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A B S T R A C T   

Standard of care for patients with locally advanced squamous cell carcinoma of the head and neck (LA SCCHN) is 
surgery followed by chemoradiotherapy (CRT) or definitive CRT. However, approximately 50 % of patients with 
LA SCCHN develop disease recurrence or metastasis within 2 years of completing treatment, and the outcome for 
these patients is poor. Despite this, the current treatment landscape for LA SCCHN has remained relatively 
unchanged for more than 2 decades, and novel treatment options are urgently required. One of the key causes of 
disease recurrence is treatment resistance, which commonly occurs due to cancer cells’ ability to evade 
apoptosis. Evasion of apoptosis has been in part attributed to the overexpression of inhibitor of apoptosis proteins 
(IAPs). IAPs, including X-linked IAP (XIAP) and cellular IAP 1 and 2 (cIAP1/2), are a class of proteins that 
regulate apoptosis induced by intrinsic and extrinsic apoptotic pathways. IAPs have been shown to be overex
pressed in SCCHN, are associated with poor clinical outcomes, and are, therefore, a rational therapeutic target. 
To date, several IAP inhibitors have been investigated; however, only xevinapant, a potent, oral, small-molecule 
IAP inhibitor, has shown clinical proof of concept when combined with CRT. Specifically, xevinapant demon
strated superior efficacy in combination with CRT vs placebo + CRT in a randomized, double-blind, phase 2 trial 
in patients with unresected LA SCCHN. Here, we describe the current treatment landscape in LA SCCHN and 
provide the rationale for targeting IAPs and the clinical data reported for xevinapant.   

Introduction 

Head and neck cancer, which includes cancers of the oral cavity, 
larynx, nasopharynx, oropharynx, and hypopharynx, is the eighth most 
common cancer worldwide, with 878,348 new cases and 444,347 deaths 
reported in 2020 [1]. In Europe, 158,581 cases and 69,328 deaths were 
reported in 2020, and 24,093 cases and 8,240 deaths were reported in 
Japan [2]. In the US, it is estimated that 66,470 new cases and 15,050 
deaths occurred in 2022 [3,4]. 

Squamous cell carcinoma of the head and neck (SCCHN) accounts for 

>90 % of all head and neck cancers [5]. Tobacco use, frequent alcohol 
intake, and human papillomavirus infection are 3 factors that increase 
the risk of developing SCCHN [6–8]. Most patients (≈60 %) with SCCHN 
are diagnosed with locally advanced (LA) disease [9]. Of these patients, 
approximately half will not undergo surgery [10] due to the presence of 
inoperable tumors, physician decision to avoid surgery in order to pre
serve organ function/quality of life, or patient preference [5]. 
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Treatment landscape for LA SCCHN 

The current standard of care for patients with unresected LA SCCHN 
who are eligible to receive cisplatin is definitive chemoradiotherapy 
(CRT), ie, concurrent high-dose cisplatin and radiotherapy: cisplatin 
100 mg/m2 every 3 weeks (3 cycles) plus standard fractionated radio
therapy 70 Gy in 35 daily fractions of 2 Gy over 7 weeks [5,11]. In 
patients who will undergo surgery and are at a high risk of disease 
recurrence, the standard of care is surgery plus adjuvant CRT [5,11]. 
However, patients may have an absolute contraindication for the use of 
cisplatin [12] or physicians might prefer not to use cisplatin in patients 
with a relative contraindication to cisplatin [12]. In patients at high risk 
of recurrence following surgery in whom cisplatin may not be preferred, 
the recommended treatment is radiotherapy alone [5,11,12]. Outcomes 
for this subset of patients are poor with a high rate of disease recurrence 
[13,14]. 

Unresected LA SCCHN 

The treatment landscape for unresected LA SCCHN has remained 
relatively unchanged for more than 2 decades. One area of clinical 
development for the treatment of unresected LA SCCHN has been the 
study of immune checkpoint inhibitors (ICIs) in combination with CRT. 
ICIs are approved in the recurrent and/or metastatic SCCHN setting 
[15,16]; however, they have not improved outcomes in unresected LA 
SCCHN. In the JAVELIN Head and Neck 100 phase 3 trial, the addition of 
avelumab (anti–programmed cell death 1 ligand 1 [anti–PD-L1]) to CRT 
did not improve progression-free survival (PFS) vs placebo + CRT in 
patients with unresected LA SCCHN [17]. Similarly, the phase 3 
KEYNOTE-412 trial, which evaluated pembrolizumab (anti
–programmed cell death 1 protein [anti–PD-1]) + CRT vs placebo + CRT 
followed by maintenance pembrolizumab or placebo in patients with 
unresected LA SCCHN, did not meet its primary endpoint of improving 
event-free survival [18]. Additionally, the phase 3 REACH trial in pa
tients with unresected LA SCCHN, which evaluated the combination of 
avelumab + cetuximab + radiotherapy vs CRT in cisplatin-eligible pa
tients or cetuximab + radiotherapy in cisplatin-ineligible patients, did 
not meet the primary endpoint of improving PFS in cisplatin-ineligible 
patients, and favored standard-of-care CRT for cisplatin-eligible pa
tients [19]. Lastly, the phase 2 PembroRad study, investigating pem
brolizumab + radiotherapy in patients with unresected LA SCCHN unfit 
to receive cisplatin, did not improve outcomes vs cetuximab + radio
therapy [20]. Currently, the phase 3 IMvoke010 trial is investigating 
atezolizumab (anti–PD-L1) as treatment for patients with LA SCCHN 
who are at high risk of disease recurrence or progression following 
definitive local therapy [21]. The NANORAY-312 phase 3 trial is also 
investigating the combination of the hafnium dioxide nanoparticle 
radioenhancer NBTXR3 + radiotherapy with or without cetuximab vs 
radiotherapy with or without cetuximab in platinum-ineligible, elderly 
patients with unresected LA SCCHN [22]. 

Resected LA SCCHN 

Similar to the trial landscape of unresected LA SCCHN, a number of 
clinical studies that are investigating the use of ICIs in combination with 
CRT are ongoing for the treatment of patients who will undergo surgery. 
A phase 3 trial, KEYNOTE-689, is investigating neoadjuvant pem
brolizumab followed by surgical resection and adjuvant pembrolizumab 
+ radiotherapy or CRT [23]. The phase 3 NIVOPOSTOP trial is inves
tigating nivolumab (anti–PD-1) + CRT vs CRT alone in patients with 
resected LA SCCHN who are at high risk of relapse [24], while the phase 
3 IMvoke010 trial is investigating atezolizumab as adjuvant therapy for 
patients with LA SCCHN who are at high risk of disease recurrence or 
progression following primary surgery that was performed as part of 
definitive therapy [21]. Additionally, a phase 3 trial is investigating 
nimotuzumab (anti–epidermal growth factor receptor) + CRT vs CRT 

alone as adjuvant therapy for patients with resected LA SCCHN [25]. 
Due to the poor long-term outcomes in patients with unresected LA 

SCCHN who experience local disease recurrence or distant metastasis 
and the high risk of relapse in patients who undergo surgery but are 
ineligible for cisplatin-based adjuvant CRT, novel treatment options are 
urgently required. 

Inhibitor of apoptosis proteins (IAPs) 

Resistance to chemotherapy and/or radiotherapy is commonly 
observed in cancer and is one of the key factors in local or distant failure 
[26]. Apoptosis is often suppressed in cancer cells, and evasion of 
apoptosis represents a key hallmark of cancer [27,28], enabling cancer 
cells to resist the effects of chemotherapy/radiotherapy [29–31]. One 
important mechanism of suppression of apoptosis and resistance to 
anticancer therapy has been attributed to IAPs [30–32]. 

IAPs, including X-linked IAP (XIAP) and cellular IAP 1 and 2 (cIAP1/ 
2), are a class of proteins that regulate apoptosis induced by intrinsic and 
extrinsic apoptotic pathways [33–35]. IAPs block apoptotic signaling 
through a variety of different mechanisms (Fig. 1); XIAP directly blocks 
caspase activity downstream of the mitochondrion (intrinsic apoptotic 
pathway) by binding and inhibiting caspases-3, -7, and -9 [34,35], while 
cIAP1/2 inhibits the formation of proapoptotic complexes that are part 
of the extrinsic apoptotic pathway initiated by tumor necrosis factor 
(TNF) receptor signaling [33,34,36,37]. 

In addition, cIAP1/2 also activates canonical and noncanonical nu
clear factor kappa-light-chain enhancer of activated B cells (NFκB) 
signaling, which can modulate apoptosis and immune signaling. cIAP1/ 
2 also regulates apoptosis via ubiquitination of receptor-interacting 
serine/threonine-protein kinase 1 (RIP1), which initiates canonical 
NFκB signaling through the recruitment of transforming growth factor-β 
(TGF-β)-activated kinase 1-TAK1-binding protein, IκB kinase, and NF- 
kappa-B essential modulator, and leads to the degradation of IκB and 
release of NFκB, activating the transcription of genes involved in pro
survival signaling [38,39]. cIAPs suppress noncanonical NFκB signaling 
by ubiquitination of NFκB-inducing kinase (NIK), preventing activation 
of the noncanonical pathway and suppressing the release of inflamma
tory cytokines such as TNFα [39–43]. 

Activity of IAPs is inhibited by endogenous antagonist proteins such 
as the second mitochondria-derived activator of caspase (SMAC), 
released from the mitochondria in response to intrinsic stress, eg, 
induced by anticancer therapy, leading to apoptosis [33,34,44]. SMAC 
binds to the baculoviral IAP repeat domains of XIAP and cIAP1/2 [45], 
preventing them from inhibiting the activation of downstream caspases, 
and promoting apoptotic signaling [33,44]. The binding of SMAC to 
cIAP1/2 also results in the ubiquitination and degradation of cIAP and 
activation of the extrinsic apoptotic pathway [33,38]. In addition, the 
reduction in cIAP1 results in the stabilization of NIK, enabling the 
activation of noncanonical NFκB signaling and inducing TNFα expres
sion [33,46], which in turn can induce apoptosis via the extrinsic 
pathway [38]. 

IAPs, including XIAP and cIAP1/2, have been shown to be frequently 
overexpressed in various cancers [34,38], including SCCHN [47], and 
increase the resistance of cancer cells to apoptosis and prevent cell death 
induced by anticancer treatments, such as chemotherapy and radio
therapy [31,32,48,49]. XIAP expression was also significantly associ
ated with cisplatin resistance and poor clinical outcomes in LA SCCHN 
[50]. In addition, increased XIAP/cIAP1 expression and cIAP2 over
expression have been associated with a poor prognosis in SCCHN 
[50–52]. Due to the link between IAP overexpression and tumor pro
gression, treatment failure, and poor prognosis, targeting of IAPs is 
considered a promising therapeutic concept in LA SCCHN. 

IAP inhibitors 

To explore the potential of IAP inhibition for the treatment of cancer, 
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a number of IAP inhibitors have been developed. IAP inhibitors are 
generally SMAC mimetics, designed to bind and inhibit XIAP and cIAP1/ 
2 [33,38]. IAP proteins have also been inhibited using antisense oligo
nucleotides that downregulate protein levels by targeting their 
messenger RNAs [34]. IAP inhibitors have shown antitumor activity in 
cell lines and mouse xenograft models, especially in combination with 
other anticancer therapies [53–59]. However, despite recent advances 
in this area of research, the majority of IAP inhibitors are in the pre
liminary stages of clinical development or have been discontinued 
(Table 1). 

Development of IAP inhibitors in LA SCCHN 

Currently, 4 IAP inhibitors are under investigation in clinical trials in 
SCCHN (Table 1), including xevinapant, tolinapant, APG-1387, and 
birinapant, of which 2 are being investigated in LA SCCHN. Three trials 
are currently ongoing in LA SCCHN: a phase 1 trial of tolinapant in 
combination with radiotherapy in cisplatin-ineligible patients with 
unresected disease (no data have been published to date); a phase 3 trial 
of xevinapant in combination with CRT in patients with unresected 
disease; and a phase 3 trial of xevinapant in combination with radio
therapy in the adjuvant postoperative setting in cisplatin-ineligible pa
tients. Of these inhibitors, xevinapant is the most advanced in terms of 
clinical development and, to date, the only IAP inhibitor that has 
demonstrated antitumor activity and proof of concept in unresected LA 
SCCHN in a randomized, placebo-controlled, double-blind, phase 2 
clinical trial [60]. 

Xevinapant 

Xevinapant is a potent, oral, small-molecule IAP inhibitor that blocks 
XIAP and cIAP1/2, restoring cancer cell sensitivity to apoptosis and, 
thereby, is thought to enhance the effects of anticancer treatments such 
as chemotherapy and radiotherapy [61–63]. Xevinapant acts as a SMAC 
mimetic and releases the blockade in downstream caspase activity 
crucial for apoptosis [62]; inhibition of XIAP directly releases the brake 
on downstream caspase activity in the intrinsic pathway [62], while 
inhibition of cIAP1/2 promotes proapoptotic signaling from TNF re
ceptors via the extrinsic pathway [33,62] (Fig. 2). In tumor samples 
from patients with SCCHN, xevinapant + cisplatin or carboplatin 
induced caspase-3–dependent apoptosis [64]. In SCCHN cell lines and 
mouse xenograft models, xevinapant exhibited limited activity as a 
single agent and synergistic/additive activity with chemotherapy and 
radiotherapy [62,65]. 

In addition, the inhibition of cIAP1/2 by xevinapant may amplify 
immune cell activation by activating noncanonical NFκB signaling, 
which induces the production of inflammatory cytokines, such as TNFα 
[36,62,66–68]. Through the activation of noncanonical NFκB signaling 
and production of inflammatory cytokines, xevinapant is expected to 
promote the activation of B cells, T cells, and macrophages, enhancing 
cytokine secretion and upregulating immune activation markers 
[36,69–71]. Preclinical studies of the IAP inhibitors tolinapant and 
LCL161 support this hypothesis; IAP inhibition by tolinapant in a mouse 
model of SCCHN enhanced clonal expansion of cytotoxic T cells, 
improved tumor-infiltrating lymphocyte–mediated killing of tumor 
cells, and upregulated antigen presentation on tumor cells [72]. Addi
tionally, the modulation of noncanonical NFκB signaling through 
cIAP1/2 inhibition by LCL161 in a mouse model of pancreatic cancer 
enhanced macrophage activation, increasing phagocytosis of tumor cells 
in a T-cell–dependent manner [73]. 

Consequently, the overexpression of IAPs in SCCHN and the poten
tial for xevinapant to enhance the effect of chemotherapy and radio
therapy provide a strong rationale for the exploration of xevinapant 
treatment in patients with LA SCCHN. 

Fig. 1. Regulation of apoptotic signaling in healthy cells. (A) IAPs block 
apoptotic signaling pathways, promoting prosurvival signaling. XIAP and 
cIAP1/2 prevent activation of caspases and, thereby, suppress apoptosis; 
cIAP1/2 also blocks NIK activity and thereby inhibits noncanonical NFκB 
signaling, suppressing the release of inflammatory cytokines, such as TNFα. (B) 
SMAC inhibits IAPs, promoting apoptosis. SMAC is released from the mito
chondria into the cytosol in response to proapoptotic stimuli. SMAC inhibits 
XIAP and cIAP1/2, enabling the activation of the caspase cascade and pro
moting downstream apoptotic signaling and production of inflammatory cyto
kines via the noncanonical NFκB pathway. cIAP1/2, cellular IAP 1/2; FADD, 
fas-associated protein with death domain; IAP, inhibitor of apoptosis pro
teins; NFκB, nuclear factor kappa-light-chain enhancer of activated B cells; NIK, 
NFκB-inducing kinase; RIP1, receptor-interacting serine/threonine-protein ki
nase 1; SMAC, second mitochondria-derived activator of caspase; TNF, tumor 
necrosis factor; XIAP, X-linked IAP. 
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Xevinapant clinical data 

The combination of xevinapant + CRT was explored in a phase 1/2 
trial in patients with unresected LA SCCHN. In the phase 1, open-label, 
dose-escalation part of the trial, patients received escalating doses of 
xevinapant (100, 200, or 300 mg/day on days 1–14 of a 3-week cycle, 
for 3 cycles) combined with concurrent CRT (cisplatin 100 mg/m2 on 
day 2 every 3 weeks, for 3 cycles, with concomitant conventional frac
tionated radiotherapy [2 Gy/day, 5 days/week for 7 weeks] up to 70 Gy) 
[74]. A predictable and manageable safety profile was observed at the 
maximum tolerated dose of xevinapant 200 mg/day, which was defined 
as the recommended phase 2 dose [74]. Across all dose levels, confirmed 
objective responses were observed in 11 of 13 evaluable patients (85 %) 
[74]. In the double-blind, phase 2 part of the trial, a total of 96 patients 
with unresected LA SCCHN were randomly assigned to receive xevina
pant 200 mg/day (days 1–14 of 3-week cycles, for 3 cycles) + CRT 
(cisplatin 100 mg/m2 every 3 weeks on day 2 of every cycle, for 3 cycles; 
intensity-modulated radiotherapy 70 Gy [2 Gy/day, 5 days/week for 7 
weeks]) or placebo + CRT [60]. At 18 months from the end of CRT, a 
significantly larger proportion of patients achieved locoregional control 
(primary endpoint) with xevinapant + CRT (54 %; 95 % CI, 39–69) vs 

placebo + CRT (33 %; 95 % CI, 20–48; odds ratio, 2.74; 95 % CI, 
1.15–6.53; P = 0.0232) [60,75]. Over 3 years of follow-up, xevinapant 
+ CRT prolonged PFS and duration of response vs placebo + CRT: me
dian PFS was not reached vs 16.9 months (hazard ratio, 0.33; 95 % CI, 
0.17–0.67; P = 0.0019), the risk of death or disease progression after 
initial response was reduced by 79 % (hazard ratio, 0.21; 95 % CI, 
0.08–0.54; P = 0.0011) [75]. The risk of death over 5 years of follow-up 
was more than halved with xevinapant + CRT vs placebo + CRT (hazard 
ratio, 0.47; 95 % CI, 0.27–0.84; P = 0.0101) [75]. In summary, results 
from the phase 1/2 trial of xevinapant + CRT in patients with unresected 
LA SCCHN suggest the addition of xevinapant to standard-of-care CRT is 
well tolerated and results in superior clinical outcomes vs placebo +
CRT. 

In a window-of-opportunity study in patients with resectable 
SCCHN, treatment with xevinapant monotherapy resulted in a signifi
cant reduction in cIAP1 levels in tumor cells [67]. This study also pro
vided support for the downstream effects on host immunity in the tumor 
microenvironment [67]. A significant increase in levels of cluster of 
differentiation 8+ (CD8+) tumor-infiltrating lymphocytes and PD-1/PD- 
L1–positive immune cells in patient tumor samples was observed after 
xevinapant treatment and, in addition, changes in expression of genes 

Table 1 
Active listings of IAP inhibitors registered on ClinicalTrials.gov.  

Agent Active listings on 
ClinicalTrials.gov* 

Phase Type of treatment Tumor type(s) Status NCT number 

AEG35156 No – – – – – 
AEG40826  

(HGS1029) 
No – – – – – 

APG-1387 
(SM-1387) 

Yes (3) 1 Monotherapy or in combination with 
pembrolizumab or carboplatin/ 
paclitaxel 

Advanced solid tumors or hematologic 
malignancies 

Recruiting NCT03386526   

1/2 + toripalimab Advanced solid tumors, phase 2 
nasopharyngeal cohort 

Recruiting NCT04284488   

1/2 + chemotherapy Pancreatic adenocarcinoma Recruiting NCT04643405 
BI891065 Yes (1) 1 + BI754091 Asian patients with advanced solid tumors Active, not 

recruiting 
NCT04138823 

Birinapant  
(TL32711) 

Yes (2) 1 + IMRT Locally recurrent SCCHN Recruiting NCT03803774   

1 + IGM-8444 Advanced solid tumors Recruiting NCT04553692 
BV6 No – – – – – 
CUDC-427  

(GDC- 
0917) 

No – – – – – 

JP1201 No – – – – – 
LBW242 No – – – – – 
LCL161 No – – – – – 
RG7419  

(GDC- 
0152) 

No – – – – – 

SM114 No – – – – – 
SM130 No – – – – – 
SM164 No – – – – – 
Tolinapant  

(ASTX660) 
Yes (4) 1 + pembrolizumab Cervical, TNBC, advanced cancer Recruiting NCT05082259   

1/2 Monotherapy Advanced solid tumors and lymphomas, 
phase 2 recurrent/metastatic SCCHN 
cohort 

Active, not 
recruiting 

NCT02503423   

1/2 Monotherapy Relapsed/refractory T-cell lymphoma Active, not 
recruiting 

NCT04362007   

1 + radiotherapy Unresected LA SCCHN (cisplatin 
ineligible) 

Recruiting NCT05245682 

Xevinapant  
(Debio 

1143) 

Yes (3) 1 + pembrolizumab Advanced/metastatic pancreatic and 
colorectal adenocarcinoma 

Active, not 
recruiting 

NCT03871959   

3 + CRT Unresected LA SCCHN Recruiting NCT04459715   
3 + IMRT Resected LA SCCHN (cisplatin ineligible) Recruiting NCT05386550 

CRT, chemoradiotherapy; IMRT, intensity-modulated radiation therapy; LA, locally advanced; SCCHN, squamous cell carcinoma of the head and neck; TNBC, triple- 
negative breast cancer. 

* Active listings include trials with the status: not yet recruiting; recruiting; or active, not recruiting. 
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related to NFκB signaling were identified [67]. 

Future outlook 

Xevinapant is currently being investigated in 2 randomized, placebo- 
controlled, double-blind, phase 3 studies. The TrilynX study is evalu
ating xevinapant + CRT vs placebo + CRT in approximately 700 patients 
with unresected LA SCCHN, with event-free survival as the primary 
endpoint of the study [76]. The XRay Vision study is evaluating xevi
napant + radiotherapy vs placebo + radiotherapy in approximately 700 
patients with resected LA SCCHN who are at a high risk of disease 
recurrence and are ineligible to receive cisplatin, with disease-free sur
vival as the primary endpoint [77]. 

Conclusion 

Long-term outcomes are poor for patients with unresected LA SCCHN 
and patients with resected disease who are at a high risk of disease 
recurrence. Currently, in the wake of recent failures in trials adding ICIs 
to CRT, there are relatively few clinical studies in this disease area and 
novel treatment options are urgently required. IAP inhibitors are an 
emerging therapeutic class for LA SCCHN due to overexpression of IAPs 
in this tumor type and the role of IAPs in resistance to standard-of-care 
anticancer therapies. Preclinical data for xevinapant provided a strong 
rationale for the inhibition of IAPs in combination with CRT or radio
therapy in LA SCCHN, and the phase 2 study of xevinapant + CRT vs 
placebo + CRT was the first randomized trial in decades to show clinical 
improvement vs standard of care in unresected LA SCCHN. Phase 3, 
randomized, placebo-controlled, double-blind studies evaluating xevi
napant in patients with LA SCCHN are ongoing. 
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