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gi Abstract. Objective: Electrical impedance tomography (EIT) shows potential for
radiation-free and nominvasive hemodynamic monitoring. However, many factors

gg degrade the accurac¢y and repeatability of these measurements. Our goal is to estimate

37 the impact of this\variability on EIT-based monitoring of two important central

38 hemodynamic parameters: stroke volume (SV) and pulmonary artery pressure (PAP).

39 Approachi Weperformed simulations on a 4D (3D + t) bioimpedance model of a

40 human volunteerto study the influence of four potential confounding factors (electrode

41 belt displacement, eléctrode detachment, changes in hematocrit and lung air volume)

42 on the performance of EIT-based SV and PAP estimation. Results were used to

43 estimate how these factors affect EIT measures of either absolute values or relative

44 changes (i.e. trending).

jg Main results: Our findings reveal that absolute measurement of SV via EIT is very

47 sensitive torelectrode belt displacements and lung conductivity changes. Nonetheless,

48 the trending ability of SV EIT might be a promising alternative. The timing-

49 based ameasurement of PAP is more robust to lung conductivity changes but sensitive

50 ton longitudinal belt displacements at severe hypertensive levels and to rotational

51 displacements (independent of the PAP level).

52 Significance: We identify and quantify challenges of EIT-based SV and PAP

53 monitoring. These are, absolute SV via EIT is challenging but trending is feasible,

54 while both absolute and trending of PAP via EIT are mostly impaired by belt

gg displacements.
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1. Introduction

Since cardiovascular diseases are the major cause of death worldwide (WHO 2011)their
early diagnosis and treatment is of great interest. Reliable diagnosissrequires devices
which allow for the accurate and harmless measurement of hemodynamic parameters to
assess the health of the cardiovascular system. However, the clinieal xeference method
for the measurement of central hemodynamic parameters — sach a§ pulmonary artery
pressure (PAP) or stroke volume (SV) — requires right heart catheterization and is known
to cause complications without decreasing mortality (Harvey et al."2005). While many
alternative noninvasive approaches exist for SV monitoring, mone of these have proven to
be accurate enough (Joosten et al. 2017). On the other hand, thenoninvasive assessment
of PAP can only be performed via transthoracigsechocardiography, which requires
qualified personnel and is impractical for contimious measurements (Proenca 2017).
In view of overcoming these limitations, electficaldimpedance tomography (EIT) has
been investigated in previous studies as a.low-cost and radiation-free medical imaging
modality for the noninvasive and continuous, monitoring of SV (Vonk Noordegraaf
et al. 2000, Pikkemaat et al. 2014) and PAP\(Preenca et al. 2016, Proenga 2017).

Electrical impedance tomography (EIT) calculates the distribution of intra-thoracic
impedance using measurements at electtedes placed on the chest surface through which
small electrical currents are applied. EIT shows promise as a modality for noninvasive
medical monitoring (Frerichs et-als 2017, Holder 2005). The most common thoracic
application of EIT is for assessment ofyventilation, as changes in alveolar air volume
lead to changes in electricaldmpedance. EIT is also sensitive to cardiovascular activity.
However, such monitoring is/more challenging: First, the cardiac-related impedance
changes are about one order'of magnitude smaller than ventilation-related changes, and
signal processing technigues must be used to separate them. Second, the exact origin of
these cardiosynchrénous, signals remains unclear (Adler et al. 2017). Thus, for example,
the EIT signal during systole has contributions from SV as well as other effects such
as heart motiom(Proenga et al. 2015) and flow-induced reorientation of red blood cells
(Gaw 2010)¢ Inthisccase, the EIT signal will not change in proportion to SV, if the
magnitude. of the other contributions are not also proportional.

EIT-based assessment of numerous hemodynamic parameters have been reported:
systemie (Sola et al. 2011) and pulmonary artery pressure (Proenca et al. 2016, Proenca
2017), stroke volume (Vonk Noordegraaf et al. 2000, Pikkemaat et al. 2014), stroke
volume variations (Maisch et al. 2011), pulmonary perfusion (Borges et al. 2012, Frerichs
et al."2009, Nguyen et al. 2012). Some studies describe limitations and challenges in
cardiovascular EIT monitoring, in particular concerning the monitoring of SV. Patterson
ét al. (2001) concluded the cardiac EIT signal depends strongly on electrode position,
lung volume and posture, in healthy volunteers. In pig experiments, Pikkemaat et al.
(2014) observed variations in the subject-specific scaling of the cardiac EIT signal, which
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were interpreted to stem from lung volume or heart and belt position. In a simulation
study, Arshad et al. (2016) showed a strong respiration-related dependence imthe EIT
heart signal.

As accurate monitoring results are of importance for reliable diagnesticspour goal
in this paper is to estimate the impact of these challenges on EIT-based hemodymamic
monitoring. Specifically we seek to estimate the amount of uncertainty introduced
into EIT-based hemodynamic parameters due to the variability in realistic{¢linical and
ambulatory scenarios. To do so, we first list potential confounding facters and then
study how seriously these factors affect the estimation of two hemodyn;mic parameters:
stroke volume (SV), and pulmonary artery pressure (PAP). The four confounding factors
selected were: (1) electrode belt displacement, (2) electrode detachment, (3) changes in
hematocrit, and (4) changes in lung air volume.

In the current study we perform simulations on a4D (3D +%) thoracic bioimpedance
model — representing cardiovascular changes of a healthy human volunteer. This allows
a systematic and individual investigation of petential confounding factors, which is
practically impossible in real measurements. (While the few limitations reported for
SV monitoring via EIT are mainly based on observations from real measurements
(as mentioned above), no such work is currently available at all for PAP monitoring.
Thus, to the best of our knowledge, this is, the first work systematically identifying
and quantifying potential challenges foriEl'T-based SV and PAP monitoring, based on
simulations on a bioimpedance model.

In section 2 we first present the bioimpedance model followed by a description of
the simulations and the steps performed for signal processing and data analysis. The
results are presented and discussed in section 3.

N
2. Methods

In the following we firstidescribe the dynamic bioimpedance model used to perform EIT
simulations. Nextgwe list potential confounding factors and describe the four potentially
harmful ones inyestigated, together with other simulation parameters. Then we explain
the signal progessing.steps used to estimate the two hemodynamic parameters (SV and
PAP) from EIT image sequences. Finally, we describe the analysis applied to evaluate
and quantify the decrease in performance resulting from each of the confounding factors.

2.1. Dynamic Bioimpedance Model

2.1.1. Base Model In order to simulate different hemodynamic scenarios, a dynamic
bioimpedance model was created. This model is shown in Figure 1 and represents a
4D electrical conductivity distribution of a human thorax during expiratory breath-hold
containing models of the heart, aorta and lungs. These models are based on magnetic
resonance imaging (MRI) recordings performed on a human volunteer (62 kg, 178 cm,
28 years old). The model allows to virtually measure cardiovascular EIT with many
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Figure 1. Block diagram of the simulation framework andsthe possible parameters
of the bioimpedance model: heart rate (HR), stroke volume (SVH, hematocrit (Ht),
pulmonary artery pressure (PAP), lung filling factor (FF). The simulEITor framework
further allows the simulation of electrode displacement and detachment.
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Figure 2. Block diagram of the analysis used to estimate PAP and SV from EIT
image sequences.

different configurations, i.e. varying number of electrodes and their position or different
voltage measurement and curreat injection patterns. For the present work five different
EIT belts — each comprised (of 32 eleetrodes — were applied on a transversal plane
located at different levels alongsthe craniocaudal axis as follows (see also Figure 1): (1)
the TM (transversal middle) belt awas placed at the average level of the heart, which is
in between the 9-th,and 10-th thoracic vertebra; The belts (2) TH (transversal high)
and (3) TL (transversablow) were placed 3.5 cm higher and lower than TM, which is
at the level of the/8-thy(forsTH) or in between the 10-th and 11-th (for TL) thoracic
vertebra; The remaining two belts, (4) TMH (transversal middle-high) and (5) TLM
(transversal low=middle)swere placed 1.75 cm higher and lower than TM, corresponding
to the 9-th (for TMH) ory10-th (for TLM) thoracic vertebra level. All simulations were
performed.on éach belt of 32 electrodes using a bipolar stimulation pattern with four
inactive electrodes between the two ones actively measuring voltage/injecting current,
also known as skip 4 (Gaggero et al. 2012).

The model initially presented in (Braun et al. 2015a) was extended — as described
in ‘the following — with a more detailed heart (section 2.1.2) and pulmonary model
(section'2.1.3). As in the original model (Braun et al. 2015a), skeletal muscle, fat and
bones, were not modeled individually but included as one intra-thoracic background
¢onductivity composed of a mixture of 48 % muscle, 47 % fat and 5% bone.
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2.1.2. Heart Model The heart is represented by a 4D surface model of its four chambers:
left /right atria/ventricles. For each of these structures a dynamic represemtation of
its inner and outer boundaries (i.e. the endo- and epicardium) were Segmented from
dynamic MRI scans as described in (Braun et al. 2015b). This model was, further
improved in view of altering the ventricular volumes, i.e. to obtain different SVs. To
this end, the volumes of the left (LV) and right ventricle (RV) were artificially modified
over the entire cardiac cycle as described hereafter.

For both ventricular structures a median line was defined ranging from its
apex to the center of its semilunar valve at end diastole. | Then, Fo alternate the
ventricular volume, all vertices of the corresponding model, were displaced radially
to the aforementioned median line. This leads to either shrinking or dilating of the
corresponding ventricle. To obtain a specific ventricular ¥elume the abovementioned
procedure is applied in an iterative manner until the volume of the scaled ventricles
matches the desired volume. Besides, for each itetative step, endocardial structure is
scaled first and then the epicardial structure is adapted keeping a constant volume
difference between the two structures and thus ensuring the quasi incompressibility of
myocardial tissue (Vossoughi et al. 1980)a.In the present work, the SV of the left and
right heart were defined to be identical: SVgr = EDVg — ESVg = SV, = EDV[, — ESV],
(with EDV and ESV as the end diastolichand end systolic volumes, respectively).
Besides, a constant difference of EDVy=EDV = 28 mL was set to account for the
observed difference between left and right, ventricular volume.

2.1.5. Pulmonary Model The  spatio-temporal representation of the electrical
conductivity in the lungs is based on & detailed model of the pulmonary circulation
as further explained in (Proemgan2017, Proenga et al. 2017). This model allows the
simulation of different levels of pulmonary artery pressure (PAP) and various types of
pulmonary hypertensive conditions: PAH (pulmonary arterial hypertension), PHLHD
(pulmonary hypertension, due to left heart disease), HAPE (high altitude pulmonary
edema), CTEPH /(chronic thromboembolic pulmonary hypertension) (Proenca 2017,
Proenca et al. 2017).

2.2. Simulations Performed

2.2.1. £ Physiological Parameters In view of mimicking physiological meaningful
SV variations, different cases of changes in preload, afterload and inotropy
wereé simulaged. Initially proposed in (Proenga et al. 2015, Proenga 2017) and
adapted to the current model, this lead to these eleven values of SVges =
[46.0,53.4460.7,60.8,61.3,68.0, 74.2, 74.7,80.8,93.5, 106.3] mL.

Moreover, for each of the four pulmonary pathologies supported by the current
model, five levels of disease severity were simulated and compared to the normal
— non-pathological — state corresponding to the following six levels of PAPge =
[14,24,34, 44 54,64 mmHg.
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2.2.2.  Investigations on Potential Confounding Factors When measuring /EIT in
realistic clinical or ambulatory scenarios, various factors — external (i.e. afféeting the
EIT system) or internal (i.e. affecting the human body under measurement) — can alter
the EIT data measured and thus also the SV and PAP estimates derived, thereof.

In the following we first attempt to elucidate possible factors affecting
cardiovascular EIT measurements. These are: (1) electrode displacement: shifting
during a measurement or misplacement between different measurements; (2)issues with
electrode contact, e.g. detachment or drying out of contact geli"(3) ehanges in blood
conductivity due to changes in hematocrit; (4) changes in lung corﬁuetivity due to
respiration, liquid redistribution, extra-vascular lung water, éte.; (5) regpiration-induced
thorax excursion, displacement and deformation of heart, lungs and other tissues;
(6) posture- and gravity-induced changes such as orgampand liquid redistribution;
(7) electronic noise and disturbances; (8) impedance changes due to the pulsatile
reorientation of red blood cells (Gaw 2010) or other anisotropic structures, e.g. the
myocardium (Adler et al. 2017).

While (5) and (7) can be — at least partly = reducediand averaged with the proper
filtering technique (i.e. ECG-gated ensemble averaging), (6) might be less important
when targeting bedside EIT. Due to its complexity and the assumed equally importance
of the other factors, (8) was not investigatediin the present work.

The remaining four potential ¢onfounding factors (1), (2), (3), and (4) were studied
and are described in more detail hereaftet:

(i) Electrode belt displacement: When using an EIT system where all electrodes
are included in a belt, the whele of electrodes can be displaced in longitudinal
(up/down) direction or_rotated (left/right). This problem can occur during the
same measurement of between different measurements where the belt needs to be
reapplied — without neceéssarily having the knowledge of the exact belt position of
the preceding measurement. For an EIT system based on gel electrodes only the
latter can apply:

The TM belt (located at the height of the ventricles, see Figure 1) is considered
as the "baseline” belt placement to which all the other displacements are being
compargd to. By wsing the other four belts (TL, TLM, TMH, TH) a up- and
downward displacements of 1.75 and 3.5 cm were simulated.

Forfrotational belt displacements, two levels of magnitude were simulated by
shifting the belt by 0.5 or 1.0 electrode spacing to the left /right, respectively. At the
presentithorax circumference of about 90 cm these shifts correspond to rotational
displacements of 1.4 and 2.8 cm, respectively.

(ii) Eleetrode detachment: For various reasons (movement of the patient via internal
or external influence, drying of electrode gel, pectus excavatum, etc.) the contact of
certain EIT electrodes with the human body can be or become bad. To ensure
reliable EIT images, the measurements related to these electrodes need to be
removed prior to reconstruction. To this end, we simulated the detachment of each
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single electrode and all possible pairs of electrodes, leading to (312) + (322) =928
combinations. Failing electrodes are compensated during EIT image recomstruction

with the algorithm described in (Mamatjan et al. 2013).

(ili) Lung air volume changes: Due to respiration, intra-thoraci¢ conductivity
distribution changes significantly between in- and expiration. To\this end, we
simulated four different lung air volume levels: (1) forced expiration, (2) expiration,
(3) between in- and expiration, and (4) inspiration. These four levels, corresponding
to filling factors of FI' = [1.3,2.0, 3.0, 4.8], were simulated using lung.alveolar tissue
conductivities of o, = [0.12,0.10,0.08,0.06] £ according. tof(Roth et al. 2015).
Even though respiratory activity normally involves othér ehanges{(i.e. deformation
and/or displacement of lungs, heart and thorax) the current model simulates breath-
hold and does therefore only support changes in gy,.

(iv) Hematocrit changes: The percentage of red(blood gells in the blood — known
as hematocrit — does significantly influence the electrical conductivity of blood
op. To investigate the influence of hematgerit-related changes, we simulated five
physiological hematocrit levels (Ht = [35, 40,45, 50,55] %), which were transformed
to the corresponding blood conductivity, levels (g = [0.87,0.78,0.70,0.63, 0.56] %)
according to (Geddes & Sadler 1973).

2.2.83. EIT Image Reconstruction Followingthe pipeline illustrated in Figure 1: the raw
data resulting from simulations were reconstructed into EIT images using the GREIT
algorithm (Adler et al. 2009) with the recommended parameters and a noise figure of
NF = 0.5. The reconstruction'is based on a coarse version of the forward model with
uniform conductivity and uses t\he TM belt placement.

2.3. Hemodynamic Parametér Estimation

In this section we deseribe the signal processing approaches to estimate SV and PAP
from EIT image sequenees.

2.8.1. Stroke-Volumey(SV) Estimation The present approach is based on hypothesis
that the amplitude of the EIT heart signal is proportional to the SV, as also reported
by other groups. (Pikkemaat et al. 2014, Vonk Noordegraaf et al. 2000). The algorithm
used is/fully automatic and consists of three steps also illustrated in Figure 2: (1)
determination of the heart ROI, (2) estimation of the heart sum signal amplitude Aoy
as SV surregate measure, and (3) the calibration function.

The heart ROI is determined as follows. First, each pixel is assigned to the heart
or non-heart region according to its phase at cardiac frequency (similar to the lung
ROIidetection in (Proenga et al. 2016, Proenca 2017)). Second, the potential timing of
end systole is identified as the minimum of the sum signal of all potential heart pixels.
Thirdly, a difference image (end diastole minus end systole) is calculated. Finally, the
heart region is identified as the biggest region with positive amplitude in this difference
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image where all pixels with an amplitude below an automatically determined threshold
(Otsu 1979) got removed. The heart amplitude Aoy is then computed fronithe sum
signal in the aforementioned heart ROI as the amplitude between end diastole andwend
systole. The calibration transforming Aoy from arbitrary units into SVgir expressed
in mL is described later in section 2.4.

2.8.2. Pulmonary Artery Pressure (PAP) Estimation Our approach to measure PAP
via EIT is based on the so-called pulse wave velocity principle and desc\ribed in detail in
(Proenca et al. 2016, Proenga 2017). In short, we assess the arrival of the blood pressure
pulse in the distal lung region by estimating the so-called pulse transit time (PTT) — a
surrogate measure for PAP having a negative exponential relationship: PTT oc e~ PAP,
The algorithm used is fully automatic and consists of three steps also illustrated in
Figure 2: (1) determination of the lung region of iuterestn(ROI), (2) pixel-wise PTT
estimation using Chiu’s method (Chiu et al. 1991) fellowed by eutlier removal and global
PTT calculation, and (3) the calibration transferming PLT into PAPg;T expressed in
mmHg (described later in section 2.4). More details rega}ding this approach and the
algorithm can be found in (Proenga et ali2016, Proenga 2017, Proenga et al. 2017).

2.4. Analysis and Performance Evaluation

To investigate the performance of thesEIT-based SV and PAP estimates, we need to
define figures of merit to quantitatively assess the errors caused by the aforementioned
confounding factors. The influenee of each of the confounding factors is assessed by
comparing to the baseline configuration: TM belt, no belt displacement, no detached
electrode, o, = 0.10 2 (FF = 2\.0) and op = 0.70 2 (Ht = 45 %).

2.4.1. Stroke Volume The ¢onductivity amplitude in the heart region Aoy (computed
as described in section 2.3.1), is"transformed into SV values expressed in mL as follows.
We first compute theslinear fit (fy(z) = a - x + b) between the simulated SV values
SVger and the EIT-derived heart-amplitude Aoy of the baseline configuration. All Aoy
are then transformed into SV values with exactly the same calibration function, i.e.
SVerr = fu(Aoy). Thisallows to investigate the influence of the different confounding
factors while agsuming an initial calibration of the EIT vs a SV reference.

In a first analysis (Analysis I), based on Bland-Altman analysis, we quantify the
absolute eas and relative error egeq between the estimate SVgrr of the current vs the
baséline configuration. Besides, the correlation coefficient » between SVgr and SVget
is computed. Measurements are considered as reliable if the 95 % confidence interval of
€rel dOesaiot exceed 10 %, which is one third of the 30 % error reported for invasive
thermodilution and thus assumes averaging of at least three reference measurements as
typically done in practice (Critchley 2013).

In a second analysis (Analysis II), we analyze the trending ability of the EIT-
based SV values, that is the ability of SVgrr to track changes in SV, but not absolute
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values of SV. To this end, we first compute the changes of SV from an initial Starting
measurement and obtain the SV changes ASVgrr and ASVget, respectively.4Then we
plot ASVgrr vs ASVges in a 4-quadrant plot, a common methodology to asses trending
ability (Critchley 2013, Saugel et al. 2015). The 4-quadrant plot was chosemover the
polar plot because of its more intuitive interpretability and the fact that only noisy but
not the most discordant measurements are excluded (Saugel et al. 2015). As.suggested
in (Saugel et al. 2015), we further quantify the trending ability by means of (1) the
concordance rate CR and (2) the angular error ¢,. (1) CR represents the percentage
of measurements where ASVgr and ASVges change in the samedirection, i.e. lie in
the 1st and 3rd quadrant; (2) the angular error is defined as the amgle between the
identity line (ASVgrr = ASVger) and the line from the origin te.the point (ASVgey,
ASVgrr). According to (Critchley et al. 2011) the following criteria are required to
ensure acceptable trending ability: CR > 92 %, mean angular error < +5°, confidence
interval of angular error < £30°.

2.4.2. Pulmonary Artery Pressure The pulmonary pulse%ransit time PTT (computed
as described in section 2.3.2), is transfofmed into PAP values expressed in mmHg as
follows. We first compute the best fit (f5(®) = -log (x — b) + ¢) between the simulated
PAPRges values and the EIT-derived pulmonary PTT of the baseline configuration. A
different calibration function is used forteach of the four PAP pathologies simulated:
PAPgir = fo(PTT),Vi € [1,4]. Since atthigher PAP levels, small deviations of PTT can
already lead to high errors in PAP, all PAPgy values above an unphysiological threshold
of 100 mmHg were considered agiinvalid. All PTT values are then transformed into PAP
values with the pathology-specific calibtation function, i.e. PAPgrr = f5(PTT).

In the first PAP-relaged amalysis (Analysis III), similar to the first SV analysis
(Analysis I), we quantified thé absolute e5ps and relative error ege by means of Bland-
Altman analysis between PAPgp©f the current vs the baseline configuration. Moreover,
the correlation coeffiéient.r between PAPgir and PAPR.t is computed. PAPgr estimates
are considered as gufficiently accurate if the 95 % confidence interval of €,y falls within
+10 mmHg (Fisher et al. 2009), which is roughly the achievable accuracy of the current
noninvasive gold standard for PAP estimation, namely transthoracic echocardiography.

In the last @nalysis (Analysis IV), the trending ability of PAPgir was assessed.
This was.dene analogously to Analysis II, i.e. concordance rate CR and the angular
error €4 were analyzed between APAPgrr and APAPg.. The same acceptance criteria
(CR >.92%, mean angular error < +5°, confidence interval of angular error < £30°) as
in Analysis. IT were applied to PAP. As these limits are designed for SV measurements
(Critchley 2013), they might be too conservative, but — to the best of our knowledge —
no such limits are specified for (pulmonary) blood pressure measurements.
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3. Results and Discussion

3.1. Analysis I - Absolute SV

3.1.1.  Belt Displacement The influence of up/down and left/right felectrode belt
displacement are shown in Figure 3 and the resulting errors are listed in Table 1. It
can be observed that after all types of belt displacement SVgr still remains highly
correlated with SVges (7 > 0.99 in Table 1, which is in line with other simulation-based
studies (Dinkelbach & Stender 2015, Murphy et al. 2015). 0

However, the up- and downwards belt shifts introduce a significant bias in SVgyr,
i.e. a downwards shift leads to an increase and a upwards shift.to a_décrease of SVgrr,
respectively. This can be explained by the increase of ventricularsand decrease of the
pulmonary signal contribution when shifting the belt downwards, whereas the opposite
applies for an upwards shift. This bias can get as high as 28:2 % and as low as —29.2 %
when shifting the belt downwards or upwards by 3:5em, respectively.

In contrast, the errors caused by the rotational belt shifts are smaller: ie. a
leftwards shift of 2.8 cm results in a bias of 13.4% whereas the bias for rightwards shifts
is highest at 1.4cm with only —5.3%. The,asymmetry of errors observed between left
and right shifts is assumed to be due to the non-central position of the heart and the
uneven distribution of lung volume between left and right.

b
140 (@) - 140 _®)
—- 1 3.5 cm - ~ —4 + 2.8 cm
120 b 1 1.8 cm v// v~ 120 F +— 14 cm
—o—Baseline _ -7 = —o—Baseline
= | =¥ 418 cm s - : = | [->-— 14 cm
Z100 0 s em - BN Sosem
e B
E sof | E sof
M : =
s - s
wn [p]
60 | 60 -
40 - A /\/ s L L L L L 40
50 50 60 70 80 9 100 110 510 50 60 70 80 9 100 110
2 S S S S S H 20 R
b A < D A ¢
S @S SRS o o S @'@ @ bg‘\ O R A @'&
SVRQf (lnL) SVRCf (HIL)
Figure 3. Influence on SVgrr by (a) up/down and (b) left/right electrode belt
displacements. The relationship of reference SV (SVget) and EIT-based SV estimates
(SVgrr) is shown in the upper plots. The lower plots depict the relative error between
SVEerr and the baseline configuration.
3.1.2. Electrode Detachment The relative errors in SVge resulting from the

detachment of one or two electrodes are shown in Figure 4. The errors were calculated
over the 11 SVges simulated and are visualized per electrode to show the influence for
each of the electrodes individually. Table 2 further lists the error statistics for a selection
of eight electrodes when involved in the removal of two electrodes.

Page 10 of 25
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Table 1. Absolute error (eaps), relative error (ege) and correlation coefficient ()
of SVgrr for different electrode belt displacements when compared to the baseline
configuration. Cell shadings indicate whether the acceptance criteria‘(see section 2:41)
are met (green) or not (red).

Up/Down Displacement Left /Right Displacement
1 3.5 cm 17 1.8 cm J 1.8 cm 1 3.5 cm —28cm | +1l4cm | = 14cm — 2.8 cm
€abs (mL) | —20.9+6.1 | —11.2+3.1 | 10.7+24 | 19.7+3.7 9.6 £ 2.7 5.0+ 1.4 —3.8%£ 02 | —2.2£0.5
erel (%) —2924+16 | —15.6+08 | 15.24+0.7 | 282+2.1 | 134+1.0 7.1+ 0.7 —5.3+£08 | —34+1.3
r 0.9987 0.9993 0.9995 0.9984 0.9995 0.9998 0.9993 0.9990
~N

The overall error is —1.08 £1.23 % (—0.78 £0.95 mL) whenremoving one electrode
(Figure 4a) and —2.28 &+ 1.79 % (—1.66 £ 1.44 mL) when removing two electrodes
(Figure 4c), respectively. However, it has to be noted that detaching electrodes (1 to 4,

31 and 32) located in the ventral left region — close to[the heaxt — results in higher errors

(see also Figure 4b). These findings highlight the impeortance of a good electrode contact

in the ventral region. In practice this can be quite challenging, especially for EIT systems

having the electrodes included in a belt, where eléctrode contact is often impaired in

the sternum region (e.g. pectus excavatum). This issue might be party circumvented

by using more sophisticated simulation and\measurement patterns or even by adapting

them in real-time.
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Figure 4.  Relative error of SVgir resulting from the detachment of (a) a single
electtode ory(c) all possible pairs of electrodes. The error statistics shown are calculated
over the 11 SV states simulated. The transversal EIT plane in (b) shows the position
of the 32 elegtrodes (in green) and highlights the ones with higher errors (in red).

Table 2. Absolute error (eaps), relative error (ege) and correlation coefficient (r) of
SVErr resulting from the detachment of 2 electrodes when compared to the baseline

configuration. Cell shadings indicate whether the acceptance criteria (see section 2.4.1)
are met (green) or not (red).

Elec. 1 Elec. 5 Elec. 9 Elec. 13 | Elec. 17 | Elec. 21 | Elec. 25 | Elec. 29
€abs (mL) |"=34+14 | -21+14 | -15+12 | -1.3+10 | -1.14+1.0 | =1.0+1.0 | —1.2+1.1 | —1.1+1.1
erel (%) —48+14 | -294+16 | —21+15 | -1.7+13 | -1.5+13 | -1.3+£13 | —-1.6£1.3 | —1.6£1.4
r 0.9975 0.9968 0.9973 0.9978 0.9979 0.9978 0.9977 0.9976
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3.1.3. Changes in Hematocrit and Lung Air Volume Figure ba shows how changes in
hematocrit influence SVgrr. The corresponding errors are listed in Table 3. Afvincrease
in blood conductivity op — resulting from a decrease in hematocrit — leads to a higher
SVerr and in return, a decrease in op to a lower SVgr. Nevertheless, the errors remain
rather low, i.e. over the entire physiological range of Ht from 35 to 55%, the relative
bias changes only from 2.3 % to —3.4 %.

In contrast, changes in lung alveolar tissue conductivity o, — resulting from changes
in lung air volume between normal inspiration and forced expifation,— have a higher
influence on SVgrr. This is depicted in Figure 5b and also listeddn Table 3. Normal
inspiration (o1, = 0.06 2) compared to normal expiration (Baseline state) introduces a
relative bias of 8.0%. On the other hand, full expiration (o1, = 0i2 =) lowers the bias

to —3.2%.

(@) ‘ ‘ (b)

140 140 T T T

"o op = 056 (Ht = 55 %) "6 o, = 0.06 (FF = 4.8)
190 | |~© 0B = 0.63 (Ht = 50 %) {90 I |-& o1 =0.08 (FF = 3.0) .
—o—op = 0.70 (Ht = 45 %) - Baseline ~6—oyp. = 0.00 (FF = 2.0) - Baseline T
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Figure 5. Inflftence omiSVig r by changes in (a) hematocrit and (b) lung air volume.
The relationship of reference SV (SVger) and EIT-based SV estimates (SVgrr) is shown
in the upper plots. The lower plots depict the relative error between SVgrr and the
baseline configuration.

Table 3. Absolute error (eans), relative error (ege) and correlation coefficient (r) of
SVErr for changes in hematocrit and lung air volume when compared to the baseline
configuration. Cell shadings indicate whether the acceptance criteria (see section 2.4.1)
are;met (green) or not (red).

Hematocrit Changes Lung Air Volume Changes
op = 0.56 op = 0.63 op =0.78 op = 0.87 or, = 0.06 or, = 0.08 or =0.12
(HE=55%) | (Ht=50%) | (Ht=40%) | (Ht=35%) | (FF=4.8) | (FF =3.0) | (FF = 1.3)
€abs, (mL) ~26£14 —-1.2£0.7 1.0£0.6 1.8+1.1 6.1 £3.9 29+1.7 —24+14
€erel (%) ~34+10 —1.5+£0.5 1.4+£0.5 23+1.0 8.0+ 3.3 39+14 —-3.2+£12
r 0.9997 0.9996 0.9995 0.9995 0.9996 0.9997 0.9993

3.1.4. Summary Among the potential confounding factors investigated for absolute

SV measurement, we could show that up- and downwards electrode displacements have

Page 12 of 25
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the highest influence in terms of relative error, i.e. a shift of 1.8 or 3.5 cm canfalready
introduce a relative error bias in the magnitude of about 15 or 30 %, respectivély. These
findings call into question the feasibility of absolute SV measurements by means of single
plane (2D) EIT without recalibrating upon each displacement or reattachment of the
EIT belt. The use of two EIT planes (3D) (Grychtol et al. 2016) might help to reduce
the sensitivity on belt displacements in the longitudinal direction, andthuszeduce the
error on SV estimation in case of belt shifts. However, a subject-specifi¢ calibration
is still necessary, as the absolute heart impedance signal remaing influenced by various
other factors (thorax morphology, lung conductivity, etc.), as also shown in experimental
findings on pigs (Pikkemaat et al. 2014).

Rotational belt shifts of one electrode spacing (i.e. 2.8 cm) ean introduce relative
errors with a bias of up to 13 %. This highlights the. importance of a correct
belt placement and the necessity to have an accurate enough reconstruction model
with possibly updating it (in real-time) according4o,the thorax morphology (Tizzard
et al. 2016).

Furthermore, changes in lung alveolar tissue conducti%ity oy, resulting simply from
a respiratory cycle have shown to introduce a ‘high/ bias in relative error ranging
from 8% to —3% (from normal inspiration to full expiration). The higher the SV
the higher the influence of this effect. This is because — unlike suggested by other
researchers (Pikkemaat et al. 2014, VenkyNoordegraaf et al. 2000) — changes in EIT
heart impedance are not solely related to:changes in cardiac blood volume but scaled by
a heart-lung-conductivity contrast and other factors (see Figure 6 for illustration and
detailed explanation). Other faetors such as heart displacement due to respiration or
postural changes and changes of op, due to edema, pneumothorax or posture-induced
liquid redistribution were mot taken into account but might even worsen the current
results.

These findings @eveal further challenges of EIT-based SV monitoring and call for
more detailed and targeted studies to assess the influences of these different confounding
factors to show the extent and the conditions under which EIT-based SV is feasible in
clinical scenarios,at all.

The currentiouteomes are in line with the findings in (Eyuboglu et al. 1988). That
is, absolute SV s hard, but trending should be possible. Therefore, we performed a
second analysis presented in the next section assessing the trending ability of EIT-based
SV.

3.2. Analysis Il - Relative SV - Trending

In this,seetion we address the question whether trending of SV via EIT is feasible, i.e.
can we follow the changes in SV over time after an initial calibration with SV. For the
stibsequent analysis the baseline SV was chosen as calibration value (SVy = 68.0 mL).
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Figure 6. Conceptual explanation of the heart-lung ¢onductivity contrast (HLC)
influencing the EIT-based heart impedance signal used for estimating SVgrr. During
a cardiac cycle heart tissue is spatially replaced by lumgtissue and vice versa (black
arrows). These changes in conductivity are assumed to benthe main contributor to
the EIT-based heart signal. Unlike sometimes dssumed this signal and thus SVgr
cannot be directly proportional to the real bleodyvolume change SVgea as it is (1)
scaled with the HLC and (2) limited to an inferior-level of detection SVypu, (due to
ringing and overlapping of other signal sources like the lungs or atria). HLC is defined
as the difference of heart conductivity o (depending on blood conductivity op and
myocardial conductivity ops) and lung conductivity¥ op (depending on lung alveolar
tissue conductivity oy, and blood conductivity gg). An increase in lung air volume
leads to an increase in HLC and thus to amraugmented SVgrr, and vice versa. On
the other hand, increasing hematocrithlevels (Ht 1 = op |) lead to a decrease in
opy and a less strong decrease of op. Theresult is a slight decrease in HLC and a
reduced SVgrr. It needs to bewstressed out that this remains a simplified explanation
as the heart impedance signal'ean be influenced by further factors such as heart motion
(Proenga et al. 2015), out-of-(EIT=)plane motion of the heart, o dependence on blood
flow (Gaw 2010), anisoetropy of the myocardium, etc. (Adler et al. 2017).

3.2.1. Belt Displacement TI:Q trending ability after up/down and left/right belt
displacement are shown in Figure 7a and Figure 7b, respectively, by means of four

quadrant plots with the corresponding errors listed in Table 4. All concordance rates

CR are at 100 % and thus fulfillthe first requirement for trending according to (Critchley

et al. 2011). The seeond requiirement of an angular error bias of less than 5° is only
fulfilled for the 1.8 cm dewnwards shift and all left/right shifts. However, the angular
bias resulting fromia 3.5€m downwards or 1.8 cm upwards shifts are only close above

the threshold and might, lead to a sufficient enough trending performance, given that

the CR and the confidence interval of ¢, are well within the acceptable limits.

Table 4. Trending performance by means of angular error (e,) and concordance rate
(CR) of SVErr as influenced by electrode belt displacements. Cell shadings indicate
whether the acceptance criteria (see section 2.4.1) are met (green) or not (red).

Up/Down Displacement Left /Right Displacement
$35cm | | 1.8 cm 17 1.8 cm 1 3.5 cm +—28cm | <~ 14dcm | -14cm | -+28cm
€a (°) 71430 | 43+18 | —=5.7+1.7 | —125+1.3 | 48+1.7 | 24+1.1 | —1.3+£1.6 | 1.3£2.1
CR (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
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18 Figure 7. Trending ability of ASVgrr vs ASVRger as influenced by (a) up/down and
;'g (b) left/right electrode belt displacements. The gray shaded area depicts the zone in
21 which measurements are considered as unsuitable for trending analysis.
22
23 . . . .
24 3.2.2. Changes in Hematocrit and Lung Air Volume »Ihe ¢, and CR resulting from
25 changes in hematocrit and lung air volume are shown in®able 5 and do all fulfill the
g? requirements for trending as specified in section 2/4.1.
28
ég Table 5. Trending performance by meansiof angular error (e,) and concordance rate
31 (CR) of SVgrT as influenced by-hematocrit and lung air volume changes. Cell shadings
32 indicate whether the acceptanee criteria (see section 2.4.1) are met (green) or not (red).
33 Hematocrit Changes Lung Air Volume Changes
34 op = 0.56 op = 0.63 op =0.78 op = 0.87 or = 0.06 or = 0.08 or =0.12
35 (Ht = 55%) | (Ht =50 %) 4-(Hts=40%) | (Ht =35%) | (FF =4.8) | (FF =3.0) | (FF = 1.3)
36 o (°) —2241.0 | —0.9+1.2 144 14 24417 46416 22410 | —1.6+1.9
37 CR (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0
38
39
40
j; 3.2.3. Summary These outcomes give hope for EIT-based trending of SV but at the
43 same time reveal the'stronginfluence of up/down belt displacements — especially on the
44 angular bias. Besides, multiple confounding factors could simultaneously deteriorate
22 SVgrr (e.g. up-andileft belt displacement together with lung air volume changes) and
47 thus worsen/the currentiresults. To reduce these influences we suggest the use of 3D
gg

jg EIT and an ‘adaptation of the reconstruction model to the thorax geometry, as alluded
50 to in the previous section.
51
gg 3.3 AnalysisII - Absolute PAP
gg 3.8 1y, Belt Displacement Figure 8 shows the influence of up/down belt displacements
56 on PAPgr for the four pathologies simulated. The resulting errors (eaps and €ge) and
57 the eorrelation coefficients are given in Table 6.
gg For most hypertensive levels — i.e. excluding the normal pressure level (PAP =
60 14 mmHg) — it can be observed that upwards shifts generally lead to an increase in

PAPgr and downwards shifts to a decrease. This can be explained by the measurement
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Figure 8. PAPgr estimates influenced by up/down belt displa\cements shown for
the four pathologies simulated (a) to (d). The top #ow shows PAPgir in function
with simulated PAP values. The bottom rows show the resulting relative error when
compared to the baseline configuration.

principle used and the reduced or increased distamece to the pulmonary valve — the
origin of the propagating pressure pulse. On theother hand, at the normotensive level,
the relative error is higher for downwards belt shifts as*lso shown in Table 6. We
hypothesize that at higher PTT levels 4 as in normetension — the PTT estimation
is more influenced by (ringing of) other signal sources such as the ventricular signal.
This particular signal is stronger the lower the belt is placed, which would explain
the increase in error for downwards shifts.. The case of PAH with 1.8 cm upwards shift
shows an exceptionally high error at the highest PAP level. This is due to the non-linear
relationship between PTT and PAPgir, assmall (negative) errors in PTT can lead to
large errors in PAPgr at severely hypertensive PAP levels. If the most hypertensive level
(PAPges = 64 mmHg) is excluded frompanalysis (results not shown) the performances
of all upwards and 1.8 cm dewnwards shifts fall within the acceptance criteria and only
the 3.5 cm downwards shifts témain out of the acceptable limits.

(a) PAH (b) PHLHD (c) HAPE (d) CTEPH
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PAPRgf (mmllg) PAPR,f (mmHg) PAPR,f (mmHg) PAPRes (mmHg)

Figure 9. PAPgr estimates influenced by left/right belt displacements shown for
the four pathologies simulated (a) to (d). The top row shows PAPgrr in function
with simulated PAP values. The bottom rows show the resulting relative error when
compared to the baseline configuration.

The errors resulting from left /right belt shifts are given in Figure 9 and also listed in
Table 6. In contrast to up/down belt shifts, the left /right shifts generally result in higher
errors of PAPgir. The magnitude of error caused by slight rotational shifts (1.4 or 2.8

64
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cm, i.e. 0.5 or 1.0 electrode spacing) are surprising and the reason not fully understood
but clearly linked to the reconstruction model used. A possible explanation is that
small discrepancies of thorax geometries (between the real thorax geometry anduthe
reconstruction model geometry) result in spatial mixing of the different signal.sources;
i.e. a higher contribution of ventricular or atrial signals in the lung region. This in'turn
deteriorates the pulmonary signal and estimation of the correct PTTHs impaired.
With exception of (b) PHLHD, the other pathologies lead to unphysiélogical high
PAPpgr values at the highest PAPges level which were excludeddfrom analysis (marked
with a (f) in Table 6). They thus show a higher error in PAPyr for leftwards
belt shifts when compared to rightwards shifts, which is consistent with the findings
for SVEgrr presented in the previous sections. Again, if the most hypertensive level
(PAPges = 64 mmHg) is excluded from analysis (results not shown) the performances
improves such that from previously 6, already 12/out of 16 errors fall within the

acceptance criteria defined in section 2.4.2.

Table 6. Absolute error (eaps), relative error|(ereq) and correlation coefficient (r)
of PAPgrr for different electrode.belt displacements when compared to the baseline
configuration. This is shown for eachyof the four pathologies: (a) PAH, (b) PHLHD,
(c) HAPE, and (d) CTEPH. Cells'marked with () indicate that one PAPgir value
was above the unphysiolggical threshold of 100 mmHg (see section 2.4.2) and excluded
from analysis. Cell shadingsindicatéwhether the acceptance criteria (see section 2.4.2)
are met (green) or not (red).

Up/Down Displacement Left /Right Displacement
t35cm | t18cm | [18em | [35cm <28cm | «ldem | »1l4cem [ —528cm
eabs (mmHg) | 22+37 | 52+98 | (~28+400] —36+56 | 13.1+£10.1 (1) | 76496 | 23+65 38+7.4
(a)| eral (%) 31+69 | 81+153 | —85+9.7 | —24+184 | 37.9+14.6 ({) | 17.3+£12.6 | 4.2+122 | 10.5+19.0
r 0.9916 0.9639 10.9933 0.9969 0.9871 (1) 0.9570 0.9741 0.9690
eabs (mmHg) | 03+1.2 | 1.3+238 [/—1.7426 | —35+5.6 42425 13+25 | 21467 | —1.7+47
)| erer (%) —04+38 | @6&45 | —15+82 | —23+185 | 17.3+17.3 70+96 | 3.2+138 | —0.6+21.8
r 0.9864 0.9818 0.9860 0.9902 0.9766 0.9794 0.9701 0.9739
eabs (mmHg) | 3.0+34 084233 ) —19+33 | 06+33 | 183+£73(f) | 85+43 | —05+20 | 42+49
(©)] eral (%) 49+80 | 62+75 | —08+11.3 | 85+205 | 57.8+16.4 () | 23.5+75 | 04+10.7 | 15.6+23.1
r 0.9953 0.9951 0.9978 0.9986 0.9770 (1) 0.9880 0.9975 0.9775
eabs (mmHg) | 1.64£23 | 20424 | 18427 | —36+52 | 59+18(f) 28+13 | 20+42 0.0+338
(d)| erer (%) 20459 | 3.0+£55 | —1.1+96 | —1.6+£21.7 | 24.54+20.0 () | 104+89 | 49+102 | 5.1+234
r 0.9859 0.9861 0.9864 0.9938 0.9664 (1) 0.9819 0.9877 0.9842

3.8.2. FEle¢trode Detachment The error in PAPgr resulting from removing single or
pairshof electrodes is shown in Figure 10 by the example of the PHLHD pathology.
Table 7 further lists the error statistics for a selection of eight electrodes when involved
in the'removal of two electrodes. Detaching one single electrode leads to an error of
1.73+3.76 % (1.10 £ 2.26 mmHg) (Figure 10a) and detaching pairs of electrodes to an
error of 2.08 £ 4.49 % (1.25 + 2.65 mmHg) (Figure 10c). The error remains low for all
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electrodes with slightly higher errors for some electrodes located ventrally and on the
right as shown in Figure 10b.

The absolute and relative errors of the other three pathologies are lower (results
not shown) than for the PHLHD pathology shown here.

i 0 e

21 17
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= =

S o

= —
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Figure 10. Relative error of PAPgr resulting from the detachment of (a) a single
electrode or (c) all possible pairs of electrodess The error statistics shown are calculated
over the 6 PAP states simulated for the PHELHD pathology. The transversal EIT plane
in (b) shows the position of the 32 electrodes (in greem) and highlights the six electrodes
with highest errors (in red).

Table 7. Absolute errora(eans), relative error (ege) and correlation coefficient (r) of
PAPg;T resulting from the detachment of 2 electrodes when compared to the baseline
configuration (PHLHD pathology). Cell shadings indicate whether the acceptance
criteria (see sectiom2.4.2) are met (green) or not (red).

Name Elec. 1 | Elec. 5 | Elec.n9 | Elec. 13 | Elec. 17 | Elec. 21 | Elec. 25 | Elec. 29

€aps (mmHg) | 1.6 £2.6 | 0.9+2.0 | 1.4+ 3.0 1.3+2.8 09+1.8 09=£21 1.2+2.6 1.1+21

erel (%) 3.8£54 | 1.34+£36 | 21 +49 || 201+4.6 14+3.1 1.4+ 3.6 1.7+4.3 24+39

r

0.9754 0.9774 019731 0.9733 0.9781 0.9765 0.9746 0.9771

3.8.3. Changes in_Hematocrit and Lung Air Volume Figure 11 shows PAPgir as
influenced by changes inthematocrit and lung air volume by the example of the PHLHD
pathology. Thée resulting relative errors are also listed in Table 8. While the error
induced by hématocritrechanges remains low, lung air volume changes can induce errors
up to —6.7 % 34 % This could again be explained by the aforementioned influence
of other signal sources deteriorating the PTT estimation. As shown for SV in section
3.1.3, the amplitude of the heart signal is more affected by changes in air volume than by
changes inshematocrit, which would explain the higher errors in PAPgr for the former
when compare to the latter. Nevertheless, all errors fulfill the acceptance criteria defined
in seetion 2.4.2.

3.8 458ummary  We could show that for belt displacements PAPg;r is highly sensitive
to small errors of PTT at severe hypertensive levels which translate into high errors in
PAPg;r due to the negative exponential relationship between PTT and PAPgr. Yet,
when not considering the most hypertensive level at 64 mmHg, PAPgir is robust to
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Table 8. Absolute error (eaps), relative error (ege) and correlation coefficient (r) of
PAPgr for the PHLHD pathology as influenced by changes in hematocrit and lung ain
volume when compared to the baseline configuration. Cell shadings indicate whether
the acceptance criteria (see section 2.4.2) are met (green) or not (red).

Hematocrit Changes Lung Air Volume Changes
op = 0.56 op = 0.63 op = 0.78 op = 0.87 or, = 0.06 or =20.08 or =0.12
(Ht =55%) | (Ht=50%) | (Ht=40%) | (Ht =35%) | (FF = 4.8) 4 (FF = 3.0). | (FF = 1.3)
€abs (mmHg) —0.0£0.5 —0.2+0.3 0.0£0.1 0.14+0.2 —-3.14+22 | —1.6£1.2 1.7+ 1.6
erel (%) —0.1+1.1 —0.5+£0.7 0.1+04 0.2+0.6 —6.7 37| =3.3+£2.1 3.5+2.2
r 0.9858 0.9881 0.9867 0.9859 0.9898 0.9892 0.9816
% (a) @ (b)
~o op = 0.56 (Ht = 55 %) —o~ o= 0.06 (FF = 4.8)
0F| o o5 =063 (Ht = 50 %) F OF o o= 008 (FF = 30)
g0 | |~O—0B =070 (Ht = 45 %) - Baseline /ﬁ W 60 | |~O79m= 0-10 (EF = 2.0) - Baseline p
= op = 0.78 (Ht = 40 %) / s & op =0.12 (FE = 1.3) L
5507%}03:087(Ht—35%) 4@4/@/ g sl
a0l _ Eal
= - =
E ' 4
E 30 / = 30 F
20 P 20
~
w0l & 10
S 807 ‘ ‘ a ‘ ‘ =
=l \g’ 0 = | =
i i, B T B OO
2 : 54 64

14 24 34 44 54 64 14

PAPRe¢ (mmHg) PAPRe¢ (mmHg)

Figure 11. PAPg7 estimates for PHLHD pathology as influenced by (a) hematocrit,
(b) lung air volumes*The, top row shows PAPgr in function with simulated PAP

values. The bottom rows show the resulting relative error when compared to the

baseline conﬁguratiQ.

most up/down beltdisplacements with the exception of downwards shifts of 3.5 cm for
which the pulmonary signal gets too low and other signal sources prevail. However, the
errors resulting from rotational belt shifts remain surprisingly high and their cause is not
yet fully understood but is assumed to be linked to the mismatch between real thorax
geometry andsthe one.of'the reconstruction model. We hypothesize that already small
rotations (05 or(1.0@lectrode spacing) increase the spatial overlap/mixing of different
signal sourees contributing cardiovascular EIT. This issue requires further investigations
which falls out of scope of the current work.

In_general,/measuring PAPg;r via PTT — a timing-based feature — is more robust
to changes in Tung conductivity than the amplitude-based SVgrr estimation. However,
it is\sensitive to longitudinal belt displacements at severe hypertensive levels and to
rotational displacements (independent of the PAP level).
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3.4. Analysis 1V - Relative PAP - Trending

Analogous to the SV trending analysis (Analysis II in section 3.2) wesassess whether
trending of PAPgr is feasible, i.e. can we follow the changes in PAP over 4ime after an
initial calibration with PAP,. For the subsequent analysis the normotensive PAP level
was chosen as calibration value (PAPy = 14 mmHg).

3.4.1.  Belt Displacement The trending ability after up/down. and left/right belt
displacement are shown in Figure 12 by means of four quadrantsplots with the
corresponding errors listed in Table 9. While all concordance rates CR are at 100 %
and the confidence interval of €, within the < £30° limits, the acceptable threshold of
< £5° for the angular bias is often exceeded.

(a) PAH (b) PHLHD (c) HAPE (d) CTEPH
60 s 60|[ < j?,g cm &7 60 // L Ad 60 /,' a7
) o’ “op v }18cm o7 o0 4 ) o7
! il = O Baseline e =i / /O' as] / e
é - g 1 1.8 cm sV g / A/V g / 6/7
210 /6 v E 40 A 135cm /é/ v £ 4 ,/ A /8 \E/ 40 ,r/ sy v
= é/ v Sl 7 5 < S| / Q/ 4 Sl / 6 é/ v
= v — 7z v — A — %
= & 7Y = / VY v €3] / /N = / - 7/
S S| v I A I
< ;o = s < < < o 7
A a7V I Y /é/v ol hg S Y 1o -
a | /@' - 4q // £ J— 4 // ) 4q // > -
i , Y ,
0L 0L 0= 0L
0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60
APAPR¢ (mmHg) APAPR ¢/ (mmHg) APAPR ¢ (mmHg) APAPR ¢ (mmHg)
(a) PAH (b) PHLHD (c) HAPE (d) CTEPH
h 3 «28cm " 60 < 60 >
1.4 cm o7 0 / < 6,7
O DBaseline A/ % % //
> - ldem) 7 g 40 4 o g 40 I3
> 28 cm /é = LB = 7
% 3 =) <4 o7 =) 87
—_ — o
7 23] 7> [£3) 8 7
g S 20 ‘ f;’ : S 20 I
/ / o/
v ;\ o % % % }/
Y &5 G 7
= 0kl 0l
0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60

APAPR ¢ (mmHg)

APAPR¢ (mmHg) APAPR ¢ (mmHg) APAPR¢ (mmHg)

Figure 12. Trending ability of PAPgiT vs PAPRes as influenced by (Top) up/down
and| (Bottom)) left /right electrode belt displacements shown for the four pathologies
simulated (a) to (d). The gray shaded area depicts the zone in which measurements
are considered as unsuitable for trending analysis.

3.4.2. [Changesin Hematocrit and Lung Air Volume The €, and CR resulting from
changes innhematocrit and lung air volume are shown in Table 10 by the example of the
PHLHD pathology. They do all fulfill the requirements specified for trending of PAPg;r.

3.4.3. Summary Considering belt displacements, the high errors observed for absolute
PAPmonitoring (mostly for leftwards shifts), also impair the trending ability of PAPgr
by introducing a high angular bias and require further investigations. Many of the other
belt displacements also result in an angular bias slightly exceeding the < £5° limit and
thus — strictly speaking — do not fulfill the requirements for trending. However, it
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g Table 9. Trending performance by means of angular error (e¢,) and concordance
7 rate (CR) of PAPgrr as influenced by electrode belt displacements. This is shown
8 for each of the four pathologies: (a) PAH, (b) PHLHD, (c) HAPE, and (d) CTEPH.
9 Cells marked with (1) indicate that one PAPgir value was above the unphysiological
10 threshold of 100 mmHg (see section 2.4.2) and excluded from analysis. Cell'shadings
11 indicate whether the acceptance criteria (see section 2.4.2) are met (green) or not (red).
12 Up/Down Displacement Left /Right/Displacement

13 1 3.5 cm ‘ J 1.8 cm ‘T1.8cm‘T3.5cm — 28 cm ‘e1.4cm‘ — 1.4 ecm ‘ — 2.8 cm
ig (a) ea (°) —6.3+32 | —214+36 | 6.8+4.1 | 54+2.7 | 104+29 (}) | 6.4£47 0.8 4.0 —2.7+£6.8
16 CR (%) 100.0 100.0 100.0 100.0 100.0 (1) 100.0 <" 100.0 100.0
17 ()L ) [ —91+23| —30+31][33+32]28+31] 02+£53 0.7+5.0 | £25+7.3 | —13.3+10.6
18 CR (%) 100.0 100.0 100.0 100.0 100.0 100:0 100.0 100.0
-'218 (o) () | —45+12] —26+25]69+30] 68+32] 13.9+62 (@) 76+47 | —29+26 | —49+6.3
21 CR (%) 100.0 100.0 100.0 100.0 100.0 () 10040 100.0 100.0
29 (@l ) [ -39+42 1.6+51 [ 77450 77+52] 6572 (f) IWe.8+62 | 38+31 | —37+55
23 CR (%) 100.0 100.0 100.0 100.0 100.0 (1) 100.0 100.0 100.0
24

25

26 Table 10. Trending performance — for the' PHLHD pathology — by means of angular
27 error (€,) and concordance rat€ (CR) of PAPgr as influenced by hematocrit and lung
28 air volume changes. Cell shadingsindicate whether the acceptance criteria (see section
29 2.4.2) are met (green) or not (red).

30 Hematocrit Changes Lung Air Volume Changes

g; op = 0.56 op = 0.63 o =0.78 op = 0.87 or = 0.06 or, = 0.08 or =0.12
33 (Ht =55%) | (Ht=50%) | (Ht =40%).| (Ht =35%) | (FF =4.8) | (FF =3.0) | (FF = 1.3)
34 €a (°) 1.0£29 1.0£28 1.5£3.1 1.7+ 3.2 —25+24 | —-06£2.7 3.0+34
35 CR (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0

36

37

38 is questionable whether the ac}eptance criteria specified — originally proposed for SV
zg monitoring (Critchley et al. 2011) = are not too strict for the application of noninvasive
41 PAP monitoring. Depénding enthe use case, a higher angular bias could be acceptable,
42 especially when taking inte account the other advantages of EIT-based PAP monitoring
43 . . . .

a4 (operator independent, fully automatic, continuous application) when compared to the
45 current noninvasive gold standard (transthoracic echocardiography).

46

a7 B

48 3.5. Limitations and Fulure Work

49

50 The present work is limited in that the hemodynamic bioimpedance model used could
51 only be partially validated. That is, the findings from simulations on the initial model
gg regarding EIT-derived PAP estimation (Proenca et al. 2017) have been confirmed by
54 practical measurements (Proenca et al. 2016). However — although directly derived from
gg real MRI'scans — the heart model allowing for SV changes was not validated against real
57 EI'T.measurements. Therefore, we suggest to confirm the current findings by validating
58 against real EIT measurements for future work.

2(9) The bioimpedance model is further limited in that it is solely based on the end

expiratory breath-hold state and no respiration-related displacements and deformations
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can be simulated. More detailed insights might be obtained from a more extensive model
(e.g. (Segars et al. 2010) used in (Murphy et al. 2015)) incorporating thoracic exeursions;
lung deformation, heart deformation and displacement (i.e. out of plané'motion (Zhang
et al. 2013)) — all modulated by respiration. Moreover, the present SVimodifications
were generated artificially. A statistically more representative model covering variations
of multiple individuals might be of advantage. Besides, while skeletalmusclesy fat, bones
and skin were only considered in the homogeneous background conductivity (excluding
the skin), these should be modeled as individual structures in thie futuce.

In addition, posture-induced heart displacement and lung liquid cﬁstribution, such
as pneumothorax or edema should be studied as they could'be additienal confounding
factors for EIT based SV monitoring. Even though we have only investigated a part of
all possible confounding factors, we believe to have revealedissome'important challenges
for SV via EIT mostly due to belt displacements’and the heart-lung-conductivity
contrast. Future clinical studies aiming for SVgrr should coneentrate on the use of 3D
EIT, constant ventilator settings and posture to@avoid mest of the confounding factors
observed here from occurring, and then — in a/next step y investigate the influence of
each of the factors individually.

In contrary to the amplitude-based feature SVgir, PAPgir is measured via PTT —
a timing-based feature (Sola & Brunner 2012, Sela et al. 2012). It is therefore not
surprising that EIT-based PAP estimation. by means of pulmonary PTT has shown
to be less influenced by changes in hematocrit or lung air volume. Nonetheless,
the strong deteriorating influence resulting from rotational belt displacements require
further investigations and special attention. Moreover, the acceptance criteria specified
for PAP trending, are initially designed for SV trending and might be too restrictive, in
particular the threshold forsthesangular bias.

4. Conclusion

In this paper, we focus omthe problem of uncertainty introduced into EIT-based
hemodynamic measures due to variability in configuration and physiology which occur
in experimentalvandiclinical use. Our goal was to estimate the level of uncertainty in
two important central hemodynamic parameters due to the most important confounding
factors. To this end, we investigated EIT-based hemodynamic monitoring of SV and
PAP, for the four confounding factors potentially deteriorating these measures: (1)
electrodesbelt displacement, (2) electrode detachment, changes in (3) hematocrit and
(4)dung air velume. Based on simulations on a 4D bioimpedance model, we could show
how seriously each of these factors affect the estimation of relative or absolute PAP and
SV, as also summarized in Table 11.

The amplitude-based feature to assess SV is highly sensitive to — mostly up/down
4 belt displacements and to variations in lung air volume. Although these limitations
might be partly overcome by using 3D EIT, our results indicate that the absolute
measurement of SV via EIT remains extremely challenging. Nonetheless, we can
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conclude that the trending ability of SVgr — that is following changes in SV after
an initial calibration — remains promising.

On the contrary, the timing-based measurement of PAP is more robust,.to
lung conductivity changes but sensitive to longitudinal belt displacements at severe
hypertensive levels and to rotational displacements (independent ofhe PAP level).
The latter requires particular attention in further investigations.

The present work is limited in that the hemodynamic bioimpedance médel was not
fully validated. Therefore, the current findings remain to be confirmed,by means of real
EIT measurements in future work. N

Table 11. Findings of the SV and PAP analyses performed for the four confounding
factors investigated. The results are classified according to the percentage falling within
the acceptance criteria: v/ 100 % (good); X > 756 % (medioere); XX < 75 % (bad).

SV PAP
Absolute Relative Absolute Relative
Analysis I | Analysis H’v Analysis III | Analysis IV
d XX XX XX XX
1. Belt displacement up/down
left /right X v XX XX
2. Electrode detachment v v
3. Hematocrit changes v v 4 4
4. Lung air volume changes XX v v v
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