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Abstract

The sperm whale, made famous by Moby Dick, is one of the most fascinating of all ocean-dwelling species given their unique

life history, novel physiological adaptations to hunting squid at extreme ocean depths, and their position as one of the earliest

branching toothed whales (Odontoceti). We assembled the sperm whale (Physeter macrocephalus) genome and resequenced

individuals from multiple ocean basins to identify new candidate genes for adaptation to an aquatic environment and infer

demographic history. Genes crucial for skin integrity appeared to be particularly important in both the sperm whale and other

cetaceans. We also find sperm whales experienced a steep population decline during the early Pleistocene epoch. These

genomic data add new comparative insight into the evolution of whales.
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Introduction

The sperm whale, made famous by Moby Dick, makes some

of the deepest and longest dives of any marine mammal:

>73 min long and up to 2,035 m deep (Watkins et al.

1993; Watwood et al. 2006) to feed on squid, including the

infamous giant and colossal squids (Best 1979; Whitehead

2003). Previous comparative genomic analyses of cetaceans

indicated genic adaptation to a marine existence (Foote et al.

2015; Yim et al. 2014), including convergent pathways of

metabolism regulation for deep diving (Foote et al. 2015).

However, to date, the sperm whale—one of the deepest

diving and earliest branching toothed whales (Odontoceti;

Whitehead 2003)—has been excluded from these compari-

sons. We sequenced and assembled multiple sperm whale

genomes to explore genic adaptation. Given the impor-

tant and broad physiological roles played by proteases,

our explorations mostly focused on examining protease

loss-of-function (LoF) events important in sperm whale,

and cetacean, evolution. We also sought to discover

which genes showed signs of positive selection shared

with other cetaceans or unique to sperm whale. Finally,

as previous analyses suggested that sperm whales

� The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits

non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

3260 Genome Biol. Evol. 9(12):3260–3264. doi:10.1093/gbe/evx187 Advance Access publication September 13, 2017

GBE

Downloaded from https://academic.oup.com/gbe/article-abstract/9/12/3260/4158042
by Bibliotheque Cantonale et Universitaire user
on 19 February 2018

Deleted Text: &thinsp;
Deleted Text:  
Deleted Text: ) (
http://creativecommons.org/licenses/by-nc/4.0/


experienced a global expansion <80,000 years ago

(Alexander et al. 2016), we examine the estimated histor-

ical effective population size using samples from through-

out the sperm whale’s range.

Materials and Methods

We sequenced a Gulf of Mexico female sperm whale (GMX)

to high coverage (72�) using short-insert and mate-pair librar-

ies of 100bp length (detailed in the supplementary material

S1, Supplementary Material online) on an Illumina HiSeq2000.

We assembled the draft genome of all sequences with

ALLPATHS (Gnerre et al. 2011) using default parameter set-

tings, subjecting assembly input reads to quality control as

detailed in the ALLPATHS documentation (Gnerre et al.

2011). We obtained RNAseq data from skin biopsies of a dif-

ferent GMX sperm whale to aid gene annotation as described

in the supplementary material S1, Supplementary Material on-

line. Gene annotation was performed according to the NCBI

gene annotation pipeline as described here: http://www.ncbi.

nlm.nih.gov/books/NBK169439/. After aligning genes from

the sperm whale with other taxa (detailed in supplementary

material S1, Supplementary Material online) to establish 1:1

gene orthology, positive selection was detected using

PAML4.0 (Yang 2007) and impact on protein structure tested

with Provean (Choi and Chan 2015). Canonical pathway en-

richment of gene clusters under positive selection was estab-

lished as detailed in the supplementary material S1,

Supplementary Material online. Protease genes were manually

annotated and validated for loss/duplication events using BATI

(http://degradome.uniovi.es/downloads.html). Four additional

sperm whale individuals (supplementary table S1,

Supplementary Material online) were resequenced to moder-

ate depth (21–28�) and reads were mapped to the draft ge-

nome as described in the supplementary material S1,

Supplementary Material online. We calculated heterozygosity

on a per-individual basis using VCFtools (Danecek et al. 2011).

Effective population size was reconstructed with PSMC (Li and

Durbin 2011) using the parameters specified in the supple-

mentary material S1, Supplementary Material online.

Results and Discussion

Our sperm whale total assembled sequence was similar in size

to other assembled cetacean genomes (supplementary table

S2, Supplementary Material online). Using our GMX individual

reference assembly (Genbank assembly accession

GCA_000472045.1) we inferred 18,686 protein-coding

genes—second only to the baiji (Lipotes vexillifer) among

sequenced cetaceans at 18,906 genes. Using a core eukary-

otic mapping method (Simao et al. 2015) we also demon-

strated >94.7% of conserved genes were complete in our

assembly (supplementary table S3, Supplementary Material

online). Of the 18,686 protein-coding genes, 12,717 had

single-copy orthologs in both human and other cetartio-

dactyls (supplementary table S4, Supplementary Material

online; additional methods/results can be found in the sup-

plementary material S1, Supplementary Material online). A

total of 45 genes found across eight taxa were identified as

being under positive selection in the sperm whale lineage;

these genes also passed our stringent functional impact

tests (default cutoff<�2.5) using Provean (Choi and

Chan 2015; supplementary file S1, Supplementary

Material online). Several significant pathways emerged

from enrichment analyses, which included genes associ-

ated with blood-circulation and skin stress responses

(table 1). Cetaceans, including the sperm whale, exhibit

molting or skin sloughing (Amos et al. 1992), potentially

as an adaptive response to fouling by barnacles and other

organisms. However, sperm whales face the additional

challenge of maintaining skin integrity and blood homeo-

stasis at high water pressures during deep foraging dives.

To complement the analysis of genes under positive selec-

tion, we manually annotated the complete set of proteases

(i.e., degradome) of the sperm whale. This independent anal-

ysis identified several proteases involved in skin function and

blood homeostasis that showed LoF events along the lineage

leading to sperm whales (fig. 1; additional methods/results in

supplementary material S1, Supplementary Material online).

We also detected LoF in proteases involved in inflammation,

immunity and metabolism within cetaceans, and specifically

Table 1

Genes under Positive Selection Enriched by Pathway, Phenotype, or Protein Interactions

Pathway Source Genes Ratio of

Enrichment

Adjusted

P-value

Focal adhesion Wiki CHAD, COL1A2, THBS2, TNC, FLT1 6.9 0.015

Focal adhesion KEGG CHAD, COL1A2, PARVG, THBS2, TNC, FLT1 7.5 0.0076

Pemphigus Disease PPL, EVPL, DSP, DSG3 38.8 0.0006

Calcium signaling KEGG PTK2B, ADCY3, RYR1, NOS2, P2RX3, PHKB 7.6 0.0076

Blood circulation GO ALOX5, CHD7, WNK1, EPAS1, CX3CL1, PPP1R13L,

COL1A2, AZU1, DSP, GUCY1A3, MYBPC3, TBC1D8

3.4 0.036

Cornified envelope Reactome DSP, TGM1, KRT4, PKP1, DSG3, PPL, EVPL NA aFDR 3.65� 10�11

aThe false discovery rate (FDR) calculated within the Reactome software (Croft et al. 2014) is the probability corrected for multiple comparisons. Adjusted P values are not provided.
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within the sperm whale. A loss of several proteases in ceta-

ceans suggests a trend towards a milder inflammatory re-

sponse relevant to Peto’s paradox: A theory postulated to

explain the lower relative incidence of cancer in large mam-

mals (Caulin and Maley 2011). In addition, MMP7—which

promotes metastasis when expressed at high levels (Li et al.

2014; Koskensalo et al. 2011)—contains a premature stop

codon in sperm whales, a putative sperm whale-specific

mechanism to reduce cancer incidence. We also found that

CASP12 and PRSS33 were independently lost in cetaceans

and some hominoids, suggesting a case of convergent evo-

lution of the immune system in very different environments.

Several proteases involved in digestion (CPA2, CPA3, CPO)

were also lost in cetaceans (fig. 1). In some cases these losses

were independent, suggesting convergent evolution driven by

trophic level. As expected, odontocetes retain functional

orthologs of proteases involved in dentition (KLK4, MMP20),

which were lost in mysticetes, who use baleen—not teeth—

to filter food (Keane et al. 2015).

To better understand patterns of genetic diversity among

sperm whales from different ocean basins, we carried out

medium-coverage resequencing of individuals from the

Pacific Ocean and Indian Ocean. Average genome-wide het-

erozygosity per base, corrected for callable sequence space,

was 0.0011. This value is low in comparison with the fin

whale (0.0015) and bottlenose dolphin (0.0014; Yim et al.

2014), suggesting the sperm whale has a smaller effective

population size (Ne). A pairwise sequentially Markovian coa-

lescent (PSMC) analysis (Li and Durbin 2011) indicated a rapid

decline in Ne during the transition from the Pliocene to

Pleistocene epoch, inferred consistently regardless of the

ocean origin of samples (fig. 2A). The increase in upwelling

associated with the Pliocene and/or cycles of glaciation within

the Pleistocene have been implicated in the evolution of gi-

gantism in mysticetes (Slater et al. 2017), as well as the diver-

sification of marine dolphins (do Amaral et al. 2016). This

suggests that changes in ocean dynamics during this time

period have had a strong impact on cetaceans in general,

and we suggest are also the likely cause of the inferred sperm

whale population decline. The GMX sample had significantly

lower heterozygosity than Pacific and Indian Ocean samples

(fig. 2B, supplementary table S1, Supplementary Material on-

line). Future sequencing will clarify whether lower diversity is

restricted to GMX, or characteristic of the entire Atlantic.

However, the isolation of GMX due to high levels of female

philopatry (inferred from differentiation of the maternally-

inherited mitochondrial DNA, Engelhaupt et al. 2009;

Alexander et al. 2016), and the limited census size (763 sperm

whales in 2009, Waring et al. 2013), suggest that GMX could

be subjected to greater levels of genetic drift associated with a

small and maternally-isolated population. The ability of the

sperm whale to respond to future selective pressures, includ-

ing climate change, in the face of such reduced genetic diver-

sity should be a focus of ongoing study.

FIG. 1.—Cetacean-specific losses of protease genes. Proteases that have undergone loss-of-function in sperm whales, specifically, are shown to the left

of the phylogeny whereas those that are inferred to be convergent, or inferred to have occurred in ancestral lineages, are mapped on to the phylogeny. Each

event is depicted along the branch where loss events have been inferred to occur. Genes expected to impact skin function are colored blue; immune system:

purple; blood homeostasis: red; digestion: orange, and those showing convergent loss-of-function as underlined bold. The unique duplication of sperm

whale CASP3 is shown above the phylogeny and marked by an asterisk.
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Overall, our results suggest positive selection has differen-

tially affected localized portions of the sperm whale genome. In

particular, the complex pattern of convergent gene evolution

involving skin-related genes suggests they have played an im-

portant role in aquatic adaptation, possibly influenced by the

somewhatcontradictory requirementsofheat insulation,buoy-

ancy and deep diving. In comparison to the localized effects of

selection on the genome, we infer that the sperm whale expe-

rienced a rapid population decline, potentially in response to

glaciation, which had a broad effect on genome-wide diversity.

Given the apparent influence of past climate change, monitor-

ing the on-going response of sperm whales to anthropogenic-

ally mediated climate change will be paramount.
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FIG. 2.—Estimated effective population size history and heterozygosity of sperm whales from different ocean basins. Samples are color coded by the

key, with blue/green¼ Pacific, orange/yellow¼ Indian Ocean, and dark orange¼Gulf of Mexico, Atlantic. (A) PSMC reconstruction of effective population

size through time by sample (excluding SEY420021031-063, see supplementary material S1, Supplementary Material online), dashed lines represent the

estimated start dates for each epoch; (B) Genome wide distribution of heterozygosity for each sample, by contig/scaffold. The Gulf of Mexico sample—

characterized by low heterozygosity—is marked by an asterisk where it has the largest number of contigs in a category. The insert emphasizes that this

sample has the largest number of contigs with low heterozygosity (<0.0005). Bright yellow in panel (b) is additional Indian ocean sample
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