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We consider continuous systems of particles in the framework of classical 
statistical mechanics and derive a general expression for the static elastic moduli 
tensor in terms of correlation functions. We find sufficient conditions for the 
vanishing of the shear modulus. Relationships between these conditions and 
others insuring translational or rotational invariance are discussed. 
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shear modulus. 

1. I N T R O D U C T I O N  

In this paper we start a rigorous microscopic study of elastic moduli in the 
framework of classical statistical mechanics. We consider particle systems 
with Lennard-Jones-type two-body potentials. The phase diagram of such 
systems is rather well understood from numerical simulations. ~ From the 
theoretical point of view, the situation is different: we have good 
approximation schemes to study the fluid phase, but we are far from 
understanding the solid-liquid transition. 

It is a fact of everyday experience that solids are rigid and that fluids 
flows. It would be also desirable to deduce these macroscopic properties of 
matter from statistical mechanics. Again, using numerical simulations, this 
can be done./~5) Our aim in this paper is to attack this problem from a 
rigorous point of view. 

Generalizing the method of dilatation of Green, (8) we first express the 
elastic moduli tensor B ~  in terms of basic objects of statistical mechanics 
which are the correlation functions. We do the computation in the finite 
volume canonical ensemble (C.E.). The choice of the C.E. is justified by the 
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fact that we do not want the number of particles to vary during the defor- 
mation of the system. The expression we find involves integrals over the 
volume A of two-, three-, and four-point correlation functions. We then 
have to face the problem of evaluating these quantities in the ther- 
modynamical limit. This problem is hard for two reasons: first, even in the 
fluid phase there is no direct way of proving the existence of the ther- 
modynamic limit of the finite volume correlation functions in the C.E.; 
second the convergence is expected to be slow. 

However, let us remark that finite volume systems of charged particles 
interacting via the Coulomb force are expected to converge rapidly to their 
thermodynamic limit. This is indeed the case for the one-component 
plasma. At F=fle2= 2 (where the system can be solved explicitly), Piller 
and Rentsch have been able to compute the thermodynamic limit of 
B=~yo(A) at F =  2 where they found absence of shear (/~ = 0) and a t / ' =  oo 
where they found/~ = eZp/8. 

There is another puzzling fact: the compressibility modulus is defined 
by - V  c~P/OV. Using the expression of the virial pressure, V OP/OV will 
contain two-, three-, and four-point correlation functions (as mentioned 
above). How does it come that in the thermodynamic limit the com- 
pressibility (which is the inverse of the compressibility modulus) can be 
written in terms of the two-point function only (in fact, kTp2Xr= 
f dx[n~(O, x) - p2] where Zr is the compressibility, p the density, and n~ the 
two-points functions)? 

The way we solve the problem of the thermodynamic limit at least for 
the fluid phase is by working in the grand canonical ensemble (G.C.E.). 
However, in order to compute the elastic moduli tensor in this ensemble, 
we propose that the mean number of particles is kept fixed during the 
deformation. The finite volume expression for B~p~ still envolves four-point 
functions but is different from the one found in the (C.E.) (this is not sur- 
prising since both ensembles are only equivalent in the thermodynamic 
limit'). We can now use standard methods (see, e.g., Ref. 14) to take the 
thermodynamic limit of B ~ ( A )  and express it in terms of infinite volume 
correlation functions. We now want to discuss in a precise way the results 
we have obtained. 

We consider particle systems with twice continuously differentiable 
two-body potential_ For these systems we make two types of assumptions: 

(al) The two-body potential V(r) is absolutely integrable and the 
correlation functions have an integrable clustering (i.e., V(r)~r -(v+~), 
n2(O, r ) -p2~r  -~+`) as r--, oo where v is the dimension and e>0 ,  and 
similar assumptions for three- and four-point correlation functions). 

(a2) The two-body potential V(r) is of first moment integrable and 
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the correlation functions have a clustering of first moment integrable [i.e., 
V(r)~r ~+l+~),n2(O,r)_p2 r ~ + l + ~ ) a s r ~ o o ] .  

We prove that assumption (al) implies that one can give a meaningful 
definition of the elastic moduli tensor B~r in the thermodynamic limit. Let 
us remark that assumptior~ (al) implies that the correlation functions are 
translation invariant and that the state is pure ~9) (i.e., is an equilibrium 
state which cannot be written as a convex combination of different 
equilibrium states). This immediately excludes crystals. However, (al) does 
not prevent orientational order, that is, there may exist liquid crystal 
phases for which assumption (al) is true and for which our formula would 
yield a well-defined expression for B~/3~6 (however, we did not investigate 
such a situation). If we assume the validity of the stronger assumption (a2), 
then it comes ~93 that the correlation functions of the system have to be 
Euclidean invariant, that is, the spatial translations and rotations are not 
broken symmetries. This fact immediately implies that B~r has only two 
independent components: the bulk and the shear modulus. One of the main 
results of our paper is to show that B~76 is equal to Zr16~6~/~ (where Xr is 
the isothermal compressibility for which we recover the expression in terms 
of the two-point function). This in particular shows the absence of shear for 
such systems. 

Hypothesis (a2) is verified for fluids because for such systems, at least 
away from the critical point, it is expected ~v3 (and can be proved in some 
cases ~3)) that the clustering of the correlation functions has the same decay 
as the potential. 

If amorphous materials can be described in the framework of 
equilibrium classical statistical mechanics of particles systems (with pair- 
wise spherical symmetry potentials) and if their static shear modulus is 
nonzero, our result implies that their correlation functions have to have a 
slow clustering. 

Finally, it must be specified that the subsequent formalism being the 
one of equilibrium, elastic moduli defined here must be understood as zero 
frequency moduli. Such an interpretation is confirmed by the study of the 
linear response theory. This will be the subject of a forthcoming 
publication. 

Let us stress the fact that the paper is self-contained and does not 
require any knowledge of elasticity theory. It is organized as follows: Sec- 
tion 1 contains a thermodynamic derivation of Hooke's law. Section 2 gives 
a microscopic expression of the elastic moduli tensor. Section 3 deals with 
the problem of the thermodynamic limit and also contains the statement 
and the proof of our main result. 
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2. T H E R M O D Y N A M I C  DEFINIT ION OF THE ELASTIC M O D U L I  

In order to be self-contained and fix the definitions and notations, we 
review in this section some elements of the classical theory of elasticity. We 
introduce the stress tensor and Hooke's law. 

We consider a material system in the domain A c ~v, with volume IAI. 
We introduce a homogeneous isothermal deformation 

D: Nv __. Nv 

y I---~ X r 

x '~ = ( 6 ~ +  u~)  x ~ (2.1) 

u~r is the displacement gradient tensor, which we assume to be 
independent of x. As usual, components of tensors will have the greek 
indices c~, /~, ~, 3, which run from 1 to v, the dimension of the space. We 
also use the Einstein convention, summing over repeated indices. In the 
following, we assume lu~l ~ 1. The expansion of the Helmholtz free energy 
of the deformed system is 

F(A' )=F(A)+ ]A] z~(A)u~+�89 A~(A)b/~3/./y6 -~ O(/,/3) (2.2) 

where 

1 OF(A')4=0 
z,~(A) . - I A I  c~u=~ 

is the stress tensor in the reference state, and 

1 02F(A ') ~= 
A~/~7~(A) " -  IA/~?u~ ~uT~ 

(2.3) 

(2.4) 

In order to express Hooke's law, which defines the stress-strain elastic 
moduli, we consider a second deformation of the system, D': A'---, A" (~6) 
Writing (2.1) in a matrix form 

D(x) = x ' =  ( E +  U)x (2.5) 

where E =  ( ~ ) ,  U =  (u~), we define 

D"(x) = D'o O(x)= (E + U') x '= (E + U")x (2.6) 

(2.5) and (2.6) imply 

(E + U')(E + U) = (E + U") (2.7) 
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o r  

f t  t / 

We have, from (2.3), and using (2.8), 

(2.8) 

1 a F ( A " ) , ' = o -  1 OF(A")~?u(a ~'=o 
%~(A ' ) - IA '  t c?u'=~ IA'] ~uy~ au~ 

1 6~7(b~6 + u,a) c~F(A") .' 
=IA'I =o 

1 OF(A') 
- ]A'] (5~a + u~a) c~u~a (2.9) 

(2.9) is the exact expression for the stress tensor in the deformed state. (2.9) 
was first obtained by Murnaghan, (H) starting from equilibrium equations 
for the strained medium. We now expand (2.9) with respect to u~a, using 
(2.2). We also use 

1 1 

]A'I IA] de t (E+  U) 

=IA---[ 1 - 6 ~ u ~ +  -~(6~5~a+6B~cSa)u~u~a+O(u 3) (2.10) 

Taking account of the symmetry 

we obtain 

A ~a(A ) = A./a~(A) 

v~(A')  = v~(A) + [A~Ta(A ) + 5~v~a(A) 

- 6~a'c~/~(A)] uTa + O(u 2) 

(2.12) is Hooke's law; it defines the tensor B~/#a(A): 

B ~a(  A ) = A~.~a( A ) + 6 ~ v ~a( A ) - 6 ~a v ~( A ) 

(2.11) 

(2.12) 

(2.13) 

Remark 2.1. For an isotropic system 

%~(A) = - 6 ~ P ( A )  (2.14) 

B~Ta(A) = : 2B(A) 5~6~a + #B(A)(6~.~SBa + 6~a5~) (2.15) 

where P(A) is the pressure of the system. 2~(A), the bulk modulus, and 
p~(A), the shear modulus are the Lam6 coefficients. The subscript B recalls 
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the origin of their definition, e.g., from the tensor B~7~(A ). They are related 
to the isothermal compressibility: 

1 c? IA] 
)~T(A) . -  (2.16) 

]AI ~P(A) 

by 

1 2 
- 2~(A) + 2  #e (A)  (2.17) 

Zr(A) v 

where v is the dimension of the system. For a fluid, it is expected that 
#8(A) = 0, or equivalently 

1 
B~&6(A ) = ~ 6~6~6 (2.18) 

One of the main points of this work is to show (2.18) from first principles. 

Remark 2.2. In the literature, one defines the tensor 

where 

02F(A') ~=o 
C~&6(A ) "- &l~ &l~6 (2.19) 

t/~, := l(u~ + u,~ + uT~u.r162 (2.20) 

r/~, is called the Lagrangian strain parameters tensor. Its use is 
motivated by the fact that free energy can depend only on the distance 
between original and deformated points, and x'~x '~ = x~(6~, + 2 G J  x ~. It is 
important to realize that B~7~(A) is equal to C~r only at zero 
pressure. (2's'11'16) In fact, one has the relation 

B~&~(A)=C~(A)+6~.~zt~(A)+6&%~(A)-67~G~(A ) (2.21) 

B~&~(A), as opposed to C~&~(A), does not possesses the Voigt symmetry 
[ C ~ ( A ) =  C ~ ( A ) =  C ~ ( A ) ] ,  unless G~(A)= -6~P(A).  In the 
isotropic case, the use of C~,./~(A) to define Lam6 coefficients 2c(A), #,.(A), 
analogously to (2.15), would lead to 

2~(A)=2B(A)-P(A), #,.(A)=#B(A)+P(A) (2.22) 

3. C A N O N I C A L  A N D  G R A N D  C A N O N I C A L  E X P R E S S I O N  FOR 
THE ELASTIC M O D U L I  

The aim of this section is to find a statistical mechanics expression for 
B ~ ( A ) ,  the elastic moduli tensor at finite volume in the canonical and 
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grand canonical ensemble. We shall use a strategy similar to the one used 
by Green to obtain the expression for the virial pressure. (s/ 

3.1. Canonical  Ensemble Formulat ion of Stat ist ical  Mechanics  

We first recall some features about canonical ensemble. The Helmholtz 
free energy is 

where 

F(N, A, T)= - kT ln  Q(N, A, T) (3.1) 

1 d Q(N,A,T)=N[~7~f~ x p f ,  udXexp[--fiHN(p,x)] (3.2) 

is the canonical partition function (p = {p~, i =  1 ..... N}; x = 
(Xi, i = 1 . . . . .  N}; dp = I~ ~ I~ N dp,, dx I~;=, 1 ~" = [ I  N dx~). The Hamil- ~ = 1  i = 1  i =  

tonian of the system is 

HN(p, X)= ~ P~P~ ' 1 N ~=~-5-~m ~ ~ V(Ix,-xjl) (3.3) 
~ j  

the properties of V(Ixi-xj[) will be specified later. The mean value of the 
dynamical variable AN(p, x) is defined by 

(A)(N,  A, T) - 
1 

Q(N,A,T) N!hVN f~NdP fA Ndx 

x AN(p, x) exp[ --flHU(p, X)] (3.4) 

3.2. The Di latat ion Method:  Computa t ion  of the Stress Tensor 
and of the Elastic Modul i  Tensor 

After a deformation D : A ~ A ' ,  the canonical partition function 
becomes Q(N, A', T). Doing the change of variables x; = ( E +  U) x, and 
p;= (E+ U'r)-lpi of Jacobian 1, it can be rewritten as 

' L L  Q(N, A', T) = N! h v-----~ ~N dp N dx exp[ --flHN(p ', X')] (3.5) 

with 

HN(p ', X')= ~ ~ (E + U)~ 1 pT(E + U)p~ 1 p• 
i = 1  

1 N 
+ ~,~j vEI(E+ u)(xi-xj)l] (3.6) 
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The dependence on the displacements gradients is now contained in the 
Hamiltonian, and it is now easy to compute derivatives with respect to u~,. 
Using (3.2), we get 

~3u=z = - f l Q - I ( N ,  A', T) ~,u dp u dx 

c3H'V(p ', x') 
• exp [ - flHN(p ', x') ] 

c3u~ 

(3.7) and (2.3) imply 

= - f l  \~u~,~/ (3.7) 

1 
(3.8) 

the index C standing for canonical ensemble, where 

N T~p(p, x ) . -  OHN(p" x') PTP~ 
0u~ =o i= 1 m 

1 N O V ( x i - - x j )  
+ ~ ~,;. ~?x7 ( x ~ -  Xf)= T~V~ (p, x) (3.9) 

Differentiating (3.7) once more, we find analogously 

~2F(N, A', T) IAI c 
~u=~ Ou~ = = o = A ~ (  A ) 

where 

We used 

(3.10) 

= ( W~BT6)(N, A, T ) - f l ( T ~ z ;  Ty6)(N, A, T) 

w~N~76(p, X).-- 02HN(p" x') ~=o 
0u~p ~u~6 

1 N 02V([x_x j l )  
+ ~Z+, ~x~x ' ;  (x~--x])(x?--xgl  

= w~=p(p, x) (3.11) 

(B; C )  := ( B C ) -  ( B ) ( C )  (3.12) 
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(2.13), (3.8), (3.11) imply the following canonical expression for the finite 
volume elastic moduli tensor: 

1 
B~c~6( A ) = -~] (< W~/~76 > - I~ < T~ ; T~6 > + 6 ~: < T~6 > - 6 ~ < T~ > )( N, A, T) 

(3.13) 

Remarks. (1) In what precedes, we followed the thermodynamic 
method of Section 1, consisting essentially in correcting the second 
derivatives of the free energy A~/376(A) with appropriate stresses [see 
(2.13)]. In order to find this correction, we needed a second deformation of 
the system. But at the microscopical level, there is an alternative procedure 
which consists in starting from the statistical expression of ~C~(A'), where 
expansion in u~6 gives immediately the elastic moduli tensor c B~.:6(A). This 
expression is 

c , 1 
v~(A ) = ~ - ~  < T'~>'(N, A', T) 

1 fo =[Al det(E+ U) Q(N,A', T) ,,Ndp Ndx 

x T~(p', x') exp[ --~gN(p ', x')] (3.14) 

where 

, ~ 1 
Tamp , N  X t ) =  - -  ~ -- (E+ U)z~  1 pT(E+ U)pfl I p~ 

m 
i = 1  

1 OW[l(/+ U)(x,-xj)t] (E+ U)~;(xf -x ; )  (3.15) 
+ 2 O(E + U)~ x~ ~ # j  

We see that, although HN(p ', X') flS given by (3.6) can be expanded with 
respect to the Lagrangian parameters ~/~ [this fact allows the expansion of 
F(N, A', T) in r/~p], it is not the case for T~(p', x'). We arrive at the con- 
clusion that ~/~ do not constitute in general convenient expansion 
parameterS, in order to derive expressions (at the thermodynamic or 
statistical level) for B ~ ( A ) .  This fact is closely related to the general 
absence of Voigt symmetry for B ~ ( A ) .  

(2) As required by the standard statistical prescription, the (stress 
strain isothermal) elastic moduli tensor is given by the thermodynamic 
limit: 

C B ~  := lim c B:/#a(A) (3.16) 

N / I A I  = cs t  
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Let us stress the fact that shape independence of the free energy per unit 
volume in the thermodynamic limit does not imply the vanishing of the 
shear modulus. Indeed, definingfA := F(A)/IA l, it comes from (2.2), (2.10), 
(2.13): 

lm" Of A' ,~2= (3.17) B1212 
ll'l 1 ~  ~L/12 ~/'/12 0 

But the general result (see, e.g., Ref. 14, Theorem 3.4.4), 

lim fA,= lim f ,  (independent ofux2) 
IAI ~ oe tAI--+ oe 

does not imply B1212=0, because the permutation of the limit and the 
derivative is not legitimate[ 

(3) When T~O, the means over kinetic contributions vanish; it is 
expected also t h a t / ~ ( T ~ ;  T~6)--* 0. Thus, the classical results about solid 
state elasticity are found again (see Ref. 4; the pressure corrections are dis- 
cussed in Refs. 2 and 5). 

(4) The expression (3.13) (up to pressure corrections) was evaluated 
by numerical simulation, (15) for a system interacting by a Lennard-Jones 
potential, at low temperature. It appears that the shear term Bf212(A) (for 
which pressure corrections fall) is different from 0. 

3.3. Grand Canonical Formulat ion of Stat ist ical  Mechanics 

We now recall some features about grand canonical ensemble, in order 
to derive a B~6(A), the elastic moduli tensor evaluated in this ensemble. The 
grand partition function is 

2(z, A, T)= ~ zNQ(N, A, T) (3.18) 
N = 0  

where z = exp(/~#) is the fugacity and/~ the chemical potential. The mean 
value of the dynamical variable AN(p, x) is defined by 

Z N 

(A)(z,  A, T) := S(z, A, T) N = 0  

x AN(p, x) exp[--/~HU(p, X)] (3.19) 

The mean number of particles is 

(N)(z,  A, T) = z c3 ~zz In ~(z, A, T) (3.20) 
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We will use also 
0 

z-z- < A >(z, A, T)= < A; N>(z, A, T) (3.21) 
(7Z 

The Helmholtz free energy of the system, when expressed in terms of the 
grand canonical variables, is 

F(z, A, T)=#<N>-kTln Z(z, A, T) 

=kT[<N> in z - l n  Z(z, A, T)] (3.22) 

3.4. C o m p u t a t i o n  of  the  Stress Tensor  and of the  Elastic 
M o d u l i  Tensor  in Grand Canonica l  Ensemble 

The free energy of the deformed system is obtained from (3.18), (3.20), 
(3.22), with Q(N, A, T) replaced by Q(N, A', T) as given by (3.5). The suc- 
cessive derivatives of the free energy with respect to the displacement 
gradients have to be performed with fixed mean number of particles. 

We use 

It comes 

Therefore 

and 

OF(z, A', T) 
Ou~ <N> 

_OF(z'A" T) z ~F(z,A',T) A' 

82 A' 0<N>(z, A', T) 
x ~ Ou~fl z 

OF(z, A', T) z 
~u~ 

OF(Z,~zA', T) A' 

3<N)(z, A', T) z 
Ou~ 

= _z lnz  ~ [QH'~' 
\ ~u~ / 

= k T ~ z }  A' lnz 

= - ~ z  ez \ O u ~ /  

(3.23) 

0Uccfl <N> \~Uc~lO/ 

~F(z, A', T) 
Ou~ <N>;u=O 

= IA] o %~(A) = ( T~}(z, A, T) 

'~' 
+ \Ou~---~/ (3.24) 

(3.25) 

(3.26) 

(3.27) 

(3.28) 
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where T~ is given again by (3.9), but evaluated now by the grand 
canonical mean (3.19) instead of the canonical one (3.4). Differentiating 
(3.27) once more, we find, proceeding analogously, 

02F(z, A', T) 
~3u~,p ~u~6 <N>;u=0 

IAI G = A~6(A) 

= (  (W~7~ - f l(T~;TT~>+fl  <T~;N)(T~6;N))  ( z ' A ' T ) ( N ;  N) (3.29) 

where W~6 is gwen by (3.11), evaluated by the grand canonical mean. 
(2.13), (3.28), and (3.29) imply the following grand-canonical 

expression for the finite volume elastic moduli tensor: 

G _ _  G I  G I I  B ~6( A ) (3.30) B ~6( A ) + B ~ ( A )  - 

where 

A, T) 

(3.31) 
and 

Gn ~ (T~;N>(T~6;N) (z,A, T) (3.32) 
B~,6(A) = IAI (N; N> 

The term <N; N> appearing in (3.32) is related in the literature to the com- 
pressibility by 

(N; N> 
zr(A)=/~ [A] (N>2 (A, z, T) (3.33) 

One of our results will precisely consist in showing the consistency between 
(3.33) and the definition of the compressibility obtained from e B ~ ( A ) ,  at 
least for the fluid case. 

Remarks. (1) It is straightforward to verify that 

1 OF(z, A', T) <N>;u=0 = - -  kT 0 in Z(z, A', T) (3.34) 
r~a~(z, A, T)= IA~ eu=~ I/I ~u=~ u=O 

where the last expression is to be computed without the restriction 
<N> =cst. (3.34) constitutes the generalization of the well-known prescrip- 
tion: 

P~(z, A, T) = kT ~-z~- ln Z(z, A, T) (3.35) 
O V  
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(2) Let us recall that, by definition, B ~Ta( ) = B ~ya( ) + B ~ra( ) 
describes the linear part of the dependence of r=p(AC ') versus uya. By check- 
ing the derivation of (3.30), it appears that an B ~ a ( A )  represents exactly the 
correction due to restriction ( N ) =  cst. On the other hand, it will appear 
that, for the fluid case, limlA I ~ ~ B]~a(A)=  0. The physical interpretation 
of this last fact is: it does not cost any force to deform a fluid when we 
allow the number of particles to vary (we compress a fluid in a holed con- 
tainer! ). 

(3) It can appear at first view, by comparing (3.13) and (3.31) that 
the only difference between canonical and grand canonical expression is 
constituted by the term an . B:eTa(A), however, the analogy between c B~/>~a(A) 
and ci B~B~a(A ) is only superficial: for example, the correlation of T=5 and T(~, 
defined, respectively, as the kinetic and potential part of T~e(p, x), gives 

<LS; T >c=0 
(3.36) 

(4) For the ideal gas, the equivalence of the canonical and grand 
canonical expression for the elastic moduli tensor holds already in a finite 
volume: 

C __ G B ~Ta ( A ) - B ~ a  ( A ) = ~ ~ 6.~ pk  T (3.37) 

the density being defined by 

N 
P - IAI  

<N)  
jO - -  

lal 

in the canonical ensemble 

in the grand canonical ensemble 

(5) Following the standard procedure, we introduce correlation 
functions in either ensemble: 

nC/C'At'~s t ~ l  ,..., X s ) : =  I ~ .  ~(Xl - -X i l ) ' ' ' ~ (Xs - -X i~) l  (3.38) 
il ~ "'" v a is C/G 

C/G B~BTa(A ) will be expressed by terms having the form 

IC/a(A ) := ~-/JA dxl "" dxs nC/G'A(X l ..... X,) h(xl,..., xs) (3.39) 

822/42/3-4-25 
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The essential point is that, although the ensemble equivalence implies 

lim nC'AlXs t 1,..., Xs)= lim nGs'A(Xl , . . . ,  X s )  = ' n s ( X  1 ..... x,) (3.40) 
IAI ~ oo IAI ~ oo 

it is generally illegitimate to take the limit of the canonical correlation 
functions under the integral; indeed, in this case, the thermodynamic limit 
is approached too slowly (as IA[-1). For the ideal gas, for instance, 

N(N- 1) p 
nC'A(Xl' X2)= IAI ~ ~--n2(xl' x2 ) -  IA----~ 

HG2'A(xl, X2)= 
(N(N-  1)) ( N )  2 

IAI 2 IAI 2 
_ _  - -  p 2  = n 2 ( X l  , x 2  ) 

An other well-known example is provided by the compressibility, as it 
appears in (3.32): 

lim dxdy[nC, A(x, y)--nC, A(x) nC.A(y)] 
IAI ~ oo 7 

= lim 1---|dx[(N--1)ncl',A(x) ~ NnC'A(x)] 
JA 

= lim 1 fA 

B u t  

lim 
I A I  ~ c o  

~[ dxdy IAjlim~ oo [nC'A(x' Y)--ncl'A(x)nC'm(Y)] 

= l i m  1 fA 

= lim 1 IAI~ ~ ~ ((N; N)-- (N)) =p(zTpkT- 1) 

Therefore, for Xr # 0, the permutation of the limit and the integration give 
different results in the canonical case! 

(6) An exception is constitued by the one-component plasma 
(O.C.P.). Its compressibility is zero and its thermodynamic limit converges 
faster than in not charged particles systems. For the two-dimensional 
O.C.P., the canonical procedure has been applied, (with deforming the 
bath with constant charge), at a certain temperature ( F =  2) corresponding 
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to a fluid phase, where the correlation functions are exactly known. It was 
found B1212 = 0. (12) At T =  0, we have/~ = eZp/8, which is the same result as 
the one obtained by Alastuey and Jancovici by another method. (~~ 

4. T H E  M A I N  R E S U L T  

In this section and the following, we shall use only the grand canonical 
ensemble (the index G then disappears). We shall rigorously show that, 
under hypotheses which are characteristic of a fluid phase, the (infinite 
volume) expression for the (grand canonical) elastic moduli tensor B~/~6 
leads to ( i)an expression for the isothermal compressibility which is the 
same as the well-known one, given by (3.33), (ii)a vanishing shear 
modulus (# = B1212 = 0 ) .  

In order to fulfil this program, we give in Section 4.1 the expression of 
B~.~6(A) in terms of correlation functions; we take the thermodynamic limit 
in Section 4.3, using the hypotheses introduced in Section 4.2. Section 4.4 is 
devoted to the analysis of the stress tensor and Section 4.5, deals with the 
reduction of B=~.~ by using the BBGKY hierarchy, in order to obtain the 
above results. 

4.1. Expression in T e r m s  of  C o r r e l a t i o n  Funct ions  

The finite volume (grand canonical) correlation functions were 
introduced in (3.37). In order to have compact expressions, we introduce 
the following notations: 

f ~ ( x , y ) . - ~ V ( l x - y l ) ( x ~ - y ~ ) = f p ~ ( x ,  y l = f ~ ( y , x )  (4.1t 
~3x~ 

c~2 V(lx - y]) 
g~&6(x, y) . -  ~x~x~ (x ~ _ y,)(x ~ _ y6)= g~6(y, x) (4.2) 

(g~76 is symmetric under permutation of all indices) 

A A A  l fA [(n 4 - n z n 2 ) L ,  L6] 3 "= -~  dxdydzdw 

x [nA(x, y,Z, w)--n~(x, y)n~(z, w)] 

x f~(x,  y)f~6(z, w) (4.3) 

[n~f~,fl6]A := ~ dxdydznA(x, y , z ) f~(x ,  y) f,6(x,z) 

(4.4) 
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[(nA--nAnA)f~] A'= ~ dxdy&[nA(x,y,z) 

- na(x, y) nA(z)] f~/~(X, y) 

[nAg=B'a]A := ]AT dx dy n((x, y)g=&a(x, y) 

(4.5) 

(4.6) 

1 
[nA f~]A := -~[ fA dx dy nA(x' y) f~(x, y) (4.7) 

1 
[nA f~Le]A "-- f dx dy nA(x, y) f~(x, y) L~(x, y) 

IAI oA 
(4.8) 

[rt2 - -  n l  rtt  ]A  : =  dx dy[nA(x ,  y) - hA(x) nla(y)] (4.9) 

1 fA dx nA(X)-- <N>A IndiA'-- IAI IA-~- - p (4.10) 

With this condensed writing, we obtain, using (ZN=lp~yi/m)= 

1 
IAI ( T~)  A = G~(A)= --(5~kT[nA]A +2 [nAf~]A (4.11) 

1 
IA-~] ( W ~  ) A = (6~6~ + 26~6~7 ) kT[nA]A 

1 
+ 5 [n(g~&~]A (4.12) 

1 1 A A A A 

+ ~ [nAf~f '  a]A -- kV[(n A --nAnA)f,a]A 

2 

_ 5,akr[nAf~,~]A + 6~5,~(kr)2[(nA _r t ln l  ) ] A A  A 

+ ((5~,~67~ + 6~6~ + 6~a6&)(kT)2[nA]A (4.13) 
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To get (4.13), we used (3.21) and 

0 
z N ,G(.~, ..... Xs) 

= sn~(x, ..... x , )  + I~ dx~ + ~ 

x [ny+t(x , . . . . .  x=,x=+t) -n~(x l , . . . , x~)u~(x=+,)  ] (4.14) 

We also have 

1 ( T ~ , ; N ) A  1 E(nA__nAnA)f~l~]A+[nAf~l~ ] 
IAI = ~  _ A 

- 6~.6kT([n f --nAnA]x + [hA]a) (4.15) 

1 
- - { N ; N > ~  [=I "" = = ~ n l ] A + [ n ~ ] , t  (4. t6) 
IAI 

Using (3.31), (4.1I), (4.12), (4.13), we put B~,./a(A) on the form 

B1 6(A)= Ia Ib B~&a(A) + (4.17) B~&a(A) PY 

where 

Itt __ 

-- --2 [n2 f~/3L6]A -k~-  [(n A --nAnA)f~e]m 

1 6& 
+ -2 [nAg~'~a]A + T  [n~L6]A + [nAL~]A (4.18) 

and 

B ru~,.~,,) = T e ~ t A  6~t3rCn'~3- n An'~) f~a ] A + C5~/3 [n(Jl, a ] , 2  t 

-- 6~,&~akT[n( -- nAnA]a (4.19) 

Proceeding analogously, we get 

II B~&a( A ) _ fl{ in A _ nAnA]a + [nAjA } --1 

i A A d 
• {~[(=~ - " ~ " ,  )LeL + [ 'CA,~] , ,  

- 6 = e k T ( E ' , ~ - ~ # f ] ~  + Drip)}  
1 A A A 

X { ~ [ ( F / 3  - - n 2 F / 1  ) L 6 ] A - } -  [FIALes]A 

- 6%kT([II2A _nlnlA A]A + [hA]A)} (4.20) 
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4.2. The Hypotheses 

We now present and discuss the hypotheses which will be used. We 
ns~(Xl,..., define ns(Xl,..., x,) := limlA I ~ ~ Xs). 

(V) The particles interact by means of a Euclidean invariant pair 
potential V(x), twice continuously differentiable such that 
Ixl [~g(x)/,~lxl]ELl(~';&); moreover, there exists B>~0 such that 
ZI~<j<~,, V(x~-xi)>~ -nB for all n>~0 and xl ..... xn~ Nu. 

(V) The same as (v); moreover, [c?V(x)/~ Ixl ] and 
[ Og(x)/~ Ixl] IxlR~Ll(RV; dx). 

(n A) For any subset X and Y of A with X = { x l  ..... x,}, Y= 
{Yl,...,Ys.}, l~<s+s '~<4 the correlation functions obey the clustering 
bound: 

]nA+s'( X, Y)--nA(X)nA(y)I <~ ~ 2 kA(x,, YJ) 
x i ~  X ) ) r  Y 

where ~ dy IkA(x, Y)I ~< C uniformly in A and x. 
(n) The same as (hA), but for the thermodynamic limit: 

In,+s,(X, Y)-ns(X)n,,(Y)l << , 2 Y'. k(x~- y/) 
x i ~  X y j ~  Y 

where k(x) e LI(NV; dx). 
(N) The same as (n); moreover, k(x) [x[ e LI(N~; dx). 
(c) [nA(X)--n~(X)[ ~< C/dist(X, OA) b, with b > v, where dist(X, Y) := 

min~,~ x miny:~ r dist(x~, Yi)" 

4.3. Discussion of the Hypotheses 

1. Hypothesis (v) is a stability condition (it prevents the collapse of 
the system). Lennard-Jones potentials fulfil these assumptions, except for 
the short-range integrability which is introduced here to avoid 
technicalities. If we want to allow more singular repulsive forces, we have 
to assume that the correlation functions vanish sufficiently rapidly when 
two of their arguments coincide, which is reasonable. For instance, in the 
low fugacity regime, one can prove 

[ 1 ~ V(xi_xj)l~r(X) n~(X) = exp -/~ 2 i~j 

where or(x1 ..... xs) is bounded and continuous (see Ref. 14, p. 106). 

2. It can be shown (3) that, at low fugacity, the asymptotic behavior of 
the truncated correlation functions is the same as that of the potential. 
Then, in this regime, (v) implies (n) and (V) implies (N). 
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3. In the region of convergence of the low fugacity expansion, a 
strong decrease of the potential at infinity [V(x)~]x]  -~ with 7 > 2 v ]  
implies (F/A) and (c). The proof of (F/A) follows from a theorem by Duneau 
and Souillard. (6) For the proof of (c), see Ref. 14, Theorem 4.2.3, which 
gives the bound b > 7 - v. 

As discussed in Remark 5 of Section 3.4, hypothesis (c) is generally 
violated in canonical ensemble. 

4. It is a well-known fact that (v) and (n) imply that the system is in 
a pure state, invariant under translations and rotations, i.e., Euclidean 
invariant (see, e.g., Ref. 9). In other words, (v) and (n) imply that the 
system is f luid in some sense, and exclude the case of liquid crystals. 

4.3. The Thermodynamic Limit 

In this section, we consider the thermodynamic limit of B~7~(A ), 
which is composed of terms of the form 

I(A):= [Al-1 I dxl""dx+" 
OA 

X [F/sA+ s , (Xl  ..... X s+  s') - -  F/A(x1 ..... Xs ) A F/s '(Xs+ l,. .-,  X s + s ' ) ]  

• h(xz ..... x~) h(xs+i,..., x~+s,) (4.21) 

Because of the fast convergence of ns+ s,A to its limit ns+s, [see 
hypothesis (c)], and using (n A) and (v), we shall be able to prove by stan- 
dard argument 

lim I (A)=  lim I A r - l ~ d x l . . . d x ~ ,  
JA 

x [n,+~,(x 1,..., x~+s,) - n~(xl ..... xs) n~,(x~+, ..... x,+s,)] 

x h(xl,..., Xs) h(x~+ 1,..., x~.+~,) (4.22) 

(i.e., it is legitimate to take the limit under the integral). The translation 
invariance of the infinite volume correlation function and the clustering 
property (n) will enable us to write 

I ( A ) = f  dx2...dx~, [ n s + s , ( O , x  2 ..... X s + s ,  ) lira 
fAI ~ co 

- ns(O, x2,..., x~) ns,(Xs+ i,..., x~,+,)] 

x h(0, x2,..., x~) h'(x~+l ..... x~+~,) (4.23) 

The details are done in Section A1 of the Appendix. 
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4.4. The Stress Tensor 

Using the same procedure as the one given in Section A1, it is easy to 
show with hypothesis (v) only that r~(A), as it appears in (4.11), has a 
well-defined limit which can be taken under the integral. On the other 
hand, hypothesis (n) implies the translation invariance of n2(x, y) and we 
get the following: 

Proposition 4.4.1. Under hypothesis (v), (n): 

lim % ~ ( A ) = - 6 ~  p k T -  d x n 2 ( x , O ) ~ x  ~ = - ? ) ~ P  
[AI ~ o~ 

where P appears by its virial expression/s) 

4.5. Reduction of B.~v~ 

I _ (in fact, Ia lb We shall prove that B ~ - 0  B~7~ and B ~  vanish 
separately). The idea of the proof is the following: we use the BBGKY 
hierarchy to express the four-point correlation functions in terms of the 
three-point function and a boundary term which will vanish because of the 
clustering hypothesis. We use the same strategy to eliminate the three-point 
function in favor of the two-point function. The BBGKY equation reads 

arts(X1 ..... x s ) -  fln,(x,,..., xs) ~" ~3V(xl-xj) 
~x7 ~ ~x~ 

i =  2 

- ~fdx~+ln~+l(Xl,...,x~+l) ~?V(xI-x'+l) (4.24) 
0x]' 

Proposit ion 4.5.1 : 

la  (V), (N) ~ B~/~.r = 0 

Proposit ion 4.5.2: 

Ib  (V), (N) ~ B~t#6 = 0 

Proposit ion 4.5.3: 

(V), ( N ) ~  BI~I~,/6 = 1  6~676 
Zv 

I a  I b  I I  I-Recall (see Section 4.3) that B~,a~ 6, B~,~a, and B~r6 are given by the limits 
"under the integral" of the expressions (4.18), (4.19), and (4.20), respec- 
tively; Zr is defined as the limit of the expression appearing in (3.33).] 
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We start from the term involving n4: Proof of Proposition 4.5. 1. 

- - [-(n4 - n2n2) f ~  f~e3 

~--- -- ~--- f dx dy dzEn4(y , y, z, O) -/ '72(x , y)  f/2(z, 0 ) ]  
4 

OF(x- y) (x ~ y )  8V(z) z~ (4.25) 
x a x  ~ - 

- fl f dx dy dz[n4(x, y, z, O) - n2(x, y)  n2(z, 0)] 
2 

8V(x  - y) x~ 8V(z) z~ (4.26) 
x ~x ~ 

1 f dxdz xflC3V(Z)z 6 ~ [n3(x ,z,0)-nl(x)n2(z ,0)] =~ ~ ax--~ 

fl ~ ~ S V ( x - z )  t- 8 V ( X ) ] x ~ S V ( Z ) z ~  (4.27) 
+ - 2 j d x d z n 3 ( x ' z ' O )  k ax ~ Ox ~ l 

Although (v) and (n) constitute a sufficient condition for the boundeness of 
(4.25), we must suppose (V) and (N) to show the boundeness of (4.26) (see 
Section A2 in the Appendix). The passage from (4.26) to (4.27) is done by 
writing the BBGKY equations for 8nB(x, z, O)/Sx ~ and 8nl(x)/OxL An 
integration by parts and (A3) in the Appendix (which shows the vanishing 
of the boundary term) allow us to write 

1 8V(x)  z~ 8 
dx dz x ~ - -  [n3(x, z, O) - n l (x  ) n2(z, 0)] 

-2 J ~ 8x ~ 

d x d ~ [ ~ ( x , ~ ,  O)-,,(x)~=(~,O)] ~vaV(~____~,? 
2 oz ~ 

-- 2 [ ( n 3 - - n 2 n l ) f ~ ]  (4.28) 

We consider also the term 

1 
In2 g~,~a] 

=l(2jdxn2(O,x) OV(x) ~ a 
8x ~ 8x ~ x~x (4.29) 
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1 art2(0 , x) aV(x) ~ 6 ~ ; aV(x) 6 
2 f dx ~x ~ Ox 2 Ox ~ x - -  ~ X  X - - - j d x n 2 ( x  , 0 ) -  

6~6 [ ~V(x) ~ (4.30) 
2 2 dx nz(x, O) ~x---- ~ x 

V(x z) ~V(x) 
[n2f~f~]  + f dx dz n3(x, z, O) = 2 2 Ox ~ ~x ~ x~x6 

2 [n2L ]- [n2fo ] (4.311 

Again, (4.29) with an integration by parts of vanishing boundary term [see 
(A3)] allow us to write (4.30), which, together with the BBGKY equations 
implies (4.31). 

Using the change of variables x '=  x + z, z ' - - - z ,  we transform the 
term appearing in (4.27) in 

fl f dxdzn3(x,  ,,,#V(x) ROV(Z)z ~ 
-2 z , v ) ~ x "  az~ 5 -  

= ~ ~ f d x d z n 3 ( x , z , O )  O V ( x - z )  Ox ~ (x ~ - z ~ ) ~ ~V(Z) z~ (4.32) 

Finally, rassembling the expressions appearing in (4.27), (4.28), (4.31), 
(4.32) it becomes 

4 

- 2 [ ( n 3 - n 2 n ~ ) L 6 ] - - 5 -  [n2f~6] 

6~62 [nzLp] +Sfl [ n 2 L # f i t 6  ] (4.33) 

(4.33) and (4.18) imply Proposition 4.5.1. 

Proof of  Proposition 4.&2., 4.5.3. With the same technique as the 
one used previously, we can show that (V) and (N) imply 

�89 f ~ ]  = 6 ~ k T [ n 2 - n ~ n l ]  - In2 f~/~] (4.34) 

Ib __ Introducing (4.34) into the limit of (4.19) leads to B~/~ 6 -  0; we have also 
H for B~B~6, given by the limit of (4.20), 

" 1 B~Ta 
1 

Zy 
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We summarize these results by 
1 

(V), (N) ~ B ~  = 6~B6~ - -  (4.35) 

o r  

1 
(V), ( N ) ~ 2  := B n 2 = = - - ,  /~ "= B,=t2=0 (4.36) 

)(r 

APPENDIX  

A1. Proof of 4.23 

We shall only show in detail that 

i l i ~  JA-~] dx dy dz dw FA(x, y, z, w) r(x -- y )s (z  -- w) 

= f dx dy dz F(x, y, z, O) r(x - y) s(z - w) 

where FA(x, y, z, w) := hA(x, y, Z, W)-- hA(x, y) hA(z, W) and r(x), s(x) E 
LI(R; dx). (The proof of convergence of the others terms is similar.) 

Let A be a cube of size length R centered at the origin. We divide A 
into a bulk cube Ao of size R - 2 R  a centered at the origin (0 < a < 1) and a 
boundary part A \A o. 

(i) l imR_~ rA[ ~ j" dx dy dz dw [ ( F A - F )  r ( x -  y) s ( z - w )  )~Ao(X) 
)(.Ao(Y) )~Ao(z) )(A0(W)l =0.  Here )~m0 denotes the characteristic 
function associated to the set Ao. Indeed, using (c) 

<< 

C'W 
~< lim = 0 for a choice ab > v 

(ii) l i m R ~  [AI ~ ~A dx dy dz dw I(FA--F) r(x--y)  s(z--w)l 
[1- -  X~0(x)] =0.  (We took account of the fact that 

_< 4 [ 1 - 1-[4= ~ )(A0(Xi)] ..~ }2i= ~ [ 1 -- ZA0(Xt)], and of the symmetry of 
the integrand with respect to the arguments.) But, using (n A) and 
(v), 

f dy - y ) s ( z -  w)l dz dw [FAr(x 

<~ ~A dy dz dw [r(x - Y)[ Is(z w)l 

x [kA(x, z) + kA(x, w) + kA(y, z) + kA(y, w)] 

~<4 Ir[~ [s[1 [KA[~<~C 
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uniformly in x and A by Young's inequality (see Ref. 7, p. 28). 
The evaluation of the term involving F is similar. Since x runs 
through the boundary part of A ( a <  1), part (ii) is proved. 

It remains to show the boundeness of the limit. Using the fact that (v) 

A2. Boundeness of 4.26 

We shall prove that 

f dx dy dz IF(x, y, z, 0)l Ixl Ir(x - Y)I Is(z)l < 00 

where F(x, y, z, 0) := n4(x, y, z, O)-n2(x, y) n2(z, 0) and r(x), s(x), 
Ixl r(x), Ixl s(x) ~ L~(~v; 4x). Using (N) we have 

f dx dy dzEk(x - z) + k(x) + k(y - z) + k(y)] 

x Ix[ ]r(x-y)[ Is(z)l 

The bound Ix[ ~< I x - z [  + [z[ implies 

f dx dy dz k ( x -  z) Ix-z[ ]r(x- y)] [s(z)l 

+ f dx dy dz k ( x -  z) Iz[ Ir(x- y)] Js(z)E 

tk(x) txll~ Ir(x)l, ts(z)ll 

+ Ik(x)l~ [r(X)ll Is(z) Izllx 

We used again Young's inequality. The remaining terms are estimated in a 
similar way. 

and (n) imply 

fAdydzdw IFr(x-y)  s(z-w)l  4 4  Irt, Isll Ikll 

uniformly in x and A, it follows immediately that 

lim IAI l fAdXdydzdwF(x, y,z,w) r ( x -  y ) s ( z -w)<oo  
IAI ~ oo 

The treatment of the other terms is similar. 
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A3. Vanishing of the Boundary Terms 

With conditions (V) and (N), 

g { ~gV(z) s) 

f dX~x~[n2(O,x}~ _]=0 

f &_C [,~(o, x)-,,~(x)<(o)3 =o 

We shall prove the first equality only. The proof of the other equalities is 
similar. We consider that the domain of integration of x is the ball of 
radius R, B(O, R), where we do R ~ oo; using the divergence theorem, and 
writing do; for the ~ component of the outward-oriented surface element of 
OB, we get 

B(O,R) ~Z 7 

We estimate each term separately: 

aV(z) 

(ii) 

Rv 
~C da~k(x) lxl<<.C R~+~+~ 

B(O,R ) 

aV(z) 

~0 

Using the bound Ix} ~ /x  - z/+/zi  and the Young inequality 

(~V(z) <lk(x)} aV(z) izl~ ; d x i d z k ( x - z )  lzl 2 ~ zl ' a zl < o o  
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we deduce that 
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eV(z) 
f + izl) 

is absolutely integrable, and we conclude as in case (i). 
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