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SUMMARY

Understanding the molecular pathways that con-
tribute to the aggressive behavior of HER2-positive
breast cancers may aid in the development of
novel therapeutic interventions. Here, we show that
CDCP1 and HER2 are frequently co-overexpressed
in metastatic breast tumors and associated with
poor patient prognosis. HER2 and CDCP1 co-over-
expression leads to increased transformation ability,
cell migration, and tumor formation in vivo, and
enhanced HER2 activation and downstream sig-
naling in different breast cancer cell lines. Mechanis-
tically, we demonstrate that CDCP1 binds to HER2
through its intracellular domain, thereby increasing
HER2 interaction with the non-receptor tyrosine ki-
nase c-SRC (SRC), leading to trastuzumab resis-
tance. Taken together, our findings establish that
CDCP1 is a modulator of HER2 signaling and a
biomarker for the stratification of breast cancer pa-
tients with poor prognosis. Our results also provide
a rationale for therapeutic targeting of CDCP1 in
HER2-positive breast cancer patients.

INTRODUCTION

Each year, breast cancer is diagnosed in over 1 million women

worldwide. Although overall survival rates for breast cancer

have improved significantly over the decades, more than

450,000 lives are still lost annually to this disease (Coughlin

and Ekwueme, 2009). A better understanding of how breast can-

cer arises and progresses is needed to develop treatments for

breast cancer patients. The epidermal growth factor receptor 2
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gene (ERBB2 or HER2) is amplified and overexpressed in

�20% of invasive breast cancers, and is associated with metas-

tasis and poor prognosis (Hynes andMacDonald, 2009). HER2 is

a member of the ErbB receptor tyrosine kinase (RTK) family,

which also includes EGFR, HER3, and HER4. Activation of

HER2, induced by homo- or heterodimerization, drives trans-

phosphorylation between pair receptor monomers, resulting in

the recruitment to the receptor complex of signaling molecules

such as PI3K, SHC, and GBR2 (Dankort et al., 1997; Segatto

et al., 1993; Sepp-Lorenzino et al., 1996). Phosphorylated

HER2 drives activation of the PI3K/AKT and MAPK/ERK path-

ways, thereby promoting cellular proliferation, survival, and

differentiation (Hynes and Lane, 2005). Trastuzumab, an FDA-

approved humanized antibody targeting HER2, is used in combi-

nation with chemotherapy to treat HER2-overexpressing breast

cancers (Nahta and Esteva, 2006), with a high rate of response in

early-stage breast cancer patients. However, a significant frac-

tion of treated patients experience primary resistance to trastu-

zumab and �70% of initial responders become resistant to the

drug over time (secondary resistance) (Nahta and Esteva,

2006). Despite numerous research and clinical studies, addi-

tional attempts to interfere with the HER2 receptor alone have

failed to yield a widely effective treatment. Therefore, the identi-

fication of targetable regulators of this pathway may reveal po-

tential entry points for breast cancer therapy.

CUB domain-containing protein 1 (CDCP1) is a 140 kDa cell-

surface glycoprotein with a large extracellular domain (ECD)

containing two CUB domains, and an intracellular domain (ICD)

containing five tyrosine phosphorylation sites. It has been

demonstrated that tyrosine phosphorylation of CDCP1 is

required for its full function and interaction with other proteins

(Brown et al., 2004). Tyrosine 734 of CDCP1 (p-734) seems to

be the main phosphorylation site for Src family kinases (SFKs).

SRC was recently characterized as an essential regulator of

CDCP1-driven tumorigenesis (Brown et al., 2004). A number of
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studies showed that CDCP1 is overexpressed and tyrosine

phosphorylated in multiple human cancers (Alajati et al., 2013;

Rikova et al., 2007; Scherl-Mostageer et al., 2001), and that

elevated CDCP1 expression in human tumors correlates with

poor outcome and metastasis (Hooper et al., 2003; Miyazawa

et al., 2010). While CDCP1 depletion reduces cancer cells

dissemination in mice, CDCP1 overexpression increases the

metastatic potential of different breast cancer cell lines in vivo

(Deryugina et al., 2009; Uekita et al., 2008). Given the role of

CDCP1 in cell migration and tumor growth, investigators have

developed a number of compounds to target this protein in order

to interfere with cancer progression, with promising outcomes

(Kollmorgen et al., 2013; Siva et al., 2008). Recently, we reported

that CDCP1 is highly phosphorylated in HER2-overexpressing

breast cancer cells (Alajati et al., 2013). Moreover, CDCP1 was

found to be upregulated and phosphorylated in a trastuzumab-

resistant breast cancer cell line (Boyer et al., 2013), indicating a

role of CDCP1 in the HER2 pathway. Here, we provide the first

description of CDCP1 as a regulator of HER2 function. We found

that overexpression of CDCP1 enhanced HER2 activity to pro-

mote cell migration in vitro and breast cancer progression in vivo.

Consistently, CDCP1 depletion reduced HER2 activity and can-

cer progression in tumors driven by constitutive activation of

HER2. In addition, we show that CDCP1 facilitates SRC-HER2

crosstalk, and CDCP1 overexpression confers resistance to

trastuzumab treatment both in vitro and in vivo. This study pro-

vides further insights into the HER2 signaling pathway and a

rationale to target CDCP1 in HER2-positive breast cancer

patients.

RESULTS

CDCP1 Is Overexpressed in Primary and Metastatic
Human Breast Tumors, and CDCP1/HER2 Expression
Correlates with Poor Patient Prognosis
Recent studies have highlighted the role of CDCP1 in multiple

human cancers (Wortmann et al., 2009). To investigate whether

CDCP1 is overexpressed in human breast cancer, we first

analyzed CDCP1 mRNA levels in three independent human

breast cancer data sets (Finak, n = 59; TCGA, n = 450; andCurtis,

n = 1,700) (Cancer Genome Atlas Network, 2012; Curtis et al.,

2012; Finak et al., 2008), and found that in all three data sets

CDCP1 was significantly overexpressed in human breast cancer

comparedwith normal tissues (Figure 1A). To validate the protein

level of CDCP1 in human breast cancer tissues, we first estab-

lished CDCP1 immunohistochemistry (IHC) staining in a cell

line expressing control or CDCP1 vectors (Figures S1A and

S1B). Next, we determined CDCP1 protein levels by IHC in

normal, primary, and metastatic human tissue microarrays

(TMAs; n = 224). We classified CDCP1 IHC intensity staining as

negative, +1, +2, or +3, and we considered positive only tumors

having +2 and +3 positivity (CDCP1+) (Figure S1C). IHC analysis

confirmed that CDCP1 protein levels were overexpressed in

breast tumors when compared with normal tissues. Moreover,

the percentage of cases that stained positive for CDCP1 was

increased in metastatic tumor samples when compared with

primary breast tumors and normal samples (Figure 1B). Interest-

ingly, we found that in HER2-positive breast tumors (HER2+++),
CDCP1 was overexpressed in 12% of primary and 30% of

metastatic tumors, respectively (Figure 1C). Finally, we analyzed

two large breast cancer gene expression data sets (Kao, n = 327;

Curtis, n = 1483) (Curtis et al., 2012; Kao et al., 2011), including

data from patients with a clinical follow-up of 15 and 25 years,

respectively. Patients were classified into four groups depending

on HER2 status (negative or positive) and CDCP1 expression

levels (low or high). HER2-positive patients with CDCP1 overex-

pression had the lowest overall (Kao data set) and disease-free

(Curtis data set) survival when compared with other groups

(Figure 1D). Together, our data showed that HER2 and CDCP1

co-overexpression results in poor prognosis, suggesting that

CDCP1 may cooperate with HER2 to promote tumor progres-

sion and metastasis.

CDCP1 Cooperates with HER2 to Drive Tumorigenesis
To assess the cooperativity betweenCDCP1 andHER2 in driving

tumorigenesis, we established HEK293T cell lines stably overex-

pressing CDCP1 and HER2 alone or in combination (Figure 2A).

Of note, only those cells expressing both HER2 and CDCP1 dis-

played an irregular/invasive-shaped morphology when grown in

monolayer (Figure 2B). Furthermore, we performed a soft-agar

assay using these cell lines. Whereas CDCP1 and HER2 alone

displayed a similar increase in transformation ability, the combi-

nation of both resulted in a significantly higher number of col-

onies (Figure 2C). To validate these findings in a breast cancer

cell line, we established MCF7 cells stably overexpressing con-

trol vector, CDCP1, HER2, or HER2/CDCP1 (Figure 2D). Co-

overexpression of HER2/CDCP1 significantly increased colony

formation (data not shown) and migration in vitro (Figure 2E).

To assess the effect of HER2/CDCP1 co-overexpression in vivo,

we injected these cells orthotopically into the mammary glands

of immunodeficient mice. Although both CDCP1 and HER2

slightly increased tumor formation in vivo, overexpression of

both strongly accelerated tumor onset and progression (Fig-

ure 2F). Taken together, these results show that CDCP1 cooper-

ates with HER2 to enhance colony formation and cellular

migration in vitro and tumorigenesis in vivo.

CDCP1 Downregulation Decreases HER2-Driven Cell
Migration, Invasion, and Tumor Maintenance
To explore the effect of CDCP1 downregulation, we used the

immortalized but nontransformed human breast epithelial cell

line MCF10A, which expresses high levels of CDCP1, but not

HER2. Next, we overexpressed two previously characterized

HER2 active mutations (Greulich et al., 2012) in these cells to

establish two cell lines: HER2-S310F (MCF10A-HER2-S310F)

and HER2-S310Y (MCF10A-HER2-S310Y). Overexpression of

both HER2 mutations increased the phosphorylation of HER2

at Y1248. This was mirrored by a concomitant phosphorylation

of AKT (S473) (Figure 3A, left panel). We then infected these cell

lines with doxycycline-inducible small hairpin RNA (shRNA)-

CDCP1 lentivirus vector. CDCP1 knockdown was confirmed by

immunoblot analysis and was associated with a strong decrease

in the phosphorylation of HER2 (>3-fold compared with control)

and p-AKT (S473) in both HER2-S310F and HER2-S310Y cells

(Figure 3A, middle and right panels). These data were also vali-

dated in the HER2-positive MDA-MB361 cancer cells infected
Cell Reports 11, 564–576, April 28, 2015 ª2015 The Authors 565



Figure 1. CDCP1 Is Overexpressed in Human Breast Cancer, and Patients with CDCP1/HER2 Co-overexpression Display a Worse Clinical

Outcome

(A) CDCP1 is upregulated in human breast carcinoma. Box plots represent CDCP1 mRNA levels in normal and carcinoma samples from three independent data

sets. The number of normal and carcinoma samples is indicated by n; p values were calculated using t test analysis.

(B) CDCP1 is upregulated in metastatic HER2-positive breast cancer. Upper panel: representative images of IHC staining for CDCP1 from normal tissue and

primary or metastatic breast carcinoma. Lower panel: bar graph represents the percentage of CDCP1-positive specimens in a TMA (n = 224) including normal,

primary, and metastatic breast cancer samples. Magnification is 1003.

(C) Upper panel: CDCP1 and HER2 staining correlates in breast tumors. Representative pictures of IHC staining for CDCP1 and HER2 in primary and metastatic

breast carcinoma. Magnification is 1003. Lower panel: bar graph represents the percentage of CDCP1-positive specimens in primary and metastatic HER2-

positive tumors. Fisher’s test indicated a correlation between HER2 and CDCP1 staining in late-stage tumors (p = 0.03).

(legend continued on next page)
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Figure 2. CDCP1 and HER2 Cooperate to Enhance Colony Formation In Vitro and Tumor Progression In Vivo

(A) Immunoblot analysis shows the establishment of HEK293T cell lines overexpressing CDCP1, HER2, or HER2/CDCP1.

(B) Representative phase-contrast images of HEK293T cell lines grown in monolayer. Scale bar, 100 mm.

(C) Left panel: representative images of HEK293T cell line colonies grown in soft agar for 30 days. Right panel: bar graph represents the number of HEK293T cell

line colonies grown in soft agar for 30 days ± SEM (n = 5, **p < 0.01).

(D) Immunoblot analysis showing the overexpression of CDCP1, HER2, or HER2/CDCP1 in MCF7 cell lines.

(E) Transwell migration assays of MCF7 cells expressing control, CDCP1, HER2, or HER2/CDCP1. The bar graph shows the mean number of migrated cells ± SD

(n = 3, *p < 0.05).

(F) Tumor growth curves (mm3) of MCF7 cells expressing control, CDCP1, HER2, or HER2/CDCP1 vectors, showing mean tumor volumes (mm3) ± SEM (n = 4,

*p < 0.05).
with two shRNA-CDCP1s (Figures S2A and S2B). Interestingly,

although the HER2-S310Y cells showed an increased motility

(as compared with control cells), this effect was abrogated

upondownregulation ofCDCP1 inHER2-S310Ycells (Figure 3B).

This result was further validated in a transwell-migration assay in

which the HER2-S310Y cells lacking CDCP1 migrated less than

control cells (Figure 3C).
(D) Patients with CDCP1 and HER2 co-overexpressing tumors display a worse cli

expression in two independent data sets. Kaplan-Meier curves show patients’ o

patients in each cohort is indicated; p values were calculated using the log rank

See also Figure S1.
MCF10A cells are an appropriate 3D in vitromodel for studying

breast cancer progression because they form well-organized

acini that mimic the normal mammary structure in vivo

(Debnath et al., 2002). On this line, overexpression of

HER2-S310Y in MCF10A promoted the formation of irregular,

invasive 3D acini structures (�80% of acinar structures; Fig-

ure 3D). However, CDCP1 knockdown strongly decreased the
nical outcome. Patients were stratified depending on HER2 status and CDCP1

verall (Kao data set) and disease-free (Curtis data set) survival. The number of

test.
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Figure 3. CDCP1 Downregulation De-

creases Cell Migration, Invasion, and Self-

Renewal Induced by HER2

(A) Left: immunoblot analysis of MCF10A cells

overexpressing control vector, HER2-S310F, or

HER2-S310FY mutations. Right: immunoblot

analysis of MCF10A-control, MCF10A-HER2-

S310F, or MCF10A-HER2-S310Y cells expressing

doxycycline-inducible shRNA-control or shRNA-

CDCP1. Bar graph represents the fold change of

p-HER2 (Y1248) normalized to the total protein ±

SD (n = 3, **p < 0.01).

(B) Wound-healing assay of MCF10A-control or

MCF10A-HER2-S310FY cells expressing doxy-

cycline-inducible shRNA-control or shRNA-

CDCP1. Bar graph shows the mean percentage of

wound closure ± SD (n = 3, ***p < 0.001).

(C) Upper panel: transwell migration assays of

MCF10A-control or MCF10A-HER2-S310FY cells

expressing doxycycline-inducible shRNA-control

or shRNA-CDCP1. The bar graph shows the mean

number of migrated cells ± SD (n = 3, *p < 0.05,

**p < 0.01). Lower panel: representative images of

DAPI-nuclei staining of migrated cells.

(D) Left: representative phase-contrast images of

MCF10A-HER2-S310FY cells expressing doxy-

cycline-inducible shRNA-control or shRNA-

CDCP1 grown in 3D culture for 10 days. Right: the

bar graph represents the percentage of invasive

structures (n = 4, **p < 0.01). Scale bar, 50 mm.

(E) Mean of tumorsphere formation and the

self-renewal capacity of MCF10A-control or

MCF10A-HER2-S310Y cells expressing doxycy-

cline-inducible shRNA-control or shRNA-CDCP1

(n = 3, **p < 0.01).

(F) Tumor growth (mm3) in MCF10ANeuNT cells

expressing doxycycline-inducible shRNA-control

and shRNA-CDCP1. Inset: immunoblot analysis

confirms the complete downregulation of CDCP1

in the tumor lysates.
HER2-S310Y-induced invasion (Figure 3D). It was previously re-

ported that overexpression of HER2 activemutations inMCF10A

cells increases the formation of tumorspheres (Aceto et al.,

2012). In line with these findings, HER2-S310Y cells had an

increased sphere-forming ability compared with the parental

cells. However, CDCP1 downregulation strongly decreased the

number of tumorspheres of HER2-S310Y cells (Figure 3E).

Finally, to examine whether CDCP1 downregulation affects

HER2-driven tumor progression and maintenance, we gener-

ated MCF10ANeuNT cells expressing inducible shRNA-CDCP1

or shRNA-control to downregulate CDCP1 after tumor establish-

ment. These cells were injected orthotopically into the mammary

fat pads of immunodeficient mice. After administration of doxy-
568 Cell Reports 11, 564–576, April 28, 2015 ª2015 The Authors
cycline, tumor growth was not affected

in tumors expressing shRNA-control,

but it was markedly reduced in tumors

expressing shRNA-CDCP1. Moreover,

both tumor size (1,200 versus 400 mm3)

andweight (0.4 versus 0.19 g) were signif-

icantly reduced in shRNA-CDCP1 tumors
compared with the control (Figure 3F). Taken together, these

data demonstrate that CDCP1 downregulation directly affects

migration, invasion, proliferation, and tumor progression in cells

driven by active HER2 mutations.

CDCP1 Enhances HER2 Phosphorylation and
DownstreamSignaling, Promoting Tumor Formation and
Progression In Vivo
To assess the effect of CDCP1 overexpression in HER2-positive

breast cancer cell lines, BT474 and SKBr3 cells (HER2 amplified

breast cancer cells) were infected with retroviruses expressing

either CDCP1-IRES-GFP (CDCP1) or IRES-GFP (used as a con-

trol) (Liu et al., 2011). Virus-mediated overexpression of CDCP1



Figure 4. CDCP1 Enhances HER2 Activity in

Breast Cancer Cell Lines and Affects HER2-

Driven Tumorigenesis In Vivo

(A) Immunoblot analysis of BT474 and SKBr3 cell

lysates overexpressing CDCP1 and control vec-

tors. Cells were grown for 16 hr in serum-free

medium (�), complete medium (N), or stimulated

with heregulin (H, 10 ng/ml for 45 min). The bar

graph shows the relative fold change of p-HER2

(Y1248) or p-HER3 (Y1289) normalized to total

proteins ± SD (n = 3).

(B) Confocal images of immunofluorescence

staining for p-HER2 (Y1248) in SKBr3 CDCP1-

IRES-GFP cells grown in serum-starved condi-

tions (16 hr) in the presence or absence of

CP-724714 (1 hr treatment). The bar graph shows

the quantification of p-HER2 (Y1248) membrane

intensity staining of SKBr3-overexpressing IRES-

GFP or CDCP1-IRES-GFP constructs starved for

16 hr in the presence or absence of CP-724714

(n = 3, ***p < 0.001). White arrows indicate both

CDCP1-IRES-GFP-positive and -negative cells.

Scale bar, 10 mm.

(C) Left: tumor growth curve (mm3) of BT474-

control and BT474-CDCP1. Inset: immunoblot

analysis shows CDCP1 expression in the tumor

lysates BT474-control and BT474-CDCP1 (n = 9,

**p < 0.01).

(D) Representative IHC images of p-HER2-stained

sections of BT474-control and BT474-CDCP1

tumors dissected 25 days after tumor onset.

Magnification is 1003.

See also Figures S2–S5.
in both cell lines led to an increased phosphorylation of HER2 at

Y1248, and HER3 at Y1289 compared with the control (Fig-

ure 4A). Notably, HER2 and HER3 phosphorylation was strongly

enhanced (R3-fold) in cells cultured under serum-starved

conditions (Figure 4A). Consistently, the PI3K/AKT and MAPK/

ERK pathways were enhanced in BT474-CDCP1 and SKBr3-
Cell Reports 11, 564–5
CDCP1 cells (Figure S2C). These data

were confirmed by an RTK signaling

antibody array in SKBr3-CDCP1 cells,

demonstrating an increase in the phos-

phorylation of HER2 pathway proteins

such as HER2, HER3, EGFR, AKT,

ERK1/2, and S6 compared with the con-

trol (Figure S2D). Next, we used immuno-

fluorescence analysis to determine the

effect of CDCP1 on HER2 activation.

SKBr3 cells were infected with a low

titer of CDCP1 vector to ensure the

overexpression of CDCP1 in only a sub-

population of cells. First, we confirmed

HER2 and CDCP1 expression by immu-

nofluorescence in SKBr3-control and

SKBr3-CDCP1 (Figure S3A). Then, we

performed immunofluorescence analysis

for p-HER2 and p-HER3 in both of these

cell lines. Whereas control cells showed
negative staining for p-HER2 and p-HER3, SKBr3-CDCP1 cells

showed a marked increase in p-HER2 and p-HER3 staining

(Figures 4B [upper panel], S3B, and S3C). Interestingly, in

SKBr3-CDCP1 cells, p-HER2 and p-HER3 staining increased

only in CDCP1-infected cells (GFP-positive cells; Figure 4B, up-

per panel). This effect was abrogated when cells were treated
76, April 28, 2015 ª2015 The Authors 569



with the HER2 kinase inhibitor CP-724714 (Figure 4B, lower

panel). Together, these results showed a clear involvement of

CDCP1 in the activation of HER2 signaling pathway. To validate

these findings, we performed a gene expression profile analysis

in SKBr3-CDCP1 and control cells. Interestingly, the gene

expression profile of cells infected with CDCP1 was similar to

the signature of HER2-positive breast cancers in a subset of pa-

tients (Figure S4A). Moreover, Gene Ontology enrichment (GOE)

and gene set enrichment analysis (GSEA) showed that CDCP1

overexpression in SKBr3 significantly enhanced the expression

of gene sets involved in DNA replication, cell cycle, proliferation,

epithelial-to-mesenchymal transition (EMT), and metastasis,

which are normally enriched in tumors driven by HER2 (Fig-

ure S4B). Finally, to assess whether CDCP1 overexpression in

HER2-positive breast tumors enhances tumor progression

in vivo, we orthotopically injected BT474-CDCP1 and control

cells into the mammary glands of immunodeficient mice. Tumor

growth was monitored for up to 25 days. Notably, CDCP1 over-

expression significantly accelerated tumor onset and increased

both tumor size andweight when comparedwith the control (Fig-

ures 4C and S5A). CDCP1 expression in tumors was confirmed

by western blot analysis (Figure 4C, inset). Ki-67 IHC analysis re-

vealed an increased proliferation of BT474-CDCP1 tumors

compared with control (30% ± 10% versus 60% ± 6%; Fig-

ure S5B), whereas staining for cleaved caspase-3 showed no dif-

ferences in apoptosis. Finally, IHC analysis for p-HER2 (Y1248)

showed that CDCP1 overexpression also enhanced p-HER2

staining in vivo (Figure 4D). Taken together, these results demon-

strate that CDCP1 enhances HER2 phosphorylation, thereby

promoting tumor formation and progression in vivo.

CDCP1 Binds to HER2
Our results thus far have shown a crucial role of CDCP1 in HER2

phosphorylation and pathway activation. Therefore, we investi-

gated whether CDCP1 could enhance the levels of known

regulators of the HER2 signaling pathway (e.g., RTKs levels,

Heregulin, and EGF). Gene expression analysis of possible acti-

vators of the HER2 pathway showed that none of the major

drivers of HER2 activation were significantly up- or downregu-

lated upon CDCP1 expression (Figure S5C).

We further sought to determine whether CDCP1 and HER2

could directly interact. To assess a possible physical interaction

between CDCP1 and HER2, we first validated the localization of

both proteins. Confocal microscopy analysis of immunofluores-

cence staining for both CDCP1 and HER2 confirmed their cell

membrane co-localization in MDA-MB361 cells (Figure 5A, left

panel). Further quantification showed a marked overlapping

staining intensity of both proteins (Figure 5A, right panel). We

then performed immunoprecipitation analysis in three different

cell lines expressing both endogenous (MDA-MB361) and exog-

enous (SKBr3, BT474) protein levels of CDCP1. Immunoprecip-

itation of HER2 followed by immunoblotting of CDCP1 revealed a

clear interaction of both proteins in MDA-MB361, BT474-

CDCP1, and SKBr3-CDCP1 cell lines (Figures 5B and 5C). Inter-

estingly, CDCP1was also detectable in BT474-control cells after

HER2 immunoprecipitation. We next assessed whether CDCP1

could affect HER2 dimerization, which would explain the

increased HER2 phosphorylation observed in CDCP1-overex-
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pressing cells. In line with this hypothesis, we found that

CDCP1 overexpression enhanced HER2 dimerization (either

homo or hetero) under native conditions as shown in BT474-

CDCP1 cells (Figure S5D). Next, we assessed whether CDCP1

could enhance HER2/HER3 or EGFR/HER2 heterodimerization.

To this end, we performed HER2 immunoprecipitation followed

by immunoblotting for HER2, CDCP1, EGFR, and HER3 in

BT474-CDCP1 and control cells. Importantly, overexpression

of CDCP1 increased heterodimerization of HER2/HER3 and

HER2/EGFR in normal and serum-depleted media conditions,

in the absence of heregulin or EGF (Figure S5E). Similar results

were obtained in SKBr3-CDCP1 cells (data not shown). Taken

together, these findings demonstrate that CDCP1 binds to

HER2, enhancing HER2 dimerization and activity in a ligand-in-

dependent manner.

We next evaluated which CDCP1 domains are important for

the HER2 interaction. For this purpose, we transiently trans-

fected HEK293T-HER2 cells with vectors expressing the ICD

or ECD of CDCP1 (Figure 5D). Interestingly, immunoprecipitation

analysis showed that only ICD-CDCP1 interacts with HER2 (Fig-

ure 5E). Further, we sought to determine whether the non-recep-

tor tyrosine kinase c-SRC (SRC) was required for CDCP1/HER2

binding. Recent studies demonstrated that CDCP1 is a crucial

binding partner of SRC (Benes et al., 2005, 2012). Moreover,

SRC interacts with HER2 in breast cancer and thus plays an

important role during breast cancer progression (Xu et al.,

2007). Therefore, we investigated whether CDCP1might interact

with HER2 indirectly via SRC. We transfected HEK293T-HER2

cells with control vector, CDCP1, and delta-CDCP1, a mutant

form of CDCP1 that does not bind to SRC (Benes et al., 2005,

2012). Importantly, immunoprecipitation of HER2 followed by

immunoblotting of CDCP1 revealed that both CDCP1 and

delta-CDCP1 bind to HER2 (Figure 5F, right panel). Although

delta-CDCP1 did not affect HER2 binding, it did affect the phos-

phorylation of HER2 in different cell lines as compared with

CDCP1 (Figures S6A and S6B). Together, these findings demon-

strate that SRC is not required for CDCP1/HER2 binding, but is

needed for HER2 phosphorylation (Spassov et al., 2011).

Consistently, overexpression of delta-CDCP1 did not increase

cell migration as compared with wild-type (WT)-CDCP1 in

SKBr3 cells (Figure S6C).

CDCP1 Enhances the SRC-HER2 Interaction, Promoting
Resistance to Trastuzumab
SRC is known to phosphorylate HER2 at the Y877 residue (Xu

et al., 2007). Moreover, phosphorylation of HER2 at Y877 is

implicated in HER2 activity (Parsons and Parsons, 2004). There-

fore, we investigated whether HER2 was phosphorylated in this

residue in CDCP1-overexpressing cells, and found that HER2

was strongly phosphorylated at Y877 (Figure 6A). This was

mirrored by a concomitant phosphorylation of HER2 at Y1248

and EGFR (Y1068) in two different cell lines overexpressing

CDCP1 (Figure 6B). Notably, silencing CDCP1 in MDA-MB361

cells decreased SRC activity and subsequently HER2 phos-

phorylation at both Y877 and Y1248 (Figure 6C). To explore

whether inactivation of SRC might influence HER2 activity in

CDCP1-overexpressing cells, we next downregulated SRC by

using two different shRNAs. Immunoblot analysis showed that



Figure 5. CDCP1 Interacts with HER2

(A) Left: confocal images of immunofluorescence

staining for HER2 and CDCP1 of MDA-MB361

cells that overexpress CDCP1. Scale bar, 10 mm.

Right: graph showing the membrane intensity of

CDCP1 and HER2 staining.

(B) Immunoblot analysis of MDA-MB361 from total

cell lysate (Lys.) or supernatant (Sup.) upon

immunoprecipitation (IP) analysis using HER2

antibody. Right: HER2 IP analysis followed by

immunoblot analysis for HER2 and CDCP1.

(C) Top panel: immunoblot analysis of BT474 and

SKBr3 cells expressing control or CDCP1 vectors,

showing the total lysate levels of HER2, CDCP1,

and b-actin. Bottom panel: HER2 IP followed by

immunoblot analysis for HER2 and CDCP1.

(D) Schematic representation of the WT-CDCP1

and mutant delta-CDCP1 intracellular domain

(ICD) and extracellular domain (ECD) constructs.

SP, signal peptide; TM, transmembrane domain.

(E) Left: immunoblot analysis of HEK293T-HER2

cells expressing WT-CDCP1, ICD-CDCP1, or

ECD-CDCP1. Right: HER2 IP followed by immu-

noblot analysis for HER2 and Myc-CDCP1.

(F) Left: immunoblot analysis of HEK293T-HER2

cells expressing control, WT-CDCP1, or delta-

CDCP1. Right: HER2 IP followed by immunoblot

analysis for HER2 and Myc-CDCP1 (top panel),

and SRC IP followed by immunoblot analysis for

SRC and Myc-CDCP1 (bottom panel).

See also Figures S5 and S6.
silencing of SRC decreased p-HER2 at the Y877 and Y1248 res-

idues (Figure 6D). These results showed that CDCP1 plays a

crucial role in mediating the crosstalk between SRC and HER2.

To validate these findings, we investigated whether CDCP1

could promote a physical interaction between SRC and HER2

at the cell membrane. For this purpose, we performed immuno-

precipitation of HER2 followed by immunoblot of HER2, CDCP1,

and SRC. Notably, in cells overexpressing CDCP1, we found

more SRC bound to HER2 than in control cells, demonstrating

that CDCP1 promotes the formation of a tertiary complex favor-

ing the SRC-HER2 interaction (Figure 6E). Further immunofluo-

rescence in SkBr3 confirmed a strong localization of SRC at

the cell membrane only in cells overexpressing CDCP1 (Fig-
Cell Reports 11, 564–5
ure 6F). Interestingly, downregulation of

CDCP1 abrogated the phosphorylation

of SRC in HER2-overexpressing cells,

suggesting that in this context, HER2

might have mediated SRC phosphoryla-

tion through CDCP1 (Figure 6G). We

further confirmed this finding by using

a HER2 kinase inhibitor in cells ex-

pressing CDCP1 or control vector.

Indeed, we found that inhibition of HER2

activity abolished the SRC phosphoryla-

tion induced by CDCP1 expression

(Figure S6D).

To assess the functional relevance

of the CDCP1/SRC/HER2 complex, we
sought to determine whether CDCP1 overexpression could drive

resistance to trastuzumab. Recent studies have demonstrated

that SRC activation plays an essential role in trastuzumab resis-

tance in breast cancer (Zhang et al., 2011). In agreement with

those studies, we found that HER2-positive tumor cells overex-

pressing CDCP1 were less responsive to trastuzumab than con-

trol cells (Figure 6H, left panel). Further analysis showed that

trastuzumab reduced HER3 activity in both cell lines, whereas

in CDCP1 cells SRC activity remained high (Figure 6H, right

panel). To validate these findings in vivo, we orthotopically in-

jected BT474 overexpressing CDCP1 and control cells into the

mammary glands of immunodeficient SCID mice. At tumor

onset, themice were treatedwith trastuzumabweekly and tumor
76, April 28, 2015 ª2015 The Authors 571



Figure 6. CDCP1 Enhances HER2 Activity through SRC, and CDCP1 Overexpression Confers Resistance to Trastuzumab Both In Vitro and

In Vivo

(A) Immunoblot analysis of HER2, p-HER2 (Y877), SRC, and p-SRC (Y416) of HEK293T HER2 cells expressing control, WT-CDCP1, or delta-CDCP1.

(B) Immunoblot analysis of EGFR p-EGFR (Y1068), HER2, p-HER2 (Y877), p-HER2 (Y1248) SRC, and p-SRC (Y416) of SkBr3 and BT474 cell lysates over-

expressing CDCP1 and control vectors.

(legend continued on next page)
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size was measured for up to 35 days. Importantly, CDCP1-over-

expressing tumors were significantly less responsive to trastuzu-

mab compared with the control groups (Figure 6I). Collectively,

these results showed that CDCP1 enhances the SRC-HER2

interaction, driving trastuzumab resistance in vitro and in vivo.

Therefore, we hypothesized that targeting both SRC and HER2

could be an efficient strategy to overcome trastuzumab resis-

tance driven by CDCP1 overexpression. To test this hypothesis,

we orthotopically injected BT474-overexpressing CDCP1 in the

mammary glands of immunodeficient SCID mice. We then

treated established CDCP1-HER2-positive breast tumors with

trastuzumab alone or in combination with an SRC inhibitor (sar-

acatinib) for 30 days. Intriguingly, only the combination of trastu-

zumab and saracatinib significantly reduced the tumor volume

in vivo, overcoming trastuzumab resistance (Figure S6E). This

finding indicates that trastuzumab and saracatinib should be

used in combination as a therapy for HER2-positive breast can-

cer patients possessing CDCP1 overexpression.

DISCUSSION

Despite the clinical relevance of HER2 in breast tumorigenesis,

accumulating experimental evidence in vivo demonstrates that

although HER2 overexpression initiates tumorigenesis, it is not

sufficient to drive the progression of benign tumors into invasive

and metastatic breast cancers (Andrechek et al., 2003; Lu et al.,

2009; Muthuswamy et al., 2001). It is not known which additional

genetic alterations may cooperate with HER2 to progress to life-

threatening breast tumors. Here, we identified CDCP1 as a regu-

lator of HER2-driven tumorigenesis. By examining two TMAs

including more than 200 breast cancer cases, we found that

CDCP1was frequently co-overexpressed with HER2 inmetasta-

tic breast tumors. Importantly, HER2/CDCP1 co-overexpression

in tumors was associated with poor prognosis in two large gene

expression data sets of breast cancer that included more than

1,500 breast cancer samples. Although CDCP1 overexpression

in cancer was previously reported in different tumor types, the

mechanism behind CDCP1 function in cancer remains unknown

(Casar et al., 2012, 2014; Kollmorgen et al., 2013; Liu et al., 2011;

Uekita et al., 2008; Wortmann et al., 2009). A previous study
(C) Immunoblot analysis of HER2, p-HER2 (Y877), p-HER2 (Y1248) SRC, and p-S

control or shRNA-CDCP1.

(D) Immunoblot analysis of HER2, p-HER2 (Y877), p-HER2 (Y1248), and SRC of

(E) Left: immunoblot analysis of HER2, CDCP1, and SRC of BT474 control and C

CDCP1, and SRC.

(F) Confocal images of immunofluorescence for HER2, CDCP1, or SRC staining

(G) Left: immunoblot analysis of HER2, p-HER2 (Y1248), CDCP1, p-SRC (Y416

doxycycline-inducible shRNA-control or shRNA-CDCP1. Right: bar graph represe

**p < 0.01).

(H) Left: cell proliferation assay comparing the cell growth inhibition of BT474 exp

4 days (1 mg/ml; n = 4, **p < 0.01). Right: immunoblot analysis of HER3, p-HER3

treated with trastuzumab compared with untreated cells.

(I) Left: Fold change of the tumor volume (mm3) of BT474-control andBT474-CDCP

BT474 orthotopic xenograft tumors. Scale bar, 1 cm.

(J) Model of the CDCP1/SRC/HER2 complex. CDCP1 enhances the activation o

HER2. A, inactive pathway in the physiological condition; B, CDCP1 activates HER

PI3K pathway, but not the CDCP1/SRC/HER2 axis, resulting in trastuzumab res

See also Figure S6.
demonstrated that CDCP1 overexpression enhances the meta-

static potential of several cancer cell lines in vivo and promotes

tumorigenesis driven by HIF-2a overexpression in kidney cancer

(Emerling et al., 2013). In contrast to these findings, a recent

report suggested that CDCP1 plays a tumor-suppressive role

in tumor development and outgrowth (Spassov et al., 2013).

Our findings show that CDCP1 cooperates with HER2 to drive

breast tumorigenesis, which is in agreement with a well-docu-

mented oncogenic function of CDCP1 in cancer and supports

further assessment of CDCP1 status as a useful prognostic

marker in HER2-positive breast cancer patients. Indeed, our

findings demonstrate that CDCP1 overexpression cooperates

with HER2 in driving colony formation, tumor cell migration,

tumor growth, and trastuzumab resistance in vivo. In line with

these findings, we also observed that downregulation of

CDCP1 in tumor cell lines harboring HER2 active mutations

abolished migration, invasion, and tumorigenesis in vivo. More-

over, CDCP1 overexpression accelerated tumor progression in

HER2-positive breast cancer cell lines. Mechanistically, we

also dissected the role of CDCP1 in HER2 signaling and obtained

both in vitro and in vivo evidence that CDCP1 overexpression

enhanced HER2 phosphorylation and activation. We found

that CDCP1 overexpression increased the phosphorylation of

HER2 at Y1248, activating both the PI3K/AKT and MAPK/ERK

pathways in different HER2-positive breast cancer cell lines. Us-

ing immunofluorescence, we also showed that cells expressing

CDCP1 had higher p-HER2 (Y1248) and p-HER3 (Y1289) levels

on their cell membrane compared with control cells, and that

this phenotype could be reversed by the HER2 kinase inhibitor

CP-724714. Finally, IHC analysis of p-HER2 (Y1248) showed

that CDCP1 overexpression also enhanced p-HER2 staining

in vivo. Through a series of immunoprecipitation experiments

in cells expressing both exogenous and endogenous CDCP1

protein levels, we obtained evidence of a physical interaction be-

tween CDCP1 and HER2 that promotes the recruitment of SRC

at the membrane. Importantly, we showed that CDCP1 interacts

with HER2 through its ICD and that this interaction (HER2-

CDCP1) is not mediated via SRC. However, we found that only

WT-CDCP1 enhanced HER2 phosphorylation and cell migration,

and an unphosphorylated form of CDCP1 (delta-CDCP1) that
RC (Y416) of MDA-MB361 lysates expressing doxycycline-inducible shRNA-

SkBr3 cell lysates overexpressing CDCP1.

DCP1 total lysate. Right: HER2 IP followed by immunoblot analysis for HER2,

of SKBr3-control and SKBr3-CDCP1 cells. Scale bar, 20 mm.

), and SRC of MCF10A-control and MCF10A-HER2-S310F cells expressing

nts the fold change of p-SRC (Y416) normalized to the total protein ± SD (n = 3,

ressing control and CDCP1 upon treatment with freshly added trastuzumab for

(Y1289), SRC, and p-SRC (Y416) of BT474-control and BT474-CDCP1 cells

1 upon treatmentwith trastuzumab for 35 days (3mg/kg). Right: representative

f HER2 by recruiting SRC on the membrane, thereby forming a complex with

2 through SRC activation; C, trastuzumab blocks HER2/HER3 heterodimer and

istance.
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cannot bind to SRC had no effect on HER2 activation. This

finding is in agreement with previous reports demonstrating

that phosphorylation of CDCP1 and SRC is required to promote

cell migration and tumorigenesis driven by CDCP1 (Liu et al.,

2011). Of note, we demonstrated that CDCP1 recruits SRC to

the membrane, thereby facilitating its interaction with HER2. As

a result of this interaction, SRC promotes the phosphorylation

and activation of HER2, which in turn sustains the phosphoryla-

tion of SRC. This positive-feedback loop triggers cell migration,

invasion, tumorigenesis, and resistance to trastuzumab in vivo.

Recent studies demonstrated that the two major mechanisms

that drive trastuzumab resistance in breast tumors depend on

SRC activation (Zhang et al., 2011). In de novo trastuzumab

resistance, SRC activation is mediated by loss of the tumor sup-

pressor PTEN, which can dephosphorylate SRC (Nagata et al.,

2004). Upon acquiring resistance to trastuzumab (Moulder

et al., 2001; Ritter et al., 2007), tumor cells promote the activation

of SRC through an unspecified mechanism involving the activa-

tion of different RTKs (Zhang et al., 2011). Our findings comple-

ment these previous results by demonstrating that CDCP1

overexpression in tumor cells can promote the activation of

HER2 by recruiting SRC. Indeed, we found that cells overex-

pressing CDCP1 are less responsive to trastuzumab. These

data are in agreement with previous reports showing that

CDCP1 is frequently upregulated in cells that acquire trastuzu-

mab resistance (Boyer et al., 2013), thus providing a new mech-

anism for acquired resistance to trastuzumab. Our data also

provide a proof of principle that targeting CDCP1 can interfere

with HER2 signaling in vivo. Thus, these findings pave the way

for future development of compounds that target CDCP1 for

the treatment of HER2-positive breast cancer patients. Given

that CDCP1 antibodies have been developed for cancer therapy

(Kollmorgen et al., 2013; Siva et al., 2008), it is intriguing to hy-

pothesize that such compounds may overcome trastuzumab

resistance. Although further studies are needed to validate

the efficacy of CDCP1-targeting compounds in HER2-positive

breast cancer, our experimental model provides a rationale for

testing CDCP1 antibodies and small-molecule inhibitors in

HER2-positive breast cancers.
EXPERIMENTAL PROCEDURES

Gene Expression Profile Analysis

Total RNA was isolated with TRIzol (Life Technologies) according to the man-

ufacturer’s instructions. Samples were processed using the HumanHT-12 v4

Expression BeadChip kit (Illumina) according to the manufacturer’s protocol.

Arrays were read on an Illumina HiScanSQ system and signal intensity was ex-

tracted using quantile normalization. Differential expression analysis between

SKBr3 cells overexpressing CDCP1 and control SKBr3 cells was done using

Rank Products (Breitling et al., 2004), which is a test that differs from many

other techniques in that it does not apply a sophisticated statistical model,

but rather employs the calculation of rank products, resulting in a faster and

simpler method. Using a corrected p value (false discovery rate [FDR]) mini-

mum threshold of 0.25, we obtained signatures of 1,168 overexpressed and

1,275 underexpressed Illumina probes in SKBr3-CDCP1 samples (versus

SKBr3-control). We performed enrichment analysis of GO terms after upload-

ing selected probe-set identifiers into the DAVID Functional Annotation web

tool, which computes enrichment of GO biological process (GOBP) terms

(Dennis et al., 2003). GSEA was used to analyze the enrichment of the

c2.cgp collection of gene sets from MSigDB (http://www.broadinstitute.org/
574 Cell Reports 11, 564–576, April 28, 2015 ª2015 The Authors
gsea/msigdb/index.jsp) comparing SKBr3-CDCP1 and SKBR3 cells (Subra-

manian et al., 2005). We used the Oncomine Gene Expression Signatures

database to search for significant overlapping of our signatures with human

clinical breast cancer samples (Rhodes et al., 2004). Significance was deter-

mined using Fisher’s exact test (odds ratio > 1.3; p < 0.01). Genes overex-

pressed or underexpressed in SKBr3-CDCP1 cells were loaded into the

Oncomine database. We searched for overlaps using different filtering criteria

(‘‘Molecular Subtype: Biomarker’’ and ‘‘Clinical Outcome’’) based on the type

of human cancer comparison performed. The CEL files have been deposited in

the GEO repository (GSE67019).

HER2 and CDCP1 mRNA Expression in Human Breast Cancer

Data Sets

Expression values for CDCP1 were downloaded for the Finak, TCGA, Curtis,

and Kao breast cancer data sets from the Oncomine database. ERBB2 status

was used as described in the Kao and Curtis data sets (Curtis et al., 2012; Kao

et al., 2011). Differential expression analysis between sample groups was

calculated using the t test. For Kaplan-Meier curves, patients were separated

into four groups by considering both the published ERBB2 status and CDCP1

expression. For CDCP1, patients were stratified into two groups (high expres-

sion and low expression) depending on a ranking based on CDCP1 mRNA

decreasing levels. Statistical analysis was done using Stata 12.1 software.

Animal Experiments

All mice were maintained under specific-pathogen-free conditions in the ani-

mal facilities of the Institute for Research in Biomedicine, and experiments

were performed according to state guidelines and approved by the local ethics

committee (TI-13-2013 and 5/2011). For orthotropic injection, 1 3 106 MCF7,

BT474, and MCF10ANeuNT cells expressing HER2 were suspended in 100 ml

of a 1:1 mixture of basement membrane matrix phenol red-free (BD Biosci-

ences) and PBS, and injected into the mammary gland. Trastuzumab was

administrated once a week at a concentration of 3 mg/kg. Trastuzumab

(3 mg/kg) was given intraperitoneally (i.p.) twice a week. Saracatinib was given

daily at a dose of 25mg/kg in vehicle (0.5%hydroxypropylmethylcellulose with

0.1% Tween 20) via oral gavage.

Statistical Analysis

Data analysis was performed using a two-tailed unpaired Student’s t test.

Values are expressed as mean ± SEM or ± SD (*p < 0.05; **p < 0.01; ***p <

0.001).
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