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Abstract - English 

 
The goal of this research is to provide novel insights into the neurocomputational foundations of self-

consciousness. Classically topic of philosophical investigation, self-consciousness has become an 

object of scientific study, in particular in the domain of neuroscience. Indeed, understanding the origin 

of self-consciousness is one of the most fundamental questions in our culture. Nevertheless, it is 

arguably as fascinating as it is elusive in quantitative scientific investigation, as it is traditionally 

regarded as an exquisitely experiential phenomenon. However, extensive research within the last 

two decades has demonstrated that so-called pre-reflexive, implicit components of self-

consciousness can be explained in terms of bottom-up sensorimotor mechanisms, making them 

susceptible to scientific investigation. The minimal form of self-consciousness that arises from those 

components roughly translates to the subjective experience of existing within a physical body, with 

a precise location in the environment, and has been therefore termed bodily self-consciousness 

(BSC). In synthesis, it can be said that the two pillars of BSC are the experience of owning a body 

(body ownership), and of being in control of its actions, and through them, of events in the world 

(sense of agency). Both components of BSC depend of the integration of bodily sensorimotor 

signals. Body ownership emerges from the multisensory coherence of inputs within the peripersonal 

space, the space immediately surrounding the body (e.g.: seeing a hand being touched and 

simultaneously feeling touch on my hand can lead me to believe that what I am looking at is my 

hand). The sense of agency arises from sensorimotor congruencies between motor commands and 

observed actions (e.g.: sending a motor command to move my hand and seeing it moving with the 

same timing leads me to believe that it is me who is moving my hand). Here, we sought to uncover 

the key mechanisms of BSC by investigating behavioural, neurophysiological and computational 

properties of its two key components, body ownership and sense of agency. Four studies are 

presented, two focusing on sense of agency, and two on body ownership.  

In the first study, we developed a neural-network model that learns the natural associations between 

visual, proprioceptive and tactile inputs to build a body-part centred representation of space. We 

then showed how such self-learned representation is sufficient to elicit a minimal form of body 

ownership, as shown by the ability of the model to reproduce some of its behavioural correlates. 

In the second study, a pre-registered protocol, we tackle again the theme of body ownership, within 

the framework of Bayesian approximations of brain function. In this view, the brain performs nearly 

optimal statistical inference to estimate the probability that an object belongs to the body based on 

the congruency of multisensory inputs, leading to body ownership. This framework provides a 

quantitative support to bottom-up theories of self-consciousness, but empirical evidence for its 

applicability to body ownership and BSC in general is still rather scarce. Therefore, we proposed a 

set of tasks, and a paired modelling framework, to extend the evidence base for this hypothesis.  
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In the third study, we investigated how the congruency of visual and somatosensory feedback with 

motor commands affected the sense of agency, and neural signals in the motor cortex. The study 

was carried out in a tetraplegic participant using a brain-machine interface, decoding his motor 

commands and translating them into functional movements of his arm via a neuromuscular electrical 

stimulation system. We found that both visual and somatosensory incongruent feedback strongly 

reduced the sense of agency, and that the motor cortex encoded information about the congruency 

of sensory feedback. Moreover, incongruent somatosensory (but not visual) feedback led to a 

decrease in the decoding accuracy of motor commands, by partially overwriting the encoding of 

motor commands in the motor cortex.   

In the fourth study, we used the same experimental model to investigate the relation between neural 

oscillations and sense of agency. We found that, regardless of sensory feedback, sense of agency 

was higher when movements occurred in a specific phase of mu waves before movement onset, so 

that the movement onset coincided with a negative trough of the oscillations. We then developed 

another paradigm to derive an implicit measure of sense of agency and applied the same analyses. 

We confirmed that the same oscillatory phase coinciding with high explicit agency judgements 

correlated with high implicit measures of agency. Since the pre-movement mu phase did not 

significantly affect local multiunit activity in the motor cortex, we speculate that its effect on agency 

may be mediated by influencing the connectivity between M1 and other brain areas involved in sense 

of agency. 

In this thesis, we tackled the vast topic of self-consciousness by focusing on its bodily, bottom-up 

component, BSC. We provided novel behavioural, computational and neurophysiological insights on 

how the congruence of multisensory and motor signals contributes to two key aspects of BSC: body 

ownership and sense of agency. We argue that Bayesian models can be a powerful tool to account 

for the emergence of BSC from sensorimotor congruencies within a unifying framework. However, 

they can be employed effectively only if their theoretical implementation is constantly complemented 

and refined by rigorous empirical testing.    
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Abstract - Francais 
L'objectif de cette recherche est de fournir de nouvelles perspectives sur les fondements 

neurocomputationnels de la conscience de soi. Classiquement sujet d'investigation en philosophie, 

la conscience de soi est désormais devenue un objet d'étude scientifique, en particulier dans le 

domaine des neurosciences. En effet, comprendre l'origine de la conscience de soi est l'une des 

questions les plus fondamentales de notre culture. Néanmoins, la conscience de soi est sans doute 

aussi fascinante qu'insaisissable à l’investigation scientifique quantitative, car elle est 

traditionnellement considérée comme un phénomène exclusivement expérientiel. Cependant, des 

recherches approfondies menées au cours des deux dernières décennies ont démontré que les 

composantes implicites, dites préréflexives, de la conscience de soi peuvent être expliquées en 

termes de mécanismes sensorimoteurs ascendants, ce qui les rend susceptibles d'être étudiées 

scientifiquement. Cette forme minimale de conscience de soi se traduit grossièrement par 

l'expérience subjective d'exister dans un corps physique, avec une localisation précise dans 

l'environnement, et a donc été appelée conscience de soi corporelle (BSC). En synthèse, on peut 

dire que les deux piliers de la BSC sont l'expérience de la possession d'un corps (appropriation du 

corps), et le contrôle de ses actions, et à travers elles, des événements dans le monde (sens de 

l’agentivité). Les deux composantes de la BSC dépendent de l'intégration des signaux 

sensorimoteurs corporels. L'appropriation du corps émerge de la cohérence des signaux 

multisensorielle dans l'espace péripersonnel, l'espace qui entoure immédiatement le corps (par 

exemple : voir une main qui est touchée et sentir simultanément un toucher sur ma main peut me 

faire croire que ce que je regarde est ma main). Le sens de l'agentivité découle des congruences 

sensorimotrices entre les commandes motrices et les actions observées (par exemple, envoyer une 

commande motrice pour bouger ma main et la voir bouger au même moment me fait croire que c'est 

moi qui bouge ma main). Ici, nous avons cherché à découvrir les mécanismes clés de la BSC en 

étudiant les propriétés comportementales, neurophysiologiques et computationnelles de ses deux 

composants clés, à savoir : la possession du corps et le sentiment d'agentivité. Quatre études sont 

présentées, deux portant sur le sens de l'agentivité et deux sur l'appropriation du corps.  

Dans la première étude, nous avons développé un modèle de réseau neuronal qui apprend les 

associations naturelles entre les entrées visuelles, proprioceptives et tactiles pour construire une 

représentation de l'espace centrée sur les parties du corps. Nous avons ensuite montré comment 

cette représentation auto-acquise est suffisante pour susciter une forme minimale d'appropriation 

du corps, comme le montre la capacité du modèle à reproduire certains de ces corrélats 

comportementaux. 

Dans la seconde étude, un protocole pré-enregistré, nous abordons à nouveau le thème de 

l'appropriation du corps, dans le cadre des approximations bayésiennes du fonctionnement du 

cerveau. Dans cette théorie, le cerveau effectue une inférence statistique quasi optimale pour 

estimer la probabilité qu'un objet appartienne au corps en fonction de la congruence des signaux 

multisensorielles, ce qui conduit à l'appropriation du corps. Ce cadre fournit un soutien quantitatif 
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aux théories ascendantes de la conscience de soi, mais les preuves empiriques de son applicabilité 

à l’appropriation du corps et à la BSC en général sont encore assez rares. C'est pourquoi nous 

avons proposé une batterie de tâches à utiliser en synergie avec un cadre de modélisation, afin 

d'élargir la base de preuves de cette hypothèse.  

Dans la troisième étude, nous avons examiné comment la congruence du feedback visuel et 

somatosensoriel avec les commandes motrices affectait le sentiment d'agentivité et les signaux 

neuronaux dans le cortex moteur. L'étude a été réalisée chez un participant tétraplégique à l'aide 

d'une interface cerveau-machine décodant ses commandes motrices et les traduisant en 

mouvements fonctionnels de son bras via un système de stimulation électrique neuromusculaire. 

Nous avons constaté qu'un feedback visuel et somatosensoriel incongruent réduisait fortement le 

sentiment d'agentivité, et que le cortex moteur encodait des informations sur la congruence du 

feedback sensoriel. De plus, un feedback somatosensoriel incongruent (mais pas visuel) entraîne 

une diminution de la précision du décodage des commandes motrices, en remplaçant partiellement 

l'encodage des commandes motrices par l’encodage du feedback dans le cortex moteur.   

Dans la quatrième étude, en utilisant le même modèle expérimental, nous avons étudié la relation 

entre les oscillations neuronales et le sentiment d'agentivité. Nous avons constaté que, 

indépendamment du feedback sensoriel, le sentiment d'agentivité était plus élevé lorsque les 

mouvements se produisaient dans une phase spécifique des ondes mu avant le début du 

mouvement, de sorte que le début du mouvement coïncidait avec un creux négatif des oscillations. 

Nous avons ensuite développé un autre paradigme pour dériver une mesure implicite du sentiment 

d'agentivité, et appliqué les mêmes analyses basées sur les oscillations de phase. Nous avons 

confirmé que la même phase oscillatoire coïncidant avec des jugements d'agentivité explicites 

élevés était corrélée avec des mesures d'agentivité implicites élevées. Puisque la phase de 8 Hz 

avant le mouvement n'a pas affecté de manière significative l'activité neuronale locale dans le cortex 

moteur, nous spéculons que son effet sur l'agentivité peut être médié par des effets sur la 

connectivité entre M1 et d'autres zones du cerveau impliquées dans le sens de l'agentivité. 

Dans cette thèse, nous avons abordé le vaste sujet de la conscience de soi en nous concentrant sur 

sa composante corporelle, ascendante, la BSC. Nous avons fourni de nouveaux aperçus 

comportementaux, computationnels et neurophysiologiques sur la façon dont la congruence des 

signaux multisensoriels et moteurs contribue à deux aspects clés de la conscience de soi : la 

possession du corps et le sentiment d'agentivité. Nous soutenons que les modèles bayésiens 

peuvent être un outil puissant pour rendre compte de l'émergence du BSC à partir des congruences 

sensorimotrices dans un cadre unifié. Cependant, ils ne peuvent être utilisés efficacement que si 

leur mise en œuvre théorique est constamment complétée et affinée par des tests empiriques 

rigoureux.    
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BSC   Bodily self-consciousness 

MPS   Minimal phenomenal selfhood 
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1. Introduction 

 

1.1. Bodily self-consciousness 
 
Throughout the centuries, self-consciousness has been a central theme in philosophy. When 

scientific thinking dared to approach the world of living organisms, it became clear that self-

consciousness somehow emerged from extremely complex patterns of bioelectric activity of cells 

within the central nervous system. Indeed, the idea that the brain is the physical cause of self-

consciousness constituted a major breakthrough, but the materialistic path has proven to be not less 

hard to follow than the metaphysical one. Arguably, the first difficulty with setting the bases for the 

scientific study of self-consciousness is that its rigorous definition is, to say the least, elusive. 

Traditional attempts to define self-consciousness in the 20th century are intimately related to linguistic 

and semantic aspects of self-reference, as they have essentially focused on the capacity to generate 

and master “I”-thoughts. The meaning of “I”-thoughts may seem intuitively clear, but they entail a 

subtle yet crucial difference from the mere use of the first person pronoun: immunity to error through 

misidentification. For example, it is theoretically possible for someone to be wrongfully referring to 

himself when saying “I am wearing a watch on my right wrist”, as he may in principle be looking at 

someone else’s right wrist, which looks and is placed exactly like his own. However, it is immediately 

clear that a misidentification error is strictly impossible when saying something like “I am feeling 

cold”. In Wittgenstein’s words, the pronoun “I” is respectively used as an object and as a subject in 

these examples (Wittgenstein, 1958). Only the latter use is effectively immune to misidentification 

errors, and therefore defines “I-thoughts”. In this view, self-consciousness would to some extent 

reduce to the capacity to master the use of the pronoun “I” as a subject. This “deflationary” definition 

has been recently challenged on grounds of its unavoidable circularity (Bermúdez, 1998). The 

semantic mastery that is taken to be the crucial point in defining self-consciousness must 

unavoidably be employed “as it is” in order for such definition to make sense, as it cannot be reduced 

to non self-referential semantic concepts. Or, quoting Bermudez, “Any theory that tries to elucidate 

the capacity to think first-person thoughts through linguistic mastery of the first-person pronoun will 

be circular, because the explanandum is part of the explanans”. In order to overcome the circularity 

entailed in narrative aspects of the self, it has been proposed to focus instead on more minimal 

aspects of selfhood (Gallagher, 2000), taking “non-conceptual first-person content” (Bermúdez, 

1998) or pre-reflexive forms of subjective experience (Metzinger, 2003) as a starting point to 

investigate self-consciousness. Essentially, they consist in the self-specifying information that 

permeates perceptual experience (Gallagher, 2000), and allows to perceive oneself as the subject 

of such experience before cognitive reasoning (hence, pre-reflexively). For example, even when 

processing inputs that are not self-related, such as when visually perceiving an external object, we 

implicitly gather additional information about its location in space by putting it in relation with a spatial 

reference frame that is centred on our location in space. In other words, we not only see that object, 
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but we see it from a first person perspective, and, to some extent, a minimal sense of ourselves is 

therefore attained in all forms of perception, which had already been noted as early as in Aristotle’s 

Sense and Sensibilia. The phenomenological manifestation arising from such basic set of self-

specifying components of perception has been defined “minimal phenomenal selfhood” (MPS, 

Blanke & Metzinger, 2009), in order to distinguish it from higher level, narrative forms of selfhood. 

MPS does not require mastery of any specific semantic concept to be phenomenologically 

accessible, as it is intimately related to our physical body and its interaction with the external world. 

It has been argued that MPS defines a specific subset of self-consciousness, grounded in the “here 

and now” experience of our bodily selves. Such minimal and pre-reflexive form of self-consciousness 

has been therefore termed Bodily Self Consciousness (BSC, Blanke, 2012; Blanke et al., 2015). In 

synthesis, BSC rests on two key aspects of our subjective experience as physical selves: the sense 

of owning a body with certain characteristics and a precise location in space and time, and the sense 

of controlling that body and being able to act through it on the external world (Blanke & Metzinger, 

2009; Gallagher, 2000). These key components of BSC, sense of ownership and sense of agency, 

are not only subjects of philosophical speculations, but they can be experimentally manipulated to 

investigate their behavioural and neural properties, making the study of self-consciousness 

scientifically accessible. 

 

1.2. Multisensory mechanisms of bodily self-consciousness 
 
As we mentioned, these conceptual advancements were fostered by a paradigmatic change in the 

scientific study of BSC, arising from empirical studies showing that it is possible to experimentally 

manipulate some of its key components. Amongst the first and best known is the study by Botvinick 

and Cohen (1998) about the “rubber hand illusion” (RHI). In a simple yet extremely insightful 

experiment, a rubber hand was in placed in front of naive participants, anatomically congruent with 

their real hand, which was hidden from their view. The participant’s hand and the rubber hand were 

simultaneously stroked with a paintbrush in the same location and fashion. Subjects had the 

impression to feel touch on the rubber hand, and most importantly, they reported feeling as if the 

rubber hand was their own hand, with the illusory ownership being reported spontaneously by eight 

out of ten subjects. An interesting additional effect of the RHI is the so-called proprioceptive drift. 

When subjects were asked to point at their own hand after synchronous stroking, they reported a 

position shifted towards the rubber hand, as if the illusion also interfered with their hand position 

sense. A series of subsequent studies showed that, through synchronous visuo-tactile stimulation, it 

is possible to alter the subjective experience of ownership over a variety of body parts (the face, 

Sforza et al., 2010, the belly, Normand et al., 2011, the feet, Crea et al., 2015). It was shown that 

even a blank spot on a table (Armel & Ramachandran, 2003), or a completely empty space 

(Guterstam et al., 2013) can be felt as belonging to the body, by stroking it synchronously with 

participants’ hands (invisible hand illusion, IHI).  
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Crucially, the rubber hand illusion can also be applied to the whole body (Ehrsson, 2007; 

Lenggenhager et al., 2007), eliciting illusory identification with an alien avatar, along with shifts in 

perceived self-location. This is a decisive step as, albeit related and elicited through the same 

multisensory mechanisms, the illusory ownership for body parts and for the whole body are 

conceptually different. While the former only involves a temporary incorporation of alien objects in 

the body schema, the latter affects the identification of the self with a physical body, one of the 

cornerstone features of MPS (Blanke & Metzinger, 2009). This conceptual difference is well 

explained by a simple example: it would be nonsensical to think that someone missing a limb has a 

diminished level of bodily-self consciousness, but it would be reasonable for someone missing the 

perception of his whole body. Taken together, these studies showed that a key component of BSC, 

such as body ownership, is not immutable and stable in healthy individuals, but it can be altered, at 

least temporarily, through simple multisensory manipulations. Arguably, the fundamental common 

trait of those manipulations is that they reproduce the intersensory congruencies that are normally 

observed for body parts (or the whole body) on an external object (or an avatar), which gets 

embodied as a result. The sensory modalities involved are typically a combination of inherently self-

related modalities (the perceptual equivalent of immunity to error through misidentification?), such 

as touch and proprioception, and external senses, such as vision and audition, through which the 

external object to be embodied is perceived. When the spatio-temporal relations between 

touch/proprioception and visual stimulation of an external entity match the ones normally 

experienced throughout life, that entity is perceived as part of our body. If this coherent visuo-tactile 

stimulation pattern is produced on the back of a body-shaped avatar, it is perceived as our own body 

itself (Ehrsson, 2007; Lenggenhager et al., 2007).  

 

1.3. Multisensory integration in peripersonal space and body ownership 
 
Multisensory stimulation seems to be the key of manipulations of body ownership. In particular, 

visuo-tactile stimulation in anatomically congruent postures played a central role in a large number 

of studies. In order to answer the question about which brain areas are responsible for the 

emergence of ownership from multisensory integration, it is therefore natural to turn our attention to 

brain areas where visuo-proprioceptive-tactile integration is known to occur. Fronto-parietal regions, 

mainly in the ventral premotor cortex and the ventral intraparietal sulcus (VIP) in the primate brain 

are known to exhibit such response properties. In the early 80s, Rizzolatti and colleagues (Rizzolatti 

et al., 1981) discovered a network of visuotactile (or audiotactile, Graziano et al., 1999) neurons, 

responding to touch over relatively broad body areas (e.g. a hand, a forearm, the face…) and to 

external stimuli close to that body area. Importantly, their response properties were body-part 

centred, independently of eye orientation or the body part’s location in space respective to the trunk. 

It is thought that such neurons are part of a network of functional areas that represent the space 
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closely surrounding the body, the peripersonal space (PPS). For brevity, let us then refer to those 

neurons as PPS neurons. When stimulated, PPS neurons evoke a variety of functional movements, 

which resemble the defensive behaviour animals display when startled by sounds or puffs of air 

(Cooke et al., 2003). Therefore, this network of multisensory neurons is thought to be connected to 

predicting interactions with the environment with a defensive purpose. Furthermore, these areas are 

contiguous to areas involved in planning and executing reaching and grasping movements, and the 

PPS network may be involved in more general mechanisms of interaction between the body and its 

surrounding space. Nevertheless, here we will mainly focus on visuo-tactile integration properties, 

as the most relevant aspect of PPS neurons for body ownership. The visual receptive fields of PPS 

neurons, as we mentioned, are anchored in space to the body part where the tactile receptive fields 

are, and therefore necessarily involve a set of transformations from retinotopic to body part-centred 

reference frames. Work in macaques showed that such reference frame transformations are guided 

by visual and proprioceptive information about the position of the limb in space (Graziano, 1999, 

2000). Interestingly, when the monkey’s true arm is hidden, PPS neurons can anchor their receptive 

fields to a fake arm, but only if this is placed in an anatomically plausible posture (Graziano, 2000). 

Furthermore, a subset of these cells has been shown to start coding for stimuli in the reference frame 

of a fake hand only after prolonged synchronous visuo-tactile stimulation, closely resembling the one 

delivered to elicit the RHI (Graziano, 2000). In sum, the PPS network appears to be a good candidate 

for being involved in the detection and processing of visuo-tactile congruencies that can be used to 

manipulate BSC in humans.  

 

1.3.1. Peripersonal space in humans, evidence from behavioural and 
neuropsychological studies 
 
Evidence for the existence of a neural system dedicated to the multisensory representation of the 

space surrounding the body, in all primates including humans, comes from neuropsychological, 

psychophysical and neuroimaging studies. In certain brain-damaged patients with hemispatial 

neglect, the characteristic impairments of action and perception are specific for stimuli in the near 

space (Brain, 1941), leading clinical diagnoses to distinguish between peripersonal and 

extrapersonal neglect. Similar spatially selective impairments can be artificially induced with targeted 

lesions in the postarcuate cortex of macaques, the same premotor region in which PPS neurons 

were first observed (Rizzolatti et al., 1983). The animals displayed a lack of attention in the 

contralesional side both at the somatosensory and the visual level, and the visual deficit was limited 

to the near space. Interestingly, such deficit was accompanied by an inability to grasp food when 

presented in the contralesional portion of the visual space. Another pathological manifestation of 

such dedicated, multisensory-motor functional network is crossmodal visuotactile extinction, in which 

visual stimuli presented on the ipsilesional side can suppress the perception of tactile stimuli on the 

contralesional side, which would be normally perceived in the absence of an ipsilesional distractor 
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(Bender, 1952; Driver et al., 2004). Importantly, extinction has been noted to occur only when the 

distracting visual stimulation occurred spatially close to the ipsilesional hand, showing that such 

cross-modal inteferences can happen in a body-part centred reference frame (di Pellegrino et al., 

1997).  

 

This observation has arguably inspired the methods that were subsequently developed to investigate 

PPS behaviourally in healthy humans. One of the first amongst these was the so-called crossmodal 

congruency task (CCT) (Driver & Spence, 1998). In the CCT, participants are asked to perform 

speeded judgements of the vertical elevation of tactile stimuli delivered on the hand, while congruent 

(e.g. same elevation) or incongruent (opposite elevation) visual distractors are presented at various 

locations in space. Participants are generally faster at performing the discrimination when visual and 

tactile stimuli are congruent. Importantly, such effect is stronger when the visual distractors are 

presented within the peripersonal space (Maravita et al., 2003). Later on, other tasks were developed 

to investigate visuo-tactile interactions thought to be the hallmark of PPS representation, based on 

simplified versions of the CCT. Subjects are asked to respond as fast as possible to tactile stimuli 

presented on the hand, face or other body parts, while task-irrelevant visual or auditory stimuli are 

presented either near or far from the target body part (see e.g., Serino et al., 2007). Participants are 

faster to respond to touch when external stimuli are near, as opposed to far, from the haptically 

stimulated body part (Holmes et al., 2020). This speeding up of tactile reaction times by visual or 

auditory stimuli is used as a proxy of PPS, whose spatial extent is defined by the region where the 

speeding effect occurs. Following the observation that PPS neurons are especially sensitive to 

stimuli that approach the body (Graziano et al., 1997), this paradigm was later improved by using 

looming visual or auditory stimuli (Canzoneri et al., 2012). This latter behavioural measure of PPS 

representation will be the main focus of this thesis, as it directly tackles visuo-tactile interactions that 

are key to bodily self-consciousness.  

 

Nevertheless, it may be worth briefly mentioning other measures of PPS representation that have 

been developed in the last two decades. Focusing specifically on defensive properties of PPS, 

Sambo and colleagues found that the eye blinking reflex elicited by painful stimuli delivered to the 

hand increased when the hand was near to the face (Sambo et al., 2012). They concluded that the 

intensity of the blinking reflex could be used as a proxy of the activation of the defensive PPS system 

(see also Bufacchi & Iannetti, 2018 for a review). In an older study by Longo and colleagues (Longo 

& Lourenco, 2006), a phenomenon known as pseudoneglect was used to investigate PPS 

representation. When asked to bisect a line presented in the near space, healthy humans show a 

consistent leftward shift, as if the left portion of space was somewhat over represented. This bias 

decreases and reverses to a rightward bias as the distance of the line increases, and this 

phenomenon has been interpreted as a proxy of the differentiation between peripersonal and 
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extrapersonal space. Finally, in a recent study, a method based on the bias induced by 

somatosensory stimuli on the perceived temporal order of visual stimuli was proposed (Spaccasassi 

& Maravita, 2020). When presenting a tactile stimulus on one hand, and visual stimuli at various 

level of temporal asynchrony on the two sides of the body, the visual stimulus on the same side of 

the tactile stimulus is perceived earlier in time, but only when the visual stimuli are in the near space. 

Thus, the spatial modulation of the temporal bias effect induced by visual stimuli has also been taken 

as proxy of the differentiation between PPS and extrapersonal space.  

 

1.3.2. The link between BSC and PPS in behavioural and neuroimaging studies 
 
Indeed, the characteristics of the PPS system suggest that it shares some of the neural principles 

that underlie BSC. The processing of visuo and audio tactile stimuli in a body and body-part centred 

reference frame is implicitly linked with self-location and body representation, and with mechanisms 

that underlie multisensory manipulations of body ownership. Importantly, the link between BSC and 

PPS representation has been confirmed behaviourally, by combining an audio-tactile measure of 

PPS representation and the full body illusion (Noel et al., 2015). After inducing the full-body illusion 

in healthy participants, the region of space in which auditory stimuli induce a reduction of reaction 

times shifted towards the embodied virtual avatar, following the shift in perceived self-location 

induced by the full-body illusion (Ehrsson, 2007; Lenggenhager et al., 2007). This effect has been 

interpreted as if the PPS was anchored to the perceived location of the self, and not to the physical 

body in space. Neuroimaging literature provides evidence that PPS representation is relevant for 

BSC not only behaviourally, but in terms of shared neural mechanisms. A recent meta-analysis 

(Grivaz et al., 2017) investigated which brain areas are consistently activated across different studies 

investigating the neural correlates of PPS processing and body ownership. PPS processing was 

found to be localized mainly at the temporo-parietal junction (TPJ), and at the intersections between 

dorsal and ventral premotor cortex, and between primary somatosensory cortex and the superior 

parietal lobule (SPL). For body ownership, consistent activations were found at a slightly lower 

location in the ventral premotor cortex, and between the superior parietal lobule (SPL) and the 

intraparietal sulcus (IPS). This latter region, in the left hemisphere, showed a consistent overlap 

between body ownership and PPS related processing. Importantly, connectivity analyses showed 

that regions of the PPS network and of the body ownership network were strongly interconnected 

between each other.  

 

1.3.3. Neural-network models of PPS representation. Previous works and open 
questions.  
 
The principles of bodily self-consciousness and their link with PPS representation have been 

extensively investigated conceptually, behaviourally and at the neuroimaging and neurophysiological 

level. However, from a mechanistic point of view, a connectionist explanation of how these properties 
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emerge from the interaction of individual neurons is still missing. In this direction, computational 

simulations of neural-network models are arguably an extremely valid investigation technique, but 

only a few significant attempts in this direction have been made. The first neural network model of 

PPS representation was proposed by Magosso and colleagues (Magosso et al., 2010). This 

biologically realistic network consisted of two populations of unisensory tactile and visual (or 

auditory) neurons, connected with feedforward and feedback synapses with a population of 

multisensory neurons. Tactile neurons coded for touch on the hand, and visual neurons for the 

distance from the hand of an external visual stimulus, with each neuron coding preferentially for a 

given location of the hand-centered visual space. The network did not directly model the reference 

frame transformations from retinotopic to hand-centred coordinates, and focused directly on the 

modelling of upstream neural computations. The weights of unisensory to multisensory synapses 

were tuned in order to reproduce in the artificial multisensory neurons the properties observed in 

neurophysiological studies in PPS neurons from the primate VIP and ventral premotor cortex. 

Multisensory neurons received strong excitatory projections from tactile neurons, while the strength 

of the synaptic input from visual neurons decreased with distance. This way, artificial PPS neurons 

responded strongly both to tactile inputs and visual stimuli presented close to the “hand”. 

Furthermore, when a tactile input was provided coupled with a nearby visual stimulus, the activity of 

PPS neurons raised faster than when the visual stimulus was in the far space. Under the reasonable 

assumption that the response time to a tactile input is related to the velocity of the response of PPS 

neurons, this result is in line with behavioural assessments of PPS representation, showing a 

decrease of tactile reaction times in the presence of near external stimuli. In a further study, a version 

of this network modified to include Hebbian learning reproduced behavioural and physiological 

findings about the plasticity of PPS representation (Serino, Canzoneri, et al., 2015). A seminal study 

by Iriki (Iriki et al., 1996) showed that, after training monkeys to use a tool to retrieve distant food, 

the visual receptive fields of hand-centred PPS neurons enlarged. Confirmations of tool-induced 

plasticity of PPS representation followed shortly afterwards in neuropsychological (Maravita et al., 

2001) and behavioural (Canzoneri et al., 2013) studies. PPS as assessed through crossmodal 

extinction, or by measuring visuotactile interactions through tactile reaction times, was found to 

enlarge when using a tool or a prosthesis. Serino and colleagues further investigated PPS plasticity 

in a coupled neural-network and behavioural study, showing that tactile stimulation coupled with 

visual (or auditory) stimulation in the far space can lead to extend PPS representation beyond its 

usual boundaries, even in the absence of a tool (Serino, Canzoneri, et al., 2015). Crucially then, it 

seems that the key of PPS plasticity lies in bottom-up Hebbian associations in multisensory inputs, 

requiring no form of top-down attentional control. Nevertheless, in the neural network the learning 

effect was still implemented on a pre-defined synaptic connectivity.  
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In the following years, other neural-network models in the field of robotics investigated different 

aspects of PPS representation with an applicative rather than neuroscientific purpose. These include 

models of visuo-tactile interactions for safety and impact avoidance (Nguyen et al., 2018; Roncone 

et al., 2016; Straka & Hoffmann, 2017), reaching (Juett & Kuipers, 2019), the development of a body 

schema through visuo-tactile interactions (Pugach et al., 2019). Finally, a different, but closely related 

topic is the field of neural-network models of reference frame transformations. Pouget and 

colleagues (2002) modelled reference frame transformations amongst three general spatial 

coordinate sets, represented by one “unisensory” neural population each. For example, one 

population could code for the position of the hand in retinotopic coordinates, the second for its 

proprioceptive position, and the third for the gaze angle. For any pair of coordinates encoded in two 

populations, the offset between them was encoded in the third population. Depending on the relative 

weight of feedback and feedforward synapses, the network could either produce an estimate of the 

position in a given reference frame, given the position encoded in the other two populations, or 

combine information from the different modalities to produce more reliable estimates. Makin and 

colleagues (2013) addressed the same topic with a slightly different architecture, using three 

unisensory populations connected to a multisensory population and not directly between 

themselves. The crucial advance in this approach was that the weights of synaptic connections 

between neural populations were not hand-wired, but learned through Hebbian plasticity from the 

natural statistics of simulated sensory inputs. In other words, reference frames spontaneously 

aligned by synaptic tuning to accommodate the statistical relations between inputs in different 

modalities. Finally, a more recent work offers an interesting example of unisensory reference frame 

transformations, where a multi-layer neural network develops neurons tuned to the hand-centred 

coordinates of external objects, based on purely visual inputs (Born et al., 2017). Visuo-tactile 

interactions and reference frame transformations are key to PPS representation, and common 

mechanisms link them to body representation and body ownership. Neural-network modelling would 

allow investigating the mechanistic neural computations that underlie such link, but no previous study 

specifically addressed this question. 

 

1.4. Sense of agency 
 
The second cornerstone of BSC is the sense of agency, the feeling of being the cause and the ones 

in control of our actions, and consequently of events in the external world that such actions cause 

(Gallagher, 2000). Especially if restricting our attention to pre-reflexive mental phenomena, the 

awareness of our causal efficacy on our body, the external world, and arguably even on our mental 

states (Gallagher, 2000), is a fundamental aspect in recognizing and defining ourselves as 

independent entities, or, in other words, in shaping the self-other boundary.  

In the most simple and general way, agency arises from the congruence between intended and 

executed actions (Jeannerod, 2003).The brain constantly monitors self-generated efferent signals 
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and afferent signals arising from the body and the surrounding environment. When an action is 

generated, afferent information from the body informs the brain about its sensory consequences, 

and when they match our intentions a sense of agency arises. In everyday experience, this match is 

practically always present for intentionally generated actions. However, if the available sensory 

feedback about an action is either spatially or temporally misaligned with our intentions and motor 

commands (e.g., by showing delayed or distorted visual feedback about hand movements), the 

experience of agency is diminished or abolished (Farrer et al., 2008). This simple principle is thought 

to be at the basis of the earliest signs of self-recognition in infants, who at 5 months of age are 

already consistently able to discriminate their own movements from those of other infants based on 

sensorimotor contingencies (Bahrick & Watson, 1985). A minimal capability to distinguish self from 

other generated movements seems to be even present from birth, as newborns were noted to 

produce more head movements when touch in the perioral region is provided by another as 

compared to when it is self-generated (Rochat & Hespos, 1997). 

 

Indeed, the detection of visuo-motor congruencies can be used as a robust and effective tool to 

distinguish oneself from others. For example, congruency detection alone is sufficient to self-

recognize in a mirror in unsupervised manner (for an interesting example in robots see Gold & 

Scassellati, 2009), as it requires no previous knowledge of one’s visual appearance. In this view, 

congruency detection would act as the initial seed of self-recognition, allowing then to associate 

oneself with specific visual features. Furthermore, recent evidence suggests that relatively short 

exposure to visuomotor congruencies is sufficient to influence and update the visual representation 

of one’s own face (Serino, Sforza, et al., 2015). Participants observed a virtual avatar’s face moving 

either synchronously or asynchronously with their own face movements, and were later asked to 

evaluate whether they self-recognized in faces obtained by different levels of visual morphing 

between their own face and the avatar. After exposure to the synchronously moving face, participants 

were more likely to recognize as their own faces more similar to the virtual avatar. 

 

Visuomotor congruencies are likely to play a crucial role in a classical test of self-awareness testing 

mirror self-recognition: the mirror mark test. In this simple and brilliant experiment, first performed by 

Gallup in chimpanzees (1970), animals are put in front of a mirror with a paint mark on their face. If 

they try to remove the mark from their own face, this is taken as a sign of self-consciousness, while 

if they show no interest in the mark or the reflection, or attempt to socialize with it as if it was another 

individual, they are deemed as non self-conscious. Remarkably, animals who are able to self-

recognize in a mirror have been reported to intentionally exploit visuomotor congruencies, by 

performing repetitive movements to investigate whether the image in the mirror is indeed their own 

(Ari & D’Agostino, 2016). Nevertheless, only a small fraction of animals (essentially great apes, 

dolphins and elephants) is able to self-recognize in a mirror, and some species seem to even be 
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able to detect sensorimotor contingencies, and deliberately produce movements to assess them, 

without this leading to passing the mirror mark test (Ari & D’Agostino, 2016). Children, in turn, seem 

to be able to robustly pass the test starting at the age of 15 to 20 months (Bahrick, 1995). Intriguingly, 

a recent study showed that it is possible to train animals to pass the mirror mark test. Chang and 

colleagues (Chang et al., 2017) trained Rhesus monkeys (a species known not to be able to 

spontaneously self-recognize in a mirror) to touch spots of light produced by a laser beam on their 

face. This way, the animals could experience visuo-motor and visuo-proprioceptive-tactile 

congruences arising from self-directed behaviour in front of a mirror. After this training, animals could 

reliably pass the mirror mark test. Taken together, this suggests that the detection of sensorimotor 

contingencies is a necessary, but not sufficient condition for self-awareness, at least as assessed by 

the mirror mark test. 

 

Furthermore, the mechanism of contingency detection that leads to sense of agency may also play 

a role in the development of causal reasoning that underlies higher levels of self-consciousness. In 

infancy, voluntary actions are routinely employed to learn about the causal structure of the world, 

and sense of agency may act as a guiding factor in such inference (Zaadnoordijk et al., 2015). 

Interestingly in this sense, disorders of the self such as schizophrenia, that are characterized by 

dysfunctional causality inferences, or delusions, are also accompanied by an impaired sense of 

agency for bodily actions. People with schizophrenia experience abnormal feeling of control over 

actions and thoughts, sometimes misattributing to others their own actions (Daprati et al., 1997; Hur 

et al., 2014; Mellor, 1970; Moore & Obhi, 2012). It has been suggested that these issues may not 

simply be a symptom of the disease, but they may reflect a more general impairment in causality 

inference that might act as a pathogenic factor (Fletcher & Frith, 2009). Therefore, it has been 

proposed that schizophrenia may essentially originate as a disorder of prediction, extending from 

low-level sensory events to higher level cognitive functions (Fletcher & Frith, 2009). 

 

 

1.4.1. Predictive and postdictive accounts of agency 
 
The fact that sensorimotor contingencies give rise to sense of agency in humans is widely accepted, 

but the nature of the process through which this happens is debated. Two main classes of theories 

have been proposed, known as predictive and postdictive accounts of agency. According to 

predictive accounts, first proposed by Frith and colleagues (2000), crucial for sense of agency would 

be internal predictions of the expected sensory consequences of motor commands, generated and 

internally stored before the actual movement takes place. Once the action occurs, these predictions 

are compared to the actual afferent information leading to sense of agency when a match with 

predictions is met. This account is often referred to as the “comparator model” of agency.  
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The postdictive account, first proposed by Wegner (2002), emphasizes the idea that the true 

underlying causes of motor acts would be unconscious processes, while only the act itself and the 

intention to do so would be cognitively accessible (Moore, 2016). In this view, intentions would be 

only the conscious manifestation of some underlying unconscious process, and therefore play no 

actual causal role in decision making and in the generation of actions. In Wegner’s theory, not only 

there is no such thing as a metaphysically free will (the philosophical uncaused cause), but the idea 

that our conscious thoughts cause our actions is itself an illusion: in fact, actions simply “happen” to 

us. As a consequence, sense of agency would be based on a post-hoc inference on the cognitively 

accessible cues about intention, or the retrospective evaluation of whether what happened is 

compatible with what I had intended to do. These two accounts are not necessarily opposed or 

mutually exclusive, as the use of terms such as prediction and postdiction would seem to suggest. 

From the pure temporal perspective, predictive processes need to include post-movement cues in 

order for the comparison to be made. At the same time, a postdictive evaluation requires pre-

movement intentions to be at least stored in memory until sensory feedback is available, even if 

predictions are not explicitly formulated. The distinction between the two accounts is then somewhat 

subtler. Predictive accounts put a strong accent on low-level sensorimotor aspects, and on the fine-

grained integration of afferent and efferent information that occur pre-reflexively, on a fast timescale 

during and immediately after the movement. Postdictive accounts do not deny these aspects, but 

rather consider them of secondary importance, and claim that sense of agency arises from a process 

more akin to a higher level, cognitive “confabulation” about the cause of the movement, taking place 

mostly after the action occurs. The two positions are therefore complementary rather than opposed, 

and in more recent works it is generally accepted that both predictive and postdictive processes 

contribute to sense of agency (Synofzik et al., 2013).  

 

A further attempt to reconcile predictive and postdictive accounts is based on the general theory of 

cue integration, stating that when different sources of information about the same phenomenon are 

available, the brain combines them according to their reliability to obtain more accurate estimates. 

Applying this theory to the sense of agency, predictive and postdictive cues would be then combined 

to infer the causal relations underlying our actions, and give rise to agency. An interesting 

consequence of this theory is that the relative weight of predictive and postdictive mechanisms would 

depend on the respective reliability in a specific situation, and therefore be context dependent. For 

example, consider the cognitive, postdictive cue constituted by the presence of other agents who 

might potentially have caused an event. If I am alone in a room and someone drops a pen next to 

me through a concealed remote control, I may be tricked into thinking retrospectively that I must 

have caused the pen to fall. This is because the postdictive cue about the fact that I am the only 

possible cause of the event is expected to be very reliable in this context. If many people instead 



20 

 

surrounded me, the cognitive cue about the potential author of an event would become irrelevant, 

and I would have to rely more upon sensorimotor mechanisms to determine its cause. 

1.4.2. Behavioural and neural correlates of sense of agency 
 
It is now worth spending a few words on the behavioural paradigms used to assess sense of agency, 

and on its neural correlates that have been identified in previous studies. The most straightforward 

way to assess agency is through explicit judgements, in which participants are simply asked whether 

(and/or how much) they felt like they generated an action or effect. Nevertheless, explicit agency 

judgements have been shown to be cognitively biased, as humans tend to consistently misattribute 

to themselves events that are not self-caused, especially when their outcomes have a positive 

valence. For this reason, researchers have developed implicit methods to assess agency, whose 

most widely used example is the intentional binding paradigm (Haggard et al., 2002). Subjects are 

asked to perform an action typically associated with a given predictable outcome (e.g. pressing a 

button that leads to a beeping sound), and to report the position of a clock at the time of the action 

or of the external event, in order to measure its perceived timing. It was found that subjects tend to 

perceive actions as occurring later, and their effects earlier, and that this “attractive pull” of actions 

towards their consequences is present only when voluntary movements are performed. Involuntary 

movements induce no or reversed effects (Moore et al., 2009; Yoshie & Haggard, 2013). These 

biases in time perception are therefore specifically linked to intentionality, and therefore they have 

been widely used as an implicit measurement of the sense of agency. Other indirect measures of 

sense of agency focus on sensory attenuation (Dewey & Knoblich, 2014; Garrido-Vásquez & Rock, 

2020), the reduction in the perceived intensity of self-generated events (Blakemore et al., 1998, 

2000). The key idea is that sensory attenuation would arise from expectations generated by a forward 

predictive model (Bays, 2006), the same that leads to sense of agency in the comparator model. 

Indeed, in the case of self-touch, introducing an artificial delay between the action and its sensory 

consequences leads to reduced attenuation and perceived self-causation (Bays et al., 2005; 

Blakemore et al., 1999). Furthermore, implicit self-attribution of external events can be assessed by 

monitoring automatic error compensation when provided with partially incongruent feedback, which 

can take place without conscious awareness of the error (Fourneret & Jeannerod, 1998; Grünbaum 

& Christensen, 2020; Kannape & Blanke, 2012). Sense of agency is strictly linked to the concept of 

intention (see Haggard, 2017), and thus it is important to mention here the cornerstone study about 

intentionality performed by Libet and colleagues in 1983 (Libet et al., 1983). They instructed 

participants to freely press a button whenever they wanted, while monitoring the position of a rotating 

clock hand to report the onset time of the subjective will to act. They found that the electrical signal 

that habitually precedes self-generated movements (the readiness potential, Kornhuber & Deecke, 

1965, 2016) also preceded conscious awareness of the will to act by about 350 ms. This was 

interpreted as the first evidence that the chain of neural process that leads to intentional movements 

can actually commence unconsciously.  
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Overall, the conceptual and behavioural bases of the sense of agency are thus relatively well 

understood. At the neural level, several studies have also investigated the correlates of the sense of 

agency through neuroimaging and perturbative techniques, and the results are arguably more varied 

and less straightforward to interpret. The majority of studies aiming at identifying the key brain 

regions used functional magnetic resonance imaging (fMRI), yielding a plurality of areas linked to 

sense of agency. Two meta-analytic studies attempting to draw more general conclusions still found 

sparse clusters of activity. The first meta-analysis, considering 15 fMRI or PET (positron emission 

tomography) studies (Sperduti et al., 2011), evidenced the role of regions including the TPJ, pre-

supplementary motor area (pre-SMA), precuneus, and dorsomedial prefrontal cortex. As pointed out 

in the second, more recent meta-analysis (Zito et al., 2020), part of this variability may be due to the 

wide range of manipulations, paradigms and definitions of the sense of agency used in such 

neuroimaging literature. One first confounding factor is the use of different contrasts between high 

and low agency conditions. These include, for example, comparing trials with spatially congruent or 

incongruent visual feedback, with delayed as opposed to synchronous feedback, or high versus low 

subjective ratings of agency. Clearly, this can introduce biases, such as activations of brain areas 

processing the specific sources of incongruence targeted in a given study, rather than “pure” sense 

of agency. Another important difference concerns the used definition of the sense of agency, 

depending on whether it was referred strictly to bodily motor control or to a more general feeling of 

causation over events in the external world. Finally, Zito and colleagues’ meta-analysis (2020) 

suggests that different regions are involved in positive as opposed to negative sense of agency, with 

the latter being possibly related to more general error signals in the brain. The study, which focused 

specifically on 22 studies on motor control, found no significant activation for positive agency, and it 

confirmed the role of the TPJ in negative agency. Overall, neuroimaging studies yielded largely 

variable and not conclusive evidence about the network of regions involved in the sense of agency.  

 

Possibly, a clearer picture can be drawn by also considering studies using different techniques, and 

introducing a broad differentiation between frontal and parietal areas, which we will start reviewing 

from frontal areas. A meta-analysis on 7 transcranial direct current stimulation (TDCs) studies, using 

intentional binding as an implicit measure of agency (Khalighinejad et al., 2016), found that 

stimulating the dorso-lateral prefrontal cortex (DLPFC) increases the intentional binding between 

actions and outcomes, but only when participants spontaneously select the actions to perform. This 

is in line with the idea that prefrontal regions may be involved in the sense of agency, as they 

contribute to action planning and selection. Conversely, TDCs (Cavazzana et al., 2015) and inhibitory 

repetitive transcranial magnetic stimulation (TMS) (Moore et al., 2010) over the pre-supplementary 

motor area has been reported to reduce intentional binding. This suggests that a set of different 

regions is causally involved in sense of agency, and confirms the differentiation between positive 

and negative feeling of agency. As shown by an interesting neurophysiological work on epileptic 
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patients with implanted electrodes, relatively small populations of single neurons within the SMA are 

sufficient to predict the onset of volitional processes, preceding the subjects’ awareness of the 

incoming intention to move (Fried et al., 2011). On the other hand, a recent study using electrical 

stimulation in awake surgery patients found that both stimulation of the premotor and somatosensory 

cortex led to the arrest of motor execution, but only in the first case subjects are unaware of it (Fornia 

et al., 2020). Similarly, in a previous study, premotor stimulation evoked overt movements, but lead 

to no awareness of those movements being performed (Desmurget et al., 2009). Studies on patients 

with premotor damage also seem to indicate that lesions to this area lead to diminished awareness 

of one’s own motor deficit (Berti et al., 2005). Moving to parietal areas, it was shown that a TMS 

pulse over the angular girus (amongst the “non-agency” regions highlighted in fMRI meta-analyses) 

can decrease the effect of incongruent feedback about action outcome (Chambon et al., 2015). 

Interestingly, another fMRI study had previously shown that the connectivity between premotor areas 

and the angular gyrus is reduced in incongruent trials (Eimer & Schlaghecken, 2003). Therefore, this 

parietal region may be responsible for the comparison between sensory feedback and predictions, 

and for the detection of mismatches. It has been proposed that both frontal and parietal regions are 

involved in sense of agency, but possibly with a different role (Haggard, 2017). Frontal regions are 

responsible of volitional processes and action selection, and are therefore linked to intentions that 

are necessary for sense of agency. Parietal regions, instead, may host the processes where the 

comparison between intentions (or predictions of their sensory consequences) and afferent 

information is performed. Still, some of the studies reviewed here seem to suggest that action 

monitoring also takes place in premotor areas (Berti et al., 2005; Fornia et al., 2020). Conversely, 

Desmurget’s 2009 study found that parietal stimulation could lead to a vivid “urge to move”, as well 

as to the illusory sensation of having moved at higher intensities. An interesting opinion on this matter 

has been expressed by Desmurget and colleagues (2012), who suggested that parietal regions may 

represent the desired final state of actions to be performed. 

 

Although the studies described until now provide useful insights into which brain regions are involved 

in sense of agency, they provide little insight into the dynamics of the underlying neural processes, 

as the techniques used do not possess the temporal resolution needed to investigate such aspects. 

In this sense, the main sources of information are even scarcer, as they mainly consist of a few 

studies using EEG and magnetoencephalography (MEG). In an EEG study by Kang and colleagues 

(2015), it was shown that higher levels of agency, as induced by coherent virtual feedback during a 

hand movement task, are associated with lower alpha (8-12 Hz) power in temporal and parietal 

electrodes, and with a decreased coherence of alpha oscillations in frontal areas. Alpha band 

oscillations were also found to be involved in the process of detection of sensorimotor contingencies 

during mirror self-recognition (Serino, Sforza, et al., 2015). Participants exposed to a virtual face 

moving synchronously with their own showed a greater motor evoked suppression of mu oscillations 
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over sensorimotor areas, compared to when it moved asynchronously. Another interesting MEG 

study used instead a cognitive priming to bias participants’ sense of agency at otherwise equal 

sensory feedback congruence during a hand tapping task (Buchholz et al., 2019). It was found that 

higher beliefs of agency were accompanied by a stronger beta-band connectivity between the 

primary motor cortex (M1) and both the inferior parietal lobe and right middle temporal gyrus, a region 

compatible with the putative seat of the sensorimotor comparator. 

 

1.4.3. Brain machine interfaces, a tool to investigate sense of agency 
 
Arguably, one of the main difficulties in the investigation of sense of agency, especially for normal 

bodily movements, is that the congruence between motor commands and actions is usually perfect, 

and extremely hard to manipulate experimentally. Indeed, until recently, performing a bodily action 

was ultimately the only mean of producing an effect in the external world. Nowadays, Brain machine 

interfaces (BMIs) provide a context where it possible to dissociate intentions, motor commands and 

external events. BMIs are systems that access and decode ongoing neural activity, typically based 

on signals from scalp or chronically implanted EEG, and use them to control an external device. 

They have high potential for clinical applications in neuroprosthetics, and, in the longer term, in the 

enhancement of human capabilities. More importantly for our field of research, they provide an 

alternative pathway for the brain to interact with the world, which can be manipulated and flexibly 

controlled. It is therefore evident that they constitute an exciting tool to investigate sense of agency. 

Furthermore, not only can BMIs inform research on the sense of agency, but advancing our 

understanding of sense of agency may help develop more efficient ad ergonomic BMIs. Indeed, 

since it accompanies all our spontaneous actions, sense of agency (or a lack of it) may affect the 

neural signals that are used by brain machine interfaces and influence their functioning. Despite the 

potential importance of the sense of agency for BMI control, it has not been investigated 

systematically in the BMI field. 

 

1.5. Bayesian approximations of brain function 
 
Body ownership and the sense of agency are two components of BSC that give rise to a distinct 

phenomenology, rely on different brain structures and are behaviourally dissociable (Kalckert & 

Ehrsson, 2012). For example, if a muscular twitch is artificially induced in my hand, I will still 

recognize that it is indeed my hand that is moving, but I will not experience agency for that movement. 

Conversely, when playing a videogame, my sense of agency for the character I am controlling will 

not typically lead to fully embodying it, so that I can easily tolerate if my character dies in the game. 

Nevertheless, empirical evidence shows that they share common multisensory principles. By 

showing participants a rubber hand that moved synchronously with their real hand, Dummer and 

colleagues (2009) could induce the same illusory ownership as in the classic RHI. Both active and 
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passive movements were effective in inducing the illusion, and, as for the RHI, temporal asynchrony 

abolished it. Additionally, the authors show that active movements induced a stronger feeling of 

ownership, although other studies could not reproduce this result (Kalckert & Ehrsson, 2014; Walsh 

et al., 2011). Furthermore, it is worth noting that even the 2012 study by Kalckert, which argued for 

the dissociability of agency and ownership, found that despite ownership can be induced without 

agency, and vice versa, subjective ratings are positively correlated, but only when both scores are 

high. Their conclusion was that ownership more strongly depends on anatomical congruence, while 

agency relies more strongly on volitional and sensorimotor cues, but they mutually reinforce each 

other when they are both present. Intuitively, the conceptual link between the mechanisms of agency 

and ownership lies in the striking importance of bottom-up congruencies in sensory and/or motor 

evidence about the body, and its relationship with the external world. For example, what made the 

RHI so remarkable was the fact that cognitive constrains and years of prior knowledge about our 

hand could not overcome the effect simple spatio-temporal contingencies in visuotactile inputs, at 

least at the pre-reflexive level. Clearly, participants know that the rubber hand is not their own, but 

this does not prevent them from feeling as if it was indeed part of their body. A few years after the 

first RHI paper, Ramachandran (2003) had the intuition to compare this phenomenon to what he 

called “Bayesian logic”, meaning that the process giving rise to illusory ownership would resemble 

statistical inference. Since in everyday experience it would be extremely unlikely to feel touch on the 

hand every time that an alien object is stroked, and extremely likely when it is my hand that is stroked, 

the brain “infers” that the rubber hand must be my hand. Indeed, this is nothing but a qualitative 

formulation of Bayes theorem for statistical inference.  

 

1.5.1. Bayesian approaches to BSC 
 
The idea that the brain’s functioning may be in general described in terms of statistical inference is 

amongst one of the oldest general neuroscientific principles, dating back even to Helmholtz and his 

“unconscious inferences”, and was subsequently present throughout decades of research in 

neuroscience. Barlow (1961) described sensory processing as a form of redundancy reduction, in 

the statistical framework of information theory. Later on, these ideas have inspired advances in 

machine learning and artificial intelligence, for example the brain-inspired artificial neural network for 

statistical inference named, not by chance, a Helmholtz machine (Dayan et al., 1995). However, it 

was not until recently that a precise mathematical formulation of this principle was empirically tested.  

 

In 2002, Ernst and Banks studied how human subjects combined visual and tactile information when 

estimating the size of a hand-held object in different visibility conditions, and in the presence of 

conflicting visual and tactile information (Ernst & Banks, 2002). They found that not only the final 

estimate was a combination of the actual visually and haptically perceived sizes, but that their relative 
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weight in the combination was proportional to the squared inverse of the uncertainty on those 

modalities (measured as the mean squared error in a purely unisensory task). When visual 

information was made less reliable, its relative weight in the final size estimate decreased (and the 

mean error on size judgements increased) compatibly with model predictions. This cue combination 

strategy matches that of an ideal Bayesian observer aiming to minimize the error on the final size 

estimate given intrinsically noisy sensory information, and has been therefore termed optimal 

integration. Optimal integration is not limited to visual and tactile modalities, but has been shown to 

apply to a wide range of senses (Alais & Burr, 2004; Butler et al., 2010; Körding et al., 2007) or even 

when combining different cues within one sensory modality (Thurman & Lu, 2014).  

 

Their flexibility, wide range of applications, and the presence of a clear evolutionary motivation (as 

they provide an “optimal policy”), led Bayesian approximations of brain function to become an 

extremely influential theoretical framework for human behaviour, which received increasing interest 

also in the field of BSC. Not only Ramachandran’s intuition about body ownership, but also Synofzik’s 

more recent (2013) attempts to reconcile predictive and postdictive accounts of sense of agency fall 

within this interpretative framework, proposing that sense of agency arises from the optimal 

integration of different cues about intention and action. Indeed, Bayesian approximations of brain 

function provide a computationally rigorous and general background to treat the detection of sensory 

and motor contingencies that seems to be key for both body ownership and sense of agency. 

Therefore, they may constitute a promising path towards a unifying account for these key 

components of BSC, which has been extensively explored at least conceptually. Apps and Tsakiris, 

for example, (2014) proposed that self-recognition would also result from the process of statistically 

inferring what is more likely to be caused by me. Indeed, inference in the brain may not be limited to 

sensorimotor processes, but extend to mental states, and humans would entail a model of 

themselves as the most likely causes of their thoughts (Friston, 2011; Limanowski & Blankenburg, 

2013). Furthermore, the same idea has been applied to connect interoception and emotional 

processing (Seth, 2013; Seth & Friston, 2016), and to explain mental disorders such as autism 

(Palmer et al., 2017) and schizophrenia (Fletcher & Frith, 2009). In sum, the literature addressing 

the link between Bayesian inference and various aspects of BSC came to constitute an extremely 

rich body of studies in the last decade, amongst which we have reviewed here only a few 

representative ones. Remarkably, the vast majority of those studies are conceptual or purely 

mathematical. Works aiming to empirically test the predictions of a rigorous mathematical formulation 

of Bayesian inference for BSC are strikingly scarce, and they focus essentially on the two key 

components of BSC highlighted in this introduction: body ownership and sense of agency. As of now, 

two studies (Fang et al., 2019; Samad et al., 2015) proposed and empirically tested a Bayesian 

model of body ownership, and only one recent study (Legaspi & Toyoizumi, 2019) proposed an 

explicit formulation of a Bayesian model for agency, which was only tested on already existing data. 
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Due to the importance of Bayesian approaches to brain function for this thesis, we will review these 

papers in more detail in the following paragraph.   

 

1.5.2. Bayesian Causal Inference models for BSC. A powerful conceptual framework 
with little empirical support? 
 
All models proposed in these three studies belong to the family of Bayesian Causal Inference 

(Bayesian CI) models, which can be seen as an extension of Ernst and Banks’ model of optimal 

multisensory integration. In order to be optimal, the rule of the squared inverse precision needs a 

subtle yet fundamental assumption to be verified: the two sources of information in different 

modalities need to originate from the same physical source. To make a simple example, audiovisual 

integration allows to more precisely estimate the source of a sound by combining visual and auditory 

information, but clearly this is only true if the object whose visual location is being integrated with 

auditory information is the true source of the sound. If, as in the classical ventriloquism effect, the 

source of the sound is not what I believe it to be, visual information is worsening instead of improving 

my estimate, and the optimal policy would be to rely on hearing alone (see Alais & Burr, 2004). For 

simplicity, this same source hypothesis was assumed to hold a priori in Ernst and Banks’ study, which 

is certainly reasonable within a controlled experimental setup. In everyday life, multiple inputs in 

different sensory modalities are presented simultaneously, and it is therefore clear that, as a 

necessary step for successful integration, the brain needs to figure out which pairs of stimuli are to 

be integrated across sensory modalities. Bayesian Causal Inference (Bayesian CI) models address 

this binding problem and the subsequent integration of stimuli within the same probabilistic 

framework. The probability that two sensory events originate from the same physical cause is 

computed as a first step. Then, it is used to refine the perceptual estimate, by weighing information 

in different modalities not only by their reliability, but, critically, also by the probability that they are 

truly causing the event about which inference is being made. The relevance of these models for BSC 

becomes evident by applying this interpretative framework to body related information, for example 

visual and proprioceptive cues about hand location. In this case, the process of causal inference 

would compute whether proprioceptive information about my hand has the same origin as the hand-

shaped object I am looking at, in order to estimate whether visual cues can be relied upon when 

estimating hand position. If the “same cause” hypothesis is statistically favoured, visual information 

is integrated with proprioceptive information, and it is reasonable to assume that, subjectively, the 

hand is perceived as one’s own. In the opposite case, the hand is perceived as an external object, 

and proprioceptive information alone is used. In other words, an object perceived through external 

senses is embodied if sensory information about it is estimated to be statistically more likely to have 

the same physical origin as somatosensory information. In this view, self-identifying inference would 

pertain the visual modality only, implying that somatosensory information would be inherently 

perceived as self-related, or, to use Bermudez’s words, immune to error through misidentification. 
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While this is certainly a sound assumption for adults, it seems also reasonable that this ability is 

acquired and not innate. In this sense, it is less clear when and how the ability to automatically self-

refer somatosensory information, that makes it “special” for BSC, emerges in the developing brain.  

 

Within the Bayesian CI framework, Samad and colleagues (2015) modelled body ownership based 

on statistical inference upon the spatial and temporal congruency of visual, tactile and proprioceptive 

information, and tested their model in a RHI-like setup. They predicted the typical range of visuo-

proprioceptive disparities that would allow for the illusion to arise, and found it to be in line with 

existing literature. Furthermore, they predicted that the simple presentation of a rubber hand would 

elicit a shift in the position of the hand as perceived by proprioception, and confirmed this 

experimentally. The evidence presented in their work remains mainly qualitative, as the unisensory 

precisions (needed to compare the tolerated disparity range) were fixed for all subjects based on 

literature. Measuring these quantities would have instead allowed producing individualized 

predictions, and comparing them with empirical data. More recently, Fang and colleagues (2019) 

proposed another Bayesian CI model for hand ownership, applied this time to a setup similar to the 

moving RHI, and based on the manipulation of visuo-proprioceptive congruency in the spatial 

domain. Humans and macaques had to perform reaching movements with their real hand, concealed 

from their view, while a virtual hand was displayed moving in synchrony with their real hand, but 

visually shifted by variable amounts. The reaching error linearly increased with the amount of shift 

as long as disparity levels remained small, as if the perceived hand position was a weighted mean 

of visual and proprioceptive cues and in line with predictions of a forced fusion model of optimal 

integration. As disparity levels increased further, participants were increasingly guided by 

proprioception in performing their movement, and reaching errors decreased. This broke the forced 

fusion assumption and was instead in line with the predictions of the proposed Bayesian CI model. 

At small levels of disparity, the probability that the virtual hand is the same as the proprioceptive 

hand is close to one, yielding the same predictions as the forced fusion model. At larger disparities, 

the same cause probability decreased and the weight attributed to proprioception increased, towards 

a regime of pure proprioceptive estimation. As mentioned previously, the same cause probability can 

be seen as the mathematical counterpart of body ownership. The same cause probability (or putative 

ownership probability), which can be computed from reaching errors as a function of disparity, 

correlated with subjective ratings of ownership from human participants. This suggests that, indeed, 

same cause probability and subjective feeling of ownership are related. Moreover, 

neurophysiological recordings obtained from the premotor cortex of macaques performing the task 

revealed populations of neurons tuned either to the segregation or to the integration of visual and 

proprioceptive information. In trials in which integrating neurons were more active, the relative weight 

of proprioception was higher, and the ownership probability inferred from reaching errors was 

therefore higher, and vice versa. Arguably, the main limitation of this insightful study is the validation 
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of model predictions at the behavioural level. In order for cue integration to be Bayesian optimal, the 

weights attributed to different sensory modalities need to reflect the precision of the relative 

unisensory estimates. Therefore, the unisensory precisions need to be either experimentally 

manipulated (as in Erns and Banks, where different levels of noise were added to the visual input) 

or measured in separate unisensory tasks. In this study, instead, the unisensory precisions are left 

as free parameters to be fitted from behavioural data, weakening the claim that the behaviour 

resulting from the visuo-proprioceptive task is Bayesian optimal. In another recent study, Legaspi 

and Toyoizumi (2019) applied a similar framework to model sense of agency and its implications for 

the intentional binding task. In their model, the only relevant variables were the timing of an action, 

and of its putative sensory outcome (e.g. the beep in the classical intentional binding paradigm). The 

probability that the action and the outcome have the same cause is estimated based on the likelihood 

ratio that the action did or did not cause the outcome, given the temporal delay between the two 

events. When the same cause probability is higher than the different cause probability, sense of 

agency is elicited, and the temporal estimates for the action and its effect are attracted towards each 

other. This provides a mathematical model of sense of agency whose predictions are qualitatively in 

line with experimental data (mainly from Haggard’s works on intentional binding). However, the 

model was only tested on pre-existing reports from literature, and no ad-hoc experiment was 

performed. Overall, experimental evidence suggests that Bayesian models of brain function may 

provide a powerful normative framework to describe the processes leading to body ownership and 

sense of agency. However, compared to the now widely accepted Bayesian models of multisensory 

integration, studies investigating the Bayesian nature of BSC experimentally are still scarce and only 

partially conclusive. 
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2. Thesis outline 

 
This thesis work focuses on investigating how the two key components of BSC, body ownership and 

sense of agency, emerge from the multisensory integration of bodily and external signals, focusing 

on psychophysical, neurophysiological and computational aspects. Four main studies are presented 

and discussed extensively, two focusing on body ownership and two on the sense of agency. The 

first study presents a neural network model of multisensory integration in PPS, and its link with body 

ownership. The second study, also focusing on body ownership, is a pre-registered protocol. We 

propose a behavioural paradigm to rigorously test a Bayesian model of how body ownership 

emerges from multisensory congruencies, overcoming the limitations of previous studies. In the third 

study, we investigated the interplay between motor commands, sensory feedback, and 

neurophysiological signals in generating sense of agency in an intracortical brain machine interface. 

In the fourth study, we investigated the role of neural oscillations for the sense of agency within the 

setup used in the third study.  
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2.1. Study 1 - From statistical regularities in multisensory inputs to 
peripersonal space representation and body ownership: Insights from a 
neural network model. 
Tommaso Bertoni, Elisa Magosso, Andrea Serino 

The European Journal of Neuroscience. 

2021 Jan; 53(2):611-636. DOI: 10.1111/ejn.14981. 

Personal contribution: designed and implemented the neural network model, collected 

behavioural data, analysed the data and wrote the paper. 

In Study 1, we used artificial neural networks to investigate how the integration of visual, 

proprioceptive and tactile inputs can lead to visuo-tactile integration in body-part centred coordinates 

(PPS representation), and how this property spontaneously leads to reproduce behavioural 

correlates of body ownership. The synaptic connectivity spontaneously tuned based on Hebbian 

learning during a period of simulated synapse maturation, induced by multisensory inputs 

reproducing the statistical regularities between body-related and external information. The network’s 

multisensory neurons that responded to touch also developed overlapping visual and proprioceptive 

receptive fields. These spontaneously learned characteristics allowed reproducing key 

neurophysiological and behavioural properties of PPS representation, specifically the emergence of 

a hand-centred visuotactile representation. Moreover, we found cross-modal influences from visuo-

tactile stimulation on proprioceptive encoding that could be mapped to behavioural correlates of body 

ownership in a RHI like setup. Synchronous visuo-tactile inputs induced a shift of the proprioceptive 

position, as encoded in multisensory neurons, towards the location where visuo-tactile stimulation 

occurred. This effect is in line with the proprioceptive drift observed in the RHI (and the IHI), arguably 

the only correlate of pre-reflexive sense of ownership that can be investigated in an artificial neural 

network. Furthermore, the plausibility of the proposed network architecture was tested through a 

dedicated behavioural task, showing that visual stimuli in hand centred coordinates (as signalled by 

proprioception) modulate tactile reaction times. 
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2.2. Study 2 - The self and the Bayesian brain: testing probabilistic models of 
body ownership  
Tommaso Bertoni & Giulio Mastria, Henri Perrin, Boris Zbinden, Michela Bassolino, Andrea Serino 
 
Under review, Nature Communications 

 
Personal contribution: designed the study, developed the mathematical model, analysed the data 
and wrote the paper.  

 
Study 2 is a pre-registered protocol, currently under review. The protocol presents a Bayesian CI 

model for hand ownership and a set of ad hoc tasks aiming at increasing the evidence base for 

Bayesian accounts of BSC. Specifically, we will try to overcome the limitations of previous studies 

by rigorously testing whether the process leading to body ownership is optimal in a Bayesian sense. 

As mentioned in the introduction, empirical evidence in this sense is still scarce and not satisfactory. 

The model computes the probability of hand ownership based on the spatial and temporal disparities 

between visual and proprioceptive information about hand location and movement, and produces 

estimates of the perceived hand position as a function of the disparity level, and of the associated 

ownership levels. The model will be tested in a virtual-reality reaching task similar to the one 

proposed by Fang (2019), but with the addition of temporal delays to visuo-proprioceptive spatial 

disparities. Importantly, model parameters fitted from reaching errors in this multisensory task will be 

compared to direct measures in a set of dedicated unisensory tasks. The crucial measures therefore 

consist of the spatial and temporal uncertainties of proprioceptive and visual estimates, allowing to 

rigorously address the question of Bayesian optimality. The set of tasks and computational analyses 

has been optimized through extensive simulations and tested on a smaller pool of healthy 

participants (N = 10 as a replication of Fang’s study, N = 2 to demonstrate the practical feasibility of 

our task). The preregistered study forecasts a total of 40 healthy participants to be tested to 

guarantee sufficient statistical power (95 % with α = 0.05).  
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2.3. Study 3 - Sense of agency for intracortical brain machine interfaces 
Andrea Serino & Marcie Bockbrader, Tommaso Bertoni, Sam Colachis, Marco Solca, Collin 
Dunlap, Kaitie Eipel, Patrick Ganzer, Nick Annetta, Gaurav Sharma, Pavo Orepic, David 
Friedenberg, Per Sederberg, Nathan Faivre, Ali Rezai, Olaf Blanke  

 
Under review, Nature Human Behaviour 

Personal contribution: pre-processed the data, conceived and performed analyses, visualization. 

Study 3 aims at investigating the behavioural and neurophysiological correlates of sense of agency 

for bodily actions. The study was carried out in collaboration with the Ohio State University, in a 

tetraplegic participant using an intracortical brain machine interface that allows restoring functional 

control of the upper limb. The BMI system reads cortical signals from a chronically implanted array 

in the right hand area of M1, which are decoded and translated online to functional hand and wrist 

movements through neuromuscular electrical stimulation (NMES). This setup allows decoupling 

motor commands and actual body movements, which clearly would not be possible in healthy 

individuals. Leveraging on this unique opportunity, the participant’s sense of agency for BMI 

generated body movements was manipulated and assessed with either congruent or incongruent 

somatosensory (as provided by the NMES system) and visual feedback (as provided by a virtual 

reality animation). As predicted by theory, feedback congruency strongly modulated the participant’s 

sense of agency. Moreover, we found that feedback congruency and sense of agency could be 

decoded from M1 multiunit activity, and that congruency signals were significantly stronger than 

visual congruency and pure agency signals. Surprisingly, we found that somatosensory feedback 

modulated M1 signals with equal or stronger intensity than motor commands themselves: under 

NMES stimulation, M1 activity with incongruent somatosensory feedback reflected the implemented 

movement more than the intended one. Finally, we investigated whether sense of agency affected 

the performance of the BMI decoder, and found evidence suggesting that BMI actions can be 

implemented more reliably when sense of agency is high.  
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2.4. Study 4 - The phase of pre-movement mu oscillations predicts sense of 
agency for an intracortical brain machine interface 
Tommaso Bertoni, Marcia Bockbrader, Sam Colachis, Marco Solca, Jean Paul Noel, Nathan 
Faivre, Ali Rezai, Olaf Blanke, Andrea Serino 
 
In preparation 
 
Personal contribution: conceived and performed the analyses, wrote the paper.  
 
Study 4 focuses on data from the setup presented in Study 3, as well as from another experiment in 

the same participant, which was analysed specifically to uncover the role of neural oscillations in 

sense of agency. In the first experiment, we focused on a subset of conditions where sensory 

feedback weakly correlated with agency ratings, so to maximise the contribution of endogenous 

oscillations. In the second experiment, we studied the effect of neural oscillations in a BMI version 

of the Libet paradigm. The participant had to report the perceived timing either of actively performed 

BMI actions, or of passive movements randomly generated through the NMES. Behavioural results 

showed that active movements were perceived as occurring earlier in time compared to passive 

movements, suggesting that agency leads to an anticipation of the perceived movement onset in 

this setup. Therefore, we used movement timing reports within the active condition as an implicit 

measure of sense of agency. We found that the phase of mu (8 Hz) oscillations up to 570 ms before 

movement onset predicted both the explicitly and implicitly assessed sense of agency, with a 

consistent phase relation across the two measures. When looking at multiunit activity as a function 

of neural oscillations, we found that the optimal phase for sense of agency is compatible with the 

phase window in which spikes are maximally facilitated. However, despite it strongly affected 

subjective (and implicit) ratings of agency, the mu phase at movement onset did not significantly 

affect subsequent patterns of multiunit activity at the population level. We concluded that a possible 

explanation is that mu oscillations influence the sense of agency not by directly affecting M1 activity, 

but by biasing the connectivity between M1 and frontal or parietal regions associated with the sense 

of agency. 
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3. Discussion 

3.1. From receptive fields to body ownership (via embodiment) 
 
In Study 1, we showed how the presence of tactile information could “align” the artificial visual and 

proprioceptive receptive fields learned by our model. The network was trained with a combination of 

visual (about external stimuli), proprioceptive (about hand position) and tactile inputs reproducing 

the ecological associations between these modalities (i.e., touch was provided when the position of 

external stimuli coincided with the one of the hand). Neurons that were originally designed to 

potentially respond to any type of stimulation, and then have learned to respond to touch, 

concurrently developed overlapping visual and proprioceptive receptive fields. Conversely, neurons 

that developed weak tactile responses, also developed anti-overlapping visual and proprioceptive 

receptive fields (Fig. 2c-d, Study 1). In synthesis, this is key to the emergence of a body-part centred 

visuotactile map, subtending PPS representation (Fig. 3c, Study 1). Despite the individual response 

properties of a whole population of neurons with complex receptive fields may appear hard to 

represent intuitively, their emerging collective behaviour can be actually grasped quite easily. The 

overlapping visual and proprioceptive RFs of touch-responding multisensory neurons implies that 

they can also be activated when visual stimuli are close to the proprioceptively encoded hand 

location. Therefore, even in the absence of tactile stimulation in the unisensory population, tactile 

information will be encoded in that subset of “tactile” neurons in the multisensory layer, whenever a 

visual input is presented close to the proprioceptively (or visually) encoded hand position. This same 

property of the network implies that, if touch is provided simultaneously with a visual stimulus far 

from the hand, the neurons that are preferentially activated are those that code also proprioceptively 

for that far location in space. Therefore, proprioceptive information in the multisensory layer will shift 

towards the position of visual stimulation (Fig. 2e, Study 1). We interpreted this as the in-silico 

analogue of the proprioceptive drift induced in the invisible hand illusion (or the rubber hand illusion, 

in a further version of the network including visual information about hand position).  

 

There has been considerable debate on whether the proprioceptive drift can be truly used as a proxy 

of body ownership. Indeed, it has been noted that proprioceptive drift can occur in stimulation 

conditions that do not elicit subjective body ownership as assessed through questionnaires, such as 

asynchronous stroking in a RHI setup (Rohde et al., 2011), or simple observation of a rubber hand 

(Samad et al., 2015). Nevertheless, the amount of drift does correlate with the perceived strength of 

the illusion (Guterstam et al., 2013; Tsakiris & Haggard, 2005), and it would therefore seem that even 

if illusory ownership is not the only possible cause of proprioceptive drift, the latter is amongst the 

robust behavioural correlates of the former. More importantly, proprioceptive drift is arguably the only 

correlate of illusory body ownership that can be tested in a neural network model, or at least by far 

the simplest. As a simple example, putting a neural-network in the condition to provide subjective 

reports would require, at the very least, a mechanistic model of the neural principles of semantics, 
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which is far beyond our current understanding. As just mentioned, the mechanism that allows 

replicating proprioceptive drift in our model is instead rather simple, provided some familiarity with 

the principles of artificial neural networks.  

 

Indeed, one might even argue that a mechanism resting on a multisensory population of neurons 

with overlapping visual and proprioceptive receptive fields is too simple to explain an apparently 

complex experiential phenomenon such as body ownership. In order to gain a deeper insight into 

this matter, it may be useful to look for rigorous definitions of the key concepts in philosophical 

literature, starting from embodiment. This term is often erroneously used as a synonymous of body 

ownership, but it is more appropriate to use it as an intermediate step towards a rigorous definition 

of body ownership, through functional properties. According to De Vignemont (2011), “E is embodied 

if and only if some properties of E are processed in the same way as the properties of one’s body”. 

The fact that this is a functional definition, based on information processing principles, makes it 

suitable to be applied to neural network modelling. Under this perspective, the feeling of ownership 

would refer to the phenomenal experience that arises for embodied objects, under certain 

circumstances. Therefore, embodiment would be a necessary component for the existence of 

ownership, but not a sufficient one. As a classical example, a tool can be embodied according to De 

Vignemont’s definition, but ownership is not typically experienced for tools, with some notable 

exceptions such as prostheses. Arguably, the key to the fact that embodiment is not sufficient for 

ownership lies in the fact that the rigorous definition of embodiment (as well as its intuitive notion) 

allows for the concept of partial embodiment, i.e., when only a subset of an object's properties is 

processed as if it was a body part. For example, embodiment can concern motor properties (e.g. 

expecting an object to move upon a motor command as if it was part of the body), or perceptual 

properties (e.g. expect touch when the object is “stimulated” as indicated by visual cues). Full 

embodiment would then refer to the case in which all of an object’s properties are processed as if it 

was part of the body (De Vignemont, 2011). Despite not having been explicitly discussed by the 

author, it is tempting to assume that full embodiment leads inevitably to body ownership.  

 

Applying this framework to our model, we would conclude that it exhibits partial embodiment under 

two main aspects. First, the prediction of touch when visual stimulation is provided close to a body 

part. Second, proprioceptive drift towards the location of stimulation if touch is provided 

simultaneously with visual stimulation at a location shifted from that of the hand. Our work aimed at 

conceptually demonstrating how a subset of key aspects of BSC can emerge from a neural network 

learning its synaptic connectivity in a biologically plausible manner, while being simple enough to 

allow an intuitive understanding of its mechanistic principles. Clearly, this implies that there are many 

other aspects of embodiment that are not accounted for. For example, we do not model motor 

aspects, or the role of the visual appearance of body parts in determining their integration into body 

representations. In order to account for motor properties, the network should at least possess a 
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proper temporal dynamics (e.g., a recurrent architecture allowing to integrate present and past 

states), and an input encoding efference copies of motor commands. In order to account for the 

visual recognition of body parts, visual inputs should be encoded as natural images in retinotopic 

coordinates. In sum, the simplification of the training inputs and of the network’s architecture and 

dynamics is possibly too extreme to allow an attempt of rigorously validating model predictions, for 

example by comparing simulated activity in the multisensory layer to response properties of parietal 

multisensory neurons.  

 

In this paragraph, we will try to argue how these limitations might be overcome by generalizing our 

approach to a richer architecture and set of training inputs, without modifying the key principle: the 

Hebbian learning of statistical regularities in multisensory inputs. For example, if the network could 

successfully be trained to learn the joint probability of tactile, proprioceptive and visual inputs, with 

the visual encoding consisting of natural images, it would be likely able to reproduce subtler 

properties of embodiment. For example, proprioceptive drift with visuo-tactile stimulation would occur 

only if the stimulated visual object was shaped as a hand. Under the statistical perspective, this 

would be because the network has learned that only in this case the proprioceptive position of the 

hand typically coincides with the location of visual stimulation. Interestingly, the “visual form” 

constraint for embodiment was originally proposed by Tsakiris (2010) as a top-down cognitive factor, 

opposed to “Bayesian” bottom-up factors. In our hypothetical model instead, the same phenomenon 

would be explained mechanistically as the bottom-up result of statistical computations. Always in 

principle, the approach could be generalized to all aspects of embodiment for a body part, and even 

to other aspects of information processing that are relevant for bodily self-consciousness, such as 

whole body ownership, self-location and possessing a first person perspective. The information 

processing properties of self-location arguably rest on the learning of associations between self-

related cues of orientation and motion (as cued by motor commands and the vestibular system) and 

external (mainly visual) cues about one’s position with respect to the environment. Again, the 

fundamental principle lies in the associations of information conveyed by self-related and external 

sensory pathways. Crucially, these associations are arguably learned from the natural statistics of 

the environment, since they would be too high-dimensional and complex to tune to be genetically 

hard wired (for a beautiful conceptual argument in this sense, see Hinton, 2014). Indeed, empirical 

evidence goes in the same direction, showing a gradual development of body representation 

throughout human life (Cowie et al., 2018; Pagel et al., 2009; Slaughter & Brownell, 2011), and its 

ability to plastically adapt to novel associations in multisensory inputs likely due to short (Held & 

Freedman, 1963; M.R. Longo & Serino, 2012; Martel et al., 2016; Redding et al., 2005) and long (T. 

R. Makin et al., 2015; Ziemann et al., 1998) term plasticity. Autoencoders, such as the restricted 

Boltzmann machine used in our work, are neural networks designed to learn a compact 

representation of its inputs in an unsupervised manner. They can be trained based on a simplified 

version of Hebb’s rule, and therefore they constitute promising candidates to model the process of 
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association learning in a biologically plausible artificial neural network. Moreover, they offer the 

valuable theoretical advantage of providing a rigorous interpretative framework of the classical notion 

of “association learning” in statistical terms. Indeed, the learning rule used in our network is not only 

an approximation of Hebbian plasticity, but it can be shown that, if the training is successful, it should 

lead the network to be a generative model of the joint probability of its multisensory inputs. This 

characteristic provided our network with information processing properties that are thought to be the 

functional counterpart of some key phenomenal components of BSC. Here, we argue that “simply” 

applying the same principle to a richer set of multisensory inputs, in an appropriate form of 

autoencoder, might allow to reproduce “all” the information processing properties required for full 

embodiment, and possibly BSC. At the functional level, the success of this operation would be a 

matter of computational efficiency more than a conceptual one. In this sense, the continuous 

advancement of techniques, and the growing interest in the intersection between deep learning and 

neuroscience might help overcoming technical limitations. A sufficiently complex autoencoder could 

be then used to formulate subtle predictions about behaviour and the organization of receptive fields, 

and these predictions could be empirically tested to validate a full mechanistic account of body 

ownership. Still, there is no doubt that the nature, or even the existence, of a necessary link between 

certain properties of information processing and phenomenal aspects of BSC might remain the 

argument of eternal debate. Nevertheless, these questions are not subject of scientific investigation, 

nor can be discussed here, as they pertain the hard problem of consciousness (Chalmers, 2018; 

Nagel, 1974).  

 

3.2. The role of the motor cortex in encoding sensory feedback, intentionality 
and sense of agency 
 
As its name may suggest, the motor cortex has been traditionally regarded as a mere executor of 

movements. Indeed, most of the direct projections to the cortico-spinal tract in the human brain 

originate from the primary motor area (Porter & Lemon, 2012). Nevertheless, sensory feedback has 

been long known to be encoded in the motor cortex, and its sensory properties have received 

increasing attention in recent years (Hatsopoulos & Suminski, 2011). Thanks to the unique setup 

used in Study 3 (and 4), we could investigate the interplay between motor commands and 

visual/somatosensory feedback, while being able to manipulate the congruency between motor 

intentions and their actual bodily consequences. The participant performed BMI actions, which were 

translated to various combinations of congruent and incongruent visual (through virtual reality) and 

somatosensory feedback (through muscular stimulation). For each condition, we assessed the 

participant’s sense of agency. First, we found that the congruency between intended actions and 

executed movements could be decoded from local field potential (LFP) and multiunit signals in M1, 

for both visual and somatosensory feedback. Despite the spinal lesion also partially affected afferent 

pathways, the decoding performance was higher and occurred at earlier temporal delays for 

somatosensory feedback. In line with this observation, we found that the output of the BMI decoder 
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was more strongly affected by somatosensory than by visual feedback (Fig. 5, Study 3). When 

incongruent somatosensory feedback was provided, the decoded strength of the intended 

movement sharply decreased, whereas it was basically left unchanged by incongruent visual 

feedback. We more closely studied the neural causes of this effect, by investigating trials with 

incongruent somatosensory feedback, where one movement was intended but a different movement 

was actually implemented through NMES stimulation. After movement onset, the population-level 

activity quickly came to resemble the activity elicited by congruent execution of the actually 

implemented movement, rather than the intended one (Fig. 6, Study 3). In other words, multiunit 

population activity seemed to reflect the NMES-realized movement more than the willed one. In 

contrast, when comparing congruent and incongruent visual feedback, we found little difference in 

multiunit activity.  

 

These findings have interesting implications for the field of BMI control, as they suggest that 

decoding systems based on primary motor cortex activity need to be robust to the effects of 

(potentially unpredictable) somatosensory feedback on population activity. As already noted in other 

works, neurons in the primary motor cortex exhibit an extremely wide range of responses to sensory 

feedback, with cells preferentially coding for motor commands, sensory feedback or a combination 

of the two (Suminski et al., 2010). It has been observed that sensory feedback can even trigger 

“covert” motor commands, which in a BMI system would need to be appropriately distinguished from 

actual motor commands to avoid unintentional activation. Indeed, this is in line with the observed 

increase of the decoder output for the executed movement during somatosensory incongruent 

stimulation. It is worth noting that the participant was still typically able to activate the correct decoder 

in case of incongruent somatosensory feedback, despite population activity was similar to the one 

elicited by the opposite movement. This likely indicates that the BMI decoder is already somehow 

picking the most robust motor command features, by selecting channels that mainly contain 

“intention-tuned” cells. Our results may therefore inspire further technical research aiming at 

optimizing decoder robustness. Interestingly, literature reports a strong modulation of M1 signals by 

both visual and somatosensory feedback, while in our case the effect seemed to be vastly limited to 

somatosensory inputs. This may be due to the fact that previous studies mainly used passively 

implemented movements (Flament & Hore, 1988; Herter et al., 2009; Pruszynski et al., 2011; 

Suminski et al., 2009), while here we directly assessed the effect of executing (or observing) one 

movement while the opposite movement was intended. Our results suggest that, under this 

conditions, only somatosensory feedback has the capability of partially “overwriting” the motor 

commands encoded in M1.  

 

Besides the implications for the BMI field, this result opens questions that are of interest for the 

neuroscience of agency and intentionality. Behavioural results clearly showed that incongruent 

feedback strongly diminished sense of agency, regardless of its visual or somatosensory nature. 
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Although we did not directly assess the associated phenomenology, we can assume that the 

participant’s subjective feeling of motor intention was left unchanged by incongruent feedback. 

Otherwise, passive movements would be able to give rise to false intentions, and incongruent 

feedback would not elicit negative agency, as it would be congruent with these “overwritten” 

intentions. Nevertheless, activity in the participant’s motor cortex in the case of incongruent 

somatosensory feedback looked as if the he attempted to perform the executed movement, and not 

the cued (and truly intended) one. Indeed, coding of intentionality is traditionally thought to take place 

in more frontal areas, such as the SMA, whose electrical stimulation is known to elicit a conscious 

“urge to move” (Fried, 1993). On the other hand, the same results confirm that M1 does not behave 

as a mere executor sitting at the bottom of a top-down chain originating in prefrontal areas, but it 

encodes a complex combination of efferent and afferent information that is also used to compute 

agency.  

 

Indeed, intriguing questions also arise when turning our attention more directly to the sense of 

agency. When looking at local LFP (and, to a lesser extent, multiunit) activity, after regressing out 

the effect of sensory feedback congruency, we found that we could decode the subjective sense of 

agency. This suggests that the motor cortex may be directly involved in the network of areas that 

generate sense of agency (Fig. 4B, Study 3). Nevertheless, we were able to discriminate feedback 

congruency with far greater accuracy compared to “pure” sense of agency. Indeed, it would not be 

surprising if the actual computations leading to sense of agency took place somewhere else in the 

brain, and the involvement of the motor cortex was only as a downstream area, encoding a 

combination of afferent and efferent information. The analysis presented in Study 4 is probably 

particularly informative in this sense, as it shows that, when removing the variability due to feedback 

congruency, the most robust correlate of sense of agency in M1 signals is the pre-movement phase 

of the sensorimotor mu rhythm. In the last fifteen years, it has become increasingly clear that low-

frequency neural oscillations are related to the gating of information exchange in long-range 

connections within the brain (Fries, 2005, 2015). Particularly informative in connection to our result 

is a study by Hanslmeyr and colleagues (2013), combining EEG for detecting neural oscillations and 

fMRI for the spatially detailed investigation of functional connectivity. Using an illusory contour 

detection task, they found that high-level visual processing performance was affected by the phase 

of 7 Hz oscillations in occipital regions a few hundred milliseconds before stimulus onset. 

Furthermore, the phase of these oscillations at movement onset determined the subsequent 

connectivity between low-level visual areas and the right intraparietal sulcus, assessed via fMRI. 

When the stimulus occurred close to the optimal phase for behavioural performance, the connectivity 

between these areas was significantly stronger.  Transposing this idea to sensorimotor processing, 

the phase of the mu rhythm might affect the connectivity between M1 and more frontal areas, coding 

for intention, and/or parietal areas encoding the sensory feedback, allowing for sensorimotor 

comparisons to take place. In this sense, the primary motor cortex would act as a crucial, and 
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possibly overlooked hub in the network of regions that integrate afferent and efferent information to 

generate sense of agency, whose complex interplay is orchestrated by neural oscillations. In our 

study, only data from one cortical location was available, not allowing to prove that the proposed 

mechanism is involved in the observed modulation of agency, but this is indeed an intriguing 

hypothesis. We are currently planning further studies to investigate exactly which brain regions are 

involved in this process, and whether and how the sensorimotor mu rhythm influences the 

connectivity between these areas (see paragraph 3.5.).  

 

3.3. Predictive mechanisms for sense of agency 
 
In study 4, we described a reliable endogenous neural marker of sense of agency, occurring before 

the movement takes place. Both explicitly and implicitly assessed sense of agency was higher when 

the mu phase at movement onset was near π, the negative trough of oscillations.  This is per se a 

novel and interesting finding, although observed in a single participant, and further investigations 

should aim at replicating it in a larger cohort. Nevertheless, the key oscillatory signal is most likely 

subjectively inaccessible, and faster than most cognitive processes. It is therefore reasonable to 

assume that our finding reflects a general mechanism in human sense of agency, and not some 

idiosyncratic cognitive bias present only in our participant. At the conceptual level, this result is also 

relevant for the debate between predictive and postdictive processes in sense of agency. As 

mentioned in the introduction, the key to such debate is not merely relative to the timing of cues with 

respect to the movement. Instead, the main focus is about the role of low-level sensorimotor inputs, 

likely occurring on a fast timescale around movement onset, as opposed to slower cognitive 

processes. Then, the predictive view would put a strong emphasis on prediction errors, based on 

detailed computations on afferent and efferent information. The postdictive view would instead favour 

the overall matching of intentions and external events in lesser sensorimotor detail, which is cognitive 

in nature and subject to contextual cues and biases such as the perceived value of the action. Here, 

we found that a low-level, rapidly changing neural quantity such as the phase of mu oscillations was 

reliably predicting subjective ratings about agency, seemingly providing evidence in favour of the 

predictive view. Still, the final step in the generation of such ratings is the result of a long timescale, 

cognitive process, taking place during several seconds after the movement has occurred. Therefore, 

the neural processes that lead to the modulation of agency judgements as a function of the phase 

of mu oscillations cannot be known exactly.  

 

The subject becomes even more complex when considering it under the phenomenological 

perspective. Movements taking place in the optimal phase of mu oscillations may almost 

instantaneously be accompanied by a stronger pre-reflexive feeling of agency, or simply undergo a 

different subesquent processing, which biases the production of explicit ratings retrospectively. For 

example, the mu phase may affect the saliency of sensory feedback, and bias explicit ratings while 

only indirectly affecting the experience of agency. In any case, the question about when exactly the 
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subjective experience of agency arises, and how mu oscillations influence it, remains inherently 

philosophical, since only fallible subjective reports allow accessing such information. Our results 

show that a pre-movement process, which is linked to low-level sensorimotor processing and 

completely impermeable to conscious awareness, can at the very least bias subjective reports about 

the feeling of agency, if not directly affect its pre-reflexive qualities. Therefore, the idea that the phase 

of sensorimotor oscillations at movement onset has an direct effect on the subjective experience of 

agency is not only fully compatible with our observations, but it arguably constitutes the simplest 

interpretation. Moreover, the same effect was observed when using an implicit measure of sense of 

agency, based on the perceived time of the BMI generated movement similarly to the intentional 

binding paradigm. Therefore, while agency judgements considered in our study may indeed be 

influenced by retrospective cognitive factors, they likely also inform about genuinely pre-reflexive 

phenomenological content. Our data suggests that such content is influenced by endogenous, low-

level features of sensorimotor processing, occurring before the movement takes place.  

 

3.4. Are Bayesian models of brain function useful for BSC? 
 
In this thesis, we addressed the theme of bodily self-consciousness by touching upon different of its 

aspects through a variety of techniques. Nevertheless, one main thread arguably emerges as a 

possible interpretative framework: Bayesian approximations of brain function. In a nutshell, the idea 

is that the process of congruency detection underlying several key aspects of BSC is performed by 

the brain as if it was an ideal Bayesian observer, performing statistical inference.  

In Study 1, the key idea behind the learning rule of the network was that it should allow the network 

to behave as a good generative model of its sensory inputs. In mathematical terms, this means that 

the network should learn to approximately reproduce the joint probability distribution of neural activity 

in its input layers. In neuroscientific words, this translates to the idea that the network’s spontaneous 

activity in absence of inputs, or its “dreams”, in Geoffrey Hinton’s words, should resemble the 

“ecological” sensory stimulation provided during training. Therefore, the idea that the brain might 

work as an inference machine is already built into the type of network that we chose.  

 

In the studies about sense of agency, the link with Bayesian approaches to brain function is less 

evident, but not less interesting, and it starts from a peculiar observation that can be made in Study 

4. The subset of yielding the key effect contained a mixture of trials with congruent visual and 

incongruent somatosensory feedback (V+/S-), and incongruent visual and congruent somatosensory 

feedback (V-/S+). The specific relation between the phase of mu oscillations and sense of agency 

appeared to be the same in V+/S- and in V-/S+ conditions (Fig. 3f, Study 4). In both cases, sense of 

agency was highest for movements occurring when the phase was near π, suggesting that the 

underlying mechanism is independent from the input modality. The mu phase may be therefore best 

described as a general gating mechanism for the causal binding between motor commands, coded 

in M1, and events in the external world, coded in sensory cortices. Indeed, this interpretation is 
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already in line with the rich literature studying the role of neural oscillations in orchestrating brain 

connectivity. Interestingly, the role of neural oscillations in binding information across brain areas has 

been recently empirically connected to the Bayesian framework, offering an intriguing interpretation 

to our result. In a brilliant EEG study, Rohe and colleagues investigated cross-modal interactions 

between visual and auditory stimuli, by presenting a variable number of visual flashes and auditory 

beeps in rapid succession, and asking participants to evaluate the total number of visual or auditory 

stimuli that they perceived (Rohe et al., 2019). As already known from classical studies, the number 

of flashes can bias the perceived numerosity of beeps, and vice versa (Shams et al., 2000). They 

found participants’ behaviour to be well described by the predictions of a Bayesian CI model, where 

the perceived number of visual (or auditory) stimuli is estimated as a function of both visual and 

auditory inputs. The strength of cross-modal influences is modelled as being related to the probability 

that the stimuli in the two modalities have the same cause. This probability depends on the true 

numerosity disparity (the larger the disparity, the smaller the probability), and on an individual “prior”, 

governing the overall tendency to attribute events to the same cause. Surprisingly, such prior was 

not found to be fixed in time, but to depend on the phase of alpha oscillations immediately preceding 

the first stimulus, and on their power. Similarly, in our study the phase of the mu rhythm may act as 

an oscillating sensorimotor binding prior, modulating the perceived probability that a given type of 

sensory feedback has been generated by our motor intentions. This interesting result provides a 

potential connection between physiological mechanisms and processes of statistical inference in the 

brain in the most general sense, and our data suggest that the same interpretative framework may 

be applied also to the emergence of sense of agency. Nevertheless, it also leads to an intriguing and 

deep epistemological question, tackling the complex relations between description levels that 

characterize modern neurosciences.  

 

3.4.1. The challenges of scaling up Bayesian models of brain function from 
multisensory integration to causal inference 
 
In order to introduce the issue, it may be helpful to start with a technical and theoretical introduction 

on some key aspects of Bayesian models. Bayesian approximations of brain function were originally 

conceived as approaches aimed a describing the input-output relation of neural systems in terms of 

formal probabilistic operations. In this sense, the brain itself could be treated as a black box 

implementing Bayesian computations, since the aim of such theories is to provide a mathematical 

equivalent of the effective operations carried out by the brain, and not of how they are actually 

implemented by the firing of neurons. Indeed, Ernst and Banks themselves suggested a qualitative 

model of how neurons may actually implement Bayesian inference, but this was not the main focus 

of their paper. In the following years, several works followed with the specific aim of proposing 

biologically plausible models of statistical inference in the brain (Limanowski & Blankenburg, 2013; 

Ma et al., 2006; Penny, 2012; Rao & Ballard, 1999). These models represent interesting hypotheses, 

but the path towards a rigorous understanding and empirical demonstration of the actual neural 
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mechanisms of statistical inference in the brain remains long. Arguably then, the success of Bayesian 

approximations to brain function is still anchored to behaviour. The key of their success is not only 

that they provide a compact description of experimental data. This feature would be shared with any 

alternative model fitting behavioural data sufficiently well, a task not so hard to achieve given the 

large variability and the relatively small sample size in typical human psychophysical studies. 

Instead, what arguably makes Bayesian models of behaviour so appealing is that they have a clear, 

almost self-evident evolutionary motivation: they describe “by definition” the most advantageous 

policy in a noisy environment processed by a noisy sensory system. In other words, what they may 

truly inform us about is that evolution must have shaped the brain so that it approximates the 

behaviour of an ideal Bayesian observer, or rather it provided it the tools to efficiently learn to do so. 

Indeed, this idea provides a predictive tool allowing to interpret human behaviour with an 

unprecedented level of generality. However, practically applying this framework to situations more 

complex than pure multisensory integration presents some non-negligible challenges.  

 

Arguably, the fundamental ingredient to define a Bayesian optimal policy is its underlying generative 

model (see e.g. Körding et al., 2007 for a practical example). In short, the generative model consists 

of the statistical properties of sensory inputs (the distribution from which physical stimuli are drawn) 

and their neural representation (the distribution of neural activity that such stimuli elicit). For example, 

in Ernst & Banks’ model of visual-haptic integration, the generative model assumes that the visual 

and haptic representations of the size of the stimulus are drawn from Gaussian distributions with the 

same mean, and different variances, reflecting the intrinsic precision of the respective sensory 

modality. Provided that the generative model corresponds to the true “ecological” probability 

distribution of sensory inputs and their neural representation, the derivation of their expected mutual 

relations and of optimal estimates through Bayes theorem is unique and (besides mathematical 

difficulties) straightforward. In order to be able to make predictions about behaviour, the definition of 

a generative model is therefore a necessary step, and those predictions will only hold if the 

generative model is a good approximation of the true stochastic process underlying stimulus 

generation, sampling and encoding. Taking again Ernst & Banks’ study as an example, we can notice 

that in their case there is very little ambiguity about how the generative model should be structured. 

The Gaussian assumption is extremely reasonable in almost all complex phenomena, and it is 

equally reasonable to expect the mean encoded size to be the same in both modalities, as it would 

not make sense to systematically perceive objects as larger in one modality than the other. The 

variance of those Gaussians remains as the only free parameter, and it can be simply measured by 

asking subjects to perform unisensory estimates and measuring their dispersion. All this comes at a 

price: the forced fusion assumption, which actually moves the problem to expecting that the brain is 

somehow sure that the sensory information being integrated comes from the same physical source. 

The forced fusion assumption can be overcome with Bayesian CI models, but the definition of the 

generative model becomes less straightforward and compelling, as it contains an additional, more 
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elusive free parameter: the prior probability of common cause. In principle, this should reflect the 

overall probability that the two considered stimuli arise from the same cause. The prior can therefore 

depend on the nature of the stimuli and on the context, and it is optimal as long as such dependence 

reflects changes in the actual same cause probability. For example, it makes sense to expect a 

higher audiovisual binding prior when seeing someone hitting a bell, and hearing a bell sound, than 

when hearing a car honk instead. Similarly, the prior can be expected to be lower if one is explicitly 

told that a distant loudspeaker may be producing the sound. The main challenge here is that, unlike 

the probability distributions appearing in Ernst & Banks’ model, priors are arguably hard to quantify 

“from first principles”, and are typically left as free parameters to be fit from behavioural data. In sum, 

the strength of Bayesian models lies in the fact that there is a clear evolutionary motivation for 

behaviour to be optimal. However, the very definition of optimal behaviour becomes increasingly 

elusive as the complexity of the modelled context grows, and more “priors” need to be postulated. 

This poses a significant epistemological challenge to the Bayesian brain hypothesis. 

 

3.4.2. Some practical examples from the literature and our studies 
 
In order to more concretely illustrate this epistemological issue, let us consider again Rohe’s 2019 

study and their “oscillating prior”. As mentioned, in order to be optimal, priors need to reflect actual 

changes in probabilities, which makes the interpretation of the observed fluctuations in the causal 

prior rather puzzling. Indeed, it is hard to imagine that the actual probability that two external stimuli 

originated from the same cause can depend on endogenous neural oscillations. In other words, 

alpha oscillations rhythmically modulate the prior, but the optimal prior is likely to be constant at fixed 

experimental conditions, and, in any case, it should not fluctuate with neural oscillations. Moreover, 

since the alpha power was also found to be correlated with the binding tendency, the authors 

investigated whether it was influenced by the history of previous trials’ congruency, which in an 

optimal integration framework would be expected to modulate the causal prior. Surprisingly, they did 

not find the hypothesized correlation. In Study 4, although we did not fit behavioural data with a 

Bayesian model, we provided further evidence that low frequency oscillations may modulate the 

overall binding tendency, suggesting that this may be a general mechanism in the brain. Clearly, a 

possibility is that there is no deeper meaning: the “oscillating prior” may simply represent a small 

departure from optimality, due to the specific way in which Bayesian inference is implemented in the 

brain. In this view, the quest for optimality would still be the main driving force that shapes brain 

function. Even then, though, the ability of the model to fit changes in behaviour through adjustments 

of the prior carrying no meaningful information should suggest some concern. In the worst case, it 

may as well be that Bayesian CI just happens to be an empirical approximation that fits well the data 

(because of the many free parameters), but does not truly inform us about the driving forces that 

shaped brain function through evolution.  
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Another interesting example of this interpretative issue emerges in Study 1. When investigating the 

drift in proprioceptive estimates induced by visual stimuli, coupled with tactile stimulation, we found 

that cross modal influences decreased at large amounts of visuo-proprioceptive disparitiy. This result 

closely resembles the predictions of a Bayesian CI model, and behavioural results about visuo-

proprioceptive integration such as those presented by Fang and colleagues in a reaching task (Fang 

et al., 2019), or by Noel and colleagues for a position estimation task (Noel et al., 2018). 

Nevertheless, assuming a perfect learning of the underlying generative model, the network should 

have produced the forced fusion model instead. This is because, during training, the true hand and 

external stimulus positions always coincide when tactile inputs are provided, so the network should 

have learned that the common cause probability is always one in this case. Therefore, there is no 

reason to expect the network to be truly performing Bayesian CI. The observed decrease of visuo-

proprioceptive binding at large disparities is more likely to be the “accidental” result of the departure 

from ideal (forced fusion) behaviour in the network, when presented with inputs that are very different 

from training inputs (i.e.: at large disparities). Indeed, the non-linear activation function of 

multisensory neurons, coupled with the visuo-proprioceptive overlap of receptive fields, may lead to 

this result without being in any way related to Bayesian CI.  

 

Our aim here is not to question the overall epistemological value of the Bayesian brain hypothesis, 

as this interesting topic has been more specifically addressed in more specialized works (Colombo 

& Wright, 2018; van Es & Hipolito, 2020; Williams, 2020). Karl Friston himself, one of the major 

players in developing theoretical models within the Bayesian brain approximation, allegedly stated 

that the whole framework contains an element of tautology, similarly to the natural evolution theory. 

Rather than a fully developed falsifiable scientific theory, the Bayesian brain hypothesis can be 

therefore be seen as a useful way to regard brain function, upon which new theories can be built. 

The fact that Bayesian models can always be adapted to explain new data by modifying their 

generative model, and that the inference performed by the brain is necessarily approximated, makes 

it hard to falsify the Bayesian brain hypothesis as a whole. As we mentioned, the claim that the brain 

performs approximated inference poses remarkable epistemological challenges when the object of 

investigation is far more complex than bivariate computations typically studied in multisensory 

integration. In more complex and high-dimensional scenarios (arguably constituting the majority of 

realistic cases), such as visual recognition, it is very hard to rigorously compute what optimal 

inference should look like. Therefore, and actual brain function may as well be a very loose 

approximation of true optimal inference. Then, in case such looser approximations are still accepted 

as being coherent with the Bayesian brain hypothesis, one can argue that the whole framework just 

reduces to common sense, as extreme departures from optimality would inevitably be not suitable 

for survival. 
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In our opinion, the issues raised here do not deplete the Bayesian framework of its value for 

neuroscientific investigation. Rather, its flexibility suggests the need for a constant monitoring of its 

specific applications to given contexts (in our case, BSC). In this sense, a key measure is not only 

how well a model describes the data, but also how hard it would be to describe the data outside of 

its framework. Beyond the ultimate epistemic value of the whole Bayesian framework, which may be 

hard to assess, this approach allows at least to evaluate how credible its applications are in their 

current formulation, and whether and how they can be further tested and improved.  

 

3.4.3. Testing Bayesian models of body ownership: potential outcomes of the pre-
registered study 
 
Classical forced fusion models of multisensory integration extensively described experimental data, 

and provided surprising new predictions about the optimal reduction of variance in multisensory 

estimates which hardly any other simple model could convincingly produce. Unfortunately, the same 

cannot be said for Bayesian models of key components of BSC, namely body ownership. Despite 

the amount of theoretical works applying a Bayesian framework to the study of BSC (Apps & Tsakiris, 

2014; Blanke et al., 2015; Limanowski & Blankenburg, 2013; Moutoussis et al., 2014; Seth, 2013; 

Seth & Tsakiris, 2018), only two studies (Fang et al., 2019; Samad et al., 2015) attempted to 

demonstrate this empirically. In both works, optimality was not rigorously proven, as the unisensory 

precisions were not directly measured or manipulated. This would have allowed, for example, to 

independently predict the extent of the spatial (or spatio-temporal) window in which the binding of 

self-related and external information occurs, and compare it to experimental measures. A match 

would constitute a hallmark that a process very similar to statistical inference truly takes place in the 

brain, or better said, a process that would be extremely hard to describe and motivate without using 

the tools of statistical inference. Current results are instead explainable just by combining the forced 

fusion model (which is Bayesian) and a “smooth” version of the spatial rule of multisensory 

integration, in which the amount of integration gradually decreases with disparity (which is not 

necessarily Bayesian). In order for the causal inference part of the model to have an objective added 

value with respect to a generic “smooth spatial rule”, the extent of the binding window needs to be 

convincingly predictable by measuring the precision of unisensory estimates. Unfortunately, this has 

not been tested in previous studies.  

 

Overcoming these limitations is the deep motivation underlying Study 2. Again, our aim here is not 

to challenge Bayesian models of brain function in general. Instead, we want to test whether current 

Bayesian CI models can produce meaningful (and testable) predictions when applied to body 

ownership, and by extension to BSC. As of now, the pre-registered study is under revision and data 

collection can only start when such protocol is approved. Therefore, we cannot yet discuss the results 

of the study, but rather the implications of potential outcomes. Essentially, the main hypothesis that 

we will discuss here is the central requirement for optimality: that the unisensory precisions 
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measured in unisensory tasks match the ones predicted by fitting the Bayesian CI model on data 

from the multisensory reaching task. As a first implication, the fact that the properties of an implicit 

measure of body ownership are truly constrained by optimality requirements would show that 

Bayesian CI models can be used to produce informative predictions on key components of BSC. 

Furthermore, since the model only accounts for a part of the mechanisms known to play a role in 

body ownership, a success in modelling those factors would constitute a starting point and a strong 

motivation to push the investigation further. For example, aspects such as the temporal history of 

stimuli could be readily included in a Bayesian “evidence accumulator”, to explain why prolonged 

stimulation is required to elicit a vivid RHI. Other subtler, more “cognitive” factors, such as the visual 

aspect of the hand (or “hipnotisability”, a proposed account of overall sensibility to illusory ownership, 

see Lush et al., 2020), could be more challenging to model mathematically, but are in principle 

possible to describe within a Bayesian framework. In this sense, approximate inference through 

machine learning techniques may help to formulate predictions within the Bayesian brain framework 

even in the case where an explicit formulation of the underlying mathematical equations is not 

possible.  

 

On the other hand, a failure to confirm our hypothesis would not necessarily imply that Bayesian 

models cannot be employed for BSC, as several different reasons may lead to a negative result. 

First, it is possible that the unisensory tasks do not capture exactly the same unisensory components 

that intervene in the multisensory task, despite our efforts in this direction. Indeed, measuring the 

unisensory spatial precision in the visual modality, or even defining its exact nature, is particularly 

challenging. Moreover, the model we used may be too simplified to accurately describe the data. As 

we mentioned, Bayesian approaches to brain function are a general and flexible framework which 

can be implemented in a wide variety of manners, and a negative result should not hinder their use, 

considering their unprecedented value as a unifying description of brain function. On the contrary, 

we hope that it will raise awareness about the technical and epistemological challenges of using 

Bayesian models of brain function not as mere conceptual tools, but as means to formulate new 

predictions and hypotheses about complex phenomena such as BSC.  

 

3.5. Limitations and further perspectives 
 
Despite the passion for epistemological questions has been one of the main driving forces in this 

research, it may be useful to conclude this dissertation on a more practical note, and briefly discuss 

the challenges we encountered, the limitations of this work, and our future plans to overcome them.  

We already discussed the limitations due to the simplification in the neural network used in Study 1. 

However, the main limitation of this study is arguably its lack of a rigorous empirical validation. In our 

work, we proved that visual inputs about external stimuli, coupled with proprioceptive inputs about 

hand position, could affect tactile processing on the hand, compatibly with the predictions of the 
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neural-network model. Still, the main purpose (and result) of the behavioural experiment was to 

justify the architecture of the network, and the choice of the sensory modalities to be modelled. By 

showing that three sensory modalities are not only conceptually, but also practically sufficient to elicit 

visuotactile interactions, we were able to support our choice to keep the network as simple as 

possible. Nevertheless, a rigorous validation of model predictions would require fitting behaviour at 

a much more granular level, likely needing an amount of behavioural testing which is hardly feasible 

at the practical level. Furthermore, even in case extensive enough behavioural testing was possible, 

there is the risk that network properties could be always tuned to reproduce behaviour, due to the 

large number of free parameters in a neural network model. Possibly, only intracranial recordings, 

allowing to map the receptive fields and tuning curves of single neurons, can provide data that is 

high-dimensional and granular enough to provide solid supporting evidence for a neural-network 

model. An interesting example of a successful attempt to bridge behaviour, neural recordings and 

machine-learning inspired neural-network models of brain function was proposed by Yamins and 

colleagues (Yamins et al., 2014). In macaques, they recorded neurons from various levels of the 

visual hierarchy while the monkeys performed an object recognition task. Then, in a high-throughput 

simulation, they trained thousands of neural network architectures to recognize the same family of 

objects used in the behavioural tasks. Simulated and recorded neural activities at various levels of 

the hierarchy were compared by regressing simulated and true activity on each other, allowing to 

compare model predictions and neural responses. Furthermore, this allowed identifying the 

architectures that best described neural activity, and draw general conclusions about the 

organization of brain networks. In our case, the need to model subjective components of BSC would 

restrict the investigations to human subjects, making it harder to perform extensive intracranial 

recordings. However, the growing availability of both chronic and in-surgery neurophysiological 

recordings makes a similar approach applicable to human populations. Equally importantly, in order 

for such an approach to be meaningful, the computational modelling side would need to be scaled 

up from the level of conceptual demonstration to high-throughput simulations, exploring different 

architectures and sets of training inputs. 

 

Arguably, the research axis offering the most tangible possibilities of further development is the 

agency axis of studies 3 and 4. Here, the main limitations are the already mentioned facts that our 

data originates from a single participant, and a single recording site. In Study 4, we found that the 

pre-movement phase of 8 Hz oscillations predicted agency judgements, and speculated that this 

may be through an effect of these oscillations on subsequent connectivity between M1 and other 

brain areas. In order to test such hypothesis, it would be necessary to implement a similar paradigm 

while acquiring data from multiple recording sites, and possibly multiple participants. To this aim, we 

are in the process of developing an EEG-BMI paradigm to study oscillatory contributions to the sense 

of agency in healthy individuals. EEG combines the temporal resolution needed to uncover the role 

of neural oscillations, and the capacity to record whole brain signals, with a spatial resolution that 
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should be sufficient to pinpoint the key regions involved in the process, at least at the level of 

functional areas. Furthermore, EEG based brain-machine interfaces based on kinaesthetic motor 

imagery are a mature and easy to implement technique (Wolpaw et al., 2002). This would allow 

overcoming both main limitations of studies 3 and 4, by providing a setup that allows brain-wide 

recordings and can be generalized to any population non-invasively. Through an EEG-BMI setup, it 

is possible to translate the motor imagery of a participant to external feedback. In our case, a virtual 

hand closing will provide the feedback, in order to emulate the embodied setup of our previous 

studies. We will then tune other parameters (e.g., temporal delays) in order to obtain an appreciable 

variability in agency ratings, to be correlated with the phase of pre-movement sensorimotor 

oscillations. Within a similar setup, it will be possible to apply source reconstruction and functional 

connectivity analyses to test our hypothesis about the relation between pre-movement oscillations, 

neural connectivity and sense of agency. 
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Abstract
Peripersonal space (PPS), the interface between the self and the environment, is repre-
sented by a network of multisensory neurons with visual (or auditory) receptive fields 
anchored to specific body parts, and tactile receptive fields covering the same body 
parts. Neurophysiological and behavioural features of hand PPS representation have 
been previously modelled through a neural network constituted by one multisensory 
population integrating tactile inputs with visual/auditory external stimuli. Reference 
frame transformations were not explicitly modelled, as stimuli were encoded in pre-
computed hand-centred coordinates. Here we present a novel model, aiming to over-
come this limitation by including a proprioceptive population encoding hand position. 
We confirmed behaviourally the plausibility of the proposed architecture, showing that 
visuo-proprioceptive information is integrated to enhance tactile processing on the hand. 
Moreover, the network's connectivity was spontaneously tuned through a Hebbian-like 
mechanism, under two minimal assumptions. First, the plasticity rule was designed to 
learn the statistical regularities of visual, proprioceptive and tactile inputs. Second, such 
statistical regularities were simply those imposed by the body structure. The network 
learned to integrate proprioceptive and visual stimuli, and to compute their hand-centred 
coordinates to predict tactile stimulation. Through the same mechanism, the network 
reproduced behavioural correlates of manipulations implicated in subjective body own-
ership: the invisible and the rubber hand illusion. We thus propose that PPS representa-
tion and body ownership may emerge through a unified neurocomputational process; 
the integration of multisensory information consistently with a model of the body in the 
environment, learned from the natural statistics of sensory inputs.
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1 |  INTRODUCTION

1.1 | Peripersonal space

Peripersonal space (PPS) is typically defined as the region of 
space immediately surrounding the body, or the space where 
we can physically interact with external objects, either actively, 
by reaching to touch them, or passively, when we enter in con-
tact with an incoming object (di Pellegrino & Làdavas, 2015; 
Serino,  2019). PPS was originally defined in terms of a 
physical space, with a specific neural representation, follow-
ing long-known selective impairments of action and percep-
tion for stimuli in the near space induced by natural lesions 
in brain-damaged patients (Brain, 1941) and by experimental 
lesions in monkeys (Rizzolatti et al., 1983). This concept was 
then expanded by neurophysiological and behavioural stud-
ies focusing on multisensory processing of stimuli within a 
limited distance from the body. In particular, studies on non-
human primates have described a population of multisensory 
neurons responding to visual and/or auditory stimuli, close to 
specific body parts, and to tactile stimulation of the same body 
parts (Duhamel et al., 1998; Graziano et al., 1994; Rizzolatti 
et al., 1981). That is, they present multisensory receptive fields 
which are selective for given body parts and anchored to them 
in space. Such evidence has been interpreted as the demonstra-
tion of the existence of a system representing the space around 
the different parts of the body in the primate brain, whose extent 
is defined by the extent of the multisensory receptive fields of 
those neurons. The term PPS then came to define not only a 
topographical region, but also its neural representation, leading 
to a variety of different descriptions whose common principles 
we try to resume here.

Evidence for the existence of an analogous system in hu-
mans comes from a body of neuropsychological (Farnè & 
Làdavas, 2002; di Pellegrino et al., 1997), behavioural (Spence 
et al., 2000; Zampini et al., 2007), and neuroimaging (Brozzoli 
et  al.,  2011; Grivaz et  al.,  2017; Makin et  al.,  2007) studies, 
coherently showing that interactions between tactile processing 
and visual and/or auditory cues is stronger when these stimuli 
are presented close to the body, as opposed to far.

Finally, several experimental results suggest to interpret 
PPS as a shell of interaction between the body and the en-
vironment, in which potential contacts between body parts 
and external objects are processed and predicted, with de-
fensive (prepare reactions to potential threats) or appetitive 
(e.g., during reaching movements) purposes (Bufacchi & 
Iannetti, 2018; Cléry et al., 2015; Serino, 2019).

1.2 | Previous models and motivation

Magosso, Ursino, et al. (2010) have developed a neural net-
work model aiming to reproduce the main features of PPS 

representation in a neurophysiologically plausible compu-
tational framework. The model consists of two unisensory 
neuronal populations (auditory/visual, tactile), connected to 
a multisensory population: the receptive fields of visual/au-
ditory neurons cover an extended space around the hand (or 
another target body part), while those in the tactile popula-
tion code for touch on the same body part (Magosso, Ursino, 
et al., 2010; Magosso, Zavaglia, et al., 2010). In order to re-
produce the space-dependent responses of multisensory neu-
rons in the PPS system, the connectivity of the network was 
tuned as follows: both tactile and visual/auditory neurons 
coding for stimuli that are close to the hand project strongly 
to the multisensory layer, whereas visual/auditory neurons 
coding for far stimuli project weakly to the multisensory 
layer. Thus, tactile stimuli on the body and visual/auditory 
stimuli close to the body induce stronger multisensory in-
teraction than stimuli in the far space. This architecture re-
produced neurophysiological (Bernasconi et  al.,  2018) and 
behavioural (Serino, Noel, et al., 2015) results of enhanced 
tactile processing in the presence of stimuli inside versus 
outside the PPS, and also of plastically induced changes in 
PPS representation (Magosso, Zavaglia, et al., 2010; Serino, 
Canzoneri, et al., 2015).

PPS representation is inherently body part centred. While 
tactile stimuli are directly processed in body-centred refer-
ence frames, external auditory and visual stimuli are initially 
processed in head-centred and eye-centred reference frames. 
Thus, PPS representation requires a complex set of reference 
frame transformations on the incoming stimuli in order to es-
timate their position relative to the different body parts. For 
the sake of simplicity, the neural network model proposed 
by Magosso and colleagues assumed static body parts, as if 
reference frame transformations had been already achieved 
by means of other mechanisms. Other computational models 
have proposed to account for reference frame transformations, 
for instance by Pouget et al. (2002), and Makin et al. (2013). 
Pouget and colleagues modelled reference frame transforma-
tions by simulating three interconnected populations: two of 
them encode the position of the same stimulus in different 
reference frames, and the third encodes the offset between the 
two reference frames. For instance, one population could code 
for the visual (retinotopic) position of a stimulus, the second 
population for the auditory (head-centred) position of the 
same stimulus, while the third could encode the shift between 
the two reference frames, represented by the gaze angle. By 
adjusting the weight of feedback and feedforward synapses, 
the model could either compute the position in a given ref-
erence frame based on the activity in the other two popula-
tions, or optimally integrate the three of them to increase the 
reliability of the information in each modality. However, it 
has not been investigated whether a similar model could also 
account for the emergence of body-part centred visuo-tactile 
interactions as the key property of PPS representation.
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An additional limitation of the previous model is that the 
synaptic connections that underlie PPS representation in 
Magosso, Ursino, et al. (2010) work were hard-wired, and while 
a second model (Magosso, Zavaglia, et al., 2010) adds Hebbian 
plasticity, this was only done on top of a pre-defined synaptic 
connectivity. Therefore, existing models cannot explain how the 
spatial organization of the multisensory receptive fields under-
lying PPS representation emerges. Such neural representation 
has been shown to be highly plastic, e.g., it extends after using a 
tool to reach far portions of space (Canzoneri et al., 2013; Iriki 
et al., 1996; Maravita & Iriki, 2004). Interestingly, it was also 
shown behaviourally that PPS representation can be modified 
with simple audio-far/tactile-near stimulation, unrelated with 
tool use (Serino, Canzoneri, et al., 2015). It is therefore reason-
able to suppose that that PPS representation might arise from 
networks of neurons whose large scale architecture, at the level 
of functional areas, is hard-wired genetically in the brain, but in 
which the fine structure is based on the spontaneous tuning of 
synaptic connectivity induced by multisensory inputs through 
Hebbian learning. Hence, a key question in the field is not only 
to render how multisensory integration within overlapping 
visual and tactile receptive fields occurs, but also how such 
overlap is formed and maintained throughout development and 
everyday life.

1.3 | Aim of the work

The aim of the present study is therefore to extend the pre-
viously established model of PPS representation (Magosso, 
Ursino, et al., 2010), in order to formalize a neurocomputa-
tional framework able to learn visuotactile associations from 
experience, and maintain them as body parts move in space. 
More specifically, with the model we aim to show:

1. How the synaptic connectivity that arises from natural 
stimulation in the environment can account for the emer-
gence of overlapping visual/auditory and tactile receptive 
fields (RFs) subtending PPS representation.

2. That the same learned associations that build PPS represen-
tation implicitly perform reference frame transformations in 
body-part centred coordinates. Therefore, a key novel point 
of our study is to demonstrate that PPS representation and 
reference frame transformations can emerge spontaneously 
and simultaneously within a unified neurocomputational 
process, by learning the statistical associations in multisen-
sory inputs that occur naturally when interacting through 
the body within the environment. As a key example of PPS 
representation, here we focused on visuotactile integration 
around the hand, in hand-centred reference frames.

To achieve our aims, we have adapted our previous model 
(Magosso, Ursino, et al., 2010) via two main modifications. 

First, proprioceptive inputs, previously neglected, were now 
taken into account by adding a population of proprioceptive 
neurons coding the location of the hand in space with re-
spect to the trunk. Second, several psychophysical (Alais & 
Burr, 2004; Ernst & Banks, 2002), theoretical and computa-
tional works (Knill & Pouget, 2004; Ma et al., 2006; Makin 
et al., 2013) suggested to model multisensory integration in a 
probabilistic framework. This assumption guided us towards 
the choice of a plasticity rule designed to learn the statistical 
properties of visual, proprioceptive and tactile inputs. In the 
interest of approximating a key feature of biological neural 
networks that is key to our aims, we imposed the additional 
constraint that the learning rule should be Hebbian-like, that 
is, based only on local correlations between neural activities. 
The network, still keeping the fundamental architecture of 
unisensory populations reciprocally connected with a mul-
tisensory layer, was therefore formalized as a Restricted 
Boltzmann Machine (RBM), a type of artificial neural net-
work designed to efficiently learn the unknown joint proba-
bility distribution of its set of inputs through a local learning 
rule (Hinton & Salakhutdinov,  2006; Makin et  al.,  2013). 
Thus, we did not simulate the response to multisensory (tac-
tile and visual) stimuli close to the hand through pre-pro-
grammed synapses between the network's populations. 
Instead, we simulated a training where multisensory stimuli 
are randomly presented in space, with the only constraint, 
based on the physical properties of the body, that tactile in-
puts are simultaneously associated with visual inputs occur-
ring on or near the hand, and never with far visual stimuli. We 
then let the model tune its synaptic connectivity to learn the 
statistical regularities in such a pattern of stimulation. This 
was compared with another “unconstrained” training model, 
where tactile and visual inputs were provided randomly and 
independently. We showed how, after the “body-constrained” 
training, the model produces multisensory responses to tac-
tile stimuli on the hand and visual stimuli close to the hand, as 
a function of the position of the hand in space, suggesting the 
emergence of multisensory, hand-centred, receptive fields. 
Results from in silico computational simulations were then 
compared with results from in vivo psychophysical experi-
ments to demonstrate the plausibility of the model. Finally, 
we also tested the model with analogue patterns of multi-
sensory stimulation as those used to affect the sense of body 
ownership during the so-called invisible hand illusion (IHI; 
Guterstam et al., 2013) and rubber hand illusion (Botvinick 
& Cohen, 1998). By measuring the network's response from 
the proprioceptive population, we could reproduce a compu-
tational analogue of the so-called proprioceptive drift, i.e., a 
shift in the perceived location of one's own hand that is con-
sidered a behavioural proxy of changes in body ownership 
obtained via the illusions. Furthermore, we showed how the 
network's principles can be generalized to obtain similar re-
sults from more complex architectures. We included a visual 
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population coding for hand position, changed the encoding 
schema of proprioceptive inputs to joint angles, and added 
another reference frame transformation, by encoding visual 
inputs in eye-centred coordinates and adding a population 
coding for gaze angle.

2 |  MATERIALS AND METHODS

2.1 | Qualitative network description

While built upon Magosso, Ursino, et al. (2010) model archi-
tecture, the model presented here substantially differs from 
the previous one. First, in order to account for the evidence 
showing that the response of PPS neurons is modulated by 
proprioceptive inputs, in the present study we included a 
proprioceptive neural population coding for hand position, 
in addition to the two unisensory tactile and visual (or audi-
tory) neural populations. Second, in order to overcome the 
necessity of hard-wired synapses, and model the learning 
of reference frame transformations and PPS representation 
from synaptic tuning to external stimuli, we used a Restricted 

Boltzmann Machine (RBM) with two layers. RBMs are 
conceptually simple networks, widely used in unsupervised 
machine learning because of their efficiency in learning com-
plex probability distributions. In their simplest form, they 
consist of two sets of units arranged in two layers, the lower 
layer and upper layer (usually called visible and hidden units 
respectively). A layer is defined as a pool of neurons that 
have no connections within the layer, but have bidirectional 
connections with neurons in the other layer. The units in the 
lower layer code for the components of an observation/event: 
in our RBM (Figure 1a), the lower layer is composed of the 
populations of unisensory neurons (proprioceptive, tactile, 
visual) that code the unisensory components of an event/
stimulus. The units in the upper layer, (called multisensory 
layer in our RBM as it receives convergent inputs from multi-
ple modalities) model the dependencies among these compo-
nents. Even if there is no strict biological equivalent, the two 
layers can be seen as two levels in the processing of sensory 
information, where the lower layer receives the unisensory 
inputs, and the upper layer integrates them. We chose to re-
strict the network to two layers in our simpler model, for the 
sake of the interpretability of the results. Clearly, the sharp 

F I G U R E  1  Network architecture, training and testing. (a) Architecture of the network. In the lower layer, three unisensory populations 
encode tactile stimulation on the hand, the proprioceptive position of the hand, the position of a visual stimulus. The upper layer is composed 
of multisensory neurons, in the sense that they receive inputs from each of the three unisensory populations. Each neuron in the proprioceptive 
and visual population has a preferred position distributed on a regular grid, with a Gaussian tuning curve of fixed width (~13 cm and ~11 cm 
respectively). For every stimulus, the number of spikes of neurons in the lower layer is drawn from a Poisson distribution, whose mean is 
determined by the tuning curve and a randomly selected gain in the range 4–10. The activity of neurons in the tactile population is set to 0 when the 
distance between the hand and the visual stimulus is greater than 15 cm. If the distance is smaller than 15 cm, the spike count for the tactile neurons 
is drawn from a Poisson distribution of mean 4–10, with this value randomly selected for each stimulus. Neurons in the lower layer are connected 
to neurons in the upper layer by bi-directional, symmetric synapses. (b) One training/testing step of the network. During testing, one stimulus 
is generated and encoded in the lower layer (u0), and the activity of the upper layer (m0) is computed based on the unisensory neurons activity. 
Then, the activity of the unisensory neurons is re-computed based on the multisensory neurons' activity to obtain the read-out of the integrated 
information encoded in the multisensory population (u1). During training, an additional encoding step (confabulation phase) is added, where the 
activity of the multisensory neurons (m1) is computed based on the reconstructed activity in the unisensory populations (u1). Then, the synapses are 
updated with a weight change proportional to the difference in correlations between the lower and upper layer neurons in the two phases

(a) (b)
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distinction between layers is a purely conceptual construct, 
and biological multisensory processing takes place in a more 
complex fashion, involving possibly more “layers” of recur-
rent processing. Nevertheless, our choice goes in the direc-
tion of showing that a simple architecture is general enough 
to capture the key features of multisensory integration in 
PPS. In the lower layer, unisensory tactile neurons code for 
touch on the hand, proprioceptive neurons code for the posi-
tion of the hand with respect to the trunk, and visual neurons 
code for the position of an external stimulus in trunk-centred 
coordinates (Figure 1a). Note that, for the visual population, 
this implies that inputs are represented as if the head and fixa-
tion were kept fixed, omitting for simplicity two additional 
components of the full reference frame transformation from 
retinotopic to head-centred to body-centred coordinates. 
Visual inputs are originally coded in eye-centred reference 
frames. Thus, to gather proper information about the posi-
tion of the visual stimuli with respect to the hand's position, 
visual inputs need to be recoded in more global, trunk cen-
tred reference frame. These transformations can be added to 
our model by including populations coding for head and eye 
positions, and letting the network learn the joint distribution 
over all the neural populations. In the last paragraph of the 
results section, we demonstrate how the main results of this 
work can be recovered from a network including a fourth 
population coding for gaze angle, therefore implementing an 
additional reference frame transformation. The upper layer 
consists of multisensory neurons, i.e. neurons that receive in-
puts from the three unisensory populations. The visual and 
proprioceptive populations represent areas of 1.2 × 1.2 and 
1.2 × 0.6 meters in front of the trunk, respectively, with the 
first dimension representing the medial-lateral axis and the 
second dimension the anterior-posterior axis. The specified 
sizes refer to the area where stimuli are actually delivered 
during training, while the area spanned by the neurons' pre-
ferred positions is slightly larger due to the margins to prevent 
edge effects. Similarly to what was done in previous models 
of multisensory integration, visual and proprioceptive popu-
lations use a population coding with Gaussian tuning curves 
to encode the positions of the visual stimulus and of the hand 
(Ma et al., 2006). The tactile area simply encodes the pres-
ence of tactile stimulation by activating all its neurons with a 
mean value proportional to the stimulation intensity.

In order to gauge the unisensory inputs' parameters, we 
required the maximal theoretical visual and proprioceptive 
precision under an optimal decoder to be consistent with be-
havioural human studies (Jones et al., 2010; Rincon-Gonzalez 
et al., 2011; Van Beers et al., 1998). Such value is defined as 
the standard deviation of the posterior probability of the stim-
ulus location, given the activity of the unisensory population. 
It depends on the gain (i.e., the strength) of the stimuli and on 
the density of neurons per unit of space represented, and can 
be calculated with good approximation on the same bases as 

in previous works (Ma et al., 2006; Makin et al., 2013) (see 
Supporting Information for the detailed calculation). With 
the chosen parameters, the proprioceptive precision at maxi-
mal gain is 1.68 cm, and the visual accuracy is 0.45 cm, con-
sistently with what has been reported in human behavioural 
studies (Jones et  al.,  2010; Rincon-Gonzalez et  al.,  2011; 
Van Beers et al., 1998). The number of multisensory neurons 
was determined empirically, looking for the optimal trade-
off between minimizing the number of units and maximiz-
ing network performance. Specifically, the number of hidden 
units was set so that a further increase in their number would 
not lead to significant improvement in the precision of po-
sitions encoded in the multisensory layer (see Supporting 
Information for details). While the receptive fields of the uni-
sensory populations are defined a priori, the receptive fields 
of the multisensory neurons are learned during training. As 
widely done in RBMs, we used one-step contrastive diver-
gence as learning algorithm. Contrastive divergence is based 
on local correlations between neuronal activity and does not 
require backpropagation, and can be therefore mapped to bi-
ologically realistic plasticity mechanisms, namely Hebbian 
learning. In machine-learning, RBMs are used to learn a gen-
erative model of the probability distribution of the inputs pre-
sented during the training. This means that, after a successful 
training, samples taken from the spontaneous activity of the 
network should come from the same probability distribution 
as the training examples. Through this mechanism, RBMs 
have been used to model multisensory integration and refer-
ence frame transformations (Makin et al., 2013). Here we test 
the hypothesis that, in a similar way, the emergence of PPS 
representation can be simply modelled by letting a neural net-
work learn the regularities of its sensory inputs, represented 
by correlations across different sensory modalities.

2.2 | Mathematical network description

In a probabilistic population code, such as the one used for the 
generation of stimuli in our network, the activity of neurons in 
the unisensory populations can be seen as a probability distri-
bution conditioned on the position of the stimuli in the physical 
world, from which spike counts are drawn for each population. 
Let xv be the (2D) position of the visual stimulus, and xp the 
position of the hand in the same 2D plane, then the activity of 
the i-th unisensory neuron ui is defined by:
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where uv, up, ut, respectively, denote neurons belonging to vi-
sual, proprioceptive and tactile populations, and x

⋀

 denotes 
the preferred position of a given neuron. The SD of the tun-
ing curves (σv and σp) was set at three neurons for the visual 
population, and at one neuron for the proprioceptive population 
(i.e., around 1/15 of the whole population‘s range, which gives 
~13 cm for proprioceptive and ~11 cm for visual neurons). 30 
tactile units are used, and the preferred positions of the pro-
prioceptive and visual neurons tile the space on a regular grid 
of 15 × 10 and 50 × 50 neurons, respectively. This includes 
the 1.2 × 0.6 and 1.2 × 1.2 meters of space represented by the 
neural populations, plus a safety margin (approximatively three 
times the SD of the tuning curve, or 30 cm on each side in phys-
ical units) to avoid boundary effects. The width of the tuning 
curve was mainly determined during preliminary testing, on the 
basis of a set of heuristic criteria. We noticed that in order to 
allow efficient learning, the average learning signal from units 
from different populations needs to be approximately the same, 
hence the width of the tuning curve needs to be a fixed fraction 
of the total population range. Since the average firing rate of 
tactile units is fixed by the proportion of training inputs where 
touch is provided to approximately 5%, the width of visual 
and proprioceptive tuning curves was chosen to approximately 
match this value, while not requiring excessively large safety 
margins. In any case, the network‘s main predictions were ro-
bust with respect to the choice of such parameter, as shown in 
the Supporting Information. The parameter g represents the 
stimulus strength (gain), and is varied during training inde-
pendently for each unisensory population, by drawing a ran-
dom, uniformly distributed number between 4 and 10 for each 
stimulus presentation. Note that, alternatively, tactile inputs 
could have been encoded similarly to visual and proprioceptive 
inputs, with a population representing the whole hand whose in-
dividual neurons respond preferentially to specific locations. In 
preliminary testing, the two encoding schemas yielded largely 
overlapping results. However, the current encoding schema was 
preferred as empirical evidence shows that tactile receptive 
fields of PPS neurons tend to be large, covering whole body 
parts, suggesting that their functional role is to roughly predict 
tactile interaction at the level of entire body parts, more than 
predicting the specific location of tactile stimulation. Also note 
that the tactile population needs not be an early tactile area as 
S1, but possibly a higher level somatosensory area, responding 
prevalently to tactile stimulation.

The activity of neurons is updated simultaneously in all 
neurons in a given layer, based on the activity of neurons in 
the other layer. In other words, the network has no temporal 
dynamics, and, differently from the previous model, there 
are no intra-layer connections, as the generation of spread-
out population level activation is simulated by the size of 
unisensory receptive fields. For simplicity, we define as an 
“up” pass when the activity of the upper layer is computed 
given the activity of the lower layer, and a “down” pass when 

the activity of the lower layer is computed given the activity 
of the upper layer. The up and down passes are defined as 
follows:

where u is the vector of activity of all neurons in the lower layer 
(unisensory), m is the vector of activity of all neurons in the 
upper layer (multisensory), Wij is the synaptic weight connect-
ing neuron mi to neuron uj, and bu and bm are biases for uni-
sensory and multisensory neurons respectively. Note that the 
fact that the matrix used in the “down” pass is the transpose of 
the matrix used in the “up” pass implies that feedforward and 
feedback synapses are symmetric. In practice, the multisensory 
neurons' activity, given the unisensory neurons' activity, is a 
vector of samples of Bernoulli variables, whose mean is a sig-
moidal function of the weight matrix acting on the unisensory 
neurons. Conversely, the unisensory neurons' activity, given the 
multisensory neurons' activity, is a vector of samples of Poisson 
variables, whose mean is the exponential function of the weight 
matrix acting on the multisensory neurons. In RBMs, the choice 
of sigmoidal and exponential “link” functions is the standard for 
Bernoulli and Poisson units, respectively (Welling et al., 2004).

2.3 | Training

The network was initialized with random connectivity, with 
each synaptic weight being drawn from a Gaussian with zero 
mean and 0.001 SD, and all biases were set to zero. Then, it 
was trained by presenting patterns of stimulations reproduc-
ing the natural associations between tactile, proprioceptive, 
and visual inputs. That is, for each training example, two 
independent, uniformly distributed positions were randomly 
generated for the hand and the visual stimulus, and encoded 
in the visual and proprioceptive populations, respectively. In 
the “body-constrained” training, tactile stimulation was pro-
vided when the distance between the stimulus position and 
the hand position was smaller than 15 cm, roughly the centre 
to centre distance at which hand-object tactile interactions 
are expected to take place. This resulted in tactile stimula-
tion being provided in approximately 5% of the trials. In the 
control, unconstrained training, we randomly provided tac-
tile stimulation in 5% of the trials, in order to remove the 
statistical regularity imposed by the body structure while 
keeping the amount of tactile stimulation constant. The input 
was encoded in the unisensory populations and then inte-
grated in the upper layer through feedforward synapses, ac-
cording to the rules defined in the previous paragraph. After 
this, a “confabulation” phase followed to complete the learn-
ing process for a given training example (Figure 1b). In the 
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confabulation phase, the integrated stimulus was projected 
back to the lower layer through feedback connections, and 
again to the upper layer (Hinton,  2000). After a batch of 
100 encoding-confabulation sequences, the synaptic weight 
changes proportionally to the difference in the two phases in 
correlations between the upper and lower layer:

where the subscript 0 indicates the activity after the first step 
of encoding the stimulus in the unisensory and multisensory 
layer, and the subscript 1 indicates the activity in the confabu-
lation phase. It can be shown (Hinton, 2000) that this learning 
algorithm is approximately minimizing the information loss be-
tween the training data's probability distribution, and the lower 
layer's equilibrium probability distribution (that is, the distri-
bution obtained after a sufficiently large number of up-down 
iterations). In more neuroscientific terms, when the training is 
complete, the network's spontaneous activity should closely re-
semble the activity induced by sensory stimulation. Since this 
learning rule contains one positive and one negative term pro-
portional to local correlations, this is an Hebbian-anti-Hebbian 
learning rule. The learning rate η was set to 0.005, and the train-
ing was run for 100 epochs in total, with each epoch consisting 
of 400 batches of 100 samples. The whole process took about 
two hours on a standard desktop computer.

2.4 | Testing and simulating behaviour

After the training was completed, the network's features 
were assessed and compared to existing literature. While 
the receptive fields of the unisensory neurons in the lower 
layer are set a priori on the basis of prior knowledge from 
neurophysiological and computational studies, the receptive 
fields of multisensory neurons are learned during training, 
and can therefore be tested and compared with data from the 
literature. Moreover, the network was used to simulate be-
havioural experiments on multisensory integration, and the 
results were compared with behavioural data. In order to do 
so, it is necessary to establish a link between simulated neural 
activity and visuotactile interactions in behavioural experi-
ments. The general procedure followed in this work was to 
decode the information contained in the multisensory layer 
after unisensory inputs are encoded together (i.e. integrated) 
in its shared representation. Since it would be very difficult 
to decode such information directly from the multisensory 
layer, we proceeded as Makin et al.  (2013). In order to in-
terpret the activity of multisensory units, their activity was 

projected down to the unisensory populations via a “down” 
pass through the feedback synapses (Figure 1b). Here, neural 
activity could be easily decoded, since the mapping between 
unisensory activity and the physical stimuli is defined a priori 
by the Gaussian tuning curves that we chose. It is sufficient 
to take the barycentre of the neural activity contained in the 
visual layer to decode the physical location of the visual stim-
ulus encoded in the multisensory layer, the barycentre of the 
activity in the proprioceptive layer to decode the position of 
the hand with respect to the trunk, and, finally, the strength of 
the signal in the tactile layer to decode the intensity of tactile 
stimulation.

2.5 | Behavioural experiments

2.5.1 | Rationale

The network uses a simplified set of sensory inputs, as visual 
information about the hand's position and appearance is not 
present. In literature, hand PPS representation in humans was 
typically assessed through a simple tactile detection task, in 
which in which reaction times to tactile stimuli on the hand 
are measured in the presence of task-irrelevant auditory or 
visual stimuli, at various distances from the hand (Canzoneri 
et al., 2012). Using this paradigm, it was found that reaction 
times speed up (and tactile accuracy increases, as in Salomon 
et  al.,  2017) when the tactile stimulation is administered 
while the auditory or visual stimuli are closer to the body, 
with a stronger modulation in the case of looming stimuli. 
To our knowledge, visual information about hand position 
was always present in such experiments, and therefore the 
contribution of proprioception alone (simulated by the set 
of inputs of our model) was never assessed behaviourally. 
We therefore designed ad-hoc experiments to test whether 
proprioceptive information alone can generate a hand-cen-
tred PPS representation, that can be behaviourally detected 
through a tactile detection task. This was done by adapting 
the behavioural task described above to VR, allowing to keep 
the hand invisible while presenting visual stimuli close or far 
from its position in space.

2.5.2 | Materials

Tactile stimulation was delivered through rotating mass vi-
brators (Precision Microdrives), driven by a dedicated mi-
crocontroller. A hand-held button was attached to the same 
microcontroller, in order to collect reaction times to tactile 
stimulation on the same device and minimize unpredictable 
delays. Visual stimuli were delivered in a virtual reality sce-
nario. A Head Mounted Display (HMD, Oculus Rift) was 
used, and rendering of the virtual environment was performed 

(6)ΔW =𝜂⟨u0m0−u1m1⟩𝑏𝑎𝑡𝑐ℎ

(7)Δbu =𝜂⟨u0−u1⟩𝑏𝑎𝑡𝑐ℎ

(8)Δbm =𝜂⟨m0−m1⟩𝑏𝑎𝑡𝑐ℎ
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through a custom made software (ExpyVR; http://lnco.epfl.
ch/expyvr) coupled with the Steam VR software (SteamVR; 
https://www.steam vr.com/en).

2.5.3 | Participants

Forty-three healthy participants (19 females, aged 25 ± 3.7 
SD, ranging from 23 to 41 years) were recruited for the study, 
and received monetary compensation for their time. Only 
right-handed participants with normal or corrected to nor-
mal vision were recruited for the study. The study conforms 
with the World Medical Association Declaration of Helsinki, 
was approved by the ethical committee of the Vaud canton, 
Switzerland, and was performed with the understanding and 
written consent of each subject.

2.5.4 | Procedure

Participants wore the HMD, and had two vibrators taped on 
the back of their right hand. They saw a virtual scenario re-
producing a desk of the same size and location as the physical 
desk located in front of them, with a fixation cross located 
15 cm above the desk and 65 cm in front of their trunk. They 
were instructed to keep their gaze on the fixation cross, and 
react as fast as possible when receiving tactile stimulation 
on the right hand, by pressing a button with the other hand, 
while trying not to pay attention to visual stimuli moving in 
their visual field.

2.5.5 | Design

The experiment used a within-subjects design, with two hand 
positions, run in counterbalanced between-subjects blocks. In 
“Hand right” blocks, participants placed their right palm on 
the desk about 30 cm in front of their trunk, and 25 cm right 
of their midline. In “Hand left” blocks, they placed the hand 
at the same distance from their trunk and 25 cm left of their 
midline. Within each block, four types of trials were present: 
three visuotactile trials and one unisensory. In visuotactile 
trials, participants saw a tennis ball starting from the fixation 
cross and moving at constant speed along one of three pos-
sible trajectories, directed towards one of three possible tar-
gets: “left,” corresponding to the hand position in the “Hand 
left” blocks, “right,” corresponding to the hand position in 
the “Hand right” blocks, and “receding,” corresponding to 
a point located on the midline around 30 cm in front of the 
fixation cross (see Figure  4a). Participants received a well 
above threshold 100 ms vibrotactile stimulus (both vibrators 
were activated at the same time) at one out of three rand-
omized delays from trial onset, to reduce the predictability 

of tactile stimulation (1.75, 2 or 2.25 s from trial onset). The 
ball motion started 500 ms after trial onset, and lasted for 2 s 
at around 22.5 cm/s, so that tactile stimulation was received 
when the ball was either at 0, 5 or 10 cm from the target. In 
unisensory trials, the same scenario was displayed, and the 
tactile stimulus was administered with the same randomized 
delay, but no tennis ball was displayed. For each hand posi-
tion block, a total of 21 trials per trajectory (of which 7 per 
delay) was collected for visuotactile trials, plus 21 unisensory 
trials. In addition, a total of 36 trials, 30% of the total, were 
catch trials. In such trials, one of the three usual ball trajec-
tories was displayed (12 trials for each trajectory), but no 
tactile stimulation was delivered. Each experimental block 
lasted around 8 min.

2.5.6 | Data preprocessing and analysis

Reaction times (RTs) longer than 700  ms were automati-
cally discarded by the microcontroller. This threshold can be 
considered safe as the average RT was 264.75 ms, with an 
average within-subject SD of 33.9 ms, making it extremely 
unlikely to observe a true reaction time longer than 700 ms. 
Overall, subjects performed the task accurately, with 0.66% 
of omitted responses to tactile stimulation and 5.6% of false 
alarms (responses given in catch trials or before the stimu-
lation). Such responses were discarded. We then removed 
outlier responses by discarding, for each subject and experi-
mental block, RTs falling more than 2 median absolute de-
viations away from the median RT. This cut-off is a more 
robust equivalent of the standard cut-off at 2 SDs, as sug-
gested by theoretical and empirical justifications in meth-
odological work (Leys et  al.,  2013). The three randomized 
delays between 1.75 and 2.25 s were used purely to reduce 
the predictability of the task, and are orthogonal to the ex-
perimental conditions of interest. Seven trials for each delay 
were collected for each trajectory and block and the distance 
covered by the ball in the 500 ms randomization window is 
small compared to the distance between the three targets. 
This allowed us to overcome the possible confound intro-
duced when the overt expectations due to the temporal delay 
of the tactile stimulation correlate with the position of the 
visual stimulus. Therefore, in our main analyses, we pooled 
trials from the three delays together, and only focused on the 
effects of hand position and ball trajectory. Similarly to what 
was done in previous studies (Serino, Canzoneri, et al., 2015; 
Serino, Noel, et al., 2015), we defined the multisensory facil-
itation as the difference between multisensory (visuotactile) 
and unisensory (tactile only) reaction times, and performed 
our analyses on this quantity. The multisensory facilitation 
was computed by averaging unisensory trials for each subject 
and experimental block and subtracting it from each visuo-
tactile RT.

http://lnco.epfl.ch/expyvr
http://lnco.epfl.ch/expyvr
https://www.steamvr.com/en
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RTs were measured in a 2 × 3 design with the factors Hand 
position (Left, Right), and Trajectory, indicating the direction 
of the ball, (Left, Right, Receding). Trajectory was recoded as 
Congruency: Congruent, when the ball was moving towards 
the tactilely stimulated hand, Incongruent, when it was mov-
ing towards the opposite side, and Receding. Reaction times 
were then analysed by means of linear mixed-effects models. 
We fit a model on to multisensory facilitation (MF), includ-
ing Congruency and Position as predictors. Different random 
structures were tested, assessing all the five possible combi-
nations of Position and Congruency, including their interac-
tion and just a random intercept, and the model giving the 
best fit was selected. Both in terms of Akaike and Bayesian 
Information Criterion, the best model was that which consid-
ered only the position as a random factor:

Additionally, a model including a Position*Congruency 
interaction was tested, and statistical testing confirmed the 
selected random structure. Data preprocessing and further 
analysis was run in R (R version 3.4.4, for linear mixed-ef-
fects model: packages lme4 version 1.1-15 and lmerTest ver-
sion 2.0-36). Linear mixed-effects models were tested using 
the Satterthwaite approximation for the degrees of freedom 
from the lmerTest package.

3 |  RESULTS

3.1 | Learned connectivity and receptive 
fields

The neural network was designed to learn a connectivity 
scheme that optimizes the reconstruction of the patterns of 
stimulation observed during the training. This led to a spon-
taneous diversification of the response of neurons in the mul-
tisensory layer to the different sensory modalities. Since at 
initialization all the multisensory neurons are connected with 
all the neurons in unisensory populations, after the training 
all neurons were to some extent multisensory, meaning that 
they received some input from all the unisensory populations. 
Nevertheless, a great variability in the modality tuning of dif-
ferent neurons and thus in the pattern of sensory responses 
emerged. In order to quantify the response of each neuron 
to a given modality, we computed the sum of the absolute 
value of the strength of synapses from a given unisensory 
population, normalized by the mean input for that modality. 
In particular, we focused on the response of multisensory 
neurons to tactile inputs. As appears evident from Figure 2a, 
the response has a bimodal profile, meaning that the popu-
lation spontaneously diversifies in inhibitory and excitatory 
neurons as a function of tactile inputs. In general, around 55% 

of the neurons were found to receive excitatory projections 
from the tactile area, with the remaining 45% receiving in-
hibitory projections.

In order to test whether and how the model might build 
up a PPS representation from capturing regularities in the 
environment, we tested how the spatial properties of the 
multisensory neurons depended on their tuning to the tac-
tile modality. It is known from neurophysiological literature 
that the PPS is represented in the monkey cortex by a set of 
multisensory neurons that respond both to touch on a given 
body part, and to visual stimuli close to that body part. In 
the previous version of the model, this evidence was imple-
mented by a hard-wired connectivity whereby the projec-
tions to the multisensory neuron(s) were of fixed strength 
from the tactile area, whereas from the visual area they 
decreased as a function of the distance from the hand. We 
asked whether our model could simply learn a similar pat-
tern of connectivity from the multisensory training, in which 
neurons that respond more strongly to touch code mostly for 
the close (trunk-centred) visual space. Since our model uses 
several multisensory neurons, that spontaneously tune dif-
ferently to each sensory modality, we tried to define a suit-
able approach to test this hypothesis. For each multisensory 
neuron, we defined its preferred visual distance as the pre-
ferred distance (along the anterior-posterior axis) of the vi-
sual unisensory neuron that projects the strongest excitatory 
synapse to that same multisensory neuron. Roughly, this 
corresponds to the peak of the visual RF of the multisen-
sory neuron. This allowed us to explore how the properties 
of multisensory neurons vary depending on the region of the 
visual space that is stimulated. We found that, on average, 
the tactile input computed by multisensory neurons slightly 
decreases with their preferred visual distance, coded as de-
scribed above (Figure 2b). Excitatory neurons tend have the 
peak of their visual RF close to the trunk while inhibitory 
neurons tend to have it in the far space. This goes in the same 
direction as the synaptic connectivity in the previous neural 
network model, but here the distance dependent modulation 
is much weaker, and does not clearly differentiate the close 
and the far space. This may seem surprising, but due to the 
width and complex shape of the RFs learned by most mul-
tisensory neurons, the visual preferred distance of a given 
multisensory neuron is not always informative. A multisen-
sory neuron with the peak of its receptive field in the far 
space can still have a significant response to close stimuli, 
and vice versa. More importantly, since in our architecture 
the visual input was not coded in hand-centred coordinates, 
the presence of tactile input does not simply depend on the 
distance in the visual space, but on proprioceptive and vi-
sual information combined. Likely, the slight dependence 
of connectivity on distance is mainly explained by the fact 
that the proprioceptive hand position cannot be further than 
60 cm away from the trunk. However, the presence of the 

MF∼Position+Congruency+(Position|Subject) .
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proprioceptive population introduced an additional level of 
complexity in the neural network, that can be appropriately 
addressed only by looking at the associations learned by the 

network between the visual and the proprioceptive coding. 
To do this, we computed the overlap between propriocep-
tive and visual receptive fields of each multisensory neuron, 

F I G U R E  2  Properties of neurons in the upper layer. (a) Distribution of the strength of tactile input across the multisensory neurons. The strength 
of the input for each multisensory neuron is defined as the average of the synaptic weight of the projections it receives from the 30 tactile neurons. 
(b) Dependence of the strength of tactile input on the preferred visual distance of the multisensory neurons. The overlaid solid line represents mean 
values over 10 distance bins and the shade its standard error. (c) Quantification of the overlap of proprioceptive and visual receptive fields as a 
function of the preferred visual distance. The overlap is defined as the Pearson correlation coefficient of synaptic input to the multisensory neuron 
over space. Red and blue denote respectively multisensory neurons projecting excitatory and inhibitory synapses towards the tactile area. The overlaid 
solid lines represent mean values over 10 bins, with the shade representing the standard error. (d) Two exemplary visual (left) and proprioceptive 
(right) receptive fields of multisensory neurons. in the upper panels, a neuron receiving and sending excitatory projections to the tactile area, with 
overlapping visual and proprioceptive RFs. In the lower panels, a neuron receiving and sending inhibitory projections to the tactile area, with disjoint 
visual and proprioceptive RFs. Yellow and blue indicate respectively strong and weak projections from the unisensory areas to the multisensory 
neurons. (e) Same as panel c, but in a control model where tactile input was provided randomly and uncorrelated with visual and proprioceptive 
information. (f) Mean activity of the multisensory neurons that positively respond to touch, as a function of the position of the visual stimulus. The 
orange and light blue curves correspond to two different simulated positions of the hand, respectively, 25 cm left and right of the midline

(a) (b)

(c) (d)

(e) (f)
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defined as the spatial correlation of its incoming visual and 
proprioceptive synaptic weights. This quantity approxima-
tively corresponds to the spatial correlation of its visual and 
proprioceptive RFs. Since the spacing in the grid of neu-
rons is different for the two populations, the correlation was 
computed after interpolating the proprioceptive synaptic 
weights on a grid of points with the same spacing of the 
visual population. A positive overlap means that the neuron 
tends to be activated when the hand and the visual stim-
ulus are in the same position, whereas a negative overlap 
indicates that the neuron responds when the hand and the 
stimulus are far away. We expected the nature of the learned 
visuo-proprioceptive associations of a given multisensory 
neuron to depend on its response to tactile input, therefore 
we divided the heterogeneous population of multisensory 
neurons in two groups, based on whether they are inhibited 
or excited by tactile inputs. Then, we studied the dependence 
of such overlap on the preferred visual distance. For excit-
atory neurons, the visuo-proprioceptive overlap was strong 
regardless of their preferred visual distance. Conversely, for 
inhibitory neurons, the overlap was strongly negative at all 
preferred visual distances (Figure 2c). An exemplary pair of 
inhibitory and excitatory neurons with preferred distance in 
the close space are shown in Figure 2d. These results sug-
gest that, more than differentiating between neurons coding 
for the close and the far space overall, the network sponta-
neously organized them in two populations of overlapping 
and anti-overlapping visual and proprioceptive RFs. Again, 
due to the width and complex shape of RFs, the presence 
of neurons with strong visuo-proprioceptive overlap, and 
preferred visual distance in the far space should not sur-
prise. Crucially, in the present model, the alignment (or an-
ti-alignment) of receptive fields emerges from the statistical 
regularity of touch with respect to an external visual stimu-
lus and proprioceptive information. In order to demonstrate 
this, we replicated the simulation represented in Figure 2c 
after a control training with the same visual and proprio-
ceptive stimuli, but in which touch was provided randomly 
and independently from the hand-centred coordinates of the 
visual stimulus. The visuo-proprioceptive overlap was al-
ways close to zero for both excitatory and inhibitory neu-
rons (Figure 2e). In order to establish a comparison with the 
neurophysiological literature, we then studied the subset of 
neurons in the multisensory layer that positively respond to 
touch, to compare our artificial neural population to the one 
typically studied in primates (Fogassi et al., 1996; Graziano 
et  al.,  1994, 1997). In Figure  2f we show the average re-
sponse of such neurons as a function of the position of the 
visual stimulus, in two conditions: hand to the left and to 
the right of the body midline. The average receptive field 
of the population shifts according to the hand position, in a 
similar way to what was reported by Graziano for individual 
neurons (Graziano et al., 1997).

3.2 | The network encodes tactile 
predictions in hand-centred coordinates

In an RBM, information from the different unisensory popu-
lations of the lower layer is encoded in the upper layer in a 
unified and compressed representation, embedding the statisti-
cal relations between the unisensory inputs. This allows the 
network to build a more compact and accurate representation 
of the input than each of its unisensory components (Makin 
et al., 2013), and can be seen as a predictive form of multi-
sensory integration, in which inputs from different modali-
ties influence and complement each other to better fit a global 
model of sensory inputs. We hypothesize that PPS represen-
tation spontaneously emerges when a neural network learns 
to integrate in such a way external and body-related informa-
tion, being trained on sensory inputs that reflect the natural 
statistics of body-environment interactions. In practice, to ef-
ficiently encode incoming sensory information, multisensory 
neurons in our network must learn an encoding schema that 
embeds the statistical relations observed between tactile stimu-
lation on the hand and visual stimuli close to the hand (the 
hand position being specified via proprioceptive information). 
As a consequence, when a visual stimulus is present close to 
the proprioceptively encoded hand position, we expect the 
multisensory neurons to start coding for the presence of tactile 
stimulation at a sub-threshold level, before or even in absence 
of contact. This prediction constitutes a possible explanation 
of the well-reported effect of a facilitation of reaction time to 
tactile stimulation in the presence of an external stimulus ap-
proaching the stimulated body part (Canzoneri et  al.,  2012; 
Serino, 2019). Indeed, the “pre-encoding” of tactile informa-
tion in multisensory neurons might be not sufficient to elicit 
conscious tactile perception, but might boost responsiveness 
to tactile stimulation, thus speeding up reaction times when 
tactile stimulation is delivered. Following this line of reason-
ing, testing our hypothesis becomes equivalent to perform-
ing in-silico simulations of tactile detection tasks such as in 
(Canzoneri et al., 2012). Practically, this can be done by pro-
viding proprioceptive and visual information to the neural net-
work, while suppressing the input from the tactile area, so as 
to measure only the contribution of vision and proprioception 
on the tactile information encoded in the multisensory layer. 
The activity we read out from the tactile population (even in 
absence of tactile stimulation) is used as a proxy of multisen-
sory facilitation, i.e., faster reaction times in a tactile detection 
task. We call this read-out tactile information evoked tactile 
activity, and treat it as a in silico behavioural correlate of PPS 
representation. Note that this does not necessarily mean that 
behavioural effects in reaction times reduction are linked to 
actual activity in tactile unisensory areas, as behaviour may 
be based on the amount of tactile information contained in 
the multisensory layer, that we only decode through feedback 
synapses. Consistently with our previous theoretical reasoning 
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and with neurophysiological and behavioural findings, we ex-
pect the evoked tactile activity to depend strongly on the loca-
tion of the external stimulus with respect to the hand position, 
i.e., on its hand-centred coordinates.

To test this hypothesis, we ran a simulation in which the 
hand and the visual stimulus were placed at random positions 
within the respective areas and measured the evoked tactile 
activity as a function of the position of the hand and of the 
visual stimulus. As expected, the region of space in which 

visual stimuli elicit an evoked activity in tactile neurons was 
spatially anchored to the hand. In particular, if the evoked tac-
tile activity was displayed as a function of hand position or 
visual position of the stimulus in trunk-centred coordinates 
(Figure 3a,b), there was a weak, non-coherent modulation of 
activity. Instead, if the activity was displayed as a function of 
position of the visual stimulus with respect to the hand position 
as coded by the proprioceptive population, i.e., hand-centred, 
(Figure  3c), the modulation became stronger and coherent, 

F I G U R E  3  Simulated behavioural experiments. (a and b) Tactile evoked activity - multisensory facilitation as a function of visual stimulus 
position (in trunk-centred coordinates) and hand position. The evoked tactile activity is obtained by setting the tactile input to zero, encoding a 
visual and a proprioceptive input, and reading out the tactile information encoded in the multisensory area from the tactile area (i.e.: its mean 
activity after a “down” pass). In trunk-centred coordinates (a) stronger activity for close positions of the visual stimulus can be observed, but no 
modulation as a function of the position along the anterior-posterior axis. Virtually no modulation is observed as a function of hand position (b). 
(c) The same tactile evoked activity, plotted as a function of the visual stimulus position in hand-centred coordinates. (d) Tactile evoked activity as 
a function of the distance from the centre of the hand of the visual stimulus. (e) Simulated proprioceptive drift in the invisible hand illusion. The 
proprioceptive input is fixed at the midline, and the position of the visual stimulus is shifted across the midline. The plot shows the proprioceptive 
position reconstructed by the network after integrating the three sensory inputs. The x axis represents the distance from the midline of the visual 
stimulus. Different colours represent different levels of intensity for the tactile input, starting from black (no touch/asynchronous stimulation), 
to red (maximal intensity of tactile stimulation). (f) Same as panel d, but the proprioceptive drift is expressed as the percentage of the distance 
between the visual and proprioceptive stimuli

(a) (b)

(c) (d)

(e) (f)
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with a maximal level of activity when the stimulus was in the 
origin (i.e. the centre of the hand), sharply decreasing with 
distance. Figure 3d shows the trend of tactile evoked activity 
as a function of the distance of the visual stimulus from the 
centre of the hand. This curve shows a similar trend to what 
reported for some neurons mapping the PPS representation 
around the monkey face (Graziano et al., 1997).

3.3 | In-silico results match in-vivo hand-
centred coding of multisensory facilitation

In order to confirm that the proposed architecture can model 
actual behaviour in a meaningful way, we ran an ad-hoc 
behavioural experiment on healthy participants. The aim 
of the experiment was to show that proprioceptive infor-
mation is integrated with information about an incoming 
visual stimulus, affecting tactile processing on the hand. As 
a behavioural proxy of multisensory integration, we meas-
ured reaction times to tactile stimulation on the right hand, 
while the subjects were seeing task-irrelevant visual stimuli 

(tennis balls) in virtual reality. RTs were compared for Hand 
position (Left, Right) and Congruency of the ball trajectory 
(Congruent, Incongruent and Receding). A linear mixed-ef-
fects model on the multisensory facilitation (MF), including 
Congruency and Position as predictors (see Methods for de-
tails), showed a significant main effect of Congruency (F(2, 
4,831.8) = 6.389, p = 0.0017) and a marginally significant ef-
fect of Position (F(1, 42.1) = 3.59, p = 0.065). When looking 
at individual coefficients, using the Receding trajectory as a 
reference, we found Congruent trials to be significantly faster 
(−4.115 ms, SE = 1.184 ms, T = −3.477, p < 0.001), and 
Incongruent trials to be not significantly different (−1.216 ms, 
SE = 1.188 ms, T = −1.024, p = 0.30) from receding trials. 
In order to directly compare Congruent and Incongruent tri-
als, and assess the role of proprioception in visuotactile in-
tegration, we fit the same model on the subset of Congruent 
and Incongruent trials. Again, the main effect of Congruency 
was significant (F(2, 3,202.4)  =  5.912, p  =  0.015), with 
Congruent trials faster than Incongruent trials (−2.889 ms, 
SE = 1.188 ms, T = −2.432, p = 0.015). This is in line with 
the model's qualitative predictions, shown in Figure  4c. 

F I G U R E  4  Results of the behavioural experiment. (a) Schematic experimental setup. The subjects placed their right hand approximatively 
30 cm in front of their trunk, either 25 cm left or right of their midline. The origin of the arrows represents the starting point of the different 
trajectories, coinciding with the fixation cross. The total length of the trajectories was approximatively 50 cm. (b) Modulation of average reaction 
times for the 43 participants as a function of hand position and ball trajectory congruency with hand position. For simplicity, we show only the two 
conditions that are relevant for confirming our hypothesis, and leave out the receding condition. Thick lines indicate global means by condition. (c) 
Expected results from model simulations for the same experimental setup. Red crosses represent the position of the real hand's centre, the colour 
coding represents the predicted multisensory facilitation. Yellow areas represent zones of higher facilitation/faster reaction times

(a)

(b)

(c)
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Additionally, to rule out the possibility that the congruency 
effect may be present only on one side of the midline, we run 
the same model including a Position*Congruency interac-
tion. This did not change the main effect of Congruency (F(2, 
4,831.8) = 6.389, p = 0.0017), nor the comparison Congruent 
versus Incongruent( F(1, 3,201.3) = 5.90, p = 0.015), and the 
interaction was not significant (p = 0.76). Note that the facili-
tation when the visual stimulus is on the opposite side of the 
midline (Incongruent trials) is close to zero, similarly to when 
the visual stimulus is in the region outside the PPS (Receding 
trials), in line with the non-significant difference found in our 
experiments. It is worth noting that the multisensory facilita-
tion compared to unisensory trials was significantly below 
zero in all conditions, including Receding trials (−14.6 ms, 
SE = 2.45 ms, T = −5.96, p < 0.001). This seems to contra-
dict model predictions, as no significant tactile evoked activ-
ity is expected in the far space. We hypothesize that this may 
be due to overall stronger expectation effects in multisensory 
trials, compared to unisensory trials, due to the presence of the 
virtual ball providing a more precise cue about the likely time 
of stimulation. Our experimental design, unlike most previ-
ous studies, makes the delay of stimulation orthogonal to the 
three conditions of interest, which allows comparing them 
while controlling for expectation. We also investigated more 
in detail the possible interactions between PPS representa-
tion and expectation effects, by analysing trials separately by 
stimulation delay. We found an overall effect of stimulation 
delay reducing reaction times, compatibly with the presence 
of expectation effects. However, the decrease in reaction 
times with increasing delay (and decreasing distance from 
the hand) was significantly stronger in the Congruent condi-
tion, further confirming the presence of proximity effects in 
modulating reaction times (see Supporting Information and 
Figure S4 for details).

3.4 | The network encodes proprioceptive 
inputs as a function of visuotactile integration 
– The IHI

Our previous computational (and behavioural) results show 
how visual and proprioceptive information combined can 
affect the encoding of tactile information to reproduce the 
associations learned during the training (or real-life experi-
ence). Since the learned associations have no preferential 
direction, we expect the transfer of information between sen-
sory modalities to take place also in the opposite direction: 
from the tactile to the visual and proprioceptive modalities. 
In particular, we focused on how visuotactile inputs affect 
the encoded proprioceptive information, as this link has been 
previously investigated in several behavioural works explor-
ing the multisensory bases of body representation (Guterstam 
et al., 2013; Salomon et al., 2017). We fixed the input hand 

position at the midline and provided visual stimulation at dif-
ferent positions along the anterior-posterior axis. This was 
done in association with no tactile inputs (touch OFF), or at 
various levels of intensity of tactile stimulation (touch ON). 
We can consider the “touch ON” conditions as synchronous 
stimulation, in which touch and visual stimulation occurred 
at the same time, and the “touch OFF” as asynchronous stim-
ulation, meaning that visual stimulation and touch were suf-
ficiently separated in time to have no residual activity in the 
tactile area when visual stimulation occurred. Then, as we 
previously did with the tactile population, we projected the 
multisensory activity to the proprioceptive population, and 
computed the integrated proprioceptive position as the bar-
ycentre of neural activity. In the “touch ON-synchronous” 
condition, we found that the proprioceptively encoded po-
sition of the hand gets attracted towards the position of the 
visual stimulation. This result held with little changes at dif-
ferent intensities of tactile stimulation, as if the presence of 
tactile stimulation was treated as an all or none variable to 
generate the attractive pull (Figure 3e,f). Only at zero tactile 
intensity, in the “touch OFF-asynchronous” condition, was 
the reconstructed proprioceptive position roughly unbiased 
and did it correspond to the actual proprioceptively encoded 
hand position. These results resemble behavioural findings 
reported by Guterstam et  al.  (2013) when introducing the 
so-called “IHI.” In the IHI, the hand of a participant is hid-
den, and tactile stimulation is provided while synchronously 
stroking the empty space next to the location of the real hand. 
Thus, as in our model, the subjects receive visual information 
about an external stimulus, touch on the hand, while process-
ing proprioceptive cues, while they do not get any visual in-
formation about the hand position. Participants report feeling 
to have an “invisible hand” and when asked to point at the 
location of their real hand, they aim to a location shifted to-
wards the point in space where the visual stroking occurred, 
a phenomenon known as proprioceptive drift. The output of 
the proprioceptive population in our model simulation in the 
“touch-ON” condition replicates proprioceptive drift in the 
IHI.

3.5 | Development of the key features of the 
network during training

After outlining the main features of the network, we explored 
how, during the training, these develop from the initial ran-
dom connectivity. The results are summarized in Figure 5. 
To simply quantify the overall progress in the training of the 
network we computed the reconstruction error. This quantity 
is defined by encoding a sensory input in the multisensory 
layer and then projecting it back to the unisensory areas. The 
mean squared difference between the original input and the 
reconstructed activity is called reconstruction error, and it is 
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expected to decrease during the training as the network learns 
to more efficiently encode its sensory inputs. As the training 
progressed, the reconstruction error decreased (Figure  5a), 
meaning that the network learned to reproduce more reliably 
the information contained in the unisensory inputs, after en-
coding it in the multisensory layer. After the initial strong 
decrease of the reconstruction error (from epoch 1 to epoch 
6), the learning slowed down, and continued at a reduced 

pace throughout the whole training, probably towards the 
saturation value due to the stochasticity of the network's up-
date rule. In order to synthesize the information about the 
overlap of visual and proprioceptive receptive fields, and 
display its evolution across epochs, we define a visuo-pro-
prioceptive overlap index. The visuo-proprioceptive over-
lap index is defined as the difference between the average 
visuo-proprioceptive overlap of tactile excitatory and tactile 
inhibitory neurons. At the beginning of the training, the over-
lap index was low and close to zero, meaning that inhibitory 
and excitatory tactile neurons are not differentiated in terms 
of visual and proprioceptive RFs. During training, the value 
progressively increased, reaching almost the final value after 
epoch 18 (Figure 5b). This seems to coincide with the emer-
gence of a strong tuning of the tactile evoked response to the 
distance from the hand (Figure 5c). As seen in Figure 5d, in 
the first stages of training, the reconstructed tactile activity 
was coarsely determined by the distance from the body of 
the visual stimuli. At this stage, the network has only learned 
that touch is more likely to occur if a visual stimulus is in the 
closed space, and still does not take proprioceptive informa-
tion into account. Starting from epoch 10, and more clearly 
from epoch 18 and onwards, the network's response became 
tuned to hand-centred coordinates, as determined by proprio-
ceptive signals.

3.6 | Visually encoded hand position

In the present work, we limited the inputs about hand posi-
tion to proprioceptive information. This was done mainly to 
minimize the network's complexity and the number of input 
populations, facilitating the task of reverse engineering the 
network's functioning. Nevertheless, it is known from neu-
rophysiological literature that visual input about arm (or 
even artificial reproductions of the arm) position affects the 
response of some PPS neurons (Graziano, 2000). However, 
since proprioceptive and visual information are redundant, 
at least in normal conditions, we predicted that adding visual 
cues about the hand position would not affect significantly 
the main properties of the network. To show this, we trained 
another network identical to the one shown in the previous 
paragraphs, with the addition of another visual population, 
coding for the location of the hand in space, through the same 
population coding and tuning curves used for the external 
visual stimulus (Figure 6a). In 75% of the training examples, 
the additional visual population coded for the same position 
in space as the proprioceptive population. In addition, to 
model occlusion of the hand by other objects or its exclusion 
from the visual field, we suppressed visual information about 
hand position in 25% of the training examples. To model the 
vision of other people's hands, the visually and propriocep-
tively encoded positions of the hand were independent in 

F I G U R E  5  Evolution of the network during training. (a) 
Reconstruction error of the network plotted as a function of the 
training epoch. The reconstruction error is defined as the mean squared 
difference between the training sensory input and its reconstruction 
in the confabulation phase. (b) Visuo-proprioceptive overlap index 
across the 9 training epochs. The visuo-proprioceptive overlap index 
is defined as the difference between the average visuo-proprioceptive 
overlap of tactile excitatory and tactile inhibitory neurons. The stronger 
the overlap for tactile excitatory neurons, and the stronger the anti-
overlap for tactile inhibitory neurons, the higher the index is. (c) Evoked 
tactile activity as a function of the distance from the hand of the visual 
stimulus, across the same nine epochs of training. (d) Evoked tactile 
activity as a function of the position of the stimulus expressed in hand 
centred coordinates. The activity is plotted for the same nine stages of 
training

(a)

(b)

(c)

(d)
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F I G U R E  6  Network including visual information about hand position (a) Architecture of the network. In addition to the previous model, this 
network has one visual population (purple one) coding for the position of the hand. The tuning curves of neurons in this population have the same 
width as in the visual population coding for the position of the external stimulus. Other populations' tuning curves and training parameters were the 
same as in the previous model. (b) Tactile evoked response as a function of the position of the stimulus expressed in hand centred coordinates. (c) 
Same as panel (b), but the activity in the visual population coding for the hand was set to 0, simulating the occlusion of the hand and reproducing 
the sensory input of the previous model. (d) Distribution of the overlap between proprioceptive receptive fields and the receptive fields of the 
visual population coding for hand position. The inset shows the same result, in a network in which the proprioceptive and visual hand positions 
were never dissociated. (e) Proprioceptive drift in the simulated invisible hand illusion. We followed the same procedure as for Figure 3e, and set 
the activity in the visual population coding for hand position to 0 to simulate the occlusion of the hand in this network. The x axis represents the 
distance from the midline of the visual stimulus. (f) Proprioceptive drift in the simulated rubber hand illusion. The procedure was the same as for 
the invisible hand illusion, with the exception that the visual hand area was now coding for the same location as the external visual stimulus

(a)

(b)

(d) (e) (f)

(c)
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25% of the trials. Therefore, we modelled the hand visual 
area as a neural population coding for the spatial location of 
hand-like objects in space, without recognizing the specific 
visual features of one's own hand. Then, we run the same set 
of analyses as in the previous paragraphs. In Figure 6b,c, we 
show how the network encodes information in hand-centred 
coordinates, similarly to what shown in Figure 3b. We tested 
the network both in the case of visible (Figure 6b) and in-
visible (occluded) hand (Figure 6c) and found comparable 
results, the only difference being a weaker evoked activation 
of the tactile area when the hand was not visible. Even when 
the network was trained with both visual and proprioceptive 
information, proprioception alone was sufficient to build a 
visuotactile PPS representation. In Figure 6d we provide a 
simple explanation for this: in the majority of multisensory 
neurons, the learned proprioceptive and hand-visual recep-
tive fields were strongly overlapping, as the two populations 
typically code for the same spatial location. Interestingly, 
the visuo-proprioceptive overlap distribution in Figure  6d 
presents a secondary peak at zero overlap, besides the main 
peak around 0.75, showing that the receptive fields were 
completely dissociated in a minor yet significant fraction of 
the multisensory neurons. Further testing showed that this 
was the case only when the network had been exposed to 
the dissociated visual and proprioceptive hand positions 
(others' hands) during training. When training an identical 
network, in which visual and proprioceptive hand positions 
were always overlapping, the zero overlap peak was greatly 
reduced, as seen in the inset of Figure 6d. This may reflect 
the network learning to differentiate between integration 
and segregation of visuo-proprioceptive information (see 
Section 4). We then tested the IHI, by providing the same 
inputs as previously done for Figure 3e,f in the visual, tac-
tile and proprioceptive populations, and no input in the hand 
visual population. The results closely matched the ones of 
the previous model (Figure  6e). Moreover, this extended 
network architecture reproduced the stimulation pattern of 
the rubber hand illusion. We fixed the proprioceptive hand 
position, while encoding an incongruent hand position in the 
visual hand area, representing the rubber hand. At the same 
time, we provided visual stimuli at the same location as the 
visual hand, representing the stimulating brush, and either 
no tactile stimulation or touch at various intensities. Then, 
we read out the proprioceptive hand position, by projecting 
multisensory activity down to the proprioceptive population. 
We observed a significant proprioceptive drift towards the 
rubber hand in the touch ON-synchronous that was weakly 
modulated by tactile intensity (Figure  6f). A significant 
proprioceptive drift was observed also in the touch OFF-
asynchronous condition, although clearly smaller than in 
the synchronous condition. This result, seemly surprising, is 
actually in line with behavioural reports of a significant pro-
prioceptive drift towards the rubber hand even in the case of 

no or asynchronous visual stimulation (Rohde et al., 2011; 
Samad et al., 2015).

3.7 | Shifting receptive fields at the level of 
single neurons

In the previous paragraphs, we showed how the network 
can encode information in hand-centred coordinates at the 
population level. This allowed to reproduce some important 
behavioural and neurophysiological aspects of PPS represen-
tation. However, while neurophysiological studies reported 
individual neurons with visual receptive fields spatially an-
chored to body parts in space (Graziano,  1999, 2000), the 
receptive fields of individual multisensory neurons in our 
network cannot be spatially “shifted” by proprioceptive in-
puts. Mathematically, this is a direct consequence of the fact 
that the network has only two layers, and that the response of 
one multisensory neuron is a sigmoidal function of the sum 
of its inputs, with the visual and proprioceptive inputs being 
independent. Since the sigmoid is a monotonically increas-
ing function, when changing the proprioceptively encoded 
hand position, the neuron's response as a function of the 
visual stimulus' position would either increase or decrease 
everywhere, but do not change its global spatial properties. 
More specifically, the peak of the receptive field would not 
change. However, since the two-layers network learned to 
encode information in hand-centred coordinates at the pop-
ulation level, we expect that the addition of a third multi-
sensory layer could lead to individual neurons with visual 
receptive fields anchored to body parts in space. We there-
fore trained a further model to provide an example of how 
fully hand-centred receptive fields at the single neuron level 
can be achieved by simply expanding our two-layers archi-
tecture. The new network had the same architecture as in our 
previous model, but with reduced overall number of neurons, 
to keep its computational complexity manageable during 
the learning task. We then added a second, “higher level,” 
multisensory layer, receiving inputs from the first multisen-
sory layer and from the tactile area (Figure 7a). The training 
was performed in two steps. In the first step, connections 
between unisensory areas and the first multisensory layer 
were trained as shown before, with contrastive divergence 
and coupled unisensory inputs (Figure 1b). After completion 
of the first step of training, connections from the tactile area 
and the first multisensory layer to the second multisensory 
layer (denoted by black arrows in Figure  7a) were again 
trained with contrastive divergence. The stimuli were gener-
ated by encoding unisensory inputs from the usual training 
set in the first multisensory layer and using the so obtained 
activity, coupled with activity in the tactile area, as training 
input for the second multisensory layer. The hypothesis un-
derlying the emergence of shifting RFs from this architecture 
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stems from our previous observation that multisensory neu-
rons that respond to touch have overlapping visual and pro-
prioceptive receptive fields. We expect individual neurons in 
the second multisensory layer to learn the associations be-
tween (unisensory) tactile activity and the activity of neurons 
in the first multisensory layer that code for touch and whose 
visual and proprioceptive receptive fields overlap. If this is 
the case, third-layer neurons would learn to be active when 
any of the neurons coding for touch in the first multisen-
sory layer is active. That is, they would respond whenever 
vision and proprioception are aligned, by shifting the peak 
of their visual receptive field. We therefore expected that 
the neurons receiving the strongest projections from tactile 
units would exhibit a stronger tuning to hand position. We 
explored this hypothesis by setting tactile inputs to zero, and 
mapping the peak of the RF for 100 different hand positions. 
We then computed the average correlation (along the x and 
y axis) between hand position and RF peak, as an index of 
hand position tuning. As shown in Figure 7b, neurons receiv-
ing the strongest projections from unisensory tactile neurons 
show the highest degree of hand position tuning, with 27.5% 
of them having an average correlation coefficient above 0.6. 

An example of a hand position tuned neuron can be seen in 
Figure 7c.

3.8 | Encoding proprioceptive input in 
joint angles

In the previously presented models, we chose to encode pro-
prioceptive input as a population coding in Cartesian space. 
This was done to simplify the interpretation and visualization of 
the results. However, the encoding of raw proprioceptive input 
likely resembles joint angles more than Cartesian space. Here, 
we demonstrate how the main results of our work can be re-
covered when training a network with proprioceptive inputs en-
coded under the form of more biologically realistic joint angles. 
In this version of the network, the proprioceptive population was 
still 15 × 10 neurons, representing, respectively, the angle of 
the shoulder in the horizontal plane and the angle of the elbow. 
Shoulder angles ranged from −π/4 to π/2, where 0 represents the 
arm straight ahead and negative and positive angles represent 
a deviation towards the body midline or away from it, respec-
tively. Elbow angles ranged from −π/2 to 0, where 0 represents 

F I G U R E  7  Individually shifting receptive fields. (a) Architecture of the network. The first two layers have the same architecture as in the 
main model, but fewer neurons to facilitate the training. The third layer is connected to the second multisensory layer and to the tactile population 
in the unisensory layer. The training was performed in two steps. The first step was identical to the original model. In the second step, training 
inputs for the second multisensory layer were constituted by the joint activity of first multisensory layer neurons and unisensory tactile neurons. (b) 
Correlation between hand position and RF peak of second multisensory layer neurons, as a function of the strength of the input they receive from 
unisensory tactile neurons. The correlation is defined as the average between correlations along the x and y directions. (c) Visual receptive field of 
one exemplary multisensory neuron in the third layer, receiving strong excitatory projections from the tactile area, for two different hand positions. 
Each subplot corresponds to different position of the hand, indicated by the red cross overlaid to the receptive field

(a) (b)

(c)
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the arm fully extended. Visual and tactile inputs were encoded 
through a population coding with Gaussian tuning curves, with 
the same width as in the main network. For training, pairs of 
proprioceptive and visual positions were drawn from uniform 
distributions in the respective range (therefore, joint angles were 
randomly drawn for the arm instead of positions in the Cartesian 
space). Then, feedforward kinematics were computed to deter-
mine hand position in Cartesian coordinates, and tactile units 
were activated if the distance between the visual stimulus and 
the hand was smaller than 15 cm.

where 0.3 and 0.35 represent the length of the arm and forearm 
(up to the centre of the hand), respectively, and θ1 and θ2 repre-
sent respectively shoulder and elbow angles.

Figure  8b,c shows the same results as Figure  3c,e, 
for this version of the network. The network is able to 
compute hand-centred coordinates of visual stimuli in a 
similar way to what already shown in the main results. 
Also when testing the proprioceptive drift in the IHI sim-
ilar results were obtained, except for a slight bias in the 
reconstructed hand position. This is in line with our ex-
pectation that, as long as the network is able to learn a 
good generative model of its sensory inputs, the specific 
encoding schema should not matter, provided that infor-
mation about the physical stimuli can be recovered from 
the unisensory populations.

(9)
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F I G U R E  8  Further network generalizations. Panel (a) shows of the same analyses shown in Figure 3c, for a network in which hand 
position was encoded under the form of shoulder and elbow joint angles. Panel (b) reproduces Figure 3e for the same network. Panels (c) and (d) 
demonstrate the same results as panels (a) and (b) in a network where, in addition to encoding proprioceptive inputs under the form of joint angles, 
a fourth population coding for gaze position was added. This requires the network to compute a further reference frame transformation

(a) (b)

(c) (d)
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3.9 | Adding gaze angle and further 
generalizations

Similarly, the network presented previously had to learn a 
simplified version of the actual reference frame transforma-
tions that are necessary to link retinotopic visual input and 
tactile input through proprioception, as we chose to ignore 
gaze angle. We therefore explored whether the network, in 
addition to encoding proprioceptive input in joint angles, 
could handle the additional degree of freedom of gaze direc-
tion in the horizontal plane. We trained another network that 
was identical to the one presented in the previous paragraph, 
except for a fourth population coding for gaze direction. 
This population consisted of 120 neurons, representing gaze 
angles from −π/4 to π/4, with 0 indicating looking straight 
ahead, and a tuning curve width of 1 neuron. The small width 
of the tuning curve, as explained in the methods, is motivated 
by the necessity to keep the average firing rate approximately 
constant across the different populations to allow efficient 
learning. Visual and proprioceptive inputs were encoded 
as in the previous section, with the difference that the co-
ordinates of the visual input were now eye-centred. Visual 
inputs and gaze angles were again uniformly distributed in 
the respective range, and the body-centred coordinates of the 
visual stimulus were determined by rotating its eye-centred 
position by the negative gaze angle around the body axis.

where θ represents the gaze angle, and Rz the rotation matrix 
along the vertical axis. As usual, tactile stimulation was present 
if the body-centred positions of the hand and the visual stimu-
lus differed by less than 15 cm. As summarized in Figure 8c, 
the network still learned to predict touch in hand-centred coor-
dinates. We also tested the proprioceptive drift induced in the 
invisible hand setup (Figure 8d). With proprioception fixed, we 
measured the proprioceptive drift at different locations of vi-
sual stimulation in body-centred coordinates, but with a random 
gaze angle (and therefore different retinotopic coordinates) at 
each trial. The results were again in line with our main findings, 
with an attractive pull towards the location of visual stimulation 
but only in the case of tactile stimulation. However, there was a 
substantial, constant bias also in the case of no-touch, possibly 
demonstrating the limits of the network in handling the addi-
tional complexity.

4 |  DISCUSSION

4.1 | Motivation and approach

The multisensory bases of PPS representation have been 
studied first in animal neurophysiological studies (see Cléry 

et al., 2015; Graziano & Cooke, 2006) and later in human neu-
ropsychological, behavioural and neuroimaging studies (see 
Serino, 2019 for a review). Only more recently, efforts have 
been made to build neural-network models accounting for the 
properties of PPS representation in a computational frame-
work (Magosso, Ursino, et al., 2010; Roncone et al., 2016; 
Straka & Hoffmann, 2017). Shortly after, computational 
models inspired by visuotactile PPS properties were proposed 
for impact avoidance (Nguyen et al., 2018), reaching (Juett & 
Kuipers,  2019) or development of a body schema (Pugach 
et al., 2019) in robotics. Here we focused on neuroscientific 
implications of neural network models of PPS representa-
tion, by tackling two main questions. First, we asked how the 
reference frame transformations that are needed to represent 
visual, proprioceptive and tactile inputs in a common, body-
centred reference frame, could be implemented in a concep-
tually simple and biologically plausible neural network. We 
proposed that spatially aligned visual and proprioceptive 
multisensory receptive fields collectively account for the ref-
erence frame transformations that allow the maintenance of 
the overlap between visual and tactile receptive fields, which 
is at the core of PPS representation. Second, such alignment 
of reference frames was obtained through the spontaneous 
tuning of the synaptic connectivity within the neural network 
as a function of statistical regularities in the environment. 
Empirical evidence on the high plasticity of PPS representa-
tion (Cléry et al., 2015; Maravita & Iriki, 2004; Serino, 2019) 
suggests that the synaptic changes due to multisensory stimu-
lation during interactions with the environment play a major 
role in shaping PPS representation. Here, we argue that the 
same mechanism can be used to explain how PPS repre-
sentation is formed at a first stage. Therefore, the learning 
component is fundamental in a neural network model aimed 
at describing the key proprieties and the emergence of PPS 
representation. To achieve these goals, we combined findings 
and methods from two different approaches applied to model 
multisensory integration and reference frames transforma-
tions. We started from the neural network model developed 
by Magosso and colleagues (Magosso, Ursino, et al., 2010). 
The model represents PPS representation as the interaction 
between unisensory areas processing tactile and visual/au-
ditory information and a multisensory layer, integrating the 
two unisensory inputs in pre-computed spatially overlapping 
receptive fields. We integrated this approach with further 
computational models of reference frame transformations, 
proposed by Ma et al.  (2006) and Makin et al.  (2013). Ma 
and colleagues were able to generate coordinate transforma-
tions in a neural network model using three interconnected 
populations of neurons with Gaussian receptive fields, whose 
synaptic weights were hard-wired. Instead, to model refer-
ence frame transformations as learned from sensory inputs, 
Makin et al. (2013) adapted a neural-network (RBM) that has 
been widely used to model complex probability distributions 

(10)xbody−centred =Rz (−�) xeye−centred
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in machine learning. They showed that, indeed, coordinate 
transformations can be learned from a sensory stimulation 
based on population coding. Here, we applied the same prin-
ciples to the key set of sensory inputs that we assumed to 
be sufficient to build a PPS representation, by implementing 
an RBM in the architecture proposed by Magosso, Ursino, 
et  al.  (2010). In addition to unisensory tactile and visual 
populations, a proprioceptive population was added allow-
ing the model to processes information related to the position 
of body parts in space. Importantly, the synaptic connectiv-
ity between the unisensory and the multisensory populations 
was learned through a biologically plausible learning rule, 
using a set of ecological stimuli as training inputs.

4.2 | Visuo-tactile facilitation in hand-
centred reference frames emerges from 
statistical regularities in the environment

Following classical behavioural and neurophysiological as-
sessments, we focused on visuotactile interactions, and how 
they are modulated by proprioception, to test PPS representa-
tion as emerging from the network. To this aim, visual and 
proprioceptive inputs in the multisensory layer were encoded 
in the network, while tactile input were fixed at zero, and the 
activity induced in the tactile population (through feedback 
projections) was measured. Such tactile induced activity can 
be interpreted as the network's prediction of tactile stimula-
tion, based on the integration of visual and proprioceptive 
information. We found the network's tactile predictions to be 
based on the hand-centred coordinates of the visual stimu-
lus, with a maximal strength when visual stimuli are close to 
the hand and an activation profile depending on the distance 
from the hand, closely resembling what reported from sin-
gle cell responses by neurophysiological studies in monkeys 
(as in Graziano et  al.,  1997). This pattern of response can 
be linked to the well-known behavioural finding that visual 
(or auditory) stimuli close to a body part induce a facilita-
tion of tactile processing for the same body part (Canzoneri 
et al., 2012; Spence et al., 2004). Here, we directly replicated 
this effect in a behavioural experiment on healthy partici-
pants. By suppressing visual information about hand posi-
tion, which is rarely done in similar behavioural studies, we 
confirmed the relevance of the proprioceptive-visual associa-
tions (as learned by our model) for multisensory integration 
in the PPS. Our new behavioural data show that tactile re-
sponses were facilitated selectively when the side of visual 
stimulation matched that of the hand position as specified by 
proprioception. The fact that congruent visual and proprio-
ceptive spatial cues affect multisensory processing is well-
known in experimental psychology, typically shown by the 
crossmodal congruency effect (Pavani et  al.,  2000; Spence 
et al., 2000). However, this had never been demonstrated in a 

tactile detection task, where the presence of visual cues about 
hand position is typically thought to be the main driving 
force. Nevertheless, the comparison between model predic-
tions and behavioural data remains qualitative at the present 
stage, as the main goal of the experiments presented in this 
paper was to demonstrate the plausibility of the model's 
architecture. Further efforts should focus on finding better 
methods to link model predictions to behavioural data, and 
increasing the granularity of behavioural measures.

Importantly, the fact that the receptive fields are learned 
and not hard-wired allows us to treat their properties as pre-
dictions generated by the model, and not assumptions that 
are set a priori. Specifically, the model predicts the exis-
tence of neurons responding to touch, with overlapping vi-
sual and proprioceptive RFs, and neurons not responding 
to touch with dissociated visual an proprioceptive RFs. The 
collective behaviour of such neurons leads to the encoding 
of tactile information being influenced by the hand-centred 
coordinates of visual stimuli. Their receptive fields are broad 
and complex in shape, and neurons do not individually en-
code information in body-part centred coordinates. This is 
consistent with what was found in literature in multisensory 
neurons, displaying broad RFs and only partially shifting ref-
erence frames (Avillac et  al.,  2005). Nevertheless, seminal 
neurophysiological studies, such as by Graziano and col-
leagues (Graziano et al., 1999) showed how proprioceptive 
inputs can shift the visual receptive fields of individual neu-
rons. While in our two layers network fully-shifting reference 
frames can emerge only at the population level (Figure 2f), 
in further simulations we showed how individual neurons 
with receptive fields anchored to the hand in space can be 
spontaneously obtained by letting a third layer learn the as-
sociations between tactile inputs and the multisensory repre-
sentation of sensory inputs. With a three-layers architecture, 
we therefore showed how neurons with fully and partially 
shifting RFs may simply be successive levels of information 
processing. Interestingly, this also implies that canonical PPS 
neurons may not be needed for generating hand-centred vi-
suotactile interactions. Importantly, we showed that the pres-
ence of tactile stimulation that is coherent with visual and 
proprioceptive inputs can lead to the alignment of visual and 
proprioceptive receptive fields in multisensory neurons, con-
stituting a possible explanation for both PPS representation 
and reference frame transformations. Moreover, we have 
shown how changing the encoding schema of proprioceptive 
inputs, the unisensory tuning curves, or even adding an addi-
tional reference frame transformation does not change such a 
finding, thus strengthening the idea that learning of statisti-
cal regularities is indeed the key mechanism of the network. 
A notable exception to such generalizations was, however, 
the challenge encountered when we attempted to extend the 
network to a 3D spatial representation. This may be due to 
computational limitations, but further investigations would 
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be needed to rule out the possibility that this limit may be 
intrinsic to the network.

4.3 | Visuo-tactile integration explains 
proprioceptive drift

Similarly to what we did with touch, we then tested the ef-
fect of visuotactile stimuli on proprioceptive encoding, by 
providing visual and proprioceptive inputs, and studying the 
effect of tactile input on the read-out proprioceptive informa-
tion. We found that, in the presence of touch, the encoded pro-
prioceptive position got attracted towards the position of the 
visual stimulus, replicating the proprioceptive drift induced 
in the IHI. The maximal magnitude of the forecasted shift is 
around 40% of the visuo-proprioceptive disparity, in line with 
behavioural data (Guterstam et  al.,  2013). By adding to the 
model another unisensory population, encoding the location 
of the hand in space as specified by visual information only, 
we also reproduced a proprioceptive drift as during the RHI. 
The IHI and RHI have been used to experimentally study 
body ownership, as a key component of bodily self conscious-
ness (Blanke, 2012). It has been suggested that the multisen-
sory stimulation underlying those illusions rely on the same 
multisensory principles at the bases of PPS representation 
(Blanke et al., 2015; Grivaz et al., 2017; Makin et al., 2007). 
Interestingly in this sense, visuotactile stimulation can induce 
a subset of PPS neurons to anchor their RFs to dummy hands 
(Graziano, 2000). Here, we show how the same computational 
mechanisms that generate the reference frame transformations 
needed to represent the PPS also can explain the propriocep-
tive drift in the IHI (or RHI). Clearly, we cannot infer sub-
jective states from neural network simulations. However, it is 
known that multisensory bodily illusions induce a propriocep-
tive shift consistent with the model's predictions, and, on the 
subjective side, alter the sense of body ownership. While it has 
been argued that proprioceptive drift can occur in the absence 
of (explicitly assessed) body ownership (Rohde et al., 2011), 
the amount of drift is known to correlate with the perceived 
strength of the illusion (Guterstam et  al.,  2013; Tsakiris & 
Haggard, 2005). In other words, while it is a distinct neural 
phenomenon, it seems to participate to the phenomenology 
of ownership, and it is arguably its only known correlate that 
can be assessed in a neural network model. Here, we have 
demonstrated how such correlate of body ownership can 
emerge on the basis of simple multisensory integration in 
PPS. Previous mathematical studies proposed Bayesian infer-
ence on the incoming sensory information as a mechanism to 
explain illusory ownership in the rubber hand illusion (Samad 
et al., 2015). The crucial difference and novelty of the present 
work is that our results were instead obtained in an artificial 
neural network with a biologically plausible learning rule. 
Unlike mathematical models, the network is not designed for 

(and probably does not achieve) optimal Bayesian inference, 
but it shares the same underlying probabilistic approach to 
brain function. The network reproduces behavioural findings 
by learning a generative model of sensory inputs, capturing 
subtle and highly non-linear relations between patterns of neu-
ral activity. For example, the effect of touch on the proprio-
ceptive drift was of the “all or none” kind (Figure 3d–f). Such 
effect, whose finely tuned non-linearity would be hard to ob-
tain by chance, reflects the fact that, in the training probability 
distribution, the spatial coherence of visual and propriocep-
tive inputs only depends on the presence of tactile stimula-
tion, and not on its intensity. Interestingly, the proprioceptive 
drift decreased when the distance between the hand (defined 
via proprioception) and the visual stimuli was larger than 
around 30 cm. This is coherent with the idea that visuotactile 
interactions occur only within spatially and temporally com-
patible regions (Holmes & Spence, 2005; Stein et al., 1989), 
and possibly explains why the RHI and IHI can only take 
place if the distance between the real and the fake (invisible) 
hand is limited (Lloyd, 2007). A recent work (Noel, Samad, 
et al., 2018) found a pattern of spatially decreasing integra-
tion of visual and proprioceptive inputs that closely resem-
bles the one found in our simulations. They suggested that the 
observed behaviour would be in line with a Bayesian causal 
inference (BCI) model of the world, whose predictions are the 
weighted average of two alternative sub-models. In one sub-
model, the two stimuli are assumed to have the same cause, 
and their positions are integrated in space, whereas in the al-
ternative sub-model they are treated as separate events. In this 
perspective, the mathematical counterpart of body ownership 
would be the weight attributed to the “one-cause” sub-model, 
as already suggested in (Samad et al., 2015). Recent work by 
Fang et al. (2019) provided neurophysiological support to this 
proposal. They trained macaques to perform a reaching task, 
while recording from their premotor cortex in the presence 
of different levels of disparity between proprioceptive and 
visual feedback about hand position. As the level of dispar-
ity increased, visuo-proprioceptive integration progressively 
decreased. In the same study, in a complementary behavioural 
assessment in humans, the amount of visuo-proprioceptive in-
tegration was demonstrated to correlate with subjective own-
ership ratings, and was therefore taken as an implicit measure 
of ownership. They showed that the amount of integration, 
discriminating between “same cause” versus “different cause” 
responses, that is arm ownership versus no-ownership, could 
be explained by using a BCI model similar to the one used 
proposed by Noel, Samad, et  al.  (2018). Single neurons re-
sponse also followed two patterns: some neurons tended to 
integrate visuo-proprioceptive information, suggesting tuning 
to the “same cause” model, while others tended to segregate 
them by responding to proprioceptive input only, suggesting 
tuning to the “separate causes” model. Interestingly, when we 
included visual information about arm position in the model, 
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we also found two different patterns of responses from neu-
rons in the multisensory layer: one population of neurons with 
overlapping and another with dissociated visual (coding hand 
position) and proprioceptive RFs (Figure 6c). Here, we dem-
onstrated how qualitatively similar results can be obtained in 
a neural network model that shares with Bayesian models the 
use of a probabilistic framework to describe brain function, but 
is not tuned for optimality. Similarly, Ursino and colleagues 
(Ursino et al., 2017) recently showed that a multisensory ef-
fect (i.e., the ventriloquism effect), that has been traditionally 
explained in the framework of Bayesian inference (Alais & 
Burr, 2004) can emerge from the organization of multisensory 
receptive fields.

4.4 | Ownership and embodiment are 
grounded in a probabilistic model of the 
physical structure of the body

As we introduced in the previous paragraph, it may be use-
ful to approach the problem beyond the focus of Bayesian 
optimality, and under a more general perspective. A key 
function of the brain is to learn the regularities in the prob-
ability distribution of its sensory inputs. Those regularities 
are then exploited to compress inputs in a simpler, more 
compact representation, retaining the relevant information 
about their causes in the external world (Attneave, 1954; 
Barlow, 1961; Simoncelli & Olshausen, 2001). Here, we 
applied this general principle to a set of sensory inputs – 
mimicking real-life natural stimulation – that we assumed 
to be sufficient for building a PPS representation. We fed 
simple representations of visual, proprioceptive and tac-
tile inputs to a network designed to fit them to a statistical 
model of their interdependences. The key to the emergence 
of such statistical model is the network's biologically plau-
sible plasticity rule: by adjusting synaptic weights until its 
spontaneous activity resembles the training inputs, the net-
work learns the joint probability distribution of multisen-
sory signals. The statistical relations between such training 
inputs were not arbitrarily chosen, as they are constrained 
by the physical structure of the body and its interactions 
with the environment: touch is always on the body, thus 
environmental stimuli associated to touch must occur close 
to the physical body, and their proximity is encoded based 
on visual and proprioceptive cues. We then showed how, 
under such limited hypotheses, both PPS representation 
and the IHI (or the RHI) spontaneously emerge as conse-
quence of a single and unified inference process, where 
sensory inputs are treated differently depending on their 
relation to the body. This means that our network complies 
to some extent with F. de Vignemont's minimal definition 
of embodiment, arguably the only one that can be applied 
to a neural network simulation: “E is embodied if and only 

if some properties of E are processed in the same way as 
the properties of one's body” (de Vignemont, 2011).

There are other important features that were not directly 
modelled here, but could be implemented in a model with an 
architecture similar to ours, designed to learn the probability 
distribution of its sensory inputs, in order to extend its level 
of compliance with such definition. For instance, the present 
model allows to accurately model only simultaneous stimuli. 
However, the combination between temporal and spatial pro-
cessing is key for a dynamical model of the body in space, 
which is deeply linked to PPS representation, as well as for 
bodily self-consciousness. Moreover, a perfect generative 
model, which does not include temporal features, should in 
principle not fully account for a PPS representation extending 
beyond the skin, as it would only learn associations between 
touch and stimuli currently causing it. Again, this could be in-
stead achieved in the general framework of the learning of a 
complex probability distribution, extending not only in space, 
but also in time. Interestingly, the idea of PPS representation 
as a spatio-temporal prediction system finds empirical support 
in the observation that it expands when faster stimuli approach 
(Noel, Blanke, et al., 2018). Straka and Hoffmann (2017) in-
vestigated the dynamical properties of visuotactile integration 
in PPS by coupling an RBM with a feedforward layer undergo-
ing supervised learning. Alternatively, implementing a recur-
rent dynamics in our RBM would allow to handle the temporal 
dynamics with more biological realism (see for example Makin 
et al., 2015). Similarly, the complexity of the visual input could 
be increased to replace the population coding of pre-computed 
positions of objects in space, with more realistic inputs, starting 
from retinotopic representations to egocentric representations. 
This way, the visual appearance of the body would be embed-
ded in the training inputs' distribution, possibly allowing ex-
plaining why multisensory bodily illusions work less well (or 
do not work at all) with objects that do not resemble body parts 
(Tsakiris et al., 2010). Again, the network's conceptual func-
tioning would still hold on the learning of a joint probability 
distribution, whose variables would be the neural activities of a 
retinotopic intensity coding. In principle, this framework could 
be extended to build a neural network that learns a model of 
all the possible interactions between the body and the environ-
ment. We argue that such a process, of which we successfully 
modelled few key aspects here, might constitute the neurocom-
putational basis of body representation, and a substrate for the 
subjective experience of possessing a body, that is felt as one's 
own, in interaction with the external world.
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Supporting information 
From statistical regularities in multisensory inputs to 

peripersonal space representation and body ownership: insights 
from a neural network model 

 

Detailed calculation of unisensory precisions 
Here we provide the detailed calculation of the localization precision of unisensory inputs, 𝜎 , 
assuming a flat prior on their position. When a stimulus located in x is encoded in a unisensory 
population, it generates a conditional distribution of neural activity in the respective unisensory 
population u. The activity of each unisensory neuron 𝑢  is drawn from an independent Poisson 
distribution whose mean is determined by the stimulus location and the neuron’s tuning curve. 
In our case, we have: 

𝑃(u|x) = 𝑃(𝑢 |x) 

𝑃(𝑢 |x) = 𝑃𝑜𝑖𝑠(𝑔 ⋅ 𝑒𝑥𝑝
−||𝒙 − 𝒙
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2𝜎
) 

Where 𝒙
 

 denotes the i-th neuron’s preferred position, g is the gain of the stimulus, and 𝜎  is 
the standard deviation of the tuning curve. Note that here we assume all the tuning curves of 
neurons within each unisensory population to be identical, except for the preferred position. By 
combining the two expressions we get: 
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Where the approximation consists in assuming that the sum in the first exponential consists of 
enough terms to depend weakly on x. This is true if the neurons are tiled densely enough that a 
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large number of them contribute to the sum, and the approximated value of the sum can be 
computed by an integral. As long as this value is constant, it is not needed to compute the 
posterior variance, which can be obtained by re-writing the exponent of the second term of the 
expression as follows: 

− 𝑢
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Where C does not depend on the stimulus location x, and x =
∑ 𝒙

∑
 is the barycenter of neural 

activity. The posterior is therefore Gaussian, with mean x  and standard deviation 𝜎 =
∑

. 

The relevant quantity for estimating 𝜎  becomes then the total spike count of each sensory 
input. If the number of active neurons is large enough, the expected value for this quantity can 
be approximated by an integral 

𝐸[ 𝑢 ] = 𝑔 𝑒

𝒙

≈ 𝑔 𝑒

𝒙

𝑑𝒙 = 𝑔(2𝜋𝜎 ) /  

Where n is the dimensionality of the physical space of stimulus position (2 in our case), and for 
simplicity we have considered a stimulus centred in 0, and performed the calculation in units 
equal to the neuron grid spacing. Therefore, in such units, we have 

𝜎 =
𝜎

𝑔2𝜋𝜎
=

1

𝑔2𝜋
 

Note that 𝜎 , in general, depends on 𝜎 , but not in a 2D grid of neurons. Therefore, in our 
case, the only way to adjust the stimulus precision is by changing the gain or the density of 

neurons. 
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Figure S1: To evaluate the goodness of the approximation, we performed simulations by generating 1000 
sets of unisensory stimuli in a fixed position, for different values of the gain. Then, we decoded the 
maximum-likelihood position of the stimulus as the barycentre of the neural population, and estimated 
its standard deviation along the x axis. The values were compared to the results obtained from eq. (3), 
after conversion from neuron grid units to physical space units (see Fig. S1). Overall, the approximation 
was good, even in the more extreme case of the proprioceptive population, where the relatively small 
number of neurons could have challenged the assumptions of the approximation. 

 

Effect of the width of unisensory tuning curves on the results 
While the multisensory receptive fields in our network were entirely learned from sensory 
stimulation, unisensory receptive fields were set a priori, and despite being based on 
neurophysiological knowledge they present a certain degree of arbitrariness. Namely, the width 
of the Gaussian tuning curves has been determined mainly on technical grounds, to allow 
efficient training of an RBM. One may therefore wonder to which extent our results depend on 
the choice of the unisensory tuning curves. Namely, the spatial extent of the hand-centred 
region in which visual stimuli elicit tactile predictions (the size of the in-silico PPS) may depend 
on the width of unisensory receptive fields. We therefore trained a series of replicas of our main 
network, in which we only changed the width of the tuning curves of the unisensory visual and 
proprioceptive population, and plotted the evoked tactile activity as a function of the distance 
from the hand. The range of explored widths has a lower limit in that it cannot get much smaller 
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than one neuron in the proprioceptive population, because the stimulus encoding would 
become extremely irregular, and it cannot get too big as this would require huge safety margins 
to avoid edge effects. Within this reasonable range, there was virtually no sensitivity to the 
width of the tuning curve (see Figure S2). Again, this is in line with the idea that the encoding 
schema should not matter too much, as long as the network is able to learn a good generative 
model of its inputs. 

 
Figure S2: PPS spatial properties as a function of the width of unisensory tuning curves. We trained 10 
replicas of our main network, and multiplied the width of visual and proprioceptive tuning curves by a 
fixed factor ranging from 0.2 to 2. Here we show the dependence of tactile evoked activity on the 
distance from the hand of the visual stimulus, as a function of the tuning curve width. The multiplicative 
factor is colour coded as depicted in the colorbar, with the lowest value (0.2) corresponding to dark blue 
and the highest value (2) corresponding to red. 

Optimal number of hidden units and precision 
Here we illustrate how the number of hidden units influences the precision with which 
unisensory positions are encoded in the multisensory layer. This analysis was used to determine 
the number of hidden units to use in our network, aiming at reaching a sufficiently low 
information loss when passing from the lower to the upper layer, while respecting a biological 
principle of efficient encoding and keeping computational demands not too high. In order to do 
so systematically, we trained 20 other replicas of our network, and systematically changed only 
the number of hidden units from 10 to 3000. We then used the precision with which the 
position of unisensory stimuli can be recovered, after encoding them in the multisensory layer 
as a main proxy of information loss. Such precision has a lower bound in the theoretical 
precision illustrated in section 1, due to noise in unisensory inputs, so when such bound is 
reached no information loss takes place in the encoding. Practically, this was assessed by 
generating random positions for visual and proprioceptive stimuli, encoding them (with noise) 
in the unisensory layer. Then, unisensory activities were projected in the multisensory layer and 
read out again from the unisensory populations through the usual procedure. However, since 
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we are interested in the information loss in an “up” pass, the read out is done noiselessly, by 
taking mean values instead of Poisson samples. For our main analysis, we considered results 
obtained by performing noisy “up” passes, as the efficient encoding principle needs to take 
noise into account. After a sharp decrease in the encoding error until  800 hidden units (see 
Figure S3), the performance starts saturating, especially for visual inputs. We therefore 
determined that 1500 hidden units would be a good trade-off between complexity and 
performance. Additionally, we performed the same analysis in the case of noiseless “up” passes, 
to see how quickly the network approaches the theoretical limit (that can only be achieved in 
the case of noiseless “up” passes) when it is not limited by noise. 

 
Figure S3: Precision in the encoding of visual (left) and proprioceptive (right) inputs, as a function of the 
number of hidden units in the network. The encoding precision is defined as the standard deviation 
(average between x and y directions) of the positions obtained after generating unisensory inputs, 
encoding them in the multisensory layer and then decoding them again by projecting multisensory 
activity down to the unisensory layer and taking the barycentre of the generated activity. The ``down'' 
pass is always noiseless as it only acts as a decoding step, while we show results for both a noisy (solid 
blue line, used for determining the number of hidden units) and noiseless (dashed blue line) ``up'' pass. 
The maximal theoretical precision as obtained in Section 1 is shown as the black dashed line. 

Additional behavioural analyses 
As mentioned in the main text, here we analyse the effect of the temporal delay of stimulation 
in more detail. First of all, we performed a Delay*Position*Congruency 3x2x3 ANOVA. Since 
there was no significant three-way interaction (p = .72), we pooled the two hand positions 
together, and performed a two-way Delay*Congruency ANOVA. We observed significant main 
effects of Congruency, as already confirmed by linear mixed models in the main text (F(2, 84) = 
4.04, p = .0209). Moreover, we observed a significant main effect of Delay (F(2, 84) = 17.36, p < 
.001), possibly indicating overall expectation effects. Interestingly, the Delay*Congruency 
interaction was also significant ( F(4, 168) = 3.77, p = .0057 ), with an overall stronger effect of 
temporal delay (or distance) in the congruent condition (see Figure S4). 
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Figure S4: Multisensory facilitation plotted by congruency and by delay. In the congruent condition, the 
'short' delay corresponds to approximately 10 cm from the hand, while the 'long' delay corresponds to 0 
cm from the hand. Errorbars represent standard errors. 
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Abstract 

Simple multisensory manipulations can induce the illusory misattribution of external objects to 

one’s own body. Thus, the process leading to body ownership has been compared to optimal 

Bayesian inference: the online estimation of the probability that one object belongs to the body 

from the congruence of multisensory inputs. This idea was highly influential, providing the basis for 

bottom-up accounts of self-consciousness, but empirical evidence in its support is scarce. Here we 

will test a Bayesian model of hand ownership based on visuo-proprioceptive congruency. Model 

predictions will be compared to data from a virtual-reality reaching task, whereby reaching errors 

induced by a spatio-temporally mismatching virtual hand will be used as implicit proxy of hand 

ownership. We will independently assess unisensory components to rigorously test optimality. This 

is crucial to provide conclusive evidence on whether key components of self-consciousness can be 

truly described as the bottom-up, behaviorally optimal processing of multisensory inputs. 



3 
 

1. Introduction 

Throughout our everyday experience, we are constantly accompanied by the pre-reflexive feeling of 

being “here and now”, experiencing the external world from the location and perspective of a body 

that we perceive as our own. The ensemble of this experiences has been termed bodily self-

consciousness (BSC) and is considered the minimal building block of consciousness and self-

awareness 1.  

BSC and the identification with our own body are so rooted in our everyday experience that they are 

easily given for granted; however, a rich body of experimental studies suggests that BSC is a 

continuously built, in fieri phenomenon, linked to specific neural mechanisms. The manipulation of 

various aspects of multisensory processing, can alter key components of BSC, such as body 

ownership, inducing self-attribution for an external object 2 or dis-embodiment for an actual body 

part 3,4.  These lines of evidence suggest that body ownership is the result of the multisensory 

integration of tactile, proprioceptive and visual bodily stimuli in both the spatial and temporal 

domains. Accordingly, an influential theoretical view proposes that body ownership emerges when 

multisensory bodily stimuli are congruent with the normally experienced signals originating from 

one’s own body, and can be altered otherwise 5. Probably on the wake of the success of Bayesian 

accounts of low-level multisensory integration 6, this theoretical principle has been soon 

qualitatively rephrased in terms of Bayesian inference on sensory information. Ramachandran 5 was 

the first to propose that the illusory ownership of a fake hand when stroked in synchrony with one’s 

own hand (the rubber hand illusion, RHI) emerges from “Bayesian logic”. The idea was that, since 

the repeated co-occurrence of visual and tactile stimulation would be very hard to obtain by chance, 

the brain deems the hypothesis that the fake hand is part of one’s own body as the most probable. 

What was striking in this account of the RHI is that the bottom-up Bayesian logic seemed to 

overcome top-down cognitive constraints, such as those originating from years worth of experience 
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about the visual appearance of one’s own body. In the following decade, this observation sparked a 

lively debate opposing “bottom-up” Bayesian approaches focusing on visuo-tactile congruencies 

5,7,8, and “top-down” cognitive constraints focusing on posture and visual appearance 9–11. Later on, 

“top-down” constraints have been described as the result of another inference process, comparing 

incoming visual features with an internal model of the body to estimate the probability that they 

originate from one’s own body 12–14. 

Bayesian accounts have been extended to explain BSC as a whole as the result of the comparison of 

sensory inputs and internal states to a “self-model” 12. Over the years, such inference-based 

accounts have also included the integration of mental states 15 and interoceptive signals 16–19, linking 

inference on internal bodily and neural states to self-consciousness itself. Arguably, the key to the 

success of Bayesian approximations to brain function is that they constitute a normative framework, 

as they find a clear evolutionary motivation in the need to behave optimally in a noisy sensory 

environment. In its initial field of application, i.e. low-level multisensory integration, the validity of 

such approach has been rigorously proven experimentally 6,20–22. Instead, although Bayesian 

descriptions of BSC have been popular for almost two decades, most accounts are purely conceptual 

12,15–17,23,24 or mathematical 13. Experimental studies in their support are still rather scarce 25,26 and 

do not provide conclusive proofs of the optimality of behaviour, weakening the motivation for the 

use of a normative model.  

Here, we aim at extending the evidence base for Bayesian theories of BSC by focusing on body 

ownership. Body ownership is a key, quantifiable component of BSC that can be experimentally 

manipulated, and its qualitative underlying principles are relatively well understood. Therefore, 

quantitative theories of ownership constitute the ideal connection point to generalize models of 

multisensory integration to higher levels of conscious experience. To test the validity of such 
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generalization, we propose a Bayesian model of hand ownership and rigorously test it through a set 

of virtual reality-based tasks. 

In classical models of multisensory integration 6 cues are weighted according to the inverse of their 

precision, under the assumption that they originate from the same physical source (forced fusion 

models). However, in the real world, stimuli occur simultaneously at multiple locations, and the brain 

needs to figure out which ones come from the same source and therefore have to be integrated 27. 

It has been suggested that this problem may also be solved in a probabilistic framework, i.e. Bayesian 

Causal Inference (Bayesian CI), in which the brain infers the likelihood that two unisensory stimuli 

originate from the same cause, based on their spatial and temporal congruencies 28. This approach 

can be applied to the processing of unisensory bodily stimuli to explain how the feeling of owning a 

body as one’s own could emerge from their integration. Based on a model of the expected mutual 

relations between the sensory stimuli normally originating from the body, the existence of the body 

itself would be inferred as their common physical cause. Then, the feeling of such a body as one’s 

own would emerge by identifying with that "same old body always there” (James, 1890). This general 

principle has been translated into different mathematical formulations to model the relevant 

sensory variables (tactile, proprioceptive visual cues etc.) in different experimental setups. For 

example, Samad and colleagues used a Bayesian CI model to account for the RHI, whereby the 

estimated probability of common cause (Pcom) of visual and tactile inputs, as a function of the 

congruency between (tactile) real hand stimulation and (visual) rubber hand stimulation, is taken as 

a measurable estimation of ownership for the rubber hand. According to the model, Pcom varies as a 

function of the spatial and temporal disparity between visual and proprioceptive cues about touch 

location and timing. As predicted by the model, the visual presentation of the rubber hand (in a 

position congruent with the participant’s hand and within the hand peripersonal space), even in the 
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absence of any tactile stimulation, was found to be sufficient to induce the illusion. This qualitative 

observation is the only empirical evidence supporting the validity of the model.  

More recently, Fang and colleagues 25 modelled ownership of a virtual hand as a function of visuo-

proprioceptive disparity during a reaching task. In their experiment, by adapting classic paradigms 

of visuo-motor rotation 29, macaques and human participants had to reach targets with their real 

(proprioceptive) hand, hidden from view and replaced by a virtual hand, presented with various 

degrees of visuo-proprioceptive disparity. The error in the final reaching position increased as a 

function of the virtual hand’s displacement within a given range of visuo-proprioceptive disparity, 

but decreased for large levels of disparity. Such behaviour was well modelled by the predictions of 

a Bayesian CI model where the probability of visual information from a virtual hand and 

somatosensory information from the real hand originating from the same physical cause (Pcom) 

decreases proportionally to the visuo-proprioceptive disparity, because of the lower weight 

attributed to vision at large levels of disparity. Explicit ownership ratings in humans covaried with 

Pcom, suggesting that this parameter might provide an implicit measure of ownership probability at 

a trial-by-trial level. 

As already anticipated, Bayesian models assume optimality as a normative constraint to brain 

functions. Tipically, optimality is defined as the behaviour minimizing squared errors on estimates 

(in this case: position estimates) depending on a set of (unknown) free parameters (in this case: 

unisensory precisions). In order to rigorously assess the optimality of the observed behaviour, it is 

necessary either to manipulate the free parameters in a controlled manner or directly measure them 

30. However, previous studies on body ownership directly fitted unisensory precisions from 

multisensory tasks 25, or assumed fixed and arbitrary parameters 26, making the presence of 

optimality hard to determine with certainty. Interestingly, Costantini and colleagues 31 found that 

the strength of the RHI is constrained by the precision in perceiving the synchrony of visuo-tactile 
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stimuli at the single subject level. This is consistent with the predictions of integration based on 

Bayesian CI, even if the authors have not discussed such hypothesis. Conversely, a recent study found 

that susceptibility to the RHI did not depend on proprioceptive precision 32. Throughout the 

literature, Bayesian approximations have been applied to a variety of other brain functions 15, 

spanning from pain to social and narrative aspects of the self, although optimality is rarely assessed 

experimentally. In most cases these models are complex and flexible enough to fit well the 

experimental data, however directly testing the key optimality assumption is crucial to provide a 

normative justification to their proposed mechanisms.  

In the present work, we aim at providing empirical evidence for the hypothesis that body ownership 

emerges from a Bayesian inference process, as a key instance in the family of models that extend 

Bayesian approaches from simple multisensory perception to self-consciousness. To do this, we will 

extend and revise the existing models and behavioural validations, focusing on spatial and temporal 

features of visual and proprioceptive inputs. We will introduce a virtual reality adaptation of the 

reaching task used by Fang and colleagues – i.e., visuo-proprioceptive disparity task (VPD, Figure 1 

a) - as a base for the assessment of the Bayesian CI model predictions. In addition to the spatial 

manipulation of visuo-proprioceptive disparity, we will also modulate the temporal disparity, by 

adding different levels of delay between the participant’s movement and virtual reality visual 

feedback. The addition of a temporal modulation will also strengthen the interpretation of the 

behaviour observed in the VPD task and the underlying model. Ownership (or disownership) is a 

perceptually unitary phenomenon, regardless of whether it arises mainly from spatial or temporal 

cues. However, in a purely spatial task, reaching bias can be explained as the result of visuo-

proprioceptive integration, with ownership being a mere epiphenomenon. If our temporal 

manipulation also induced the same reaching bias as the spatial manipulation, this simplistic 

explanation would be ruled out, and support the idea that ownership can be truly measured from 
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reaching errors as the hidden variable linking spatial and temporal biases. Threfore, the first main 

hypothesis of this study is that a model taking into account both the spatial and temporal 

manipulation will outperform both the forced fusion model (replicating Fang 2019) and a model 

including only spatial disparity, demonstrating the combined effect of spatial and temporal 

congruencies in eliciting body ownership. 

With respect to direct assessments of ownership through multisensory illusions such as the RHI, our 

task has two main advantages: first, the short duration of each trial and the quantitative nature of 

the variables at play, which allow collecting data with sufficient granularity for modelling; second, 

the measure of ownership provided by the reaching errors is implicit and not based on subjective 

ratings, whose validity has been recently put into question. Lush and colleagues 33 found that explicit 

reports of ownership during the RHI could be biased by subjects’ suggestibility to illusion. In this 

view, the RHI would be the consequence of a form of phenomenological control more than of a 

genuine subjective experience of ownership. Here, subjective ratings will only be collected in a 

second moment and put in relation to reaching bias in order to ascertain its link with subjective 

ownership. Therefore, our study’s second hypothesis is that explicit evaluation of ownership feeling 

during the VPD task will match the probability of multisensory integration (Pcom) estimated by the 

Bayesian CI model both in the spatial and temporal domain.  

Our model will provide predictions of the reaching bias as a function of both spatial and temporal 

disparity, depending on four free parameters that will be fitted from the data:  σv, the unisensory 

visual precision, σp, the unisensory proprioceptive-motor precision, the temporal precision σt and a 

global prior about ownership of the virtual hand Pπ. The parameter σp incorporates the accuracy of 

both the kinaesthetic and movement execution that determine the final precision in reaching a 

target, in order to disambiguate it from static hand position sense (σps) that will be introduced later 
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on. The free parameters will be fitted from experimental data at the individual level by finding the 

parameter set that maximizes the match between model predictions and reaching bias.  

As mentioned previously, to strengthen model validation by directly assessing optimality, it is 

necessary either to manipulate or to independently measure unisensory precisions. Here we chose 

the latter approach due to the impossibility of manipulating with the same level of accuracy 

unisensory noise for both vision and proprioception in healthy humans during our multisensory task 

(VPD). Therefore, we designed a set of unisensory tasks to independently extract model parameters 

and compare them with those fitted from the multisensory task. Such tasks were designed to match 

the VPD setup, to capture the relevant unisensory components as accurately as possible. However, 

their measure through independent tasks necessarily implies some variations, and a strict 1 to 1 

correspondence between the measured and the fitted parameters cannot be guaranteed. Still, a 

correlation between the measured unisensory and the fitter parameters is to be expected. 

Therefore, we will test for such correlation as an indication that the measured visuo-proprioceptive 

integration in the multisensory task relies on the proposed Bayesian CI process. 

Two unisensory tasks are dedicated to the assessment of the proprioceptive-motor and visual 

precision. An open-loop reaching task (OL) will be used to isolate the motor-proprioceptive 

component (Figure 1 c). Participants will perform the same reaching movements towards virtual 

visual targets as in the multisensory task (VPD), but in the absence of visual feedback about hand 

position, allowing us to measure the proprioceptive-motor precision.  

Concerning visual precision, it is worth noting that, despite visual acuity is extremely high compared 

to proprioceptive precision in humans 34,35, the final accuracy in visually determining the hand’s 

position does not depend on visual acuity alone. Indeed, when coordinating vision and 

proprioception in a motor task, it is necessary to transform the extremely accurate retinotopic visual 

information in body-centred coordinates, through a set of computations involving gaze angle and 
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head orientation 36. In this view, we believe that participants’ precision in visually determining their 

body midline, as assessed by a midline judgement (MJ) task (Figure 1 d), can be used as the closest 

approximation to isolate the contribution of visual information to position estimates in our task.  

The temporal precision is the third main parameter of our model. This component will be measured 

through a simultaneity judgement task (SJ), whereby participants will evaluate the synchrony 

between the onset of a voluntary reaching movement and the displacement of the hand displayed 

in virtual reality (Figure 1 e).  

As previously discussed, also the recognition of the higher-order visual features of the body may be 

seen as part of a (possibly optimal) inference process. Although the problem is too complex and high 

dimensional to be explicitly modelled in a Bayesian CI model, its influence is reflected in the global 

“prior” as the marginal probability of all the factors that are not modulated during the experiment 

and included in the other parameters’ computation. Based on previous accounts 10 and as suggested 

by Fang’s study 25, most of the variance in such “prior” is likely explained by high-level visual features 

of the stimulus. In the attempt to quantify their role, we implemented a visual morphing (VM) task, 

based on the continuous morphing of pictures of the participant’s real hand into other peoples’ 

hands. Similarly to what was planned for the visual and proprioceptive precision in the spatial and 

temporal domain, we will measure participants’ accuracy in recognizing their own hand. If the inter-

individual differences in discriminating the visual appearance of one’s own hand play a quantifiable, 

probabilistic role in determining ownership, we expect that the accuracy in the VM task will correlate 

with prior probability of cue combination fitted from the multisensory task. 

Finally, several studies based on explicit localization tasks have found that the perceived hand 

position is biased towards the body midline 3,26,37–39. In Bayesian approximations of brain function, 

priors are expected to reflect the marginal distribution in the natural statistics of sensory inputs. 

Therefore, we could conceive such systematic bias in hand proprioception as an informative prior 
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deriving from the overall distribution of the hand in space over a lifetime. Medial positions are 

privileged during grasping and object manipulation, which occupy 60% of human daily activities 40. 

It is therefore reasonable to assume the overall distribution of hand positions to peak around the 

body midline. A Bayesian model including a midline prior would be able to explain why the RHI is 

attenuated when the rubber hand is placed laterally 10,41 and disappears when the rubber hand is at 

more than 30cm from the trunk 42 as well as why pathological forms of embodiment 43 emerge only 

when the alien limb is placed medially with respect to the patient’s real hand. Yet, we are not aware 

of systematic investigations to assess the existence and the characteristics of such a prior, nor of its 

use to model behavioural and neuropsychological evidence. On the contrary, previous studies made 

this parameter statistically irrelevant, by using intentionally uninformative priors of large and fixed 

width 25,26. This hypothesis may be justifiable in some contexts but arguably incorrect in others. 

Indeed, proprioceptive biases have been mainly observed in static localization tasks, while they do 

not seem to directly reflect in motor tasks 44,45, such as in our VPD. Therefore, in the present work, 

we propose to assess the presence of systematic errors in hand position sense through a 

proprioceptive judgement (PJ) task (Figure 1 f), and relate them to the Bayesian CI model in terms 

of a midline prior. For parsimony, we model such prior as a Gaussian of finite width, centred on the 

body midline. The signature allowing distinguishing such prior from what is typically designated as a 

generic bias would be for such bias to be systematically medial, and to increase linearly with the 

distance from the midline. We will further assess whether, counter our expectations, such prior 

generalizes to a motor task, by analysing data from the OL task. In that case, we would expect to 

observe an equivalent bias in the opposite direction during reaching movements. The presence of a 

prior might not cause noticeable effects in healthy participants, where the proprioceptive precision 

is far greater than the expected width of the prior, but it may become relevant in the case of a 

strongly impaired proprioception, as in brain-damaged patients. If the prior hypothesis is confirmed, 
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further versions of the Bayesian CI model used in patients will be modified to incorporate the value 

of the proprioceptive prior predicted by the PJ task. 

In summary, the central hypothesis of our study is that body ownership arises from a quantifiable 

Bayesian CI process. This will be assessed by fitting our model to the results from a multisensory task 

(VPD), and comparing model predictions to an independent measure of the (unisensory) model 

parameters (Figure 1). Moreover, prior beliefs about hand ownership and position will be assessed 

and compared with their mathematical counterpart as fitted from the model.  

 

 

Figure 1. Experimental tasks and model rationale. In the visual-proprioceptive disparity task (multisensory 

task, a), a variable angle disparity  and temporal delay Δt are introduced between the real and the virtual 

hand during reaching movements towards a set of visual targets. The red hand represents the visual feedback 

from the virtual hand, the blue hand the proprioceptive feedback from the real hand, while the green hand 

is the final estimate resulting from visuo-proprioceptive integration. The relative weight attributed to the 

visual and the proprioceptive feedback determines the amount of error in the final position of the reaching 
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movement. Hand position estimates (b) according to the Bayesian CI model (green) as a function of spatial 

and temporal disparities between the visual-virtual (blue) and proprioceptive-real (red) hands. The bottom 

row summarizes the set of tasks assessing each unisensory component. Proprioceptive precision (c): in the 

open-loop (OL) reaching participants reach targets without visual feedback of the hand. Visual precision (d): 

in the midline judgement task (MJ), participants have to report when they feel that a visual cue, moving across 

their visual field, is at their body midline. Temporal precision (e): in the simultaneity judgement task (SJ), 

participants evaluate the synchrony between the onset of their voluntary reaching movements and the 

displacement of the hand presented in virtual reality with a variable delay in the visual feedback. A visual 

morphing task (VM, not in the figure) will be used to measure the accuracy in the encoding of the visual 

features of ones’ own hand, as part of the prior. Finally, the presence of a proprioceptive prior centred on the 

body midline is assessed by a proprioceptive judgement task (PJ) (f). In this task, a virtual hand is displayed in 

virtual reality at the left or the right of participants’ real hand, the perceived position of the hand will be 

determined using a two-alternative forced-choice converging algorithm.  

2. Methods 

2.1. Ethics information 

Participants will be asked to sign an informed consent form prior to starting the experiment. All 

experimental procedures have been approved by the Ethical Committee of Human Research of the 

Vaud canton (CER-VD, project identifier: 2017-01588), Switzerland, and will be run in accordance 

with the ethical guidelines of the ethical committee and the Declaration of Helsinki. Participants will 

be recruited using the online platform SonaSystem of the University of Lausanne 

(https://epflunil.sona-systems.com), and compensated 20 CHF per hour for their time. 

2.2. Pilot data 

To confirm the possibility of translating the task developed by Fang and colleagues to immersive 

virtual reality, and test our model fitting procedure, we collected pilot data from 10 healthy 
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participants (4 females, aged 24.1±2.4 years, age range 21-29). The task was a close replication of 

Fang’s task (including the spatial, but not the temporal manipulation of visuo-proprioceptive 

disparity). Besides the experimental design in terms of spatial (angular) disparities, the task was the 

same as described in section 2.3.3. For each participant, three experimental blocks with slightly 

different designs were collected. In the first two blocks, we collected a total of 49 trials with 7 

disparities (at 0°, ±13.3°, ±26.6° or ±40°). Each disparity was presented 7 times, each time with a 

different target out of 7 equally spaced targets between -45 and 45 degrees. Only 5 repetitions per 

disparity were collected in the third block, with 5 targets equally spaced on the same range. Target 

positions and spatial disparities were randomized within each block. 

The results of the reaching task, shown in Figure 2 a, are in line with what reported by Fang, 

confirming that the experimental setup can be successfully exported to an immersive virtual reality 

environment. We then tested whether our data were well modelled by a Bayesian CI model by 

applying a fitting procedure very similar to the one proposed by Fang and colleagues to extract 

model parameters (see analysis plan for details). As done in Fang 25, we then compared the Bayesian 

CI model to the forced fusion model predictions (fixed weights to vision and proprioception at all 

disparities). We used model Bayesian information criterion  as an approximation of model evidence, 

and computed the model’s exceedance probability 46 (original code available from: 

https://github.com/sjgershm/mfit). We found this analysis to favour the Bayesian CI with an 

exceedance probability = 0.894, in line with the value reported by Fang 25 in his second experiment 

with 8 human participants (0.954), showing that data from our VPD task is also quantitatively in line 

with this previous study. We then used the distribution of the extracted parameters as a basis for 

our power analysis.  

We also performed a smaller pilot study on two healthy participants (2 males, aged 24 and 28 years) 

to test the practical feasibility of combining both spatial and temporal disparities during the task, as 
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this was never done before (Figure 2 b and c). The experimental design was exactly as described in 

the methods, except that, for temporal delays larger than zero, 6 disparities have been tested, 

uniformly distributed between -33.3° and 33.3° instead of -40°/40°. The design was changed as 

further simulations showed that this proposed design to be slightly better in terms of statistical 

power. Both participants were able to execute the task correctly, and the effect of temporal delay is 

present in both participants in line with our expectations. We used these pilot data to test our 

analysis pipeline and parameter extraction via model fitting. The fit converged for both participants 

and accurately modelled the data (R2 = 0.940 and 0.905 respectively), yielding values of the 

parameters in line with our expectations (S01: σv = 7.1, σp = 4.63, σt = 0.118, Pπ = 0.938, S02: σv = 

9.64, σp = 5.98, σt = 0.101,  Pπ = 0.826).  

 

Figure 2. Pilot data for a purely spatial (a) and spatio-temporal (b,c) disparity setup. Panel (a) shows the results 

from a larger pilot study on 10 participants with the VPD task, with no temporal delay (as in Fang et al., 2019). 

The x axis indicates visuo-proprioceptive disparities, defined as the the virtual hand angle minus the real hand 

angle (positive angles being on the right). The y axis indicates the proprioceptive drift defined as the target’s 

angle minus the real hand’s angle (a participant reaching left of a target experiences a proprioceptive drift 

towards the right, and vice versa). The blue and red dashed lines represent the expected drift in the case of 

a purely proprioceptive or visual dominance, respectively. The grey dashed line represents the predicted drift 

from a forced fusion model of visual-proprioceptive integration, while the black dashed line shows the 

averaged predictions of our Bayesian CI model, in close agreement with averaged experimental results 

represented by the green solid line. Panels b and c show results for two pilot participants from the new spatio-
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temporal disparity setup. Solid lines represent conditional means, and the colours code represents the 

different temporal delays tested (T disparity; as in Figure 1 b). As expected, drift values increased at increasing 

temporal delays.  

2.3. Design 

2.3.1. Bayesian CI model 

Following several successful approaches to model multisensory integration in probabilistic terms 

25,26,28,47, we modelled the process of visuo-proprioceptive integration in a Bayesian Causal Inference 

(Bayesian CI) framework. Early Bayesian models of multisensory integration, called forced fusion 

models, postulated that the brain estimates the position of a stimulus by simply combining 

unisensory estimates with a weight that is inversely proportional to their variance, quantified as 

mean squared error. Behaviour under such models is optimal (i.e.: it minimizes the mean squared 

error of position estimates) only under the condition that the sensory inputs considered in the 

different modalities always have the same physical source. Clearly, in real-life situations, where 

several stimuli are presented to different modalities simultaneously, this assumption is not granted. 

Therefore, before integrating unisensory estimates, the brain needs to infer whether and which 

stimuli need to be combined at all. Bayesian CI models account for this additional level of complexity 

by incorporating this inference in a probabilistic framework, in which the likelihood that two stimuli 

in different modalities have the same physical source is estimated from their features. In our case, 

this framework will be applied to the integration of visual and proprioceptive inputs about the hand, 

focusing on the specific factors that we expect to intervene in our multisensory task. As already 

extensively documented at the qualitative level by behavioural studies, the main factors contributing 

to hand ownership in a visuo-motor task are visuo-proprioceptive spatial congruencies and visuo-

motor temporal congruencies. Therefore, to derive the equations of the causal inference model, we 

will start from describing the generative model of the sensory stimuli underlying those congruencies, 
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that is, the joint probability distribution of physical stimuli and their associated neural 

representation. In particular, in the case of our reaching task, the physical stimuli of interest are the 

hand position defined by visual and proprioceptive stimuli (sv and sp, expressed in degrees from the 

shoulder), and their relative timing with respect to the reaching movement (tv and tp). First of all, 

the visual and proprioceptive inputs may have one (C=1) or two (C=2) causes, that is, whether the 

virtual hand is or is not the participant’s hand. C is drawn from a Bernoulli distribution with 

probability Pπ 

𝑃(𝐶 = 1) = 𝑃     (1) 

Then, we model the joint probability distribution of visual and proprioceptive inputs in the spatial 

and temporal domain, conditional on whether C=1 or C=2. Given the radial nature of our task, we 

use the angle from target origin as the most natural coordinate for positions. If C=1, then the visual 

and proprioceptive position of the hand is the same sv=sp=s, and is drawn from a uniform distribution 

on the -90/90 degrees range, approximating the set of reachable angles. Previous works 25,26 used a 

Gaussian centred in 0 and with very large standard deviation (σ = 10000) to approximate a uniform 

distribution. While simpler to treat analytically, this choice is problematic, since the value chosen for 

the width of the positional prior influences the fitted value of the common cause prior Pπ. This is 

because, while when the Gaussian is large enough it can always be approximated to a uniform 

distribution, the exact value of its standard deviation still influences model predictions through the 

normalization constant (see supplementary information for the detailed calculation). In our case, by 

explicitly choosing a uniform distribution, the value of the normalization constant is naturally 

constrained by the reachable range, and is thus less arbitrary. Similarly, the timing of visual and 

proprioceptive inputs related to the movement is the same, τv=τp=τ, and is drawn from a uniform 

distribution. The range of the distribution was fixed at 0 to 30 seconds, as a plausible value of the 

average interval between different movements. If C=2, sv, sp are drawn independently from the same 
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uniform distributions. As routinely done in Bayesian modelling, in order to simulate variability in 

sensory inputs, we assume that the true positions and timings of the sensory inputs are corrupted 

by unbiased Gaussian noise to generate their internal representations xv = sv + N(0, σv),  xp = sp + N(0, 

σp), tv=τv + N(0, σtp), tp=τp + N(0, σtv). The first two variables refer to visual and proprioceptive-motor 

positions, and the other two to visual and proprioceptive-motor timing of movements, respectively. 

Then, the Bayes theorem allows to compute the posterior distributions for the positions of the 

stimuli and the number of underlying causes that an ideal observer would compute, provided that 

she/he knows the distribution of internal representations conditioned on the true positions and 

number of causes. Starting from the number of causes of the observed stimuli, we have: 

𝑃 𝐶 = 1|𝑥 , 𝑥 , 𝑡 , 𝑡

=
𝑃 𝑥 , 𝑥 , 𝑡 , 𝑡 |𝐶 = 1 𝑃(𝐶 = 1)

𝑃 𝑥 , 𝑥 , 𝑡 , 𝑡 |𝐶 = 1 𝑃(𝐶 = 1) + 𝑃 𝑥 , 𝑥 , 𝑡 , 𝑡 |𝐶 = 2 𝑃(𝐶 = 2)
    (2) 

 

Excluding for simplicity the region outside the -90/90 degrees and 0/30 seconds range, where the 

likelihood functions quickly fall off, the likelihood functions defined by our generative model are: 

𝑃 𝑥 , 𝑥 , 𝑡 , 𝑡 |𝐶 = 1 =
1

𝛼
𝑒𝑥𝑝 −

1

2

𝑥 − 𝑥   

𝜎 + 𝜎
−

1

2

𝑡 − 𝑡  

𝜎 + 𝜎
≝

1

𝛼
𝑒     (3) 

𝛼 =  𝑃 𝑥 , 𝑥 , 𝑡 , 𝑡 |𝐶 = 1 ≈ 2𝜋𝜎 𝜎 ∙ 30 ∙ 180    (4) 

Where α is the normalization constant, δs and δt denote spatial and temporal disparities 

respectively, and σ2
s and σ2

t are short forms for the sum of spatial and temporal variances. See 

supplementary information for details about the approximation in equation 4. When there are two 

separate causes, we simply have: 
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𝑃 𝑥 , 𝑥 , 𝑡 , 𝑡 |𝐶 = 2 =
1

30 ∙ 180
    (5) 

Therefore, the probability of common cause is given by: 

𝑃 = 𝑃 𝐶 = 1|𝑥 , 𝑥 , 𝑡 , 𝑡 =
𝑃

1
𝛼

𝑒

𝑃
1
𝛼

𝑒 + (1 − 𝑃 )
1

30 ∙ 180

    (6) 

The final estimate of hand position is obtained by combining the forced fusion and proprioceptive 

estimates, weighting them by the probability of common and separate causes, respectively: 

𝑠 = 𝑃 C = 1|𝑥 , 𝑥 , 𝑡 , 𝑡
𝜎 𝑥 + 𝜎 𝑥

𝜎 +𝜎
+ 𝑃 C = 2|𝑥 , 𝑥 , 𝑡 , 𝑡 𝑥     (7) 

Then, we explored our model’s predictions about sense of ownership (Pcom) in a spatio-temporal 

disparity setup through numerical simulations. To illustrate model predictions, shown in Figure 3, 

we selected plausible parameters for the unisensory precisions and the prior, and a set “ground 

truth” temporal and spatial disparities, representing the actual physical spatial and temporal 

disparity between visual and proprioceptive inputs. Then, we added Gaussian noise of variance σs 

and σt respectively, in order to obtain samples from the noisy internal representation of the stimuli. 

As noted in Körding et al., 2007 28, this procedure is the only correct mean of simulating behavioural 

experiments within Bayesian models of brain function. The process was repeated 1000 times and 

the probability of common cause was extracted following equation 6. We show the average Pcom 

values as a function of spatial and temporal disparity in Figure 3a. Coherently with expectations and 

qualitative findings from behavioural studies, the analysis resulted in a region of very high 

ownership probability when spatio-temporal incongruences are below a certain threshold. This can 

be seen as the mathematical counterpart of the empirical notion that in the case of little or no 

disparity, as in normal conditions, the feeling of ownership is granted and constant. We then 
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simulated the expected results from our VPD task, for the same set of parameters. For each spatio-

temporal disparity, we simulated 1000 trials (a number large enough to render sampling noise 

negligible) by adding Gaussian noise to the real positions and timings. Then, we extracted the hand 

position estimate according to the Bayesian CI model and computed the average reaching bias as a 

function of the spatial and temporal disparity. Finally, to illustrate how model predictions can be 

recovered from noisy behavioural data at the single participant level, we performed the same 

simulation, with the limited subset of spatio-temporal disparities and the number of trials of our 

actual experiment. Figure 3 c and d show the ownership probability, as extracted from our simulated 

behavioural experiment and the reaching bias associated with the spatio-temporal disparities 

explored in our setup. 
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Figure 3. Model predictions and simulated experimental results for typical values of σv, σp, σt, Pπ. Panel (a) 

shows the average probability of common cause as a function of spatial and temporal disparity, obtained after 

simulating model predictions for 1000 trials (in order to obtain a virtually noiseless prediction). The red half-

circle denotes the area where the probability of common cause is above 95 %, and can be seen as the region 

corresponding to a subjective experience of complete ownership. Only positive values of temporal disparity 

are plotted, as they are the only that can be achieved in our experimental setup, but model predictions are 

symmetrical with respect to time. Panel (b) shows the (averaged, approximately noiseless) simulated results 

for a participant with the same typical parameters in the visual-proprioceptive disparity task. The y axis 

indicates the proprioceptive drift in the reaching movement, so that movements completely based on 

proprioception would have drift equal to 0, and movements completely based on vision would have drift 

equal to the shown disparity. Different degrees of green denote different values of temporal delay, increasing 

from dark to light green. Panel (c) is the result of the same simulation as panel (b), run with spatio-temporal 

disparities and number of trials matching the experimental design of our VPD task to obtain data from one 

surrogated participant. The 2D heat map in (d) shows how model predictions based on parameters fitted from 

noisy simulated experimental data match results based on the ground truth parameters used in panels (a), 

(b), (c). Values of σv, σp, σt and Pπ were obtained by fitting the Bayesian CI model on the simulated data shown 

in panel (c), and used to recover the expected probability of common cause as done for panel (a). The overall 

shape of Pcom as a function of spatial and temporal disparity is very similar to the one obtained from ground 

truth parameters. Inside the black circles we show “empirical” Pcom values, defined as the ratio between 

simulated drift and the forced fusion estimate, so a drift coinciding with the forced fusion estimate would 

correspond to Pcom = 1, and no drift with Pcom = 0. This analysis was only performed for visualization purposes 

and is not used in order to extract model parameters, as they are recovered more robustly by directly fitting 

reaching errors from the VPD task. 

2.3.2. Materials and General procedure 
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The battery of tasks is administered via the Oculus Rift S Virtual Reality system, comprising: Oculus 

Rift S head-mounted display (HMD) and two Oculus Touch, or motion controllers. VM is 

implemented in Python, while all the other tasks are implemented in Unity and are compatible with 

other virtual reality systems allowing 6 axis hand and head tracking (e.g., HTC Vive). A virtual reality 

implementation of our setup was preferred to a physical implementation for several reasons. First 

of all, the high tracking accuracy achieved by modern HMD allows to record kinematics with a 

precision that should be largely sufficient for our tasks (< 1 cm)48,49. Second, the usage of a 

commercial, readily available apparatus, allows a quick and stantardized replication of the tasks for 

large-scale data collection and sharing. Third, the use of an immersive environment allows to fully 

control and standardize visual inputs, while enhancing the vividness of the task experience. 

The behavioural experiment will consist of a main task (VPD) and 5 complementary tasks (OL, MJ, 

SJ, VM and PJ). VPD yields an estimate of ownership as the individual tendency to integrate 

proprioceptive and visual information of a virtual hand. It consists of the repetition of a reaching 

movement while a variable angular disparity or temporal delay is introduced between the 

movement of participants’ real hand and a virtual hand displayed in immersive VR. The other tasks 

will assess independently the relevant parameters included in the Bayesian CI model: hand position 

sense in OL, visual precision in MJ, the temporal precision in SJ, and the encoding of the visual 

appearance of the hand in VM. The presence of a proprioceptive prior will be assessed in the PJ task. 

(see Figure 1). 

2.3.3. Visual-Proprioceptive disparity (VPD) task 

Participants are requested to sit in front of a chest-height table, with their arm placed in front of 

them. Participants wear a head-mounted display (HMD) and hold a motion controller in their right 

hand. During the experiment, participants cannot see their real hand, but a realistic hand is 

displayed in virtual reality using the tracking of the motion controller. During the task, the spatial 



23 
 

congruency between visual and proprioceptive information is manipulated as an angular disparity 

between the real (proprioceptive) and a virtual (visual) hand. Moreover, a delay is introduced 

between the onset of the real and the displayed movement in order to alter the temporal 

congruency of the stimuli (Figure 1 a). 

Participants are asked to make reaching movements to targets in virtual reality (white spheres with 

3 cm diameter) from a fixed starting position. The starting point is a sphere of 15 cm diameter, fixed 

15 cm away from the participant’s sternum. Target positions are arranged on an arc centred on the 

resting position. The arc radius is set according to each participant’s maximum reaching distance, 

calibrated at the beginning of the experiment. 

The task consists of three experimental blocks with slightly different designs. In the first three 

blocks, 7 targets (from T1 to T7) are equally spaced between -45 and 45 degrees with respect to the 

participant’s sternum. Across trials, the visual hand is randomly rotated with a given angular 

disparity from the participants’ proprioceptive hand, with their sternum as the (vertical) rotation 

axis. Additionally, a temporal delay of 0, 100, 250 or 400 ms is added between the onset of the 

movement and the displacement of the virtual hand. For the 0 ms delay condition, 7 spatial 

disparities are used: 0°, ±13.3°, ±26.6° or ±40° (+: clockwise, CW; −: counter clockwise, CCW). For 

100, 250 and 400 ms delay conditions, 6 spatial disparities, uniformly distributed on the same range, 

are used: ±8°, ±24° or ±40. This was done to increase the variability of the explored disparities, and 

to avoid collecting uninformative trials at zero spatial disparity. All the possible combinations 

between target position, temporal and spatial disparity (7*(7+6*3)) are tested in randomized order 

for a total of 175 trials in each of the first three blocks. In the fourth block, in which subjective ratings 

of ownership are also collected (see below), only 3 targets are presented to keep the total duration 

constant, and again one trial is collected for each combination of target, disparity and delay (75 

trials in total). Each block lasts approximately 15 minutes, and 600 trials will be collected over 
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approximately 75 minutes (including 5 minutes breaks between blocks). 

Participants are requested to place their hand on the starting position to initiate a trial. At the 

beginning of the trial, the virtual hand is rotated by one of the possible disparity angles during 1 

second, and the target appears. This mismatch between the real (proprioceptive) and the virtual 

(visual) hand is maintained for 1.5 seconds as the preparation period. In order to make apparent the 

temporal delay along with the angular disparity during the preparation period, participants are 

instructed to make a movement of prono-supination of the hand at a speed of approximately 1 Hz 

while fixating the virtual hand. After the preparation period, the target is turned green as a “go” 

signal. Movement of the hand outside the resting position at any time before the “go” cue 

automatically restarts the trial. Participants are instructed to reach the target with their real hand 

and return to the resting position within 1.5 seconds, ending the trial. Participants receive a positive 

feedback if they successfully reach in the target area and a negative feedback otherwise. The 

reaching target area is defined as a range between the target’s angular position and the current 

angular disparity, ±5° of tolerance in both in clockwise and counter-clockwise directions. The spatial 

and temporal mismatch is maintained throughout the whole trial along with the hand movement. 

Additionally, in the fourth block participants are requested to verbally report their subjective feeling 

of ownership for the virtual hand, evaluating their agreement with the statement (adapted to VR 

from 25) “I felt as if the virtual hand was my hand” on a -3 to 3 Likert scale. Values are manually 

recorded by the experimenter. 

2.3.4. Open-Loop reaching task (OL) 

The set-up of this task is similar to the VPD task (Figure 1 c), besides the fact that the virtual hand is 

not displayed; therefore, participants do not receive any visual feedback about their hand for the 

entire duration of the experiment. From a fixed starting position, participants are asked to make a 
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reaching movement to one out of seven visual targets (from T1 to T7), arranged at 0°, ±13.3°, ±26.6° 

or ±40° with respect to participants’ sternum. Target position is selected randomly trial by trial. 

Participants are required to place their hand on the starting position for 1.5 seconds to initiate a 

trial. After the initiation period, one of the targets appears. The reaching target is then turned green 

as a “go” signal. Movement of the hand outside the resting position at any time during the initial 

resting period automatically restarts the trial. Participants have to reach the target with their real 

hand and come back to the resting position within 1.5 seconds, ending the trial. Each participant is 

asked to complete 10 trials for each target (10*7 = 70 trials). 

2.3.5. Midline judgement task (MJ) 

In this task, participants are asked to sit on a chair keeping their head and trunk aligned while 

wearing an HMD. On each trial, a white sphere with 3 cm diameter moves horizontally across 

participants’ field of view, starting from ±70° ±80° and ±90° from the body midline, on an arc centred 

on participants’ sternum, with a radius equal to their maximum reaching distance, as in the VPD 

(Figure 1 d). Participants have to report when they feel that the visual cue is aligned with the midline 

of their body by pressing a response button on the motion controller. The starting positions of the 

visual cue are randomized across trials. 24 trials in total are collected. 

2.3.6. Simultaneity judgement task (SJ) 

This task consists of a series of reaching movements in virtual reality towards seven targets (from 

T1 to T7) arranged at 0°, ±20° or ±40 with respect to participant’s sternum (Figure 1 e). On each trial, 

the displacement of the hand in virtual reality is delayed by a variable amount with respect to the 

onset of the movement of the real hand, spanning 8 values from 0 to 700 ms, equally spaced by 100 

ms. 10 trials are collected per temporal disparity, with each target repeated twice. The order of 

targets and delays will be randomized across the task. On each trial, participants are asked to report 
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whether their movement and the displacement of the virtual hand occurred at the same time 

answering the question “did you notice a delay between the virtual hand and your hand?”. The 

answer is recorded as a binary variable by the experimenter. 

2.3.7.  Visual morphing task (VM) 

At the beginning of the task, 3 digital pictures of the participant’s right hand are taken, with 3 

different posture with varying distance between the fingers (narrow, medium and large). The 

pictures are converted to black and white, scaled to 300*400 pixels, and the background is removed. 

Each picture is morphed towards 10 target hands from a fixed database of hands (5 male and 5 

female lab members). The morphing will be performed using an automated feature mapping 

software 50. Ten intermediate morphing steps are created for each target, each frame representing 

a 10% incremental change from participant’s hand to a target hand or from 100% self to 0% self. A 

random rotation and translation (uniform on the -10/10 degrees and -10/10 pixels range, 

respectively) are added to each image to prevent the participant from learning specific orientations-

positions of the hands. The morphing of each image is checked by visual inspection prior to the task, 

and generates 100 morphing steps, uniformly distributed between 0 (i.e. 0% self) and 100 (100% 

self). For each of the 10 target images, 15 steps of morphing are selected, in such a way that 

sampling is more frequent for intermediate (harder to recognize) levels of morphing. In the end 

frames number 1, 17 ,28, 36, 41, 45, 48, 50, 52, 55, 59, 64, 72, 83, and 100 are selected. One frame 

for each target image and level of morphing is selected based on the quality of the morphing (e.g., 

absence of deformations, discontinuity of the margins, etc.). Hence, a set of 100 images is created. 

Participants sit in front of a screen, with their hand occluded from view. At each trial, one of the 100 

possible images is presented on a computer screen, while the question “is this a picture of your 

hand?” is displayed at the top of the image. Participants answer to the question by pressing a left 

or a right button, for negative and positive answers respectively, and their response and reaction 
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times are recorded. 

2.3.8. Proprioceptive judgement (PJ) task 

The set-up of this task is similar to the VPD (Figure 1 f). Participants’ real hand is not displayed in 

virtual reality. The experimenter passively moves participants’ real hand to one out of 7 possible 

target position (from T1 to T7) arranged at 0°, ±15, ±30, ±45° with respect to participants’ sternum 

on an arc with radius equal to each participant maximum reaching distance. Target position is 

selected randomly trial by trial. A two-alternative forced-choice converging algorithm is used to find 

the position in which the participants perceive their hand as it follows. At the beginning of each trial, 

a virtual hand is displayed at +30° (right) or -30° (left) with respect to participants’ real hand. The 

sign of the initial angle is randomized trial by trial. Participants then report whether they feel that 

the displayed hand is located to the left or right of their real, unseen hand. In the following step, the 

position of the virtual hand is moved halving the angle and mirroring it in the opposite direction 

with respect to participants’ previous answer. In five steps, the algorithm converges towards a 

certain angle at which participants have an equal probability of reporting left or right. The 

proprioceptive-based estimation is computed as the intermediate hand position between the last 

displayed position and the next position that would have been displayed by the algorithm according 

to the participant’s last answer. Each target position is tested 4 times in randomized order, for a 

total of 28 trials. 

2.4. Sampling plan 

According to the power analysis described below, 40 right-handed participants will be recruited. 

Inclusion criteria are: no history of neurological, vestibular or psychiatric disorder, normal or 

corrected to normal binocular vision for VR. Participants will be informed about the inclusion criteria 

beforehand and asked to apply only if no criteria are violated. 
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There will be no outlier removal in the collected data. If at any point technical issues will arise during 

an experiment interfering with the experiment’s procedure or data-logging, the participant will be 

excluded from the experiment in which the issue emerged. Issues rated as interfering with the 

experiment’s procedure include any type of freezing of the displayed virtual environment or any 

other faulty distortion of the presented virtual environment. Technical issues will be recognized by 

the experimenter, who monitors the procedure of all experiments on a separate display. If a 

participant wants to stop the experiment due to motion sickness or any other discomfort, he/she 

will be excluded from the experiment. Each task will be considered complete if the participant 

performed at least 80 % of the trials. Participants who fail to complete more than one task will be 

excluded from the experiment. In addition, any participant with less than 80 % of the trials in the 

VPD task will be excluded. All excluded participants due to the above reasons will be replaced with 

another participant.  

Due to the complexity of the planned analysis, and the scarcity of published empirical data using a 

similar setup, we could not perform a power analysis through standard techniques for most 

hypotheses of our study. Therefore, in order to determine the optimal sample size, we relied on a 

custom method combining Monte-Carlo simulations and previous data to estimate the chances of 

observing the hypothesized effect. In short, we used model fits from Fang’s 25 largest experiment to 

infer a plausible distribution of the main model parameters, and we simulated behavioural results 

from 500 surrogate participants, assuming that our Bayesian CI model, described in section 2.3.1, is 

correct. Then, our analysis pipeline was repeatedly run on several random samples of surrogate 

participants of different sizes, and the fraction of resamples yielding significant results will be 

computed. This should provide an unbiased estimate of the probability of observing an effect, 

assuming our model is correct. 

The above-described Monte-Carlo approach was used for assessing the correlations between model 
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parameters extracted from VPD task (σp, σv, σt), and unisensory precisions extracted from the OL 

(σp), MJ (σv) and SJ tasks (σt). First of all, ground truth values for the parameters σp and σv were 

drawn from a distribution modelled on the parameters extracted from our pilot for 500 surrogate 

participants. Therefore, values of σp were drawn from a Gaussian of mean 5.56, while values of σv 

drawn from a Gaussian of mean 5.23. The means of the randomly generated parameters were the 

same as what was obtained in Fang’s 25 VPD experiment with 22 participants, the largest similar 

dataset available. The standard deviation of the Gaussians was set to 2 degrees. A lower and upper 

cut-off of 3 and 8 degrees were set on both values to avoid unrealistic extreme values. For σt, since 

it was not possible to collect pilot data, we assumed a distribution based on literature about the 

perception of delay in a visuo-motor task. Fitting our model of the simultaneity judgement on data 

extracted from figures in the only previous study that was well adapted to this goal 51 indicates a 

value of σt of about 85 ms (see supplementary information for details). To cover a plausible and 

wide range of temporal precisions, we assumed σt to be uniformly distributed in the range 50-120 

ms, which is symmetrical around 85 ms. Finally, values of Pπ were uniformly distributed between 0.4 

and 1, symmetrical around the average reported value of 0.7. Then, the VPD, OL, MJ and SJ tasks 

were simulated for each participant. In order to simulate the VPD task, we simply applied the same 

procedure used to simulate the trials at a given amount of visuo-proprioceptive disparity, used for 

model fitting and described in the previous section. In order to simulate the reached position in the 

OL task, we added Gaussian noise of standard deviation σp to the target position for each trial. 

Similarly, for the MJ task, we generated 24 normally distributed values, with standard deviation σv. 

Finally, we used the same procedure developed for model fitting to simulate the SJ task. After the 

data was generated, we repeatedly run the pipeline analysis described in the previous section on 

randomly selected subsets of simulated participants of increasing size and evaluated the probability 

of observing significant effects as a function of sample size. As a final outcome, we chose the 

statistical significance of the Pearson correlation between the values of σp, σv, σt obtained by fitting 



30 
 

the Bayesian CI model on the multisensory task, and their unisensory counterparts from the other 

three tasks, with a threshold of p = .05. We explored sample sizes ranging from 5 to 60 in steps of 

5. For each sample size N, subsets of N participants were randomly selected 10000 times (with 

replacement) from our pool of 500 simulated participants, and the fraction of resamples yielding 

significant results was computed for each of the three hypothesized correlations. This procedure 

allowed us to identify the major sources of uncertainty in model fitting, especially for the 

multisensory task, where all parameters are estimated at once, and optimize the experimental 

design accordingly. The final combination of spatial and temporal disparities presented in the 

previous sections was selected between several possible designs, as the one maximizing power 

while keeping the expected duration of the multisensory task below 90 minutes. As summarized in 

Figure 4 a, the analysis shows that a sample of 20 participants should be sufficient to obtain a power 

above 95% for all the three correlations with a significance threshold of .05 (98.7 % for the MJ task 

with 15 participants, 99.7 % with 10 participants for OL and 96 % with 20 participants for SJ). 

Similarly, we simulated the expected results in our PJ task, assuming that participants have a prior 

on hand position peaking on the midline and 20±5 degrees wide, with a lower cut-off at 10 degrees. 

This value was chosen as a plausible range of the natural statistics of hand positions. We then 

simulated (biased) proprioceptive judgements according to this assumption and tested it with the 

same procedure described above. We tested the hypothesis of such attractive prior by assessing 

whether the mean slope of the fit predicting the (simulated) perceived position as a function of the 

real position was significantly below 1, indicating a bias towards the midline at the population level. 

With the above determined sample size, power was well above 95 % (99.6 % with 10 subjects). 

Concerning the hypothesis that the Bayesian CI model would outperform both the purely spatial 

Bayesian CI model and forced fusion model, we based ourselves on the sample of the largest 

experiment performed by Fang on humans, where a sample size of 22 participants was largely 
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sufficient to select the best model. The same holds for the expected correlation between subjective 

ratings and observed probability of common cause. 

Concerning the hypothesis that subjective ratings will correlate with reaching biases, we based 

sample size estimation on the previous work by Fang 25, who performed a very similar analysis with 

fewer trials per participant. Assuming a true R value of this correlation to be equal to 0.82, a 95 % 

power can be obtained with 13 participants. 

Finally, as no simple mathematical model can be used to describe the expected relation between 

the VM task and the prior on common cause in the visuo-proprioceptive disparity task (Pπ), we relied 

on more conventional methods, based on the assumed value of the correlation. Our simulations 

indicate that the expected correlation between the true prior and the value fitted from the VPD task 

should be R ~ 0.773. We assumed the morphing slope value would have the same correlation with 

the true value of Pπ. For each sample size N, we selected 10000 times N surrogated participants and 

generated n random vectors with an imposed correlation coefficient of 0.773 with respect to the 

true value of Pπ. The obtained values were then correlated with the fitted value of Pπ, and a 

significance test was performed with α = .05. After computing the fraction of significant correlations, 

we found that a sample size of 25 would allow to reach a power of 95.5 %.  

In summary, based on the hypothesis that requires the largest sample size, we estimate that 25 

participants should be sufficient for meeting our statistical power target of 95 %. To be conservative, 

we will oversample to 40 participants. 
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Figure 4. Power analyses. Panel (a) shows the results of the power analysis conducted by Monte-Carlo 

simulation. We plot the probability of observing a significant effect (p<0.05) as a function of the number of 

participants. The red, blue and grey lines denote respectively the correlations between the values of σv, σp, 

σt as extracted from the multisensory task (VPD) and its unisensory correspondents. The black line indicates 

the estimated probability of observing a significant correlation between the slope of the VM task and the 

value of Pπ extracted by fitting in the VPD task. The green line denotes the probability to detect the presence 

of an informative prior on proprioception, assuming its true average width is 20 degrees. Probabilities for 

each sample size were computed over 10000 random draws, with error bars estimating the 95 % c.i. due to 

the sampling procedure. Panel (b) shows the average Pearson correlation value between true parameters 

used in simulations and fitted values, over 10000 random draws of simulated participants. The color-coding 

of different parameters is the same as in panel (a). Panel (c) shows the same average correlations between 

parameters extracted from unisensory tasks and true parameters used in simulations. Error bars in panels (b) 

and (c) denote 95 % confidence intervals obtained by applying the Fisher transformation to correlation 

coefficients and then applying the inverse transformation to the confidence intervals on the Z scores obtained 

in such a way. 

2.5. Analysis plan 

Overall, the main hypothesis of our study is the validity of our Bayesian CI  model in both the spatial 

and temporal domains as potential mechanisms of body ownership. In order to confirm this 
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hypothesis, results should demonstrate:  

a) That the reaching bias in the VPD task is well modelled by a Bayesian CI model of visuo-

proprioceptive integration, where the relative weights of vision and proprioception are 

based both on spatial and temporal congruency between the two cues. 

b) That the reaching bias induced by the virtual hand, as resulting from the above processes 

represents a valid proxy of subjective ownership;  

c) That the degree of integration (used as a proxy of ownership) depends on the actual 

precision of the unisensory channels, as estimated independently through the respective 

unisensory tasks. 

d) That the degree of integration is also constrained by high-level priors which can be 

independently quantified, namely the ability of recognizing one’s own hand via visual 

features. 

e) That biases in static proprioception can be modelled as a spatial Bayesian prior, which is 

potentially relevant for ownership, and that the same biases do not transfer to dynamic 

proprioception. 

To test these predictions, we will fit our model on our multisensory reaching task (VPD), similarly to 

what done by Fang and colleagues 25. For each spatial and temporal disparity, we will simulate 5000 

trials, and maximize the likelihood of the data given the simulated model predictions, with respect 

to the set of fitted parameters (σv, σp, σt, Pπ). The fitting will be performed through the BADS Matlab 

optimization tool (https://github.com/lacerbi/bads)52. To avoid convergence problems or poor 

optimization, the fitting procedure will be repeated 5 times with different randomly selected 

starting parameters, and the fit with the highest log-likelihood will be selected. No pre-processing 
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step will be performed on the data, except for the removal of systematic biases in reaching (possibly 

due to tracking or VR calibration). This will be done by subtracting, for each participant, the mean 

reaching bias at zero spatial and temporal disparity. In order to assess the quality of fitting, we will 

test our model’s exceedance probability (original code available from: 

https://github.com/sjgershm/mfit) against the forced fusion model, as described in the next 

section. Additionally, we will test the specific effect of time by comparing our model with an 

alternative Bayesian CI model, including only the effect of space, but no temporal manipulation 

effect. Finally, we will compare model predictions about Pcom with subjective ratings about 

ownership. We will fit a bivariate Gaussian to the average subjective ratings as a function of spatial 

and temporal disparity, in order to extract the values of the tolerated spatial and temporal 

disparities as the standard deviation of the fitted Gaussian. Those values will be correlated with the 

values obtained by performing the same fit on Pcom values extracted from model fitting on the 

reaching task. To obtain Pcom values for each subject, we will simulate 5000 trials for each spatio-

temporal disparity, using the parameters fitted from the VPD task, and take the average value of 

Pcom, similarly to what done in figure 2d. Since, obviously, negative temporal disparities cannot be 

sampled, we will mirror the ratings and Pcom values symmetrically with respect to the spatial axis, so 

to be able to perform the fits. We will then perform significance tests on Pearson correlation scores. 

The Gaussian fit will have six free parameters: the spatial and temporal standard deviation (our 

parameters of interest), the spatial and temporal means, a normalization constant and a global 

offset. 

As an additional model validation, we proposed to compare individual parameters extracted from 

the multisensory task with their unisensory correspondents.  

Starting from the OL task, if we assume that participants are unbiased and the only source of 

variability in reaching movements is proprioceptive-motor noise, we expect: 
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𝑥 = 𝑥 + 𝑁 0, 𝜎    (8) 

Where xr denotes the reached position, and xt the target position. 

Then, in order to extract σp, we simply need to fit xt ~ xr, and extract the root mean square error of 

the fit.  

Similarly, in our MJ task, we expect  

𝑥 = 𝑥 + 𝑁(0, 𝜎 )   (9) 

Where xj denotes the judged midline position, and xm the true midline position. Then again, σv can 

be simply extracted as the root mean square error of midline judgements.  

The analyses are slightly more complicated for the extraction of σt. Participants do not directly report 

judgements about timing, as this would be hard to do practically and possibly introduce cognitive 

biases, but instead they express judgements about simultaneity. In a Bayesian framework, this is 

best described as another causal inference process. The causal inference equations are very similar 

to the ones described for inferring Pcom, the main difference being that they extend only to the 

temporal domain. Psim, the inferred probability that the motor command and the observed 

movement are simultaneous given a perceived amount of delay is 

𝑃 = 𝑃 𝜏 = 𝜏 |𝑡 , 𝑡 =
𝑃 𝑡 , 𝑡 |𝜏 = 𝜏 𝑃 𝜏 = 𝜏

𝑃 𝑡 , 𝑡 |𝜏 = 𝜏 𝑃 𝜏 = 𝜏 + 𝑃 𝑥 , 𝑥 , 𝑡 , 𝑡 |𝜏 ≠ 𝜏 𝑃 𝜏 ≠ 𝜏
)

=
𝑃

1
𝛼

𝑒

𝑃
1
𝛼

𝑒 + (1 − 𝑃 )
1

30

    (10) 

Assuming that participants report stimuli to be simultaneous when Psim is larger than a given 

threshold β, the expression can be used to predict the shape of the psychometric curve obtained in 
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our simultaneity judgement. Then the value of σt can be recovered by fitting through a process 

similar to the one used in our multisensory task. It is important to note that, as verified by 

simulations, the fitted value for σt depends only on the slope of the psychometric curve and is not 

affected by the values of the prior on simultaneity or the response criterion (see supplementary 

information).  

Finally, since the VM task cannot be connected mathematically to the Bayesian CI model in a 

straightforward manner, we chose an empirical criterion for assessing its impact. We will perform a 

logistic fit on the judgements expressed as a function of the percentage of morphing according to 

the following model. 

ln
𝑝

1 − 𝑝
= 𝛽 + 𝛽 𝑥 + 𝜀     (11) 

Where py denotes the probability of replying “yes” in the VM task, x denotes the morphing 

percentage (with 0 meaning 0 % self, and 100 meaning 100 % self), β0 and β1 are fit parameters and 

ε is the error term. Then, the subjective equivalence point will be given by - β0/ β1, and the slope at 

that point by β1/4. 

We will use such value of the slope as a proxy of accuracy in visually discriminating one’s own hand. 

In principle, participants are expected to be stricter in embodying the virtual hand, which does not 

look like their own. We therefore expect a significant positive correlation between values of Pπ and 

slopes of the psychometric function. 

Similarly, we will assess whether the parameters extracted from the unisensory tasks positively 

correlate with the ones extracted from the multisensory task by performing significance tests on 

Pearson correlation scores. 
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Finally, our last purely proprioceptive task (PJ) aims at assessing the presence of a Bayesian prior on 

proprioception. We hypothesize such prior to be a Gaussian, centred around the midline of the body 

with a standard deviation of 20 degrees, as a reasonable approximation of the marginal distribution 

of hand positions across time. In that case, proprioceptive judgements are expected to be biased 

towards zero, with proprioceptive information and the prior weighted according to the inverse of 

their variance. This follows from the fact that the optimal estimate is the product of two Gaussian 

distributions, P(sp|xp) = N(0, σps), and P(s) = N(µπ, σπ), where by σps we indicate the precision of 

proprioception during the static localization task, as opposed from the σp of the dynamic-motor task. 

Then we can easily derive: 

x =
𝜎 𝑥 + 𝜎 𝜇

𝜎 +𝜎
+ 𝜀 = 𝑎 + 𝑏𝑥 + 𝜀    (12) 

Where 

𝑏 =
𝜎

𝜎 +𝜎
    (13) 

And 

𝜀 = 𝑁 0,
𝜎 + 𝜎

𝜎 𝜎
    (14) 

This would allow extracting the mean and standard deviation of proprioceptive priors through a 

linear fit 

𝜎 =
𝑏𝜎

1 − 𝑏
    (15) 

Then, assuming σps ~ 5 our experimental hypothesis σπ = 20 translates in an expected value for the 

slope of the fit ~ 0.94. As a conservative hypothesis, we expect that the average value of the slope 
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should be significantly below 1. Moreover, a negative correlation between the slope b and the static 

proprioception value σps can be predicted as a direct consequence of equation (13). More precise 

participants are expected to be less influenced by the prior, and therefore have a higher value of the 

slope (closer to 1). This relates to the general principle in Bayesian inference that priors are more 

influential when less reliable information is available. 

We hypothesize that the prior on static proprioception does not generalize to a motor task, such as 

the OL. If our hypothesis does not hold, we can assume that OL reaching movements have an equal 

and opposite bias with respect to proprioceptive judgements. According to the previous point of the 

power analysis, 10 participants should be sufficient to detect such departure from our hypothesis 

with a power of 99.7 %. If, counter to our hypothesis, reaching movements are biased compatibly 

with the presence of a proprioceptive prior on the midline, we will propose additional analyses in 

which an informative prior is replaced to the fixed, uninformative prior that we assumed. 

Custom analysis code and all the data collected for this study will be available from: 

https://osf.io/azh8p/?view_only=abdd1b1d33c24794b048847432374720. 
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Question Hypothesis Sampling plan 
(e.g. power 
analysis) 

Analysis Plan Interpretation 
given to 
different 
outcomes 

Can an implicit 
hand ownership 
measure be well 
modelled as 
emerging from a 
Bayesian CI 
process combining 
sensory 
information in the 
temporal and 
spatial domain? 

The proposed 
spatio-temporal 
Bayesian CI 
model, fitted to 
reaching error in 
the VPD task, will 
outperform both 
the forced fusion 
model and the 
purely spatial 
Bayesian CI 
model. 

Based on Fang’s 
2019 study, a 
sample size of 22 
participants was 
sufficient to show 
strongly significant 
evidence in favour 
of the Bayesian CI 
model. 

The model will be 
tested against the 
forced fusion 
model and the 
purely temporal 
Bayesian CI 
model. We will use 
BIC as an 
approximation for 
model evidence, 
and compute the 
exceedance 
probability across 
participants to 
select the best 
model. 

If the spatio-
temporal CI model 
outperforms both 
the forced fusion 
and the temporal 
CI models, 
temporal features 
contribute to 
determining the 
probability of 
common cause in 
visuo-
proprioceptive 
integration. This 
can be seen as an 
indication that the 
underlying 
inference process is 
unitary. 

Does explicit 
subjective feeling 
of ownership 
emerge as a 
Bayesian CI 
process combining 
sensory 
information in the 
temporal and in the 
spatial domain? 

The subjective 
ownership ratings 
are reflected by the 
estimated 
probability of a 
common source of 
visual and 
proprioceptive 
information about 
the hand (Pcom) in 
both the spatial and 
temporal domain. 

Assuming a true R 
value of 0.82, 
based on Fang’s 
2019 study, a 95% 
power with a 
significance 
threshold of 0.05. 
can be obtained 
with 13 
participants.  

Pearson correlation 
scores between the 
standard deviation 
of the bivariate 
Gaussian fitted on 
ownership ratings 
and the width of 
Pcom extracted from 
the VPD in both the 
spatial and 
temporal 
dimensions. The 
scores are expected 
to be significantly 
positive. 

If both tests yield 
the expected 
results, then the 
subjective feeling 
of ownership can 
be quantitatively 
and implicitly 
evaluated using a 
Bayesian CI  model 
that takes into 
account both the 
spatial and 
temporal 
dimension of 
multisensory 
perception. 
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Are the weights 
assigned to visual, 
proprioceptive and 
temporal 
information by the 
Bayesian CI model 
predicted by actual 
unisensory 
precisions 
measured in 
independent tasks? 

 

The parameters 
estimated from the 
unisensory tasks 
(σp, σv and σt) will 
correlate with the 
correspondent 
parameters 
extracted from the 
multisensory task. 

20 participants will 
be necessary to 
have a power larger 
or equal to 96 % for 
all the three 
correlations, with a 
significance 
threshold of 0.05. 

Significance test on 
Pearson correlation 
scores. Scores are 
expected to be 
positive. 

If the test yields the 
expected result, 
then the weights 
assigned by the 
model to the 
parameters are 
related to the 
precision of the 
corresponding 
unisensory 
functions, 
providing a strong 
evidence for the 
validity of the 
Bayesian CI 
model.  

Moreover, this 
would conclusive 
proof that the 
inference process 
leading to body 
ownership is truly 
behaviourally 
optimal, providing 
evolutionary 
motivation for the 
model. 

Can cognitive 
constraints 
modulating body 
ownership (e.g. 
higher order visual 
features) be 
quantified as part 
of a Bayesian CI 
process? 

Cognitive 
constraints, such as 
the visual 
recognition of the 
hand, have a role in 
the causal 
inference process 
determining 
ownership that can 
be quantified as a 
prior on cue 
combination. 

With the indicated 
sample size of 25, a 
standard power 
analysis indicates a 
probability of 
95.5 % of detecting 
the effect. 

 

Pearson correlation 
test between Pπ 
extracted from the 
VPD and the slopes 
of the 
psychometric 
function of VM 
(eq. 11). The score 
is expected to be 
significantly 
positive. 

If the test yields the 
expected result, 
then so called 
cognitive 
constraints can be 
recast as a 
quantifiable part a 
of a Bayesian CI 
process.   

Is the notion of 
Bayesian priors 
applicable to 
proprioception?  

There is a 
systematic bias 
towards the 
midline in static 
hand position sense 
that can be well 
modelled as the 
result of a 
proprioceptive 
prior.  

10 participants will 
be necessary to 
have a power of 
99.7 % for all the 
correlation with a 
significance 
threshold of 0.05. 

Significance test 
versus 1 of the 
slope of the linear 
regression on PJ 
(parameter b, eq. 
12 and 13). The 
slope is expected to 
be < 1.  

Pearson correlation 
between slope and 
σps. The score is 
expected to be 

If the slope is 
significantly > 1 
then there is a bias 
towards the 
midline in static 
hand position 
sense. 

If both tests yield 
the expected 
results, then there 
is a prior on hand 
proprioception 



44 
 

significantly 
positive. 

centred around the 
body midline.  

Does this prior play 
a role in the 
Bayesian CI 
process 
determining 
ownership during 
reaching?  

Systematic biases 
in static hand 
position sense do 
not affect 
performance in a 
motor task, when 
proprioception is 
used implicitly. 

Assuming that OL 
reaching 
movements have 
an equal and 
opposite bias with 
respect to 
proprioceptive 
judgements, 
according to the 
power analysis of 
the previous point 
10 subjects should 
be  sufficient to 
detect this bias, if 
present. 

Significance test 
versus 1 of the 
slope of the linear 
regression on the 
OL as calculated 
for the PJ (eq. 12 
and 13). The slope 
is expected to be 
not significantly > 
1. 

If the test yields the 
expected result, 
then there is not a 
systematic bias in 
hand reaching 
movements that 
could bee 
explained by a 
proprioceptive 
prior.  

In the opposite 
case, the Bayesian 
CI  model should 
be modified to take 
this bias into 
account as an 
informative 
proprioceptive 
prior  
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Effect of the width of a Gaussian prior on the fitted value of Pπ 

Here we show how the use of a Gaussian prior on hand position and movement timing, even when of 

very large and fixed width to simulate a uniform distribution, is not desirable as it affects fitted values 

of the prior probability of common cause Pπ. 

When using such a Gaussian prior, the likelihood functions defined by our generative model are: 

𝑃 𝑥 , 𝑥 , 𝑡 , 𝑡 |𝐶 = 1 =
1

4𝜋 𝜎 𝜎 + 𝜎  𝜎 + 𝜎 𝜎 𝜎 𝜎 + 𝜎  𝜎 + 𝜎 𝜎

 

𝑒𝑥𝑝 −
1

2

𝑥 − 𝑥 𝜎 + (𝑥 − 𝜇 ) 𝜎 + 𝑥 − 𝜇 𝜎   

𝜎 𝜎 + 𝜎  𝜎 + 𝜎 𝜎
                                     (16)  

−
1

2

𝑡 − 𝑡 𝜎 + (𝑡 − 𝜇 ) 𝜎 + 𝑡 − 𝜇 𝜎   

𝜎 𝜎 + 𝜎  𝜎 + 𝜎 𝜎
 

and 

𝑃 𝑥 , 𝑥 , 𝑡 , 𝑡 |𝐶 = 2

= 1 
1

4𝜋 (𝜎 + 𝜎 )(𝜎 + 𝜎 ) (𝜎 + 𝜎 )(𝜎 + 𝜎 )

𝑒𝑥𝑝 −
1

2

(𝑥 − 𝜇 )  

𝜎 + 𝜎
 

+
𝑥 − 𝜇  

𝜎 + 𝜎
−

1

2

(𝑡 − 𝜇 )  

𝜎 + 𝜎
+

𝑡 − 𝜇  

𝜎 + 𝜎
                                         (17) 

Where σπ is the width of the spatial prior on hand position and σπt is the width of the temporal prior 

on hand movements. 

If, as typically assumed, 𝜎 , 𝜎 ≪  𝜎  and 𝜎 ≪  𝜎 , the above expressions can be approximated as 

follows 

𝑃 𝑥 , 𝑥 , 𝑡 , 𝑡 |𝐶 = 1 ≈
1

4𝜋 𝜎 𝜎 𝜎 + 𝜎 𝜎 + 𝜎

𝑒𝑥𝑝 −
1

2

𝑥 − 𝑥   

𝜎 + 𝜎
−

1

2

𝑡 − 𝑡  

𝜎 + 𝜎
 

≝ 𝛼𝑒                                                                                                     (18) 

Where 𝛿  is the spatial disparity and 𝛿  the temporal disparity. 

𝑃 𝑥 , 𝑥 , 𝑡 , 𝑡 |𝐶 = 2 ≈  
1

4𝜋 𝜎 𝜎
𝑒𝑥𝑝 −

1

2

𝑥 + 𝑥

𝜎
+

 𝑡 + 𝑡

𝜎
≝ 𝛽𝑒

 

≈ 𝛽                                                                                                                      (19) 

Since 𝑥 + 𝑥 ≪ 2𝜎  and 𝑡 + 𝑡 ≪ 2𝜎 . 

Then the probability of common cause is given by 
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𝑃 𝐶 = 1|𝑥 , 𝑥 , 𝑡 , 𝑡 =
𝑃 𝛼𝑒

𝑃 𝛼𝑒 + 𝛽(1 − 𝑃 )

=
𝑒

𝑒 +
𝛽
𝛼

(1 − 𝑃 )
𝑃

    (20) 

Therefore, in model predictions and fitted values, the prior probability of common cause Pπ is 

conflated with the constant β, which only depends on the arbitrary values chosen for the widths of 

the spatial and temporal priors. 

 

Detailed calculations involved in the approximation shown in equation (4) 

 

The normalization constant α is given by 

𝛼 =  𝑒𝑥𝑝 −
1

2

𝑥 − 𝑥   

𝜎 + 𝜎
−

1

2

𝑡 − 𝑡  

𝜎 + 𝜎
𝑑𝑥 𝑑𝑥 𝑑𝑡 𝑑𝑡

= 𝑒

  

𝑑𝑥 𝑑𝑥  𝑒

 

𝑑𝑡 𝑑𝑡     (21) 

The integral can be solved separately for the spatial and the temporal variables. The function is 

essentially a Gaussian ridge defined on the square domain with -90< xv<90 and -90<xp<90, and 

directed on the line xv=xp. For the spatial part, after a change of variables, with u being directed as 

the Gaussian ridge and v perpendicular to it, we get 

𝑒

  

𝑑𝑥 𝑑𝑥 = 𝑒

  

( )𝑑𝑣𝑑𝑢
√ ∙

√ ∙

√ ∙

√ ∙

≈ 𝑒

  

( )𝑑𝑣𝑑𝑢
√ ∙

√ ∙

= √2

∙ 180 𝜋(𝜎 + 𝜎 )                                                                                                               (22) 

The approximation consists in changing the integration bounds in the second integral to minus/plus 

infinity, which is justified as the width of the Gaussian is much smaller than the integration bounds 

almost everywhere. The same can be done for the temporal variables 

 𝑒

 

𝑑𝑡 𝑑𝑡 ≈ √2 ∙ 30 𝜋(𝜎 + 𝜎 )     (23) 

As a result, we get 

𝛼 = √2 ∙ 180 𝜋(𝜎 + 𝜎 ) ∙ √2 ∙ 30 𝜋(𝜎 + 𝜎 ) = 2𝜋𝜎 𝜎 ∙ 30 ∙ 180    (24) 

 

Extraction of σt from existing data 
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In order to obtain a rough estimate of the temporal precision σt, we fit the model described in equation 

(10) to data from Figure 2b in Farrer et al. (2008). This work was chosen as it closely resembles our 

task for the estimation of the temporal precision. Subjects performed random hand movements while 

holding a joystick, with their real hand hidden and observing a virtual rendering of the performed 

movements at various levels of temporal delay. They had to focus on movement onset, and judge 

whether the observed movements were simultaneous with their own, delayed but still generated by 

them, or delayed and not generated by them. The two latter responses were grouped as “non-

simultaneous” to match our experimental design. The data was graphically extracted from Figure 2b 

by computing the relative position of data points and y-axis ticks in Inkscape. We show the results of 

the fit in Figure S1. 

 

 

Figure S1. Estimation of σt from data from Farrer et al. (2008). The blue line represents the (group 

averaged) fraction of trials in which the virtual’s hand movement perceived as simultaneous. The 

red dashed line represents a maximum likelihood fit of the data according to the procedure 

described in the main text (see equation 10 and the following paragraph). 

 

Robustness of the fit of σt with respect to model priors and response criterion 

Here we demonstrate the robustness of the proposed fitting approach to extract the temporal precision 

with respect to the two arbitrary parameters contained in the fit, i.e. the response threshold and the 

prior on simultaneity Psim. To do so, we simulated responses to our task in surrogated subjects with 

different values of the response threshold and Psim. As evident from Figure S2, changes in the response 
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threshold only appear to shift the response curve, while changes in σt are only reflected in a change 

of the slope of the response curve. Therefore, fitted values of σt should depend very weakly on the 

(arbitrary) values chosen for the response threshold and Psim. 

 

Figure S2. Simulations of the SJ task with different values of the response threshold (top-bottom), 

σt (left-right) and Psim (color code). The slope of the curves does not depend on the response 

threshold or the prior on simultaneity, hence the value of σt can be robustly fitted. 
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One Sentence Summary: Subjective sense of agency for decoded actions is 

processed in primary motor cortex and improves neuroprosthetic proficiency.  

 

Abstract 

Intracortical brain machine interfaces (BMI) decode motor commands from neural 

signals and translate them into actions, enabling movement for paralyzed individuals. 

The subjective sense of agency associated to actions generated via intracortical BMI, 

the involved neural mechanisms and its clinical relevance for BMI proficiency are 

currently unknown. By experimentally manipulating the coherence between decoded 

motor commands and sensory feedback in a tetraplegic BMI user, we provide evidence 

that primary motor cortex (M1) activity processes sensory feedback, sensorimotor 

conflicts and subjective states of BMI actions. Neural signals processing the sense of 

agency affected the proficiency of the BMI system, underlining the clinical potential of 

the present approach. These new findings show that M1 encodes information related to 

action and sensing, but also sensorimotor and subjective agency signals, which in turn 

are relevant for BMI applications. 
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Introduction 

When performing a voluntary movement, motor commands from the brain activate body 

effectors, which produce a cascade of reafferent sensory (proprioceptive, tactile, visual) 

cues. Motor commands are also associated with prediction signals about the sensory 

consequences of the movement. The congruency between motor commands, reafferent 

sensory feedback, and sensory predictions is at the basis of the sense of agency, our 

feeling of being in control of our actions1–3. In case of damage to the motor system, 

motor commands that would trigger actions do not reach body effectors, leading to 

different types of paralysis, depending on the location and severity of damage. 

Intracortical brain machine interfaces (BMI) bypass such brain-body disconnection by 

decoding brain signals from different regions (i.e., primary motor cortex (M1), parietal or 

premotor cortex) and translating them into motor commands for the control of robots, 

exoskeletons4,5, neuromuscular functional electrical stimulation6,7 or other devices8, 

enabling different actions (BMI actions) for patients with severe neuromotor 

impairments9.  

 

Despite major advances in intracortical BMIs based on research in human and non-

human primates, the sense of agency for BMI actions, its neural mechanisms, and its 

impact on BMI performance is currently unknown 

Although a few recent studies investigated the sense of agency using non-invasive 

brain computer interfaces (BCI) in humans10,11, the following questions have never been 

asked using intracortical BMI. How does it feel to generate movements with a BMI – i.e., 

what is the sense of agency for BMI actions? Do motor neurons in human M1 encode 

not only motor commands, but also sensory feedback? Does these signals covary with 

agency for BMI actions? And does agency affect the efficiency of the BMI system - i.e. 

is agency of therapeutic benefit?  

 

We applied classic approaches from psychophysics, neurophysiology, 

neuroengineering and virtual reality (VR) to ask these questions for the first time in a 

patient suffering from tetraplegia (caused by severe cervical spinal cord injury; C5/C6), 

who had been a BMI expert for two years before the start of the present study6. The 

patient had no preserved motor function below the C5 level. His sensory functions were 
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extremely limited and only showed partially preserved function at the C6 level on the left 

side and at C5 on the right side (there was also residual sensation for pressure on his 

right thumb). Concerning proprioception, he had preserved perception for shoulder, 

elbow and wrist joint position, but no proprioception for digits joint position (see Material 

and methods for more details). 

 

The BMI consisted of a 96-channel array implanted in the hand area of left M1 and 

actuated a transcutaneous forearm neuromuscular electrical stimulation (NMES) system 

(see 6 for a full description of the system) to translate decoded cortical signals into right 

forearm and hand movements. In order to study the sense of agency for BMI actions 

and to evaluate its clinical impact, we experimentally manipulated the congruency 

between the decoded actions and the actions actuated by the BMI-NMES system. As 

illustrated in Figure 1, the participant was instructed to realize a cued action with the 

BMI and was provided with movement-related sensory feedback using visual (via VR) 

and/or somatosensory (via NMES) stimulation. Critically, this feedback was either 

congruent or incongruent with respect to the motor commands decoded from M1: half of 

the trials, in which the decoded action corresponded to the cued action (e.g., open 

hand), were associated with congruent feedback (e.g., open hand), while the other half 

were associated with incongruent feedback (e.g. the opposite action: close hand). For 

each BMI action, we asked the participant whether he felt in control of that action and to 

rate his confidence about this judgement, allowing us to (1) gauge the sense of agency 

for BMI actions and how this was modulated by the congruency between motor 

commands and sensory feedback. Next, neural data from the M1 implant were analyzed 

to measure how (2) the sense of agency and (3) sensory feedback were encoded in the 

activity of M1 neurons, quantified as multi-unit (MU) firing rates and local field potentials 

(LFP). Finally, we investigated (4) how visual and somatosensory feedback, and the 

associated sense of agency, affected the performance of the BMI system by changing 

the pattern of response of M1 neurons. By investigating what it feels like to control 

actions mediated by an intracortical BMI, our data show neural patterns in M1 activity 

(MU and LFP) reflecting the processing of agency for BMI actions, as generated by the 

congruency between intention and sensory feedback. Importantly, we show that the 

nature of somatosensory feedback (and the related sense of agency) affected the 
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efficiency of the BMI system by modulating the response properties of M1 neurons, 

underlining the clinical relevance of sensory feedback and agency for the BMI field.  

 

During the experiment, the participant was cued to execute one of four target actions 

(hand opening, hand closing, thumb extension, thumb flexion) using a validated BMI 

neuroprosthesis. Neural activity corresponding to each target movement was recorded 

via a 96-channel microelectrode array in M1 and a nonlinear support vector machine 

classifier was applied to decode the participant’s chosen action from MU activity (see 6 

for full description). On each trial, the classifier provided the likelihood of each target 

action (on a -1 to +1 range, in 100 ms bins), thus decoding one of the four target actions 

from the participant’s M1 activity. In three different experiments, visual, somatosensory, 

or visual-somatosensory feedback about the BMI action was provided (Figure 1). In 

Experiment 1, VR was used to provide visual feedback, consisting of a life-size virtual 

arm on a monitor superimposed over the participant’s right arm, matching the location 

and dimensions of the participant’s real arm, which was occluded from view. In 

Experiment 2, NMES was used to provide ‘somatosensory’ feedback: the patient’s 

upper limb muscles were electrically stimulated so he could feel, but not see the 

selected movement. Experiment 3 combined VR and NMES to provide ‘visual-

somatosensory feedback’ (see below). In half of the trials, sensory feedback was 

congruent with the cued action, while in the other half it was incongruent (i.e., the 

opposite, action was executed) (see Figure 1B). At the end of each trial, we gauged the 

participant’s sense of agency (0 or 1; Q1) and confidence (rating between 0 and 100; 

Q2). Importantly, the amount of sensory information was kept constant across 

experiments, by providing non-informative sensorimotor feedback in Experiment 1 (i.e., 

a pattern of NMES triggering no BMI action) and non-informative visual feedback in 

Experiment 2 (i.e., a static visual hand performing no action).  
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Figure 1. Experimental setup. A. Events during trials. One (out of four possible movements) 
was cued, following a “Go” signal to initiate the movement. The BMI classifier decoded the 
movement from M1 activity and sensory feedback was given. The patient answered two 
questions: Q1. “Are you the one who generated the movement?”, by saying “Yes” or “No”; and 
Q2. “How confident are you?”, by indicating a number ranging from 0 (absolutely unsure) to 100 
(absolutely sure). B: Example of sensory feedback for one type of movement. The chosen 
movement was realized as a visual feedback, via virtual reality (VR – Experiment 1), as a 
somatosensory feedback, via NEMS (Experiment 2) or both (Experiment 3). In different 
congruency conditions, either the cued and correctly decoded movement (Congruent) or the 
opposite movement (Incongruent) was realized for the different modalities. The location of the 
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electrodes array in the M1, with respect to the pattern of activity for upper limb attempted 
movement from fMRI is also shown (from 6).    
 
Results 

Sensory feedback determines agency and confidence. Agency ratings were 

collected in a total of 844 trials (155, 243 and 448 trials for Experiments 1, 2 and 3, 

respectively; for Experiment 3 see below and supplementary material) and compared 

across feedback conditions using permutation tests. A null distribution of the mean 

agency rating was created by shuffling the condition labels over 10’000 iterations. P-

values (2-sided) were estimated by counting the proportion of shuffled samples 

exceeding the observed average difference across conditions. As expected, and as 

shown in Figure 2A, we were able to manipulate agency and confidence for BMI 

actions. Thus, congruent visual (Experiment 1, 94% and 5.6% of positive responses to 

Q1 for congruent and incongruent trials, respectively, p<.0001) and congruent 

somatosensory (Experiment 2, 97.4% and 9% of positive responses for congruent and 

incongruent trials respectively, p<.0001) feedback resulted in more frequent agency 

responses versus incongruent conditions. Analyzing the role of feedback for confidence 

ratings (irrespective of the agency ratings), we found that confidence was not modulated 

by visual congruency (Experiment 1, mean Q2 rating = 70.9 for congruent, 73.6 for 

incongruent trials; p = 0.28), but by somatosensory congruency (Experiment 2, Q 

ratings were higher for somatosensory congruent [M = 74.1] than incongruent [M = 65] 

feedback; p < 0.001).  

 

In order to disentangle the role of visual and somatosensory cues for agency and 

confidence, Experiment 3 combined VR and NMES including combinations of congruent 

and incongruent visual and somatosensory feedback (Figure 1). Most relevant are the 

comparisons between feedback conditions in which visual (V) and somatosensory (S) 

signals were both congruent (+) or both incongruent (-) (V+/S+; V-/S-) or when feedback 

was congruent in one modality and incongruent in the other modality (V+/S-; V- /S+). 

Results revealed that somatosensory congruency was more effective in driving the 

sense of agency and the associated confidence: ratings were stronger not only when 

both feedback signals were congruent (Q1 = 100% “Yes”, mean Q2 = 83.8) as 

compared to both being incongruent (Q1 = 7.8% “Yes”, mean Q2 = 72.3) (both p-value 
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< 0.001), but also in the V- /S-+ (Q1 = 68.5% “Yes”, mean Q2 = 59.4) as compared to 

the V+/S- condition (Q1 = 52.5% “Yes”, mean Q2 = 54.8; p = 0.0035 and p = 0.036, for 

agency and confidence respectively) (Figure 2). Collectively, these data from 

Experiments 1-3 show that the congruency between decoded actions and sensory 

feedback, especially for the somatosensory modality, alters the sense of agency and 

confidence for actions mediated by an intracortical BMI.  

 

Figure 2. Agency judgements and confidence depends on sensory feedback. A. 
Proportion of “Yes” and “No” answers (Q1) to congruent and incongruent trials for the visual 
(Experiment 1) somatosensory (Experiment 2) and the combination of the two modalities 
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(Experiment 3). B-C-D: Confidence about agency judgments. Distribution of Q2 responses as a 
function of the congruency of visual (B), somatosensory (C) or both (D) sensory feedback. 
 

The sense of agency has been traditionally studied by presenting participants with 

different visuo-motor couplings2,12–15. In comparison, the role of somatosensory signals 

remains poorly understood16, notably because it is normally impossible to decouple 

motor commands, somatosensory feedback and visual feedback, with extremely rare 

exceptions as in deafferented patients. Here we were able to contrast feedback cues 

that were congruent in one modality (e.g., visual) and incongruent in the other modality 

(e.g., somatosensory; and vice versa) with respect to the motor command and 

demonstrate that somatosensory cues dominate the sense of agency and the 

associated confidence for BMI-NMES actions. Of note, this effect cannot be due to the 

presence of somatosensory cues alone, as BMI actions in the visual condition were 

always associated with non-informative NMES stimulation producing somatosensory 

sensations without generating any actions (i.e., pseudo random somatosensory 

feedback, see supplementary material). Collectively these psychophysical data in a BMI 

expert reveal that agency for BMI actions depends on visual and somatosensory 

feedback (tactile and proprioceptive input) with somatosensory cues being more 

relevant.  

 

Cortical signatures of sensory feedback in M1. We next investigated how such 

sensory feedback, that modulated the sense of agency, was encoded in M1 activity. We 

first analyzed the LFP amplitude in the different feedback conditions across the three 

experiments, using a regularized generalized linear model (ridge regression) and input 

signals from each individual channel at every time point (see Supplementary 

information). As shown in Figure 3A (left), the analysis distinguished congruent vs. 

incongruent visual feedback (maximum Cohen’s Kappa K=0.42; p-value for the 

difference from baseline, <0.001) within a single period of a positive potential that lasted 

from 700-1200 ms after the BMI action classification onset (Experiment 1). We could 

also distinguish congruent vs. incongruent somatosensory feedback (maximum Cohen’s 

Kappa K = 0.58; p < 0.0001) during two time periods: an early period characterized by a 

negative potential (stronger for incongruent feedback), starting at 200 ms after BMI 
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classification onset, followed by a later persistent differentiation lasting almost until the 

end of the trial. These results were further corroborated by data from Experiment 3: 

congruent trials in both modalities were clearly distinguished from incongruent trials in 

both modalities, lasting from 250-1900 ms after BMI classification onset (maximum K = 

0.66). In addition, V+/S- trials were different from V+/S- trials from 300-1400 ms from 

BMI classification onset (maximum K = 0.31) (Figure 3B left). These findings show that 

visual and somatosensory feedback were both encoded by LFPs in human M1 and that 

such M1-LFP coding started earlier and was more stable over time for somatosensory 

feedback.  

 

Applying the same decoding algorithm as for LFPs, we next determined if sensory 

feedback was also encoded by the spiking rate of MU in M1 (for methods see 

Supplementary material). As shown in Figure 3A (right), in Experiment 1, MU activity 

distinguished between congruent and incongruent visual feedback from 400-900 ms 

from BMI classification onset (max K value = 0.41, p < .001). Extending LFP findings, an 

earlier and more stable differentiation between congruent and incongruent 

somatosensory feedback was found in MU activity in Experiment 2, with an effect as 

early as 200 ms from the BMI classification onset (max K value = 0.66, p = < .001) and 

then persisted from 800 to 2000 ms. Similar results were found in Experiment 3 (Figure 

3B, right), where MU activity distinguished between trials congruent and incongruent in 

both modalities and between V+/S- and V-/S+ trials from 160 ms from BMI 

classification onset. These data show that LFP and MU activity reflects visual and 

somatosensory feedback during actions driven by a BMI neuroprosthesis, with M1 

activity early reflecting somatosensory feedback starting 200 ms after NMES activation 

(150 ms after BMI classification onset, 200 ms before M1 activity encoding visual 

feedback) and persisting for a longer period.  
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Figure 3. M1 activity depends on sensory feedback. Sensory feedback as encoded by Local 
field potentials (LFP; left panel) and Multiunit firing rates (MU; right panel). LFP and MU 
modulation for congruent and incongruent visual (Experiment 1) and somatosensory 
(Experiment 2) feedback (A) and for the combination of the two (Experiment 3, B). Colored lines 
represent averaged signal across all channels (shaded areas indicate SEMs); black lines report 
the time-related k-values of the multivariate decoder distinguishing between congruent and 
incongruent feedback; the underlying thick segments indicate k-values significantly higher than 
chance level from cluster-based permutation analyses.      
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The role of somatosensory and visual information is an important topic in motor control, 

with robust evidence showing how perturbations of sensory feedback impact motor 

execution and adaptation17. The present data show that the congruency between an 

intended action and somatosensory/visual feedback is encoded by M1 neurons at 

different latencies. To our knowledge, comparable data are not available in human or 

non-human primates, although previous studies in non-human primates described 

responses in M1 related to tactile and visual input18,19, during active and passive 

movements20 and during visual feedback of a pre-recorded movement21,22. The present 

results are consistent with proposals that suggest that M1 activity codes both for 

movement types and their sensory consequences, in line with recent proposals 

describing how M1 neurons encode different movement parameters (see 19,23,24 for 

reviews). Here we report that, at the population level, human M1 activity in addition 

discriminates between arm movements that were congruent or incongruent with the 

motor command, as defined by somatosensory and visual feedback, with higher 

accuracy, earlier and more consistent processing for the former type of sensory 

information. Thus, neural coding in M1 contains, at the population level, information not 

only about the movement itself, but also about sensory consequences of actions, 

involving somatosensory-motor and visuo-motor loops. These results are important to 

explain how sensory feedback affects the proficiency of the BMI system as described 

below. 

 

Cortical signatures of the sense of agency in M1. It is known that sensory-motor 

congruency is a key mechanism of agency for able-bodied actions2,3; here we have 

shown that this also applies to agency and confidence for BMI-mediated actions and 

that LFPs and MU activity in human M1 distinguishes congruent vs. incongruent BMI 

actions. Next, we investigated to what extent LFP and MU activity in M1 also 

discriminate actions with and without an accompanying sense of agency. For each trial, 

we sorted LFP responses as a function of whether the participant reported agency or 

not. As seen in Figure 4A (left), LFP activity starting 270 ms after BMI classification 

onset was found to code for agency and reached a maximum information value (K>.4) 

at 1000 ms after BMI movement onset. Thus, BMI actions for which the participant felt 
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to be the agent were characterized by a different LPF pattern compared to BMI actions 

for which he did not. This was corroborated by MU activity analysis (Figure 4A, right). 

The MU firing rate was higher for trials with versus no agency; this discrimination started 

at 300ms after BMI classification onset, until 500 ms, and peaked at 400 ms (K 

max=.45). Later on, MU activity also differentiated for agency, with higher firing rate for 

trials with no agency (800-1600 ms after BMI classification). The same decoding was 

also able to discriminate trials with high vs. low confidence, based on a median split of 

Q2, from LFPs (max K = 0.296 at 1200 ms) and MU (max K = 0.225 at 400 ms).  

 

Figure 4. Sense of agency in M1. Sense of agency as coded by LFP (left) and Multi-unit firing 
rates (right). A. Left and right panels respectively show averaged LFP and Multi-unit modulation 
for high (green) and no (grey) agency response to Q1 (shaded areas indicate SEMs); black 
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lines report the time-related k-values of the multivariate decoder distinguishing the two 
conditions; the underlying thick segments indicate k-values significantly higher than chance 
level from cluster-based permutation analyses. B: Results of the decoder discriminating 
between high vs. low orthogonalized agency scores from LFP (left) and MU (right) after 
regressing out for the effects of the congruency of sensory feedback and type of movements.  
 

In the experimental design, sensory feedback congruency was used to modulate the 

sense of agency and this may have influenced these agency findings. Accordingly, we 

next tested whether LFP and MU contained information related to the sense of agency 

per se, after controlling for the effect of sensory feedback. For this we built a continuous 

measure of sense of agency and confidence allowing us to regress out the effect of 

sensory feedback. This new index was computed by recoding confidence ratings (Q2) 

as -Q2, for trails with no agency (as indicated in Q1) and +Q2 for trials with agency 

(from Q1). This index was then orthogonalized with respect to congruency in order to 

regress out this effect from the agency scores. As M1 signals also varied as a function 

of the different cued actions (see SI), the index was also orthogonalized for the type of 

action. We then used the same decoder to predict orthogonalized agency scores from 

LFP and MU activity over time. This analysis shows that LFPs predicted the sense of 

agency starting at 450 ms after BMI classification onset (p < 0.02 with respect to 

baseline) (see Figure 4B left). A similar pattern was found when considering MU activity, 

although the peak failed to reach significance after cluster-based correction for multiple 

comparisons (Figure 4B right). These data show that M1 activity encodes the sense of 

agency and associated confidence level and was modulated by the congruency 

between motor commands and sensory feedback. Thus, subjective mental states 

associated with BMI actions and control are encoded by M1 activity at the LFP level 

(and to a minor extent at MU), independent of the neural processing associated with 

sensory feedback (see supplementary material for single channel analyses).  

 

Somatosensory feedback modulates BMI classifier accuracy. Given the strong role 

of sensory congruency in determining agency and its coding in M1, we finally asked 

whether sensory feedback has any impact on the BMI classifier. To this aim, we tested 

whether the congruency between the decoded motor commands and sensory feedback 

(visual, somatosensory) affected the accuracy of the BMI classifier, defined as the 

summed suprathreshold activation values across a 4s window. In Experiments 1 and 2 
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we found that congruent somatosensory feedback improved classifier accuracy (t = 

9.92; p < 0.0001) (Figure 5B right), while there was no effect due to visual feedback (p = 

0.14) (Figure 5A). Moreover, incongruent somatosensory feedback was associated with 

lower classifier accuracy for the cued movement (Figure 5B left), and even increased 

classifier accuracy for the opposite movement (Figure 5B left). Thus, only 

somatosensory feedback congruency affected BMI accuracy in the present participant. 

This was extended by the results of Experiment 3, where we found a significant main 

effect of sensory feedback condition (F(3,444 = 15.83; p < 0.00001; Figure 5C). Further 

post-hoc corrected tests showed that the BMI classifier’s accuracy was higher when 

feedback was congruent, than incongruent, in either modality (p < 0.0001). More 

interestingly, when feedback was congruent for the somatosensory modality and 

incongruent for the visual modality (V-/S+) BMI accuracy was higher than in the 

opposite feedback condition (S-/V+) (p < 0.001). Figure 5 also shows the modulation of 

the BMI decoder as function of sensory feedback over time during the trial. Significant 

change of the decoder’s output is visible from 430 ms from somatosensory feedback. 

These data from Experiments 1-3 show that BMI performance is affected by the 

congruency between the decoded motor commands and the somatosensory feedback 

induced by the action actuated by NMES. This finding is also coherent with the more 

reliable (i.e., earlier, more long-lasting and better decoded) processing of 

somatosensory feedback from M1 activity (LFP, MU). The fact that the same action as 

actuated by NMES (e.g., open hand) increased or decreased the BMI classifier 

performance, depending on whether somatosensory feedback was congruent (open 

hand) or incongruent (close hand) with the cued action, excludes that this effect was a 

generic artifact of NMES stimulation affecting the input to the BMI classifier 

independently from sensory information. Moreover, the finding that visual feedback did 

not alter BMI classifier accuracy shows that congruency per se cannot account for 

changes in BMI performance.  
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Figure 5. Performance of BMI classifier as a function of sensory feedback. The left panels 
(A, B, C) show the modulation in time of the performance of the BMI classifier for the 4 types of 
movements indicated for the cued movement (filled line) and the opposite (dashed line), as a 
function of feedback (i.e. black dots indicate time points with significant difference). The right 
panels show the area under the curve taken as an index of global performance of the BMI. The 
performance of the BMI classifier does vary not as a function of visual feedback (Experiment 1, 
A), but it is significantly better when somatosensory feedback is congruent both in Experiment 2 
(B) and in Experiment 3 (C). 

 

 

In order to better understand how somatosensory feedback affected the accuracy of the 

BMI classifier, we analyzed time point by time point changes in multiunit activity for the 

whole array. We computed the average Euclidean distance between firing patterns of 

trials with a given cued movement and either congruent or incongruent somatosensory 

feedback. For a given cued movement (e.g., movement hand open) at congruent 
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feedback (hand open), we computed its distance either with the same movement (cued: 

hand open) at incongruent feedback (hand close) or with the opposite movement (hand 

close), at its relative incongruent feedback (hand open). This way, we compared cases 

with the same motor intention, but opposite sensory feedback, and trials with the 

opposite motor intention, but the same sensory feedback. As shown in Figure 6, trials 

from Experiment 2 with opposite somatosensory feedback, but the same motor 

intention, diverge after sensory feedback, whereas trials with opposite motor intention, 

but the same sensory feedback, seem to even converge slightly with respect to 

baseline. This shows that M1 activity after feedback reflects the movement implemented 

via NMES more than the intended movement, thus explaining the modulation of 

somatosensory feedback in BMI proficiency (see Figure 6B). As a control, we also 

analyzed trials with opposite motor intention and congruent somatosensory feedback. 

We found the activity patterns to differ only slightly with respect to trials with same 

somatosensory feedback, but opposite motor intention, further showing that 

somatosensory feedback is prevailing over motor intention after movement onset. In the 

case of visual feedback (Experiment 1), instead, there was no divergence of activity 

patterns after the feedback, while trails with different motor intention clearly diverged 

before the movement onset (see Figure 6A).  
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gure 6. Somatosensory feedback changes firing rates of M1 neurons. A-B. Euclidean distance in 

time between trials with same motor intention and opposite feedback (red), same feedback and opposite 

intention (blue), or opposite congruent feedback and intention (green), for experiment 1 (A) and 2 (B). In 

Experiment 1, neural activity diverged as a function of motor intention before the movement, as shown by 

the increase in Euclidean distances between the green and blue curves. In Experiment 2, neural activity 

diverged as function of sensory feedback after NMES activation. C-D. Multidimensional scaling of neural 

activity before (-650/150 ms; C) and after (0/500 ms; D) sensory feedback. The plots show a 2D 

dimensionality reduction of population activity in the target period, in order to represent it on a plane. As in 

a principal component analysis, Dimensions 1 and 2 can be seen as the two abstract coordinates 

explaining most variance in the data. Movements are separated by classes of hand (open/close; right) 

and thumb (extension / flection; left) movements.   

 
 

In order to better display the effect of somatosensory feedback on M1 activity for each 

type of movements, we computed a 2D multidimensional scaling of neural activity as a 

function of intended movement and congruency of somatosensory feedback. This 

technique aims at representing the high dimensional spatio-temporal pattern of neural 

activity in 2D plane, while maximising the fraction of retained variance. As shown in 

Figure 6C, both for hand (opening/closing) and thumb (flection/extension) movements, 

before sensory feedback (in the window between -650 and -150 ms before sensory 

feedback onset), M1 neural activity is clustered solely as a function of the intended 

movement. After somatosensory feedback (between 0 and 600 ms from sensory 

feedback onset, Figure 6D), trials with congruent somatosensory feedback and a given 

intended movement are clustered more with trials coding for the opposite movement, 

but receiving the same sensory feedback rather than with trials coding for the same 

movement. 

No prior study in humans and only few studies in monkeys directly tested the effects of 

sensory feedback on BMI performance21,25. Here we show, for the first time, an effect of 

feedback congruency on BMI performance, and the underlying role of M1 in this 

process. Our findings indicate that the recorded M1 units processed motor signals for 

the trained BMI actions, for sensory and sensory-motor signals reflecting the type and 

congruency of the sensory feedback. Importantly, these processes were found to 

change across time, as a function of the sensory feedback provided. In particular, our 

results show that, after somatosensory feedback, the pattern of neural activity from M1 
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reflected more closely the type of movement realized by the NMES (i.e., the pattern of 

somatosensory feedback) rather than the intended and decoded movement. This re-

writing of the encoded M1 movement as a function of the NMES-implemented 

movement directly relates to the improvement of BMI efficiency based on congruent 

somatosensory feedback that we observed and was absent in visual feedback trials.  

This effect might be mediated by mutual connections between the primary motor and 

the primary somatosensory cortices, which have been extensively documented in non-

humans primates26 and in humans27. In addition, this effect might also depend on direct 

somatosensory inputs reaching M1 neurons likely from the dorsal columns via the 

ventrolateral thalamic nucleus28. This is an important finding, considering that original 

BMI approaches for severely motor-impaired patients generally provide visual feedback 

only5,29 or somatosensory feedback by directly stimulating primary somatosensory 

cortex30–32 (see 31 for a review). Although from a single tetraplegic participant, the 

present data show that non-invasive somatosensory feedback via NMES not only 

enables higher subjective feeling of being in control (agency and confidence), but also 

leads to better actual control of the patient’s BMI actions.  

 

Agency covaries with BMI classifier. We finally investigated whether agency has an 

impact on BMI efficiency and thus tested whether the sense of agency covaried with 

BMI classifier accuracy. We found that trials with agency versus trials without agency 

were associated with higher classifier accuracy. However, this was only the case when 

somatosensory (Experiment 2; F(1,239=4.23; p<.05), but not visual feedback was 

modulated (Experiment 1; p=.14), as also confirmed from analysis of data from 

Experiment 3 (F(1,441=6.94; p<.001). In addition, there was a significant correlation 

across all three experiments between BMI classifier accuracy and confidence (Q2, 

F=46.95; p<.001; r2=.10; See Supplementary Table 1 for multiple regression analyses). 

Thus, agency and confidence were both directly related to the performance of the 

present BMI system, but only when somatosensory feedback was involved. In order to 

confirm the role of agency on BMI performance, while controlling for other potential 

factors, we compared the BMI performance between trials in which the BMI user 

reported high and low agency, within conditions at equivalent sensory feedback, that is 
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V-/S+ and V+/S- from Experiment 3 (which resulted in a balanced and sufficient 

numbers of trials with “Yes” and “No” responses to Q1). As shown in Figure 7, BMI 

accuracy varied as a function of subjective agency judgments, in conditions of 

equivalent sensory feedback. BMI accuracy was significantly higher in trials with high 

agency as compared to trials with low agency from 300 ms in the V-/S+ condition. The 

same pattern is visible in the V-/S+ condition, although the comparison was not 

significant (i.e. did not survive to correction for multiple comparisons). The same 

analysis run on confidence ratings (by sorting high and low confidence ratings by means 

of a median split) did not show any significant difference in BMI accuracy due to 

confidence at equivalent conditions of sensory feedback (see Supplementary material, 

Figure S6). These results suggest that the sense of agency, and not confidence (see 

supplementary Table 1 for further analyses), has an effect on BMI accuracy beyond the 

prominent role of sensory feedback, and impacts BMI accuracy at a later time point. 

Since agency judgments and confidence ratings reflect two different processes of 

subjective experience, the present data suggest that pre-reflexive, rather than post-

decisional agency components more strongly affect the proficiency of a BMI decoder in 

M1.  

 

 

Figure 7. BMI accuracy in time as a function of sense of agency. Blue/red curves represent 
the BMI classifier output for the cued movement as a function of agency judgements (Q1: 
1=high agency; 0=low agency) in conditions of equal sensory feedback.  
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Discussion 

By combining techniques from neurophysiology, neuroengineering, and VR with 

psychophysics of agency, we were able to study for the first time the sense of agency 

for actions enabled by a BMI-based neuroprosthesis and found that congruent sensory 

feedback boosted agency and confidence when controlling BMI actions. Moreover, we 

showed that human M1 processes not only motor and sensory information, but also 

different levels of congruency between sensory and motor signals and the resulting 

sense of agency. The present data are also of clinical relevance, because our NMES-

based BMI approach, by providing congruent somatosensory feedback (without direct 

S1 stimulation) to a tetraplegic patient, improved the ability of the BMI classifier in 

decoding the patient’s motor commands. Interestingly, such higher BMI proficiency was 

associated with a stronger sense of agency, suggesting that, beyond supporting close-

loop systems and M1 feedback in general, somatosensory feedback and signals related 

to subjective aspects of motor control (i.e. agency) are important input for improving 

BMI proficiency. Quantifying subjective action-related mental states and including 

controlled motor and sensory feedback may therefore provide new levels of comfort and 

personalization and should be considered for the design of future BMIs. 

 

The present data demonstrate that M1 activity contains information specifically linked to 

subjective aspects of motor control, in particular the sense of agency and confidence 

that our participant associated with his BMI actions. It is known that agency likely 

involves a network of multiple brain areas from which we did not record in the present 

study (e.g., posterior parietal cortex33 and angular gyrus; anterior insula34,35; 

supplementary motor cortex36; premotor cortex37; for reviews see 3,38). However, our 

findings – even if coming from a single tetraplegic patient - directly demonstrate that M1 

activity contains sufficient information to decode actions for which a human participant 

feels to be in control.  

The present BMI findings extend previous research that investigated the sense of 

agency for non-invasive BCI, as based on scalp electroencephalography (EEG). They 

add important new information about the underlying neural underpinnings based on M1 

multiunit activity of the sense of agency in humans. In line with a prominent line of 

research on the role of visuo-motor (and visuo-tactile) cues in boosting or modulating 
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body ownership for artificial and real limbs39–41, previous BCI studies demonstrated that 

coherent visual feedback results in higher sense of agency for BCI actions14. This effect 

is associated with stronger activations in a cortical-subcortical network, recruited during 

motor imagery used to control the BCI. This network consisted of regions in the 

posterior parietal cortex, the insula, lateral occipital cortex and the basal ganglia13. A 

recent study10 further demonstrated that a stronger sense of agency for BCI-mediated 

actions is associated with stronger activity in sensorimotor areas during motor imagery 

based BCI (however, not for BCI using different signals), compatible with a link between 

sensorimotor activity and the associated sense of agency in humans. The present data 

on the sense of agency when using an intracortical BMI, although from a single, highly 

proficient BMI user (see below), demonstrate that this relationship can be tracked down 

even at the level of multi-unit activity from M1 neurons, and it is further associated with 

higher BMI proficiency.  

Moreover, the present findings offer a mechanistic explanation for the relationship 

between sensorimotor activity, sensory feedback and the resulting sense of agency, by 

showing that M1 activity before movement execution codes for the intended movement, 

while activity after movement execution encodes the sensory feedback associated with 

the implemented movement. By showing that somatosensory feedback in particular 

affects the performance of the BMI classifier, these analyses further provide novel 

insights into the sensorimotor mechanisms of BMI proficiency. Note that this last finding 

was possible only due to the combination of a SCI lesion and an NMES-based BMI, 

which allowed us manipulating not only visual reproductions of body movements (via 

VR, as in previous studies), but also physical movements of the real body (via NMES). 

In order to highlight the dynamic, multiscale brain mechanisms underlying the sense of 

agency in humans, future studies should combine insights that can be gained from 

invasive BMI - with ultra-high spatial resolution, but limited coverage in a handful of 

subjects – and non-invasive BCI – with limited resolution, but recording from the entire 

brain in larger subject samples.  

  

 
  

Finally, our results are important not just for the field of neuroprosthetics and its clinical 

goals, but also for basic neuroscience as well as current ethical and legal debates about 
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the subjective sense of agency and responsibility when applying neurotechnology 

solutions for human repair or enhancement38,42,43. 

 

Limitations of the study 

Because of the uniqueness of the present experimental setup, generalizations from the 

present findings to the general population should be done carefully. First, we tested a 

single participant, who is an extremely trained BMI user, who could have thus 

developed extraordinary capacity of controlling his BMI system. This could have in turn 

impacted the associated sense of agency and the discovered links with BMI proficiency. 

Second, in order to enable movements of his upper limb, we used an NMES system 

that provides a series of somatosensory cues, which are only partially comparable to 

those associated with natural movements. For example, the intensity and temporal 

activation of cutaneous stimulation, as well as of motor fibers (antidromic) differs from 

sensorimotor stimulation during normal movement. We also note that although our 

participant suffered severe somatosensory loss (following damage at the C5-C6 level), 

he may have “learned” to associate some of the patterns of cutaneous sensations with 

the specific type of NMES stimulation used to enable specific movements. Indeed, in 

some circumstances, beyond the experimental sessions, he was able to identify a type 

of movement implemented via NMES even without seeing his arm. Finally, given the 

chronic spinal cord lesion suffered by our participant, we cannot exclude that changes 

related to sensory or motor plasticity have occurred in M1, S1, or the functional and 

anatomical connections between the two. In general, there is still no consensus about 

plasticity following SCI, with some evidence of preserved network organization, and 

some possible changes in grey matter density44,45 or activation in the sensorimotor 

cortices46. Although important improvements in upper limb function have been 

documented in this participant following his extensive usage of the NMES-BMI system 

and concurrent rehabilitation47, there are no available data about plasticity in his 

sensorimotor cortices.   
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Materials and Methods   

Participant 

The participant in this study was enrolled in a pilot clinical trial (NCT01997125, Date: 

November 22, 2013) of a custom neural bridging system (Battelle Memorial Institute) to 

reanimate paralyzed upper limbs after C4-6 spinal cord injury. The system consisted of 

a Neuroport data acquisition system (Blackrock Micro, Salt Lake, Utah), custom signal 

processing and decoding algorithms (Battelle), and a NeuroLife Neuromuscular 

Stimulation System (Battelle). The trial received investigational device exemption (IDE) 

approval by the US Food and Drug Administration and Institutional Review Board 

approval through the Ohio State University (Columbus, Ohio). The study conformed to 

institutional research requirements for the conduct of human subjects. The site of the 

experiments was the Ohio State University NeuroRehabLab (Bockbrader, PI) and data 

was analyzed at Ohio State (Columbus, Ohio) and École polytechnique fédérale de 

Lausanne (EPFL, Switzerland). The participant provided informed consent at the time of 

enrollment and also provided written permission for photographs and videos. 

The study participant was a 22 year-old male at the time of study enrollment. He had 

complete C5 ASIA A, non-spastic tetraparesis from cervical spinal cord injury 

associated with a diving accident 3 years prior. On neurological exam, he had full motor 

function bilaterally for C5 level muscles (e.g., biceps and shoulder girdle muscles), but 

no motor function below the C6 level. He had 1/5 strength on the right and 2/5 strength 

on the left for wrist extension (C6 level) on manual muscle testing. His sensory level 

was C6 on the left and C5 on the right, although he had sensation for pressure on his 

right thumb. He had preserved proprioception for shoulder, elbow and wrist joint 

position, but was at chance level for distinguishing digit joint positions 

(flexion/neutral/extension) for the thumb and fingers. He had mild finger flexor 

contractures bilaterally, limiting finger extension at the proximal and distal 

interphalangeal joints of digits 2-5. 

He was implanted with a 4.4 x 4.2mm intracortical silicon Neuroport microelectrode 

array (Blackrock Microsystems) in the dominant hand/arm area of his motor cortex on 

4/22/2014, as previously described6. The implant site was determined by preoperative 

functional neuroimaging obtained while the participant visualized movements of his right 
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hand and forearm. He began using cortically-controlled transcutaneous neuromuscular 

electrical stimulation (NMES) on his right forearm on 5/23/14, participating in sessions 

to practice device use for up to 3.5 hrs/day and 3 days/week. In 7/2015, his practice 

with the device was reduced to 2 days/week. Data for this study was collected over 13 

sessions (45 hours) from 11/16/2016 - 2/20/2017, corresponding to post-implant days 

939-1035. One session with visual and NMES feedback was used for practice (5 blocks 

of 32 trials on post-implant day 939). At the time of data collection, the participant was 

an expert brain-machine interface (BMI) user with over 800 hours of study participation.  

Of note, the participant underwent cognitive testing of attention, memory and processing 

ability (without the BMI) approximately one year after Utah array implantation (January – 

July, 2015). He scored in the gifted range with superior verbal abilities, attention, and 

working memory (ranging between 92nd - 99th percentile for his age), and no significant 

differences between auditory or visual memory. However, his processing speed and 

performance scores were significantly affected by his upper limb impairment (ranging 

between 27th – 39th percentile for his age).  

  

Cortical Signal Acquisition And Classification 

Neural data (96 channels) were acquired from the left motor cortex Utah array through 

the Neuroport data acquisition system (Blackrock Micro). Raw data were processed 

using analog hardware with 0.3Hz 1st order high-pass and 7.5kHz 3rd order Butterworth 

low-pass filters, then digitized at 30,000 Hz. Data were divided into 100ms bins and 

passed into Matlab (version 2014b), where signal artifact was removed by blanking over 

3.5ms around artifacts (defined as signal amplitude >500μV at the same time on 4 of 12 

randomly-selected channels). Signals were decomposed into mean wavelet power 

(MWP) using the ‘db4’ wavelet over 100ms48.  Coefficients within the multiunit frequency 

bands (234–3,750Hz, coeficients of scales 3, 4, 5, 6) were averaged across the 100ms 

window and normalized by channel (by subtracting the mean and dividing by the 

standard deviation of each channel and scale, respectively). Normallized coefficients for 

each channel were averaged across scales 3-6, creating 96 MWP values (one for each 

channel) per each 100ms. MWP values were fed as features into a real-time, nonlinear 

support vector machine (SVM) classifier49 with five classes (hand open, hand closed, 
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thumb extension, thumb flexion, and rest). Classifier activation values were computed 

for each 100ms bin and ranged from -1 to 1. Classifier output represented the 

movement pattern (hand open, hand closed, thumb extension, thumb flexion) with the 

highest activation greater than threshold (zero). If no movement classes had activation 

greater than zero, the classifier was in the “rest” state. If multiple output classes 

exceeded threshold, only the one with the highest score was used to provide feedback. 

Signal quality was stable50 during the interval of data collection; but represented about a 

30% decline in MWP normalized to post-implant 8751. (See below for single unit 

statistics.) Average impedance was approximately 200 kΩ, a decline of 40% of its initial 

value. Average signal-to-noise was approximately 17.5dB, a decrease of about 10% of 

its initial value52. Most of the decline in signal quality occurred in the first 400 days post-

implantation.  

 

Classifier Training And Neurally Controlled Hand Movements 

Before each session, the SVM classifier was trained in an adaptive manner over 5 

blocks. Each block consisted of 3 repetitions of 4 movements (hand open, hand closed, 

thumb extension, thumb flexion) presented in a random order. Movements were cued 

for 3-4s (4-5s inter-cue interval) using a small, animated hand in the corner of the video 

display. Feedback was given with both NMES and the feedback hand on the video 

screen. During the first training block, scripted feedback was provided simultaneously 

with the cued movements. In subsequent blocks, appropriate movements were 

activated when an output class for a given movement exceeded threshold (>0).  

Training took approximately 10-15 minutes per session. 

 

Neuromuscular Electrical Stimulation  

The NMES system was used to evoke hand and finger movements by stimulating 

forearm muscles. The system consisted of a multi-channel stimulator and a flexible, 

130-electrode, circumferential forearm cuff. Coated copper electrodes with hydrogel 

interfaces (Axelgaard, Fallbrook, CA) were 12mm in diameter, spaced at regular 

intervals in an array (22mm longitudinally X 15mm transversely), and delivered current 

in monophasic, rectangular pulses at 50Hz (pulse width 500μs, amplitude 0-20mA). 
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Desired hand/finger movements were calibrated at the beginning of each session by 

determining/confirming the intensity and pattern of electrodes required to stimulate 

intended movements. This took 5-10 minutes per session.  

During the experiment, the participant’s view of NMES-evoked movements was 

obscured from view by the video display. During Experiment 1, non-informative NMES 

feedback was given (current at an intensity equivalent to what was used for movement 

calibration patterns, but that did not evoke movement). During Experiments 2 and 3, 

NMES feedback was provided that evoked hand and finger movements. 

 

Virtual Reality Animation 

A non-immersive virtual reality system (i.e. without a head-mounted display or head-

tracking) was used to provide visual feedback. This was done in order to adopt a 

previous setup that the participant was already familiar with to the present experiments 

and also facilitated the calibration procedure to train the BMI classifier. A physics-based 

animated hand was used to provide visual feedback of classifier activation. During 

training, two animated hands were displayed, a small cue hand at the bottom left and a 

larger centrally-placed feedback hand (Figure 1 main text). During the experiment, the 

display was oriented over the participant’s forearm, a single, centrally-placed feedback 

hand was displayed to match the size and location of the participant’s right hand (the 

cue hand was not displayed). During Experiments 1 and 3, feedback was provided 

using the virtual hand. During Experiment 2, non-informative visual feedback was given 

(the feedback hand remained in a neutral, rest position). 

 

Feedback Congruency 

In half of the trials across Experiments, the visual and/or somatosensory feedback was 

covertly manipulated to be incongruent with the cue. In incongruent trials, when the 

participant correctly activated the classifier associated with the cue, he received 

feedback opposite to the cue (i.e., hand closed for “hand open”, thumb extension for 

“thumb flex”, etc.).  In congruent trials, he received feedback consistent with the cue 

(i.e., hand open for “hand open”, thumb flexion for “thumb flex”, etc.). 
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Agency Assessment 

All experimental trials began with a verbal cue (“hand open”, “hand closed”, “thumb 

extend”, “thumb flex”), followed by a 2 second delay, then a verbal cue (“go”). During 

the next 4s, the participant was given feedback based on classifier activation levels, and 

then was told to “stop”). Over the next 5-5.5s, the participant reported whether he felt in 

control of the movement (“yes” or “no”) and his degree of certainty (0-100). The next 

trial began at the end of this 5-5.5s interval. There were 32 trials per block in 

Experiments 1 and 2 and 26 trials per block in Experiment 3.  

 

Trial Selection and Time-locking 

To ensure that the participant is succesfully activating the classifier for the cued 

movement, and the signal can be meaningfully time-locked to movement onset, we 

applied the following selection criteria on the trials. We consider it as a correct imagined 

movement when the participant is able to maintain the classifier of the cued movement 

above the threshold for at least 600 ms (6 classifier output bins). We retain trials in 

which at least one correct movement happens between the GO cue and 1.5 seconds 

before the STOP cue. Epochs are then constructed by time-locking every trial with 

respect to the onset of such imagined movements. In case several correct movements 

occurred during the same trial, the time-locking is relative to the first movement. 

Furthermore, we excluded 128 trials from the session on which the participant 

systematically reported problems with controlling the BMI system and absent subjective 

agency. Globally, we retained 846 out of 1408 trials (60%). 

Note that, since we define the onset as the beginning of the 100 ms bin of neural activity 

that is fed to the classifier, and around 50 ms are required to compute the output, the 

corresponding feedback is received about 150 ms after the onset of the imagined 

movement. 

 

Experiment 1: Agency Assessment with Virtual Hand Feedback and Non-

informative NMES 

Twelve blocks of 32 trials were collected on post-implant days 953 (4 blocks), 988 (4 

blocks), and 1035 (4 blocks). In each trial, the participant received a verbal cue to 

perform a movement (“hand open”, “hand closed”, “thumb extend”, “thumb flex”). When 
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a classifier crossed threshold during the 4 second feedback window, feedback was 

given by showing movement of the virtual hand and by activating non-informative NMES 

(radial wrist electrode activation that did not elicit movement, did not vary from trial to 

trial, and that the participant could feel and distinguish from real NMES feedback). 

Feedback on half of the trials was randomly selected to be incongruent with the cue. His 

subjective sense of agency and level of certainty were recorded for each trial.  

A total of 384 trials were collected across three days. After removing trials where the 

cued action could not be correctly decoded and the session on post-implant day 1035 

(see trial selection paragraph), 83 congruent and 72 incongruent trials remained for 

behavioral and neural activity analysis. 

 

Experiment 2: Agency Assessment with NMES Feedback and Non-informative 

Virtual Hand 

Twelve blocks of 32 trials were collected on post-implant days 941 (5 blocks), 960 (3 

blocks), and 967 (4 blocks). In each trial, the participant received a verbal cue to 

perform a movement (“hand open”, “hand closed”, “thumb extend”, “thumb flex”). When 

a classifier crossed threshold during the 4 second feedback window, feedback was 

given by activating movement of the participant’s hand and wrist through NMES and 

showing non-informative visual feedback (non-moving hand). The participant could not 

see his own hand/wrist, but could distinguish his hand state based what the stimulation 

patterns felt like to him. Feedback on half of the trials was randomly selected to be 

incongruent with the cue. His subjective sense of agency and level of certainty were 

recorded for each trial.  

A total of 384 trials were collected across three days. After removing trials where the 

participant did not respond correctly by activating the classifier associated with the cue, 

154 congruent and 89 incongruent trials remained for behavioral and neural activity 

analysis. 

 

Experiment 3: Agency Assessment with Virtual Hand and NMES Feedback 

Twenty blocks of 32 trials were collected on post-implant days 993 (3 blocks), 990 (5 

blocks), 1007 (4 blocks), 1014 (3 blocks), and 1021 (5 blocks).  In each trial, the 

participant received a verbal cue to perform a movement (“hand open”, “hand closed”, 
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“thumb extend”, “thumb flex”). When a classifier crossed threshold during the 4 second 

feedback window, feedback was given by activating movement of the participant’s hand 

and wrist through NMES and showing movement of the virtual hand. The participant 

could not see his own hand/wrist, but could distinguish his hand state based what the 

stimulation patterns felt like to him. Congruency with respect to the cue was 

manipulated independently in the visual and somatosensory modalities such that 25% 

of the trials were each: congruent for both visual and NMES feedback, incongruent for 

both visual and NMES feedback, congruent for visual but incongruent for NMES 

feedback, congruent for NMES but incongruent for visual feedback. His subjective 

sense of agency and level of certainty were recorded for each trial.  

A total of 520 trials were collected across five days. After removing trials where the 

participant did not respond correctly by activating the classifier associated with the cue, 

the number of trials that remained for behavioral and neural activity analysis were: 117 

congruent for both visual and NMES feedback, 103 incongruent for both visual and 

NMES feedback, 101 congruent for visual and incongruent for NMES feedback, and 

127 congruent for NMES and incongruent for visual feedback. 

 

Firing Rate Calculation and Single Unit Analyses 

Single units were identified through offline data processing. For each block, raw voltage 

recordings at each channel were processed in a series of steps. First, FES stimulation 

artifact was removed using a 500μV threshold and 3.5ms artifact removal time window. 

The removed window was replaced with an interpolated segment to retain temporal 

information. Then, the raw signal with FES artifact removed was processed with a 300-

3000Hz bandpass filter. The filtered data was fed into an automated spike detection and 

sorting algorithm, wave_clus53 using the default optimization settings. A threshold was 

set to four times the standard deviation of the noise and used to detect spike locations. 

A wavelet decomposition was performed on the spikes to extract features and a 

superparamagnetic clustering algorithm was used to cluster the spikes into groups, 

representative of individual single units. The superparamagnetic clustering algorithm 

was used to eliminate spikes that were considered noise to ensure only single units 

were analyzed. As spike sorting was not performed before data collection, there was no 

way to match single units across days. Additionally, the number of single units detected 
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at a given channel fluctuated between days, possibly due to micro-movement of the 

array and brain state changes. For this reason, all single units detected at a given 

channel were considered the same, and pooled at the single channel level as multiunit 

activity in subsequent analysis. 

 

Offline neural decoding 

Sensory feedback congruency and subjective ratings (Q1 and Q2) were decoded offline 

both from LFPs and from multiunit activity. For LFP analysis, the signal amplitude for 

each channel was downsampled to 500 Hz, band-passed between 0.1 and 12 Hz with 

an IIR filter, and smoothed using sliding averaging windows of 250 ms. Following 

multiunit spike times calculation (see above), multiunit firing rate was estimated at 20 Hz 

over a 250 ms sliding window.  

We fed each channel’s signal amplitude (LFP) or firing rate (multiunit) as predictors to a 

penalized linear decoder based on ridge regressions54. A separate model was trained to 

decode congruency (Q1) or confidence (Q2) on each signal timepoint, with a sampling 

rate of 20 and 500 Hz for multiunit and LFPs respectively. Decoding performance was 

evaluated by computing and averaging Cohen’s k (logistic regression; Q1) or R2 (linear 

regression; Q2) values over 10 independent 10-fold cross validation runs. The 

regression was performed through the “train” function of the R “caret” package55. To 

evaluate the statistical significance of the decoding, we generated a null decoding 

performance distribution by applying the same decoding methods on the data after 

randomly shuffling Q1 and Q2 values. 1000 permutations were generated, and the 

decoding performance was evaluated for each of them. Then, a t-value was assigned to 

every time-point both in real and permuted data, by comparing its decoding 

performance to the null distribution of permuted data. Finally, the t-values were used to 

define significant decoding time windows based on a cluster-based permutation test on 

each epoch’s largest cluster56. After checking that the t-value threshold used to define 

clusters was not significantly affecting the results, its value was set at 2. 

 

Computation of distance between neural activity patterns 
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Since the neural activity recorded by the microelectrode array can change significantly 

between experimental sessions (i.e. days of recording) spanned by our analysis, 

Euclidean distances per each pair of conditions were computed separately within each 

day of recording and then averaged to obtain the final results. Confidence intervals were 

obtained through a bootstrapping technique, again applied within sessions. For each 

session and condition, we extracted n random trials with replacement, where n is the 

number of trials for that condition/session, and the final Euclidean distance was 

obtained by averaging across sessions as described above. The procedure was 

repeated 100 times, and 95 % confidence intervals were obtained as 1.96 times the 

standard deviation of the surrogated distribution obtained as explained here.  

 

Multidimensional scaling 

In order to graphically represent the spatio-temporal patterns of neural activity, we 

performed a multidimensional scaling (MATLAB function mds) on correlation distances 

computed between spatio-temporal patterns of neural activity. Also in this case, to avoid 

including sources of variances due to the change in signal between experimental 

sessions, the procedure was run within experimental sessions. In order to obtain 

correlation distances between trials we started by concatenating, for each trial, data 

from all channels and timepoints within the selected temporal window. Then, we 

computed the correlation coefficient of the resulting vector with the equivalent vector 

from all other trials within the same session, and subtraced the obtained values to 1 to 

obtain values of the correlation distance. The first two dimensions of the 

multidimensional scaling were then aligned across sessions via the Procrustes analysis 

(MATLAB function Procrustes), using the means by conditions (combinations of 

movement/somatosensory feedback) in the first session as a reference.  
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Supplementary Materials 

Supplementary Text 

Fig. S1. Contribution of individual channels to neural decoding. 

Fig. S2. Agency and congruency decoding. 

Fig. S3. Visual feedback in individual channels. 

Fig. S4. Somatosensory feedback in individual channels. 

Fig. S5. Sense of agency in individual channels. 

Fig. S6. Effect of confidence on BMI accuracy at condition of same sensory feedback 

Supplementary Table 1 
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Supplementary Text 

Whole Sample Results 
To ensure that our trial selection criteria is not biasing the behavioral results on reported agency 
and confidence, we run the same analyses as in the main text on the whole sample of 1408 
trials. In this sample, we still exclude 128 trials from session of post-implant day 1035 (see trial-
selection paragraph). All results go in the same direction as in the main text, therefore we 
succinctly report them without further discussion. 
In Experiment 1, Q1 and Q2 are significantly higher in the congruent condition p < 0.001 and 
p=0.003 respectively. In Experiment 2, Q1 and Q2 are significantly higher in the congruent 
condition p < 0.001 and p<0.001 respectively. In experiment 3, when contrasting Vis. 
congruent/NMES incongruent and Vis. incongruent/NMES congruent, we found Q1 and Q2 to 
be higher in the Vis. incongruent/NMES congruent condition (P=0.009 and p=0.02 respectively). 
 
Sensory congruency and agency at the level of single channels.  
We analysed whether sensory feedback and agency was more specifically processed in any of 
the 96 channels from the M1 implant. To this aim, we firstly identified the channels where the 
decoder’s coefficients for MU activity more strongly and significantly contributed to the decoding 
of the of visual and somatosensory congruency (see Figure S1). Two of the 6 significant 
channels for visual and somatosensory feedback overlapped (channels 80 and 76 in figure S1). 
Sense of agency was more strongly decoded from 7 channels, two of them overlapping with 
both visual and somatosensory congruency decoding (channels 80 and 76), and 3 others with 
somatosensory congruency decoding only, confirming the stronger interdependency between 
somatosensory signals of agency judgments. All these electrodes were mainly located in the 
rostral part of the array. Interestingly, the electrodes more strongly decoding sensory 
congruency and agency were clearly dissociated from those more strongly decoding for the 
intended BMI action, since the spatial distributions of the decoder coefficients for the type of 
intended movements highlighted significant electrodes in the caudal part of array, not 
overlapping with sensory congruency nor agency electrodes (e.g., channels 17 and 67 in figure 
S1). Thus, M1 activity, also at the single channels level, codes not only for type of movement, 
but also for the congruency between selected movement and sensory feedback, and the 
associated sense of agency. Despite stronger contribution from specific electrodes, additional 
analysis suggests that both sensory congruency and agency are more likely to be encoded at 
the population level as the power of the decoder in classifying congruent vs. incongruent 
movements or high vs. low agency actions was higher at the population level than at any of the 
best 20 channels (see Figure S2).  
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Fig. S1. 

Contribution of individual channels to neural decoding. In the top panel we show a map of individual 
channels that contributed most to decoding visual congruency, somatosensory congruency, agency and 
movement type (going left to right and then top to bottom). To isolate the role of visual and 
somatosensory modalities in feedback congruency, while minimizing the signal variability between 
sessions, we trained another ridge regression based decoder on experiment 3, so that we can compare 
the two modalities in the same set of trials. For visual congruency, we trained the decoder on trials with 
congruent somatosensory feedback, by contrasting congruent and incongruent visual feedback. For 
visual congruency, we contrasted congruent and incongruent somatosensory feedback in trials with 
congruent visual feedback. For movement, to maintain a 2 class decoding schema, we contrasted 
extension movement (hand open, thumb extension) and flexion movements (hand close, thumb flexion), 
in trials with congruent visual and somatosensory feedback. To evaluate the contribution of each channel 
we compared its coefficient in the Ridge regression in a 1 second window starting at movement onset 
(where decoding of all features is significant), with the distribution of coefficients over all the 96 channels 
on a 1 second window preceding movement onset, used as a null distribution. T-values are extracted and 
thresholded at 2. Then, their absolute value is color-coded and displayed on the array grid. Note that this 
method aims at setting a cut-off on each channel’s contribution to the neural decoding, for easier 
visualization, not at providing a statistically rigorous estimate of decoding significance. In the lower panel 
we show exemplary channels’ response to different conditions. In the two columns on the left we show 
the response of “congruency coding” channels 76 and 80. In the two columns on the right the same is 
done for “movement coding” channels 17 and 67. Going from the top to the bottom row, we contrast 
visual and somatosensory congruencies, positive and negative agency ratings, and the four different 
movements. After movement onset, the two congruency coding channels clearly differentiate feedback 
congruency and agency, but show no big difference with respect to the movement. Conversely, two 
movement coding channels show large differences with respect to the movement even prior to movement 
onset, suggesting motor intention coding, but no modulation from feedback congruency or agency.  
Shaded areas indicate standard errors, and black dots indicate significant differences after FDR 
correction (only where two conditions are contrasted). 
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Fig. S2. 

Agency and congruency decoding. Comparison between multivariate and single-channel decoding, for 
Agency, somatosensory and visual congruency (from left to right). Red lines represent cross-validated 
Cohen’s K values for the multivariate Ridge regression presented in the main text. Black lines represent 
Cohen’s K of univaried decoding based on the 20 channels giving the highest mean K value. Note that, to 
be more conservative, the single channel decoding is not cross-validated, and therefore its performance 
is slightly overestimated. For the same reason, chance level is higher than 0 and pre-movement decoding 
is slightly above 0 in the univariate case. Nevertheless, multivariate decoding is greatly outperforming 
univariate decoding in the case of agency and somatosensory congruency, and only slightly better in the 
case of visual congruency.  
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Fig. S3.  

Visual feedback in individual channels. Time-locked multiunit response of individual channels contrasting 
visual congruent and visual incongruent feedback in Experiment 1. The black lines indicate significantly 
different responses between the two conditions (FDR corrected across timepoints), and subplots with red 
titles indicate channels with at least one significant timepoint. 
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Fig. S4 
Somatosensory feedback in individual channels. Time-locked multiunit response of individual channels 
contrasting somatosensory congruent and somatosensory incongruent feedback in Experiment 2. The 
black lines indicate significantly different responses between the two conditions (FDR corrected across 
timepoints), and subplots with red titles indicate channels with at least one significant timepoint.
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Fig. S5 
Sense of agency in individual channels. Time-locked multiunit response of individual channels contrasting 
positive and negative sense of agency in all experiments. The black lines indicate significantly different 
responses between the two conditions (FDR corrected across timepoints), and subplots with red titles 
indicate channels with at least one significant timepoint. 
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Fig. S6.  Effect of confidence on BMI accuracy at fixed feedback. Output of the BMI classifier as a 
function of Q2 ratings.at fixed sensory feedback (left, V-/S+; right. V+/S-). Blue/red curves represent 
average values of the BMI classifier output for the cued movement when Q2 ratings were lower/higher 
than the median rating. 
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Supplementary Table 1. Sense  of  agency covaries  with  the  BMI  classifier. Multiple  regression 
coefficients  predicting  agency  scores,  while  regressing  out  the  effects  of  sensory feedback and 
movement type. In order to test the role of agency on BMI performance, 140while controlling for other 
potential factors, we modelled classifier performance based on a multiple regression including agency, 
confidence, feedback type, feedback congruency, and  movement  type  as  regressors  (Table  1  and  
see  supplemental  information). The results show that for all the three experiments confidence covaried 
significantly with the performance  of  the  classifier  (p<.01;  <.01;  and  <.05,  respectively),  even  when  
the 145variability explained by the other factors was taken into account. As expected from the previous 
analyses, the congruency of the somatosensory (p<.001), but not of the visual (p=.47), feedback 
predicted the classifier’s accuracy. Classifier performance also varied as a function of movement type (all 
p-values<.01). These findings show that movements with higher sense of agency and confidence are 
associated with higher BMI proficiency, 150suggesting  that  subjective  feelings  associated  to  the  
control  of  a  BMI-based neuroprosthesis  is  an  important  element  to  take  into  account  to  improve  
their effectiveness 
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Abstract 

The sense of agency, the subjective experience of self-generation that arises when our actions 

match our intentions, is a crucial component of self-awareness, and of the development of causal 

reasoning. We investigated its neural bases in a tetraplegic individual who is a proficient user of an 

intracranial brain machine interface. His motor commands were recorded from the primary motor 

cortex, decoded, and translated into functional hand movements through a neuromuscular electrical 

stimulation system. In a first experiment, we coupled neuromuscular stimulation with virtual reality, 

in order to provide both somatosensory and visual feedback. We manipulated the congruency of 

sensory feedback with motor commands, and assessed the participant’s sense of agency via explicit 

judgements. In the second experiment, we developed an adapted version of the Libet task to 

implicitly measure agency. Sense of agency is the result of the integration of afferent and efferent 

information over a broad network of brain regions. Due to the importance of slow neural oscillations 

for long-range communication in the brain, we investigated their effect on sense of agency in our 

setup. We found that the phase (and not the power) of pre-movement mu oscillations (7.5 Hz) 

consistently predicted sense of agency both for explicit judgements and implicit measures. The 

optimal phase for agency was compatible with a facilitation window for spiking activity in the motor 

cortex, but did not affect patterns of population activity. For the first time, we identify a predictive, 

endogenous neural marker of sense of agency, potentially connected to general oscillatory 

mechanisms of information integration in the brain. 

 
  



Introduction 

The sense of agency is the subjective, pre-reflexive feeling of causing and controlling our actions, 

and the consequent events in the external world (Gallagher, 2000). In humans, agency plays a 

central role in the processes of self-recognition and self-identification, grounding the awareness of 

the self as an independent agent in the world (Blanke and Metzinger, 2009; Gallagher, 2000; 

Synofzik et al., 2008). Influential theories posit that the sense of agency arises from the congruency 

between efferent motor commands and afferent sensory feedback. Such congruency may be 

detected by comparing sensory information with predictions based on intended actions and efference 

copies (i.e., predictive evaluation, Frith et al., 2000), or by the post-hoc comparison between 

intended actions and their observed sensory consequences (i.e., postdictive evaluation, Wegner, 

2002). In order to perform such comparisons, the brain must integrate sensory and motor information 

at a large scale, gating the information flow between different functional areas with precise timing. 

Neural oscillations have a key role in orchestrating long-range information integration (Fries, 2015, 

2005), with a crucial role of the pre-stimulus phase at low frequencies in determining subsequent 

perception (Ai and Ro, 2014; Busch et al., 2009), behavioural responses (Landau and Fries, 2012) 

and neural connectivity (Hanslmayr et al., 2013). Here, we hypothesize that neural oscillations are 

also involved in the comparisons between motor prediction and sensory feedback underlying sense 

of agency. In order to address this question, we investigated agency in a tetraplegic individual who 

is a proficient user of an experimental brain machine interface (BMI) for upper limb control. Motor 

commands are decoded from the primary motor cortex (M1) based on signals from a chronically 

implanted microelectrode array, and translated to functional hand movements through a 

neuromuscular electrical stimulation system (NMES). Within this experimental setting, we sought to 

uncover the role of neural oscillations in sense of agency in two ways. First, in Experiment 1, the 

BMI-NMES system was coupled with virtual reality based visual feedback, in order to experimentally 

manipulate the congruency between motor commands and both somatosensory and visual 

feedback. After the participant executed a given motor command (e.g., hand close), decoded by the 

BMI, either congruent (hand close) or incongruent (hand open) feedback was provided via NMES 

and virtual reality, and he was asked to explicitly rate his sense of agency for that specific action. In 

the second experiment, we realized a BMI version of the Libet experiment (Libet et al., 1983) to 

gather an implicit measure of sense of agency. The participant was asked either to perform a BMI 

hand movement at his will, or his hand was passively moved by the NMES system. In a Libet-like 

setting, he was then asked to report the perceived timing of his hand movement when this was self-

generated (high agency condition) or passively induced (low agency control condition). In line with 

the Intentional binding effect (Haggard et al., 2002), self-initiated movements were perceived to 

happen earlier (i.e., closer to the time of intention) than passive movements, and this effect was 

taken as an indirect behavioural index of sense of agency. We studied the role of neural oscillations 

in local field potentials for sense of agency in both experiments, in the time window of 1 second 

preceding movement execution. Specifically, we tested whether movements associated to high vs. 



low sense of agency – based on explicit ratings (experiment 1) or implicit temporal binding 

(experiment 2) - were differentiated by the phase of LFP oscillations in M1 activity in a given 

frequency band. We observed phase opposition in the mu range (7.5 Hz) differentiating between 

high vs. low agency trials up to 640 ms before movement onset. Furthermore, we analysed the 

relation between the mu phase and multiunit activity, and found that the optimal phase for sense of 

agency coincided with the phase where spikes are more likely to happen. This finding suggests a 

link between pre-movement endogenous oscillations in M1, neural activity and the subsequent sense 

of agency for that movement.  

 

Results 

 

Experiment 1 – The phase of mu neural oscillations correlates with explicit agency ratings 

The participant is a tetraplegic individual who is an experienced user of a BMI neuroprosthesis 

restoring his control of right hand movements. A chronically implanted 96 channels microelectrode 

array reads neural activity from a region of M1 controlling the right hand, and motor commands are 

decoded from multiunit activity by a nonlinear support vector machine (Fig. 1a, 1b). The neural 

decoding system is coupled with a custom built high-resolution neuromuscular electrical stimulation 

system (NMES, Fig. 1c) able to implement the decoded action, thus allowing the participant to control 

his right arm and perform dextrous manual tasks (Fig. 1).  

 

Figure 1: BMI setup. (a) Neural activity is recorded from the region controlling hand movements in 

the participant’s left motor cortex through a 96 channels Utah array. Mean wavelet power in the 

multiunit range (234-3750 Hz) is extracted for each channel and fed to a nonlinear support vector 

machine to decode motor intention every 100 ms. When the neural decoder reaches the threshold 

of 0 (on a -1/1) scale for a given movement, the selected movement is executed through a custom 



NMES sleeve (panel c). (b) fMRI scan showing areas coding for hand movement (red), array position 

(green) and their overlap (yellow). (c) Custom NMES system fitted on the participant’s hand. 

 

In Experiment 1, the participant was cued to execute one of 4 possible hand movements (hand 

closing/opening, thumb flexion/extension) through the BMI prosthesis. When the neural classifier’s 

threshold for a given movement was reached, the neuromuscular stimulator generated a hand 

movement, providing somatosensory feedback. Visual feedback was provided by displaying a virtual 

hand, while the participant’s real hand was hidden from view (Fig. 2a). The congruency of sensory 

feedback was manipulated to alter the participant’s sense of agency, by presenting either the cued 

and correctly decoded action (congruent feedback), or the opposite action (incongruent feedback, 

i.e.: flexion instead of extension, and vice versa). In different conditions, all the possible four 

combinations of congruent and incongruent visual and somatosensory feedback were provided, in 

randomized order, with 160 trials for each condition over 5 experimental sessions (visual and 

somatosensory congruent: V+/S+; visual and somatosensory incongruent: V-/S-; visual congruent, 

somatosensory incongruent: V+/S-; visual incongruent, somatosensory congruent: V-/S+). At the end 

of each trial, the subject was asked about his feeling of agency for the performed movement (Q1: 

“Was it you who generated the movement?”) and his confidence about his answer (“Q2: how sure 

are you about your answer?”). Experiment 1 is described and included in another study (Serino et 

al., under consideration). Here we applied a novel approach and run novel analyses to the data. 

 

We started our analysis from one of the main results of our previous study (Serino et al., under 

consideration) focusing on the effect of sensory feedback on the percentage of trials with a positive 

agency judgement. Results showed that the participant almost always reported positive or negative 

sense of agency when visual and somatosensory stimuli were both congruent or both incongruent, 

respectively, with extremely high confidence ratings (see Fig. 2b-c). Cleary, more variable agency 

ratings were obtained in the case of conflicting sensory feedback, reflected in significantly lower 

confidence ratings (see Fig. 2c).  

In the full experimental setup, a significant part of the variability in agency ratings is explained by 

exogenous sensory feedback congruency. Therefore, in order to assess the role of endogenous 

neural oscillations in the participant’s sense of agency, we restricted our analysis to trials with 

conflicting sensory feedback, where confidence was lower and agency ratings weakly correlated with 

sensory feedback (McFadden’s R2 in a logistic regression Q1~feedback = 0.02). In other words, by 

considering only trials in which exogenous factor, such as sensory feedback congruency, were 

essentially decoupled from sense of agency, we maximise the likelihood of uncovering the role of 

pre-stimulus endogenous factors, such as neural oscillations.  

 



 

Figure 2: Experiment 1 timeline and behavioural results. (a) Timeline of the experiment. The 

participant is cued to perform one of 4 possible hand movements. For 4 seconds after the “go” cue, 

visual and somatosensory feedback about the movement can be either congruent or incongruent, 

with the opposite movement executed/displayed in the case of incongruent feedback (hand open for 

hand close, thumb flexion for thumb extension). (b) Percentage of high agency trials (“yes” answers 

to Q1) by visual and somatosensory feedback. (c) Confidence ratings on Q1 answers (Q2) by visual 

and somatosensory feedback. 

Following previous reports on the role of slow oscillations in long-range connectivity for multisensory 

and sensorimotor integration (Hanslmayr et al., 2013), we analysed oscillations in the 4-16 Hz range 

in local field potentials recorded from the microelectrode array during the task, and tested their ability 

to predict the participant’s agency ratings. Preliminary analysis showed an extremely high coherence 

of low frequency oscillations across the whole array, therefore we analysed the average signal from 

all electrodes, reducing the number of comparisons with negligible information loss (see Fig. S4). 



We then extracted the instantaneous phase and power for 10 frequencies in the 4-16 Hz range 

through a Morelet wavelet transform, and contrasted them between trials with positive and negative 

agency judgements. To quantify phase opposition between high and low agency trials, we computed 

the Phase Opposition Product (VanRullen, 2016), measuring the amount of simultaneous clustering 

of phase angles for high and low agency trials around opposite s. We corrected for multiple 

comparisons across time and frequency through a cluster-based permutation test with 10000 

iterations. We found a significant (p = .0029) phase opposition in the mu range, peaking at 7.5 Hz 

and 210 ms before movement onset, and extending roughly between 570 and 60 ms (Fig. 3a-b) 

before movement. The histogram of phase angles at the time-frequency point with the highest phase 

opposition are shown in Fig. 3d. In order to estimate the phase angles at movement onset that elicit 

the highest and lowest sense of agency, we extrapolated phase angles at movement onset from the 

time-frequency point with maximal phase opposition (-210 ms, 7.5 Hz). This analysis showed that 

phase angles at movement onset are clustered slightly after π for high agency trials, and slightly 

after 0 for low agency trials (Fig. 3e). As an additional control, we explored whether agency ratings 

depended continuously on phase angles and compared this dependence separately in the V-/S+ 

and V+/S- trials. We found a similar and continuous relationship between phase and agency in the 

two conditions, with negative agency judgements becoming increasingly frequent as phase angles 

at movement onset approached π (Fig. 3f).  

Additionally, we investigated whether the power of such oscillations, and not only the phase, 

modulated sense of agency. First, we noted that the mu rhythm is relatively low in our participant, 

peaking at 6.2 Hz (see Fig. S1a). We observed the expected movement related de-synchronization 

(ERD), with a pronounced decrease in power in the mu range starting around 700 ms prior to 

movement onset (see Fig. S1b). However, the ERD (and power in the 4-16 Hz range in general) was 

comparable in magnitude in high and low agency trials, with no significant difference in power 

between the two conditions (see Fig. S1c).  



 

Figure 3: phase opposition analysis for Experiment 1. (a) Phase opposition product in the time-

frequency domain between trials with yes and no answers for Q1. (b) P-values for the phase 

opposition product. The red contour delimits the significant cluster after a cluster-based permutation 

test (p = 0.0029). (c) Average LFP for high (red) and low (blue) agency trials. The phase opposition 

is visible between -400 and 0 ms. Shades denote standard errors. (d) Histograms of phase angles 

for individual trials at the time-frequency point of maximal phase opposition (-210 ms, 7.5 Hz). High 

agency trials are displayed on the left, low agency trials on the right. (e) Same histograms, in which 

the phase angles have been extrapolated at movement onset by transposing phase angles by 210 

ms. (f) Dependency of agency judgements (Q1) on phase angles (extrapolated at movement onset) 

for the V+/S- (left) and V-/S+ conditions separately. The blue line indicates a rolling mean obtained 

through a Gaussian smoothing with a bandwidth of 0.5 radians, and the shade its standard error. 

 

Experiment 2 – The phase of mu neural oscillations correlates with an implicit index of sense 

of agency  

To further demonstrate the link between the phase of mu oscillations before the onset of an action 

and the sense of agency associated to that action, we analysed data from a second experiment, 

using a BMI version of the Libet experiment (Libet et al., 1983) as an implicit measure of sense of 

agency. The experiment consisted in two sessions, one with high and one with low sense of agency. 

In the high agency session, the participant was asked to perform one of two possible movements 

(hand opening/closing) through the BMI system. During each trial, a rotating clock was displayed on 

a screen, and the participant was asked to report the position of the clock at the onset of the 

movement to measure his perceived movement time. In the low agency session, acting as a control, 

the participant performed the same task, but the two possible movements were randomly generated 



via the NMES system. In both sessions, one of the two movements (operant movement) elicited a 

sound that was produced 300 ms after movement onset, the other (baseline movement) had no 

additional sensory consequence. This was to investigate intentional binding, which goes beyond the 

scope of the present study. Therefore, as a first approach, the two movements were analysed 

together. We compared the perceived time of movement between voluntary, high agency, 

movements, and involuntary, low agency, movements, with respect to the real time of the movement. 

Due to the non-normal distribution of responses with frequent outliers, we used the median as a 

robust indicator of the subject’s perceived movement timing, and performed a Wilcoxon rank sum 

test. The subject was generally biased towards perceiving the movement earlier than in reality, but 

this bias was significantly stronger for active than for passive movements (median active = -497.8 

ms, median passive = -384 ms, p = 0.033). Thus, the presence of intention induced an anticipation 

in the perceived timing of the movement. We then used this index to differentiate, within active 

movements, actions with higher sense of agency – i.e., in which the onset of the movement was 

perceived earlier in time – from trials with lower sense of agency – in which movement onset was 

perceived later – by performing a median split on the time of perceived action.  

 

Figure 4: Timeline and behavioural results of Experiment 2. (a) Timeline. In the active movement 

condition, the participant spontaneously initiates hand opening or hand closing movements, that is 

produced upon the decoder crossing threshold through the NMES system. 300 ms after the onset of 

hand closing movements (operant condition) a “beep” sound is produced, no sound is produced after 

hand opening movements. In the passive movement condition, no motor intention is formulated and 

the same movements are generated by activating the NMES system at a random delay from trial 

onset. After each trial, the participant reports the position of a rotating clock displayed on a screen 

at movement onset, to indicate his perceived movement timing. (b) Timing of perceived movements 

(both operant and non-operant condition) in the active (left) and passive (right) movement conditions. 

Boxes contain the central 75 % of trials, and red lines indicate medians. 

 

Based on results from Experiment 1, we expect the phase angles of trials with an early perception 

of the movement to be clustered around π at movement onset, similarly to what observed for higher 

agency trials in the previous experiment. Conversely, we expect an opposite phase clustering 



(around 0) for trials in which the action was perceived late, corresponding to lower agency trials. 

Indeed, we found a significant phase opposition (p = 0.0096 over 10000 permutations) peaking at 

8.5 Hz and -310 ms relative to movement onset, and extending between -640 and -190 ms (Fig. 5a-

b). As shown in Fig. 5f, the perceived timing of the action depended smoothly and continuously on 

the phase at movement onset. 

 

 

Figure 5: phase opposition analysis for Experiment 2, in the active movement condition. (a) Time-

frequency plot of the phase opposition product between trials with early and late perception of 

movement onset. (b) P-values for the phase opposition product. The red contour delimits the 

significant cluster after a cluster-based permutation test (p = 0.0096). (c) Average LFP for trials with 

early (red) and late (blue) perception of movement, as defined through a median split. Shades denote 

standard errors. (d) Histograms of phase angles for individual trials at the time-frequency point of 

maximal phase opposition (-310 ms, 8.5 Hz). Trials in which the movement was perceived early are 

displayed on the left and vice versa. (e) Same histograms, in which the phase angles have been 

extrapolated at movement onset by transposing phase angles by 310 ms. (f) Dependency of 

movement perception on phase angles (extrapolated at movement onset). The blue line indicates a 

rolling mean obtained through a Gaussian smoothing with a bandwidth of 0.5 radians, and the shade 

its standard error. 

 

We then investigated whether the observed effect was related to intentional binding between the 

movement and its auditory effect (Haggard et al., 2002), by splitting the trials according to whether 

the performed movement elicited a further sensory consequence (the sound) or not. This analysis 



revealed that the observed phase opposition was only significant in trials in which the movement 

was followed by an effect, with a significant phase opposition in the usual time-frequency region (Fig. 

S2, left panels). However, a weaker, non-significant phase opposition was observed as well in the 

second set of trials (Fig. S2, right panels). Moreover, the fact that when grouping the trials the phase 

opposition remains significant suggests that, besides statistical significance, the phase relation 

between timing of the perceived movement and neural oscillations is the same in both groups of 

trials. Generally, low frequency oscillations have been reported to play a role in attention and in 

temporal perception (Busch et al., 2009; Hanslmayr et al., 2011; Landau and Fries, 2012; VanRullen 

et al., 2007). Therefore, to rule out attentional or perceptual confounds, we ran the same analysis on 

the passive control condition (Fig. S3), in which agency levels are constantly very low. We found no 

modulation of the perceived action timing in the passive condition, suggesting that, indeed, the 

observed relationship between phase and agency is specific to the binding between intention and 

action.   

Finally, in order to confirm that the relationship between oscillatory phase and sense of agency is 

the same for explicit and implicit agency measures, we analysed together data from Experiment 1 

and Experiment 2. We contrasted all trials with “high agency” (“Yes” answers in Experiment 1 and 

“early” perceived movements in Experiment 2) with all trials with “low agency” (“No” answers in 

Experiment 1 and “late” perceived movements in Experiment 2). We found a significant phase 

opposition (p = .0033), again peaking at 8.5 Hz and -250 ms before movement onset (Fig. 6a). As a 

control, we tested the opposite hypothesis, grouping “Yes” and “late” trials and contrasting them to 

“No” and “early” trials (Fig. 6d). No significant phase opposition emerged in this case (p of largest 

cluster 0.07). These results confirm that, when the oscillatory phase before movement onset was 

close to π, the probability of feeling higher sense of agency for that movement is higher, as measured 

both in terms of higher explicit agency ratings or early perception of voluntary movements (Fig. 6e, 

left). Conversely, when the mu oscillatory phase at movement onset is close to 0, actions are less 

likely attributed to oneself, both explicitly and implicitly (Fig. 6e, right).  



 

Figure 6: grouping phase opposition results across Experiments 1 and 2. (a) Phase opposition 

(Q1=”yes” + movement perceived early) vs (Q1=”no” + movement perceived late). The red contour 

indicates a significant cluster (p = 0.0033), and confirms the same phase relation holds for high 

agency trials and trials with early perception of movement, and vice versa. (b) Control contrast, 

(Q1=”yes” + movement perceived late) vs (Q1=”no” + movement perceived early). (c) Phase 

histograms (extrapolated at movement onset) for (Q1=”yes” + movement perceived early), on the 

left, and (Q1=”no” + movement perceived late), on the right. 

 

The high-agency LFP phase is associated with facilitation of spiking activity, but does not 

affect population activity 

The LFP oscillations that predict sense of agency in our setup might be driven by both local and 

long-range neural activity. To gather a deeper insight into the relationship between the two, we 

analysed the coherence between spiking activity in M1 and LFP phase in the mu range. Trials from 

the two experiments were pooled together. Across 5 experimental sessions, 1458 single units were 

identified. We quantified the coherence between spikes and LFP phase through the spike phase 

histogram. For each spike of each unit, the phase vector of the mu LFP oscillation at the time the 

spike occurred was extracted. For each unit, the length of the vector obtained by summing all the 

spike-locked phase vectors was used as a quantification of the coherence between spikes and the 

phase of LFP oscillations. We found 366 units (around 25.1 %) whose spike activity was significantly 

time-locked to mu LFP oscillations (Fig. 7a). Moreover, the histogram of preferred LFP phase angles 

across all units shows a clear clustering around 5π/6 (Fig. 7b). This phase angle is remarkably similar 

to the preferred phase angle extrapolated at movement onset for high agency trials. Therefore, the 

phase of LFP at which M1 spikes tend to occur is similar to the one that enhances sense of agency 



in conflicting feedback sessions. We then asked whether, at the population level, patterns of multiunit 

activity were affected by the mu phase at movement onset. In order to quantify the impact of the mu 

phase on spiking activity, we computed the mean Euclidean distance between vectors of multiunit 

activity across time, between pairs of trials where the movement occurred close to the optimal phase 

(φ< π/2, φ>3 π/2) or far from it (π/2<φ< 3π/2). We compared such distance to the mean distance 

between pairs of trials with random phase at movement onset, and found the time course of the 

distance to be virtually identical in the two conditions (Fig. 7c). A multidimensional scaling of activity 

in the 0-600 ms range, used to graphically compare activity in the optimal vs non-optimal phase, also 

shows overlapping results between the two conditions (Fig. 7d). This suggests that, while on average 

the mu phase has some excitatory effect on spiking activity, it weakly affects population activity in 

M1. 

 

Figure 7: spike-field coherence (SFC). (a) Distribution of Z-scores for the spike-field coherence at 

7.5 Hz across 1458 units. Data from two additional studies was added here to increase statistical 



power. (b) Distribution of the preferred angle of the same 1458 units, defined as the sum of phase 

vectors of 7.5 Hz oscillations taken at each spike. (c) Average Euclidean distance between pairs of 

trials with optimal vs non-optimal phase (red), compared to the distance between pairs of trials with 

random phase relations. The shaded area denotes the time period used in panel d. (d) 

Multidimensional scaling of neural activity in the 0-600 ms period. The two axes represent the two 

main components of a dimensionality reduction of 96 channels of multiunit activity. Each dot 

represents a trial, with green and black trials being those in which the movement occurred 

respectively close to or far from the optimal phase. 

 

Discussion 

We investigated the role of neural oscillations in determining sense of agency for hand movements 

in a tetraplegic human participant, who is a proficient user of an intracortical brain machine interface.  

The natural cortico-spinal communication pathway was replaced by the artificial decoding-

stimulation system, offering us the unique opportunity to fully control the congruency between 

desired actions and their implementation in upper limb movements in order to modulate and assess 

the participant’s sense of agency explicitly (Experiment 1) and implicitly (Experiment 2). In 

Experiment 1, we modulated the visual and somatosensory congruency between intended actions 

and sensory feedback and asked explicit agency judgements. As expected, the participant’s sense 

of agency was strongly modulated by sensory feedback congruency. To uncover the endogenous 

contribution of neural oscillations to sense of agency, we then focused on the residual variability in 

agency judgements that was not explained by sensory feedback. The phase of mu (~8 Hz) LFP 

oscillations 570 ms to 60 ms before movement onset reliably predicted the participant’s agency 

judgements, with positive answers more likely to occur when the BMI generated movement 

happened close to π, corresponding to the negative trough of an oscillation. This result was 

confirmed when agency was implicitly assessed by means of a modified version of the Libet 

experiment. The participant either freely performed active hand movements, or we implemented the 

same hand movements passively via the NMES system, and we asked him to report the perceived 

timing of the movement. Voluntary movements were perceived as occurring significantly earlier than 

involuntary movements. Thus, we used such binding effect in the temporal perception of actions 

towards the time of intention as an implicit measure of agency.  Within the voluntary condition, we 

therefore contrasted trials with an early vs late perception of the movement as a proxy of higher vs 

lower agency. Such implicit index of sense of agency was also modulated by the mu phase at 

movement onset, meaning that trials with early perception/higher agency were characterized by a 

phase angle at movement onset around π, whereas late perception/lower agency trials showed the 

opposite phase clustering. Furthermore, the correlation between phase and perceived movement 

timing was only observed for active movements, movements, and not when the arm was passively 

moved, while the participant was asked to perform the same temporal judgement. This suggests that 



our results cannot be explained simply in terms of attentional or perceptual effects. Indeed, if the 

pre-movement phase was only affecting the participant’s time perception (either directly, or through 

attention), we would observe the same effect in the passive condition. Importantly, by combining 

data from both experiments, we showed that the specific relation between mu phase and sense of 

agency was the same in Experiment 1 and Experiment 2.  

To our knowledge, this study provides the first demonstration of a mechanistic link between 

endogenous pre-movement neural states and the subsequent subjective experience of agency, likely 

reflecting the neural signature of predictive components of sense of agency. The famous study by 

Libet and colleagues (1983) showed that conscious intentions are preceded by a slow negative 

deflection above motor areas, the so-called readiness potential. More recently, this effect has been 

interpreted as a sign that endogenous, stochastic fluctuations of neural activity contribute to 

determining the timing of spontaneous movements (Schurger et al., 2012). Here, we show that an 

oscillatory component of such endogenous activity also relates to subjective aspects of self-

causation for movements. This mechanism likely complements the postdictive computations relying 

on the comparison between intended and observed actions, which explain the modulation of sense 

of agency as a function of feedback congruency. Several hypotheses can be formulated on the brain-

level mechanism that connect local oscillations in the pre-movement phase with the feeling of agency 

arising after movement onset. One simple explanation may be that LFP oscillations carry relevant 

temporal cues about the probability of onset of self-generated movements. This idea would be in line 

with observations that, in able-bodied humans, spontaneous movements’ onsets (Popovych et al., 

2016; Tomassini et al., 2017), as well as the excitability of the cortico-spinal tract (Desideri et al., 

2019), tend to be phase-locked to mu oscillations. Under this perspective, the phase of mu waves 

would modulate sense of agency by encoding and signalling to other brain areas the probability for 

a movement to occur at a given moment. It is worth saying that such property would be hard to 

assess in healthy subjects, as the natural relation between neural oscillations and movement onsets, 

and between intended and executed actions, would be extremely difficult to manipulate. Instead, in 

our setup, the timing and sensory consequences of intended movements are independent from 

respectively neural oscillations and the intended action. Another alternative, but not necessarily 

exclusive explanation can be proposed considering the role of neural oscillations in modulating the 

functional connectivity between distant cortical areas. In our case, the phase of mu oscillations 

recorded from M1 neurons may modulate the long-range neural connectivity in the wide fronto-

parietal networks involved in sensorimotor and cognitive computations which are thought to underlie 

sense of agency (Chambon et al., 2013; Sperduti et al., 2011). Then, we can hypothesize that when 

movements occur at the optimal phase angle for connectivity, stronger binding between intentions 

and sensory events occurs, leading to higher sense of agency. In this respect, it is worth noting that 

in Experiment 2 we found that mu oscillatory phase affects the perceived timing of movement onset 

only when movements are preceded by intention. This suggests that the observed role of oscillatory 

phase is specific for the binding of actions and intentions. Conversely, the set of conditions analysed 



in Experiment 1 contained a mixture of trials with either visual or somatosensory feedback being 

congruent, and the other modality being incongruent, and the same relation between agency and 

oscillatory phase held for both conditions (V+/S- and V-/S+). We can therefore exclude the possibility 

that, in our setting, oscillatory phase modulates the relative weight of sensory modalities (as has 

been noted in other cases, see Thézé et al., 2020), or their overall saliency. Instead, it seems that it 

relates to the binding of action and sensory feedback independently from its modality, and even when 

partially incongruent with intentions. In any case, this second hypothesis does not necessarily 

exclude the first hypothesis about movement timing, but rather encompasses it, as oscillation-gated 

connectivity may carry information about the expected timing of actions, besides their sensory 

content. 

In order to dig deeper in the underlying physiological mechanisms, we investigated the link between 

neural oscillations and actual spiking activity, by focusing on the spike-field coherence in the mu 

band. The main result was that a significant fraction of units had a greater tendency to fire  in the 

phase of the LFP that was associated with higher feeling of agency. This seems to speak in favour 

of the movement timing hypothesis, as bursts of M1 activity that generate movements may be more 

likely to happen during the favourable phase of the LFP. This would also be in line with the already 

mentioned fact that spontaneous movements tend to be phase locked to neural oscillations 

(Popovych et al., 2016; Tomassini et al., 2017). When BMI generated movements happen during the 

optimal phase window, agency ratings would then be higher simply because self-generated 

movements are more likely to occur at that time in an able-bodied human (see Schurger et al., 2012 

for a similar account for readiness potential). On the other hand, it is interesting to note that the LFP 

phase at movement onset did not seem to significantly affect the subsequent spiking activity at the 

population level. This suggests that its effect on brain activity, which ultimately leads to a different 

experience of agency, may be more strongly reflected in other areas, and possibly related to transient 

changes in effective connectivity, as mentioned previously. In this respect, it is worth noting that a 

previous well controlled MEG study found higher beta and alpha connectivity between the 

contralateral motor cortex and premotor, insular and temporal regions to correlate with (overtly cued) 

sense of agency (Buchholz et al., 2019). In the context of visual perception, another elegant EEG-

fMRI study showed that the phase of low-frequency oscillations at stimulus onset affects perceptual 

performance, by modulating the subsequent functional connectivity between the lateral occipital 

complex and the contralateral intraparietal sulcus (Hanslmayr et al., 2013). The same mechanism 

might apply to sensorimotor areas, acting as a primer for the subsequent connectivity between M1 

and premotor or insular regions and affecting sense of agency as a result. In order to shed more 

light on such hypotheses, it would be necessary to record brain activity at a larger scale, as in the 

present intracortical BMI setting, designed for clinical purposes, recording sites were limited to the 

primary motor cortex.  



The presence and the importance of predictive components in sense of agency have been 

extensively investigated and demonstrated behaviourally, but their neural mechanisms have 

remained largely unexplored. fMRI studies allowed pinpointing a set of key regions, mainly the TPJ, 

pre-supplementary motor area (pre-SMA), precuneus, and dorsomedial prefrontal cortex (Chambon 

et al., 2013; Sperduti et al., 2011; Yomogida et al., 2010; Zito et al., 2020). However, results largely 

varied across studies. More importantly, fMRI lacks the temporal resolution needed to disentangle 

pre-movement neural correlates, likely connected to predictive computations, from post movement 

signals, more likely linked to postdictive computations. Other studies using perturbative techniques 

such as TMS and tDCS, allowed investigating causality, specifically to gather further evidence in 

favour of the link between premotor and parietal areas and sense of agency (Chambon et al., 2015; 

Moore et al., 2010). However, these techniques lack the ability to elucidate the fine structure of the 

neural mechanisms involved. Most importantly, no previous study could manipulate the natural 

relation between intentions and body movements, allowing introducing nuisances in the normally 

perfect feeling of control for body movements, and searching for the neural source of such variability 

in the experience of agency.  

Sense of agency is a crucial component of self-awareness, and it has important implications for 

healthy and pathological cognition. Voluntary actions and the underlying sense of agency allow 

infants to develop causal reasoning from the detection of sensorimotor congruencies (Zaadnoordijk 

et al., 2015). At the same time, neuropsychiatric disorders implying deficits of self experience, such 

as schizophrenia (Daprati et al., 1997; Hur et al., 2014; Mellor, 1970; Moore and Obhi, 2012) and 

autism (Sperduti et al., 2014) are accompanied by distorted feeling of agency, and it has been 

suggested that impaired predictive abilities may be a key pathogenic element (Alloy and Abramson, 

1979; Fletcher and Frith, 2009; Sinha et al., 2014). However, little is known about the physiological 

bases of sensorimotor predictions in determining sense of agency. The present experimental setup 

allowed us to provide novel insights into the potential importance of pre-movement neural oscillations 

for such predictive mechanisms. The phase of pre-stimulus neural oscillations is already known to 

affect perceptual (Ai and Ro, 2014; Busch et al., 2009; Rice and Hagstrom, 1989), multisensory 

(Ikumi et al., 2019; Keil and Senkowski, 2018; Thézé et al., 2020) and sensorimotor (Tomassini et 

al., 2017) processing. More generally, their role in orchestrating information exchange in the brain is 

relatively well understood and provides a solid interpretative framework of brain functioning. 

Therefore, our study takes a decisive step towards explaining sense of agency, as well as its 

cognitive and clinical implications, through the general and well understood phenomenon of neural 

oscillations. 

Materials and Methods 

Participant 

The participant was a 27-year-old male with quadriplegia at the C5/C6 level originating from a 

cervical spinal cord injury (SCI) dating to 8 years prior to data collection. He had a full range of motion 



in both shoulders and elbow flection and could perform twitches of wrist extension (1/5 and 2/5 

strength on left and right wrists respectively). He had no motor function below C6. His proprioception 

was intact in the right upper limb/shoulder for internal through external rotation, forearm pronation 

through supination, and wrist flexion through extension. Proprioception at the level of metacarpal-

phalangeal joints for all right hand digits was impaired. He was enrolled in a pilot clinical trial 

(NCT01997125, Date: November 22, 2013) of a custom BMI system (Battelle Memorial Institute) to 

restore motor functionality of the upper limb following SCI. The BMI system required the implantation 

of a Utah microelectrode array (96 channels, 4.4 x 4.2 mm, 1.5 mm depth) in the hand region of the 

left primary motor cortex. Reference wires were placed subdurally. The target region was identified 

via pre-operative functional Magnetic Resonance Imaging as the patient was asked to attempt 

performing right hand movements. See the first description of the BMI system by Bouton et al. ( 2016) 

for further details about the participant and surgical process. 

 

BMI system 

Neural data from the Utah array was sampled at 30kHz and band-pass filtered between 0.3Hz and 

7.5kHz at the hardware level (3rd order Butterworth). The data were digitized in 100ms bins and 

analysed through custom MATLAB code. Before decoding, artefacts due to NMES were removed by 

blanking the signal over 3.5ms around the artefact, defined as a signal amplitude exceeding 500μV 

in at least 4 out of 12 randomly selected channels. Neural decoding was based on a non-linear 

Support Vector Machine (SMV; e.g., Cortes and Vapnik, 1995). The SVM used 96 input features 

consisting of the mean wavelet power (MWP) for each channel and 100 ms bin. To obtain the MWPs, 

neural activity was decomposed into 11 wavelet scales (Daubechies wavelet, MATLAB), and the 

coefficients of wavelets 3-6, corresponding to the multi-unit frequency band spanning from 235 to 

3.75kHz, were averaged for each channel. The decoder was re-trained before each experimental 

session, by asking the participant to attempt performing one of the four hand movements (HO, HC, 

TE, TF) in order to generate the training data. The subject performed 7 blocks consisting of 3 

repetitions per movement type each. The decoder output consists of four scalar numbers in the -1/1 

range, indicating the relative probability for each movement. A threshold of 0 was set for the selection 

of an intended movement, with the movement with the highest score prevailing if two or more classes 

exceeded the threshold. A custom-built Neuromuscular Electrical Stimulation (NMES) system was 

used to translate the decoded intentions into actual hand movements, by stimulating forearm 

muscles. The NMES system consisted of a circumferential forearm sleeve with 130 copper-coated 

electrodes, 12mm in diameter. The electrodes were disposed in an array, spaced at regular intervals 

(22mm longitudinally x 15mm transversely). Stimulation was delivered through rectangular pulses of 

50Hz monophasic current (pulse width 500μs, amplitude 0-20mA). The stimulation patterns and 

intensity were re-calibrated at the beginning of each session in order to optimize the match with the 

participant’s intentions. See the paper by Bouton et al. (2016) for further details about the neural 

decoder and NMES system. 



 

Experiment 1 – protocol 

In Experiment 1, we manipulated the congruency between the participant’s motor intentions and 

sensory feedback and assess how this affected his sense of agency. Each trial started with a verbal 

cue about the hand movement to be performed (“hand open”, “hand close”, “thumb extension”, 

“thumb flexion”), followed after a 2 second delay by a verbal “go” cue. The participant was instructed 

to start attempting the cued movement only at the “go”, without anticipating. During the following 4 

seconds, the participant received visual and somatosensory feedback according to the decoded 

movement and the feedback congruency for that trial and sensory modality. Somatosensory 

feedback was delivered by eliciting the target movement through the NMES sleeve. Visual feedback 

was constituted by an animation of a virtual hand performing the target movement, displayed on a 

screen placed horizontally to cover the participant’s right hand. The hand model and the animation 

corresponded to the ones routinely used by the participant during BMI training sessions, and its size 

and position were adjusted to match the participant’s real hand. In trials with congruent 

somatosensory (and/or visual) feedback, the decoded movement was executed through NMES (or 

displayed in a virtual animation). In incongruent trials, the opposite movement was executed and/or 

displayed, replacing hand opening with hand closing, thumb extension with thumb flexion, and vice 

versa. Sensory feedback was only delivered when one of the output classes of the neural decoder 

reached the threshold of 0. In the 5-6 seconds after the sensory feedback phase, the participant 

answered two questions, Q1 and Q2, about his feeling of agency for the movement. The whole 

experiment consisted of five experimental sessions performed over different days, each consisting 

of four blocks of BMI training and four blocks of experiment, each lasting around 15 minutes. Each 

experimental block consisted of 32 trials, where each combination of V/S feedback and cued 

movement (2X2X4=16) was repeated twice. Therefore, the grand total of trials was 640, 160 for each 

feedback condition.  

 

Experiment 2 – protocol 

The second experiment was part of a broader study (currently under consideration), aiming at 

investigating the effects of manipulating the intentionality chain composed of intentions, motor acts, 

and their consequences on the external world, based on a modification of Libet’s 1983 intentionality 

experiment. Here, we focused on two experimental sessions within that study to establish an implicit 

measure of sense of agency. In the first session (high agency), the participant was cued to perform 

one of two possible movements through the BMI system, HO and HC. While performing the 

movements, the participant observed a single hand clock on a computer screen, with numbers from 

5 to 60, completing a full rotation in 2.56 seconds. Again, movements were triggered by the activation 

of the neural decoder, but the NMES was always activated congruently. Additionally, 300 ms after 

HC was executed, a 1000 Hz “beep” was produced, lasting 100 ms. No additional consequence 

followed HO execution. The participant was instructed to pay attention to the location of the clock 



hand at the time of movement onset, and to report it at the end of the trial allowing us to measure 

the perceived timing of the action. Differently from Experiment 1, the movements were self-paced, 

meaning the participant was instructed to freely initiate the movement and encouraged to vary his 

waiting time, which should in any case exceed one full clock rotation. In the second session (low 

agency), the only difference was that the same movements were executed passively, by randomly 

activating the NMES for HO or HC while the participant was instructed to remain at rest. Each session 

consisted of 80 trials, 40 per movement.  

 

Data pre-processing 

For LFPs, the main source of, data pre-processing consisted essentially of four steps: trial selection, 

artefact removal, down sampling, and epoching. Trial selection had the main goal of discarding trials 

in which the participant failed to generate any movement, or to activate the correct decoder. 

Therefore, we only kept trials in which the participant managed to keep the cued decoder above 

threshold for at list 600 ms (6 classifier bins). In Experiment 1, we additionally required that such 

movement happens after the “go” cue, and at least 1.5 seconds before the “stop”, in order to ensure 

a sufficient time window for epoching.  Additionally, 5 HC trials from the high agency session had to 

be removed due to technical issues with the recording. After trial parsing, we retained 422 out of 640 

trials for Experiment 1 (66 %), and 61 out of 80 (76 %) trials from the high agency session in 

Experiment 2 (all trials were retained in the low agency session as the participant did not need to 

activate the decoder in this session). The parsing was relatively even across conditions of interest, 

with 114/160 for V+/S+, 93/160 for V+/S-, 117/160 for V-/S+, and 98/160 for V-/S-. Similarly, in 

Experiment 2, we retained 26/35 (HC) trials for the movement eliciting the sound, and 35/40 for the 

movement not eliciting the sound (HO). Artefact removal was performed before epoching, as done 

online for BMI decoding, with the difference that we applied a 8.7 ms blanking window, in order to be 

more conservative on oscillatory analyses. Then, the data was down sampled to 1000 Hz, using a 

Kaiser anti-aliasing kernel. Spiking activity was extracted through the wave_clus spike detection and 

sorting algorithm with default settings. For the detection, a threshold was set at four times the 

standard deviation of baseline noise. Spikes were clustered through the superparamagnetic 

clustering algorithm, allowing to remove spurious signals. Since data collection was done in different 

sessions spanning several weeks, and the number of units in each channel fluctuated across 

sessions, we did not attempt to match units across recording sessions. Instead, we pool the spikes 

at each channel as multiunit activity. For both LFP and multiunit activity, the data was epoched by 

time-locking to the onset of sensory feedback.  

 

Oscillatory analyses 

Since in our analyses we focus on low frequencies, which are expected to be highly coherent on the 

small spatial scales of an Utah array, all analyses were performed on the mean LFP across all 

channels. The high coherence of oscillations in the 4-16 Hz range was furthermore confirmed by 



analyses shown in the Supplementary Information (Figure S4). Instantaneous values for power and 

oscillatory phase were obtained by convolving the signal with Morelet wavelets over 10 

logarithmically spaced frequencies between 4 and 16 Hz, setting the number of cycles at 2π. Our 

main analysis focuses on quantifying phase opposition in time and frequency between conditions of 

interest (high-low levels of explicitly or implicitly assessed agency). As a measure of phase 

opposition, we use the Phase Opposition Product (POP VanRullen, 2016). To compute the POP, first 

we compute the inter-trial phase coherence (ITC) for all the trials pooled together, and for the two 

conditions separately. 

 

𝐼𝑇𝐶 = |∑ 𝜔: |𝜔 |⁄ | 𝑛⁄  (1) 

𝐼𝑇𝐶 = |∑ 𝜔 |𝜔 |⁄ | 𝑛⁄  (2) 

𝐼𝑇𝐶 = |∑ 𝜔 |𝜔 |⁄ | 𝑛⁄  (3) 

Then, the POP is simply obtained as follows 

𝑃𝑂𝑃 = 𝐼𝑇𝐶 𝐼𝑇𝐶 − 𝐼𝑇𝐶  (4) 

The underlying idea is that, if trials within a condition are clustered around some angle, and trials in 

the other condition are clustered around an opposed angle, then the inter-trial coherence within 

conditions is going to be higher than when pooling the trials together. Therefore, higher values of 

POP indicate a stronger phase opposition between conditions. Instantaneous values of oscillatory 

power were simply computed as the absolute value of the wavelet convolution. MATLAB code for 

the wavelet convolution was adapted from Mike Cohen’s website 

(http://mikexcohen.com/lectures.html).  

 

Statistical analysis 

Statistical analyses of the time-frequency distribution of POP values were performed through cluster 

based permutation tests to address the multiple comparison problem (Maris and Oostenveld, 2007). 

In order to run the permutations, a suitable statistics to define clusters needs to be defined for POP 

values, as with a single subject it is not possible to simply run a T-test on POP values across subjects. 

To the best of our knowledge, the analytical form for the null distribution of POP values is not known, 

and running permutations to define a P-value for each time-frequency point, nested in the main 

cluster correction permutation, would be too computationally demanding. To overcome this problem, 

we used an heuristic method, by generating randomly distributed phase angles, splitting them in two 

groups to compute their POP, and then fitting such null distribution of POP values as a function of 

the number of trials in each condition (see Fig S5 for additional details). We found this surrogated 

POP null distribution to be well fitted by the formula 

𝑃(𝑃𝑂𝑃 > 𝑥) ≈ 1 −
( ) ( )

𝑒 √  (5) 

Where nA and nB denote the number of trials in each condition. The factor in square brackets denotes 

the approximated probability that the POP is positive, since our method was only applied to fit 



positive values, which are of interest for statistical analyses. We set the P-value of negative POP 

values to 0.75 by default, as this will not affect the results of cluster correction in any case. The 

approximated P-values were then transformed into T-values, and a threshold of 2 was set to define 

the clusters. The total value of each cluster was then defined as the sum of the T-values of all time-

frequency points composing it. Importantly, the exact nature of the statistics used at this stage to 

define cluster scores does not influence the test’s ability to appropriately control for type I errors, as 

this is addressed by the permutations performed subsequently (Maris and Oostenveld, 2007). 

Therefore, the approximation we use allows to save computational time while not affecting the final 

result. The final P-value for each cluster was defined as the probability of finding a cluster with a 

larger score over 10000 permutations, obtained by randomly reassigning trials to the high or low 

agency condition. The analysis was performed over a 1s window ending at the time of movement 

onset. 

 

Multiunit analyses 

Analyses on multiunit activity consisted essentially of the evaluation of spike-field coherence with 

mu oscillations, and of the analysis of similarity of activity depending on the mu phase at movement 

onset. To define the spike-field coherence, units were not pooled for each channel, and each unit 

was analysed separately for each session, for a total of 1408 units. For each unit, the spike field 

coherence was calculated by extracting the phase vectors for LFP oscillations at 7.5 Hz at each 

spike location, and then applying formula (1) to the ensemble of phase vectors. In order to compute 

statistics for the values of SFC, we start from the null distribution for the length of the resulting vector 

in (1), which for a large number of spikes is well approximated by a Gaussian (see Fig S6) 

𝐼𝑇𝐶 = 𝑁(𝜇, 𝜎) (6) 

𝜇 =  (7) 

𝜎 =  (8) 

This allows to quickly compute Z scores and p-values from the ITC of spike-locked phase vectors. 

Since the neural activity recorded by the microelectrode array varied significantly between 

experimental sessions (i.e., days of recording) and movements, Euclidean distances were computed 

separately within each session and movement, and then averaged to obtain the final results. To 

estimate confidence intervals, we used a bootstrapping technique, again applied within sessions and 

movements. For each session and movement, n random trials were extracted replacement, where 

n is the number of trials for that condition. The procedure was repeated 100 times, and 95 % 

confidence intervals were obtained as 1.96 times the standard deviation of the distances obtained 

from the bootstrapped trials. 
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Supplementary information  

 

 

Figure S1: analyses on oscillatory power. (a) Power by frequency band in the baseline period ranging 
from -2 to -1 seconds from movement. In our participant, the mu peak is relatively low in frequency, 
with the maximal spectral density found at 6.2 Hz. (b) Time course of mu power (6.2 Hz), averaged 
over all trials, showing a decrease immediately before and after the movement (ERD). The rebound 
after movement onset is likely due to the transient effect of the ERP elicited by the NMES induced 
movement. The shaded area denotes the standard error. (c) T-test on 4-16 Hz power between high and 
low agency trials, as in the main text the analysis was done on the subset of V-/S+ and V+/S- trials. 
Cluster based correction found no significant differences between the two conditions. 



Figure S2: Comparison of operant and non-operant movement. Left panels refer to the operant 
movement, right panels to the non-operant movement. (a-b) indicate the phase opposition product, 
(c-d) the relative P-value. The largest cluster for the operant movement, indicated by the red contour, 
was significant with p = 0.04, while it was well below significance for the non-operant movement (p 
= 0.38). (e-f) show the averaged LFP time course, with shades indicating its standard error. 



 

Figure S3: Control analysis on passive movement condition. (a) Phase opposition product 
contrasting trials with late-early perception of passively induced movements. (b) P-values for the 
phase opposition product. No significant cluster emerged after correction. (c) Averaged time course 
of the LFP in the two conditions. Shaded areas indicate standard errors. 



 

Figure S4: phase coherence across channels. The phase coherence was computed as the average ITC 
(formula (3) of the main text) across channels over a 15 minutes sample recording (raw data after 
artefact blanking), for frequencies between 1 Hz and 5 KHz. In the mu range, the ITC is consistently 
above 0.8, indicating small loss of information in this frequency band after averaging across 
channels.  



 

 

 

Figure S5: estimation of the null distribution of POP values. The null distribution is expected to 
depend on the number of trials in each condition, nA and nB. Therefore, we sampled a 10x10 grid of 
nA and nB values, and for each pair we generated nA and nB   random angles 100000, and computed 
the relative POP values. First of all, we noticed that, when POP values are positive, their cumulative 
distribution is approximately exponential (a). Then, to obtain a good approximation of the 
distribution for positive POP values, it is sufficient to estimate how the exponent and the positive 
fraction of POP values depend on nA and nB (negative values of POP are not relevant as they cannot 
be associated with significant p-values). Good fitting functions were identified heuristically, and are 
shown in formula (5) of the main text. Here, we plot the relative error between simulated values and 
our approximation for the positive fraction (b) and the exponent (c) of the null cumulative 
distribution. Errors were in most cases between -5% and +5%, which we considered acceptable since 
the p-values obtained with this method are only a preliminary step in cluster based correction, which 
is not expected to bias the final statistical results (see main text, methods). 

Figure S6: estimation of the null distribution for ITC values, used in the multiunit analysis. To obtain 
samples from the null distribution of ITC values, for each tested number of trials N, we generated N 
random angles 100000 times, and computed the ITC value for each sample. Panel (a) shows the 
empirical mean value of ITC as a function of the number of trials (red dots), compared to the 
theoretical approximation from formula (7) of the main text. Panel (b) shows the same for the standard 
deviation, where the theoretical approximation is obtained as per formula (8). In panel (c) we show 
that, indeed, the distribution of ITC values is Gaussian with good approximation, by comparing the 
empirical cumulative distribution of ITC values with that of a Gaussian with mean and variance 
predicted by our approximation.  


