CBC, HDP and GDM on birth timing. We fit a time-dependent covariate Cox proportional-
hazards model [12] to describe how CBC parameters and obstetric complications jointly influence the hazard
rate of birth at a particular point in time. The model is expressed as follows:

hi(t) = ho(t) - exp(BL- X+ Ba- X5+ ...+ By X;) (3)

where t represents the pregnancy time, h;(t) is the hazard function for individual ¢ which can vary overtime
and can be interpreted as the risk of labour at time t. The regression coefficients §1, B2, ..., B, measure the
effect size of p covariates. hg is the baseline hazard describing how the risk of birth changes over time at
baseline levels of covariates. To select the most adequate predictors to include in the model, we applied a
backward stepwise selection model using the BIC. Backward stepwise selection performs model comparison
by removing predictors included in the model and evaluating the BIC of models of decreasing complexity
until the most optimal model is reached. Maternal age at birth, maternal weight at birth, parity, nationality,
the 14 CBC parameters in Table 1 and a categorical variable for controls, GDM and HDP pregnancies, were
considered in the stepwise analysis. Maternal weight and parity were selected and included in the multivariate
analysis as time-constant covariates. From the CBC parameters, HB, RDW, LEUC, ALYMPH, ANEUT and
PLATE levels were retained. The pregnancy groups were also added to the multivariate analysis setting the
control group as the reference. Complete results from the multivariate Cox proportional hazards model are
reported in Supplementary Table S7 and the hazard ratios (HR) are shown in Figure 3. The HR measures
the likelihood of women whose pregnancy is complicated by GDM or HDP, to give birth at time t compared
to controls. For the continuous variables, the HR reflects the hazard of birth at time t if the variable in
question increases by one unit. Cox proportional-hazards models are fit using the R package survival [13].

Finally, we further investigated significant associations found between time to birth, pregnancy com-
plications and CBC measurements by exploring the number of C-sections and oxytocin administration
in pregnancy complications. We also explored the proportion of obstetric infections and premature rup-
ture of membranes (PROM) using ICD-10 codes reported in each pregnancy group (Supplementary Figure S6).

Results

Haematological changes throughout low and high-risk pregnancies. Firstly, we investigated haema-
tological changes during pregnancies with single spontaneous full-term uncomplicated delivery live birth
(ICD10 code O80) and compared them to values in pregnancies complicated by either GDM, HDP or PPH.
For this purpose, a cubic polynomial regression was applied with (i) an interaction between time and a
categorical variable indicating the pregnancy group, (ii) a number of covariates and (iii) random intercepts
for each pregnancy to model individual-level differences in repeated blood count values. We identify the
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following changes at a P-value < 0.0036 adjusting the significance level with the Bonferroni correction for the
14 phenotypes tested (Supplementary Table S1-S3).

Figure 1 depicts how CBC parameters change from the first to the third trimester, while Figure 2
shows CBC predictions at GW 0, 10, 20 and 30 using estimates from the linear mixed effect model. In
control pregnancies, we observe a decrease in the second trimester followed by an increase in the third
trimester for erythrocyte parameters (HB, HT and ERY), a decrease in platelets (PLATE), and an increase
in leucocyte (LEUC). The same patterns are delineated when the linear mixed effect model is applied to
estimate an overall direction of haematological changes during pregnancy (Supplementary Figure S5). First,
we found that HB levels significantly decrease by 0.008 (95% CI -0.011, -0.006), HT by 0.005 (95% CI
-0.007, -0.003) and ERY by 0.01 (95% CI -0.012, -0.008) per GW. We also observe that the mean corpuscular
haemoglobin (MCH) is not significantly altered, while the mean red cell volume (MCV) shows a marginal
increase, explaining a marginal decrease in the mean corpuscular haemoglobin concentration (MCHC) across
pregnancy. Lastly, red blood cell distribution width (RDW), which measures the change in red blood
cell size, increases continuously as pregnancy progresses. Second, PLATE count also decreases by 0.012
(95% CI -0.014, -0.010), whereas the mean platelet volume (MPV) decreases and then increases in the
second trimester. And third, LEUC counts increase by 0.015 (95% CI 0.012, 0.017). Among leucocytes,
the polynomial slope for absolute neutrophil (ANEUT) count increases early in pregnancy while absolute
monocyte (AMONO) count increases from the second trimester onward. Absolute lymphocyte (ALYMPH)
count decreases marginally early in pregnancy. The linear estimation confirms these trends with a signif-
icant increase by 0.015 (95% CT 0.013, 0.018) in ANEUT, 0.017 (95% CI 0.015, 0.019) in AMONO, and
a decrease by 0.005 (95% CI -0.008, -0.003) in both ALYMPH and absolute eosinophil count (AEOSI) per GW.

In pregnancies complicated by either GDM, HDP or PPH, we find statistically significant differences at
P-value < 0.0036, in the polynomial terms for all CBC except ALYMPH and RDW (Supplementary Table S1).
We observe group specific differences in the polynomial slopes, especially early in pregnancy, between GW
10 and 20 (Figure 1 and Supplementary Figure S7). As with the polynomial curves, CBC values, predicted
from the linear mixed-effect model, vary overtime and are subject to changes specific to women with at-risk
pregnancies (Figure 2). For pregnant women who will develop HDP, we find that erythrocyte parameters
are approximately 2-fold higher compared to controls at GW 0, and that they decrease significantly faster
during pregnancy with the following interaction effect sizes: -0.026 (95% CI -0.035, -0.018) for HB, -0.026
(95% CI -0.035, -0.17) for HT and -0.021 (95% CI -0.029, -0.012). PLATE count is significantly lower by
-0.42 (95% CI -0.70, -0.14) at the start of pregnancy but although not significant, the decrease is slower in
women who will develop HDP compared to controls (Figure 2, Supplementary Figure S5). We find similar
trends in pregnancies leading to PPH with approximately 3-fold higher values in erythrocyte parameters at
GW 0, which also decrease significantly faster: -0.041 (95% CT -0.046, -0.036) for HB, -0.044 (95% CT -0.049,
-0.039) for HT, -0.043 (95% CT -0.048, -0.038) for ERY. PPH pregnancies also have 2-fold lower values LEUC
and ANEUT counts at GW 0. As pregnancy progresses, these counts and AMONO increase significantly
faster with interaction effect sizes: 0.026 (95% CI 0.020, 0.031) for LEUC, 0.028 (95% CI 0.023, 0.033) for
ANEUT and 0.013 (95% CT 0.007, 0.018) for AMONO (Figure 2, Supplementary Figure S5). Finally, women
diagnosed with GDM are distinguished by approximately 2-fold higher LEUC and ANEUT counts at GW 0.
Interestingly, LEUC count remains constant throughout the pregnancy as it significantly decreases by 0.014
(95% CI: -0.022, -0.005) counteracting the increase of 0.015 found in the control pregnancies. We also note
that their number of HB and HT decreases by -0.015 (95% CI -0.023, -0.007) and -0.013 (95% CI -0.021,
-0.004) with each passing week of pregnancy (Figure 2, Supplementary Figure S5).

Random intercepts for individuals fitted within each polynomial model revealed that 30.9% to 84.6%
of the variance is attributed to inter-individual differences indicating that the pregnant women differ in
their initial blood cell count (Supplementary Table S5). The proportion of total variance attributable to
this term also informs us about individual repeatability, i.e., how similar observations of an individual are
as compared to the rest of the population, as the pregnancy progresses [14]. For instance, 84.6% of the
variance in MCV measurements would be explained by the random intercept and thus the rate of change
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for those measurements are likely to be the same for all women. We also find variation in blood measure
with maternal age and weight at delivery, parity, nationality and gestational age at birth (Supplementary
Figure S8). Estimates of the effect of nationality on the 14 CBC have a wider confidence interval than the
other covariates, which could imply a broader genetic background in individuals than that described by their
nationality. Compared to other CBC, RDW is more affected by higher parity with an increase of 0.16 (95%
CI 0.13,0.20). We also observe a negative effect with a 1-SD increase in gestational age on LEUC count which
appears to be driven by ANEUT and ALYMPH with a decrease of -0.21 (95% CI -0.25,-0.17) and -0.18 (95%
CI -0.22,-0.14) respectively. Finally, maternal age and weight show significant opposite effects on ERY, MCV,
MCH, MCHC, RDW and ALYMPH counts.

Effect of CBC, HDP and GDM on birth timing. Using a time-dependent covariate Cox-proportional
hazards model, we assess how CBC measurements taken throughout pregnancy, GDM and HDP obstetric
complications jointly influence birth timing measured as gestational age at birth. To select the most adequate
multivariate model, we used backward step-wise selection and the final model used for the analysis included
maternal weight, parity, HB, RDW, LEUC, ALYMPH, ANEUT and PLATE CBC parameters, and the
case-control categorical variable for HDP, GDM and control pregnancies.

Kaplan Meier curves in Figure 3a describe the probability of birth from GW 24 to 42 in control pregnancies
and in cases of GDM and HDP. The median gestational age at delivery is 39.55 (95% CI 39.50, 39.60) in
controls and 39.10 (95% CT 39.00, 39.30) in GDM-complicated pregnancies, both being within the limits of
what is considered to be full-term delivery; as opposed to 37.60 GW (95% CI 37.10, 38.20) in HDP-complicated
pregnancies, which lies very close to the cut-off for preterm delivery. Indeed, 39.8% of HDP-complicated
pregnancies resulted in birth <37 GW and, although ICD10 code O80 indicates single spontaneous full-term
uncomplicated delivery in controls, only 6.6% of healthy and 5.7% of GDM-complicated pregnancies delivered
prematurely. Furthermore, at GW 41, 16.1% of controls, 7.5% of GDM and 5.1% of HDP pregnancies are
still ongoing and can be classified as late deliveries. In agreement with the Kaplan Meier curves, we find that
the hazard of birth is 2.49 (95% CI 1.95, 3.18; P-value =2.82e-13) times higher in pregnancies complicated by
HDP and, although not significant, the hazard of birth was found to be 1.35 (95% CI 0.98, 1.85) times higher
in pregnancies complicated by GDM (Figure 3b). Moreover, the hazard of giving birth at a given time rises
by 2.94 for 1 G/ increase in ALYMPH (95% CI 2.07, 4.17; P-value=1.83e-09) and by 2.06 for 1 G/1 increase
in ANEUT (95% CI 1.54, 2.74; P-value=8.63e-07). We also find that for one unit increase in HB, RDW and
LEUC cell counts, the hazard of giving birth falls by 0.99 (95% CI 0.983, 0.996; P-value=1.53e-03), 0.90 (95%
CI 0.85, 0.95; P-value=4.98e-05) and 0.56 (95% CI 0.42, 0.73; P-value=2.92e-05) respectively. Finally, the
hazard of birth increases by 1.15 (95% CI 1.07, 1.23; P-value=1.93e-04) for one unit increase in parity and
decreases by 0.99 (95% CI 0.98, 0.99; P-value=5.41e-06) for one unit increase in maternal weight.

We further investigate the association found between time to birth and HDP complication by exploring the
number of C-sections and oxytocin administration reported. Of the 98 HDP cases in our study, 67.3% resulted
in a C-section, 22.6% received oxytocin to induce or to accelerate labour and 10.2% gave birth without either
intervention. Out of 39 preterm deliveries in the HDP group, only 3 infants were born by natural labour.
We also investigated ANEUT and ALYMPH associations with time to birth, looking at the proportion of
obstetric infections and PROM in each pregnancy group (Supplementary Figure S6). Using the reported
ICD-10 codes in our sample, 0.7% of patients had an infection during pregnancy and we find <2% of infec-
tions per pregnancy group. On the other hand, we observe 15.3% of PROM, of which 7.9% are preterm PROM.

Discussion

In this study, we extensively describe the haematological changes that occur during healthy pregnancies and
compare them with pregnancies involving three major obstetric complications, namely GDM, HDP and PPH.
Maternal data are also analysed in a novel manner, by exploring the effect of obstetric complications and
CBC measurements throughout pregnancy, on gestational age at delivery.
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Our results are in line with previous studies on haematological changes in healthy pregnancy. Blood
volume is known to increase by about 1.5L throughout pregnancy. Erythrocyte count increases due to a
greater erythropoietin production [15]; however, the volume of plasma increases proportionally more, thus
pregnant women present a net decrease in red blood cell parameters, notably haemoglobin and haematocrit
in the second trimester, followed by a stabilisation in the third [1,15]. Leucocyte counts have been shown to
rise mainly due to neutrophilia and monocytosis caused by the physiologic stress imposed during pregnancy,
alongside a decrease in lymphocytes [15-17]. Finally, previous studies have also shown a decrease in platelet
count [1,15,18]. Here, we confirm and refine the description of these physiological changes. More importantly,
we explore how repeated monitoring of CBC can help identify complications. Compared to healthy pregnancies,
we found significant differences in the variation of CBC parameters throughout pregnancies complicated
by GDM, HDP or PPH, each having a unique alteration pattern. We thus demonstrate that assessing

haematological changes has the potential to timely identify women who will develop obstetric complications.

Recent findings show that CBC can help predict the risk of PPH [14] and GDM [19]. Regarding HDP, few
studies have used platelet count to predict preeclampsia alone [20-22]. An increase in hematocrit count
between the first and second trimester has also been shown to be predictive of preeclampsia as well as other
pregnancy outcomes such as fetal growth restriction [23,24]. In our analysis, we identify the 10th to 20th
week of gestation as the most informative period for identifying these complications. This information brings
novelty to the field as it indicates a specific time frame, early in pregnancy, that we can focus on to predict
and identify maternal complications occurring weeks later and improve prenatal care. For instance, we
demonstrate that routine red blood cell and platelet count are sensitive enough to identify pathophysiological
mechanism occurring early in the course of the pregnancy that will later lead to the development of HDP. The
observed pattern of significantly accelerated decrease in red blood cell and platelet counts, is consistent with
low grade thrombotic microangiopathy, which takes many forms during pregnancy including preeclampsia
and the HELLP syndrome [25, 26]; however further research is needed to establish this hypothesis. In current
clinical practice, it is not usual to continuously measure CBC values during pregnancy. However, our results
indicate a pattern of change in CBC values that differs in women with negative pregnancy outcomes, as
opposed to healthy pregnancies. This suggests that more routine CBC testing throughout pregnancy may
contribute to earlier diagnosis. Finally, as in [14], we observe that post-labour complications can also be
related to what happens during pregnancy.

When exploring associations between time to birth, pregnancy complications and CBC measurements,
we find that HDP significantly increases the hazard of birth and thus may shorten pregnancy duration
compared to controls regardless of the GW. Among the HDP cases, we observe that few pregnant women,
three of whom gave birth before GW 37, delivered without C-section or use of oxytocin. It is thus likely
that our results reflect medically indicated births due to obstetric guidelines, recommending induction of
labour in women who develop hypertension; and that onset of HDP before GW 37 increases the likelihood of
preterm delivery. With regards to the CBC results, we show that the hazard of giving birth rises with higher
values of ALYMPH and ANEUT. As both cell types are mobilised by the immune system in the presence of
pathogens [27, 28], results may reflect an underlying subclinical infection. Using reported ICD-10 codes, we
find less than 1% of obstetric infections. However, we observe 15.3% of PROM, a complication associated
with infections in pregnancy [29,30]. Following PROM, if labour does not begin spontaneously within 24
hours, obstetric guidelines recommend induction of labour. Of the reported cases, 52% are preterm PROM
thus resulting in preterm birth. Additionally, physiological changes during labour that have been described as
inflammatory reactions [31,32] and treatments such as steroids in preparation of preterm birth, are additional
factors that may lead to significant changes in white blood cell counts. We believe, further research is needed
to investigate haematological changes specifically during labour and in complications that play a key role in
the timing of birth. With regards to parity, a recent study showed that women in their first pregnancy are at
greater risk of spontaneous preterm birth compared to women in their second pregnancy; and that the risk
increases steadily in multiparous women [33]. We find that for every new pregnancy, the hazard of birth
increases by 14.7% and so, it would be interesting to deconstruct our analysis and compare different parity
status in a larger sample size.
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Although the CHUV maternity cohort is phenotypically rich, the main limitation in our study is the
heterogeneity in the data collection. First, although we have repeated measures throughout pregnancy, these
have not been collected at similar time points for each pregnancy and 75.1% to 89.6% of measures are taken
in the third trimester (Supplementary Figure S4b). Our results are thus more reliable in the end of pregnancy
where we can confidently establish specific ranges for each cell blood count (Supplementary Table S1) and
we believe that a more complete dataset from the beginning of pregnancy would show a more pronounced
difference between the groups. Second, the time of onset of the various pregnancy complications was not
reported in the CHUV maternity cohort. With a more complete data set and an increase in sample size, we
would be able to further investigate whether hematologic changes in early pregnancy are also dependent on the
timing of pregnancy complications. A larger sample size is also required to determine the prediction accuracy
when predicting these complications from longitudinal CBC measures taken between the 10th and 20th week
of gestation. Third, the data was collected 10 years ago and guidelines in maternal health have evolved since
then. These three limitations emphasise the importance of data collection in a rapidly changing field. Finally,
as obstetric complications have a multi-factorial etiology including a number of medical interventions, bigger
sample sizes of diverse ancestries and genetic data are required to (i) investigate maternal risk factors, (ii)
better predict and understand obstetric complications, (iii) stratify women that are at risk and (iv) develop

risk specific guidelines. Fortunately, maternal health is increasingly becoming part of the research agenda.

Available data and collaborations to improve maternal care are increasing and we are currently filling the
gaps in the field.
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Tables

340

Table 1. Cell blood counts (unit) included in the study.

Type Name Description
Red blood cells ERY (T/L) Red blood cell count
HB (g/L) Total amount of the oxygen-carrying protein in the blood
HT (%) Volume percentage of red blood cells in blood
MCV (fl) Mean cell volume
MCH (pg) Mean corpuscular hemoglobin
MCHC (g/L) Mean corpuscular hemoglobin concentration
RDW (%) Red blood cell distribution width
White blood cells LEUC (G/L) White blood cell count

ANEUT (G/L)
ALYMPH (G/L)
AMONO (G/L)
AEOSI (G/L)

Absolute number of neutrophils
Absolute number of lymphocytes
Absolute number of monocytes
Absolute number of eosinophils

Platelets

PLATE (G/L)
MPV (fl)

Platelet count
Mean platelet volume

10



Figures

CBC | age, parity, weight, gestational age, nationality

Figure 1. Haematological changes in major pregnancy complications. Cubic polynomial slopes
showing the course of 14 cell blood counts (CBC) in control pregnancies, pregnancies with gestational diabetes mellitus
(GDM), pregnancies with induced hypertension (HDP) and pregnancies resulting in post-partum haemorrhage (PPH).
Slopes are adjusted for maternal age and weight at delivery, parity, gestational age and nationality. 95% CI are
displayed in grey around the slopes. CBC parameters and covariates are centered and scaled with respect to their
standard deviation. In control pregnancies, red CBC (ERY) and platelets (PLATE) decrease compared to white
CBC (LEUC) which gradually increases overtime. Results show different patterns for HDP, GDM and PPH with a
greater difference between the course of CBC in control and in HDP and PPH pregnancies. For instance, we observe
non-overlapping 95% CI in ERY, HB and HT mean counts between control pregnancies and pregnancies complicated
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Figure 2. CBC prediction of each group across pregnancy. Mean predicted CBC values of control,
GDM, HDP and PPH pregnancy groups at week 0, 10, 20 and 30. The error bars show the variance of the prediction
error, except at week 0, where we show (i) the estimated mean intercept and 95% CI for the control group and (ii)
the predicted mean values and the prediction error variance for the case groups by adding the estimated effect of
pregnancies complicated by either GDM, HDP or PPH to the estimated control intercept. At week 10, 20 and 30, the
predicted CBC value in control groups is computed by adding the estimated intercept and the estimated effect of
time in weeks times gestation week = (10 or 20 or 30). To predict values in a pregnancy affected by one of the three
complications, we also sum the effect of time in weeks for the group of interest times gestation week = (10 or 20 or
30). We observe clear differences in the groups, i.e., in the count of AMONO in case pregnancies compared to the
reference mean predicted values in green, as pregnancy progresses.
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Figure 3. Time-to-birth analysis. (a) Cumulative incidence plot showing the probability of giving birth
throughout controls and high risk pregnancies including gestational diabetes mellitus (GDM) and hypertensive
disorders in pregnancy (HDP). The cut-off point for a pre-term and late-term delivery is indicated by the grey lines.
The plot also includes a risk table with the number of women susceptible to give births and the cumulative number of
events at a given gestation week. The log-rank test p-value < 0.0001 indicates that birth timing is significantly different
between our groups. Pregnancies with HDP are found to have a higher probability of preterm birth. (b) Forest plot
showing the hazard ratio with 95% confidence intervals, estimates and p-values associated with variables included in
the cox proportional hazards model. HDP pregnancies give birth 2.5x the rate per unit time compared to control
pregnancies (P-value = 6.33e—13). We also observe that lymphocyte (ALYMPH) and neutrophil (ANEUT) counts
increase the probability of giving birth, with a hazard by a factor of 2.9x (P-value = 2.97e—09) and 2x (P-value =
1.09e—06) respectively. This might reflect the presence of an infection, which is one of the main causes of spontaneous
preterm delivery, or a reactive neutrophilia and lymphocytosis accompanying the causal event for birth.
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Figure S1. Example of CBC changes in maternal leucocyte cell count. The distribution of leucocytes
(G/L) in blood varies (a) over time (b) between low and high risk pregnancies including hypertensive disorders
of pregnancy (HDP), gestational diabetes mellitus (GDM) and post-partum haemorrhage (PPH), and (c) between
preterm and term births. Violin plots show the distribution of leucocytes in trimester 1, 2 and 3 and boxplots with
the median,the 25th and 75th percentiles. Coloured dashed lines show the median leucocyte count in blood for each
group. We observe an increase in leucocyte count from trimester 1 to 3. The leucocyte distribution for HDP and PPH

is slightly shifted towards higher values. The same is true for pregnancies with preterm delivery demonstrating the
interest in monitoring blood values during pregnancy.
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Figure S2. Distribution of maternal measures at birth. Distribution of (a) maternal age, (b) maternal
weight and (c) gestational age at birth in pregnancies with spontaneous uncomplicated delivery (controls), gestational
diabetes mellitus (GDM), hypertensive disorders of pregnancy (HDP) and post-partum hemorrhage (PPH). The
median for each group is shown in the labelled box. HDP pregnancies have a lower median for gestational age
compared to the other groups. We also observe that the age distribution of women with GDM is shifted to the right.
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Figure S3. Nationality and parity in the CHUV maternity cohort.Distribution of nationality group
by parity in pregnancies with spontaneous uncomplicated delivery (controls), gestational diabetes mellitus (GDM),
hypertensive disorders of pregnancy (HDP) and post-partum hemorrhage (PPH). Solid dots give an order of magnitude
of sample size. The majority of women in the CHUV maternity cohort are of European nationality. The parity ranges
from 0 to 9 and there are mainly first (parity=0) or second (parity=1) pregnancies for women in the cohort.
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Figure S4. Distribution of the 14 cell blood count measures. (a) Distribution of erythrocyte count
(ERY), hemoglobin level (HB), hematocrit count (HT), mean red cell volume (MCV), mean corpuscular hemoglobin
(MCH), mean corpuscular hemoglobin concentration (MCHC), red blood cell distribution width (RDW), leucocyte
count (LEUC), absolute number of neutrophils (ANEUT), absolute number of lymphocytes (ALYMPH), absolute
number of monocytes (AMONO), absolute number of eosinophils (AEOSI), platelet count (PLATE) and mean platelet
volume (MPYV) for the 1,710 control pregnancies, 98 cases of gestational hypertensive disorders of pregnancy, 106 cases
of gestational diabetes and 339 cases of post-partum hemorrhage included in this study. (b) Number of complete
blood count (CBC) tests performed by case-control pregnancies and by trimester 1 to 3. Each CBC test includes the
14 CBC parameters described in Table 1.
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Figure S5. Interaction between gestation week and pregnancy groups. (a) Forest plots with estimates
and 95% CI from the mixed effect model describing the estimated mean intercept of CBC values in the control
pregnancy group and the estimated difference from this intercept in the GDM, HDP and PPH pregnancy groups at
week=0. Solid points show significant effects at P-value < 0.05/14 = 0.0036 with Bonferroni correction for multiple
testing. (b) Estimates (in bold) and (95% CI) from the linear mixed effect model, of gestation time in weeks and of
the incremental effect of gestation time in weeks for women with GDM, HDP or PPH on CBC. For example, at a
P-value level < 0.00036, results show a significant decrease of -0.01 (95% CI -0.012, -0.008) in erythrocyte count (ERY)
during pregnancy. ERY counts in women with HDP are -0.021 (95% CI -0.029, -0.012) lower. This effect is in addition
to the reference established in controls and thus HDP pregnancies have a total ERY decrease of 0.01 + 0.021 = 0.031
per gestation week. Effects are adjusted for maternal age and maternal weight at birth, parity, preterm birth and
nationality, and CBC phenotypes are scaled with respect to their standard deviation.




Urinary tract infection following delivery- |~ ===

Unspecified infection of urinary tract in pregnancy- [7] Controls
. || HDP
Puerperal sepsis- [ PPH

Infections of the genital tract in pregnancy-
00 05 10 15 20

proportion of cases (%)

b
PROM, unspecified- ,
PROM, labour delayed by therapy- ; [ Controls
PROM, onset of labor within 24 hours of rupture: % SBI’\DA
Preterm PROM, onset of labor more than 24 hours following rupture- £ ——u-—— PPH

Full-term PROM, onset of labor more than 24 hours following rupture- g=
00 25 50 75 100

proportion of cases (%)

Figure S6. Proportion of infections and premature rupture of membranes reported in Controls,
HDP, GDM and PPH. (a) Proportion of infections reported in each pregnancy group based on the following
ICD 10 codes : 0234 for unspecified infection of urinary tract in pregnancy, 0235 for infections of the genital tract
in pregnancy, O862 for urinary tract infection following delivery and O85 for Puerperal sepsis. No infections were
reported in GDM cases. (b) Proportion of premature rupture of membranes (PROM) reported in each pregnancy
group based on the following ICD 10 codes: 04212 for full-term PROM with onset of labor more than 24 hours
following rupture, 04211 for preterm PROM with onset of labor more than 24 hours following rupture, 0420 for
PROM with onset of labor within 24 hours of rupture, 0422 for PROM with labour delayed by therapy and 0429 for
unspecified PROM. The study includes 1,710 control, 98 HDP, 106 GDM and 339 PPH pregnancies.
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Figure S7. Course of the 14 complete blood counts from 10 to 20 weeks of gestation. Boxplots
showing the distribution (median, 25% and 75% quartiles) of each blood measure described in Table 1 between cases
of pregnancy induced hypertension (HDP), gestational diabetes mellitus (GDM), post-partum hemorrhage (PPH) and
control pregnancies, from gestation week 10 to 20. This zoom shows that the polynomial curves (Figure 1) represent a
real and visible difference between the groups in the average cell blood count. The first trimester lasts until the 13th
week of gestation and the second trimester until the 26th week.



Maternal age Parity ional age Maternal weight Nationality

ERY - Py - o
HB - - fo- ——
HT lo - lo- o —-
MCV - - - - ==
MCH - - o - ——
MCHC - - f - —=
RDW - - < - ——
LEUC o - - lo- -
ANEUT i - - P ——
ALYMPH - < - - —|
AMONO het - - d ——
AEOSI < o + o —
PLATE + - . o -
MPV o | + b {
-04 00 04 -04 00 04 -04 00 04 -04 00 04 -04 00 04

Estimate with CI

Figure S8. Covariates included in the cubic polynomial regression.Forest plots display estimates with
95% CI for covariates included in the cubic polynomial regression. Solid points show significant effects at P-value
< 0.05/14 = 0.0036 adjusting the significance level with the Bonferroni correction for the 14 phenotypes tested.



Table S1. Summary distribution of CBC values per trimester and pregnancy group.

trimester
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group
control
control
control
control
control
control
control
control
control
control
control
control
control
control
HDP
HDP
HDP
HDP
HDP
HDP
HDP
HDP
HDP
HDP
HDP
HDP
HDP
HDP
GDM
GDM
GDM
GDM
GDM
GDM
GDM
GDM
GDM
GDM
GDM
GDM
GDM
GDM
PPH
PPH
PPH
PPH

test
AEOSI
ERY

HT

HB

LEUC
ALYMPH
MCH
MCHC
MCV
AMONO
MPV
ANEUT
PLAQ
RDW
AEOSI
ERY

HT

HB

LEUC
ALYMPH
MCH
MCHC
MCV
AMONO
MPV
ANEUT
PLAQ
RDW
AEOSI
ERY

HT

HB

LEUC
ALYMPH
MCH
MCHC
MCV
AMONO
MPV
ANEUT
PLAQ
RDW
AEOSI
ERY

HT

HB

min
0
2.7
24.0
81.0
2.4
0.4
20.3
299.0
65.0
0.1
8.5
0.3
46.0
11.6
0.0
1.7
15.0
52.0
3.0
0.4
24.1
302.0
76.0
0.1
8.7
1.3
36.0
11.9
0.0
2.4
22.0
70.0
49
0.4
21.5
307.0
66.0
0.1
8.8
1.7
71.0
12.1
0.0
1.4
12.0
41.0

1stQ

0.05
3.9
34.0
115.0
7.8
1.5
28.5
329.0
86.0
0.6
10.3
5.4
173.0
13.1
0.0
3.6
32.0
106.0
8.1
1.5
28.6
330.0
86.0
0.5
10.4
5.3
141.0
13.2
0.0
3.9
33.0
109.0
7.6
1.4
27.4
328.0
83.0
0.6
10.4
5.1
165.0
13.5
0.0
3.1
28.0
92.0

median 'mean

0.08
4.1
36.0
122.0
9.4
1.8
29.9
335.0
89.0
0.7
11.0
6.6
208.0
13.6
0.1
4.0
35.0
116.0
10.1
1.8
29.8
336.0
88.0
0.6
11.2
7.3
179.0
13.6
0.1
4.2
36.0
119.0
9.0
1.7
29.1
333.0
87.0
0.7
11.0
6.3
212.0
14.1
0.1
3.8
33.0
110.0

0.105
4.1
36.3
121.5
9.7
1.9
29.7
335.3
88.4
0.7
11.1
7.0
213.9
13.9
0.1
3.9
34.2
114.7
10.3
1.9
29.5
336.1
87.7
0.7
11.3
7.5
188.5
13.9
0.1
4.1
35.2
117.2
9.5
1.8
28.8
333.4
86.4
0.7
11.1
6.8
211.4
14.5
0.1
3.6
31.9
106.8

3rdQ

0.13
4.3
38.0
129.0
11.2
2.2
31.0
341.0
92.0
0.8
11.7
8.2
249.0
14.2
0.1
4.2
37.0
125.0
12.0
2.3
30.6
343.0
90.0
0.8
12.0
9.1
221.0
14.2
0.1
4.4
38.0
125.0
10.7
2.2
304
339.0
91.0
0.8
11.6
7.9
255.0
14.9
0.1
4.1
37.0
122.0

max

1.31
5.6
47.0
162.0
28.5
4.9
354
364.0
103.0
2.6
15.6
23.1
542.0
26.0
0.6
5.2
44.0
151.0
27.0
6.0
33.3
358.0
99.0
1.7
14.3
23.5
518.0
21.0
0.7
5.3
44.0
156.0
24.0
3.8
33.1
358.0
96.0
1.9
13.8
19.7
734.0
23.8
1.2
5.3
46.0
157.0



N NN NNNNNNNNNNDNNNDNNNNNNNNDNNNDNNNNNNDNNNNNNMNNNDNDWWWWWWWWWW

PPH
PPH
PPH
PPH
PPH
PPH
PPH
PPH
PPH
PPH
control
control
control
control
control
control
control
control
control
control
control
control
control
control
HDP
HDP
HDP
HDP
HDP
HDP
HDP
HDP
HDP
HDP
HDP
HDP
HDP
HDP
GDM
GDM
GDM
GDM
GDM
GDM
GDM
GDM
GDM
GDM

LEUC
ALYMPH
MCH
MCHC
MCV
AMONO
MPV
ANEUT
PLAQ
RDW
AEOSI
ERY

HT

HB

LEUC
ALYMPH
MCH
MCHC
MCV
AMONO
MPV
ANEUT
PLAQ
RDW
AEOSI
ERY

HT

HB

LEUC
ALYMPH
MCH
MCHC
MCV
AMONO
MPV
ANEUT
PLAQ
RDW
AEOSI
ERY

HT

HB

LEUC
ALYMPH
MCH
MCHC
MCV
AMONO

2.0
0.2
20.0
302.0
66.0
0.1
8.6
0.1
39.0
11.5
0.0
2.1
19.0
65.0
2.3
0.4
19.7
295.0
64.0
0.1
8.4
1.5
49.0
12.1
0.0
3.5
31.0
108.0
3.0
1.0
26.0
322.0
80.0
0.3
9.1
1.7
122.0
12.6
0.0
3.4
29.0
98.0
5.9
0.9
24.6
315.0
78.0
0.3

8.4
14
28.4
329.0
86.0
0.6
10.1
5.8
154.0
13.2
0.1
3.7
33.0
109.0
7.6
14
28.7
330.0
86.0
0.5
10.1
5.2
188.0
13.0
0.1
3.8
33.8
114.0
9.4
1.5
29.5
332.8
86.0
0.5
9.5
6.3
187.3
13.0
0.1
3.8
33.5
110.5
8.3
1.4
27.9
330.5
84.0
0.5

10.6
1.7
29.9
336.0
89.0
0.7
10.8
7.8
191.0
13.8
0.1
3.9
35.0
116.5
9.2
1.7
29.9
337.0
89.0
0.6
10.5
6.6
226.0
13.5
0.1
3.9
35.0
118.0
10.8
1.8
30.3
339.0
88.5
0.7
10.3
7.6
221.5
13.4
0.1
4.0
35.0
117.0
9.6
1.9
29.6
337.0
88.0
0.7

11.3
1.8
29.7
335.7
88.3
0.8
10.9
8.5
196.9
14.2
0.1
3.9
34.3
115.2
9.6
1.8
29.6
336.6
87.9
0.7
10.6
6.9
227.4
13.8
0.1
4.0
35.2
119.2
10.5
1.8
30.0
338.6
88.7
0.7
10.4
7.8
221.4
13.4
0.2
4.0
34.6
116.4
10.2
1.9
29.0
335.7
86.4
0.7

13.6
2.2
31.1
342.0
92.0
0.9
11.6
10.5
234.0
14.7
0.2
4.2
36.0
122.0
11.1
2.1
30.9
343.0
91.0
0.8
11.2
8.1
262.0
14.1
0.1
4.1
37.0
124.0
12.3
2.1
30.8
344.5
92.0
0.9
11.1
9.5
244.0
13.8
0.2
4.3
36.0
121.0
12.1
2.3
30.2
343.0
89.0
0.8

30.5
5.2
38.2
364.0
110.0
2.8
14.6
28.4
557.0
24.7
2.0
4.9
41.0
142.0
213
4.2
33.7
364.0
98.0
2.0
14.5
18.3
549.0
19.8
0.3
4.8
40.0
134.0
15.8
3.1
32.7
358.0
97.0
1.3
12.6
14.1
460.0
14.7
0.3
4.5
39.0
134.0
15.9
3.8
31.8
351.0
91.0
1.1



R R R RPRRPRRRRRRPRRRRRRRPRRRRRPRRPRRPRRRRPRRRPRERRERRERNNNNNNNNNNNNNNNDRNNDN

GDM MPV

GDM ANEUT
GDM PLAQ
GDM RDW
PPH AEOSI
PPH ERY
PPH HT

PPH HB

PPH LEUC
PPH ALYMPH
PPH MCH
PPH MCHC
PPH MCV
PPH AMONO
PPH MPV
PPH ANEUT
PPH PLAQ
PPH RDW
control AEOSI
control ERY
control HT
control HB
control LEUC
control ALYMPH
control MCH
control MCHC
control McCv
control AMONO
control MPV
control ANEUT
control PLAQ
control RDW
HDP AEOSI
HDP ERY
HDP HT

HDP HB

HDP LEUC
HDP ALYMPH
HDP MCH
HDP MCHC
HDP MCV
HDP AMONO
HDP MPV
HDP ANEUT
HDP PLAQ
HDP RDW
GDM AEOSI
GDM ERY

9.2
4.1
136.0
12.5
0.0
2.8
25.0
86.0
2.2
0.5
22.9
307.0
73.0
0.2
9.1
0.2
98.0
11.6
0.0
3.1
27.0
88.0
2.9
0.4
22.2
300.0
67.0
0.2
8.4
14
28.0
11.2
0.0
3.9
35.0
118.0
4.0
1.1
27.1
330.0
80.0
0.3
9.0
1.9
159.0
11.8
0.0
3.8

10.1
5.9
175.0
13.5
0.1
3.7
33.0
109.3
7.2
1.4
28.8
330.3
85.0
0.5
9.9
5.0
187.0
13.0
0.0
4.1
36.0
120.0
6.7
1.6
28.1
332.0
84.0
0.5
10.1
4.0
198.0
12.7
0.1
4.3
37.0
127.0
6.6
1.6
28.1
335.0
83.5
0.5
10.2
3.8
203.0
12.8
0.1
4.3

10.6
7.2
226.0
13.6
0.1
3.9
34.0
116.0
9.2
1.6
29.7
337.0
88.0
0.6
10.5
6.6
215.0
13.5
0.1
4.3
37.0
127.0
7.9
2.0
29.3
338.0
86.0
0.6
10.7
5.2
235.0
13.1
0.1
4.4
39.0
131.0
7.7
2.0
29.3
340.0
86.0
0.6
10.7
4.6
230.0
13.2
0.1
4.5

10.7
7.3
226.1
14.0
0.1
3.9
34.3
115.6
9.1
1.7
29.4
337.2
87.4
0.6
10.6
6.6
214.5
13.9
0.1
4.4
37.4
126.3
8.3
2.0
29.0
338.2
85.8
0.6
10.7
5.5
237.3
13.3
0.1
4.5
38.6
131.1
8.1
2.0
29.3
340.0
86.3
0.6
10.7
5.3
238.7
13.1
0.1
4.5

11.1
8.9
275.5
14.3
0.2
4.2
36.0
123.0
10.6
2.0
30.5
344.8
90.0
0.7
11.1
7.8
250.8
14.1
0.2
4.6
39.0
133.0
9.7
2.4
30.3
344.0
89.0
0.7
11.3
6.6
274.0
13.6
0.1
4.7
40.0
135.0
9.4
24
30.5
343.5
89.5
0.6
11.3
6.4
259.0
13.6
0.2
4.7

13.0
12.4
318.0
16.5
0.5
4.8
41.0
138.0
25.4
3.5
34.6
361.0
100.0
1.5
14.0
23.6
324.0
25.6
1.3
5.7
47.0
161.0
20.9
5.7
34.6
377.0
96.0
1.3
13.6
18.9
425.0
19.1
0.4
5.0
42.0
141.0
15.7
3.0
32.2
353.0
94.0
1.5
13.2
13.1
502.0
14.2
0.3
5.2



R R RRRRRRRRRRRRRRRRRRRRRRRR

GDM
GDM
GDM
GDM
GDM
GDM
GDM
GDM
GDM
GDM
GDM
GDM
PPH
PPH
PPH
PPH
PPH
PPH
PPH
PPH
PPH
PPH
PPH
PPH
PPH
PPH

HT

HB

LEUC
ALYMPH
MCH
MCHC
MCV
AMONO
MPV
ANEUT
PLAQ
RDW
AEOSI
ERY

HT

HB

LEUC
ALYMPH
MCH
MCHC
MCV
AMONO
MPV
ANEUT
PLAQ
RDW

34.0
112.0
4.5
1.2
25.2
321.0
77.0
0.3
8.8
2.4
150.0
12.2
0.0
3.5
28.0
86.0
4.2
1.0
18.9
290.0
64.0
0.3
9.2
14
98.0
11.7

36.0
122.5
6.8
1.7
27.8
333.5
82.0
0.5
9.9
4.3
229.0
12.8
0.1
4.2
36.0
122.0
6.4
1.6
28.2
333.0
84.0
0.5
10.0
3.9
208.0
12.6

38.0
128.0
9.7
2.1
28.8
340.0
84.0
0.6
10.3
6.1
272.0
13.1
0.1
4.4
37.0
127.0
7.9
2.0
29.1
338.0
86.0
0.5
10.6
4.9
241.0
12.9

37.9
128.4
9.2
2.2
28.7
339.6
84.5
0.6
10.4
6.2
264.3
13.3
0.1
4.4
37.6
126.5
7.9
2.1
28.7
336.7
85.3
0.6
10.7
5.1
242.6
13.5

39.0
134.0
10.9
2.7
29.6
346.5
87.0
0.8
10.7
7.7
291.0
13.7
0.2
4.6
40.0
134.0
9.0
2.4
30.4
343.0
89.0
0.7
11.1
6.0
276.3
13.7

41.0
142.0
15.6
3.8
33.1
355.0
95.0
1.1
13.3
11.8
383.0
15.2
0.8
5.5
45.0
154.0
12.8
3.8
33.1
359.0
96.0
1.2
14.9
9.8
414.0
20.8



Table S2. CBC standard deviation.

test
AEOSI
ERY
HT
HB
LEUC
ALYMPH
MCH
MCHC
MCV
AMONO
MPV
ANEUT
PLAQ
RDW

sd
0.107
0.503
4.215
14.715
3.223
0.613
2.057
9.567
5.005
0.264
1.028
2.946
65.835
1.404



Table S3. Cubic polynomial regression summary.

test
AEOS|
AEOS|
AEOSI
AEOSI
AEOSI
AEOSI
AEOS|
AEOS|
AEOSI
AEOSI
AEOSI
AEOSI
AEOS|
AEOS|
AEOSI
AEOSI
AEOSI
AEOSI
AEOS|
AEOS|
AEOSI
ERY
ERY
ERY
ERY
ERY
ERY
ERY
ERY
ERY
ERY
ERY
ERY
ERY
ERY
ERY
ERY
ERY
ERY
ERY
ERY
ERY
HT
HT
HT
HT

term
(Intercept)
weeks1
weeks2
weeks3

GDM

PPH

HDP
age_diam
parity
age_gest
weight_gest
EUR
weeks1:GDM
weeks2:GDM
weeks3:GDM
weeks1:PPH
weeks2:PPH
weeks3:PPH
weeks1:HDP
weeks2:HDP
weeks3:HDP
(Intercept)
weeks1
weeks2
weeks3

GDM

PPH

HDP
age_diam
parity
age_gest
weight_gest
EUR
weeks1:GDM
weeks2:GDM
weeks3:GDM
weeks1:PPH
weeks2:PPH
weeks3:PPH
weeks1:HDP
weeks2:HDP
weeks3:HDP
(Intercept)
weeks1
weeks2
weeks3

estimate

-0.003
-4.320
-1.330
1.940
0.037
-0.060
-0.097
-0.042
0.036
0.018
0.024
0.121
4.930
5.890
13.300
-5.140
3.260
-0.306
7.530
11.300
-3.790
0.234
-4.760
22.400
2.900
0.108
-0.522
-0.162
-0.059
0.000
-0.003
0.061
0.077
-9.700
0.516
-1.600
34.700
33.500
22.900
21.700
-4.660
11.000
0.314
-1.340
19.500
1.250

0.023
1.048
1.096
1.025
0.084
0.049
0.085
0.020
0.020
0.023
0.020
0.045
3.658
3.749
3.873
2.269
2.200
2.213
3.718
3.510
3.374
0.019
0.913
0.958
0.896
0.069
0.040
0.069
0.016
0.016
0.019
0.018
0.037
3.202
3.285
3.394
1.984
1.924
1.937
3.261
3.056
2.955
0.019
0.959
1.008
0.944

std.error statistic

-0.145
-4.127
-1.212
1.895
0.441
-1.223
-1.146
-2.104
1.794
0.765
1.181
2.681
1.348
1.572
3.439
-2.265
1.482
-0.138
2.025
3.206
-1.123
12.439
-5.208
23.360
3.242
1.562
12.946
-2.342
-3.613
0.027
-0.146
3.415
2.062
-3.031
0.157
-0.471
17.473
17.438
11.823
-6.667
-1.525
3.721
16.976
-1.399
19.321
1.319

df

6791.1
6797.2
6797.2
6797.2
6743.1
6796.7
6678.8
6796.8
6758
6589.9
127.2
6781.8
6797.2
6797.2
6797.2
6797.2
6797.2
6797.2
6797.2
6797.2
6797.2
6793.1
6796.3
6795.4
6797.2
6664.4
6793
6749.3
6781.2
6686.2
5963.1
49.9
6790.5
6797.2
6797.2
6797.1
6796.7
6796.7
6797.2
6797.2
6794.6
6796
6788.5
6797.2
6797.2
6797.2

< 0.0036
p.value

8.84E-01
3.67E-05
2.26E-01
5.81E-02
6.59E-01
2.21E-01
2.52E-01
3.54E-02
7.29E-02
4.44E-01
2.37E-01
7.34E-03
1.78E-01
1.16E-01
5.83E-04
2.35E-02
1.38E-01
8.90E-01
4.29E-02
1.35E-03
2.61E-01
1.60E-35
1.91E-07
1.10E-120
1.19E-03
1.18E-01
2.48E-38
1.92E-02
3.02E-04
9.79E-01
8.84E-01
6.37E-04
3.92E-02
2.44E-03
8.75E-01
6.38E-01
2.28E-68
4.22E-68
2.98E-32
2.61E-11
1.27E-01
1.98E-04
1.24E-64
1.62E-01
3.60E-83
1.87E-01

2.5%

-0.048
-6.380
-3.480
-0.067
-0.128
-0.156
-0.264
-0.081
-0.003
-0.028
-0.016

0.033
-2.240
-1.460

5.730
-9.590
-1.050
-4.640

0.240

4.370
10.400

0.197
-6.550
20.500

1.150
-0.028
-0.601
-0.298
-0.091
-0.032
-0.040

0.025

0.004
16.000
-5.920
-8.250
38.600
37.300
26.700
28.100
10.600

5.200

0.278
-3.220
17.500
-0.606

97.5%

0.041
-2.270
0.821
3.949
0.202
0.036
0.069
-0.003
0.075
0.063
0.064
0.209
12.101
13.242
20.910
-0.691
7.572
4.032
14.815
18.136
2.825
0.271
-2.966
24.245
4.660
0.244
-0.443
-0.026
-0.027
0.033
0.035
0.098
0.149
-3.428
6.956
5.056
-30.780
-29.777
-19.103
-15.348
1.331
16.786
0.350
0.538
21.458
3.097



HT
HT
HT
HT
HT
HT
HT
HT
HT
HT
HT
HT
HT
HT
HT
HT
HT
HB
HB
HB
HB
HB
HB
HB
HB
HB
HB
HB
HB
HB
HB
HB
HB
HB
HB
HB
HB
HB
LEUC
LEUC
LEUC
LEUC
LEUC
LEUC
LEUC
LEUC
LEUC
LEUC

GDM

PPH

HDP
age_diam
parity
age_gest
weight_gest
EUR
weeks1:GDM
weeks2:GDM
weeks3:GDM
weeks1:PPH
weeks2:PPH
weeks3:PPH
weeks1:HDP
weeks2:HDP
weeks3:HDP
(Intercept)
weeks1
weeks2
weeks3

GDM

PPH

HDP
age_diam
parity
age_gest
weight_gest
EUR
weeks1:GDM
weeks2:GDM
weeks3:GDM
weeks1:PPH
weeks2:PPH
weeks3:PPH
weeks1:HDP
weeks2:HDP
weeks3:HDP
(Intercept)
weeks1
weeks2
weeks3

GDM

PPH

HDP
age_diam
parity
age_gest

-0.080
-0.591
-0.206

0.035
-0.063

0.047

0.028
-0.126
11.900
-0.210
-2.300
34.300
33.200
23.700
25.300
-5.890
10.800

0.329
-3.990
18.900

2.910
-0.098
-0.567
-0.203

0.059
-0.089

0.037

0.008
-0.198
13.900
-1.500
-3.100
32.400
32.500
22.700
25.500
-7.770

8.420
-0.013
12.700
-0.957

3.860

0.082

0.256
-0.124
-0.053
-0.111
-0.235

0.068
0.039
0.067
0.016
0.016
0.019
0.018
0.036
3.380
3.475
3.592
2.092
2.028
2.045
3.454
3.199
3.121
0.019
0.946
0.993
0.929
0.069
0.040
0.069
0.017
0.016
0.019
0.018
0.037
3.324
3.414
3.527
2.059
1.996
2.011
3.390
3.161
3.068
0.020
1.030
1.081
1.012
0.075
0.044
0.074
0.018
0.018
0.021

-1.178
15.032
-3.070

2.207
-3.935

2.493

1.624
-3.487
-3.520
-0.061
-0.640
16.392
16.380
11.581
-7.340
-1.840

3.465
17.381
-4.218
19.063

3.135
-1.419
14.024
-2.936

3.576
-5.438

1.912

0.432
-5.316
-4.183
-0.440
-0.878
15.729
16.304
11.310
-7.516
-2.459

2.745
-0.640
12.291
-0.885

3.812

1.105

5.874
-1.673
-2.962
-6.267
-11.383

6644.4
6793.9
6619.4
6795.9
6714.1
6337.9
53.4
6744.8
6797.2
6797.2
6797.2
6797.2
6797.1
6797.2
6797.2
6797.2
6797.2
6786.4
6797.2
6797.2
6797.2
6696.1
6795.1
6574.3
6797.2
6739.3
6474.8
68.3
6719.5
6797.2
6797.2
6797.2
6797.2
6797.2
6797.2
6797.2
6797.2
6797.2
6783.8
6797.2
6797.2
6797.2
6777.4
6797.2
6793.3
6792
6789
6723.6

2.39E-01
4.53E-51
2.14E-03
2.73E-02
8.31E-05
1.27E-02
1.04E-01
4.89E-04
4.32E-04
9.52E-01
5.22E-01
2.19E-60
2.66E-60
5.17E-31
2.14E-13
6.58E-02
5.31E-04
1.16E-67
2.46E-05
5.16E-81
1.72E-03
1.56E-01
1.11E-44
3.33E-03
3.48E-04
5.37E-08
5.59E-02
6.65E-01
1.06E-07
2.88E-05
6.60E-01
3.80E-01
9.57E-56
9.30E-60
1.17E-29
5.66E-14
1.39E-02
6.06E-03
5.22E-01
1.02E-34
3.76E-01
1.38E-04
2.69E-01
4.25E-09
9.44E-02
3.06E-03
3.69E-10
5.11E-30

-0.212
-0.668
-0.337

0.004
-0.094

0.010
-0.007
-0.198
18.500
-7.020
-9.340
38.400
37.200
27.700
32.100
12.200

4.690

0.292
-5.840
17.000

1.090
-0.234
-0.646
-0.339

0.027
-0.121
-0.001
-0.028
-0.271
20.400
-8.190
10.000
36.400
36.500
26.700
32.100
14.000

2.410
-0.053
10.600
-3.080

1.870
-0.064

0.170
-0.270
-0.087
-0.145
-0.275

0.053
-0.514
-0.074

0.067
-0.032

0.083

0.063
-0.055
-5.271

6.601

4.742
30.192
29.249
19.675
18.578

0.385
16.930

0.366
-2.136
20.876

4.736

0.038
-0.488
-0.068

0.091
-0.057

0.074

0.043
-0.125
-7.388

5.189

3.817

28.348
28.633
18.804
18.832
-1.577
14.434

0.027
14.673

1.163

5.843

0.229

0.341

0.021
-0.018
-0.076
-0.194



LEUC
LEUC
LEUC
LEUC
LEUC
LEUC
LEUC
LEUC
LEUC
LEUC
LEUC
ALYMPH
ALYMPH
ALYMPH
ALYMPH
ALYMPH
ALYMPH
ALYMPH
ALYMPH
ALYMPH
ALYMPH
ALYMPH
ALYMPH
ALYMPH
ALYMPH
ALYMPH
ALYMPH
ALYMPH
ALYMPH
ALYMPH
ALYMPH
ALYMPH
MCH
MCH
MCH
MCH
MCH
MCH
MCH
MCH
MCH
MCH
MCH
MCH
MCH
MCH
MCH
MCH

weight_gest
EUR
weeks1:GDM
weeks2:GDM
weeks3:GDM
weeks1:PPH
weeks2:PPH
weeks3:PPH
weeks1:HDP
weeks2:HDP
weeks3:HDP
(Intercept)
weeks1
weeks2
weeks3

GDM

PPH

HDP
age_diam
parity
age_gest
weight_gest
EUR
weeks1:GDM
weeks2:GDM
weeks3:GDM
weeks1:PPH
weeks2:PPH
weeks3:PPH
weeks1:HDP
weeks2:HDP
weeks3:HDP
(Intercept)
weeks1
weeks2
weeks3

GDM

PPH

HDP
age_diam
parity
age_gest
weight_gest
EUR
weeks1:GDM
weeks2:GDM
weeks3:GDM
weeks1:PPH

0.041
-0.225
11.700
-6.060

1.220
18.500
16.600

7.610
-2.810
-8.750
-3.840

0.045
-2.210
12.300

0.132

0.035

0.000
-0.041
-0.119
-0.008
-0.180

0.077
-0.095
-8.900

4.310

6.710
-5.120
-1.090
-1.920
-2.150

2.630
-1.470

0.173
-0.292
-6.930

0.432
-0.368
-0.062
-0.081

0.208
-0.152

0.069
-0.103
-0.456
-7.060
-3.110
-3.000

5.040

0.017
0.040
3.621
3.720
3.844
2.243
2.174
2.191
3.695
3.440
3.343
0.022
1.022
1.069
0.999
0.082
0.048
0.083
0.019
0.019
0.023
0.020
0.044
3.568
3.656
3.777
2.213
2.146
2.158
3.626
3.424
3.291
0.024
0.585
0.604
0.562
0.092
0.054
0.097
0.022
0.022
0.025
0.021
0.049
1.992
2.026
2.090
1.240

2.393
-5.606
-3.230
-1.629

0.318

8.233

7.627

3.474
-0.760
-2.544
-1.148

2.045
-2.165
11.481

0.132

0.427

0.003
-0.491
-6.131
-0.393
-7.950

3.824
-2.167
-2.495

1.179

1.776
-2.312
-0.507
-0.888
-0.592

0.769
-0.447

7.201
-0.500
11.477

0.770
-4.002
-1.151
-0.833

9.613
-7.044

2.748
-4.877
-9.275
-3.543
-1.533
-1.434

4.064

830
6711.6
6797.2
6797.2
6797.2
6797.2
6797.2
6797.2
6797.2

6797
6797.2
6788.9
6796.4
6796.1
6797.2
6655.9
6789.8
6672.7
6776.3
6713.8
6448.2

103.7
6782.6
6797.2
6797.2
6797.2
6796.6
6797.2
6797.2
6797.2
6793.9
6796.7
6789.8
6797.2
6797.2
6797.2
6794.2
6773.4
6672.8
6770.1
6784.4
6554.9

341.5

6636
6797.2
6797.2
6797.2
6797.2

1.67E-02
2.08E-08
1.24E-03
1.03E-01
7.51E-01
1.83E-16
2.41E-14
5.13E-04
4.47E-01
1.10E-02
2.51E-01
4.09E-02
3.04E-02
1.64E-30
8.95E-01
6.69E-01
9.98E-01
6.23E-01
8.74E-10
6.95E-01
1.86E-15
1.31E-04
3.02E-02
1.26E-02
2.38E-01
7.58E-02
2.08E-02
6.12E-01
3.74E-01
5.54E-01
4.42E-01
6.55E-01
5.97E-13
6.17E-01
1.73E-30
4.41E-01
6.28E-05
2.50E-01
4.05E-01
7.02E-22
1.87E-12
5.99E-03
1.08E-06
1.78E-20
3.96E-04
1.25E-01
1.52E-01
4.83E-05

0.007
-0.303
18.800
13.400
-6.310
14.100
12.300

3.320
10.100
15.500
10.400

0.002
-4.220
10.200
-1.830
-0.126
-0.094
-0.203
-0.157
-0.046
-0.224

0.037
-0.182
15.900
-2.860
-0.697
-9.450
-5.290
-6.150
-9.250
-4.080
-7.920

0.126
-1.440
-8.120
-0.669
-0.548
-0.167
-0.271

0.166
-0.194

0.020
-0.145
-0.553
-11.000

-7.080

-7.090

2.610

0.074
-0.146
-4.597

1.231

8.758
22.859
20.844
11.906

4.434
-2.006

2.714

0.089
-0.209
14.368

2.091

0.196

0.094

0.122
-0.081

0.030
-0.135

0.117
-0.009
-1.909
11.480
14.110
-0.779

3.118

2.314

4.962

9.346

4.978

0.221

0.854
-5.750

1.534
-0.188

0.044

0.109

0.251
-0.110

0.117
-0.061
-0.360
-3.152

0.866

1.101

7.467



MCH
MCH
MCH
MCH
MCH
MCHC
MCHC
MCHC
MCHC
MCHC
MCHC
MCHC
MCHC
MCHC
MCHC
MCHC
MCHC
MCHC
MCHC
MCHC
MCHC
MCHC
MCHC
MCHC
MCHC
MCHC
MCV
MCV
MCV
MCV
MCV
MCV
MCV
MCVv
MCV
MCV
MCV
MCV
MCV
MCV
MCV
MCV
MCV
MCV
MCV
MCv
MCV
AMONO

weeks2:PPH
weeks3:PPH
weeks1:HDP
weeks2:HDP
weeks3:HDP
(Intercept)
weeks1
weeks2
weeks3

GDM

PPH

HDP
age_diam
parity
age_gest
weight_gest
EUR
weeks1:GDM
weeks2:GDM
weeks3:GDM
weeks1:PPH
weeks2:PPH
weeks3:PPH
weeks1:HDP
weeks2:HDP
weeks3:HDP
(Intercept)
weeks1
weeks2
weeks3

GDM

PPH

HDP
age_diam
parity
age_gest
weight_gest
EUR
weeks1:GDM
weeks2:GDM
weeks3:GDM
weeks1:PPH
weeks2:PPH
weeks3:PPH
weeks1:HDP
weeks2:HDP
weeks3:HDP
(Intercept)

2.970
-0.862
-3.990
-2.570
-4.990

0.113
11.800
-0.303

7.300
-0.114
-0.007
-0.032

0.101
-0.120
-0.028
-0.085
-0.346
-7.560
-4.870
-5.660

2.980

0.268
-0.208
-2.920
-9.160
11.000

0.156

5.500
-8.420
-3.250
-0.385
-0.076
-0.077

0.205
-0.127

0.099
-0.082
-0.394
-5.490
-1.360
-0.831

4.930

3.320
-0.249
-4.010

2.380
-0.157
-0.008

1.203
1.203
1.998
1.966
1.828
0.023
0.891
0.927
0.864
0.086
0.050
0.088
0.020
0.020
0.024
0.019
0.046
3.078
3.145
3.246
1.912
1.854
1.861
3.111
2.991
2.834
0.024
0.577
0.596
0.554
0.093
0.054
0.098
0.022
0.022
0.025
0.022
0.050
1.963
1.997
2.060
1.222
1.186
1.186
1.969
1.938
1.802
0.022

2.471
-0.716
-1.997
-1.306
-2.727

4.929
13.278
-0.327

8.450
-1.327
-0.142
-0.366

5.004
-5.947
-1.208
-4.501
-7.535
-2.455
-1.549
-1.745

1.558

0.145
-0.112
-0.938
-3.062
-3.872

6.443

9.538
14.140
-5.875
-4.154
-1.402
-0.787

9.411
-5.831

3.960
-3.803
-7.958
-2.798
-0.683
-0.403

4.033

2.798
-0.210
-2.039

1.229
-0.087
-0.349

6797.2
6797.2
6797.2
6796.8
6797.2
6791.6
6796.5
6796.7
6797.2
6791.1
6789.3
6534.9
6779.8
6793
6587.3
4201.7
6780.8
6797.2
6797.2
6797.2
6797
6797.2
6797.2
6797.2
6793.9
6796.3
6793.2
6797.2
6797.2
6797.2
6787.3
6782.3
6743.4
6784.2
6782.2
6651.5
246.3
6562.1
6797.2
6797.2
6797.2
6797.2
6797.2
6797.2
6797.2
6797.2
6797.2
6790.1

1.35E-02
4.74E-01
4.59E-02
1.92E-01
6.38E-03
8.25E-07
3.09E-40
7.44E-01
2.91E-17
1.84E-01
8.87E-01
7.15E-01
5.61E-07
2.74E-09
2.27E-01
6.76E-06
4.88E-14
1.41E-02
1.21E-01
8.10E-02
1.19E-01
8.85E-01
9.11E-01
3.48E-01
2.20E-03
1.08E-04
1.17E-10
1.46E-21
2.17E-45
4.22E-09
3.26E-05
1.61E-01
4.31E-01
4.91E-21
5.52E-09
7.49E-05
1.43E-04
1.74E-15
5.14E-03
4.95E-01
6.87E-01
5.50E-05
5.14E-03
8.33E-01
4.14E-02
2.19E-01
9.31E-01
7.27E-01

0.614
-3.220
-7.900
-6.420
-8.570

0.068

-13.600
-2.120

5.610
-0.282
-0.105
-0.205

0.062
-0.160
-0.074
-0.122
-0.436

-13.600
-11.000
-12.000
-0.770
-3.370
-3.860
-9.010
-15.000
-16.500

0.109

4.370
-9.590
-4.340
-0.566
-0.182
-0.268

0.162
-0.169

0.050
-0.124
-0.492
-9.340
-5.280
-4.870

2.530

0.994
-2.570
-7.870
-1.420
-3.690
-0.050

5.330
1.496
-0.073
1.286
-1.402
0.158
-10.078
1.513
8.998
0.054
0.091
0.141
0.141
-0.080
0.018
-0.048
-0.256
-1.522
1.293
0.700
6.726
3.903
3.440
3.181
-3.294
-5.417
0.204
6.630
-7.256
-2.169
-0.203
0.030
0.115
0.248
-0.084
0.149
-0.039
-0.297
-1.645
2.551
3.207
7.324
5.643
2.075
-0.155
6.181
3.376
0.035



AMONO
AMONO
AMONO
AMONO
AMONO
AMONO
AMONO
AMONO
AMONO
AMONO
AMONO
AMONO
AMONO
AMONO
AMONO
AMONO
AMONO
AMONO
AMONO
AMONO
MPV
MPV
MPV
MPV
MPV
MPV
MPV
MPV
MPV
MPV
MPV
MPV
MPV
MPV
MPV
MPV
MPV
MPV
MPV
MPV
MPV
ANEUT
ANEUT
ANEUT
ANEUT
ANEUT
ANEUT
ANEUT

weeks1
weeks2
weeks3

GDM

PPH

HDP
age_diam
parity
age_gest
weight_gest
EUR
weeks1:GDM
weeks2:GDM
weeks3:GDM
weeks1:PPH
weeks2:PPH
weeks3:PPH
weeks1:HDP
weeks2:HDP
weeks3:HDP
(Intercept)
weeks1
weeks2
weeks3

GDM

PPH

HDP
age_diam
parity
age_gest
weight_gest
EUR
weeks1:GDM
weeks2:GDM
weeks3:GDM
weeks1:PPH
weeks2:PPH
weeks3:PPH
weeks1:HDP
weeks2:HDP
weeks3:HDP
(Intercept)
weeks1
weeks2
weeks3

GDM

PPH

HDP

13.500
-2.280
-3.480

0.074

0.155
-0.172
-0.082
-0.067
-0.079

0.040
-0.137
-7.700
-0.140

1.530
10.700

8.340

4.900
-2.430
-3.780
-1.470
-0.014
14.100

8.140
-1.260
-0.019
-0.063

0.161

0.049
-0.040

0.011

0.021
-0.007
-3.780
-5.600
-2.560
-2.960
-7.530
-7.250
-5.610
16.800
10.200
-0.022
13.000
-2.890

4.730

0.072

0.269
-0.099

1.042
1.092
1.022
0.079
0.046
0.079
0.019
0.019
0.022
0.019
0.043
3.651
3.746
3.871
2.263
2.194
2.209
3.718
3.485
3.369
0.024
0.693
0.717
0.667
0.092
0.054
0.097
0.022
0.022
0.025
0.021
0.049
2.368
2.412
2.488
1.473
1.430
1.431
2.380
2.329
2.175
0.020
1.066
1.124
1.054
0.071
0.041
0.070

13.000
-2.089
-3.406

0.937

3.359
-2.164
-4.392
-3.575
-3.606

2.143
-3.218
-2.110
-0.037

0.395

4.745

3.802

2.219
-0.655
-1.084
-0.437
-0.566
20.357
11.347
-1.884
-0.202
-1.165

1.664

2.253
-1.855

0.455

1.023
-0.141
-1.595
-2.321
-1.028
-2.012
-5.266
-5.067
-2.359
-7.234
-4.694
-1.147
12.173
-2.568

4.494

1.013

6.509
-1.424

6797.2
6797.2
6797.2
6777.3
6793
6757.3
6793.8
6782.9
6751.8
281
6734
6797.2
6797.2
6797.2
6797.2
6797.2
6797.2
6797.2
6797.2
6797.2
6795.4
6797.2
6797.2
6797.2
6792.7
6797.2
6775.3
6797.2
6794.5
6776.6
1517.2
6778.8
6797.2
6797.2
6797.2
6797.2
6797.2
6797.2
6797.2
6797.2
6797.2
6788.5
6797.2
6797.2
6797.2
6792.4
6797.2
6797.1

1.23E-38
3.67E-02
6.58E-04
3.49E-01
7.82E-04
3.04E-02
1.13E-05
3.50E-04
3.11E-04
3.21E-02
1.29E-03
3.49E-02
9.70E-01
6.93E-01
2.09E-06
1.44E-04
2.65E-02
5.13E-01
2.78E-01
6.62E-01
5.72E-01
4.04E-92
7.71E-30
5.95E-02
8.40E-01
2.44E-01
9.62E-02
2.42E-02
6.36E-02
6.49E-01
3.07E-01
8.88E-01
1.11E-01
2.03E-02
3.04E-01
4.42E-02
1.39E-07
4.04E-07
1.83E-02
4.68E-13
2.68E-06
2.51E-01
4.33E-34
1.02E-02
6.98E-06
3.11E-01
7.58E-11
1.55E-01

11.500
-4.420
-5.480
-0.081

0.065
-0.327
-0.119
-0.103
-0.121

0.003
-0.220
14.900
-7.480
-6.060

6.300

4.040

0.571
-9.720
10.600
-8.080
-0.061
12.700

6.730
-2.570
-0.199
-0.168
-0.029

0.006
-0.083
-0.038
-0.019
-0.104
-8.420
10.300
-7.440
-5.850
10.300
10.100
10.300
21.400
14.500
-0.061
10.900
-5.090

2.670
-0.067

0.188
-0.236

15.584
-0.141
-1.477
0.229
0.245
-0.016
-0.046
-0.030
-0.036
0.076
-0.053
-0.547
7.203
9.116
15.171
12.641
9.231
4.854
3.054
5.131
0.034
15.462
9.542
0.051
0.162
0.043
0.350
0.092
0.002
0.060
0.061
0.090
0.865
-0.870
2.319
-0.077
-4.726
-4.445
-0.950
12.283
-5.947
0.016
15.061
-0.683
6.800
0.211
0.350
0.037



ANEUT
ANEUT
ANEUT
ANEUT
ANEUT
ANEUT
ANEUT
ANEUT
ANEUT
ANEUT
ANEUT
ANEUT
ANEUT
ANEUT
PLAQ
PLAQ
PLAQ
PLAQ
PLAQ
PLAQ
PLAQ
PLAQ
PLAQ
PLAQ
PLAQ
PLAQ
PLAQ
PLAQ
PLAQ
PLAQ
PLAQ
PLAQ
PLAQ
PLAQ
PLAQ
RDW
RDW
RDW
RDW
RDW
RDW
RDW
RDW
RDW
RDW
RDW
RDW
RDW

age_diam
parity
age_gest
weight_gest
EUR
weeks1:GDM
weeks2:GDM
weeks3:GDM
weeks1:PPH
weeks2:PPH
weeks3:PPH
weeks1:HDP
weeks2:HDP
weeks3:HDP
(Intercept)
weeks1
weeks2
weeks3

GDM

PPH

HDP
age_diam
parity
age_gest
weight_gest
EUR
weeks1:GDM
weeks2:GDM
weeks3:GDM
weeks1:PPH
weeks2:PPH
weeks3:PPH
weeks1:HDP
weeks2:HDP
weeks3:HDP
(Intercept)
weeks1
weeks2
weeks3

GDM

PPH

HDP
age_diam
parity
age_gest
weight_gest
EUR
weeks1:GDM

-0.025
-0.113
-0.211
0.023
-0.219
10.300
-7.540
-0.774
20.200
16.900
7.950
-2.170
-9.550
-2.890
0.102
-9.360
2.550
0.209
0.094
-0.159
-0.253
0.001
-0.068
-0.024
0.047
0.023
-3.650
10.200
7.790
-9.420
-1.200
1.600
1.280
16.400
14.500
-0.211
19.400
8.370
2.890
0.297
0.217
0.085
-0.089
0.163
-0.015
0.058
0.383
5.400

0.017
0.017
0.020
0.016
0.038
3.774
3.887
4.018
2.334
2.262
2.284
3.867
3.545
3.486
0.022
0.811
0.843
0.786
0.082
0.048
0.085
0.019
0.019
0.022
0.019
0.044
2.796
2.854
2.946
1.737
1.685
1.690
2.822
2.723
2.573
0.022
0.873
0.909
0.849
0.080
0.047
0.082
0.019
0.019
0.022
0.018
0.043
3.024

-1.454
-6.720
10.720
1.443
-5.726
-2.732
-1.940
-0.193
8.658
7.472
3.482
-0.561
-2.695
-0.828
4.678
11.547
3.026
0.266
1.144
-3.322
-2.987
0.057
-3.496
-1.061
2.563
0.523
-1.305
3.568
2.646
-5.424
-0.711
0.947
0.453
6.015
5.644
-9.804
22.225
9.203
3.400
3.693
4.613
1.027
-4.687
8.619
-0.676
3.166
8.871
1.786

6796
6795.3
6775.8
2446.3
6687.4
6797.2
6797.2
6797.2
6797.2
6797.2
6797.2
6797.2
6797.2
6797.2
6797.1
6797.2
6797.2
6797.2
6794.7
6793.8
6795.3
6793.2
6792.6
6772.6

966.7
6758.6
6797.2
6797.2
6797.2
6797.2
6797.2
6797.2
6797.2
6797.2
6797.2

6794

6797
6797.2
6797.2
6796.3
6791.3
6728.1
6791.8
6796.4
6748.2

846.9
6731.1
6797.2

1.46E-01
1.81E-11
8.20E-27
1.49E-01
1.03E-08
6.29E-03
5.24E-02
8.47E-01
4.79E-18
7.87E-14
4.98E-04
5.75E-01
7.04E-03
4.07E-01
2.89E-06
7.62E-31
2.48E-03
7.90E-01
2.53E-01
8.94E-04
2.81E-03
9.55E-01
4.73E-04
2.89E-01
1.04E-02
6.01E-01
1.92E-01
3.60E-04
8.15E-03
5.82E-08
4.77E-01
3.44E-01
6.50E-01
1.80E-09
1.66E-08
1.08E-22
1.99E-109
3.48E-20
6.74E-04
2.22E-04
3.97E-06
3.04E-01
2.78E-06
6.75E-18
4.99E-01
1.55E-03
7.24E-19
7.41E-02

-0.058
-0.146
-0.250
-0.008
-0.293
17.700
15.200
-8.650
15.600
12.500

3.470
-9.750
16.500
-9.720

0.059
10.900

0.898
-1.330
-0.067
-0.253
-0.419
-0.037
-0.105
-0.068

0.011
-0.063
-9.130

4.590

2.020
12.800
-4.500
-1.710
-4.250
11.000

9.480
-0.253
17.700

6.590

1.220

0.139

0.125
-0.077
-0.126

0.126
-0.058

0.022

0.298
-0.527

0.009
-0.080
-0.173

0.054
-0.144
-2.913

0.079

7.103
24.780
21.340
12.429

5.413
-2.605

3.945

0.145
-7.771

4.201

1.749

0.255
-0.065
-0.087

0.039
-0.030

0.020

0.084

0.109

1.832
15.777
13.569
-6.017

2.105

4.912

6.811
21.720
19.564
-0.169
21.114
10.152

4.549

0.454

0.309

0.246
-0.052

0.201

0.028

0.093

0.467
11.329



RDW
RDW
RDW
RDW
RDW
RDW
RDW
RDW

weeks2:GDM
weeks3:GDM
weeks1:PPH
weeks2:PPH
weeks3:PPH
weeks1:HDP
weeks2:HDP
weeks3:HDP

-5.910
-4.160
1.590
-0.953
2.180
6.890
1.270
3.490

3.091
3.192
1.878
1.821
1.829
3.060
2.931
2.785

-1.912
-1.303
0.848
-0.523
1.192
2.251
0.435
1.253

6797.2
6797.2
6797.2
6797.2
6797.2
6797.2

6796
6796.8

5.59E-02
1.93E-01
3.96E-01
6.01E-01
2.33E-01
2.44E-02
6.64E-01
2.10E-01

-12.000 0.149
-10.400 2.098

-2.090 5.274
-4.520 2.617
-1.400 5.765
0.890 12.885

-4.470 7.020
-1.970 8.950



Table S4. Random effects from the cubic polynomial regression.

test stddev Intercept™~Intercept|lID Residual~~Residual ICC]|IID

AEOSI 0.680 0.462 0.515 0.473
ERY 0.543 0.295 0.400 0.424
HT 0.505 0.255 0.454 0.360
HB 0.534 0.285 0.434 0.396
LEUC 0.570 0.325 0.517 0.386
ALYMPH 0.663 0.440 0.490 0.473
MCH 0.863 0.745 0.142 0.840
MCHC 0.741 0.550 0.354 0.609
MCV 0.871 0.759 0.138 0.846
AMONO 0.621 0.386 0.519 0.426
MPV 0.850 0.723 0.203 0.781
ANEUT 0.507 0.258 0.576 0.309
PLAQ 0.720 0.518 0.290 0.641

RDW 0.687 0.472 0.343 0.579



Table S5. Polynomial model comparison.

test terms df AIC BIC R2m R2c

AEOSI 1 15 17556 17659 0.0134 0.479
AEOSI 2 19 17534 17664 0.0164 0.481
AEOSI 3 23 17508 17665 0.0181 0.483
ERY 1 15 16312 16414 0.1803 0.489
ERY 2 19 15676 15805 0.2329 0.548
ERY 3 23 15504 15661 0.2507 0.569
HT 1 15 16666 16769 0.1754 0.442
HT 2 19 16188 16317 0.2192 0.489
HT 3 23 16015 16172 0.2384 0.512
HB 1 15 16510 16612 0.1767 0.475
HB 2 19 16060 16190 0.2153 0.516
HB 3 23 15910 16067 0.2316 0.536
LEUC 1 15 17187 17290 0.1344 0.459
LEUC 2 19 17096 17226 0.1468 0.473
LEUC 3 23 17040 17197 0.1538 0.481
ALYMPH 1 15 17396 17498 0.0387 0.483
ALYMPH 2 19 17180 17310 0.0575 0.504
ALYMPH 3 23 17170 17327 0.0579 0.504
MCH 1 15 12141 12243 0.0971 0.849
MCH 2 19 11933 12063 0.1027 0.856
MCH 3 23 11923 12080 0.103 0.856
MCHC 1 15 15938 16040 0.0632 0.626
MCHC 2 19 15915 16045 0.0659 0.629
MCHC 3 23 15820 15977 0.0733 0.637
MCV 1 15 12111 12213 0.0933 0.852
MCV 2 19 11874 12004 0.0988 0.86
MCV 3 23 11820 11977 0.1001 0.861
AMONO 1 15 17339 17442 0.0711 0.464
AMONO 2 19 17316 17446 0.0735 0.467
AMONO 3 23 17295 17452 0.0751 0.47
MPV 1 15 13813 13915 0.0333 0.779
MPV 2 19 13653 13782 0.0444 0.788
MPV 3 23 13569 13727 0.0478 0.791
ANEUT 1 15 17519 17621 0.1358 0.394
ANEUT 2 19 17427 17557 0.1483 0.408
ANEUT 3 23 17362 17519 0.1567 0.417
PLAQ 1 15 14860 14963 0.0498 0.651
PLAQ 2 19 14758 14887 0.0585 0.66
PLAQ 3 23 14709 14866 0.0623 0.664
RDW 1 15 15558 15661 0.1276 0.624
RDW 2 19 15445 15575 0.1383 0.636
RDW 3 23 15414 15571 0.14 0.638



Table S6. Linear mixed effect model summary.

test
AEOSI
AEOSI
AEOSI
AEOSI
AEOSI
AEOSI
AEOSI
AEOSI
AEOSI
AEOSI
AEOSI
AEOSI
AEOSI
ERY
ERY
ERY
ERY
ERY
ERY
ERY
ERY
ERY
ERY
ERY
ERY
ERY
HT
HT
HT
HT
HT
HT
HT
HT
HT
HT
HT
HT
HT
HB
HB
HB
HB
HB
HB
HB

term
(Intercept)
weeks
GDM

PPH

HDP
age_diam
parity
age_gest
weight_gest
EUR
weeks:GDM
weeks:PPH
weeks:HDP
(Intercept)
weeks
GDM

PPH

HDP
age_diam
parity
age_gest
weight_gest
EUR
weeks:GDM
weeks:PPH
weeks:HDP
(Intercept)
weeks
GDM

PPH

HDP
age_diam
parity
age_gest
weight_gest
EUR
weeks:GDM
weeks:PPH
weeks:HDP
(Intercept)
weeks
GDM

PPH

HDP
age_diam
parity

estimate

0.159
-0.005
-0.074

0.138
-0.426
-0.042

0.036

0.031

0.023

0.120

0.003
-0.006

0.010

0.560
-0.010

0.389

0.791

0.443
-0.058

0.002

0.057

0.065

0.064
-0.010
-0.043
-0.021

0.477
-0.005

0.295

0.753

0.572

0.036
-0.060

0.085

0.032
-0.137
-0.013
-0.044
-0.026

0.599
-0.008

0.353

0.674

0.602

0.059
-0.086

std.error

0.047
0.001
0.163
0.104
0.172
0.020
0.020
0.023
0.020
0.045
0.004
0.003
0.004
0.042
0.001
0.148
0.095
0.157
0.017
0.017
0.019
0.019
0.038
0.004
0.002
0.004
0.043
0.001
0.152
0.098
0.161
0.016
0.016
0.018
0.018
0.037
0.004
0.003
0.004
0.043
0.001
0.150
0.097
0.159
0.017
0.017

statistic

3.396
-4.197
-0.456

1.321
-2.477
-2.086

1.811

1.384

1.124

2.665

0.627
-2.174

2.183

13.220
-8.766

2.629

8.309

2.830
-3.483

0.125

3.025

3.479

1.698
-2.424

-17.297
-4.927
11.022
-4.190

1.945

7.716

3.556

2.209
-3.740

4.667

1.810
-3.743
-2.967

-17.144
-5.957
13.948
-7.132

2.349

6.981

3.784

3.547
-5.214

6805.2
6805.2
6801.1
6805.2
6793.2
6804.9
6768.8
6595.1
135.4
6789.9
6805.2
6805.2
6805.2
6803.5
6803.5
6792.1
6805.0
6800.7
6786.4
6675.6
5538.3
41.5
6786.9
6805.0
6804.5
6805.2
6805.2
6804.9
6797.4
6805.2
6794.6
6803.1
6713.1
6160.0
47.8
6770.4
6805.2
6805.2
6805.2
6805.2
6805.2
6800.4
6805.2
6789.0
6805.2
6740.6

<0.0036

p.value

6.88E-04
2.73E-05
6.48E-01
1.87E-01
1.33E-02
3.70E-02
7.01E-02
1.66E-01
2.63E-01
7.72E-03
5.31E-01
2.97E-02
2.91E-02
0.00E+00
0.00E+00
8.59E-03
0.00E+00
4.67E-03
4.99E-04
9.01E-01
2.50E-03
1.20E-03
8.95E-02
1.54E-02
0.00E+00
8.54E-07
0.00E+00
2.82E-05
5.18E-02
1.38E-14
3.79E-04
2.72E-02
1.86E-04
3.11E-06
7.66E-02
1.84E-04
3.02E-03
0.00E+00
2.70E-09
0.00E+00
1.09E-12
1.88E-02
3.21E-12
1.56E-04
3.93E-04
1.90E-07

2.5%

0.067
-0.008
-0.394
-0.067
-0.762
-0.081
-0.003
-0.013
-0.017

0.032
-0.006
-0.011

0.001

0.477
-0.012

0.099

0.604

0.136
-0.090
-0.030

0.020

0.027
-0.010
-0.018
-0.048
-0.029

0.392
-0.007
-0.002

0.562

0.257

0.004
-0.092

0.049
-0.004
-0.209
-0.021
-0.049
-0.035

0.515
-0.011

0.058

0.485

0.290

0.026
-0.119

97.5%

0.250
-0.003
0.245
0.343
-0.089
-0.002
0.075
0.075
0.063
0.209
0.011
-0.001
0.018
0.643
-0.008
0.680
0.977
0.750
-0.025
0.035
0.093
0.102
0.137
-0.002
-0.038
-0.012
0.562
-0.003
0.592
0.944
0.888
0.068
-0.029
0.121
0.068
-0.065
-0.004
-0.039
-0.017
0.683
-0.006
0.647
0.863
0.914
0.091
-0.054



HB

HB

HB

HB

HB

HB
LEUC
LEUC
LEUC
LEUC
LEUC
LEUC
LEUC
LEUC
LEUC
LEUC
LEUC
LEUC
LEUC
ALYMPH
ALYMPH
ALYMPH
ALYMPH
ALYMPH
ALYMPH
ALYMPH
ALYMPH
ALYMPH
ALYMPH
ALYMPH
ALYMPH
ALYMPH
MCH
MCH
MCH
MCH
MCH
MCH
MCH
MCH
MCH
MCH
MCH
MCH
MCH
MCHC
MCHC
MCHC

age_gest
weight_gest
EUR
weeks:GDM
weeks:PPH
weeks:HDP
(Intercept)
weeks
GDM

PPH

HDP
age_diam
parity
age_gest
weight_gest
EUR
weeks:GDM
weeks:PPH
weeks:HDP
(Intercept)
weeks
GDM

PPH

HDP
age_diam
parity
age_gest
weight_gest
EUR
weeks:GDM
weeks:PPH
weeks:HDP
(Intercept)
weeks
GDM

PPH

HDP
age_diam
parity
age_gest
weight_gest
EUR
weeks:GDM
weeks:PPH
weeks:HDP
(Intercept)
weeks
GDM

0.077
0.011
-0.208
-0.015
-0.041
-0.026
-0.500
0.015
0.541
-0.500
0.081
-0.053
-0.113
-0.212
0.039
-0.226
-0.014
0.026
-0.004
0.213
-0.005
0.370
0.167
-0.061
-0.116
-0.012
-0.123
0.076
-0.105
-0.011
-0.004
0.001
0.130
0.001
-0.083
-0.213
0.149
0.206
-0.150
0.036
-0.103
-0.451
-0.008
0.004
-0.006
0.583
-0.015
0.159

0.019
0.018
0.038
0.004
0.003
0.004
0.045
0.001
0.158
0.102
0.167
0.018
0.018
0.020
0.017
0.040
0.004
0.003
0.004
0.046
0.001
0.161
0.103
0.170
0.019
0.019
0.022
0.020
0.044
0.004
0.003
0.004
0.034
0.001
0.121
0.075
0.127
0.022
0.022
0.025
0.021
0.049
0.002
0.001
0.002
0.042
0.001
0.147

4.109
0.640
-5.535
-3.581
-16.161
-6.171
-11.071
12.145
3.423
-4.927
0.483
-3.014
-6.415
-10.665
2.273
-5.637
-3.206
9.640
-0.937
4.604
-4.232
2.296
1.622
-0.362
-5.954
-0.638
-5.563
3.740
-2.369
-2.626
-1.621
0.161
3.880
1.782
-0.689
-2.860
1.177
9.547
-6.946
1.460
-4.869
-9.174
-3.446
3.021
-2.644
13.929
-14.137
1.081

6400.8
62.0
6743.4
6805.2
6805.2
6805.2
6802.3
6805.2
6802.7
6805.2
6803.9
6800.7
6797.0
6704.8
740.1
6748.5
6805.2
6805.2
6805.2
6802.4
6804.8
6786.3
6805.0
6786.2
6784.4
6704.9
6292.4
85.9
6789.4
6805.2
6804.8
6805.2
6803.9
6805.2
6804.1
6800.3
6750.8
6777.4
6791.3
6543.6
351.1
6638.9
6805.2
6805.2
6805.2
6804.3
6804.9
6802.0

4.02E-05
5.25E-01
3.23E-08
3.45E-04
0.00E+00
7.16E-10
0.00E+00
0.00E+00
6.23E-04
8.56E-07
6.29E-01
2.59E-03
1.51E-10
0.00E+00
2.33E-02
1.80E-08
1.35E-03
0.00E+00
3.49E-01
4.21E-06
2.34E-05
2.17E-02
1.05E-01
7.17E-01
2.74E-09
5.24E-01
2.76E-08
3.31E-04
1.79E-02
8.66E-03
1.05E-01
8.72E-01
1.05E-04
7.47E-02
4.91E-01
4.25E-03
2.39E-01
0.00E+00
4.11E-12
1.44E-01
1.70E-06
0.00E+00
5.72E-04
2.53E-03
8.20E-03
0.00E+00
0.00E+00
2.80E-01

0.040
-0.024
-0.282
-0.023
-0.046
-0.035
-0.589

0.012

0.231
-0.699
-0.247
-0.088
-0.148
-0.251

0.005
-0.304
-0.022

0.020
-0.013

0.122
-0.008

0.054
-0.035
-0.394
-0.154
-0.051
-0.166

0.036
-0.191
-0.020
-0.009
-0.008

0.064

0.000
-0.320
-0.359
-0.099

0.164
-0.192
-0.012
-0.144
-0.547
-0.013

0.002
-0.011

0.501
-0.017
-0.129

0.114
0.047
-0.134
-0.007
-0.036
-0.018
-0.412
0.017
0.850
-0.301
0.408
-0.019
-0.078
-0.173
0.072
-0.147
-0.005
0.031
0.005
0.303
-0.003
0.686
0.370
0.271
-0.078
0.026
-0.079
0.117
-0.018
-0.003
0.001
0.009
0.196
0.003
0.154
-0.067
0.398
0.249
-0.107
0.085
-0.061
-0.354
-0.004
0.007
-0.002
0.665
-0.013
0.446



MCHC
MCHC
MCHC
MCHC
MCHC
MCHC
MCHC
MCHC
MCHC
MCHC
MCV
MCV
MCV
MCV
MCV
MCV
MCV
MCV
MCV
MCV
MCV
MCV
MCV
AMONO
AMONO
AMONO
AMONO
AMONO
AMONO
AMONO
AMONO
AMONO
AMONO
AMONO
AMONO
AMONO
MPV
MPV
MPV
MPV
MPV
MPV
MPV
MPV
MPV
MPV
MPV
MPV

PPH

HDP
age_diam
parity
age_gest
weight_gest
EUR
weeks:GDM
weeks:PPH
weeks:HDP
(Intercept)
weeks
GDM

PPH

HDP
age_diam
parity
age_gest
weight_gest
EUR
weeks:GDM
weeks:PPH
weeks:HDP
(Intercept)
weeks
GDM

PPH

HDP
age_diam
parity
age_gest
weight_gest
EUR
weeks:GDM
weeks:PPH
weeks:HDP
(Intercept)
weeks
GDM

PPH

HDP
age_diam
parity
age_gest
weight_gest
EUR
weeks:GDM
weeks:PPH

-0.192
0.140
0.100

-0.118

-0.018

-0.085

-0.343

-0.008
0.006

-0.003

-0.131
0.009

-0.146

-0.183
0.143
0.204

-0.125
0.054

-0.081

-0.389

-0.007
0.003

-0.007

-0.553
0.017
0.381

-0.228

-0.017

-0.083

-0.068

-0.091
0.039

-0.137

-0.009
0.013

-0.004

-0.496
0.015
0.055
0.055
0.383
0.049

-0.040
0.016
0.023

-0.010

-0.002

-0.004

0.093
0.154
0.020
0.020
0.023
0.019
0.046
0.004
0.002
0.004
0.034
0.001
0.121
0.075
0.127
0.022
0.022
0.025
0.021
0.049
0.002
0.001
0.002
0.046
0.001
0.160
0.103
0.169
0.019
0.019
0.021
0.019
0.042
0.004
0.003
0.004
0.037
0.001
0.131
0.082
0.137
0.022
0.022
0.025
0.020
0.049
0.003
0.002

-2.060
0.908
4.924

-5.847

-0.796

-4.508

-7.490

-2.189
2.695

-0.861

-3.912

12.940

-1.208

-2.451
1.128
9.370

-5.764
2.176

-3.795

-7.855

-2.904
1.934

-2.962

-12.062
13.878
2.377

-2.223

-0.103

-4.416

-3.664

-4.315
2.128

-3.234

-2.174
4.734

-0.903

-13.443
18.394
0.417
0.672
2.789
2.263

-1.828
0.631
1.099

-0.200

-0.856

-2.287

6804.4
6755.5
6787.7
6801.5
6564.8
3760.8
6789.3
6805.2
6805.1
6805.2
6804.8
6805.2
6802.8
6802.2
6781.4
6792.1
6790.3
6660.8

280.0
6582.6
6805.2
6805.2
6805.2
6804.7
6805.2
6804.2
6805.2
6802.0
6802.1
6790.7
6755.6

281.8
6752.6
6805.2
6805.2
6805.2
6805.2
6805.2
6803.8
6805.2
6797.4
6805.2
6802.6
6787.7
1880.0
6776.7
6805.2
6805.2

3.95E-02
3.64E-01
8.69E-07
5.23E-09
4.26E-01
6.73E-06
7.75E-14
2.87E-02
7.06E-03
3.89E-01
9.26E-05
0.00E+00
2.27E-01
1.43E-02
2.59E-01
0.00E+00
8.58E-09
2.96E-02
1.81E-04
4.66E-15
3.70E-03
5.32E-02
3.07E-03
0.00E+00
0.00E+00
1.75E-02
2.62E-02
9.18E-01
1.02E-05
2.50E-04
1.62E-05
3.42E-02
1.23E-03
2.97E-02
2.24E-06
3.66E-01
0.00E+00
0.00E+00
6.76E-01
5.01E-01
5.29E-03
2.37E-02
6.75E-02
5.28E-01
2.72E-01
8.42E-01
3.92E-01
2.23E-02

-0.374
-0.162

0.060
-0.157
-0.063
-0.123
-0.433
-0.015

0.002
-0.011
-0.197

0.008
-0.383
-0.329
-0.106

0.161
-0.168

0.005
-0.123
-0.486
-0.012

0.000
-0.012
-0.643

0.015

0.067
-0.430
-0.349
-0.119
-0.105
-0.132

0.003
-0.220
-0.018

0.007
-0.013
-0.568

0.014
-0.202
-0.105

0.114

0.007
-0.082
-0.033
-0.018
-0.106
-0.008
-0.008

-0.009
0.441
0.139

-0.078
0.027

-0.048

-0.254

-0.001
0.011
0.004

-0.066
0.010
0.091

-0.037
0.392
0.247

-0.082
0.103

-0.039

-0.292

-0.002
0.006

-0.002

-0.463
0.019
0.695

-0.027
0.314

-0.046

-0.032

-0.050
0.076

-0.054

-0.001
0.018
0.005

-0.424
0.017
0.312
0.215
0.652
0.092
0.003
0.064
0.063
0.087
0.003

-0.001



MPV
ANEUT
ANEUT
ANEUT
ANEUT
ANEUT
ANEUT
ANEUT
ANEUT
ANEUT
ANEUT
ANEUT
ANEUT
ANEUT
PLAQ
PLAQ
PLAQ
PLAQ
PLAQ
PLAQ
PLAQ
PLAQ
PLAQ
PLAQ
PLAQ
PLAQ
PLAQ
RDW
RDW
RDW
RDW
RDW
RDW
RDW
RDW
RDW
RDW
RDW
RDW
RDW

weeks:HDP
(Intercept)
weeks
GDM

PPH

HDP
age_diam
parity
age_gest
weight_gest
EUR
weeks:GDM
weeks:PPH
weeks:HDP
(Intercept)
weeks
GDM

PPH

HDP
age_diam
parity
age_gest
weight_gest
EUR
weeks:GDM
weeks:PPH
weeks:HDP
(Intercept)
weeks
GDM

PPH

HDP
age_diam
parity
age_gest
weight_gest
EUR
weeks:GDM
weeks:PPH
weeks:HDP

-0.005
-0.531
0.015
0.475
-0.566
0.107
-0.026
-0.115
-0.195
0.021
-0.218
-0.012
0.028
-0.004
0.482
-0.012
0.287
0.176
-0.419
0.003
-0.070
0.009
0.046
0.018
-0.007
-0.010
0.003
-0.896
0.021
0.026
0.077
-0.260
-0.087
0.160
0.034
0.057
0.379
0.008
0.005
0.010

0.003
0.046
0.001
0.161
0.104
0.171
0.017
0.017
0.019
0.016
0.038
0.005
0.003
0.005
0.039
0.001
0.136
0.086
0.142
0.019
0.019
0.022
0.019
0.044
0.003
0.002
0.003
0.041
0.001
0.142
0.090
0.149
0.019
0.019
0.022
0.018
0.043
0.004
0.002
0.004

-1.679
-11.542
12.216
2.947
-5.452
0.622
-1.530
-6.823
-10.318
1.312
-5.708
-2.652
10.123
-0.896
12.422
-12.343
2.107
2.041
-2.942
0.160
-3.627
0.387
2.492
0.410
-2.010
-4.989
0.733
-22.051
20.396
0.181
0.852
-1.742
-4.563
8.468
1.596
3.146
8.794
2.349
2.297
2.827

6805.2
6804.0
6805.2
6805.2
6805.2
6805.2
6804.4
6803.8
6777.3
2426.7
6734.2
6805.2
6805.2
6805.2
6805.2
6805.2
6805.2
6805.2
6805.2
6801.1
6799.4
6765.6

756.5
6732.7
6805.2
6805.2
6805.2
6805.2
6805.2
6805.2
6805.1
6792.7
6799.7
6804.5
6751.2
1099.6
6742.8
6805.2
6805.2
6805.2

9.32E-02
0.00E+00
0.00E+00
3.22E-03
5.15E-08
5.34E-01
1.26E-01
9.69E-12
0.00E+00
1.90E-01
1.19E-08
8.01E-03
0.00E+00
3.70E-01
0.00E+00
0.00E+00
3.52E-02
4.13E-02
3.27E-03
8.73E-01
2.89E-04
6.98E-01
1.29E-02
6.82E-01
4.45E-02
6.23E-07
4.63E-01
0.00E+00
0.00E+00
8.56E-01
3.94E-01
8.15E-02
5.14E-06
0.00E+00
1.11E-01
1.70E-03
0.00E+00
1.89E-02
2.16E-02
4.72E-03

-0.011
-0.621
0.013
0.159
-0.770
-0.229
-0.059
-0.147
-0.232
-0.010
-0.292
-0.021
0.023
-0.013
0.406
-0.014
0.020
0.007
-0.699
-0.035
-0.108
-0.035
0.010
-0.068
-0.013
-0.014
-0.004
-0.975
0.019
-0.253
-0.100
-0.552
-0.124
0.123
-0.008
0.021
0.294
0.001
0.001
0.003

0.001
-0.441
0.018
0.791
-0.363
0.442
0.007
-0.082
-0.158
0.052
-0.143
-0.003
0.033
0.005
0.558
-0.010
0.554
0.345
-0.140
0.041
-0.032
0.052
0.083
0.104
0.000
-0.006
0.009
-0.816
0.023
0.304
0.254
0.033
-0.049
0.197
0.077
0.093
0.463
0.016
0.009
0.018



Table S7. Cox proportional hazards model summary.

term estimate std.error |statistic df

parity 0.13756
weight ' -0.01318

HB -0.01084
RDW -0.10871
LEUC -0.5835

ALYMPH @ 0.72169
ANEUT 1.07747
PLAQ -0.00265
GDM 0.29959
HDP 0.91148

0.0369| 3.7278 852

0.0029 -4.5484| 211
0.00342 ' -3.1695| 845

0.0268| -4.0565 849
0.13962 -4.1793| 854
0.14666 4.92065| 855
0.17922 ' 6.01208| 851
0.00063 -4.1686 845
0.16073 1.86398 | 854
0.12482' 7.30261| 821

p.value

0.00019
5.4E-06
0.00153
5E-05
2.9E-05
8.6E-07
1.8E-09
3.1E-05
0.06232
2.8E-13

2.5%

0.065
-0.019
-0.018
-0.161
-0.857

0.434

0.726
-0.004
-0.015

0.667

97.5%

0.21
-0.008
-0.004
-0.056

-0.31
1.009
1.429
-0.001
0.615
1.156

HR

1.147
0.987
0.989
0.897
0.558
2.058
2.937
0.997
1.349
2.488

HR2.5%

1.0674
0.9813
0.9826
0.8511
0.4244
1.5438
2.0672
0.9961
0.9847
1.9481

HR97.5%

1.23354
0.99253
0.99587
0.94536
0.73356
2.74327

4.1734

0.9986
1.84894
3.17758
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