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abstract: Genes affect not only the behavior and fitness of their
carriers but also that of other individuals. According to Hamilton’s
rule, whether a mutant gene will spread in the gene pool depends
on the effects of its carrier on the fitness of all individuals in the
population, each weighted by its relatedness to the carrier. However,
social behaviors may affect not only recipients living in the generation
of the actor but also individuals living in subsequent generations. In
this note, I evaluate space-time relatedness coefficients for localized
dispersal. These relatedness coefficients weight the selection pressures
on long-lasting behaviors, which stem from a multigenerational gap
between phenotypic expression by actors and the resulting environ-
mental feedback on the fitness of recipients. Explicit values of space-
time relatedness coefficients reveal that they can be surprisingly large
for typical dispersal rates, even for hundreds of generations in the
future.

Keywords: relatedness, Hamilton’s rule, extended phenotype, niche
construction.

In the terms of the extended phenotype, alleles for larger lakes
replaced alleles for smaller lakes. In the same terms, beavers
can be said to carry within themselves genes whose phenotypic
expression extends many miles away from the genes them-
selves. Why not hundreds of miles, thousands of miles? (R.
Dawkins 1982)

Introduction

In evolutionary biology, a social behavior is a phenotype
expressed by one individual that affects the fitness of an-
other individual in a population (Hamilton 1964). For
instance, parents transfer resources to their offspring,
which help their juveniles to grow and survive. Workers
in social insects raise the offspring of the queen. But con-
specifics also compete for limited resources, and the gain
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in resources increasing the fitness of one individual is bal-
anced by a loss of resources decreasing the fitness of others.

The selective pressure on a gene affecting a social be-
havior can conveniently be analyzed by using the concepts
of inclusive fitness and evolutionary game theory (Ham-
ilton 1964; Maynard-Smith 1982; Eshel 1996; Taylor 1996;
Frank 1998; Rousset 2004; Grafen 2006). This usually con-
sists of focusing on a mutant allele coding for a phenotypic
feature whose value deviates by a small amount from that
expressed by an individual bearing a resident (wild-type)
allele and asking whether the mutant allele will spread in
the gene pool. Whether the mutant allele will be favored
by selection can then be ascertained by evaluating its in-
clusive fitness effect, which is the sum of the effects of the
behavior of an individual bearing the mutant allele on the
fitness of all recipients in the population, each weighted
by the relatedness between the actor and the recipient
(Hamilton 1964, 1970).

Relatedness measures the statistical association between
the actor and the recipient breeding values (Michod and
Hamilton 1980; Queller 1992; Frank 1997; Gardner et al.
2007). This often reduces to a measure of the extent to
which the actor and recipient are more likely to share
alleles identical by descent than are two individuals sam-
pled at random from the population (Frank 1998). Re-
latedness can also be thought of as a ratio of two stan-
dardized transmission coefficients. It measures the extent
to which the recipient is more likely to transmit the mutant
allele to an offspring than is an individual sampled at
random from the population, relative to the extent to
which the actor is more likely to transmit the allele to an
offspring than is a random individual. Relatedness thus
describes a focal allele’s valuation of another individual
(in terms of transmission rate of replicate copies) relative
to the individual in which it resides (Frank 1998, p. 58).

What is a focal allele’s valuation of its transmission by
an individual living in the distant future when its carrier
reproduces and dies in the present? This question arises
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from the observation that the effects of an organism on
its environment are not necessarily completely and per-
fectly erased from one generation to the next (Darwin
1883; Lewontin 2000). Thus, phenotypic effects not only
may change the fitness of recipients living in the generation
of the actor but also may be felt by individuals living in
the next or subsequent generations.

Phenotypic carryover effects across generations may be
seen as a part of an individual’s extended phenotype
(Dawkins 1978, 1982), where genes extend their influence,
beyond the bodily manifestations of the organism in which
they reside and into the environment. Carryover effects
can also be seen as niche-constructing phenotypes
(Odling-Smee et al. 1996, 2003), which change the struc-
ture and configuration of the environment of future gen-
erations that may then feed back on the evolution of the
phenotypes. In the presence of a multigenerational gap
between behavioral modification of the environment by
an actor and the fitness consequences on recipients, there
must be a covariance between the actor and the recipients’
phenotypes across generations in order for long-lasting
traits to be affected by natural selection (Brodie 2005).

The aim of this note is to introduce and evaluate in-
tergenerational relatedness coefficients for finite popula-
tions following an isolation by distance pattern of popu-
lation structure. Such relatedness coefficients provide a
measure of phenotypic covariances across generations.
They quantify the extent to which selection pressures in
downstream generations affect the evolution of long-last-
ing behaviors and how this varies with variation in de-
mographic assumptions. These relatedness coefficients can
then be used in Hamilton’s rule in order to assess the
direction of selection on long-lasting behaviors.

This work is an addendum to an inclusive fitness anal-
ysis of the evolution of long-lasting phenotypes (Lehmann
2007, 2008; Sozou 2009), which I complement here by
exploring specifically and explicitly the stationary distri-
bution of intergenerational relatedness under localized dis-
persal. The results suggest that such relatedness coefficients
can take substantial values for hundreds of generations for
dispersal rates typical of natural populations.

Model

Biological Outline

Assume a haploid population with nd demes, each with a
constant number N of adult individuals. The structure of
this population is assumed to follow the standard ho-
mogeneous isolation by distance model (e.g., Maruyama
1970; Malécot 1975; Nagylaki 1983; Rousset 2004). That
is, demes can be thought of as points in a homogeneous
discrete space (e.g., equally spaced points on a circle if the

habitat is one dimensional) and are connected by dispersal.
The dispersal distribution of individuals is assumed to be
symmetric (in a one-dimensional habitat, individuals
move clockwise and counterclockwise with the same dis-
tributions) and identical for all demes, but it can otherwise
take any form (geometric, binomial, etc.). Finally, the ex-
ogenous environment of the population (all biotic and
abiotic factors exogenous to the population) is assumed
to be constant and identical at all times.

Consider that a given phenotype expressed by an in-
dividual in this population may affect the survival or the
fecundity (vital rates) of any other individual living in the
present or in the future of the population. Examples of
long-lasting phenotypic effects may include the construc-
tion of a nest or a burrow, the consumption of a resource,
or the emission of detritus and may thus result in an
endogenous change of the environment. Long-lasting phe-
notypic effects are assumed here to follow two crucial
homogeneity features.

Spatial homogeneity of phenotypic effects. This means that
the distribution of the phenotypic effects of a behavior
expressed by a focal individual living at any focal lattice
point (focal deme) on the fitness of others living at the
same or other lattice points is identical at all lattice points
(for more details, see Rousset and Billiard 2000; Lehmann
2008). With this assumption and that of the homogeneity
of population structure, an integer coordinate k (single in
one dimension, a pair in two dimensions, etc.) can be used
to measure the “spatial distance” of a deme relative to the
position of the focal deme. In a one-dimensional habitat,

can be thought of as the number of stepsk p 0, 1, 2, …
on the lattice separating two demes.

Temporal homogeneity of phenotypic effects. This means
that the distribution of the phenotypic effects of a behavior
expressed by a focal individual at any focal time point
(focal generation) on the fitness of other individuals living
at future time points is identical at all times. With this,
an integer coordinate can be used to mea-t p 0, 1, 2, …
sure the “temporal distance” of a deme relative to the focal
deme ( stems for the focal generation; for more de-t p 0
tails, see Lehmann 2008).

Space-Time Relatedness and Hamilton’s Rule

When gene action is additive and selection is weak in the
population described above, the condition under which a
mutant allele with long-lasting phenotypic effects is fa-
vored by selection over a wild-type allele can be expressed
in terms of Hamilton’s rule as

R b ! c 1 0 (1)!! k, t k, t
t k
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(eqq. [A1]–[A6] in the appendix in the online edition of
the American Naturalist). This invasion condition depends
on three quantities. The first quantity is the net change
!c in the fitness of a focal individual living in a focal
generation and stemming from the focal individual ex-
pressing the mutant allele during its whole life span. The
second quantity is the change in the fitness of the wholebk, t

set of individuals living at distance k from the focal deme
at t generations after the focal generation (referred to as
deme k, t) and stemming from the focal individual ex-
pressing the mutant allele. The third quantity is the re-
latedness coefficient

Q ! Qk, t t
R p lim (2)k, t 1 ! Qmr0 0

between the focal individual and a recipient from deme
k, t, where m is the mutation rate of the gene underlying
the behavior (assumed to follow the infinite allele model;
Kimura and Crow 1964); is the stationary probabilityQk, t

that an allele sampled in the actor is identical by descent
with a homologous allele sampled in an individual chosen
at random from deme k, t; and is theQ p ! Q /nk, t dt k

average probability of identity between two homologous
alleles sampled in two distinct individuals living at t gen-
erations apart (for diploid organism, the 1 in the denom-
inator of eq. [2] has to be replaced by the coancestry with
self).

The relatedness coefficient (eq. [2]) provides a mea-Rk, t

sure of the extent to which an individual sampled in deme
k, t is more (or less) likely to transmit a mutant allele to
the next generation than is a randomly sampled individual
from t, relative to the extent to which the focal individual
is more likely to transmit the mutant allele to the next
generation than is another individual sampled in its gen-
eration. The definition of also entails that the averageRk, t

relatedness of a focal individual with individuals living at
t generations from the focal generation is equal to 0:

. Hence, for each t, the total numberR p ! R /n p 0k, t dt k

of individuals that are positively related to the focal in-
dividual, each weighted by their relatedness to the focal
individual, is exactly equal to the total relatedness weighted
sum of individuals that are negatively related to him.

The relatedness coefficient is akin to the classicalRk, t

measure of population structure, FST (Wright 1951; Crow
and Aoki 1984; Cockerham and Weir 1987; Slatkin 1991),
with the only difference that it takes the temporal differ-
entiation between pairs of demes into account in addition
to the classic spatial differentiation. But it is important to
note that is a stationary value of relatedness, where tRk, t

indexes the number of generations between the sampling
of two individuals in the population. Hence, it is not the

same as the transient value of relatedness (or nd) between
two individuals sampled in the same generation at distance
k. As such, is different from the time dynamics of theRk, t

within-generation probabilities of identity by descent that
were analyzed in previous work (e.g., Malécot 1975; Varvio
et al. 1986).

Because the relatedness coefficient weights the fit-Rk, t

ness change of individuals living in deme k, t, it quan-bk, t

tifies the importance of the selection coefficient for thebk, t

evolution of the mutant allele. Equation (1) gives the ge-
neric invasion condition for a mutant allele in a homo-
geneous population of constant size without class structure
(e.g., age or stage structure). As such, no competitive effect
has been scaled out in equation (1), and the values both

and can take depend on additional details of theb Rk, t k, t

life history. In “Space-Time Relatedness for Wright-Fisher
Reproduction,” I provide examples of values that canRk, t

take under particular demographic assumptions and re-
turn to the issue of the coefficients in “Discussion.”bk, t

Space-Time Relatedness for Wright-Fisher Reproduction

The relatedness is analyzed here under a Wright-FisherRk, t

reproductive scheme (Ewens 2004), which corresponds to
a semelparous life cycle and which underlies classical iso-
lation by distance models (e.g., Maruyama 1970; Malécot
1973, 1975; Nagylaki 1983; Epperson 1999; Rousset 2004).
For ease of presentation, I consider only a one-dimensional
habitat, where the events of the life cycle are as follows.
(1) Each of the N adult individuals in a deme produces a
very large number of juveniles. After reproduction, all
adults die. (2) Each juvenile either remains philopatric
with probability m0 or may disperse with probability mk

to a deme at steps away from its natalk p 1, 2, … , n ! 1d

deme, either clockwise (probability 1/2) or counterclock-
wise (probability 1/2).

For this life cycle, the relatedness between a focal in-
dividual and a recipient living at steps awayk p 0, 1, 2, …
from the focal deme at generations aftert p 1, 2, 3, …
the focal generation can be expressed as

n !1d t1 wh !ikz(h)R p e , (3)!k, t 2Nn " G 1 ! whp1d h

where , , ,
n !1d1/2 2 2i p (!1) z(h) p 2ph/n G p ! w /(1 ! w )d h hhp1

and the scalars are the eigenvalues of the migrationwh

matrix (eqq. [A7]–[A18]). The relatedness coefficient be-
tween two individuals sampled at k steps apart in the same
generation ( ) is given by substituting intot p 0 t p 2
equation (3); that is, (for details, see text be-R p Rk, 0 k, 2

low; eqq. [A9], [A18]). Assuming that there is a positive
level of philopatry ( ) and that a line of descent ofm 1 00

a gene residing in a focal deme is eventually able to reach
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Figure 1: Geometric dispersal distribution given by equation (4) for
and for various values of the parameter g, which parametrizesm p 0.1

the range of dispersal. One has for the most rapidly decreasingg p 0.1
curve in both panels (dispersal is mainly local), for the leastg p 0.9
rapidly decreasing curve in both panels, and for the intermediateg p 0.5
curve. The figure illustrates the dispersal distribution when an individual
moves clockwise on the lattice, with its natal deme located at the origin
on the horizontal axis with .n p 20d

every deme in the population in the long run, the migra-
tion matrix has a single unit eigenvalue, , and allw p 10

eigenvalues appearing in equation (2) are strictly !1 in
absolute value (see paragraph below; eq. [A9]).

It follows from these considerations that the stationary
space-time relatedness decays with time and its long-term
value is equal to 0: for all k. This result islim R p 0t r# k, t

expected to hold more generally in finite populations, re-
gardless of the details of the life cycle, because when look-
ing sufficiently far in the future (or the past), the line of
descent (or the ancestral line) of a gene will be distributed
uniformly in the whole population (instead of being clus-
tered spatially and temporally around the focal deme). But
how fast does the space-time population structure decay
for a given dispersal distribution?

Explicit values of will be computed by using a geo-Rk, t

metric dispersal distribution (truncated because there are
a finite number nd of demes) defined as

1 ! m when i p 0
m p ,i!1i (1 ! g)g

m for 0 ! i ≤ n ! 1 and 0 otherwise{ d(n !1)d1 ! g

(4)

where m is the migration probability out of the natal deme.
With this, an individual remains in its natal deme with prob-
ability or disperses with probability m in a geometric1 ! m
manner up to steps apart, either clockwise or coun-n ! 1d

terclockwise on the lattice. Figure 1 illustrates that the pa-
rameter g (varying between 0 and 1) in equation (4) allows
one to investigate a continuum of spatial structures, ranging
from the stepping-stone model of dispersal when (ing r 0
which case dispersal is localized, and form p m m p 01 i

; Kimura and Weiss 1964) to Wright’s (1931) island modeli 1 1
of dispersal when (in which case dispersal is random,g r 1
with probability for any nonnatal deme).m/(n ! 1)d

The relatedness coefficients are shown in figure 2Rk, t

as a function of the spatial distance between the two demes
in which individuals are sampled for various values of the
temporal distance between them. This figure illustrates two
typical patterns of relatedness between pairs of individuals
sampled from the same generation under isolation by dis-
tance. First, relatedness between individuals decreases as
the spatial distance between them increases (e.g., Kimura
and Weiss 1964; Malécot 1975; Nagylaki 1983; Hartl and
Clark 2007). Second, relatedness takes positive values for
individuals sampled in adjacent demes and negative values
for individuals sampled in demes far apart from each other
(Grafen 2007). Hence, both increasing the vital rates of
individuals living nearby and decreasing those of individ-
uals living far away may increase inclusive fitness. Figure
2 also illustrates that these two features hold more gen-

erally for all temporal distances and with the isolation by
distance pattern decreasing as the temporal distance in-
creases, which follows from the temporal decay of the
stationary space-time probabilities of identity by descent
(the ’s; Malécot 1973; Epperson 1999).Qk, t

However, figures 2–4 reveal a biologically more inter-
esting point: namely, that the relatedness between indi-
viduals sampled in different generations from the same or
adjacent demes remains high for up to hundreds of gen-
erations for migration rates typical of natural populations
(for all figures, two migrants per generation were assumed;
i.e., ; Barton 2001, p. 334; Hartl and Clark 2007,Nm p 2
their table 6.5, p. 302). Only when the dispersal rate be-
comes high and the dispersal distribution tends to that of
the island model with random migration ( in eq. [4])g r 1
does the temporal clustering between individuals sampled
in neighboring demes vanish.

The high relatedness between a pair of individuals sam-
pled at many generations apart in the same or in adjacent
demes (figs. 2–4) is explained by the fact that under lo-
calized dispersal individuals tend to move to nearby demes
(e.g., stepping stone dispersal), which results in a high
probability that the pair of individuals sampled involves
both an ancestor and its descendant. This probability will
be much lower under random migration because once a
line of descent of an ancestor moves out of its deme, it
has a much lower probability to return to the deme of the
ancestor (or an adjacent deme) in later generations than
under localized dispersal. Hence, localized dispersal may
lead to high spatiotemporal clustering of gene lineages.
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Figure 2: Space-time relatedness coefficient (eq. [2]) graphed as a function of the spatial distance k between two individuals for various valuesRk,t

of the temporal distance t between them for the geometric dispersal distribution (eq. [4]) with and . From the highest to the lowestN p 20 m p 0.1
curve on the left-hand side of the graphs, , 50, 100, 150, 200, and 250. The top row is for , while the bottom row is for ;t p 0 n p 20 n p 100d d

in both cases, the left-hand graph has , and the right-hand graph has . The figure illustrates that two individuals sampled at hundredsg p 0.1 g p 0.5
of generations apart can be strongly related when they are sampled in adjacent demes and when dispersal is localized. When dispersal becomes less
localized (shifting from to ), both the spatial and temporal population structures decrease.g p 0.1 g p 0.5

Discussion

The model presented in this note is based on some im-
portant simplifying assumptions, in particular, weak se-
lection, additive gene action, constant exogenous environ-
ment, and constant population size. The model is thus
not meant to be a realistic description of extended phe-
notypes or niche construction. A more realistic model
would involve dynamical demographic variables (such as
deme sizes and conditions) varying in both space and time
jointly with phenotypes generated by the expression of
interacting loci within individuals across multitudes of
generations. Such features are likely to disturb the dynam-
ics of space-time relatedness from its neutral trajectory on
which the current results rely. Nevertheless, the simplifying
assumptions used here allow one to contrast directly short-
term and long-term phenotypic effects of behaviors. This
is because space-time relatedness coefficients capture the
relevance of selection pressures in downstream generations
for the evolution of a focal phenotype expressed in the

present (i.e., how much for will affect selectionb t 1 0k, t

on the mutant allele; see eq. [1]).
As is usually the case for relatedness coefficients (or,

more generally, F statistics; e.g., Wright 1951; Crow and
Aoki 1984; Cockerham and Weir 1987; Slatkin 1991), the
space-time relatedness coefficients, , involve the iden-Rk, t

tity between pairs of genes sampled in different classes of
individuals (eq. [2]) and can thus be estimated from ge-
netic markers (e.g., Queller and Goodnight 1989; Cha-
puisat et al. 1997; Fontanillas et al. 2004). However, be-
cause is defined relative to a population averageRk, t

probability of identity (i.e., in eq. [2]), estimation ofQt

average gene frequency in the population is required in
order to evaluate it, which in practice may be complicated
or infeasible. In order to circumvent this issue, one could
define space-time relatedness coefficients relative to the
probability of identity between pairs of genes sampled in
the focal deme in the focal generation (and thus replace
both and with in eq. [2], which can still beQ Q Q0, 0t 0
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Figure 3: Space-time relatedness coefficient between two individualsR0,t

sampled from the same deme as a function of the number of generations
t between them for , , and various combinations of gN p 20 n p 100d

and m. In each graph, the top curve is for (dispersal is mainlyg p 0.1
local), the middle curve is for , and the bottom curve is forg p 0.5

, while from the top to bottom graph, one has , 0.2, andg p 0.9 m p 0.1
0.4. Hence, when dispersal becomes less localized (g increases), the tem-
poral structure vanishes more rapidly, and an increase in migration, m,
has exactly the same effect.

Figure 4: Space-time relatedness coefficient graphed as a functionRk,t

of k for various values of t, ranging from to in steps oft p 0 t p 5,000
200 generations for , , , and .m p 0.1 g p 0.1 N p 20 n p 200d

used in eq. [1] in order to assess the direction of selection
because of the property that fitness effects sum to 0; eq.
[A3]). This alternative definition of relatedness is maybe
less intuitive for understanding the selective pressure on

long-lasting behaviors (because relatedness to patch mates
is 0), but it has an advantage from an empirical point of
view since it allows one to evaluate relatedness using local
allele frequencies only (Rousset 2002, 2006).

Finally, it is worth recalling that while the condition
under which a mutant allele is favored by selection de-
pends on both the relatedness coefficients ( ) and theRk, t

selection coefficients (!c and in eq. [1]), the latterbk, t

have not been evaluated here explicitly (specific examples
of coefficients are presented in Lehmann 2008 andbk, t

Sozou 2009). Selection coefficients stemming from the ex-
pression of social behaviors in spatially subdivided pop-
ulations depend considerably on the details of the biolog-
ical situation under focus, such as the timing of social
interactions and the mode of competition, among a pleth-
ora of other life cycle features (e.g., Taylor 1992a; West et
al. 2002, 2007; Rousset 2004; Lion and van Baalen 2007;
Grafen and Archetti 2008).

Even for the life cycle assumptions leading to the specific
examples of relatedness given by equation (3), there are a
wide variety of possible outcomes for the values the se-
lection coefficients can take. There are situations wherebk, t

the present and the long-lasting indirect effects ( andbk, 0

for , respectively) will be null, such as whenb t 1 0k, t

density-dependent competition occurs completely before
dispersal (Wade 1985). There is also the classic situation
were the present indirect effects, , will take values suchbk, 0

as to cancel the present generation benefits to kin (Taylor
1992a, 1992b) but in which case the presence of long-
lasting indirect effects, for , allow for selection onb t 1 0k, t

altruism due to future generations benefits to kin (Leh-
mann 2008). Finally, there are scenarios where both pres-
ent and future indirect effects may be large and may mark-
edly affect the selective pressure on the mutant allele, such
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as when the behavior primarily increases the number of
dispersing individuals (Rogers 1990), in which case the
effect of the behavior on present and future local com-
petition is negligible.

Regardless of the exact magnitude of the indirect selec-
tion coefficients, the main point to take away is that if
they are nonnull ( for ; i.e., there is ecologicalb ( 0 t 1 0k, t

inheritance sensu Odling-Smee et al. 1996, 2003), then
behaviors may be considerably shaped by delayed effects
under localized dispersal in natural populations. Indeed,
the values taken by the space-time relatedness coefficients
suggest that it is plausible that long-lasting phenotypes are
subject to selection even if there is a gap of many gen-
erations between the behavioral modification of the en-
vironment and the fitness consequences on recipients (figs.
2–4). Why not hundreds of generations, thousands of
generations?
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commercial intercourse, though it seems strange that, while in the old country it is found near the habitations of men, in this country it occurs
only upon the most uninhabitable islands.” Right, Helix alternate Say. “On islands, they often occur in the greatest profusion. When in captivity,
they lie buried most of the time under the moist earth, and appear to suffer more from the want of moisture than other species.” From “The Land
Snails of New England (Continued)” by Edward S. Morse (American Naturalist, 1867, 1:186–188).
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Appendix from L. Lehmann, “Space-Time Relatedness and Hamilton’s
Rule for Long-Lasting Behaviors in Viscous Populations”
(Am. Nat., vol. 175, no. 1, p. 136)

Supplemental Information
Hamilton’s Rule and Space-Time Relatedness
The expression for Hamilton’s rule (eq. [1]) will be derived from previous inclusive fitness theory results for
spatially subdivided populations.

Inclusive Fitness Effect

When gene action is additive and selection is weak in a homogeneous population, the change of the fixation
probability (relative to neutrality) of a single mutant allele, whose phenotypic value is different from the
phenotype resulting from the expression of a wild-type allele, can be written as

S
f p lim , (A1)

1 ! Qmr0 0, 0

where m is the mutation rate of the gene underlying the behavior (taken here to follow the infinite allele model;
Kimura and Crow 1964); is the stationary probability of identity by descent between a pair of homologousQ0, 0

genes sampled from two individuals from the same deme and from the same generation, which is evaluated in a
neutral model (no selection); and S is the gradient of selection on the mutant allele, which can be expressed as
an inclusive fitness effect (Rousset and Billiard 2000; Rousset 2004).

For the demographic setting introduced in the main text (“Biological Outline”), the gradient of selection can
be expressed as

S p !c " b Q , (A2)!! k, t k, t
t k

where !c is the change in the fitness of the focal individual stemming from the focal expressing the mutant
allele, is the change in the fitness of the focal individual stemming from the expression of the mutant allelebk, t

by the whole set of individuals living at distance k from the focal deme at t generations before the focal
generation, and is the stationary probability that a gene sampled in the focal individual is identical byQk, t

descent with a homologous gene sampled in an individual chosen at random from deme (Lehmann 2007, eq.k,t
[A11]; 2008, eq. [4]).

The homogeneity assumptions of the model entail that all individuals in the population face the same set of
problems at all times (strategic equivalence; Grafen 2006, p. 543). The actor and the recipients can thus be
interchanged, and one can use a future oriented interpretation of the inclusive fitness effect S. Then, can bebk, t

interpreted as the effect of a focal individual on the fitness of the whole set of individuals living in deme k at t
generations after the focal generation, and gives the probability that a recipient carries a homologous geneQk, t

identical by descent to that of the focal individual (for more details, see Lehmann 2008). If the gradient of
selection is positive ( ), selection favors the mutant allele, which then has a higher probability of fixationS 1 0
than a neutral allele (or that of a wild-type allele in a population of mutants).
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Inserting Relatedness

The condition of invasion of the mutant allele obtained from equation (A2) will now be expressed in terms of
the relatedness coefficients defined in equation (2). To that end, we will use the result that the fitness changesRk, t

appearing in equation (A2) sum to 0 in the following way:

!c " b p 0,! k, 0
k

b p 0 for all t ≥ 1. (A3)! k, t
k

These equalities follow from the fact that the changes in the fitness of a focal individual resulting from all
individuals living in the population at t generations before the focal generation and all expressing the mutant
allele must sum up to 0. Otherwise, a systematic change in gene frequency would occur in a monomorphic
population, that is, under neutrality ( for all k and all t), which is not possible (i.e., fitness effects areQ p 1k, t

zero sum).
Inserting equation (A2) into equation (A1), we have

1
f p lim !c " b Q " b Q , (A4)! !!k, 0 k, 0 k, t k, t( )1 ! Q k t≥1 kmr0 0, 0

and by subtracting from the first two terms in parentheses and from the thirdQ (!c "! b ) ! Q ! bk, 0 k, t0 tk t≥1 k

term, one obtains

1 ! Q Q ! Q Q ! Qk, 0 k, t0 0 t
f p lim !c " b " b . (A5)! !!k, 0 k, t[ ( ) ( )]1 ! Q 1 ! Q 1 ! Qk t≥1 kmr0 0, 0 0 0

On substitution of the definition of (eq. [2]) into this equation, one hasRk, t

1 ! Q0
f p lim R b ! c , (A6)!! k, t k, t( )1 ! Q t kmr0 0, 0

and the mutant allele is favored by selection when the term in parentheses is positive, which is equation (1).

Space-Time Relatedness
Here will be expressed in terms of the dispersal distribution for the life cycle described in the main text.Rk, t

Probabilities of Identity by Descent

A classical result is that the stationary probability of identity between two individuals sampled in the sameQk, 0

generation at k steps apart on a one-dimensional circular lattice for the life cycle described in the main text can
be written as

n !1d1 ! Q gl0, 0 h !ikz(h)Q p e (A7)!k, 0 Nn 1 ! glhp0d h

(Malécot 1973, eq. [15]; 1975, eq. [18]; Epperson 1999, eq. [B4]; Rousset 2004, chap. 3), where ,2g p (1 ! m)
, , and is the square of the characteristic function of the symmetric migration1/2 2i p (!1) z(h) p 2ph/n l p wd h h

distribution:

n !1 n !1d d1 ijz(h) !ijz(h)w p m e " m e . (A8)! !h j j( )2 jp0 jp0
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This equation entails that individuals move clockwise on the circle (to deme on the right of thei p 1, 2, 3, …
natal deme) and counterclockwise on the circle (to deme on the left of the natal deme)i p !1, ! 2, ! 3, …
with identical distributions (for a development of isolation by distance models, see Rousset 2004, chap. 3).

The stationary probability of identity between two individuals sampled at k steps apart on the lattice andQk, t

at generations apart ist ≥ 1

n !1d t/21 ! Q (gl )0, 0 h !ikz(h)Q p e (A9)!k, t Nn 1 ! glhp0d h

(Malécot 1973, eq. [20]; Epperson 1999, eq. [B12]; Lehmann 2008, eq. [A33]). Note that for , equationt p 2
(A9) is equal to equation (A7). This equality can intuitively be understood by considering the infinite island
model of dispersal. In this case, a pair of individuals sampled in a deme in the same generation descend from
the same ancestor with probability (with probability , the two individuals are philopatric, in2 2(1 ! m) /N (1 ! m)
which case they descend from the same individual with probability ). A pair of individuals sampled at two1/N
generations apart from the same deme consists of both an ancestor and its descendant with the same probability

as above (with probability , the ancestral line of the individual sampled downstream was in2 2(1 ! m) /N (1 ! m)
the same deme two generations earlier, in which case it descends from the individual sampled in that generation
with probability ).1/N

The scalars appearing in equations (A7) and (A9) are the eigenvalues of the backward migration2l p wh h

matrix of a pair of genes, while the terms are the eigenvalues of the migration matrix of a single gene. Whenwh

there is a positive level of philopatry ( ) and a line of descent of a gene is eventually able to reach everym 1 00

deme in the population in the long run, the migration matrix is regular (all the entries of some power of the
matrix are positive) and it has a single unit eigenvalue given by , while all other eigenvaluesn !1dw p ! m p 10 jjp0

are strictly lower than 1 in absolute value: for (a result that comes from the Perron-Frobenius0 ≤ Fw F ! 1 h ( 0h

theorem for nonnegative matrices; e.g., Nagylaki 1998, p. 1600).

Relatedness

Using the formulas for the probabilities of identity (eqq. [A7]–[A9]), the relatedness coefficient (eq. [2]) willRk, t

be evaluated as a product of two limits:

Q ! Qk, t t 1 ! Q0, 0R p lim # lim . (A10)k, t 1 ! Q 1 ! Qmr0 mr00, 0 0

To this end, expand equation (A9) as

n !1dt/2 t/21 ! Q (gl ) (gl )0, 0 0 h!ikz(0) !ikz(h)Q p e " e!k, t [ ]Nn 1 ! gl 1 ! glhp1d 0 h

n !1dt/2 t/21 ! Q g 1 ! Q (gl )0, 0 0, 0 h !ikz(h)p " e , (A11)!
Nn 1 ! g Nn 1 ! glhp1d d h

where the second line follows from using and . Inserting equation (A11) into the!ikz(0) !ik0l p 1 e p e p 10

average probability of identity, one obtains
n !1d1

Q p Q! k, tt n kp0d

n !1 n !1d dt/2 t/21 1 ! Q g 1 ! Q (gl )0, 0 0, 0 h !ikz(h)p " e! ![ ]n Nn 1 ! g Nn 1 ! glkp0 hp1d d d h

n !1 n !1d dt/2 t/21 ! Q g 1 ! Q (gl ) 10, 0 0, 0 h !ikz(h)p " e (A12)! !
Nn 1 ! g Nn 1 ! gl nhp1 kp0d d h d

t/21 ! Q g0, 0p ,
Nn 1 ! gd
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where the last line is obtained from the standard result that for all . Subtracting equationn !1d !ikz(h)! e p 0 h ( 0kp0

(A11) from equation (A12), one has

n !1d t/2Q ! Qk, t t 1 lh !ikz(h)lim p e . (A13)!
1 ! Q Nn 1 ! lhp1mr0 0, 0 d h

Using , where the right-hand side is obtained by setting in the right-handQ p (1 ! Q )g/[Nn (1 ! g)] t p 20, 0 d0

side of equation (A12) (or from eq. [3.70] in Rousset 2004), we have

1 ! Q Nn (1 ! g)(1 ! Q )0, 0 d 0, 0lim p lim . (A14)
Nn (1 ! g) ! g(1 ! Q )1 ! Qmr0 mr0 d 0, 00

It now remains to obtain an expression for , which can be done using equation (A7) and writingQ0, 0

n !1d1 ! Q g gl0, 0 hQ p " !0, 0 ( )Nn 1 ! g 1 ! glhp1d h

1 ! Q g0, 0p " G(g) , (A15)( )Nn 1 ! gd

where , which givesn !1dG(g) p ! gl /(1 ! gl )h hhp1

g " (1 ! g)G(g)
Q p . (A16)0, 0 g " (1 ! g)(Nn " G(g))d

Substituting this equation into equation (A14) and simplifying yield

1 ! Q Nn0, 0 dlim p . (A17)
Nn " G(1)1 ! Qmr0 d0

Putting all terms together, the relatedness between two individuals sampled at k steps apart on the lattice and
at generations apart can be expressed ast p 1, 2, 3, …

n !1d t/21 lh !ikz(h)R p e , (A18)!k, t n !1d 1 ! lhp1Nn " ! l /(1 ! l ) hd h hhp1

which is equation (2) with . Because (e.g., eqq. [A7]–[A9]), the relatedness coefficient2l p w Q p Qh h k, 0 k, 2

between two individuals sampled at k steps apart in the same generation ( ) is obtained by substitutingt p 0 t p
into equation [A18]; that is, .2 R p Rk, 0 k, 2

Finally, in order to evaluate explicitly in terms of the migration distribution defined in the main text (e.g.,Rk, t

figs. 1–4), I used equation (4) with equation (A8), which gives

n !1d j!1(1 ! g)g
w p (1 ! m) " m cos ( jz(h)). (A19)!h n !1d1 ! gjp1


