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Abstract  

Time-lapse geophysical data acquired during dynamic hydrological experiments are being 

increasingly employed to estimate subsurface hydraulic properties at the field scale. In 

particular, crosshole ground-penetrating radar (GPR) data, collected while water infiltrates 

into the subsurface either by natural or artificial means, have been demonstrated in a number 

of studies to contain valuable information concerning the hydraulic properties of the 

unsaturated zone. Previous work in this domain has considered a variety of infiltration 

conditions and different amounts of time-lapse GPR data. However, the particular benefits 

and drawbacks of these different strategies as well as the impact of a variety of key 

assumptions remain unclear because these results of these previous studies defy a direct 

comparison. Here, using a Bayesian Markov-chain-Monte-Carlo (MCMC) stochastic 

inversion methodology, we examine the information content of time-lapse GPR data collected 

under three different infiltration conditions for the estimation of vadose zone hydraulic 

properties. In particular, we systematically analyze synthetic and field data acquired under 

natural loading and two rates of forced infiltration, and we consider the value of incorporating 

different amounts of time-lapse GPR data into the estimation procedure. Quite importantly, 

our results confirm that, for all infiltration scenarios considered, the time-lapse GPR data 

contain important information about subsurface hydraulic properties as a function of depth. 

However, forced infiltration is found to offer the greatest parameter refinement in both the 

synthetic and field examples. Considering greater amounts of time-lapse data in the inversion 

procedure is also found to help significantly refine the estimation of key hydraulic parameters. 

However, inconsistencies observed with regard to the field data point to the possibility that 

our inversions may be subject to structural model errors, which in turn underlines the 

fundamental importance of a systematic analysis of such errors for future related studies. 



1. Introduction 

Detailed knowledge of soil hydraulic properties, namely how the water retention and 

unsaturated hydraulic conductivity vary as a function of matric head, is essential for the 

accurate modeling of flow and transport processes in the vadose zone. Such modeling is 

critical for a wide variety of activities, including irrigation and fertilization management, 

assessment of contaminant fate, estimation of groundwater recharge for water balance 

calculations, and evaluation of the hydrological and agricultural impacts of climate change. 

To determine vadose zone hydraulic properties, a broad array of measurement techniques 

exist [11]. Laboratory analyses conducted on soil cores, traditionally based on hydrostatic 

equilibrium or steady-state flux conditions but increasingly involving transient experiments, 

have the advantage of being well understood, cost effective, and relatively simple to 

implement [e.g., 10, 51]. However, they can lead to hydraulic property estimates that are not 

representative of field conditions because of the associated disturbance of the soil structure 

[e.g., 11]. Consequently, field techniques for measuring hydraulic properties in situ have 

become popular [49]. Such methods generally involve some kind of infiltration or drainage 

experiment combined with dynamic tensiometer and/or time-domain reflectometry (TDR) 

measurements in order to determine the water retention and/or unsaturated hydraulic 

conductivity functions under comparatively natural conditions. 

With regard to the determination of soil hydraulic properties from either laboratory or 

field measurements, one particular approach that has gained widespread acceptance over the 

past two decades is the use of inverse modeling [53]. In contrast to direct measurement 

techniques that generally require well controlled and rather simplistic boundary conditions 

and/or system states in order to implement analytical solutions, inverse modeling employs a 

numerical model for the hydrological experiment in order to find a set of parameters 

characterizing hydraulic properties that allow the best predictions of state variable 



measurements. As such, it has the important advantage of accommodating more flexible and 

natural experimental conditions than direct measurement methods, with the trade-off of 

generally requiring highly accurate sensor data in time and space as input [11]. Initial work on 

the inverse estimation of soil hydraulic properties involved local gradient-based search 

algorithms [e.g., 43, 44, 55]. To better address the non-linear and non-unique nature of the 

inverse problems, subsequent research has focused on global optimization techniques [e.g., 1, 

22, 32, 52], and most recently on stochastic inverse methods that allow for the assessment of 

uncertainty as well as the incorporation of prior information into the estimation procedure 

[e.g., 26, 38, 47, 58]. In this regard, both the pseudo-Bayesian Generalized Likelihood 

Uncertainty Estimation (GLUE) technique [4], as well as formal Bayesian posterior sampling 

using Markov-chain-Monte-Carlo (MCMC) algorithms [e.g., 29], have been considered. 

A critical drawback associated with traditional hydrological methods for determining 

unsaturated hydraulic properties, whether these methods be laboratory or field-based and 

whether they employ a direct or inverse estimation approach, is the limited spatial extent of 

the corresponding measurements. That is, traditional hydrological methods involve either the 

analysis of core samples or state variable data from tensiometers and/or TDR, all of which 

represent a local “point” scale that may not be representative of larger-scale properties 

relevant to modeling interests. Indeed, small-scale heterogeneity in soil conditions can 

introduce large variations in the values measured using these techniques, and hence 

significant errors in larger-scale property estimates can arise if one of such point 

measurements is used to characterize a region [31]. To address this issue, a number of studies 

have considered averaging the results of multiple traditional hydrological measurements 

distributed over some spatial domain of interest [34, 38, 58]. However, such an approach is 

time consuming and expensive, and still runs the risk that the thus obtained properties are not 

representative of the larger volume. Another means of addressing this issue, which has been 



the subject of much attention in recent years, is the use of geophysical methods. Geophysical 

survey techniques allow for the robust estimation of field-scale geophysical properties, such 

as the electrical conductivity or dielectric permittivity. Although not the hydraulic properties 

we seek, these properties are often highly correlated with soil water content, which means that 

they can be used to monitor changes in field-scale water content in situ during infiltration or 

drainage, and estimate hydraulic properties through an inverse modeling approach [e.g., 5, 6, 

19, 20, 23, 24, 35, 56]. In this regard, the stochastic inversion of crosshole ground-penetrating 

radar (GPR) traveltime data is one technique that has shown much recent promise. Work in 

this area began with the GLUE inversion methodology for estimating the van Genuchten – 

Mualem (VGM) [30, 50] parameters versus depth in simple layered soils, and involved both 

natural loading [6, 7] and forced infiltration [24] experiments. More recently, Scholer et al. 

[39, 40] considered the same data sets as previous researchers, but within a formal Bayesian 

MCMC inversion framework, and found that a considerably greater reduction in uncertainty 

in VGM parameter estimates could be obtained. This was especially the case when informed, 

but realistic, prior information based on soil property databases was considered. 

With regard to the stochastic inversion of crosshole GPR data for the estimation of 

subsurface hydraulic properties, there exist a number of practical issues that are critically 

important to address in order to obtain robust parameter estimates and further advance the 

methodology, but have yet to be thoroughly investigated in the existing literature. One of 

these issues concerns the nature of the considered hydrological experiment. As mentioned 

above, both natural loading and forced infiltration have been monitored with crosshole GPR 

methods, specifically through the collection of time-lapse zero-offset-profile (ZOP) traveltime 

data, for the purpose of estimating subsurface VGM parameters in layered media. However, it 

remains unclear what method may provide better results, and under what circumstances this 

will occur, because previous work has not offered the possibility of comparison. Advantages 



of considering rainfall-based infiltration over forced infiltration are that the natural conditions 

of the system are respected, and also that flow can be better approximated as 1D because 

infiltration occurs over a greater spatial domain and is of generally lesser magnitude. For the 

sake of computational tractability, all previous work utilizing stochastic inverse methods for 

determining soil hydraulic properties has considered purely vertical flow models based on 

Richards’ equation in 1D, which can represent a significant source of model structural error in 

cases where lateral flow is significant [e.g., 40]. On the other hand, defining the upper 

boundary of a natural loading experiment is more challenging than for forced infiltration 

because robust estimates of evapotranspiration are required. Further, smaller variations in soil 

water content under natural loading may result in less sensitivity to subsurface hydraulic 

properties, and natural loading experiments also require much longer measurement periods.  

Another key question with regard to the stochastic estimation of unsaturated hydraulic 

properties from time-lapse crosshole GPR data, that has not been properly addressed in 

previous research, concerns the length of the measurement period and the incremental value 

of additional geophysical data. Clearly, monitoring changes in subsurface water content as 

infiltration occurs can provide important information on subsurface hydraulic properties, as 

these properties are what control the dynamic evolution of the soil water content field. 

However, the information content of GPR profiles collected as a function of time, with 

respect to how much they help to further refine hydraulic property estimates, has not been 

adequately assessed. For example, in the case where significant structural model errors are 

present, either because of inaccurate boundary condition assumptions or problems with the 

underlying model physics, a critical question is whether the incorporation of additional time-

lapse data into the stochastic inversion procedure actually worsens at some point the obtained 

parameter estimates because data residuals will grow as the simulation time increases. 



In this study, we begin investigation into the two important issues described above 

through a combined synthetic and field data analysis that takes advantage of a unique and rich 

set of measurements collected at the Arrenaes field site in Denmark. Time-lapse ZOP 

crosshole GPR traveltime data acquired during a forced infiltration experiment at this site 

were already considered by Looms et al. [24] and Scholer et al. [40] for the stochastic 

estimation of subsurface VGM parameters in a series of five subsurface layers. Here, we 

consider the same data plus additional GPR measurements acquired over the course of two 

other infiltration experiments, one involving a lesser forced infiltration rate and the other 

conducted under natural loading conditions. We thus have at our disposal three time-lapse 

ZOP crosshole GPR data sets, acquired in exactly the same location and corresponding to 

three different infiltration scenarios, that we use in this study to estimate subsurface VGM 

parameters through a Bayesian MCMC stochastic inversion approach. In addition, we 

consider the inversion of synthetic GPR data modeled after each of these field scenarios, for 

which the “true” model parameters and underlying physics and boundary conditions are 

completely known. We begin with an analysis of the synthetic data, which permits us to 

examine the results that can be obtained in the ideal case where no structural model errors are 

present. Next we perform the same analysis on the Arrenaes field measurements. Throughout 

the paper, the different results obtained are compared and contrasted in order to learn how 

field experiments and stochastic inversions may be best carried out for the reliable estimation 

of unsaturated hydraulic properties and their corresponding uncertainties. 

 

2. Methodology 

2.1 Governing equations 

Estimating subsurface unsaturated hydraulic parameters from a set of depth and time-

dependent crosshole GPR traveltime measurements requires establishing a link between these 



parameters and the GPR data. Scholer et al. [40] describe in detail how models for the 

relevant hydrological and geophysical processes can be coupled through the state variable 

water content in order to provide such a link. Here, we summarize briefly this procedure and 

refer the reader to their paper for full information. Assuming that water movement in the 

vadose zone can be adequately described as vertical, we have as our governing hydrological 

process model the following 1D form of Richards’ equation [33]:  

 (1) 

where K is the unsaturated hydraulic conductivity [LT-1], h is the matric head [L], θ is the 

water content [L3L-3], z is depth [L], and t is time [T]. Note that the assumption of purely 

vertical flow is pervasive throughout the literature on the inverse estimation of unsaturated 

hydraulic parameters from geophysical and hydrological measurements [e.g., 6, 7, 24, 26, 27, 

38, 58]. In the case of natural loading conditions, such an assumption is generally well 

justified as the precipitation covers a large area. Under forced infiltration conditions where the 

spatial extent of the infiltration domain is limited, however, the validity of this assumption 

depends on the underlying subsurface properties and boundary conditions, and in many 

instances significant model structural errors can result from neglecting lateral contributions to 

flow [e.g., 40]. Although these errors can clearly be avoided by considering infiltration in 

three dimensions, it is important to emphasize that the use of a 3D flow model within the 

context of stochastic inversion is extremely computationally demanding because of the large 

number of forward model calculations required. As a result, for computational tractability, we 

follow the vast majority of previous studies and assume that 1D flow conditions prevail in our 

analysis. The effects of this assumption on posterior parameter estimates are discussed later 

when we compare the results of inverting synthetic and field GPR data under natural loading 

and forced infiltration conditions. 
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Assuming that soil hydraulic properties can be parameterized using the VGM model 

[30, 50], the water retention, expressed in terms of effective saturation Se (dimensionless), is 

given by 

 
 

for h≤0 
for h>0 (2) 

where qr and qs are the residual and saturated water contents, respectively [L3L-3], and α [L-1], 

m, and n (both dimensionless) are empirical shape factors with m = 1-1/n. The unsaturated 

hydraulic conductivity function is then expressed as  

where Ks [LT-1] is the saturated hydraulic conductivity and l (dimensionless) is also a shape 

factor assumed here to be equal to 0.5 [30]. A total of five parameters (θs, θr, α, Ks, and n) 

therefore describe soil hydraulic properties with the VGM model in our work.  

To solve equation (1) for the time-varying, 1D water content distribution 

corresponding to a given configuration of subsurface VGM parameters and specified 

boundary conditions, we use the software HYDRUS-1D [45], which utilizes a Galerkin finite 

element method based on the mass conservative iterative scheme proposed by Celia et al. [8], 

and is capable of accommodating an arbitrary number of subsurface layers [e.g., 24, 38, 53, 

57, 58]. From these results we then determine the soil relative dielectric permittivity, εr 

(dimensionless), versus depth for the times corresponding to each GPR measurement using 

the empirical relationship [12]: 

. (4) 

Equation (4) provides a more straightfoward link between θ and εr than the more commonly 

seen relationship of Topp et al. [48], and is nearly identical to this relationship over the range 
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of water contents to be encountered in the vadose zone. Next, εr(z,t) is converted to GPR 

velocity, v(z,t) [LT-1], using the following high-frequency, low-loss approximation that is 

valid in most environments amenable to GPR wave propagation [e.g., 3]:   

 (5) 

where c [LT-1] is the speed of light in free space. Finally, to determine the crosshole GPR 

traveltimes for a particular measurement period, we solve the eikonal equation for the 

corresponding velocity field: 

, (6) 

where T [T] is the traveltime of first-arriving energy from the transmitter to the receiver 

antenna at location r [L] through the slowness field  [TL-1]. For the ZOP 

measurements considered in this paper, the radar antennas are considered at the same depth in 

two adjacent boreholes and the traveltime between them is calculated as a function of depth. 

Using the eikonal equation, rather than a simple conversion of velocity to traveltime based on 

the transmitter-receiver distance, allows us to account for bending of the radar wavefront at 

interfaces across which velocity changes. Even in a layered medium using the ZOP 

configuration, first-arriving energy will often correspond to such refracted raypaths [e.g., 35].  

 

2.2 Stochastic inversion procedure 

We use an MCMC algorithm in this paper to generate samples from the Bayesian posterior 

distribution of VGM model parameters conditional to (i) prior information regarding these 

parameters, and (ii) a set of dynamic ZOP GPR traveltime measurements that serve as a proxy 

for field-scale water content as a function of depth and time over the course of infiltration. 

The use of Bayes’ theorem to combine prior information with observed data in order to refine 

our state of knowledge regarding a set of model parameters is a well established procedure in 
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both hydrology and geophysics [e.g., 36, 58] and can be generally expressed in the following 

manner [e.g., 29]: 

, (7) 

where  is a vector containing the model parameters,  represents the joint prior 

distribution for those parameters,  is the likelihood function, and  is a normalization 

constant that ensures that the posterior distribution  integrates to unity. For the 

inversions presented herein, we make the common assumption of independent, identically 

normally distributed data residuals [e.g., 17, 29, 38, 40], which means that the likelihood 

function takes the following form:  

 (8) 

where  is a vector of length  containing the observed data,  is the estimated residual 

variance, and  is the “forward model” linking a given set of model parameters to the 

corresponding predicted data. In our case,  represents the previously described 

hydrological and geophysical operators linking a particular configuration of subsurface VGM 

model parameters to the corresponding set of dynamic ZOP traveltime measurements. 

 To sample from the posterior distribution in equation (7), we use the same MCMC 

methodology as described by Scholer et al. [40], whereby proposed sets of VGM model 

parameters are accepted or rejected using a Metropolis decision rule and model perturbations 

are performed through a bounded symmetric proposal density function. Again, the reader is 

referred to their paper for full details. In short, the algorithm proceeds as follows: 

 
1. Propose a new set of model parameters , conditional on the current point in the 

Markov chain , by drawing from the proposal density , which is defined 

to be a bounded uniform distribution centered on m whose width is chosen such that 
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the size of the model perturbations allows for a reasonable rate, typically around 30%, 

of accepted transitions in the MCMC procedure [13]. 

2. Randomly decide whether to stay at the current model , or to replace  with , 

using the decision rule of Metropolis et al. [28] for which the transition probability is 

given by 

 (9) 

3. Repeat Steps 1 and 2, collecting model parameter samples in the Markov chain with 

each iteration, until “burn-in” has been reached and a sufficient number of posterior 

parameter realizations have been generated for analysis. 

 
 To determine the “burn-in” period for our inversions, that is, the point at which states 

in the Markov chain become independent of the starting set of model parameters and truly 

represent samples from the Bayesian posterior distribution, we examine the values of each 

model parameter versus iteration number for several parallel-running chains with random 

starting points and determine when the chains reach a similar equilibrium state [e.g., 14, 16]. 

Once the samples before burn-in have been discarded, the same number of independent 

posterior samples are required in our analysis to perform a valid statistical comparison of the 

inversion results obtained using different input data. However, the nature of the way models 

are proposed in the MCMC procedure means that posterior chain will exhibit a significant 

amount of autocorrelation. As a result, we “thin” the chain based on the maximum observed 

autocorrelation lag in order to obtain an approximately independent set of posterior samples. 

 

2.3 Output analysis 

Again, our aim in this study is to practically investigate the effects of different infiltration 

scenarios on the posterior VGM parameter estimates obtained from the stochastic inversion of 
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time-lapse crosshole GPR data, as well as the incremental value of these data as a function of 

time towards resolving the parameters. To this end, we require a means of comparing the 

different sets of posterior realizations obtained through the Bayesian MCMC inversion 

procedure. A number of possibilities exist in this regard, arguably the most intuitive of which 

is the straightforward comparison of marginal posterior histograms for each model parameter 

of interest [e.g., 21, 40]. However, the relatively large number of VGM parameters to be 

estimated in this study (25 for our synthetic example and 35 for the Arrenaes field case), 

combined with the wide range of infiltration and GPR data combinations considered (15 for 

the synthetic and 13 for the field) meant that this was not practical. Instead, for conciseness 

and greater ease of direct comparison, we follow Beven and Binley [4] and quantify the 

spread of the different marginal VGM posterior distributions using the Shannon entropy 

measure [18]. The Shannon entropy H of a discrete variable X with possible states {x1, x2, …, 

xM} and corresponding probability function p(X) is defined as: 

 . (10) 

In our case, the states xi represent posterior marginal histogram bins where, for a particular 

VGM parameter, the probability of occurrence is given by 

 . (11) 

The Shannon entropy has a maximum, Hmax = log2(M), when all M states are equally likely 

(e.g., if the posterior marginal histogram for a particular VGM parameter is uniform). 

Conversely, H has a minimum, Hmin = 0, when one single state has a probability of one and all 

others have a probability of zero (e.g., when all of the posterior parameter realizations fall into 

a single histogram bin). The fact that H is bounded in this manner, along with the fact that its 

value is not dependent on the magnitude of the parameter being investigated, mean that it can 

be used as a convenient and comparable measure of refinement of the posterior marginal 
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VGM parameter distributions. It is important to note, however, that H reflects only the spread 

of these distributions, and says nothing regarding the accuracy of the posterior parameter 

estimates, which must be quantified via other means. 

 

3. Synthetic study 

3.1 Considered experiments and data 

To begin our investigation into the effects of different infiltration and time-lapse scenarios on 

the VGM parameter estimates obtained from ZOP crosshole GPR traveltime data, we first 

consider a synthetic study where we have perfect knowledge of the physics and boundary 

conditions of the infiltration process. In this way, model structural errors are nonexistent and 

we begin our analysis with a best-case scenario before moving to the case of field data where 

such errors cannot be avoided. Table 1 shows the five-layer subsurface structure and 

corresponding “true” VGM parameters that were utilized for this synthetic study. For ease of 

comparison with the field results presented in the following section, the parameter values 

were chosen in accordance with sedimentological information from the Arrenaes site, and 

such that the simulated GPR data showed an approximately similar trend to those measured in 

the field. For the GPR experiment, we also consider a similar setup to that used at the 

Arrenaes site [25], involving boreholes 5 m apart and 12 m deep. 

As mentioned previously, we consider three different infiltration cases in this paper: 

natural loading, which is hereby referred to as NL, and forced infiltration under two different, 

constant loading rates, which are hereby referred to as F1 (moderate loading) and F2 (heavy 

loading). Table 2 provides details on how these infiltration cases were implemented in our 

synthetic study, as well as the times that the corresponding GPR data were simulated. For the 

NL case, infiltration was considered over a one year period based on daily rainfall minus 

estimated evapotranspiration data obtained from the Danish Meteorological Institute (DMI) 



for the Arrenaes site [37]. Figure 1 shows the daily infiltration rate for the period from 

01/07/2004 to 30/07/2005, which was used to define the upper model boundary in this case. 

Crosshole GPR profiles were simulated at 1, 3, 6, 9, and 12 months. For the two forced 

infiltration cases, constant flux boundary conditions were assumed along the upper model 

surface with infiltration rates for F1 and F2 of 0.1 cm/h and 0.4 cm/h, respectively. Here, a 

20-day experiment was considered, and GPR profiles were generated daily. The forced 

infiltration was stopped after 10 days in order to simulate drainage conditions over the last 

half of the experiment.  

To generate the synthetic time-lapse ZOP crosshole GPR traveltime data 

corresponding to each infiltration case described in Table 2, we first used HYDRUS-1D with 

a vertical cell discretization of 0.03 m in order to obtain the time-varying distribution of water 

content in the subsurface over the considered simulation period. The time step was calculated 

adaptively by the software and constrained by a series of output times of interest. Note that a 

1D flow model was utilized for the generation of the synthetic data in order to be consistent 

with the purely vertical flow assumption in our MCMC analysis and thus avoid, for this 

synthetic study, model errors related to the 1D approximation. For all three infiltration cases 

considered, the lower model boundary was set at 16 m depth and specified to have a free 

drainage condition. The initial conditions were defined to be the water content profile 

obtained after a pre-infiltration period of one year using net infiltration estimates at the 

Arrenaes site from 01/07/2003 to 01/07/2004 [37]. Next, to convert the resulting time-varying 

water content profiles to radar velocity at the times corresponding to the collection of 

crosshole GPR data, we used equations (4-6). For the subsequent simulation of ZOP GPR 

traveltimes with the PRONTO eikonal solver [2], the grid discretization was set to 0.1 m and 

the transmitter and receiver antennas were assumed to be moved at 0.25 m increments along 

the left- and right-hand model edges from to 1.5 to 12 m depth. This yielded 43 ZOP 



traveltime measurements per profile. Finally, Gaussian random noise with a standard 

deviation equal to 1% of the mean overall traveltime value was added to the resulting data to 

simulate more realistic conditions.  

Figure 2 shows the simulated ZOP crosshole GPR traveltime data as a function of 

depth and time corresponding to the three different infiltration cases. Again, these data are 

strongly related to soil water content, with greater traveltimes indicating wetter materials. For 

the NL case, little variation in the data is observed over time because of the relatively small 

infiltration rates considered (Figure 1). As a result, we do not anticipate in this case that the 

consideration of additional GPR profiles with time in the inversion procedure should provide 

much additional independent information regarding the hydraulic characteristics of the 

various soils (e.g., [6]). For the F1 case, on the other hand, the GPR traveltime data can be 

seen to exhibit significant temporal variation as the water front moves through the system. We 

thus expect in this case that the consideration of greater amounts of time-lapse data should 

help to noticeably refine the VGM parameter estimates in the different layers. The traveltime 

data for the F2 case show the greatest temporal variation because of the large infiltration rate 

and corresponding stressing of the system, and intuitively should offer the highest potential 

for VGM parameter refinement. Notice in Figure 2 that, for the F1 and F2 cases, desaturation 

is seen after 10 days because the infiltration was stopped. Also notice that, for all three 

infiltration cases, the five subsurface layers can be easily identified because of the different 

hydraulic behavior of the soils and the corresponding differences in their water contents 

versus depth. Although not important for our synthetic study, this latter fact plays a key role 

when defining the hydraulically significant subsurface layering in the field for the inversion of 

the Arrenaes field data in Section 4. 

 

3.2 Bayesian MCMC inversion 



The previously described Bayesian MCMC inversion strategy was used to estimate the VGM 

parameters in each subsurface layer from the three ZOP crosshole GPR data sets shown in 

Figure 2. As mentioned, in addition to examining the effects of different infiltration rates on 

the posterior parameter estimates, we wish to assess the incremental value of the time-lapse 

GPR data on our ability to resolve the parameters. To this end, five different inversion 

scenarios for the NL, F1, and F2 cases were considered, each involving a different amount of 

time-lapse data as input into the MCMC procedure. Table 3 summarizes the resulting 15 

different inversions that were performed in our synthetic study. For each of the five time-lapse 

scenarios, the table indicates the time up to which GPR data were considered, as well as the 

corresponding number of ZOP profiles. The same number of profiles were used in every 

scenario to be able to effectively compare results across the three different infiltration cases.  

For all 15 stochastic inversions, the same uniform prior distribution for the VGM 

parameters in each layer was assumed. This prior, which represents a relatively broad range of 

values and encompasses a wide variety of soil types (e.g., sand, silt, clay), is in good 

agreement with the non-informative priors used in previous work in this domain [e.g., 7, 24, 

38]. Although Scholer et al. [39, 40] found that significantly improved VGM parameter 

estimates could be obtained from crosshole GPR traveltime data through the consideration of 

informed correlated prior distributions based on soil property databases, we chose here to 

work with a uniform prior in order to better assess the information content of the GPR data 

alone [40]. Table 4 shows the lower and upper limits of our assumed prior distribution. 

Because the upper boundary of θr must be smaller than the initial water content, we defined it 

as follows: 0.08 for Layer 1, 0.06 for Layer 2, 0.08 for Layer 3, 0.13 for Layer 4 and 0.08 for 

Layer 5.  

In the Bayesian MCMC inversion procedure, we assumed to have exact knowledge of 

the 5-layer subsurface structure and corresponding boundaries given in Table 1. The residual 



standard deviation, σr, in equation (8) was defined based on the errors prescribed to the GPR 

traveltime measurements, and was thus set equal to 1% of the overall mean traveltime value. 

For each inversion described in Table 3, six different Markov chains were initiated with 

different random starting points in order to determine when burn-in had been achieved and to 

speed the subsequent generation of posterior model parameter samples. After burn-in, 

100,000 iterations were then run for each chain. Based on the autocorrelation analysis of the 

results, we considered every 1000 samples to thin the chains, which resulted in a total number 

of 600 approximately independent posterior samples for analysis per inversion. 

 

3.3 Results 

Figure 3 shows the Shannon entropy measures that were calculated for the VGM parameters 

in each of the 5 layers from the results of the 15 different stochastic inversions. To obtain 

these values, the posterior samples for each parameter were binned into 120 equal intervals 

between the minimum and maximum considered values (Table 4), and H was calculated using 

equations (10) and (11). The maximum possible value for the Shannon entropy in our 

synthetic study, which corresponds to the uniform prior distribution and is shown as Scenario 

0, is Hmax = log2(120) = 6.9. The decrease in H from this value for the different considered 

cases is a measure of the refinement, or reduction in spread, of the VGM parameter 

distributions through the incorporation of the GPR data. Again, however, H says nothing 

regarding the accuracy of the posterior parameter estimates. This important component of our 

analysis will be considered in Figures 4 through 6. 

Notice in Figure 3 that, for each infiltration case and time-lapse scenario considered, 

the value of H is always lower than Hmax, which means that incorporation of the GPR data 

into the inversion procedure consistently allows for some reduction of uncertainty regarding 

the VGM parameters past the assumed prior distribution. Even for Scenario 1 where only one 



GPR profile, simulated shortly after the start of infiltration, was used as input into the 

Bayesian MCMC algorithm, we observe a slight to moderate decrease in H from its maximum 

value for all VGM parameters. This is despite the fact that, for the forced infiltration cases, 

the water front had not yet passed through Layers 3, 4, and 5 after only one day. Indeed, 

differences between predicted and observed GPR traveltimes in the inversion procedure, even 

at early times in layers below the infiltrating water front, can provide important information 

regarding the VGM parameters in these layers [39, 40]. For example, a predicted change from 

the initial traveltime distribution after just one day in Layer 4, which is not seen in the 

observed traveltime data for Day 1, would indicate that the proposed set of VGM parameters 

in that layer is unlikely and should probably be rejected.  

Also notice in Figure 3 that, as additional time-lapse GPR data are considered past 

Scenario 1 for each infiltration case, the VGM parameter distributions become further refined, 

as indicated by the general decrease in H with increasing scenario number. This could be 

expected, as the consideration of a greater number of consistent data in the inversion 

procedure should allow for further reduction in posterior uncertainty. However, it is important 

to note that the data from some time periods and infiltration cases appear to bring more than 

the data from others. For example, in moving from Scenario 4 to Scenario 5 for the F2 case, 

which corresponds to adding GPR data collected under drainage conditions after a high rate of 

forced infiltration, we significantly reduce the calculated value of H for almost all of the 

VGM parameters, generally more than when we move between other scenarios (e.g., Scenario 

3 to Scenario 4). This suggests that the monitoring of drainage at the field scale using GPR, in 

addition to infiltration, may offer valuable additional information regarding subsurface 

hydraulic properties [e.g., 9, 46], which to our knowledge has not yet been considered in the 

context of a geophysical field study. We also observe that, generally speaking, the monitoring 

of forced infiltration over only 10 days appears to allow for more VGM parameter refinement 



than the monitoring of natural loading over 9 months, as the H values in Scenario 4 

corresponding to the NL case tend to be higher on average than those calculated for F1 and 

F2. This likely results from the greater temporal changes in subsurface water content in the 

forced infiltration cases (in particular F2), which have the effect of increasing the sensitivity 

of the GPR traveltime data to small changes in the VGM parameters. Indeed, in almost every 

instance in Figure 3, the H values calculated for Scenario 5 for the F2 case are also lower than 

those corresponding to F1.  

In order to quantify not only the spread of the posterior VGM parameter distributions 

obtained from the 15 different stochastic inversions, but also the accuracy of these 

distributions, Figure 4 shows the posterior means and standard deviations that were obtained 

for the parameters in Layer 3, along with the corresponding true values from Table 1. Only 

the results for Layer 3 are shown for the sake of conciseness; however, similar conclusions 

can be drawn for the other layers. As was observed in Figure 3, we see that considering just 

Scenario 1 already provides us with important information about the VGM parameters in each 

layer past the uniform prior distribution. As additional time-lapse GPR data are incorporated 

into the inversion procedure, the uncertainties around the mean values then tend to become 

increasingly reduced. Again, this could be expected because subsequent scenarios represent 

greater amounts of input data. However, note that (i) the uncertainty is reduced markedly less 

with scenario number for the NL case than for the F1 and F2 cases, and (ii) the F2 case tends 

to offer the best parameter refinement. We also see in Figure 4 that, quite importantly, all of 

the VGM parameters in Layer 3 appear to be properly estimated through the Bayesian MCMC 

inversion procedure, in the sense that the posterior means generally match the true parameter 

values, especially as the scenario number increases. Indeed, as greater amounts of time-lapse 

data are considered in the inversion, especially for the F1 and F2 cases, the posterior means 



can be generally seen to gradually and consistently approach the correct values, which clearly 

indicates the value of the additional data towards resolving the soil hydraulic properties. 

Finally, Figures 5 and 6 offer arguably the best means of quantifying how much 

information the different sets of time-lapse ZOP GPR data bring to characterize vadose zone 

hydraulic behavior, as they show the water retention and unsaturated hydraulic conductivity 

functions corresponding to the posterior VGM parameter samples obtained in each of the 15 

different inversions, along with the range of possibilities for these functions that is consistent 

with the prior distribution in Table 4. Again, for the sake of conciseness, only Layer 3 is 

considered, but similar conclusions can be drawn for the other layers. Consistent with what 

was observed in Figures 3 and 4, we see in Figures 5 and 6 that the soil hydraulic properties 

become increasingly refined from the uniform prior as more time-lapse GPR data are included 

into the inversion procedure, with higher infiltration rates generally offering greater curve 

refinement as the scenario number increases. The water retention and unsaturated hydraulic 

conductivity curves also tend to be correctly estimated, as indicated by the fact that the true 

curves consistently lie near the center of the 95% posterior uncertainty bounds, even when 

these bounds have been noticeably reduced.  

To summarize, the results of our synthetic study have shown that time-lapse GPR data, 

collected over the course of infiltration, can offer valuable information regarding field-scale 

unsaturated hydraulic properties versus depth, and that the information content of these data is 

significantly increased when relatively high rates of forced infiltration are monitored over a 

short time period, as opposed to the long-term monitoring of natural loading. Note, however, 

that these findings correspond to an ideal case where model structural errors have been 

purposely avoided in the inversion procedure to assesss the maximum potential of the GPR 

measurements. Next, we proceed to examine the validity of these results in the context of field 



GPR measurements acquired at the Arrenaes site in Denmark, with the overreaching  aim of 

identifying important directions for future work in this domain. 

  

4. Application to field data 

4.1 Field site and data 

The Arrenaes field site was developed to study flow and transport processes in the unsaturated 

zone using a variety of geophysical and hydrological measurement techniques, and has been 

the subject of a number of previous studies [24, 25, 40]. Figures 7a and 7b show the overall 

location of this site in Denmark and the eight boreholes that have been installed there, 

respectively. Along each line of the cross in Figure 7b, the outer two boreholes (7 m apart) 

were equipped for crosshole ERT measurements whereas the two inner boreholes (5 m apart) 

were intended for crosshole GPR measurements. Borehole A was cored for sedimentological 

analysis. Figure 8 shows the grain size statistics and material percentages that were 

determined every 30 cm down Borehole A [15]. The subsurface at the site is mainly 

characterized by layered alluvial sand sediments with minor fractions of silt and clay (see 

table 5). Year-round, the water table is located at approximately 30 m depth. 

From July 2004 to November 2005, three time-lapse crosshole GPR data sets were 

acquired at the Arreneas site over the course of three different infiltration experiments, with 

the overall goal of using these data to estimate subsurface unsaturated hydraulic properties at 

the field scale. One of these experiments involved natural loading (NL), whereas the other 

two were conducted under moderate (F1) and heavy (F2) forced infiltration. Table 6 provides 

details on these experiments, along with the timing of the GPR data acquisition. For the NL 

case, six GPR data sets were acquired over a one year period from July 2004 to July 2005. 

Again, Figure 1 shows the net daily infiltration estimates at the Arrenaes site during this time. 

Because previous researchers [6, 7] encountered significant difficulties in resolving 



unsaturated hydraulic parameters under natural loading conditions at other field sites, and 

because the data in Figure 1 are subject to a significant amount of uncertainty as they depend 

on accurate estimates of evapotranspiration, it was decided in August 2005 to conduct a 

forced infiltration experiment (F1) at the site over a period of 11 days. In this case, water was 

infiltrated at a constant rate of 0.20 cm/h over a 7.33 x 7.33 m area using a network of 

drippers, and GPR data were collected daily until Day 9, after which they were collected on 

Day 11. Finally, in order to even further increase the water content variation in the subsurface, 

a second forced infiltration experiment (F2) utilizing a higher infiltration rate of 0.36 cm/h 

was performed at the Arrenaes site in October 2005 over a period of 20 days. The 

corresponding GPR data were collected daily until Day 10, after which they were collected on 

Days 13, 15, 17, and 20. In this study, we focus on the GPR data acquired during all three 

infiltration experiments between boreholes GPR1 and GPR3 (Figure 7), which were obtained 

using a Sensors and Software PulseEkko borehole radar system with 100 MHz antennae and a 

vertical antenna increment of 0.25 m between 1.5 and 12 m depth. This yielded 43 traveltime 

measurements per ZOP profile. 

Figure 9 shows the ZOP crosshole GPR traveltime measurements as a function of 

depth and time corresponding to the three field infiltration experiments at the Arrenaes site. 

Similar to our synthetic study, not much variation is observed in the traveltime data for the 

NL case because of the relatively low infiltration rate (Figure 1). For the F1 and F2 cases, on 

the other hand, the data are again seen to exhibit significantly more variation as the water 

front moves through the subsurface. Note that no effects of desaturation are observed for the 

forced infiltration cases in our field study because infiltration was constant throughout the 

entire GPR measurement period. Also note that, based on each of the traveltime images in 

Figure 9, a number of hydraulically significant subsurface layers can be easily identified. This 

information, along with the grain size and sediment analysis presented in Figure 8, were used 



to define a 7-layer subsurface structure that was assumed in all of our stochastic inversions 

(Table 5). Finally, it is important to emphasize that the GPR data obtained for the F2 case 

were initially presented in Looms et al. [25] and were considered within a stochastic inversion 

context to estimate subsurface VGM parameters by Looms et al. [24] and Scholer et al. [40]. 

However, the NL and F1 traveltime data in Figure 9 have never been presented, and the 

current work represents a unique opportunity where all three coincident data sets can be 

analyzed and compared within the same inversion framework.   

 

4.2 Bayesian MCMC inversion 

An important practical issue arising when considering the stochastic inversion of the Arrenaes 

field data collected under forced infiltration conditions, that was not encountered in our 

synthetic study, is the validity of the 1D flow assumption in our MCMC analysis. Because of 

the changes in subsurface hydraulic properties with depth and the limited lateral extent of the 

infiltration domain, the flow induced by the forced infiltration experiment was not purely 

vertical. Indeed, with regard to the F2 data set, Looms et al. [24] observed that, because of 

lateral spreading as a result of the presence of clay in the first 1.5 m, the water accumulation 

rate calculated from the GPR data over the first 5 days was smaller than the input infiltration 

rate of 0.36 cm/h. They also observed that, after 5 days when the infiltration front reached the 

finer-grained sand layer at ~8 m depth, the water front began to spread laterally. To fully 

account for this behavior in the inversion procedure, a 3D flow model would be required. 

However, as mentioned previously, it is extremely computationally demanding to consider 

such a model within a stochastic inversion framework. As a result, in their Bayesian MCMC 

analysis of the F2 data set, Scholer et al. [39] utilized a 1D numerical flow model to perform 

the inversions, and attempted to correct for the corresponding loss of water from lateral 

spreading by estimating an effective infiltration rate from the time-lapse GPR data under the 



assumption of 1D flow. In tests on synthetic data, this approximation was demonstrated to 

allow for the reasonably accurate estimation of the VGM parameters in each subsurface layer 

[40]. We do the same in this paper and assume effective 1D infiltration rates of 0.10 cm/h and 

0.24 cm/h for the F1 and F2 cases, respectively. For more details on how these values were 

calculated, please see Scholer et al. [40].  

As in our synthetic study, we assess the value of additional field GPR profiles with 

time towards estimating the VGM parameters for each infiltration experiment. To this end, we 

considered five different time-lapse scenarios for the NL case, and four different scenarios for 

the F1 and F2 cases. Table 7 describes the resulting 13 different inversions that were 

performed. The same forward modeling procedure and broad uniform prior distribution as 

described in the synthetic example were considered for our field study. The residual standard 

deviation, σr, in equation (8) was set equal to 0.8 ns, as calculated by Looms et al. [24] based 

on estimates of the traveltime picking error for the GPR first arrivals. For each of the 13 

inversions, six Markov chains were again initiated with different random starting points. After 

burn-in had been achieved, approximately 170,000 iterations were then run for each chain. 

Based on the autocorrelation analysis of the results, every 1000 samples were subsequently 

taken to thin the chains, which resulted in a total of 1000 approximately independent posterior 

samples per inversion. 

 

4.3 Results 

Figure 10 shows the Shannon entropy measures that were calculated for the VGM parameters 

in each of the 7 layers at the Arrenaes site from the results of the different stochastic 

inversions described in Table 7. To obtain these values, the posterior samples for each 

parameter were again binned into 120 equal intervals, yielding a maximum possible value for 

the Shannon entropy of Hmax = log2(120) = 6.9. As seen with the synthetic data, we observe 



that for each infiltration case and time-lapse scenario considered, the value of H is 

consistently lower than Hmax, which indicates that incorporation of the GPR data always 

allows for some parameter refinement past the uniform prior distribution. We also see that, 

again, the VGM parameters tend to be generally further refined as greater amounts of 

dynamic data are added into the inversion, with some data appearing to bring more refinement 

than others. Note, however, that, compared with our synthetic study, the trend of the Shannon 

entropy with scenario number is significantly worse for the Arrenaes field data, in the sense 

that H can be seen in many cases to increase between adjacent scenarios as more data are 

considered. That is, we sometimes see a significant decrease in posterior parameter 

refinement as more GPR data are incorporated into the inversion procedure (e.g., from 

Scenario 3 to 4 for parameter n in the F1 case). We believe that this seemingly inconsistent 

behavior can be explained by the presence of model structural errors in our field inversions. 

Such errors would allow for VGM parameter refinement when using early subsets of the data 

that may be inconsistent with the GPR data acquired at later times. Indeed, model structural 

errors arising from, for example, inaccurate evapotransporation estimates in the NL case or 

the strictly 1D flow assumption under forced infiltration conditions, or even the chosen 7-

layer model parameterization, will tend to result in residual uncertainties that grow in a 

complicated manner as time increases. This type of behavior was not incorporated into the 

relatively simple model likelihood function in equation (8) that was considered in our MCMC 

inversions, and in fact in the vast majority of existing literature on stochastic inversions 

including hydrological and geophysical data only a few studies have recently started to 

consider the effect of model error [e.g., 41]. Nonetheless, Figure 10 clearly indicates that, 

similar to the results of our synthetic study, the GPR data acquired under forced infiltration 

over approximately 10 days allow for substantially more VGM parameter refinement than the 

natural loading data acquired over many months, as the H values for Scenario 4 corresponding 



to the NL case are consistently higher than those determined for F1 and F2, with F2 offering 

the lowest values.  

Figure 11 shows the posterior VGM parameter means and standard deviations for the 

different time-lapse scenarios and infiltration cases described in Table 7. As in the synthetic 

study, we show only the results obtained for Layer 3 for the sake of conciseness, but note that 

similar conclusions can be made for the other layers. Notice again that, in most cases, 

considering just Scenario 1 provides a considerable reduction in posterior uncertainty past the 

uniform prior distribution. In progressing from Scenario 1 to Scenario 4, we then see a 

substantial decrease in the spread of the posterior distributions for the forced infiltration cases, 

with F2 offering the greatest parameter refinement after a 10-day period. Conversely, in the 

NL case, little if nothing appears to be gained in terms of parameter refinement between 

Scenarios 1 and 5. In fact, the posterior uncertainty is actually noticeably increased for 

parameter θr. We also see in Figure 11 that significant inconsistencies exist in the parameter 

estimates between the NL and forced infiltration cases; most notably, the mean value of qr 

estimated in the NL case in Scenario 4 is significantly lower than that estimated for the F1 and 

F2 cases. Additional inconsistencies are observed as greater amounts of time-lapse data are 

considered in the inversion procedure, as indicated by the strong variation in posterior mean 

values that often exists between adjacent scenario numbers (e.g., parameters θr and θs for the 

F2 case). Again, such inconsistent behavior was not observed in our synthetic study, and we 

feel it points to the important issue of model error that is certainly propagating as a function of 

time in the case of our field inversions. As a result, it is difficult to have complete confidence 

in the stochastic inversion results obtained for the Arrenaes data, even if a significant amount 

of reduction in posterior uncertainty has been obtained. For example, if posterior means vary 

as a function of the number of input data, what does it say about the robustness of these 

estimates, and how can we properly design a time-lapse experiment for accurate parameter 



estimation? These findings were not evident in the work of Scholer et al. [40], and can only be 

assessed through the incremental analysis considered here.  

 Finally, Figures 12 and 13 show the water retention and unsaturated hydraulic 

conductivity functions for Layer 3 corresponding to the posterior VGM parameter samples 

obtained from each of the 13 considered inversions, along with the range of possibilities 

consistent with the prior distribution in Table 4. From these figures, we see that adding more 

data in the inversion for NL and F1 doesn’t really help to further refine the soil hydraulic 

properties. In fact, the posterior uncertainty of the hydraulic conductivity function seen for 

Scenario 3 is increased compared to the one obtained for Scenario 2 in the F1 case. After 

Scenario 3, F2 appears to be better refined than F1 and NL. Inconsistencies can also be seen 

between the estimated soil hydraulic properties with time as more data are added and also 

between the different infiltration scenarios. For example, the posterior water retention 

functions obtained for Scenario 2 show a different behavior as the one obtained for Scenario 3 

in the F2 case. Significant differences can also be observed between the posterior water 

retention functions obtained for NL, F1 and F2 for Scenario 4.  

 

5. Discussion and conclusions 

Based on targeted studies on both data, we have seen that time-lapse ZOP crosshole GPR 

traveltime data acquired under three different infiltration conditions universally contain 

valuable information regarding subsurface hydraulic properties as a function of depth. In 

general, higher moisture content variations in the subsurface caused by greater forced 

infiltration rates were seen to allow for noticeably greater reductions in posterior VGM 

parameter uncertainty than natural loading conditions. Moreover, the corresponding parameter 

estimates were found to be remarkably accurate in the case of our synthetic study. This 

confirms the prevailing intuition that the more pronounced changes in water content 



associated with an increased stressing of a hydrologic system should allow for better 

resolution of the VGM parameters estimated from time-lapse GPR data [6, 7, 24]. It does, 

however, not give any indication as to whether the corresponding values obtained under 

forced infiltration are adequately representative of natural conditions. Indeed, some previous 

work showed that considering different infiltration conditions modified the soil hydraulic 

properties [54, 55]. One observed effect was that the estimated Ks increased with higher 

infiltration rate, which is actually similar to what we observe in our results. This is clearly a 

topic requiring further investigation at the field scale, and it may in fact explain some of the 

inconsistencies observed in the VGM parameter estimates between the different infiltration 

cases in our field study. 

We also clearly observed in our synthetic study that incorporating more time-lapse 

data into the stochastic inversion procedure helped to further refine the VGM parameters, 

which can be attributed to two effects. First, we have the simple fact that, as more data are 

considered for a particular measurement configuration, the more confident we become in that 

measurement. Thus, the simple act of adding more of the same data into the inversion will 

tend to reduce posterior uncertainty. Second and more importantly, data from different time 

periods, especially for the forced infiltration cases, contain different, independent information 

regarding the unsaturated hydraulic properties. This allowed for a greater refinement of the 

VGM parameters for the F1 and F2 cases than for the NL case, as the denser temporal 

sampling allowed for capturing the water front moving downwards through the layers and 

gave a more complete description of the flow behavior. In fact, the consideration of drainage 

in our synthetic study was shown to provide a significant further reduction in spread of the 

posterior parameter distributions, and should be strongly considered for future field 

investigations.  



In the case of the Arrenaes field data, the systematic reduction of posterior VGM 

parameter uncertainty with an increasing number of time-lapse measurements was not nearly 

as clear. In fact, in many instances, the spread of the posterior distributions actually increased 

as new data were added. Further, the posterior means were observed to change quite 

significantly between the various scenarios, and significant differences were seen in the 

parameter estimates for the different infiltration cases considered in this study. These 

inconsistencies can be largely explained by the assumptions that were made in order to 

perform our inversions, which may lead to significant model structural errors in the field 

study. With regard to the 1D flow assumption, we expect associated model errors to be 

minimal for the NL case. On the other hand, such errors are critically important for the F2 

case when additional time-lapse data that are strongly affected by lateral spreading are 

included. In order to be able to use time-lapse ZOP GPR traveltime data collected in the field 

for the robust estimation of unsaturated hydraulic properties, a systematic analysis of the 

propagation of the model error with time and depth should be performed. A few recent studies 

in hydrology have started to include such error analyses when performing their stochastic 

inversion [e.g., 41, 42] and have also evidenced the importance of accounting for such errors. 
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Figure Captions 
 
Figure 1: Net daily infiltration estimates at the Arrenaes site over the considered natural 
loading period from 01/07/2004 to 30/07/2005. Data obtained from the Danish Meterological 
Institute [37]. 
 
Figure 2: Synthetic time-lapse ZOP crosshole GPR traveltime data corresponding to the 
layered environment described in Table 1 for the three infiltration cases described in Table 2. 
 
Figure 3: Shannon entropy measure calculated for the VGM parameters in each subsurface 
layer from the different sets of posterior samples obtained in our synthetic study. The red, 
green, and blue curves represent the NL, F1, and F2 infiltration cases, respectively. Results 
are plotted as a function of the time-lapse scenarios described in Table 3. Scenario 0 
corresponds to Hmax = log2(120) = 6.9, and represents the uniform prior distribution 
considered for each parameter. 
 
Figure 4:  Mean and standard deviation calculated for the VGM parameters in Layer 3 from 
the different sets of posterior samples obtained in our synthetic study. The red, green, and 
blue colors represent the NL, F1, and F2 infiltration cases, respectively. Results are plotted as 
a function of the time-lapse scenarios described in Table 3. The true parameter values are 
shown by the thin black lines. 
 
Figure 5: 95% uncertainty bounds for the water retention function in Layer 3 predicted by the 
prior (grey) and posterior (green) sets of VGM parameter samples for each considered 
infiltration and time period scenario. The curves corresponding to the “true” parameters are 
shown in black. 
 
Figure 6: 95% uncertainty bounds for the hydraulic conductivity function in Layer 3 predicted 
by the prior (grey) and posterior (green) sets of VGM parameter samples for each considered 
infiltration and time period scenario. The curves corresponding to the “true” parameters are 
shown in black. 
 
Figure 7: (a) Location of the Arrenaes field site and (b) installed borehole configuration at the 
site. Modified from Looms et al. [25]. 
 



Figure 8: (a) Grain size statistics and (b) granulometric composition obtained from core 
analysis of borehole A at the Arrenaes site [15].  
 
Figure 9: Time-lapse ZOP crosshole GPR traveltime data measured at the Arreneas field site 
for the three infiltration scenarios.  
 
Figure 10: Shannon entropy measure calculated for the VGM parameters in each subsurface 
layer from the different sets of posterior samples obtained in our field study. The red, green, 
and blue curves represent the NL, F1, and F2 infiltration cases, respectively. Results are 
plotted as a function of the time-lapse scenarios described in Table 7. Scenario 0 corresponds 
to Hmax=log2(200)=7.64, and represents the uniform prior distribution considered for each 
parameter. 
 
Figure 11: Mean and standard deviation calculated for the VGM parameters in Layer 3 from 
the different sets of posterior samples obtained in our field study. The red, green, and blue 
colors represent the NL, F1, and F2 infiltration cases, respectively. Results are plotted as a 
function of the time-lapse scenarios described in Table 7.  
 
Figure 12: 95% uncertainty bounds for the water retention function in Layer 3 predicted by 
the prior (grey) and posterior (green) sets of VGM parameter samples for each considered 
infiltration and time period scenario.  
 
Figure 13: 95% uncertainty bounds for the hydraulic conductivity function in Layer 3 
predicted by the prior (grey) and posterior (green) sets of VGM parameter samples for each 
considered infiltration and time period scenario. 
 
 



Table captions 
 
Table 1: Subsurface layer configuration and corresponding “true” VGM parameter values 
considered in our synthetic study. 
 
Table 2: Details concerning the three different infiltration cases considered in our synthetic 
study. 
 
Table 3: Different time periods considered for the inversion of the synthetic GPR traveltime 
data corresponding to the three infiltration cases in Table 2. For each scenario all of the data 
considered in the previous scenarios were included (i.e., Scenario 1 for the NL case 
considered the GPR profile collected at 1 month, whereas Scenario 3 considered the GPR 
profiles collected at 1, 3 and 6 months).    
 
Table 4: Lower and upper bounds of the prior uniform distributions assumed for the VGM 
parameters in each layer for all inversions performed in this study. 
 
Table 5: Geological structure defined for the Arrenaes field site based on the grain size 
analysis shown in Figure 8 [15]. 
 
Table 6: Details concerning the three different infiltration experiments conducted at the 
Arrenaes field site. Note that infiltration was continuous throughout the data measurement 
period. 
 
Table 7: Different time periods considered for the inversion of the field GPR traveltime data 
collected at the Arrenaes site corresponding to the three infiltration cases in Table 6. For each 
scenario all of the data considered in the previous scenarios were included. 
  
 



FIGURES 
 
 

 
 
Figure 1: Net daily infiltration estimates at the Arrenaes site over the considered natural 
loading period from 01/07/2004 to 30/07/2005. Data obtained from the Danish Meterological 
Institute [3]. 



 
 
Figure 2: Synthetic time-lapse ZOP crosshole GPR traveltime data corresponding to the 
layered environment described in Table 1 for the three infiltration cases described in Table 2. 



 
 
Figure 3: Shannon entropy measure calculated for the VGM parameters in each subsurface 
layer from the different sets of posterior samples obtained in our synthetic study. The red, 
green, and blue curves represent the NL, F1, and F2 infiltration cases, respectively. Results 
are plotted as a function of the time-lapse scenarios described in Table 3. Scenario 0 
corresponds to Hmax = log2(120) = 6.9, and represents the uniform prior distribution 
considered for each parameter. 



 
 
Figure 4:  Mean and standard deviation calculated for the VGM parameters in Layer 3 from 
the different sets of posterior samples obtained in our synthetic study. The red, green, and 
blue colors represent the NL, F1, and F2 infiltration cases, respectively. Results are plotted as 
a function of the time-lapse scenarios described in Table 3. The true parameter values are 
shown by the thin black lines. The extent of the vertical axis represents the range of the prior 
distributions in Table 4. 



 
 
Figure 5: 95% uncertainty bounds for the water retention function in Layer 3 predicted by the 
prior (grey) and posterior (green) sets of VGM parameter samples for each considered 
infiltration and time period scenario. The curves corresponding to the “true” parameters are 
shown in black. 



 
Figure 6: 95% uncertainty bounds for the hydraulic conductivity function in Layer 3 predicted 
by the prior (grey) and posterior (green) sets of VGM parameter samples for each considered 
infiltration and time period scenario. The curves corresponding to the “true” parameters are 
shown in black. 

 



 
Figure 7: (a) Location of the Arrenaes field site and (b) installed borehole configuration at the 
site. Modified from Looms et al. [2]. 



 
 

Figure 8: (a) Grain size statistics and (b) granulometric composition obtained from core 
analysis of borehole A at the Arrenaes site [1].  



 
Figure 9: Time-lapse ZOP crosshole GPR traveltime data measured at the Arreneas field site 
for the three infiltration scenarios.  



 
 
Figure 10: Shannon entropy measure calculated for the VGM parameters in each subsurface 
layer from the different sets of posterior samples obtained in our field study. The red, green, 
and blue curves represent the NL, F1, and F2 infiltration cases, respectively. Results are 
plotted as a function of the time-lapse scenarios described in Table 7. Scenario 0 corresponds 
to Hmax=log2(200)=7.64, and represents the uniform prior distribution considered for each 
parameter. 
 
 



 
 
Figure 11: Mean and standard deviation calculated for the VGM parameters in Layer 3 from 
the different sets of posterior samples obtained in our field study. The red, green, and blue 
colors represent the NL, F1, and F2 infiltration cases, respectively. Results are plotted as a 
function of the time-lapse scenarios described in Table 7. The extent of the vertical axis 
represents the range of the prior distributions in Table 4.



 
 
Figure 12: 95% uncertainty bounds for the water retention function in Layer 3 predicted by 
the prior (grey) and posterior (green) sets of VGM parameter samples for each considered 
infiltration and time period scenario.  



 
 
Figure 13: 95% uncertainty bounds for the hydraulic conductivity function in Layer 3 
predicted by the prior (grey) and posterior (green) sets of VGM parameter samples for each 
considered infiltration and time period scenario. 
 



TABLES 
 
Table 1: Subsurface layer configuration and corresponding “true” VGM parameter values 
considered in our synthetic study. 
 

Layer Depth (m) Log10(Ks (cm·h-1)) qr qs a (cm-1) n 
1 
2 
3 
4 
5 

0-2 
2-3.66 

3.66-7.75 
7.75-8.25 
8.25-12 

1.5 
2.3 
2.2 
2.2 
2.5 

0.06 
0.05 
0.04 
0.10 
0.07 

0.53 
0.37 
0.52 
0.49 
0.51 

0.15 
0.05 
0.06 
0.15 
0.18 

3.5 
4.3 
2.4 
2.7 
3.6 

 



Table 2: Details concerning the three different infiltration cases considered in our synthetic 
study. 
 

Case  Total simulation 
time 

Length of 
infiltration 

period 

Net infiltration 
rate GPR data collection times 

NL 12 months 12 months See Figure 1 1, 3, 6, 9, 12 months 
F1 20 days 10 days 0.1 cm/h Daily 
F2 20 days 10 days 0.4 cm/h Daily 
 



 
 
Table 3: Different time periods considered for the inversion of the synthetic GPR traveltime 
data corresponding to the three infiltration cases in Table 2. For each scenario all of the data 
considered in the previous scenarios were included (i.e., Scenario 1 for the NL case 
considered the GPR profile collected at 1 month, whereas Scenario 3 considered the GPR 
profiles collected at 1, 3 and 6 months).    
 

 NL # of GPR 
profiles F1 # of GPR 

profiles F2 # of GPR 
profiles 

 

 Scenario 1 
Scenario 2 
Scenario 3 
Scenario 4 

1 month 
3 months 
6 months 
9 months 

1  
2 
3 
4 

1 day 
4 days 
7 days 
10 days 

1  
2 
3 
4 

1 day 
4 days 
7 days 
10 days 

1  
2 
3 
4 

Infiltration 

Scenario 5 12 months 5 15 days 5 15 days 5 Drainage 



Table 4: Lower and upper bounds of the prior uniform distributions assumed for the VGM 
parameters in each layer for all inversions performed in this study. 
 

VGM parameter Lower bound Upper bound 
Log10(Ks (cm·h-1)) 

qr 
qs 

a (cm-1) 
n 

-1 
0 

0.35 
0 

1.1 

2.5 
See text 

0.55 
0.2 
4.8 

 



Table 5: Geological structure defined for the Arrenaes field site based on the grain size 
analysis shown in Figure 8 [1].  
 

Layer Depth (m) Main material 
1 0-2 Medium to fine sand 
2 2-3.66  Medium to coarse sand 
3 3.66-7.75 Medium to fine sand 
4 7.75-8.25 Fine to medium sand 
5 8.25-10 Medium to coarse sand 
6 10-10.16 Fine sand to silt 
7 10.16-12 Coarse sand 

 



 
 
Table 6: Details concerning the three different infiltration experiments conducted at the 
Arrenaes field site. Note that infiltration was continuous throughout the data measurement 
period. 
 

Case 
Total 

experiment 
time 

Net 
infiltration 

rate 

Starting 
date GPR data collection times 

NL 12 months See Figure 1 20/07/04 20/07/04, 30/09/04, 14/10/04, 27/10/04, 
26/11/04, 28/07/05 

F1 11 days 0.20 cm/h 31/07/05 Daily until Day 9, and then on Day 11 

F2 20 days 0.36 cm/h 18/10/05 Daily until Day 10, and then on Days 13, 
15, 17 and 20 

 



 56 

 
 
Table 7: Different time periods considered for the inversion of the field GPR traveltime data 
collected at the Arrenaes site corresponding to the three infiltration cases in Table 6. For each 
scenario all of the data considered in the previous scenarios were included. 
 

 NL # of GPR 
profiles F1 # of GPR 

profiles F2 # of GPR 
profiles 

Starting date 
Scenario 1 
Scenario 2 
Scenario 3 
Scenario 4 
Scenario 5 

20/07/04 
30/09/04 
14/10/04 
27/10/04 
26/11/04 
28/07/05 

- 
1  
2 
3 
4 
5 

31/07/05 
01/08/05 
04/08/05 
07/08/05 
11/08/05 

- 

- 
1  
2 
3 
4 
- 

18/10/05 
19/10/05 
22/10/05 
25/10/05 
28/10/05 

- 

- 
1  
2 
3 
4 
- 
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