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Abstract

In this paper we study the problem of optimally paying out dividends from an insurance port-
folio, when the criterion is to maximize the expected discounted dividends over the lifetime of
the company and the portfolio contains claims due to natural catastrophes, modelled by a shot-
noise Cox claim number process. The optimal value function of the resulting two-dimensional
stochastic control problem is shown to be the smallest viscosity supersolution of a corresponding
Hamilton-Jacobi-Bellman equation, and we prove that it can be uniformly approximated through a
discretization of the space of the free surplus of the portfolio and the current claim intensity level.
We implement the resulting numerical scheme to identify optimal dividend strategies for such a
natural catastrophe insurer, and it is shown that the nature of the barrier and band strategies
known from the classical models with constant Poisson claim intensity carry over in a certain way
to this more general situation, leading to action and non-action regions for the dividend payments
as a function of the current surplus and intensity level. We also discuss some interpretations in
terms of upward potential for shareholders when including a catastrophe sector in the portfolio.

1 Introduction

Optimal strategies for dividend payout from a surplus process of an insurance portfolio is a classical object of
study in risk theory, starting with de Finetti [18] and Gerber [19]. Many of the existing results in the literature
study variations of this problem (in terms of objective functions and constraints) under the assumption that
the underlying risk process is a Brownian motion or a classical Cramér-Lundberg process, see e.g. [7, 9] for an
overview. Over the years, it has been noted that the compound Poisson assumption of the Cramér-Lundberg
process is too restrictive, and that claim number processes of doubly stochastic Poisson type (Poisson pro-
cesses with stochastic intensity) are a more natural choice for certain application areas. The resulting Cox
process can lead to tractable models, particularly under the assumption of a Poisson shot-noise intensity, see
e.g. Dassios & Jang [15] and Albrecher & Asmussen [1]. Such a shot-noise dynamic is for instance a natural
model for claim arrivals in the presence of catastrophes, where at Poissonian times a sudden jump of random
size increases the intensity, leading to more claims for a certain period, and that additional intensity level
then decreases over time as claims due to that catastrophe get reported and settled. In recent years, such
models have been studied for various purposes, see e.g. Dassios & Zhao [17], Macci & Torrisi [24], Jang & Oh
[22] and Pojer & Thonhauser [26, 27] in an insurance context, Boxma & Mandjes [14] for a related model in
queueing and Schmidt [30] for applications in finance.
Stochastic control problems for such compound shot-noise Cox processes have, however, to the best of our
knowledge not been addressed in the respective literature, with the notable recent exception of Liu & Cade-
nillas [23], who study a problem of optimal premiums, retention and prevention strategies which maximize
expected utility of the insurer and policyholders in a certain way.

In this paper we will study the problem of maximizing expected aggregate discounted dividend payments
up to ruin for an insurance risk process of compound shot-noise Cox type. In addition to the mathematical
interest in studying such a problem, this allows to some extent to assess and establish profitable strategies
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for investors of an insurance company which cover catastrophic risks, such as floods and storms, where one
exogenous event leads to a sudden and time-transient increase of the claim arrival intensity. The latter is likely
to become a more prominent topic in the future, not the least because of climate change and an increased
frequency of catastrophes. While the setup of this paper is stationary, it may serve as a benchmark for future
studies where also an anticipated increase of the frequency of catastrophes during the period of consideration
and its effects on optimal strategies can be considered. Methodologically, the problem studied in this paper
is a stochastic control problem in two dimensions. Due to the Markovian structure of the shot-noise process,
the risk process is Markovian as a function of the current surplus and the current intensity level. Two-
dimensional control problems have recently received quite some attention in risk theory, see e.g. [3, 4], [20]
and [21]. However, the actual techniques needed in the present paper are somewhat different from the ones in
the aforementioned papers, since the second dimension affects the dynamics of the process differently, and a
substantial amount of technicalities will be needed to tackle the posed optimization problem in a rigorous way.

We will prove that the optimal value function of this stochastic control problem is the smallest viscosity
supersolution of a Hamilton-Jacobi-Bellman equation and we will also show that it can be approximated
uniformly by a sufficiently fine discretization of the surplus process and the intensity process. This will then
allow us to determine numerically the value function of this optimal dividend problem together with the
optimal dividend payment strategies. It will turn out that the additional variability of the claim intensity
process leads to an upward potential for the shareholders of the insurance company. We assume here that
the intensity process can be observed, which is not unrealistic, as the jumps in the shot-noise process of the
intensity are the documented catastrophes and the used decay function may be assumed known as well as
a consequence of a modelling approach on past claim settlement experiences, see e.g. [16] for its estimation
using a Kalman-Bucy filter). In this case the company can in fact steer the dividend streams according to
the present situation of claim intensity and surplus level, and benefit from the already received premiums
from the underlying policyholders. The numerical results in this paper allow to quantify this effect, under the
albeit somewhat simplistic model assumptions.

The structure of the remaining paper is as follows. Section 2 introduces the underlying insurance model
and the concrete formulation of the considered stochastic control problem. Section 3 derives some basic
properties of the optimal value function. Section 4 formulates the corresponding Hamilton-Jacobi-Bellman
equation and shows that the optimal value function can be identified as its smallest viscosity supersolution,
and Section 5 briefly discusses some asymptotic properties of the latter. Subsequently, in Section 6 we show
that one can uniformly approximate the optimal value function through admissible strategies defined on a
discretization grid of the surplus values. In Section 7 we then pave the way for actual numerical solutions
of the control problem by discretizing also the intensity space and showing that the optimal value function
can be approximated uniformly that way. In Section 8 we first describe how to set up the numerical scheme
concretely, and afterwards we apply the procedure to a number of parameter settings from classical compound
Poisson examples, so that we can study the deviations of the optimal strategies when introducing the shot-
noise process for the claim number intensity. Section 9 concludes and gives some practical interpretations of
the obtained results as well as possible directions for future research. All proofs are delegated to an extensive
appendix.

2 The model

Consider a free surplus process of an insurance portfolio given by

Xt = x+ pt−
Nt∑
j=1

Uj , (1)

where x is the initial surplus, p is the premium rate and Ui is the size of the i-th claim (arriving at time τi),
cf. [8]. All claims are assumed to be i.i.d. positive random variables with distribution function FU and finite
expectation. Let the process

Nt = #{j : τj ≤ t}
be an inhomogeneous Poisson process with intensity λt, corresponding to the number of claims up to time t.
The process Nt and the random variables Ui are independent of each other. We assume that the intensity λt

is a shot-noise process, that is

λt = λc
t +

Ñt∑
k=1

Yk e
−d(t−Tk), (2)

where
λc
t = λ+ e−dt (λ− λ) . (3)
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Here λ ≥ λ is the initial intensity and Ñt = #{k : Tk ≤ t} is a Poisson process of constant intensity β. Note
that λt ≥ λ for all t ≥ 0 and if the initial intensity is λ > λ, then λt > λ for all t ≥ 0. See Figure 2.1 for an
illustration of a sample path of λt for λ = λ. Tk corresponds to the arrival times of catastrophes that produce

Figure 2.1: Sample path of λt

jumps in the intensity λt and the upward jumps Yk are assumed to be i.i.d. positive random variables with
distribution function FY and finite expectation. In this context, λ can also be interpreted as a base inten-
sity for incoming claim occurrences, for instance also a ”regular” non-catastrophic policies part in the portfolio.

Following Dassios and Jang [15], we can describe this model in a rigorous way by defining first the
compound Cox filtered space. Given any intensity-filtered probability space (Ω0,F0,

(
F0

t

)
t≥0

,P0) and any

intensity random process λ = (λt)t≥0 adapted to
(
F0

t

)
t≥0

, let us define the compound Cox filtered space

(Ωλ,Fλ,
(
Fλ

t

)
t≥0

,Pλ) conditional on the process λ in the following way. The sample set is

Ωλ = Ω0 × Ω,

where
Ω = {(τn, Un)n≥1 ∈ [0,∞)× (0,∞) : τn < τn+1 and lim

n→∞
τn = ∞}; (4)

Fλ is the complete σ-field generated by the σ-field F0 and the random variables τn : Ωλ → [0,∞) and
Un : Ωλ → (0,∞); the filtration

(
Fλ

t

)
t≥0

, where Fλ
t is the complete σ-field generated by the σ-field F0

t and

the random variables τn : Ωλ → [0,∞) and Un : Ωλ → (0,∞) for τn ≤ t; and Pλ the probability measure
defined in Fλ which satisfies

1. (Un)n≥1 is a sequence of i.i.d. random variables with Pλ(Un ≤ x) = FU (x);

2. the counting process Nλ
t : Ωλ → N0 defined by Nλ

t = #{n : τn ≤ t} satisfies

Pλ(Nλ
t2 −Nλ

t1 = k
∣∣∣λs, t1 ≤ s ≤ t2) = e

−
∫ t2
t1

λsds 1

k!
(

∫ t2

t1

λsds)
k

for t1 < t2;

3. the random variables Un are independent of the counting process Nλ
t .

The shot-noise intensity filtered probability space is then defined as

(ΩSN ,FSN ,
(
FSN

t

)
t≥0

,PSN ),

where
ΩSN =

{
(Tk, Yk)k≥1 ∈ [0,∞)× (0,∞) : Tk < Tk+1 and lim

k→∞
Tk = ∞

}
and FSN

t is the σ-field generated by the set {(Tk, Yk)k≥1 : Tk ≤ t}. The Poisson process

Ñt = #{k : Tk ≤ t}

of constant intensity β is independent of the random variables Yk. The intensity shot-noise process λt with
initial intensity λ is given by (2).

Given any λ ≥ λ, we consider in this paper the compound Cox filtered space (Ω,F , (Ft)t≥0 ,P) conditional
on the intensity shot-noise process (λt)t≥0 with initial intensity λ given by (2). Here the intensity filtered
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probability space (Ω0,F0,
(
F0

t

)
t≥0

,P0) = (ΩSN ,FSN ,
(
FSN

t

)
t≥0

,PSN ), the counting process Nt : Ω → N0 is

called the Cox process conditional on the intensity shot-noise process λt and the surplus given in (1) is called
the compound Cox process with drift p generated by the shot-noise process λt with initial intensity λ and
initial surplus x.

Let us define

Λt =

∫ t

0

λsds. (5)

Then,

P(τj+1 − τj ≤ t| Fτj ) = E
[
1− e

−
∫ t
0 λs+τj

ds
∣∣∣Fτj

]
= E

[
1− e−(Λ(t+τj)−Λ(τj))

∣∣∣Fτj

]
and in particular

P(τ1 ≤ t) = E
[
1− e−Λt

]
.

The insurance company uses part of the surplus to pay dividends to the shareholders. Let us define the
dividend strategy L = (Lt)t≥0 where Lt denotes the cumulative dividends paid up to time t. The strategy
(Lt)t≥0 is admissible if it is non-decreasing, càdlàg (right continuous with left limits), adapted with respect

to the (Ft)t≥0, and if it satisfies L0 ≥ 0 and Lt ≤ Xt for t < τL, where the ruin time τL is defined as

τL = inf {t ≥ 0 : Xt − Lt− < 0} . (6)

This last condition means that the ruin time can only occur at the arrival of a claim and that no lump dividend
payment can be made at the ruin time. We define the controlled surplus process as

XL
t = Xt − Lt. (7)

Denote by Πx,λ the set of admissible dividend strategies starting with initial surplus level x ≥ 0 and initial
intensity λ ≥ λ. For any initial surplus level x ≥ 0 and initial intensity λ ≥ λ, we can write the optimal value
function as

V (x, λ) = sup
L∈Πx,λ

J(L;x, λ), (8)

where

J(L;x, λ) = E(
∫ τL

0−
e−qtdLt). (9)

Here q > 0 is a constant discount factor. We assume that the premium rate p is determined using an expected
value principle w.r.t. the asymptotic distribution of λt. That is,

p = (1 + η)E(U1) lim
t→∞

E(Λt

t
) := (1 + η)E(U1)λav, (10)

where η > 0 is the relative safety loading (mathematically, one could also allow for negative η for the purposes
of this paper as long as p remains positive, but only a positive safety loading is of practical interest).

Adapting results of [15, Cor.2.4], one can derive the following explicit expressions (we delegate the proof
to Appendix A.1).

Proposition 2.1 We have that

E(λt) = λ(1− e−dt) + λe−dt +
(1− e−dt)

d
β E(Y1),

E(Λt) = λt− λ

(
1− e−dt

d

)
+

(1− e−dt)

d
λ+

(e−dt − 1 + dt)

d2
β E(Y1)

and

λav = λ+
β E(Y1)

d
.

3 Basic results

The proofs of the propositions in this section are in Appendix A.2. First, we show that V (x, ·) is non-increasing
on λ and uniformly continuous.

Proposition 3.1 (1) If λ1 < λ2, then V (x, λ1) ≥ V (x, λ2).(2) Given ε > 0, there exists δ > 0 (independent
of x, λ1 and λ2) such that if λ2 − λ1 < δ, then V (x, λ1)− V (x, λ2) ≤ ε. So V is uniformly continuous in λ.
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Next, we prove that V (·, λ) : [0,∞) → (0,∞) is locally Lipschitz.

Proposition 3.2 Take x2 > x1, then

0 ≤ V (x2, λ)− V (x1, λ) ≤ V (x2, λ)
βλ+ q

p
(x2 − x1).

In the next proposition, we show a locally Lipschitz result for V (x, ·) in the open set (λ,∞). At the
lower boundary λ we only have the uniformly continuity result given in Proposition 3.1, because the Lipschitz
constant obtained in the next proposition blows up at λ = λ.

Proposition 3.3 Consider λ < λ1 < λ2, then

0 ≤ V (x, λ1)− V (x, λ2) ≤ V (x, λ1)
βλ2 + q

d(λ1 − λ)
(λ2 − λ1) .

Remark 3.4 The dividend optimization problem with constant intensity was studied intensively in the liter-
ature (see e.g. Schmidli [29, Sec.2.4] and Azcue and Muler [10]). Unlike the shot-noise optimization problem,
this constant-intensity problem is one-dimensional. Let us denote by vλ(x) the optimal value function with
constant intensity λ and premium rate p; it is known that vλ is non-decreasing with vλ(x) − x positive,
non-decreasing and bounded. Moreover, limλ→∞ vλ(x) = x.

Remark 3.5 From Proposition 3.1, we obtain that V (x, λ) ≤ vλ(x) for all x ≥ 0 and λ ∈ [λ,∞). So, the
optimal value function V satisfies V (x, λ) ≤ vλ(x) ≤ x+K for some K > 0.

We now state the so-called Dynamic Programming Principle (DPP). The proof is similar to the one given
in Lemma 1.2 of [11].

Lemma 3.6 For any initial surplus x ≥ 0 and any stopping time τ adapted to Fλ, we can write

V (x, λ) = supL∈Πx,λ

(
E(
∫ τ∧τL

0− e−qsdLs + e−q(τ∧τL)I{τ∧τL<τL}V (XL
τ∧τL , λτ∧τL)

)
.

Finally, the asymptotic behavior of V as λ goes to infinity can be determined.

Proposition 3.7 It holds that for all x ≥ 0, limλ→∞ V (x, λ) = x.

4 Hamilton-Jacobi-Bellman equation

In this section we obtain the Hamilton-Jacobi-Bellman (HJB) equation associated to the optimization problem
(8). These results are a generalization to the two-dimensional case of the ones given in [11, Sec.3] for the one-
dimensional case. The proofs of the results of this section and the auxiliary results are deferred to Appendix
A.3.

The HJB equation of this optimization problem is given by

max{L(V )(x, λ), 1− Vx(x, λ)} = 0, (11)

where

L(V )(x, λ) = pVx(x, λ)− d (λ− λ)Vλ(x, λ)− (q + λ+ β)V (x, λ)

+λ
∫ x

0
V (x− α, λ)dFU (α) + β

∫∞
0
V (x, λ+ γ)dFY (γ)

(12)

and x ≥ 0, λ ≥ λ. Since the optimal value function V is locally Lipschitz but could be not differentiable at
some points, we cannot say that V is a solution of the HJB equation, we prove instead that V is a viscosity
solution of the corresponding HJB equation. Let us define this notion.

Definition 4.1 A uniformly continuous function u : [0,∞)× [λ,∞) → R, that is locally Lipschitz in (0,∞)×
[λ,∞), is a viscosity supersolution of (11) at (x, λ) ∈ (0,∞)×(λ,∞) if any continuously differentiable function
φ : (0,∞) × [λ,∞) → R such that φ (y, ·) is bounded for any y ≥ 0, φ(x, λ) = u(x, λ) and such that u − φ
reaches the minimum at (x, λ) satisfies

max {L(φ)(x, λ), 1− φx(x, λ)} ≤ 0.

A uniformly continuous function u : [0,∞) × [λ,∞) → R, that is locally Lipschitz in (0,∞) × [λ,∞), is
a viscosity subsolution of (11) at (x, λ) ∈ (0,∞) × (λ,∞) if any continuously differentiable function ψ :
(0,∞)× (λ,∞) → R such that ψ (y, ·) is bounded for any y ≥ 0, ψ(x, λ) = u(x, λ) and such that u−ψ reaches
the maximum at (x, λ) satisfies

max {L(ψ)(x, λ), 1− ψx(x, λ)} ≥ 0.

A function u : (0,∞)× (λ,∞) → R which is both supersolution and subsolution at (x, λ) ∈ (0,∞)× (λ,∞) is
called a viscosity solution of (11) at (x, λ).
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Proposition 4.1 V is a viscosity solution of the HJB equation (11) at any (x, λ) ∈ (0,∞)× (λ,∞).

From Remark 3.5, the function V satisfies the growth condition

u(x, λ) ≤ K + x for all (x, λ) ∈ (0,∞)× (λ,∞). (13)

We have the following characterization of the optimal value function.

Proposition 4.2 The optimal value function V is the smallest viscosity supersolution of (11) among those
that are non-increasing in λ and satisfy the growth condition (13).

From the previous proposition we deduce the usual viscosity verification result:

Corollary 4.3 Consider a family of admissible strategies {Lx,λ ∈ Πx,λ : (x, λ) ∈ (0,∞) × (λ,∞)}. If
the function W (x, λ) := J(Lx,λ;x, λ) is a viscosity supersolution of (11), then W (x, λ) is the optimal value
function. Also, if for each k ≥ 1 there exists a family of strategies {Lx,λ

k ∈ Πx,λ : (x, λ) ∈ (0,∞)×(λ,∞)} such

that W (x, λ) := limk→∞ J(Lx,λ
k ;x, λ) is a viscosity supersolution of the HJB equation (11) in (0,∞)× (λ,∞),

then W is the optimal value function V .

As it is usual for these type of problems, the way in which the optimal value function V (x, λ) solves the
HJB equation suggests that the state space [0,∞)× [λ,∞) is partitioned into two regions: a no-action region
NA in which no dividends are paid and an action region A in which dividends are paid. Roughly speaking,
the points in the NA region satisfy L(V ) = 0 and 1−Vx < 0 and the points in A satisfy L(V ) ≤ 0 and 1−Vx

= 0.

5 Asymptotic properties of the optimal value function

In the following proposition, we use Corollary 4.3 in order to prove that there exists an explicit threshold p/q,
such that if the surplus is above this explicit threshold, then one should pay at least the exceeding surplus as
dividends, regardless of the current intensity of the shot-noise process. Hence [p/q,∞)× [λ,∞) ⊂ A but this
inclusion is strict.

The proofs of the results of this section and the auxiliary results are deferred to Appendix A.4.

Proposition 5.1 V (x, λ) = x− p/q + V (p/q, λ) for x ≥ p/q.

We have the following uniform convergence when the current intensity of the shot-noise process goes to
infinity.

Proposition 5.2 limλ→∞ supx≥0 (V (x, λ)− x) = 0.

Remark 5.3 For technical reasons, in the development of the numerical scheme later on we will also need
an extension of admissible strategies in which the insurance company can, at any time, pay all the surplus
immediately as dividends and finish the insurance business (although this strategy is never optimal). More
precisely, let us consider (as before) Lt as the cumulative dividend payment strategy up to time t and τF is
a stopping (finite or infinite) time at which the company pays all the surplus immediately as dividends and
finishes the insurance business. We say that the strategy π̃ =

(
L, τF

)
is admissible if L is non-decreasing,

càdlàg, adapted with respect to the filtration generated by the process (Xt, λt), satisfies Lt ≤ Xt up to ruin
time and τF is a stopping time with respect to the filtration generated by the process (Xt, λt). We define

Π̃x,λ as the set of all π̃-admissible strategies. Take any L ∈ Πx,λ then π̃ = (L,∞) ∈ Π̃x,λ so we can think

that Πx,λ is contained in Π̃x,λ. Let us define the value function of any strategy π̃ ∈ Π̃x,λ as

J(π̃;x, λ) = E(
∫ τL∧τF

0−
e−qtdLt + I{τF<τL}e

−qτF

XL
τF ).

It is straightforward to see that the optimal value function defined in (8) satisfies

V (x, λ) = sup
π̃∈Π̃x,λ

J(π̃;x, λ) (14)

because it is never optimal to pay all the current surplus and finish the business.
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6 Approximation of the value function by a discretization of
the surplus

In this section we show that it is possible to approximate uniformly the optimal value function V with value
functions of admissible strategies that are constructed through a discrete set on the surplus level. These
strategies are stationary in the sense that they only depend on the current surplus and intensity. Moreover,
the only possible options are to either pay a lump sum of dividends or not paying any dividends. The result
of this section follows closely the ones in [12]; in that paper, the intensity of the arrival of claims was constant
and so this approach makes it possible to approximate numerically the optimal value function. However, in
the model of the present paper, the situation is more complicated since the intensity of the arrival of claims
changes over time. In contrast to [12], in this section we will only obtain a semi-discrete result that is not
sufficient for the numerical results. In the next section, we will also discretize the intensity process arrivals in
order to obtain a numerical scheme. The proofs of the results of this section can be found in Appendix A.5.

More precisely, we construct in this section a family of admissible strategies for any point in a subset of
[0,∞)× [λ,∞) and then extend it to the whole set [0,∞)× [λ,∞). We will show that the value functions of
these strategies approximate uniformly the optimal value function V .

Given any approximation parameter δ > 0, we define the grid domain

Gδ :=
{
xδn = npδ : n ≥ 0

}
(15)

in the surplus state space [0,∞); we construct first a subfamily of admissible strategies Π̃δ
xδ
n,λ ⊂ Π̃xδ

n,λ for any

point
(
xδn, λ

)
∈ Gδ × [λ,∞), and afterwards a subfamily of admissible strategies Π̃δ

x,λ ⊂ Π̃x,λ for any point
(x, λ) ∈ [0,∞).

Let us define the subfamily Π̃δ
x,λ ⊂ Π̃x,λ for any point (x, λ) ∈ [0,∞)× [λ,∞) in a precise way.

Consider first the case in which (x, λ) ∈ Gδ×[λ,∞), so x = xδn for some n ≥ 0. The idea of this construction
is to find, at each point in Gδ × [λ,∞), the best local strategy among the ones suggested by the operators
of the HJB equation (11). These possible local strategies are: either the company pays no dividends or pays
immediately a lump sum pδ as dividends; moreover, the company can finish the insurance activity at any
time. We modify these local strategies in such a way that the controlled surplus always lies in Gδ immediately
after the arrival of a claim. Let τ and U be the arrival time and the size of the next claim, and T and Y be
the arrival time and the size of the next intensity upward jump. We introduce the auxiliary function

ρδ(x) := max{xδn : xδn ≤ x} (16)

which gives the closest point of the grid Gδ below x. We first define the three possible control actions at any
point of Gδ × [λ,∞) as follows:

• Control action E0: Pay no dividends up to the time δ ∧ τ ∧ T .

1. In the case that δ < τ ∧ T , the surplus at time δ is xδn+1 ∈ Gδ.

2. If δ∧T ≥ τ , the uncontrolled surplus at time τ is xδn+ τp−U ; if this value is positive, the company
pays immediately the minimum amount of dividends in such a way that the controlled surplus lies
in the closest point of the grid below xδn + τp−U ; this end surplus can be written ρδ(xδn + τp−U)
and the amount paid as dividends is equal to xδn + τp − U − ρδ(xδn + τp − U); ruin occurs in case
the surplus xδn + τp− U < 0 at time τ ≤ δ ∧ T .

3. If T < δ∧τ, the end surplus is ρδ(xδn+Tp) and the amount paid as dividends is xδn+Tp−ρδ(xδn+Tp).

• Control actions E1: The company pays immediately pδ as dividends, so the controlled surplus becomes
xδn−1 ∈ Gδ. The control action E1 can only be applied for current surplus xδn > 0.

• Control action EF : The manager opts to pay the current surplus xδn as dividends and to close the
company.

We denote the space of control actions as

E = {EF ,E1,E0}. (17)

Consider Π̃δ
xδ
n,λ ⊂ Π̃xδ

n,λ as the set of all the admissible strategies with initial surplus xδn ∈ Gδ which can be

obtained by a sequence of control actions in E . Note that if E0 is chosen, the next control action depends on
the end surplus and intensity. The length of this sequence could be finite or infinite, in the case that is finite
the last control action is either E0 in the case that ruin occurs, or EF because the control action EF finishes
the sequence.
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Finally, we introduce Π̃δ
x,λ ⊂ Π̃x,λ for any point (x, λ) ∈ [0,∞) in the case that x /∈ Gδ. Indeed, Π̃δ

x,λ is

the subfamily of admissible strategies π̃ which pays x− ρδ(x) as dividends immediately and then follows any

strategy π̃1 in Π̃δ
ρδ(x),λ with ρδ(x) ∈ Gδ, so we have that

J(π̃;x, λ) = J(π̃1; ρ
δ(x), λ) + x− ρδ(x).

We define
V δ(x, λ) = sup

π̃∈Π̃δ
x,λ

J(π̃;x, λ) = V δ(ρδ(x), λ) + x− ρδ(x). (18)

We will show that, in a certain sense, limδ→0 V
δ = V uniformly.

It is straightforward that V δ(x, λ) is non-decreasing in x and non-increasing in λ. In the next proposition,
we find a bound on the variations of V δ, which show in particular that V δ(x, ·) is locally Lipschitz.

Proposition 6.1 The function V δ(x, λ) satisfies

V δ(x2, λ)− V δ(x1, λ) ≤ V δ(x2, λ)
e(β+q)δ+

∫ δ
0 λc

udu − 1

pδ

(
ρδ(x2)− ρδ(x1)

)
+ δp

for x2 ≥ x1 ≥ 0. Also

0 ≤ V δ(x, λ1)− V δ(x, λ2) ≤ V δ(x, λ1)
βλ2 + q

d(λ1 − λ)
(λ2 − λ1)

for λ2 ≥ λ1 > λ and λ2 − λ1 ≤ d(λ1 − λ).

As in [12], we will show that the function V δ restricted to Gδ × [λ,∞) is a solution of a discrete version
of the HJB equation (11), given in (23). In order to define this discrete HJB equation, let us introduce the
operators related to the control actions in E . Consider the operators T0, T1 and TF in the set of functions
Wδ = {w : Gδ × [λ,∞) → [0,∞) which are Lebesgue measurable} defined as follows

T0(w)(x
δ
n, λ) := P(δ ∧ T ∧ τ = δ)e−qδw(xδn+1, λ

c
δ) + Iδ(w)(xδn, λ), (19)

T1(w)(x
δ
n, λ) := w(xδn−1, λ) + δp and TF (w)(x

δ
n, λ) := xδn. (20)

Here,
Iδ(w)(x, λ)

:= E(Iδ∧T∧τ=τe
−qτw(ρδ(xδn + pτ − U), λc

τ ))

+E(Iδ∧T∧τ=T e
−qTw(xδn, λ

c
T + Y ))

+E(Iδ∧T∧τ=τe
−qτ (x+ pτ − U − ρδ(xδn + pτ − U)))

+E(Iδ∧T∧τ=T e
−qT pT ),

(21)

where τ and U are the arrival time and the size of the next claim, and T and Y are the arrival time and the
size of the next intensity upward jump. We also introduce the operator T in Wδ as

T := max{T0, T1, TF }. (22)

Given any family of admissible strategies

π̃ =
{
π̃xδ

n,λ ∈ Π̃δ
xδ
n,λ for

(
xδn, λ

)
∈ Gδ × [λ,∞)

}
,

we define the value function W : Gδ × [λ,∞) → R of π̃ as

W (xδn, λ) := J(π̃xδ
n,λ;x

δ
n, λ).

W ∈ Wδ, T0(W )(xδn, λ) and T1(W )(xδn, λ) are the values of the strategies with initial surplus xδn ∈ Gδ and
initial intensity λ which consist of applying first the control actions E0 and E1 ∈ E respectively, and afterwards
applying the strategy in the family π̃ corresponding to the end surplus and intensity. Also, TF (W )(xδn, λ) is
the value function of the control action EF ∈ E .

We define the discrete HJB equation in Gδ × [λ,∞) as

T (W )−W = 0. (23)

Assume that there exists π̃xδ
n,λ ∈ Π̃δ

xδ
n,λ such that V δ(xδn, λ) = J(π̃xδ

n,λ;x
δ
n, λ) for all

(
xδn, λ

)
∈ Gδ × [λ,∞).

Then, since V δ ∈ Wδ by Proposition 6.1, it is straightforward to see that T (V δ)(xδn, λ) = V δ(xδn, λ). Also
we can find which is the optimal control action in E at each

(
xδn, λ

)
∈ Gδ × [λ,∞). In Proposition 6.4, we

will show that T (V δ) = V δ without the former assumption. In Proposition 6.8, we will show that indeed,

V δ(xδn, λ) is the value function of an optimal strategy within Π̃δ
xδ
n,λ and this strategy is stationary.

By definitions (19), (20), (21) and (22), we obtain immediately the following result.
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Proposition 6.2 The operators T0, T1, TF and T are non-decreasing and T satisfies

sup(xδ
n,λ)∈Gδ×[λ,∞)

∣∣∣T (W1)(x
δ
n, λ)− T (W2)(x

δ
n, λ)

∣∣∣ ≤ sup(xδ
n,λ)∈Gδ×[λ,∞)

∣∣∣W1(x
δ
n, λ)−W2(x

δ
n, λ)

∣∣∣
for any W1 and W2 in Wδ.

Given l ≥ 1, let us define Π̃δ,l

xδ
n,λ

as the set of all the admissible strategies in Π̃δ
xδ
n,λ with initial surplus

xδn ∈ Gδ and initial intensity λ ≥ λ which can be obtained by a sequence of exactly l local control actions in
E .

We define
V δ
l (x, λ) = sup

π̃∈Π̃
δ,l
x,λ

J(π̃;x, λ). (24)

Since Π̃δ,1

xδ
n,λ

= {EF } then V δ
1 (x, λ) = x. By Proposition 6.2, we have that V δ

1 ∈ Wδ and V δ
2 (x, λ) =

T (V δ
l )(x

δ
n, λ) ≥ T (V δ

l )(x
δ
n, λ). So, we can conclude, by a recursive argument, the following result.

Proposition 6.3 It holds that V δ ≥ V δ
l+1 ≥ V δ

l , V
δ
l ∈ Wδ and T (V δ

l )(x
δ
n, λ) = V δ

l+1(x
δ
n, λ) for l ≥ 1.

In the next proposition, we show that V δ : Gδ × [λ,∞) → [0,∞] is a solution of the discrete HJB equation
(23).

Proposition 6.4 It holds that liml→∞ V δ
l = V δ and T (V δ)(xδn, λ) = V δ(xδn, λ).

Remark 6.5 Since TF (V
δ)(xδn, λ) = xδn < V δ(xδn, λ), we can write the discrete HJB equation (23) as

max{T0(W )−W, T1(W )−W} = 0,

disregarding the operator TF .

Proposition 6.6 Given any π̃ ∈ Π̃δ
xδ
n,λ and any supersolution W : Gδ × [λ,∞) → R of (23), we have that

J(π̃;xδn, λ) ≤W (xδn, λ).

From the previous proposition, we deduce the next corollary.

Corollary 6.7 The Gδ-optimal value function V δ : Gδ × [λ,∞) → R can be characterized as the smallest
supersolution of the discrete HJB equation (23) with growth condition (13).

Definition 6.1 Given any partition the set Gδ × [λ,∞) into three measurable subsets P = (A,NA,B), we
define for any point (xδn, λ) ∈ Gδ × [λ,∞) the local control action S(xδn, λ) ∈ E in the following way:

• If (xδn, λ) ∈ B, take SP(x
δ
n, λ) = EF . B is called finish-the-business set.

• If (xδn, λ) ∈ NA, take SP(x
δ
n, λ) = E0. NA is called the non-action set.

• And if (xδn, λ) ∈ A, take SP(x
δ
n, λ) = E1. Note that (xδ0, λ) = (0, λ) /∈ A. A is called the action set.

The Gδ- strategy π
P
xδ
n,λ ∈ Πδ

xδ
n,λ associated to P in the initial surplus and intensity (xδn, λ) ∈ Gδ × [λ,∞) is

defined inductively as follows: Let us call m1 = (xδn, λ) and s1 = SP(x
δ
n, λ); assuming that m1,m2, ..,mk−1 ∈

Gδ × [λ,∞) and s1, s2, .., sk−1 ∈ E are defined and the process does not stop at step k − 1, we define mk ∈
Gδ × [λ,∞) as the end surplus of sk−1 and sk = SP(mk) ∈ E.

Note that the family πP =
(
πP
xδ
n,λ

)
(xδ

n,λ)∈Gδ×[λ,∞)
is stationary in Gδ × [λ,∞) in the sense that the

local control actions depend only on the point of the grid at which the current surplus lies and also on the
current intensity. Moreover, if we define the associated value function WP(x

δ
n, λ) = J(πP

xδ
n,λ;x

δ
n, λ), then

TF (WP) = WP in B, T1(WP) = WP in A and T0(WP) = WP in NA. We extend the definition of the value
function WP : [0,∞)× [λ,∞) → [0,∞) as

WP(x, λ) =WP(ρ
δ(x), λ) + x− ρδ(x), (25)

this corresponds to pay the minimum amount of dividends so the surplus lies in Gδ.
Given the function V δ, since V δ = T (V δ) and V δ is Lebesgue measurable, we define the Gδ-partition

P∗
δ =

(
A∗

δ , (NA)∗δ ,B
∗
δ

)
as

A∗
δ =

{(
xδn, λ

)
∈ Gδ × [λ,∞) : T1(V

δ)(xδn, λ) = V δ(xδn, λ)
}
,

(NA)∗δ =
{(
xδn, λ

)
∈ (Gδ × [λ,∞))−A∗

δ : T0(V
δ)(xδn, λ) = V δ(xδn, λ)

}
,

B∗
δ =

{(
xδn, λ

)
∈ (Gδ × [λ,∞))−

(
A∗

δ ∪ (NA)∗δ
)
: TF (V

δ)(xδn, λ) = V δ(xδn, λ)
}
.

(26)

Note that, by Remark 6.5, B∗
δ is empty, so (xδ0, λ) = (0, λ) ∈ (NA)∗δ . Since the value function WP∗

δ
(xδn, λ)

is a supersolution of the discrete HJB equation (23) with growth condition (13), we deduce from Corollary
6.7, the following result.
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Proposition 6.8 We have that V δ = WP∗
δ

in Gδ × [λ,∞), and so πP∗
δ =

(
π
P∗

δ

xδ
n,λ

)
(xδ

n,λ)∈Gδ×[λ,∞)
is the

Gδ-optimal strategy. P∗
δ is called the optimal Gδ-partition.

Let us prove now that the optimal value function V can be approximated uniformly by V δ for some δ
small enough. Since we have a monotonicity condition on the embedded grids Gδ/2 ⊂ Gδ, so xδn = x

δ/2
2n ,

Π̃δ
xδ
n,λ ⊂ Π̃

δ/2

x
δ/2
2n ,λ

, and this implies that V δ(xδn, λ) ≤ V δ/2(x
δ/2
2n , λ). Take δk := δ/2k for k ≥ 0. We will see

that V δk ↗ V locally uniformly as k goes to infinity. Consider the dense set in Rn
+, G :=

⋃
k≥0 Gδk . Note

that Gδk ⊂ Gδk+1 , so

V δk ≤ V δk+1 ≤ V.

Now we conclude the main result of the paper. The proof is in Appendix A.5.

Theorem 6.9 For any δ > 0, the functions V δk ↗ V uniformly as k goes to infinity.

7 Discretization on the intensity process

As we pointed out before, the construction of V δ given in the previous section only uses a discretization on the
surplus space. In this section, we propose a numerical scheme using a discretization on the intensity space as
well. We will find a partition into an action set, a non-action set and a finish-the-business set as introduced in
Definition 6.1, depending on both the discretization in the surplus space and the discretization in the intensity
space, whose value function approximates the value function V uniformly. The proofs of the results of this
section are deferred to Appendix A.6.

For any parameter ∆ > 0, let us introduce the following discretization on the intensity space,

H∆ =
{
λ∆
0 = λ, λ∆

1 , λ
∆
2 , λ

∆
3 , ...

}
⊂ [λ,∞). (27)

where λ∆
m = λ+m∆, and consider the function

σ∆ (λ) = min
{
λ∆
m ∈ H∆ : λ∆

m ≥ λ
}
∈ H∆. (28)

Definition 7.1 Given δ > 0 and ∆ > 0, we say that P = (A,NA,B) is a (δ,∆)-partition if the three subsets
A, NA and B satisfy the following condition: if (xδn, λ

∆
m) is in a subset for m ≥ 1, then

{
xδn
}
× (λ∆

m−1, λ
∆
m]

is also in this subset. So, the (δ,∆)-partitions only depend on the discrete grid Gδ ×H∆.

In order to find a (δ,∆)-partition whose associated value function approximates the optimal value function,
we modify the intensity process, defining a new intensity process in the grid domain Gδ ×H∆.

Given the process λt from (2) with initial value λ0 = λ, let us define the auxiliary intensity process λ̂t for

given parameters δ, ∆ and initial λ̂0 = σ∆ (λ) = λ∆
m ∈ H∆ for some m ≥ 0 as

λ̂t := σ∆ (λt) ∈ H∆. (29)

By definition, ∆ ≥ λ̂t − λt ≥ 0. We define Π̂δ,∆

xδ
n,λ∆

m
as the set of all the admissible strategies with initial

surplus xδn ∈ Gδ, initial intensity λ̂0 = λ∆
m ∈ H∆ and discrete intensity process λ̂t which can be obtained by a

sequence of control actions in E as in (17).
We can replicate the construction of V δ in the previous section, but considering the compound Cox filtered

space of the auxiliary intensity process λ̂t ∈ H∆ instead of the process λt. Consider for any (xδn, λ
∆
m) ∈ Gδ×H∆,

V̂ δ,∆(xδn, λ
∆
m) = sup

π∈Π̂
δ,∆

xδ
n,λm

Jλ̂(π;x
δ
n, λ

∆
m), (30)

where

Jλ̂(π;x
δ
n, λ

∆
m) = E(

∫ τL

0−
e−qtdLt + Iτ<τF e

−qτF X̂L
τF ) (31)

and
X̂L

t = X̂t − Lt (32)

with

X̂t = xδn + pt−
N̂t∑
j=1

Uj , (33)

and N̂t has intensity λ̂t.
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One can extend the definition of V̂ δ,∆ to [0,∞)× [λ,∞) as

V̂ δ,∆(x, λ) = (x− ρδ(x)) + V̂ δ,∆(ρδ(x), σ∆ (λ))

for all x ≥ 0 and λ ≥ λ, where ρδ is defined in (16).

Let us show now that V̂ δ,∆ converges uniformly to V δ as ∆ → 0. The proof is in Appendix A.6.

Proposition 7.1 It holds that V̂ δ,∆ ≤ V δ and lim∆→0

(
supx≥0,λ≥λ V

δ(x, λ)− V̂ δ,∆(x, λ)
)
= 0.

As in Section 6, but considering λ̂t instead of λt, we introduce the following operators in Wδ,∆ =
{w : Gδ ×H∆ → [0,∞)}: T1 and TF as defined in (20); the operator

T̂0(w)(x
δ
n, λ

∆
m) := P(δ ∧ T ∧ τ = δ)e−qδw(xδn+1, σ

∆(λc
δ)) + Î(w)(xδn, λ∆

m),

where

Î(w)(xδn, λ∆
m)

:= E(Iδ∧T∧τ=τIx+pτ−U≥0e
−qτw(ρδ(xδn + pτ − U), λ̂τ ))

+E(Iδ∧T∧τ=T e−qTw(xδn, λ̂T ))

+E(Iδ∧T∧τ=τe
−qτ (xδn + pτ − U − ρδ(xδn + pτ − U)))

+E(Iδ∧T∧τ=T e
−qT pT );

and the operator
T̂ := max{T̂0, T1, TF }.

In the next two propositions, we obtain the mirror results of Propositions 6.4 and 6.8, with similar proofs.

Proposition 7.2 It holds that T̂ (V̂ δ,∆) = V̂ δ,∆ in Gδ ×H∆.

Since V̂ δ,∆ = T (V̂ δ,∆), we can define, as in (26), the following partition P̂δ,∆ in the grid Gδ ×H∆:

Âδ,∆ =
{(
xδn, λ

∆
m

)
∈ Gδ ×H∆ : T1(V̂

δ,∆)(xδn, λ
∆
m) = V̂ δ,∆(xδn, λ

∆
m)
}
,

N̂Aδ,∆ =
{(
xδn, λ

∆
m

)
∈ (Gδ ×H∆)− Âδ,∆ : T̂0(V̂

δ,∆)(xδn, λ
∆
m) = V̂ δ,∆(xδn, λ

∆
m)
}
,

B̂δ,∆ =
{(
xδn, λ

∆
m

)
∈ (Gδ ×H∆)−

(
Âδ,∆ ∪ N̂Aδ,∆

)
: TF (V̂

δ,∆)(xδn, λ
∆
m) = V̂ δ,∆(xδn, λ

∆
m)
}
.

(34)

Moreover, B̂δ,∆ = ∅ and
(
xδ0, λ

∆
m

)
∈ N̂Aδ,∆. And, as in Definition 6.1, we can define from this partition,

a family of strategies

π̂δ,∆ =
{
π̂δ,∆

xδ
n,λ∆

m
∈ Π̂δ,∆

xδ
n,λm

for (xδn, λ
∆
m) ∈ Gδ ×H∆

}
.

These strategies are stationary in Gδ×H∆ in the sense that the local control actions depend only on the point
of the grid at which the current surplus and current intensity lie. We obtain the existence of the optimal
strategy in Π̂δ,∆

xδ
n,λm

.

Proposition 7.3 V̂ δ,∆(xδn, λ
∆
m) = Jλ̂(π̂

δ,∆

xδ
n,λ∆

m
;xδn, λ

∆
m) for any (xδn, λ

∆
m) ∈ Gδ ×H∆.

Now we use the partition given in (26), to find a (δ,∆)-partition in Gδ × [λ,∞) as defined in Definition
7.1 whose value function approximates the value value function V uniformly. This is the main result of the
section.

Definition 7.2 Given the partition (34) in Gδ×H∆, we extend to the partition Pδ,∆ = (Aδ,∆, (NA)δ,∆ ,Bδ,∆)
in Gδ × [λ,∞) as

Aδ,∆ =
(⋃

{(n,m):(xδ
n,λ∆

m)∈Âδ,∆, m≥1}
({
xδn
}
× (λ∆

m−1, λ
∆
m]
))

∪
(⋃

{n: (xδ
n,λ)∈Âδ,∆}

{(
xδn, λ

)})
(NA)δ,∆ =

(⋃
{(n,m):(xδ

n,λ∆
m)∈N̂Aδ,∆, m≥1}

({
xδn
}
× (λ∆

m−1, λ
∆
m]
))

∪
(⋃

{n: (xδ
n,λ)∈N̂Aδ,∆}

{(
xδn, λ

)})
Bδ,∆ = ∅.

Let us consider the Gδ- strategy π
Pδ,∆

xδ
n,λ ∈ Π̃δ

xδ
n,λ associated to Pδ,∆ for each (xδn, λ) ∈ Gδ × [λ,∞) and the

associated function WPδ,∆ : [0,∞)× [λ,∞) → [0,∞) defined in (25).

The next theorem states that V can be approximated uniformly byWPδ,∆ for some δ and ∆ small enough.
In Section 8, we use this result in order to obtain numerically (δ,∆)-partitions whose associated value functions
approximate uniformly the optimal value function V .

Theorem 7.4 For any ε > 0 there exists δ and ∆ small enough so that 0 ≤ V −WPδ,∆ ≤ V − V̂ δ,∆ ≤ ε in
[0,∞)× [λ,∞).
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8 Numerical results

In this section, we show some numerical results. Proposition 5.2 suggests that we can approximate the optimal
value function with a value function of a partition with (xδn, λ

∆
m) ∈ Bδ,∆ for m ≤ m1 with m1 large enough and

n ≥ 0. From Proposition 5.1, we can assume that the partition satisfies (xδn, λ
∆
m) ∈ (NA)δ,∆ for xδn > p/q .

This allows to make a numerical computation because we stay in a finite grid.
So, given δ, ∆ small enough and m1 large enough, we proceed in the following way: The numerical scheme

should choose if the local action in each of the points in the grid

Gδ ×H∆ =
{
(xδn, λ

∆
m) : xδn ≤ p/q and m ≤ m1

}
is either E0 or E1 or EF . In order to do that, we proceed inductively, as follows:

1. We define the initial partition P̂1 as B1 = Gδ ×H∆, N̂A1 = Â1 = ∅ for the sake of simplicity. So, the
value function is ŴP̂1

(xδn, λ
∆
m) = xδn.

2. If the partition P̂l and the associated value function ŴP̂l
are given, we define the next partition P̂l+1 as

Âl+1 = {(xδn, λ∆
m) ∈ Gδ ×H∆ : T̂ (ŴP̂l

)(xδn, λ
∆
m) = T̂1(ŴP̂l

)(xδn, λ
∆
m)},

N̂Al+1 = {(xδn, λ∆
m) ∈ Gδ ×H∆ − Âl+1 : T̂ (ŴP̂l

)(xδn, λ
∆
m) = T̂0(ŴP̂l

)(xδn, λ
∆
m)},

and we put B̂l+1 = ∅, because EF is never optimal.

We have, as in Propositions 6.3 and 6.4, that ŴP̂l+1
= T̂ (ŴP̂l

) ≥ ŴP̂l
in Gδ×H∆; that P̂l+1 = P̂l = P̂ for

l large enough because here the grid Gδ ×H∆ is finite; that liml→∞ ŴP̂l
= ŴP̂ and that T̂ (ŴP̂) = ŴP̂ in

Gδ ×H∆. In our numerical scheme, we also check that the limit action region of P̂ does not change when m1

is enlarged.
By Definition 7.2 and Theorem 7.4, we know that when δ and ∆ are small enough we obtain a near-optimal

value function and Gδ- strategy. We check in our numerical scheme that δ and ∆ are small enough by com-
paring the value functions ŴP̂ for (δ,∆) with the one of (δ/2,∆/2). In the following examples, we show in
gray the non-action region and in black the change region of the partition P in Gδ × [λ, λ∆

m1
] associated to the

partition P̂ in Gδ ×H∆ as in Definition 7.2. We also show the approximation of the optimal value function
V (using the value function of the partition P̂ in Gδ ×H∆) and finally, we compare the approximation of our
optimal value function with one of the classical dividend optimization problem with constant intensity, i.e.
the situation without jumps in the claim arrival intensity.

8.1 Example 1: Exponential claim sizes

Let us first consider λ = 1/4, the intensity jump distribution being exponential with cdf FY (x) = 1− e−x/2,
the intensity of jump intensity arrivals being β = 1/2 (so we expect a catastrophe every two years), d = 7/10
(so that the additional claim arrival intensity due to a catastrophe is halved after one year), the claim size
distribution being exponential with cdf FU (x) = 1−e−10x, the discount rate being q = 2/10 and the insurance
safety loading applied in the policies equal to η = 2/10. We then obtain from (10) that p = 141/700. For the
grid parameters, it turns out that δ = 28/423, ∆ = 23/240 and m1 = 60 is appropriate here.

Figure 8.1a depicts the action and non-action region and Figure 8.1b the approximation of the optimal
value function V as a function of initial surplus x and claim initial intensity level λ. In the absence of catas-
trophe jumps in the intensity process (that is, for the classical Cramér-Lundberg process with a compound
Poisson claim process), it is well-known that for exponential claim sizes, a barrier strategy is optimal (cf.
Gerber [19]). With the additional presence of a shot-noise component in the intensity process, one observes
from Figure 8.1a that a barrier strategy is still optimal, but its value changes dynamically as a function of
current claim intensity λ. Concretely, for small values of λ, a barrier strategy is optimal that pays all the
surplus above the barrier as dividends, and this barrier first increases with λ and eventually decreases for
larger values of λ. Finally, there is a critical value of λ, above which the situation becomes too risky, and the
barrier level goes down to zero, i.e. all surplus is paid out as dividends. For comparison, in Figure 8.1a we
also depict the optimal barrier level of the classical risk model for the same premium income p, but varying
actual (constant in time) level λ (blue solid line), and one sees that there the optimal barrier level already
goes down to zero for a considerably smaller value of λ. One can nicely see from this comparison how the
dynamic change of the level of λ through time allows to be more adaptive in the strategy.
In Figure 8.1c we depict the resulting value function as a function of initial capital x, where we choose
λ = λ = 1/4 as the initial level (solid line, which is in fact just the cross-section V (x, 0.4) from Figure 8.1b)
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(a) Action regions (dark) and non-action regions (light)
of the optimal strategy as a function of λ and x (b) Value function V (x, λ) as a function of x and λ

(c) Comparison of the value functions V (x, λ)
(solid) and VCL(x, λ) (dashed) as a function of x

(d) Comparison of the value functions V (x, λav)
(solid) and VCL(x, λav) (dashed) as a function of x

Figure 8.1: Optimal dividends for a compound shot-noise Cox process with exponential claim sizes

and compare it to the value function VCL(x, λ) for the classical risk model with homogeneous intensity λ
throughout (dashed line), which corresponds to the case β = 0 of the shot-noise case here. Note that the
same relative safety loading η is applied in the two cases, so the absolute value of p does not coincide for
the two models (i.e., VCL(x, λ) does not correspond to vλ(x), for which that was the case). In other words,
Figure 8.1c compares the economic value of the insurance company for the shareholders with and without
additional catastrophe insurance business, and the plot shows that including that business line is an advan-
tage. This can be interpreted as follows: the additional insurance business linked to catastrophe claims (above
the baseline intensity λ) leads to additional premium income, which is upfront (as potential claims will only
appear later when the intensity indeed jumped up), so that one has additional degrees of freedom to steer
the dividend streams according to the current level of intensity and surplus. In fact, the additional variability
in the intensity process stays advantageous even when starting at higher levels of the initial intensity (and
the comparison then is whether a volatile claim intensity can be preferable to a constant one, for the same
number of policies). To see this, Figure 8.1d compares the two value functions for the long-term average value
λav = 1/4 + 2/(2 · 0.7) = 1.679 as the initial intensity level (solid line) or as homogeneous intensity level
throughout (dashed line), respectively (again with safety loading η = 0.2 for both, which now also leads to
the same p, so here VCL(x, λav) = vλav(x)). Clearly, the additional variability of the claim intensity process
(accompanied by the optimal associated dividend strategy) leads still to a significantly larger value function.

If one replaces the exponential intensity jump distribution by a deterministic jump of the same expected
value (i.e. FY (x) = I[2,∞)), the modified action/non-action regions are shown in Figure 8.2, which shows that
the results are not really sensitive to the choice of the concrete intensity jump distribution (as long as the
expected jump size is maintained). The resulting value function is even visually indistinguishable from Figure
8.1b, so that we do not include it here.

In order to assess the sensitivity of the action region with respect to changes of other parameters, we depict
in Figure 8.3 the counterpart of Figure 8.1a for slight changes of the parameters in either direction. We also
plot the optimal barrier of the classical Cramér-Lundberg model for the same premium level p for each case.
One can see that increasing or decreasing the intensity β of catastrophe arrivals has a considerable effect on
the optimal barrier as a function of x and λ. A smaller value of the decay rate d in the intensity function
leads to a more dangerous situation, enlarging the barrier levels, where for increasing d the intensity growth
due to a catastrophe disappears quicker and we get closer to the classical barrier level (in blue), which would
be reached for d → ∞. A higher safety loading η leads to larger barrier levels (one may interpret that this
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Figure 8.2: Counterpart of Figure 8.1a for deterministic intensity jumps of size 2

is due to the fact that one wants to benefit from the positive drift longer, exceeding the advantage of paying
out profits early). Finally, an increased discount rate makes earlier payments more important and attractive,
leading to lower barrier levels.

8.2 Example 2: Erlang(2) claim sizes

Next, we consider a situation of a certain Erlang(2) claim size distribution, for which we know from [11] that a
two-band strategy maximizes the expected discounted dividend payments in the absence of shot-noise jumps
in the Poisson intensity. Consider therefore the parameters choices of [11] λ = 10, FU (x) = 1 − (1 + x)e−x,
q = 1/10 and η = 7/100, to which we add now a catastrophe shot-noise component with exponential intensity
jumps with cdf FY (x) = 1− e−x/2, β = 2/10 and d = 2/10. We obtain from (10) that p = 642/25.

For the grid parameters, the values δ = 25/963, ∆ = 1/2 and m1 = 60 turn out to be appropriate here.
Figure 8.4a depicts the action and non-action region. One observes that the optimality of the two-band regime
is in fact retained here also, but only for a small strip of λ-values, and in that region the corresponding band
values vary with λ also. For values of λ below that regime, the two-band strategy collapses to a barrier
strategy (the fact that this band strategy is very sensitive to the particular model assumptions is well-known,
see e.g. also [5] for such an effect under discrete surplus observations). For values of λ above that regime, the
optimal strategy is again of take-the-money-and-run type, i.e. pay all the surplus as dividends immediately
(as the risk of facing many claims in the near future diminishing the surplus is too high). Figure 8.4b depicts
the resulting value function as a function of current levels of x and λ. Finally, Figure 8.4c compares V (x, λav)
to the value function of the classical risk model with constant intensity λav and the same premium income.
Again, we observe that the additional variability introduced in the portfolio by having catastrophe insurance
business (rather than only non-catastrophic one with constant claim intensity) is in fact an advantage for the
expected discounted dividend payments until ruin.

8.3 Example 3: Deterministic claim sizes

In addition to a fine interplay of many factors, one intuitive reason for the optimality of band (rather than
barrier) strategies can be attributed to the presence of modes in the claim size density (see e.g. [13, 6] where
in the latter reference even a situation with an optimal strategy consisting of 4 bands was identified). Follow-
ing that line of thinking, one might expect a 2-band strategy to remain optimal when replacing the Erlang
claim size distribution by a deterministic claim size equal to its expected value. We therefore reconsider the
situation of Example 2, solely changing the cdf of the claim size distribution to FU (x) = I[2,∞). We use the
same grid parameters as above: δ = 25/963, ∆ = 1/2 and m1 = 60. Figure 8.5a depicts the action and non-
action region. Indeed, the result is very similar to Figure 8.4a, so for a certain range of λ-values, a two-band
strategy is optimal. Yet, the lack of variability of the claim size is reflected in different numerical values of
the λ-dependent bands. Figure 8.5b depicts the resulting value function as a function of current levels of x
and λ, which again has a very similar shape, but different absolute values. As before, Figure 8.5c compares
V (x, λav) to the value function of the model without a catastrophe component.

If instead we replace the exponential claim size distribution in Example 1 above by its deterministic
counterpart equal to the expected value 1/10 (i.e. FU (x) = I[1/10,∞)), but keep all other parameters as in
Example 1, we arrive at Figure 8.6a. In this example one can nicely see the signature of the deterministic
claim size equal to 0.1 in the shape of the action/non-action regions. For fixed λ, one can also see how
multiple bands can appear here, leading to a surprisingly aesthetic butterfly shape. Note, however, that when
the optimal strategy is applied dynamically, both the values of x and λ change instantaneously, so that one
will in fact not literally apply a band strategy in the classical sense. Figure 8.6b gives the corresponding
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(a) β = 0.4 (b) β = 0.6

(c) d = 0.6 (d) d = 0.8

(e) η = 0.15 (f) η = 0.25

(g) q = 0.15 (h) q = 0.25

Figure 8.3: Counterpart of Figure 8.1a for modified β (first row), modified d (second row), modified η (third row) and
modified q (last row)

(a) Action regions (dark) and non-
action regions (light) of the optimal
strategy as a function of λ and x

(b) Value function V (x, λ) as a function
of x and λ

(c) Comparison of the value func-
tions V (x, λav) (solid) and VCL(x, λav)
(dashed) as a function of x

Figure 8.4: Optimal dividends for a compound shot-noise Cox process with Erlang(2) claim sizes
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(a) Action regions (dark) and non-
action regions (light) of the optimal
strategy as a function of λ and x

(b) Value function V (x, λ) as a function
of x and λ

(c) Comparison of the value func-
tions V (x, λav) (solid) and VCL(x, λav)
(dashed)

Figure 8.5: Optimal dividends for a compound shot-noise Cox process with deterministic claim sizes for the parameters
of Example 2

(a) Action regions (dark) and non-
action regions (light) of the optimal
strategy as a function of λ and x

(b) Value function V (x, λ) as a function
of x and λ

(c) Comparison of the value func-
tions V (x, λav) (solid) and VCL(x, λav)
(dashed) as a function of x

Figure 8.6: Optimal dividends for a compound shot-noise Cox process with deterministic claim sizes for the parameters
of Example 1

value function as a function of initial x and λ, and Figure 8.6c compares it for λ = λav with the one of the
classical risk model with homogeneous intensity. Notice that in all the examples of this section the additional
variability due to the shot-noise component is in fact advantageous for the shareholders.

9 Conclusion and Outlook

In this paper we solved the two-dimensional stochastic control problem of optimizing expected discounted
dividends until ruin of an insurance portfolio, when the claim number process is a Cox process with shot-
noise intensity function. We identified the optimal value function as the smallest viscosity supersolution of
a Hamilton-Jacobi-Bellman equation and provided a numerical scheme to uniformly approximate it via a
discretization of the surplus space and the intensity space. In the numerical implementations, we then in-
vestigated to what extent the optimal dividend strategies deviate from the classical ones where the Poisson
intensity is constant. As it turns out, the additional variability of the claim occurrence pattern can be used
to the advantage of the insurer as far as a valuation of the company in terms of expected discounted future
dividends is concerned. Concerning the concrete dividend strategies, the nature of barrier and band strategies
remains in principle valid, although with barrier and band levels that now depend on the current level of the
claim occurrence intensity λ, so that one needs to react adaptively to its change over time.

The fact that additional insurance business linked to catastrophe claims can be beneficial is somewhat
promising in times when even reinsurers become more reluctant to include natural catastrophe claims in their
portfolio and risk structure, and reinsurance premiums increase globally, see e.g. [31]. While the model as-
sumptions employed in this paper are clearly somewhat too simple for practical implementation in catastrophe
insurance practice, the results still demonstrate that a good understanding of the underlying actuarial risks
in the catastrophe lines of business also has upward potential. Clearly, the present paper is only one first step
into this direction, and many generalizations are possible and desirable. As already mentioned in the intro-
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duction, a prominent one is to go beyond the stationary model world and allow for risk factors that change
over time, a feature that will allow to more explicitly model the effects of climate change on the profitability
of an insurance portfolio. Also, the profitability criterion of maximizing dividends over the lifetime of the
company should be accompanied by some constraints on solvency, for instance along approaches that have
been pursued in the classical optimal dividend literature already. Also, with respect to regulation, a more
refined model as to when received and unused premiums can be paid out as company profits may be pursued.
Moreover, other interpretations of the reason and nature of the shot noise Cox feature of the claim number
model are naturally possible, and each one will lead to different or additional features of the model to be
studied. Finally, it may be possible to apply and extend some features of the techniques developed in this
paper to the problem of optimizing dividends for a cyber risk insurer, where in addition to the shot-noise
feature one typically also has a self-exciting component in the intensity process, see e.g. Zeller & Scherer [33].

A Appendices

A.1 Proofs of Section 1

Proof of Proposition 2.1. Let us define λ0
t and Λ0

t as the processes defined in (2) and (5) in the particular
case of λ = 0, then we have

λt = λ(1− e−dt) + λ0
t , Λt = λ

∫ t

0

(1− e−ds)ds+ E(Λ0
t ).

From [15, Cor.2.4], we get

E(e−v Λ0
t ) = e−

v λ
d

(1−e−dt)e−β
∫ t
0 (1−g( v

d
(1−e−d (t−s))))ds,

where
g(u) = E(e−uY1).

So we get

E(e−v Λt) = E(e−v Λ0
t ) · e−vλ

∫ t
0 (1−e−ds)ds

= e−
v λ
d

(1−e−dt) · e−β
∫ t
0 (1−g( v

d
(1−e−d (t−s))))ds · e

−v(λt−λ

(
1−e−dt

d

)
)
.

We also have

E(Λ0
t ) = − ∂vE(e−vΛ0

t )
∣∣∣
v=0

=
1− e−dt

d
λ+

e−dt − 1 + dt

d2
β E(Y1),

so
E(e−v Λt) = E(e−v Λ0

t ) · e−vλ
∫ t
0 (1−e−ds)ds

= e−
v λ
d

(1−e−dt) · e−β
∫ t
0 (1−g( v

d
(1−e−d (t−s))))ds · e

−v(λt−λ

(
1−e−dt

d

)
)
.

In addition,
E(λ0

t ) = ∂tE(Λt)

= λe−dt +
(1− e−dt)

d
β E(Y1),

and we conclude that

E(e−v Λt) = E(e−v Λ0
t ) · e−vλ

∫ t
0 (1−e−ds)ds

= e−
v λ
d

(1−e−dt) · e−β
∫ t
0 (1−g( v

d
(1−e−d (t−s))))ds · e

−v(λt−λ

(
1−e−dt

d

)
)

and
E(λt) = λ(1− e−dt) + E(λ0

t )

= λ(1− e−dt) + λe−dt +
(1− e−dt)

d
β E(Y1),

as well as
E(Λt) = λ

∫ t

0
(1− e−ds)ds+ E(Λ0

t )

= λ
∫ t

0
(1− e−ds)ds+

(1− e−dt)

d
λ+

(e−dt − 1 + dt)

d2
β E(Y1)

= λt− λ
(

1−e−dt

d

)
+

(1− e−dt)

d
λ+

(e−dt − 1 + dt)

d2
β E(Y1).

■
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A.2 Proofs of Section 3

In order to prove Propositions 3.1, 3.2 and 3.3, we need to make a definition and give two lemmas.

Definition A.1 Given two sequences (τ1i , U
1
i )i≥1 ∈ Ω and (τ2j , U

2
j )j≥1 ∈ Ω introduced in (4), we define the

ordered union of the two sequences as

(τ1i , U
1
i )i≥1 ⨿ (τ2j , U

2
j )j≥1 = (τn, Un)n≥1 ∈ Ω,

where {(τn, Un) : n ≥ 1} =
{
(τ1i , U

1
i ) : i ≥ 1

}
∪
{
(τ2j , U

2
j ) : j ≥ 1

}
and τn ≤ τn+1.

Definition A.2 Given any intensity-filtered probability space (Ω0,F0,
(
F0

t

)
t≥0

,P0) and two intensity random

process λ1 =
(
λ1
t

)
t≥0

and λ2 =
(
λ2
t

)
t≥0

adapted to
(
F0

t

)
t≥0

, we define the superposition

(Ωλ1⊕λ2

,Fλ1⊕λ2

,
(
Fλ1⊕λ2

t

)
t≥0

,Pλ1⊕λ2

)

of the two compound Cox filtered spaces (Ωλ1

,Fλ1

,
(
Fλ1

t

)
t≥0

,Pλ1

) and (Ωλ2

,Fλ2

,
(
Fλ2

t

)
t≥0

,Pλ2

) in the

following way:

• Ωλ1⊕λ2

=
{
(ω, τ1i , U

1
i )i≥1 ⨿ (τ2j , U

2
j )j≥1) s.t. (ω, (τ in, U

i
n)n≥1) ∈ Ωλi

for i = 1, 2
}
;

• Fλ1⊕λ2

is the complete σ-field generated by the σ-field F0 and the random variables τ1n, U
1
n, τ

2
m, U

2
m;

• Fλ1⊕λ2

t is the complete σ-field generated by the σ-field F0
t and the random variables τ1n, U

1
n for τ1n ≤ t

and τ2m and U2
m for τ2m ≤ t;

• The probability measure Pλ1⊕λ2

is the probability which satisfies that

1. the processes Nλ1
t = #{k : τ1k ≤ t}, Nλ2

t = #{k : τ2k ≤ t} and the random variables (U1
n)n≥1 and

(U2
n)n≥1 are independent,

2. the random variables U1
n and U2

m with n,m ∈ N are i.i.d., Pλ1⊕λ2

(U i
n ≤ x) = FU (x) for i = 1, 2 and

Pλ1⊕λ2

(Nλ1
t +Nλ2

t = n) =

n∑
s=0

Pλ1

(Nλ1
t = s) · Pλ2

(Nλ2
t = n− s).

We have the following lemma (cf. for instance [25, Sec.3]).

Lemma A.1 The set Ωλ1⊕λ2

0 =
{
τ1n ̸= τ2m for any n,m ∈ N

}
∈ Fλ1⊕λ2

has full measure. Also, the restriction
of the superposition probability space

(Ωλ1⊕λ2

,Fλ1⊕λ2

,
(
Fλ1⊕λ2

t

)
t≥0

,Pλ1⊕λ2

)

to Ωλ1⊕λ2

0 coincides with the compound Cox filtered space (Ωλ,Fλ,
(
Fλ

t

)
t≥0

,Pλ) conditional on the intensity

process λ = λ1 + λ2 =
(
λ1
t + λ2

t

)
t≥0

.

Moreover, if P1 : Ωλ1⊕λ2

0 → Ωλ1

and P2 : Ωλ1⊕λ2

0 → Ωλ2

are the projections defined as

Pi

(
(ω, (τ1n, U

1
n)n≥1 ⨿ (τ2n, U

2
n)n≥1)

)
= (ω, (τ in, U

i
n)n≥1) ∈ Ωλi

,

then

1. For any A ∈ Fλi , we have that the preimage P−1
i (A) ∈ Fλ1⊕λ2

and Pλ1⊕λ2

(P−1
i (A)) = Pλi

(A).

2. For any A ∈ Fλi
t ,we have that the preimage P−1

i (A) ∈ Fλ1⊕λ2

t .

3. Nλ1
t ◦ P1 +Nλ2

t ◦ P2 = Nλ1+λ2
t : Ωλ1⊕λ2

0 → N0.

Lemma A.2 As a consequence of the previous lemma, consider any intensity-filtered probability space
(Ω0,F0,

(
F0

t

)
t≥0

,P0) and two intensity random processes λ1 =
(
λ1
t

)
t≥0

and λ2 =
(
λ2
t

)
t≥0

adapted to
(
F0

t

)
t≥0

with λ1 ≤ λ2; writing λ2 = λ1 + (λ2 − λ1) we can consider the projections P 1 : Ωλ2

→ Ωλ1

and P 2 : Ωλ2

→
Ωλ2−λ1

. Also, the processes Nλ1
t ◦P 1 and Nλ2−λ1

t ◦P 2 are independent and satisfy Nλ1
t ◦P 1+N

λ2−λ1

t ◦P 2 =
Nλ2

t . We also can write
(τ2n, U

2
n)n≥1 = (τ1n, U

1
n)n≥1 ⨿ (τ̂m, Ûm)m≥1.
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Proof of Proposition 3.1. Proof of (1): Take λ1 < λ2 and consider the shot-noise processes λi = (λi
t)t≥0 with

initial intensity λi and the associated compound Cox process Xi
t with drift p generated by the shot-noise

process λi
t with initial intensity λi and initial surplus x for i = 1, 2 as defined in (1) and (2). Since

λ2
t = λ1

t + e−dt (λ2 − λ1) ,

we have that λ1 ≤ λ2. We use the results of Lemma A.2, calling N1
t = Nλ1

t ◦ P 1, N
2
t = Nλ2

t and N̂t =

Nλ2−λ1

t ◦ P 2, we have

X2
t = x+ pt−

N2
t∑

n=1

U2
n = x+ pt−

 N1
t∑

n=1

U1
n +

N̂t∑
m=1

Ûm

 = X1
t −

N̂t∑
m=1

Ûm.

Now take (Lt)t≥0 ∈ Πx,λ2 with
V (x, λ2) ≤ J(L;x, λ2) + ε.

Let ri = inf
{
t : Xi

t − Lt < 0
}
; since X1

t ≥ X2
t , we get r1 ≥ r2;

V (x, λ1) ≥ J(L;x, λ1) = E(

∫ r1

0−
e−qsdLs) ≥ E(

∫ r2

0−
e−qsdLs) = J(L;x, λ2) ≥ V (x, λ2)− ε,

so we conclude (1).

Proof of (2): Take λ1 < λ2 and L = (Lt)t≥0 ∈ Πx,λ1 with

V (x, λ1) ≤ J(L;x, λ1) + ε.

Note that

P(N̂t = k) = P(N2
t −N1

t = k) = e−
∫ t
0 e−dt(λ2−λ1)ds 1

k!
(
∫ t

0
e−dt (λ2 − λ1) ds)

k.

Let ri = inf
{
t : Xi

t − Lt < 0
}
, we have that r1 ≥ r2 and since X1

t = x+ pt−
∑N1

t
n=1 U

1
n and

X2
t = x+ pt−

∑N2
t

n=1 U
2
n

= x+ pt−
(∑N1

t
n=1 U

1
n +

∑N̂t
m=1 Ûm

)
= X1

t −
∑N̂t

m=1 Ûm

we have that

X1
r2 = X2

r2 +

N̂r2∑
m=1

Ûm − Lr2 <

N̂r2∑
m=1

Ûm.

Take T such that e−qT
(

1
d
E(U1)+

p
q

)
≤ ε

2
and consider λ2 ≤ λ1 + 1 and

λ2 − λ1 ≤ min{
− log(1− ε

2( 1
d
E(U1)+p/q)

)

T (1−e−dT )
dT

.
, 1}.

Let us show that

J(L;x, λ1)− J(L;x, λ2) = E(E
(∫ r1

r2
e−qsdLs

∣∣Fλ2
r2

)
)

≤ E(E
(
e−qr2V (X1

r2 − Lr2 , λ
1
r
2
)
∣∣∣Fλ2

r2

)
)

≤ E
[
e−qr2V (X1

r2 − Lr2 , λ
1
r2
)
]

≤ E
[
Ir2>T e

−qr2V (
∑N̂r2

m=1 Ûm, λ
1
r
2
)

]
+ E

[
Ir2≤T e

−qr2V (X1
r2 − Lr2 , λ

1
r
2
)
]

≤ ε.

From V (y, λ1
r
2
) ≤ V (y, λ) ≤ y + p

q
and

E(N̂t) = (λ2 − λ1)
1− e−dt

d
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we get

E
[
Ir2>T e

−qr2V (
∑N̂r2

m=1 Ûm, λ
1
r
2
)

]
≤ E

[
Ir2>T e

−qr2

(∑N̂r2
m=1 Ûm + p

q

)]
≤ e−qTE

[(∑N̂r2
m=1 Ûm + p

q

)]
≤ e−qT

(
1
d
(λ2 − λ1)E(U1)+

p
q

)
≤ e−qT

(
1
d
E(U1)+

p
q

)
+ ε

2

≤ ε
2
.

Also, if N̂T = 0 then X1
r2 − Lr2 = X2

r2 − Lr2 < 0 and so V (X1
r2 − Lr2 , λ

1
r2
) = 0. Hence, taking

λ2 − λ1 ≤
− log(1− ε

2( 1
d
E(U1)+p/q)

)

T (1−e−dT )
dT

,

we have

1− P(N̂T = 0) = 1− e−(λ2−λ1)t
(1−e−dt)

dt <
ε

2
(
1
d
E(U1)+p/q

)
and so

E
[
Ir2<T e

−qr2V (X1
r2 − Lr2 , λ

1
r
2
)
]

≤ E
[
Ir2<T e

−qr2V (
∑N̂r2

m=1 Ûm, λ
1
r
2
)I{N̂T>0}

]
≤ E

[
Ir2<TV (

∑N̂T
m=1 Ûm, λ

1
r
2
)I{N̂T>0}

]
P
[
N̂T > 0

]
≤ E

[(∑N̂T
m=1 Ûm + p/q

)]
P
[
N̂T > 0

]
≤

(
1
d
E(U1)+p/q

)
P
[
N̂T > 0

]
≤ ε

2
.

Hence, the result follows. ■

Proof of Proposition 3.2. It is straightforward to show that V (·, λ) is non-decreasing because

V (x2, λ) ≥ x2 − x1 + V (x1, λ).

Let us prove the other inequality. Take t0 = (x2 − x1)/p < 1 and consider λt0 = λ + e−dt0 (λ− λ). Given
an initial surplus x ≥ 0 and ε > 0, consider an admissible strategy L = (Lt)t≥0 ∈ Πx2,λt0

such that

J(L;x2, λt0) ≥ V (x2, λt0)− ε for any x2 > x1. Take now the strategy L̃ ∈ Πx1,λ that starts with surplus x1,

pays no dividends if XL̃
t < x2 and follows strategy L after the current reserve reaches (x2, λt0), that is

L̃t =


0 if t ≤ t0 ∧ τ1 ∧ T1

Lt−t0 if t ≥ t0 and τ1 ∧ T1 > t0
0 if t > τ1 ∧ T1 and t0 ≥ τ1 ∧ T1.

The strategy L̃ is admissible, and we get

V (x1, λ) ≥ J(L̃;x1, λ)
≥ P(τ1 ∧ T1 > t0)J(L;x2, λt0)e

−qt0

≥ (V (x2, λt0)− ε) e−qt0P(τ1 ∧ T1 > t0),

and
V (x2, λ)− V (x1, λ) ≤ V (x2, λ)− (V (x2, λt0)− ε)P(τ1 ∧ T1 > t0)e

−qt0 .

So, using that V is non-increasing on λ and t0 < 1,

V (x2, λ)− V (x1, λ) ≤ V (x2, λ)− V (x2, λt0)P(τ1 ∧ T1 > t0)e
−qt0

≤ V (x2, λ)− V (x2, λ)P(τ1 ∧ T1 > t0)e
−qt0

≤ V (x2, λ)(1− P(τ1 ∧ T1 > t0)e
−qt0)

≤ V (x2, λ)
βλ2+q

p
(x2 − x1)

≤ V (x2, λ)
βλ2+q

p
(x2 − x1).

■
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Proof of Proposition 3.3. From Proposition 3.1, we have 0 ≤ V (x, λ1) − V (x, λ2). Let us prove the second
inequality. Take L ∈ Πx,λ1 such that V (x, λ1) ≤ J(L;x, λ1) + ε/2, and the associated controlled process
(XL

t , λt) starting at (x, λ1). Consider δ0 = 1
d
log(λ2−λ

λ1−λ
) so λ+ e−dδ0 (λ2 − λ) = λ1, then we have that

δ0 ≤ 1

d(λ1 − λ)
(λ2 − λ1) .

Define L̃ ∈ Πx,λ2 as

L̃t =


pt if t ≤ δ0 ∧ τ1 ∧ T1

Lt−δ0 if t ≥ δ0 and τ1 ∧ T1 > δ0
p(τ1 ∧ T1) if t > τ1 ∧ T1 and δ0 ≥ τ1 ∧ T1.

We have that
J(L̃;x, λ2) ≥ J(L;x, λ1)e

−qδ0P(τ1 ∧ T1 > δ0)

= J(L;x, λ1)e
−qδ0(1− P(τ1 ∧ T1 ≤ δ0))

≥ J(L;x, λ1)e
−qδ0(1− (1− e−βδ0))(1− e−λ2δ0))

≥ J(L;x, λ1) (1− qδ0) (1− βλ2δ
2
0)

because ∫ δ0

0

(
λ+ e−ds (λ2 − λ)

)
ds ≤ λ2δ0,

and so, taking λ2 and λ1 close enough so that δ0 < 1,

V (x, λ1)− V (x, λ2) ≤ J(L;x, λ1)− J(L̃, x, λ2) + ε/2
≤ J(L;x, λ1)

(
1− (1− qδ0) (1− βλ2δ

2
0)
)
+ ε/2

≤ V (x, λ1)
(
1− (1− qδ0) (1− βλ2δ

2
0)
)
+ ε/2

≤ V (x, λ1)
(βλ2+q)
d(λ1−λ)

(λ2 − λ1) + ε/2,

and the result follows. ■

Proof of Proposition 3.7. Let us define

t∗ (λ) :=
1

d
ln(

λ− λ

ln(λ)− λ
)

so that

λ+ e−dt∗(λ) (λ− λ) = ln(λ)

and t∗ (λ) → ∞ as λ→ ∞. Take a near optimal strategy L = (Lt)t≥0 ∈ Πx,λ such that V (x, λ) ≤ J(L;x, λ)+ε,
hence λt ≥ ln(λ) for t ≤ t∗ (λ). Then, using Lemma 3.6, Proposition 3.1 and Remark 3.5,

V (x, λ)− ε ≤ J(L;x, λ)

= E(
∫ t∗(λ)∧τL

0− e−qsdLs) + e−qt∗(λ)E
(
It∗(λ)>τLV (XL

t∗(λ), λt∗(λ))
)

≤ vln(λ)(x) + e−qt∗(λ)vλ(x+ pt∗ (λ)).

By Remark 3.4, we have that limλ→∞ vln(λ)(x) = x and

lim
λ→∞

e−qt∗(λ)vλ(x+ pt∗ (λ)) ≤ lim
λ→∞

e−qt∗(λ) (x+ pt∗ (λ) +K) = 0,

so we have the result. ■

A.3 Proofs of Section 4

Proof of Proposition 4.1. Let us prove first that V is a viscosity supersolution. Given initial values (x, λ) ∈
(0,∞) × (λ,∞) and any l ≥ 0, let us consider the admissible strategy L ∈ Πx,λ where the company pays
dividends with constant rate l and consider τL defined as in (6). Let φ be a test function for supersolution
of (11) at (x, λ). We have XL

t = x+ (p− l) t and λt = λ+ e−dt (λ− λ) for t < τ1 ∧ T1. Applying Lemma 3.6
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with stopping time τ1 ∧ T1 ∧ h, we obtain

0 = V (x, λ)− φ(x, λ)

≥ E
(∫ τ1∧T1∧h

0
e−qtldt

)
+E

(
Iτ1<T1∧he

−qτ1V (x+ (p− l)τ1 − U1, λ+ e−dτ1 (λ− λ))
)

+E
(
IT1<τ1∧he

−qT1V (x+ (p− l)T1, λ+ e−dT1 (λ− λ) + Y1))
)

+E
(
Ih<τ1∧T1e

−qhV (x+ (p− l)h, λ+ e−dh (λ− λ))
)
− φ(x, λ)

≥ E(
∫ τ1∧T1∧h

0
e−qtldt)

+E
(
Iτ1<T1∧he

−qτ1φ(x+ (p− l)τ1 − U1, λ+ e−dτ1 (λ− λ))
)

+E
(
IT1<τ1∧he

−qT1φ(x+ (p− l)T1, λ+ e−dT1 (λ− λ) + Y1))
)

+E
(
Ih<τ1∧T1e

−qhφ(x+ (p− l)h, λ+ e−dh (λ− λ))
)
− φ(x, λ).

So, dividing by h and taking h→ 0+, we obtain

L(φ)(x, λ) + l(1− φx(x, λ)) ≤ 0.

For l → ∞, we obtain
max{L(φ)(x, λ), 1− φx(x, λ)} ≤ 0.

Hence V is a viscosity supersolution at (x, λ).
Let us prove now that V is a viscosity subsolution. Arguing by contradiction, we assume that V is not a

subsolution of (11) at (x0, λ0) ∈ (0,∞)×(λ,∞). As in the proof of Proposition 3.8 of [10] but extended to two
variables as in Proposition 3.2 in [2], we can find a continuously differentiable function ψ : (0,∞)×(λ,∞) → R
such that ψ is a test function for subsolution of equation (11) at (x0, λ0) , for h < x0 ∧ (λ0 − λ) small enough
so

ψx(x, λ) ≥ 1 (35)

for (x, λ) ∈ [0, x0 + h]× (λ,∞),
L (ψ) (x, λ) ≤ −εq (36)

for (x, λ) ∈ [x0 − h, x0 + h]× [λ0 − h, λ0 + h], and

V (x, λ) ≤ ψ(x, λ)− ε (37)

for (x, λ) ∈ [0, x0 + h]× (λ,∞)− [x0 − h, x0 + h]× [λ0 − h, λ0 + h].
Let us take any admissible strategy L ∈ Πx0,λ0 . Consider the corresponding controlled risk process(

XL
t , λt

)
starting at (x0, λ0), and define the stopping time

τ∗ = inf{t > 0 :
(
XL

t , λt

)
∈ (0,∞)× (λ,∞)− [x0 − h, x0 + h]× [λ0 − h, λ0 + h]}.

From (37), we obtain that if τ∗ < τL,

V (XL
τ∗ , λτ∗) ≤ ψ(XL

τ∗ , λτ∗)− 2ε. (38)

We can write
dλt = −d (λt − λ) + PY

t , dXL
t = pdt+ PU

t − dLt,

where PY
t =

∑
Ti
ITi=tYi and P

U
t =

∑
τi
Iτi=tYi. Here we assume that PY

t and PU
t do not jump simultaneously

(because they jump at exponential times that are independent). Using Theorem 31 of [28], we get

ψ(XL
τ∗ , λτ∗)e−qτ∗

− ψ(x0, λ0)

≤
∫ τ∗

0
L (ψ) (XL

s− , λs−)e−qsds+M1
τ∗ +M2

τ∗ −
∫ τ∗

0
e−qsdLs,

where

M1
t =

∑
PU
s ̸=0
s≤t

(
ψ(XL

s− − PU
s , λs)− ψ(XL

s− , λs−)
)
e−qs −

∫ t

0

λs−
∫XL

s−
0 ψ(XL

s − α, λs−)dFU (α)e
−qsds

and

M2
t =

∑
PY
s ̸=0
s≤t

(
ψ(XL

s− , λs− − PY
s )− ψ(XL

s− , λs−)
)
e−qs −

∫ t

0

β
∫XL

s−
0 ψ(XL

s− , λs− + γ)dFY (γ)e−qsds
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are martingales with zero expectation. Hence, we obtain

E(ψ(XL
τ∗ , λτ∗)e−qτ∗

− ψ(x0, λ0)) ≤ E(
∫ τ∗

0

L(ψ)(XL
s− , λs−)e−qs)− E(

∫ τ∗

0−
e−qsdLs). (39)

Using (36), we get ∫ τ∗

0

L(ψ)(XL
s− , λs−)e−qsds ≤ −εq

∫ τ∗

0

e−qsds. (40)

From (41), Lemma 3.6, (38), (39) and (40) it follows that

V (x0, λ0) = supL E
(∫ τ∗

0− e−qsdLs + e−qτ∗
V (XL

τ∗ , λτ∗)
)

≤ supL E
(∫ τ∗

0− e−qsdLs + e−qτ∗ (
ψ(XL

τ∗ , λτ∗)− ε
)
Iτ∗<τL

)
≤ ψ(x0, λ0) + supL E

(∫ τ∗

0
L (ψ) (XL

s− , λs−)e−qsds− εe−qτ∗
Iτ∗<τL

)
≤ ψ(x0, λ0) + supL E

(
−ε(1− e−qτ∗

)− εe−qτ∗
Iτ∗<τL

)
≤ ψ(x0, λ0)− ε+ εE(e−q(τ1∧T1))

≤ ψ(x0, λ0)− ε+ ε (λ0 + β) / (q + λ0 + β)

< ψ(x0, λ0).

(41)

But the latter contradicts the assumption that V (x0, λ0) = ψ(x0, λ0). Hence V is a viscosity subsolution at

(x0, λ0) and this complete the proof. ■

The next lemma will be used to prove Proposition 4.2.

Lemma A.3 Let u be a non-negative supersolution of (11) satisfying the growth condition (13) and non-
increasing in λ. We can find a sequence of positive functions um : (0,∞)× (λ,∞) → R such that:

(a) um is continuously differentiable.
(b) um(x, λ) ≤ K + x and um is non-increasing in λ.
(c) 1 ≤ um

x (x, λ) ≤ ((q + λ+ β) /p)u(x+ 1/m, λ) for (x, λ) ∈ (0,∞)× (λ,∞).
(d) um → u uniformly on compact sets in (0,∞)×(λ,∞) and ∇um converges to ∇u a.e. in (0,∞)×(λ,∞).
(e) There exists a sequence cm with lim

m→∞
cm = 0 such that

sup(x,λ)∈A0
L(um) (x, λ) ≤ cm,where A0 = [0, x0]× [λ0, λ1],

where x0 > 0 and λ0, λ1 ∈ (λ,∞).

Proof of Lemma A.3. Let us define the set

D = {(x, λ) ∈ (0,∞)× (λ,∞) s.t. u differentiable in (x, λ)} .

Since u is a supersolution of (11), we have that

pux(x, λ)− d (λ− λ)uλ(x, λ) ≤ (q + λ+ β)u(x, λ) (42)

and ux ≥ 1 for all (x, λ) ∈ D and so a.e. in (0,∞)× (λ,∞).
Let ϕ be a nonnegative continuously differentiable function with support included in (0, 1) such that∫ 1

0
ϕ(x)dx = 1, we define um : (0,∞)× (λ,∞) → R as the convolution

um(x, λ) = m2

∫ ∞

−∞

∫ ∞

−∞
u(x+ s, λ+ t)ϕ(ms)ϕ(mt)dsdt. (43)

By definition, um(x, λ) is a weighted average of values of u in Am = [x, x+ 1/m]× [λ, λ+ 1/m]; (a), (b) and
(d) follow by standard techniques, because um ≥ u and u is absolutely continuous in (0,∞) × (λ,∞) and
satisfies the growth condition (13) (see for instance [32]). From Equation (11) we have that ux ≥ 1 a.e., also
since for all (x, λ) ∈ D, L(u) (x, λ) ≤ 0 we have

−(q + λ+ β)u(x, λ) ≤ pux(x, λ)− d (λ− λ)uλ(x, λ) ≤ (q + λ+ β)u(x, λ),

so that we conclude (c).
Let us define for (x, λ) ∈ A0 the function

ξm(x, λ) = sup
(x,λ)∈Am∩D

(pux(x, λ)− d (λ− λ)uλ(x, λ)) . (44)
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We have that for all (x, λ) ∈ D

pux(x, λ)− d (λ− λ)uλ(x, λ) ≤ ξm(x, λ) ≤ (q + λ+ β)u(x+ 1/m, λ). (45)

From (44), for any (x, λ) ∈ A0 there exists (xm, λm) ∈ Am ∩D such that

pux(xm, λm)− d (λ− λ)uλ(xm, λm) ≥ ξm(x, λ)− 1

m
. (46)

So,
pum

x (x, λ)− d (λ− λ)um
λ (x, λ)− (pux(xm, λm)− d (λ− λ)uλ(xm, λm))

= m2
∫∫

D
(pux(x+ s, λ+ t)− d (λ+ t− λ)uλ(x+ s, λ+ t))ϕ(ms)ϕ(mt)dsdt

−(pux(xm, λm)− d (λm − λ)uλ(xm, λm))

≤ ξm(x, λ)− (ξm(x, λ)− 1
m
)

≤ 1
m
.

From (42), (45), (46) and using that u and um are uniformly continuous in compact sets and that it is
non-decreasing in λ, we have the result. ■

Proof of Proposition 4.2. Let u be a non-negative supersolution of (11) satisfying the growth condition (13)
and take an admissible strategy L ∈ Πx,λ, define

(
XL

t , λt

)
as the corresponding controlled risk process starting

at (x, λ). Let us consider the function um as defined in Lemma A.3 in (0,∞)× (λ,∞) and let us extend this
function as um(x, λ) = 0 otherwise, as in (39) in the proof of Proposition 4.1, we obtain (using um

x ≥ 1),

E
(
um(XL

t∧τL , λt∧τL)e−q(t∧τL)
)
− um(x, λ)

≤ E
(∫ t∧τL

0
L(um)(XL

s− , λs−)e−qsds
)
− E

(∫ t∧τL

0− e−qsdLs

)
.

(47)

Since Lt is a non-decreasing process we get, by the monotone convergence theorem, that

lim
t→∞

E

(∫ t∧τL

0−
e−qsdLs

)
= J(L;x, λ).

From Lemma A.3(c), we have

−(q + λ+ β)u(x+
1

m
,λ) ≤ L(um)(x, λ) ≤ (q + λ+ β)u(x+

1

m
,λ) + βu(x, λ). (48)

But using Lemma A.3(b) and the inequalities XL
s ≤ x+ ps, λs > λ we obtain

u(XL
s , λs) ≤ K + ps. (49)

So, by the bounded convergence theorem, we get

lim
t→∞

E

(∫ t∧τL

0

L(um)(XL
s− , λs−)e−qsds

)
= E

(∫ τL

0

L(um)(XL
s− , λs−)e−qsds

)
. (50)

From (47) and (50), we have

lim
t→∞

E
(
um(XL

t∧τL , λt∧τL)e−q(t∧τL)IτL<t

)
− um(x, λ)

= −um(x, λ)

≤ E
(∫ τL

0
L(um)(XL

s− , λs−)e−qsds
)
− J(L;x, λ).

(51)

Let us prove now that

lim sup
m→∞

E

(∫ τL

0

L(um)(XL
s− , λs−)e−qsds

)
≤ 0. (52)

Because um(x, λ) ≤ K + x, Lemma A.3(b) and Lemma A.3(b)(c) give∣∣L(um)(XL
s− , λs−)

∣∣ ≤ (q + λ+ β)u(XL
s− + 1

m
, λs−) + βu(XL

s− , λs−)

≤ (q + λ+ β)u(XL
s− + 1

m
, λ) + βu(XL

s− , λ)

≤ (q + λ+ 2β)
(
x+ 1

m
+ ps

)
.

Then, given any ε > 0, we can find T such that∫ ∞

T

L(um)(XL
s− , λs−)e−qsds <

ε

4
(53)
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for any m ≥ 1. Note that for s ≤ T , we have that XL
s− ≤ x0 := x+ pT , λs− ≥ λ1 := λ+ (λ− λ) e−dt. From

(2), there exists M large enough such that

P(sup
s≤T

λs > M) <
ε

4 (q + λ+ 2β)
(
x+ 1

m
+ ps

) .
Now, take the compact set [0, x0]× [λ1,M ] and the set

AT,M =

{
(λs)s≤T : sup

s≤T
λs ≤M

}
.

From Lemma A.3(e), we can find m0 large enough such that for any m ≥ m0,

IAT,M

∫ T

0

L(um)(XL
s− , λs−)e−qsds ≤ cm

∫ T

0

e−qsds ≤ cm
q

≤ ε

2
,

and so taking the expectation we get (52). Then, from (51) and using Lemma A.3(d), we finally obtain

u(x, λ) = lim
m→∞

um(x, λ) ≥ J(L;x, λ). (54)

Since V is a viscosity solution of (11), the result follows. ■

A.4 Proofs of Section 5

Proof of Proposition 5.1. Let us define for M > 0,

VM (x, λ) =

{
V (x, λ) if x ≤M,
V (M,λ) + x−M if x > M.

VM (x, λ) is a limit of value functions of strategies. From Propositions 3.1, 3.2 and 3.3, VM is locally Lipschitz,
increasing on x and non-increasing on λ. For x < M , VM is a viscosity supersolution of (11). For x > M ,
∂xVM (x, λ) = 1. In order to see that VM is a viscosity supersolution of (11) for x > M and M large enough,
we need to show that L(VM )(x, λ) ≤ 0 for x > M . Indeed,

L(VM )(x, λ)

≤ p− (q + λ)VM (x, λ) + λ
∫ x

0
VM (x− α, λ)dFU (α) + β

(∫∞
0
VM (x, λ)dFY (γ)− VM (x, λ)

)
≤ p− (q + λ)VM (x, λ) + λ

∫ x

0
VM (x− α, λ)dFU (α)

≤ p− (q + λ)(V (M,λ) + x−M) + λ
∫ x

0
(V (M,λ) + x− α−M)dFU (α)

≤ p− qV (M,λ)
≤ 0

for any M ≥ p/q because V (x, λ) ≥ x. Consider the following dense set B in [0,∞)× [λ,∞)

B := {(x, λ) ∈ [0,∞)× [λ,∞) : V is differentiable}.

For any point (M,λ) ∈ B with M ≥ p
q
, we have that ∂xVM (M,λ) = 1 and so, by Corollary 4.3, VM coincides

with V. ■

Proof of Proposition 5.2. From Proposition 5.1, V (x, λ) = x+A(λ) for x ≥ p/q, where

A(λ) := V (p/q, λ)− p/q,

and since from Proposition 3.7, limλ→∞ V (p/q, λ)−p/q = 0 and V (p/q, λ) is non-increasing on λ, this implies
A(λ) ↘ 0 as λ→ ∞ and so

lim
λ→∞

sup
x≥p/q

(V (x, λ)− x) = 0.

Also, for all x ≥ 0 such that Vx(x, λ) exists, Vx(x, λ) ≥ 1 and so h(x, λ) := V (x, λ) − x is non-decreasing on
x. Hence,

V (x, λ)− x ≤ V (p/q, λ)− p/q ≤ A(λ)

and that implies the result. ■
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A.5 Proofs of Section 6

Proof of Proposition 6.1. We have that

V δ(xδn+1, λ)− V δ(xδn, λ) ≤ V δ(xδn)e
(β+q)δ+

∫ δ
0 λc

udu − V δ(xδn).

Then, denoting xδn = ρδ(x2) and x
δ
m = ρδ(x1),

V δ(x2, λ)− V δ(x1, λ) ≤ V δ(ρδ(x2), λ)− V δ(ρδ(x1), λ) + (x2 − ρδ(x2))

≤ V δ(xδn, λ)− V δ(xδm, λ) + δp

≤
∑n−1

j=m

(
e(β+q)δ+

∫ δ
0 λc

udu − 1
)
V δ(xδj , λ) + δp

≤
(
ρδ(x2)− ρδ(x1)

) (
e(β+q)δ+

∫ δ
0 λc

udu−1

)
pδ

V δ(x2, λ) + δp.

With a similar proof to the one of Proposition 3.1, we have that V δ(x, ·) is non-increasing and so 0 ≤
V δ(x, λ1)− V δ(x, λ2). It suffices to prove

V δ(xδn, λ1)− V δ(xδn, λ2) ≤ V δ(xδn, λ1)
βλ2 + q

d(λ1 − λ)
(λ2 − λ1) (55)

for 0 < λ2 − λ1 small enough.
In order to prove (55), we modify the set of admissible strategies Π̃δ

xδ
n,λ, adding new local strategies which

are not optimal. Let us define Π̂δ
xδ
n,λ as the set of all the strategies with initial surplus xδn ∈ Gδ which can be

obtained by a sequence of control actions in

Ê = {EF ,E1,E0, Êη},

where the controls EF , E1 and E0 are defined in (17). For any time η > 0, the new control action Êη consists
of throwing away the incoming premium p up to time η ∧ τ1 ∧ T1 (note that if η < τ1 ∧ T1 the final surplus
and intensity of this local control action is (xδn, λ+ (λ− λ)e−dη) ∈ Gδ × [0,∞)). Since it is never optimal to
throw away money,

supπ∈Π̂δ
xδ
n,λ

J(π;
(
xδn, λ

)
) = supπ∈Π̃δ

xδ
n,λ

J(π;
(
xδn, λ

)
) = V δ(xδn, λ).

Given any ε > 0, take π = (L, τF ) ∈ Π̃δ
xδ
n,λ1

such that V δ(xδn, λ1)−J((L, τF ); (xδn, λ1)) < ε/2. By Remark 5.3

we can take τF = ∞, and the associated controlled process

(XL
t , λt) =

xδn + pt−
Nt∑
i=1

Ui − Lt, λ+ e−dt (λ1 − λ) +
∑

0≤Tk≤t

Yn e−d(t−Tk)

 .

Consider κ such that
λ+ e−dκ (λ2 − λ) = λ1, (56)

that is

κ =
1

d
log(

λ2 − λ

λ1 − λ
) =

1

d
log(1 +

λ2 − λ1

λ1 − λ
) ≤ 1

d(λ1 − λ)
(λ2 − λ1) .

Define now π̂ as the strategy to apply first the local control Êκ and then either π = (L, τF ) ∈ Π̃δ
xδ
n,λ1

in case

κ < τ1 ∧ T1, or EF otherwise. So π̂ ∈ Π̂δ
xδ
n,λ2

and

L̂t =

{
0 if t ≤ κ ∧ τ1 ∧ T1

Lt−κ if t ≥ κ and τ1 ∧ T1 > κ .

One has

J(π̂;
(
xδn, λ2

)
) ≥ J(π̂;xδn, λ1)e

−qκP(τ1 ∧ T1 ≥ κ)

≥ J(π̂;xδn, λ1))e
−qκ(1− (1− e−βκ))(1− e−

∫κ
0 (λ+e−ds(λ2−λ))ds))

≥ J(π̂;xδn, λ1))e
−qκ(1− (1− e−βκ))(1− e−λ2κ))

≥ J(π̂;xδn, λ1)) (1− qκ) (1− βλ2κ)

because ∫ κ

0

(
λ+ e−ds (λ2 − λ)

)
ds ≤ λ2κ.
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Then, using that λ2 − λ1 ≤ d(λ1 − λ), we get κ < 1. So, from (56),

V δ(xδn, λ1)− V δ(xδn, λ2) ≤ J(π;xδn, λ1)− J(π̂;xδn, λ2) + ε/2

≤ J(π;xδn, λ1)− J(π;xδn, λ1) (1− qκ) (1− βλ2κ) + ε/2

≤ V (xδn, λ1)κ (βλ2κ + q) + ε/2

≤ V (x, λ1)
(
βλ2

(λ2−λ1)
d(λ1−λ)

+ q
)

(λ2−λ1)
d(λ1−λ)

+ ε/2,

so that the result follows. ■

In order to prove Propositions 6.4 and 6.6, we need the following lemma.

Lemma A.4 Given π ∈ Π̃δ
xδ
n,λ, π can be obtained by a sequence of control actions s = (sk)k=1,...,k̃, where k̃

could be finite or infinite. Let us define tk as the time when the control action sk is applied. We have that
limk→∞ tk = ∞ a.s. within the subset {k̃ = ∞} ⊂ Ω.

Proof of Lemma A.4. Suppose that k̃ = ∞. Calling km = n+m, let im be the number of control actions E0

in (s1, s2, ..., skm), then im ≥ m. Given the two sequences of stopping times (τi)i≥1 and (Tj)j≥1, we define
the ordered union of the two sequences as

(τi)i≥1 ⨿ (Tj)j≥1 := (rh)h≥1,

where {rh : h ≥ 1} = {τi : i ≥ 1} ∪ {Tj : j ≥ 1} and rh ≤ rh+1. We have that limh→∞ rh = ∞ a.s. Let
us consider the non-decreasing sequence (jm) defined as jm = max{h : rh ≤ tkm}, then we have that
tkm ≥ max{rjm , (im − jm − 1)δ}. If limm→∞ im − jm = ∞, then

lim
m→∞

tkm ≥ lim
m→∞

(im − jm − 1)δ = ∞;

if not, limm→∞ jm = ∞ and so

lim
m→∞

tkm ≥ lim
m→∞

rjm

and since limm→∞ rjn = limi→∞ ri = ∞ a.s., since tk+1 ≥ tk, we have limm→∞ tk = ∞ a.s. ■

Proof of Proposition 6.4. Let us define W = liml→∞ V δ
l and let us show that W (xδn, λ) = V δ(xδn, λ). Given

(xδn, λ) and ε > 0, take π = (L, τF ) ∈ Π̃δ
xδ
n,λ such that V δ(xδn, λ)− J(π;xδn, λ) < ε/2. π can be obtained by a

sequence of control actions s = (sk)k=1,...,k̃, where k̃ could be finite or infinite. Let us define tk as the time

when the control action sk is applied. By Lemma A.4, limk→∞ tk = ∞ a.s. within the subset {k̃ = ∞} ⊂ Ω.

Let us take l large enough such that e−qtl supx≥0 (V (x, λ)− x) ≤ e−qtl p
q
< ε/2 and consider πl ∈ Π̃δ,l

xδ
n,λ

,

defined by the sequence (s1, s2, s3, . . . , sl−1,EF ) if k̃ ≥ l and by s otherwise. We have that

J(π;xδn, λ)− J(πl;xδn, λ) = E
(
E(IτL∧τF>tl

∫ τL

tl
e−qsdLs + IτL∧τF>tl

I{τF<τL}e
−qτF

XL
τF )− e−qtlXL

tl)
∣∣∣Ftl)

)
≤ e−qtlE

(
V (XL

tl , λ)−XL
tl

)
< ε/2,

and so V δ(xδn, λ) −V δ
l (x

δ
n, λ) ≤ ε.

Finally, since V δ
l (x

δ
n, λ) ↗ V δ(xδn, λ), from Proposition 6.3, we get that T (V δ)(xδn, λ) = V δ(xδn, λ). ■

Proof of Proposition 6.6. Assume that π = (L, τF ) ∈ Πδ
xδ
m,λ. For any ω = (τi, Ui)i≥1, (Tj , Yj)j≥1, consider the

sequence s = (sk)k=1,...,k̃ with sk ∈ E corresponding to π. Let xδmk ∈ Gδ and λk ≥ λ be the surplus and the
intensity in which the control action sk is applied, tk be the time at which the control action sk is chosen, and
let yk be the end surplus resulting from the control action sk. Denote by (κl)l≥1 the indices of the sequence

s = (sk)k=1,...,k̃, where sk is either EF or E0. If the sequence stops at k̃ = κl0 <∞, we define

κl = κl0 for l ≥ l0, tκl0+j = tκl0
+∆κl0

for j ≥ 1;

if k̃ = ∞ we put l0 = ∞. We define, for l ≥ 1,

H(l) =W (xδm1+κl , λ
1+κl)I{sκl

=E0}I{yk≥0} + xδmκl I{sκl
=EF }.

If we put H(0) =W (xδm, λ), κ0 = 0 and t0 = 0, we have, using T1(W )−W ≤ 0,
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e
−qtκl+1H(l)−W (xδm, λ) =

∑l
j=1(e

−qtκj+1H(j)− e
−qtκjH(j − 1))

=
∑l

j=1 I{κj+1 ̸=κj}(e
−qtκj+1H(j)− e

−qtκjH(j − 1))

=
∑l

j=1 I{κj+1 ̸=κj}(e
−qt1+κj−1 (

∑κj−1

k=1+κj−1

(
W (xδmk − pδ)−W (xδmk )

)
))

+
∑l

j=1 I{κj+1 ̸=κj}(e
−qtκj+1H(j)− e

−qtκjW (xδ
m

kj
))

≤
∑l

j=1 I{κj+1 ̸=κj}(
∑κj−1

k=1+κj−1
e
−qt1+κj−1 (−pδI{sk=Ei}))

+
∑l

j=1 I{κj+1 ̸=κj}(e
−qtκj+1H(j)− e

−qtκjW (xδ
m

kj
)).

(57)
Since T0(W )−W ≤ 0 and TF (W )−W ≤ 0, if κj+1 ̸= κj ,

E
(
e
−qtκj+1H(j)− e

−qtκjW (xδ
m

kj
, λkj )

∣∣∣Ftκj

)
= E

(
(e

−qtκj+1H(j)− e
−qtκjW (xδ

m
kj
, λkj ))I{sκj

=E0}

∣∣∣Ftκj

)
+ I{sκj

=EF }e
−qtκj

(
xδ
m

kj
−W (xδ

m
kj
, λkj )

)
≤ E

(
e
−qtκj+1 I{sκj

=E0}(W (xδ
m

kj+1 , λ
kj+1)I{yκj≥0})

∣∣∣Ftκj

)
− e

−qtκjW (xδ
m

kj
, λkj )I{sκj

=E0}

= e
−qtκj I{sκj

=E0}

(
T0(W )

(
xδ
m

kj
, λkj

)
−W (xδ

m
kj
, λkj )

)
≤ 0.

(58)
From (57) and (58), we have

lim sup
l→∞

E
(
e
−qtκl+1H(l)−W (xδm, λ)

)
≤ −E

(∫ (τL∧τF )−

0−
e−qsdLs

)
.

Consequently,

W (xδm, λ) ≥ J(π;xδm, λ) + lim sup
l→∞

E
(
e
−qtκl+1

(
W (xδm1+κl , λ

1+κl)I{sκl
=E0}I{yk≥0}

))
.

Since W satisfies the growth condition (13), by Lemma A.4,

lim sup
l→∞

E
(
e
−qtκl+1

(
W (xδm1+κl , λ

1+κl)I{sκl
=E0}I{yk≥0}

))
= 0,

and so we have the result. ■

In order to prove Theorem 6.9, we need the next definition.

Definition A.3 We define the auxiliary function V : [0,∞)× [λ,∞) → R as

V (x, λ) := limk→∞ V δk (x, λ).

We will prove that V is the optimal value function. In order to do that, we will show that V is a viscosity
supersolution of (11). It is straightforward to see that V is a limit of value functions of admissible strategies
in Πx,λ for all (x, λ) ∈ [0,∞)× [λ,∞), so the result will follow from Corollary 4.3. Since there is no uniqueness
of the solution of the HJB equation, it is essential to show that this function is a limit of value functions of
admissible strategies. In the next lemma, we find a bound on the variation of V δ and as a consequence we
obtain that V is locally Lipschitz in [0,∞)× [λ,∞) and so it is absolutely continuous.

Lemma A.5 We have that V is locally Lipschitz in [0,∞)× (λ,∞). That is, for any x2, x1 ≥ 0 and for any
λ2, λ1 > λ with λ2 − λ1 ≤ d(λ1 − λ),∣∣V (x2, λ2)− V (x1, λ1)

∣∣
≤
∣∣V (x2, λ2)− V (x1, λ2)

∣∣+ ∣∣V (x1, λ2)− V (x1, λ1)
∣∣

≤ V (x2 ∨ x1, λ) p+q+(λ1∨λ2)
p

|x2 − x1|+ V (x2 ∨ x1, λ) (β(λ1∨λ2)+q)
d((λ1∧λ2)−λ)

|λ2 − λ1|
≤ V (x2 ∨ x1, λ)( p+q+(λ1∨λ2)

p
+ β(λ1∨λ2)+q

d((λ1∧λ2)−λ
)(|x2 − x1|+ |λ2 − λ1|).

Proof of Lemma A.5. We can write, from Proposition 6.1,

V (x2, λ)− V (x1, λ)

= V (x2, λ)− V δk (x2, λ) + V δk (x2, λ)− V δk (x1, λ) + V δk (x1, λ)− V (x1, λ)

≤ V (x2, λ)− V δk (x2, λ) +
(
ρδk (x2)− ρδk (x1)

)
e
(β+q)δk+

∫ δk
0 λc

udu−1
pδk

V δk (x2, λ) + δkp

+V δk (x1)− V (x1).
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Also,
V (x, λ1)− V (x, λ2)

= V (x, λ1)− V δk (x, λ1) + V δk (x, λ1)− V δk (x, λ2) + V δk (x, λ2)− V (x1, λ2)

≤ V (x, λ1)− V δk (x, λ1) + V δ(x, λ1)
(βλ2+q)
d(λ1−λ)

(λ2 − λ1) + V δk (x, λ2)− V (x1, λ2).

Taking the limit as k goes to infinity, we obtain∣∣V (x2, λ)− V (x1, λ)
∣∣ ≤ V (x2 ∨ x1, λ)

p+ q + λ

p
|x2 − x1|

and ∣∣V (x, λ1)− V (x, λ2)
∣∣ ≤ V (x, λ)

(βλ2 + q)

d(λ1 − λ)
|λ2 − λ1| .

■

In the next lemma, we show that the convergence of V δk to V is locally uniformly.

Lemma A.6 V δk ↗ V locally uniformly as k goes to infinity.

Proof of Lemma A.6. Consider a compact set K in [0,∞) × (λ,∞), (x1, λ1) ∈ K and ε > 0. Let us take
M ∈ [0,∞) such that M ≥ x, for all (x, λ) ∈ K. We show first that there exists k0 large enough and η > 0
small enough such that if |x− x1|+ |λ− λ1| < η, and k ≥ k0, then

V (x, λ)− V δk (x, λ) < ε. (59)

Indeed, by pointwise convergence at (x1, λ1), there exists k1 such that

V (x1, λ1)− V δk (x1, λ1) < ε/3 for k ≥ k1. (60)

By Lemma A.5, there exists η1 such that if |x− x1|+ |λ− λ1| < η1, then∣∣V (x, λ)− V (x1, λ1)
∣∣ < ε/3. (61)

Also, from Proposition 6.1, there exists η2 and k2 such that if |x− x1|+ |λ− λ1| < η1, then∣∣V δk (x, λ)− V δk (x1, λ1)
∣∣ ≤ V δk (M,λ)( e

(β+q)δ+
∫ δ
0 λc

udu−1
pδ

+ β(λ1∨λ2)+q
d((λ1∧λ2)−λ)

)(ρδ(x2)− ρδ(x1) + |λ2 − λ1|) + δp

< ε/3

(62)

for k ≥ k2. Therefore, taking η := η1 ∧ η2, for k ≥ k0 := k1 ∨ k2, we obtain (59) from (60), (61) and (62).
Finally, we conclude the result by taking a finite covering of the compact set K. ■

The next lemma is the key argument in the proof of Theorem 6.9.

Lemma A.7 V is a viscosity supersolution of (11) in (0,∞)× (λ,∞), and so V = limk→∞ V δk = V.

Proof of Lemma A.7. Take (x0, λ0) ∈ (0,∞)× (λ,∞) and a differentiable test function φ : [0,∞)× [λ,∞) → R
for a viscosity supersolution of (11) at (x0, λ0), that is

V (x,λ) ≥ φ(x, λ) and V (x0, λ0) = φ(x0, λ0). (63)

Consider the sets K1 = [x0, x0 + δ1] ⊂ (0,∞), K2 = [λ0, λ0 + 1] ⊂ (λ,∞) and Kδk = (Gδk ∩ K1) × K2 ⊂
(0,∞)× (λ,∞). In order to prove that L(φ)(x0, λ0) ≤ 0, consider now, for η > 0 small enough,

φη(x,λ) = φ(x,λ)− η
((
x− x0

)2
+(λ− λ0)2

)
.

Given k ≥ 0, the set Kδk is non-empty and compact, so we can define

aηk := minKδk {V
δk (x,λ)− φη(x,λ)} (64)

and
(xηk, λ

η
k) := argminKδk {V

δk (x,λ)− φη(x,λ)} ∈ Kδk . (65)

Since V δk ≤ V , we have from (63), that aηk ≤ 0. Taking

0 ≤ bηk := maxKδk {V (x,λ)− V δk (x,λ)},
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by Lemma A.6, aηk → 0 and bηk → 0 as k → ∞. Moreover, for all (x,λ) ∈ Kδk , we get from (63), (64) and (65)
that

aηk = V δk (xηk, λ
η
k)− φη(x

η
k, λ

η
k)

= V δk (xηk, λ
η
k)− V (xηk, λ

η
k) + V (xηk, λ

η
k)− φ(xηk, λ

η
k) + η

((
xηk − x0

)2
+(λη

k − λ0)2
)

≥ −bk + η
((
xηk − x0

)2
+(λη

k − λ0)2
)
.

Then, the minimum argument in (64) is attained at (xηk, λ
η
k) ∈ Kδk such that(

xηk − x0
)2

+(λη
k − λ0)2 ≤ (bk + ak)/η.

Hence, (xηk, λ
η
k) → (

(
x0
)+
,
(
λ0
)+

) as k goes to infinity. So

V δk (x,λ) ≥ φη(x,λ) + aηk for (x,λ) ∈ Kδk and V δk (xηk, λ
η
k) = φη (x

η
k, λ

η
k) + aηk. (66)

Since
T0(V

δk ) (xηk, λ
η
k)− V δk (xηk, λ

η
k) ≤ 0,

we obtain

0 ≥ limk→∞
T δk
0 (φη)(x

η
k
,λ

η
k
)−φη(x

η
k
,λ

η
k
)−a

η
k(1−e−qδk )

δk

= limk→∞
T δk
0 (φη)(x

η
k
,λ

η
k
)−φη(x

η
k
,λ

η
k
)

δk

= L(φη)(x
0, λ0).

Since ∂x(φη)(x
0, λ0) = ∂x(φ)(x

0, λ0) and ∂λ(φη)(x
0, λ0) = ∂λ(φ)(x

0, λ0) and φη ↗ φ as η ↘ 0, we obtain
that L(φ)(x0, λ0) ≤ 0 and the result follows. ■

Proof of Theorem 6.9. From Lemmas A.6 and A.7 we have that for any δ > 0, the functions V δk ↗ V = V
locally uniformly as k goes to infinity. From Proposition 5.2, it is enough to show that V δk ↗ V uniformly
in [0,∞)× [λ, λ1] for any λ1 > λ. From Proposition 5.1, take x > x∗ = p/q + δk, then

V δk (x∗, λ) + (x− x∗) ≤ V δk (x, λ) ≤ V (x, λ) = V (x∗, λ) + (x− x∗),

so
V (x, λ)− V δk (x, λ) = V (x∗, λ) + (x− x∗)− V δk (x, λ)

≤ V (x∗, λ) + (x− x∗)− (V δk (x∗, λ) + (x− x∗))

= V (x∗, λ)− V δk (x∗, λ),

and the result follows. ■

A.6 Proofs of Section 7

Proof of Proposition 7.1. Since λ̂t ≥ λt for all t ≥ 0, with a proof analogous to the one of Proposition 3.1-(1),

one can prove that V̂ δ,∆ ≤ V δ. Let us prove now that lim∆→0 supx≥0,λ≥λ

(
V δ(x, λ)− V̂ δ,∆(x, λ)

)
= 0. It is

enough to do the proof for (x, λ) ∈ Gδ ×H∆. Take the optimal Gδ-strategy π = (L,∞) ∈ Π̃x,λ such that

V δ(x, λ) = J(π;x, λ)

and let us call the corresponding ruin time of the controlled process XL
t = Xt − Lt as τL.

Given δ and ∆, since 0 ≤ λ̂t − λt ≤ ∆, we can write the Poisson process N̂t as N̂t = Nt +N t where N t is
a Poisson process independent of Nt and intensity λ̂t − λt. Therefore,

X̂t = Xt −
Nt∑

m=1

Um. (67)

Define
τ̂1 = sup{t : X̂t − Lt ≥ 0},

L̂t = Lt I{t<τ̂1} + Lτ̂1 I{t≥τ̂1}

and
τ̂F = τ̂1I{Xτ̂1

−L
τ̂
−
1

≥0} +∞I{Xτ̂1
−L

τ̂
−
1

<0}.
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Then, taking π̂ =
(
L̂, τ̂F

)
, it holds that π̂ ∈ Π̂δ,∆

x,λ . That is, it is admissible for the discrete intensity process

λ̂t. Denote the ruin time of as τ̂L and τ̂2 = τ̂L∧ τ̂F . So we have from (67) τL ≥ τ̂2 and

XL
τ̂2 = Xτ̂2 − Lτ̂2 = X̂τ̂2 +

N τ̂2∑
m=1

Um − Lτ̂2 ≤
N τ̂2∑
m=1

Um.

We therefore can write

J(π;x, λ)− Jλ̂(π̂;x, λ) = E(
∫ τL

τ̂2− e
−qsdLs)− E(I{τ̂F<τ̂L}e

−qτF

(X̂τ̂F − L
(τ̂F )−

))

≤ E(
∫ τL

τ̂2− e
−qsdLs)

≤ E
(
e−qτ̂2I{τ̂2<τL}V (

∑N τ̂2
m=1 Um, λτ̂2)))

)
≤ E

(
e−qτ̂2I{τ̂2<τL}(

∑N τ̂2
m=1 Um + p

q
)

)
.

(68)

From λ̂t − λt ≤ ∆, we get that E
(
N t

)
≤ t∆ for any t ≥ 0. So, given ε > 0 and taking ∆ ≤ 1 and T large

enough such that e−qT
(
T∆E(U1)+

p
q

)
≤ ε

2
, we get

E
(
I{τ̂2<τL}I{τ̂2>T}e

−qτ̂2
∑N τ̂2

m=1 Um + p
q
)

)
≤ e−qTE

(∑N τ̂2
m=1 Um + p

q

)
≤ e−qT

(
T∆ E(U1)+

p
q

)
≤ ε

2
.

Moreover, τ̂2 < τL implies N τ̂2 ≥ 1, so choosing ∆ ≤ ε/(4
(
E(U1)T + p

q

)
) and since P(N t ≥ 1) ≤ 1−e−∆t,

we obtain

E
(
I{τ̂2<τL}I{τ̂2≤T}e

−qτ̂2(
∑N τ̂2

m=1 Um + p
q
)

)
≤ E

(
INT≥1(

∑NT
m=1 Um + p

q
)
)

≤ P
[
NT ≥ 1

]
E
(∑NT

m=1 Um + p
q

)
≤ (1− e−∆t)

(
T∆E(U1) +

p
q

)
≤ ε

2
.

So, from (68),

J(π;x, λ)− Jλ̂(π̂;x, λ) ≤ ε for ∆ ≤ ε

4
(
TE(U1) +

p
q

) ,
and we get the result. ■

Proof of Theorem 7.4. On the one hand, since λ̂t ≥ λt for all t ≥ 0, one can prove that V̂ δ,∆ ≤ WPδ,∆ in
[0,∞)× [λ,∞) with a proof analogous to the one of Proposition 3.1-(1). On the other hand, given any ε > 0,
from Theorem 6.9 and from Proposition 7.1 there exists δ and ∆ small enough so that

0 ≤ V (x, λ)− V̂ δ,∆(x, λ) ≤ ε

in [0,∞)× [λ,∞), which establishes the result. ■
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