
Chapter 19
Sperm-Dependent Parthenogenesis
and Hybridogenesis in Teleost Fishes

Dunja K. Lamatsch and Matthias Stöck

. . . there is always some danger in using sperm: even if you do
not want, you run the risk of being fertilized. . . (Dubois 1990)

Abstract In so-called unisexual teleost fishes, a broad spectrum of evolutionary
stages with varying amounts of sexual elements has evolved. These range from pure
sperm-dependent parthenogenesis (gynogenesis) without or with different amounts
of paternal leakage to hybridogenesis with hemiclonal diploid gametogenesis or
genome elimination followed by meiosis (meiotic hybridogenesis). All of these
phenomena are of hybrid origin.

Many of these fish form complexes which involve the coexistence of one or more
sexually reproducing species with derived all-female forms that have various ploidy
levels and reproductive modes, including gynogenesis, (meiotic) hybridogenesis and
sexual reproduction. In teleosts, parthenogenetic reproduction is strictly dependent
on sperm to initiate embryonic development. As opposed to true parthenogene-
sis, sperm-dependent parthenogenetic teleost lineages must primarily coexist with
their “sperm donor”, usually males from a parental sexual lineage or from a related
sexual species. In some systems, gynogens were able to escape from their initial
sperm donors (“host switch”) and therefore, to enlarge their ranges and ecological
niches. Sperm donors normally do not contribute genetically to the next genera-
tion. However, paternal leakage is observed in many systems contributing differing
amounts of genetic material (from microchromosomes to entire chromosome sets)
allowing interaction between genomes of different origin. Hybridogenesis is similar
to gynogenesis in depending upon coexistence with sexual species but incorpo-
rates recombined genetic material by true fertilization. While hybridogens usually
form clonal gametes, some triploids are capable of genome elimination followed
by a normal diploid meiosis. Sperm-dependent parthenogenesis and hybridogenesis
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combine disadvantages and advantages from both sexuality and asexuality. Here,
we give an overview of sperm-dependent breeding complexes in fishes, discuss the
evolutionary consequences of paternal leakage, and speculate about the evolutionary
significance of intergenomic (re)combination.

19.1 Introduction

Fifteen years ago, the topic “unisexual fish” and their evolution have been reviewed
to a great completeness (Vrijenhoek 1994). While the total number of newly discov-
ered teleost complexes with unisexual bias has been limited, an enormous number
of papers examining the different systems with new techniques have been published.
The present chapter attempts to introduce to the various teleost complexes with some
key papers and major recent findings.

19.1.1 Unisexual Reproduction

The need for at least some recombination seems to govern most eukaryotic life.
This general rule may be also responsible for the fact that unisexual or all-female
reproduction is very rare among vertebrates, comprising just <0.1% of all vertebrate
species (Dawley 1989). Unisexuals seem exclusively to arise as a consequence of
hybridization between sexually reproducing progenitors. It has been hypothesized
that a particular combination of genomes shifts the sex ratio in an interspecific
hybrid towards all-female and alters meiosis in the hybrids so they produce eggs
without reduction in ploidy and supposedly without recombination. This was artic-
ulated by Wetherington et al. (1987) and called the "balance hypothesis" by Moritz
et al. (1989). Genetic divergence of parental genomes has to be sufficiently large
to cause a high proportion of unreduced gametes, but not too large to significantly
decrease the viability or fertility of hybrids (Moritz et al. 1989). Hybridization is
particularly common among fish (Scribner et al. 2000), in which it occurs more fre-
quently than in other vertebrate groups. Fishes might hybridize more frequently
because of their (usually) external fertilization, unequal abundance of parental
species, competition for limited spawning habitats and susceptibility to secondary
contact (Campton 2008). In fishes, unisexual reproduction occurs exclusively in the
form of sperm-dependent parthenogenesis (i.e., gynogenesis) and hybridogenesis,
forcing them into close ecological associations with their progenitor sexual species
(Beukeboom and Vrijenhoek 1998).

19.1.2 Gynogenesis

In gynogenetic systems, unreduced eggs are normally produced by an all-female
species, but egg development must be triggered by allospecific sperm from males of
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a related species (Fig. 19.1). Normally, the sperm does not contribute any genetic
material to the offspring. Due to this exploitation of the host, gynogenesis has also
been called “sperm parasitism” (Hubbs 1964). Although not a common mode of
reproduction, sperm-dependent parthenogenesis has evolved multiple times within
seven phyla (Beukeboom and Vrijenhoek 1998). However, regular gynogenesis is
absent in some major groups of vertebrates, like birds and mammals. It is assumed
that genomic imprinting plays a role in the absence of natural parthenogenesis in
mammals (Georgiades et al. 2001; Scott and Spielman 2006), in which it leads to
death during embryogenesis (Rougier and Werb 2001; see also Chapter 26).

19.1.3 Paternal Leakage

Gynogens are interesting models because they seem to combine some disadvanta-
geous traits from both sexuality (e.g., finding mating partners, exposure to predation
during mating, risk of diseases) and asexuality (“Muller’s ratchet”, Muller 1964;
see also Chapter 5) including “mutational meltdown” (Lynch et al. 1993; for more
details, see Schlupp 2005). Occasional leakage of genes from a paternal host into
sperm-dependent clones may however provide a source of adaptive variation to cir-
cumvent the disadvantages of asexuality (Fig. 19.1). This additional genetic material
may also cause the formation of a small proportion of males (Lamatsch et al. 2000).
Expression of paternal genes may provide a local adaptive advantage in physiolog-
ical or phenotypic sexual mimicry traits (Beukeboom and Vrijenhoek 1998). It has
also been argued that paternal leakage leading to the expression of paternal genes
plays a pivotal role to stop Muller’s ratchet (Schartl et al. 1995a; Schlupp 2005;
Loewe and Lamatsch 2008). However, the observation of paternal leakage should
not be confused with true recombination, a reason for discussions of the ratchet-
stopping potential of paternal leakage (Beukeboom et al. 1995; Beukeboom and
Batenburg 1999). It has been speculated that the paternal genome might be used as
a template for DNA repair, but its precise role remains unclear (Beukeboom and
Vrijenhoek 1998). Despite its obscure role, paternal leakage enables interactions of
a “frozen” (unrecombined) genome with a recently recombined one.

19.1.4 Hybridogenesis

Hybridogenesis is a hemiclonal form of reproduction with features of both, sperm-
dependent parthenogenesis and sexuality (Fig. 19.1) (Schultz 1969; Vrijenhoek
et al. 1977; see also Chapters 4, 16 and 18). Diploid hybridogenetic females (e.g.,
AB) transmit a haploid, non-recombinant, maternal genome (i.e., hemiclone A) to
their ova. Diploidy is restored by true fertilization with sperm from males of species
B. The hemiclonal A genome is combined with a new recombined B genome in each
generation; therefore, only maternal genes and chromosomes are perpetuated across
generations of the unisexual biotype. Although variation from species B is pheno-
typically expressed by a hybridogenetic lineage, it is substituted in each generation
and is not heritable.
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It has been a longstanding enigma why so few organisms exist that combine
parthenogenetic and sexual cycles of reproduction (Green and Noakes 1995). A
number of recent studies have shown that parthenogens can have cryptic sex (e.g.,
D′Souza et al. 2006 and Chapter 18; Omilian et al. 2006) and suggest that rare sex-
ual processes may be more common than previously thought (Beukeboom 2007).
In the following sections, we will provide an overview on gynogenetic and hybrido-
genetic teleost fishes that apparently show amazingly complex reproductive modes
(see also Table 19.1). However, deeper insight suggests they may well be efficiently
exploiting both, the benefits of sexual and asexual reproduction.

19.2 Poeciliidae (Livebearing Toothcarps)

Members of this family have internal fertilization using an insemination appara-
tus (gonopodium), with females giving birth to broods of live young. More than 200
species in approximately 30 genera inhabit freshwater and brackish environments of
North and South America. Two genera (Poecilia and Poeciliopsis) contain unisexual
representatives; in each case they include both diploid and triploid unisexual
forms.

19.2.1 Poecilia formosa

The Amazon Molly is a diploid gynogen, native to freshwater habitats in northeast-
ern Mexico and southeastern Texas (Kallman 1962b; Turner et al. 1983; Schlupp
et al. 2002;). When discovered by Hubbs and Hubbs (1932), Poecilia formosa
was the first vertebrate conclusively demonstrated to be clonal using tissue trans-
plantation experiments (Kallman 1962a). Molecular genetic data revealed that this
all-female species arose via hybridization approximately 81,000–280,000 years
ago (Schartl et al. 1995b; Lampert and Schartl 2008; Loewe and Lamatsch 2008)
between two sexual species: the shortfin molly, Poecilia mexicana, as the ancestral
female parent and an unidentified ancestor of the sailfin molly, Poecilia latipinna,
as the male parent (Avise et al. 1991; Schartl et al. 1995b) (Fig. 19.2). For reproduc-
tion, the gynogens depend on either of these parental species, or on the broadspotted
molly, P. latipunctata, as their sexual hosts (Niemeitz et al. 2002; Schlupp et al.
2002). Two forms of paternal leakage have been shown so far: polyploidy results
if the whole sperm genome remains in the ovum, and supernumerary microchro-
mosomes can be observed if only small quantities of the sperm’s chromosome set
fail to be eliminated (as usual in gynogenesis) and remain in the ovum (for reviews,
see Lampert and Schartl 2008; Schlupp et al. 1998). Polyploids occur in natural
habitats as triploid biotypes, mostly where diploids are sympatric with a subspecies
of P. mexicana (mlm), but only rarely where diploids occur sympatrically with
P. latipinna (mll) (Schultz and Kallman 1968; Rasch and Balsano 1989; Lampert
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Fig. 19.2 Graphic summary of the breeding complex of Poecilia formosa, updated after Dawley
(1989). ∗ Only observed under laboratory conditions

et al. 2005). Under laboratory conditions, tetraploids may also occur (Lampert et al.
2008) and even somatic mosaics (Lamatsch et al. 2002; Lampert et al. 2007a), in
which the reproductive mode is also gynogenetic. Microchromosomes are found in
nature (Sola et al. 1993; Lamatsch et al. 2004) as well as under laboratory conditions
(Schartl et al. 1995a; Nanda et al. 2007) and show that microchromosomes are not
necessarily as genetically inert as widely assumed (Camacho et al. 2000). A combi-
nation of these two types of introgression events in the laboratory has been found to
result in unusual triploid males (Lamatsch et al. 2000; and Lamatsch, unpublished
data). Additional genetic material derived from paternal introgression events might
possibly ensure the reproductive success and evolutionary longevity of Poecilia
formosa (Loewe and Lamatsch 2008).



19 Sperm-Dependent Parthenogenesis 409

19.2.2 Poeciliopsis

Unisexual species of Poeciliopsis are native to desert arroyos in northwestern
Mexico. Diploid forms originate through crosses between the sexual Headwater
livebearer (Poeciliopsis monacha; M, as the female parent) and the Clearfin live-
bearer (Poeciliopsis lucida; L) (Schultz 1973), Gila topminnow (P. occidentalis;
O) or the Lowland livebearer (P. latidens; lat), as the male parent, respectively
(Fig. 19.3; for historical biogeography of the genus, see Mateos et al. 2002). These

Fig. 19.3 Example of the breeding complex of Poeciliopsis, after Dawley (1989) that shows
P. lucida as sperm-donor but see Table 19.1 for all possible combinations
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diploid hybrids reproduce via hybridogenesis, in which the haploid M genome
is transmitted clonally to eggs, whereas the paternal genome is excluded and
replaced in each generation by insemination from the respective Poeciliopsis males
(Schultz 1967; Mateos and Vrijenhoek 2005). Triploid forms, however, repro-
duce gynogenetically (Schultz 1967). Three different triploid biotypes are known:
P. 2monacha-lucida (MML), P monacha-2lucida (MLL) and P. monacha-lucida-
viriosa (MLV, a “trihybrid”) that originated by the fertilization of an unreduced
ML-egg by a V-sperm. Although in nature MML, MLL and MLV appear to use sperm
from sympatric P. monacha, P. lucida and P. viriosa, respectively, these triploids
can alternatively use sperm from different Poeciliopsis species to activate devel-
opment of the clonal egg (Schultz 1967). In contrast to allodiploidy, allotriploidy
has arisen only a few times in Poeciliopsis and is of rather recent origin (Mateos
and Vrijenhoek 2005; Quattro et al. 1991, 1992). Further ploidy elevation (e.g.,
tetraploidy) has not been found so far.

19.3 Cyprinodontidae (Pupfishes)

The family Cyprinodontidae contains more than 100 species distributed mostly in
fresh and brackish waters throughout the Americas, Africa and Eurasia. Like all
killifishes, pupfishes have external fertilization, are egg-layers and mostly reproduce
bisexually.

19.3.1 Fundulus diaphanus-heteroclitus

One of the few departures from bisexual reproduction involves an all-female clonal
biotype within the otherwise sexual species of Fundulus. This biotype, known from
two sites in Nova Scotia, Canada, is probably gynogenetic (Dawley 1992) and arose
through hybridization between sexual F. diaphanus (banded killifish) and F. hetero-
clitus (mummichog) (Dawley et al. 1999, 2000; Hernandez Chavez and Tuergeon
2007). Interspecies hybridization between F. heteroclitus and F. diaphanus occurs
over a wide geographic range (Hernandez Chavez and Tuergeon 2007), but gyno-
gens were only observed at two sites, indicating that only specific crosses between
parental species result in clonal reproduction. With all clones bearing the same F.
diaphanus mtDNA-haplotype, its origin probably goes back to a few rather recent
hybridization events (Dawley 1992; Hernandez Chavez and Tuergeon 2007) while
microsatellite data raise the possibility of several independent origins of asexuality
(Hernandez Chavez and Tuergeon 2007). The unisexual hybrids are mostly diploid
and only rarely triploid. Triploids show DNA contents close to what would be
expected for a hybrid with a double dose of the F. diaphanus genome and a sin-
gle dose of the F. heteroclitus genome (DDH) (Dawley 1992), indicating paternal
leakage as source of triploidy. However, the potential role of paternal introgression,
sexual reproduction, occasional recombination and mutational events has not been
conclusively addressed to date.
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19.4 Atherinopsidae (Neotropical Silversides)

This family contains approximately 104 species in 13 genera that are distributed
throughout the tropical and temperate waters of the Americas, including both
marine and freshwater habitats. So far, unisexuality has only been discovered in
one species.

19.4.1 Menidia clarkhubbsi

Species of Menidia are small, silvery-sided, planktivorous fishes that form dense,
highly mobile foraging schools along the Texas coast and eastward at sites on the
northern Gulf of Mexico. They are egg-layers with external fertilization and have no
striking sexual dimorphism. The unisexual-bisexual complex comprises the bisex-
ual Inland silverside (M. beryllina) and the Tidewater silverside (M. peninsulae),
F1 hybrids between the two species and several different all-female clones (M.
clarkhubbsi, Texas silverside) that arose through multiple hybridizations between
males of M. beryllina and females of an extinct or as-yet undetected species genet-
ically similar to M. peninsula (Echelle and Moisier 1982; Echelle et al. 1983;
Echelle and Echelle 1997). The complex consists mainly of diploid females and
there is no compelling evidence of persistent polyploid clones, although rare occur-
rence of wild-caught triploids has been stated (Echelle et al. 1988, 1989). It is not
yet resolved whether these triploids occur by paternal leakage involving a diploid
egg from M. clarkhubbsi (BP) and a haploid sperm of M. peninsulae (P) (Echelle
et al. 1989) or by back-crosses of F1 hybrids, producing unreduced gametes, to the
parental species (BPP, BBP) (Echelle et al. 1988), and how they reproduce. Low
abundance seems characteristic of this unisexual complex: Despite intense research,
no environmental situations were found where unisexual Menidia are predictably
more abundant than their bisexual relatives (Echelle et al. 1989; Echelle and Echelle
1997). This may reflect competition with the diversity of other forms of Menidia
(two bisexual species, their hybrids and backcross progeny) as well as the lack of
opportunity for origins of new unisexual species due to the absence of one of its
bisexual progenitors (the missing M. peninsulae-like form). Thus, the existing M.
clarkhubbsi species complex may be a relict of a once more diverse, and therefore
more abundant assemblage of clones.

19.5 Cyprinidae (Minnows and Allies)

Members of this huge taxonomic assemblage are native to North America, Eurasia
and Africa. With more than 1,600 species in nearly 300 genera, this is the most
species-rich family of fishes. However, only a few clonal or hemiclonal biotypes are
known.
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The Japanese crucian carp (Carassius auratus) was morphologically classified
into several subspecies: kinbuna (C. a. ssp.), nagabuna (C. a. burgeri), nigorobuna
(C. a. grandoculis), gengorobuna (C. a. cuvieri), ginbuna (C. a. langsdorfii) and
Prussian carp (C. a. gibelio). Recent research based on mitochondrial Cytochrome b
sequences (Kalous et al. 2007), however, has characterized C. a. cuvieri, langsdorfii
and gibelio as distinct species, leaving only grandoculis, burgeri and the kinbuna as
subspecies of C. auratus.

19.5.1 Carassius gibelio

The gynogenetic Prussian carp was originally described in a population from the
Shuangfeng Reservoir in northern China and now invasively spreads in freshwa-
ter streams, ponds and lakes over a wide geographic range from northern Europe
to Asia (e.g., Veetema et al. 2005; Flajshans et al. 2007; Verreycken et al. 2007;
Leonardos et al. 2008). The triploid gynogen originated from an ancient hybridiza-
tion event, with Carassius auratus being the maternal and Cyprinus carpio being
the paternal ancestor (Chun et al. 2001). Seven different clones have been identi-
fied, differing significantly in body shape, growth rate, spawning time, serum protein
phenotype, karyotype etc. (Zhou et al. 2000; Yi et al. 2003). This species shows two
unusual characteristics for unisexual breeding complexes: (1) populations contain
up to 20% males in natural habitats (Abramenko et al. 1998); (2) two reproduc-
tive modes exist: gynogenesis and gonochoristic reproduction; besides its role in
activating the egg, sperm contribute to the progeny in a high percentage of cases.
Cytological observations have revealed two different patterns of sperm develop-
ment: if eggs are inseminated with heterologous sperm (i.e., from other species),
the entered sperm does not decondense and is then eliminated from the zygote.
This is the normal process of gynogenesis and gives rise to all-female progeny.
However, when the eggs are inseminated with homologous sperm of silver crucian
carp males, the sperm undergoes normal decondensation and pronucleus formation
and fuses with the female pronucleus. The fused nucleus of the zygote undergoes
recombination and extra chromosomes (about half of the maternal chromosomes)
are eliminated from the egg. In this case, genetically diverse offspring are produced
(including males), similarly as in gonochoristic reproduction. This form of gynogen-
esis has been referred to as “allogynogenesis” (Jiang et al. 1983). As a consequence,
the complex consists of diploid individuals (males and some of the females), mostly
triploid individuals (almost exclusively females) and rare tetraploid females (Fan
and Liu 1990; Zhu and Gui 2007). In one clone, paternal leakage of subgenomic
amounts of genetic material has been detected in the offspring. Phenotype similar-
ity with the sperm-donor implied that these microchromosomes might carry genes
that are expressed in the foreign genetic background (Yi et al. 2003). Although this
is an unusual situation since supernumerary chromosomes are often found to be
genetically inert (Camacho et al. 2000), it has also been demonstrated in microchro-
mosomes of Poecilia formosa expressing the macromelanophore locus (Schartl
et al. 1997).
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19.5.2 Carassius langsdorfii

The Japanese silver crucian carp, ginbuna, is widely distributed in Japan. There
are three forms of females in this complex: a bisexual diploid form as well as a
gynogenetic triploid and tetraploid form (Kobayashi et al. 1970, 1977). Although
the hybrid origin of polyploid ginbuna has been revealed with nuclear markers
(Murakami and Fujitani 1997), its ancestral parents have not yet been identified.
According to Murakami et al. (2001), triploid ginbuna have been derived from two
different maternal lineages approximately 70,000–160,000 years ago and it seems
likely that the goldfish, C. a. auratus, contributed to the ploidy elevation from
diploid hybrid ginbuna (Murakami et al. 2002). In mating experiments of triploid
ginbuna with male goldfish (C. a. auratus) diploid-triploid and diploid-triploid-
tetraploid mosaic offspring were obtained, most of which turned out to be males
(Murayama et al. 1986). Since no paternal contribution could be detected, the exact
mechanism remains unclear. Other authors have discovered rare triploid (Muramoto
1975) and tetraploid males (Murakami and Fujitani 1997) from natural populations.
Despite warnings based on experiences with other species of Carassius invading
native fish communities (Crivelli 1995; Fraser and Adams 1997), individuals of
C. langsdorfii have lately been found in Europe in the River Elbe basin (Czech
Republic) (Kalous et al. 2007), probably accidentally being introduced along with
imports of commercially important fishes like Koi carps (Cyprinus carpio). Their
impact on endemic fish fauna needs to be assessed urgently.

19.5.3 Phoxinus eos-neogaeus

The Phoxinus eos-neogaeus complex is widely distributed in north-eastern America
and occupies very heterogeneous habitats (Angers and Schlosser 2007). It origi-
nated by multiple hybridization between males of the northern redbelly dace (P.
eos) and females of the finescale dace (P. neogaeus) (Dawley et al. 1987; Goddard
et al. 1989; Angers and Schlosser 2007). Altough these diploid hybrids reproduce
by sperm-dependent parthenogenesis (Goddard et al. 1998), the exclusion mech-
anism, which normally clears the egg from the sperm in gynogenesis, often fails
in this hybrid complex, leading to an unusually high level of sperm incorpora-
tion (Fig. 19.4). As a consequence, five different hybrid biotypes are found in the
complex: (1) the strictly clonal, all-female diploid P. eos-neogaeus lineage (en),
(2) triploid P. 2eos-neogaeus (ene), (3) triploid P. eos-2neogaeus (enn), (4) mosaic
P. eos-neogaeus / 2eos-neogaeus (en/ene) and (5) mosaic P. eos- neogaeus / eos-
2neogaeus (en/enn) (Goddard et al. 1989; Goddard and Dawley 1990). The first
four of these hybrid biotypes have been found in natural populations (Doeringsfeld
et al. 2004), whereas the latter mosaic biotype with an additional neogaeus genome
has only been reported from a laboratory mating (Goddard et al. 1989). Where the
diploid clonal hybrid occurs sympatrically with only one parental species (typically
P. eos), the complex is comprised of three biotypes: the diploid clone augmented
with triploids and mosaics carrying an additional genome from that species (Dawley
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Fig. 19.4 Graphic example of the breeding complex of P. eos-neogaeus showing diploid, triploid
and diploid-triploid mosaic hybrids when mating with P. eos (modified from Goddard and Dawley
(1990) and Goddard and Schultz (1993)

et al. 1987). Where it occurs in sympatry with both parental species, all five biotypes
may be present (Goddard et al. 1989; Doeringsfeld et al. 2004). Mosaic individ-
uals (en/een) produce diploid eggs (en), which may develop gynogenetically or
incorporate sperm. Triploids (een), however, exclude the neogaeus genome before
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they undergo reduction division, resulting in haploid (e) ova, a process compara-
ble to meiotic hybridogenesis (see Squalius, Misgurnus). When fertilized by P. eos
sperm, the resultant offspring are indistinguishable from males and females of P.
eos (Goddard and Schultz 1993) although they carry the mitochondrial DNA of
P. neogaeus. These are called “cybrids” in contrast to nuclear hybrids (gynogens,
triploids and mosaics). Doeringsfeld et al. (2004) conclude that the distribution and
ecological success of the hybrid complex is a function of both, an apparently broadly
adapted clonal lineage and additional genetic and phenotypic variation expressed by
various polyploid biotypes.

19.5.4 Squalius alburnoides

The Iberian fishes of the Squalius (previously Leuciscus, Tropidophoxinellus or
Rutilus) alburnoides complex (for nomenclature, see Kottelat 1997 and Collares-
Pereira et al. 1999) contain mixed reproductive systems of diploid, triploid and
tetraploid forms with highly female biased sex ratios. The complex arose through
interspecific crosses between S. pyrenaicus (P-genome) and males of an appar-
ently extinct species (A-genome) (Alves et al. 2001). The most common form of
the complex includes hybrid females and males with diploid (PA), triploid (PAA
and PPA) and tetraploid (PPAA, PAAA and PPPA) genomes (Gromicho et al. 2006)
(see Fig. 19.5). The second form of the complex comprises a diploid nuclear non-
hybrid but all-male lineage (AA) with pyrenaicus-mtDNA that is hypothesized to
have been reconstituted within the complex by triploid PAA-females (Alves et al.
2002) (Fig. 19.6). Recent research revealed that the paternal ancestor of the complex
was an Anaecypris hispanica-like species according to evidence from cytogenet-
ics (Gromicho et al. 2006), microsatellites (Crespo-Lopez et al. 2007) and nuclear
sequence data (Robalo et al. 2006). While this ancestral species seems to be extinct
in most or all relevant river basins, its nuclear genome is preserved in the all-
male form (with pyrenaicus-mtDNA). The oogenesis of triploid PAA-females is
mostly achieved by “meiotic hybridogenesis” (Alves et al. 1998), which involves
elimination of the P (Squalius) genome, followed by random segregation and recom-
bination between the two remaining genomes, generating A-ova. This mechanism
has been first assumed to be operating in certain triploid hybrid Rana esculenta frogs
(Günther et al. 1979) and seems to be similar to males of all-triploid Batura-toads
(Stöck et al. 2002). When these recombined A-ova are fertilized with recombined
haploid A-sperm of AA-males, new AA-all-male (with pyrenaicus-mtDNA) progeny
is restored. Alves et al. (2004), however, reported a triploid female that generated
both large triploid and small haploid eggs resulting in all-female progeny. In diploid
hybrid PA-females, few eggs (< 3%) develop by gynogenesis. The majority of PA-
females transmits the complete hybrid genome to the egg and fertilization results in
triploid progeny (Alves et al. 1998). In all other forms of the complex, reproductive
modes include syngamy (Alves et al. 2001). Males in the S. alburnoides complex
are fertile and play a role in the dynamics of the complex: diploid hybrids (PA)
produce unreduced sperm, while others designated as diploid “nuclear non-hybrid
males” (AA) produce reduced sperm (Alves et al. 1999).
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Fig. 19.6 Hypothetical
evolutionary trajectory of the
all-male non-hybrid lineage
within the hybrid S.
alburnoides complex. Above
dashed line, mechanism of
the origin of the hybrid
complex; below dashed line,
perpetuating mechanism of
the all-male non-hybrid
lineage (modified from
Gromicho et al. 2006)

In the absence of S. pyrenaicus (e.g., N-Portugal), the complex seems to be
maintained by crosses with males of S. carolitertii (CC) and by diploid hybrid
males (CA), although the mtDNA found in S. alburnoides is S. pyrenaicus-like
(Cunha et al. 2004; Pala and Coelho 2005; Sousa Santos et al. 2006). Recently,
also extensive mtDNA-introgression from a related species (S. aradensis) into the
S. alburnoides has been detected (Sousa Santos et al. 2006). A spectacular novel
finding has been added to the knowledge about the evolutionary dynamics of the
complex: In two populations from the NW-Iberian Douro drainage, tetraploid indi-
viduals represent 85.6–97.5% of the population, with no observed sex ratio bias.
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Using flow cytometry of blood and sperm, microsatellite data and experimental
crosses, Cunha et al. (2008) describe two gonochristic allotetraploid populations
(CCAA) with normal meiosis. This illustrates how the evolutionary dynamics of a
hybrid complex may contribute to polyploid speciation. Such processes have been
predicted for polyploid fishes at least as early as 30 years ago by Schultz (1979).

Studying gene expression, Pala et al. (2008) found in some triploid forms of the
S. alburnoides complex “that a compensation mechanism exists, reducing transcript
levels to the diploid state”. Their data suggest a silencing of one of the three alleles,
although unexpectedly, it is not a whole haplome that is inactivated. The allelic
expression patterns differ between genes and between different tissues for one and
the same gene.

19.6 Cobitidae (Loach Fishes)

This family comprises about 150 extant freshwater species that inhabit Eurasia,
with species diversity being the highest in southern Asia. These fish are typi-
cally bottom-dwellers with downward facing mouths and “wormlike” or fusiform
(spindle-shaped) bodies. A recent molecular phylogeny was proposed by Slechtova
et al. (2008).

19.6.1 Cobitis

Spined loaches form a monophyletic group within the cypriniforms, which con-
tains more than 42 species of freshwater fishes (Sawada 1982). Apparently, nothing
is known about the occurrence of hybrid complexes among the Iberian species.
In Central and Eastern Europe, at least seven diploid gonochoristic spined loach
species are found (Vasil’ev et al. 2007). In addition, since the beginning of the
1980’s, diploid, triploid and tetraploid all-female spined loach forms were discov-
ered (Vasil’ev and Vasil’eva 1982; Vasil’ev et al. 1989; Bohlen 2000; Rab et al.
2000; Bohlen and Rab 2001; Boron et al. 2003; Janko et al. 2003) (Fig. 19.7). The

Fig. 19.7 Representation of the European Cobitis breeding complex (kindly provided by K. Janko;
with modifications)
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C. taenia complex sensu Janko comprises six parapatric species known to hybridize
(C. elongatoides, C. taenia, Cobitis tanaitica, Cobitis taurica, Cobitis strumicae
and Cobitis melanoleuca) (Choleva et al. 2008).

These asexual lineages arose by hybridization between three species: Cobitis tae-
nia, C. elongatoides and C. tanaitica. Diploid, triploid and tetraploid all-female
hybrids between C. elongatoides and C. taenia are found, as well as triploid and
tetraploid all-female hybrids between C. elongatoides and C. tanaitica, co-occurring
over a large range with their parental species (Slechtova et al. 2000; Bohlen and Rab
2001). Triploids predominate in most populations, but diploid hybrids are common
at some localities in the Oder and Elbe river basins (Bohlen et al. 2002; Slechtova
et al. 2000). For the C. elongatoides-C.taenia hybrid complex (Vasil’ev et al. 1989;
Saat 1991), gynogenetic reproduction has been reported. This is also presumed for
the C. elongatoides-tanaitica hybrids as they are always associated with the parental
species (Bohlen and Rab 2001). The latter form all-female populations with mostly
triploids, but without any evidence for hybridogenesis. MtDNA analyses of both
hybrid complexes showed that hybridization resulting in C. elongatoides-taenia
asexuals was reciprocal, and that the asexual lineages are of recent polyphyletic
origin. Taking advantage of previous knowledge of the genome composition of poly-
ploids, Janko et al. (2003) further concluded that polyploidy has been achieved
by backcrosses of diploid F1-hybrids to both parental species. Mezhzherin and
Chudakorova (2002) analysed the Dnieper river C. taenia hybrid complex using
allozymes and found it to consist of 87% polyploid females triploids, tetraploids
and “possibly a few pentaploids”. The tetraploid hybrids in the Moscow River
comprise some males without normal spermatozoa. However, experimental crosses
between gynogenetic triploid females and tetraploid males revealed that these males
could trigger gynogenesis of clonal forms in a few cases (Vasil’ev et al. 2003).
Using multilocus fingerprinting, Vasil’ev et al. (2007) found tetraploids in the Don
Basin to exhibit clonal inheritance, while female tetraploids in the Moscow River
may also have arisen de novo, i.e., by fertilization of clonal triploid eggs. Some
tetraploids are supposedly trihybrids (Vasil’ev et al. 2007), as also described by
Choleva et al. (2008).

A comprehensive review of diversity and systematics of the Central and Eastern
European Cobitis taenia complex has been published by Janko et al. (2007). Janko
et al. (2005) and Culling et al. (2006) reconstructed the Quaternary biogeography
of the sexual parental and clonal hybrid lineages of European Cobitis from two
separate refuges. The authors found multiple Prae-Würmian and Holocene origins
of asexuality, irrespective of the parental populations involved and similar dispersal
potential of diploid and triploid lineages.

Another hybridogenetic complex of Cobitis occurs in East Asia. In the Korean
C. hankugensis (previously sinensis: S) – C. longicorpus (O) complex, diploid SO-
hybrids produce diploid ova, whose fertilization leads to triploids, which produce
haploid ova (Kim and Lee 1990, 2000; Saitoh et al. 2004). According to Kim and
Lee (2000), SSO-triploids eliminate the O-genome and perform meiosis with the
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remaining S-genomes (i.e., meiotic hybridogenesis). When these haploid S-eggs are
fertilized by normal C. hankugensis males, diploid C. hankugensis are regenerated
but carry foreign C. longicorpus mtDNA (nucleo-cytoplasmic hybrids; Saitoh et al.
2004). Kim and Lee (2000) present a hypothetical scheme on the interactions in the
breeding complex (not shown).

19.6.2 Misgurnus anguillicaudatus

The oriental weather loach, Misgurnus anguillicaudatus, is a common freshwater
fish that inhabits shallow ponds and paddy fields all over Japan, Korea, China,
Vietnam and other Asian regions (Arai 2003). Although bisexually reproducing,
diploid individuals are most common in the wild populations of Japan, a rela-
tively small number of triploid individuals have also been discovered (Morishima
et al. 2002; Arai 2003; Oshima et al. 2005). In wild populations of Japan, no
natural tetraploids have been found despite intense screening (Arai, personal com-
munication). Ojima and Takai (1979) and Arai et al. (1991) found tetraploids;
however, all of these were of “commercial” origin; possibly from the Yang-tze
(= Chiangjiang) River basin of China, where natural tetraploids and diploids occur
sympatrically (Li et al. 2008). In 2002, Morishima and colleagues discovered a
diploid clonal lineage within the wild population of the northern area of Hokkaido,
although its origin remains unclear (Morishima et al. 2008a) (Fig. 19.8). These
females generate unreduced diploid eggs by premeiotic endomitosis (Itono et al.
2006), which are activated by sperm from bisexually reproducing diploid loaches
and develop gynogenetically into clonal offspring (Itono et al. 2007). Paternal
leakage into unreduced eggs may lead to triploid individuals (Morishima et al.
2002; Oshima et al. 2005) or diploid-triploid mosaics (Morishima et al. 2004).
Triploid females have been reported to produce mainly haploid eggs by meiotic
hybridogenesis (Morishima et al. 2008b; see above): After pairing of homolo-
gous chromosomes, the third set of unmatched chromosomes is eliminated and the
remaining bivalents undergo normal meiosis, resulting in haploid eggs. Therefore,
diploid gynogenetic progeny can be produced from haploid eggs of these triploid
loaches after normal fertilization with the sperm of bisexual diploids. Small num-
bers of diploid, triploid and aneuploid eggs have also been reported from triploid
loaches (Oshima et al. 2005). Triploid males, however, appear to be sterile (Itono
et al. 2006). In contrast, diploid-triploid mosaic males produce fertile diploid sperm
(Morishima et al. 2004), whereas diploid-triploid mosaic females have been found
to lay haploid, diploid and triploid eggs simultaneously (Yoshikawa et al. 2007).
The occurrence of meiotic hybridogenesis in triploids derived from clonal gyno-
genetic M. anguillicaudatus suggests the presence of two distinct genomes in the
clone. Arias-Rodriguez et al. (in press) found that inter-populational hybrid loaches
produced unreduced or other unusual eggs. Taken together, these data suggest a
hybrid origin of M. anguillicaudatus, but its exact origin and ancestors are still
not clarified.
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19.7 Conclusions

As we have outlined above, teleost fishes have not completely “lost sex”. In
contrast, the entire range of imaginable stages between sperm-dependent partheno-
genesis without or with different amounts of paternal leakage (e.g., Poecilia,
Carassius gibelio) to hybridogenesis with hemiclonal diploid gametogenesis (e.g.,
Poeciliopsis) or genome elimination, followed by a normal meiosis (e.g., Squalius,
Misgurnus, Phoxinus), has evolved in this group (Fig. 19.1).

Moreover, some systems include a combination of these phenomena and form
species complexes that are governed by the coexistence of several reproductive
modes in addition to normal sexual reproduction (e.g., Squalius, Cobitis, Phoxinus)
and/or may even lead back to the evolution of sexuality in allotetraploids via
triploids (e.g., Squalius).

True parthenogenesis (i.e., sperm-independent reproduction) has not been found
in fishes; in vertebrates, it seems restricted to reptiles (see also Chapter 21).
All described teleost complexes are of hybrid origin (even the so far mysterious
Misgurnus anguillicaudatus seems to be of hybrid origin, see Morishima et al.
2008b) and the resulting clonal or hemiclonal reproduction can be viewed as a
serendipitous effect of miscegenation between two species, which are sufficiently
closely related to form viable hybrids and too distantly related for their genomes to
execute normal meiosis (Moritz et al. 1989). However, between sperm-dependent
parthenogenesis and true sexual reproduction, all kinds of intermediate states have
evolved in teleosts. Nevertheless, all of these are sperm-dependent. This dependence
may be explained by the need for a mechanical and/or chemical trigger to initiate
embryogenesis in teleost ova (cf. Dawley et al. 1987; Pandian and Koteeswaran
1998). Once gynogenesis is established in a system as insemination without pater-
nal genetic input, rare failure of the normal sperm-exclusion might lead to paternal
leakage: a tiny genetic contribution of these “pseudo-fathers” that may or may not
be phenotypically expressed. A higher amount of paternal leakage may comprise the
complete incorporation of the foreign sperm nucleus and, as a consequence, ploidy
elevation in a usually still all-female situation.

As opposed to the relatively rare paternal leakage, regular fertilization and bipa-
ternal gene expression in the offspring has evolved in hybridogenesis, but one
genome is pre-meiotically eliminated. Here, we find either hemiclonal transmission
of one genome without recombination (as in diploid hybridogens) and replacement
of the other genome from a normal sexually recombining species. Alternatively,
after the elimination of one complete chromosome set, some triploids may pro-
duce clonal diploid eggs, while others even enter a normal meiosis and produce
recombined gametes (meiotic hybridogenesis).

Regarding the observed stages of complete or partial asexuality, two important
aspects should be addressed by future research: (I) a hybrid may have a given repro-
ductive mechanism immediately after it has formed (e.g., caused by the alteration of
normal meiosis to automixis; Lampert et al. 2007b), just as a result of the genomic
distance between the parental forms (e.g., for true gynogens, the “balance hypoth-
esis” according to Moritz et al. 1989). (II) Ongoing interactions between sexual
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progenitors and hybrids (genome shuffling, addition of a foreign genome, interge-
nomic recombination and exchange, introgression) enabled by paternal leakage,
genome addition, and various forms of hybridogenesis may, over time, lead to a
higher compatibility and co-evolution of the hybridizing genomes with the result
that these interspecies interactions may experience a true evolutionary transition
from one reproductive mode to another. Indications of such “evolution in action”
have been observed in Squalius alburnoides, for example (Alves et al. 2001, Cunha
et al. 2008). We encounter these complexes in a certain stage but we need to under-
stand if and how ongoing interspecies and intergenomic interactions may change in
evolutionary time.

Interestingly, the speculative evolutionary (re-) transition from asexuality to
sexuality (gynogenesis → paternal leakage → hybridogenesis → meiotic hybri-
dogenesis → meiotic allotetraploids) in teleosts seems to be accompanied by an
increasing number of males (e.g., Squalius, Cobitis) shifting the all-female (e.g.,
Poecilia) to a female-biased situation or perhaps again to a balanced situation as in
bisexual allotetraploids (Squalius). This effect, however, seems rather a bi-product
of introgression of genetic material (microchromosomes, entire chromosome sets)
than a directed evolutionary tendency.

Another question that should be addressed by future research is the reason for the
occurrence or absence of “meiotic hybridogenesis” in some triploids. Similarly to
triploid Rana esculenta frogs (Günther et al. 1979) and triploid Bufo baturae toads
(Stöck et al. 2002), triploids in Squalius, Cobitis, Misgurnus and Phoxinus have
developed mechanisms that can exclude one entire chromosome set (the one that is
“minority” in such 2n + 1n triploids) before they enter an apparently normal diploid
meiosis. In contrast, hybrids in Poeciliopis (which are hybridogenetic in their diploid
forms) become gynogenetic as triploids. We speculate if the reason could be some
kind of trihybridity (the involvement of a third, slightly different genome) in the
latter form.

Sperm-dependent unisexuals (gynogens and hybridogens) are normally primarily
restricted to the range(s) of the one (or more) bisexual species on which they depend,
the parental forms in most cases. It has been documented, however, that asexual
lineages may rarely use sperm from a non-parental species or even switch their host
(Choleva et al. 2008). This latter phenomenon has been discussed by Choleva et al.
(2008) who found it in four genera of (partly) “asexual” lineages of fish and two
amphibians.

Recent research (e.g., Ogielska et al. 2004 in hybridogenetic frogs; and Bi and
Bogart 2006 and Bi et al. 2007 in gynogenetic salamanders) shows that once
the genetic material of two species is present in the same nucleus (as in gyno-
gens or hybridogens), a variety of intergenomic exchange events (“intergenomic
(re)combination”) can be expected to occur (Mable 2007). These phenomena remain
to be investigated in several of the described teleost complexes with adequate
molecular-cytogenetic methods. Such techniques might reveal that the intergenomic
barriers between the genomes of the parental species are likely much more “porous”
than assumed in the “classical” concepts of gynogenesis and hybridogenesis. One
of the challenges for future research, using the technological advances that provide
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access to genomic information, is to address how frequently inter-species interac-
tions result in intergenomic gene transfer and recombination. These phenomena may
be the key points to understand the nature of these outstanding hybrid breeding-
complexes. By broadening the view of Moritz et al. (1989), we regard them as the
result of interactions between lineages reflecting a wide spectrum of interspecies
genomic exchange: Thus these viable, often female-biased hybrids with ameiotic
or partly meiotic gametogenesis may be viewed as “genome-shuttles” that shuf-
fle genetic material between parental lineages over long evolutionary periods in
a framework that can be considered to be a “mobile hybrid zone”. “Homologous
recombination, as in sex, is important for population genetics – shuffling of minor
variants, but relatively insignificant for large-scale evolution. Evolutionary inno-
vations depend much more on illegitimate recombination, which makes novel
genes by gene duplication and by gene chimaerism – essentially mutational forces”
(Cavallier-Smith 2002).
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Glossary (for details: see also Fig. 19.1)

Gynogenesis: sperm-dependent parthenogenesis. Hybrid females produce unre-
duced ova that develop into all-female offspring; sperm are needed from a closely
related sexual species to trigger embryonic development without genetic contribu-
tion to the offspring.
Hemiclonal reproduction, Hybridogenesis: the hybrid female’s genome is passed
on clonally to the offspring while the other genome is substituted every generation
(hemiclonal). It is also possible that the genome of the sexual species first elevates
the ploidy level before it gets substituted.
Parthenogenesis: Hybrid females produce unreduced ova that develop into all-
female offspring being genetically identical to their mother.
Paternal leakage: Instead of only triggering embryogenesis (Gynogenesis), the off-
spring show paternal genetic contribution in form of an additional chromosome set
(triploids) or microchromosomes.
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