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Abstract

Obesity represents a significant public health concern and is linked to various comor-

bidities and cognitive impairments. Previous research indicates that elevated body

mass index (BMI) is associated with structural changes in white matter (WM). How-

ever, a deeper characterization of body composition is required, especially consider-

ing the links between abdominal obesity and metabolic dysfunction. This study aims

to enhance our understanding of the relationship between obesity and WM connec-

tivity by directly assessing the amount and distribution of fat tissue. Whole-body

magnetic resonance imaging (MRI) was employed to evaluate total adipose tissue

(TAT), visceral adipose tissue (VAT), and subcutaneous adipose tissue (SAT), while

MR liver spectroscopy measured liver fat content in 63 normal-weight, overweight,

and obese males. WM connectivity was quantified using microstructure-informed

tractography. Connectome-based predictive modeling was used to predict body com-

position metrics based on WM connectomes. Our analysis revealed a positive depen-

dency between BMI, TAT, SAT, and WM connectivity in brain regions involved in

reward processing and appetite regulation, such as the insula, nucleus accumbens,

and orbitofrontal cortex. Increased connectivity was also observed in cognitive con-

trol and inhibition networks, including the middle frontal gyrus and anterior cingulate

cortex. No significant associations were found between WM connectivity and VAT

or liver fat. Our findings suggest that altered neural communication between these

brain regions may affect cognitive processes, emotional regulation, and reward per-

ception in individuals with obesity, potentially contributing to weight gain. While our

study did not identify a link between WM connectivity and VAT or liver fat, further

investigation of the role of various fat depots and metabolic factors in brain networks

is required to advance obesity prevention and treatment approaches.
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1 | INTRODUCTION

The prevalence of obesity has skyrocketed in recent decades, posing a

significant global health hazard. Approximately 39% of the world's

population is overweight, with around 13% classified as obese (World

Health Organization [WHO], 2021). Despite its profound impact on

health, obesity is often overlooked as a disease due to limited public

awareness and social stigmatization. This is concerning considering its

strong association with numerous comorbid conditions, such as hyper-

tension, Type 2 diabetes, metabolic syndrome, cardiovascular disease,

and certain cancers (Apovian, 2016). Furthermore, accumulating evi-

dence highlights a heightened risk of cognitive impairment and

dementia linked to excessive fat accumulation (Tang et al., 2021). This

is supported by consistent structural brain abnormalities associated

with excess fat, including gray matter (GM) and white matter

(WM) changes (Han et al., 2021). Failing to recognize obesity as a dis-

ease and neglecting proper management strategies contribute to the

escalating burden of this pandemic worldwide.

Obesity induces pathological alterations, including neuroinflam-

mation, vascular damage, and blood–brain barrier disruption

(Karczewski et al., 2022). Chronic low-grade inflammation, a

consequence of obesity, releases adipokines and pro-inflammatory

cytokines, initiating neuroinflammatory responses in the brain (Salas-

Venegas et al., 2022). This disrupts the hypothalamus, a central regu-

lator of appetite, impacting communication between brain regions

involved in reward processing, emotional regulation, and cognition

(Berthoud et al., 2017). The disturbed balance between appetite and

energy consumption contributes to weight gain and obesity. Notably,

hypothalamic neuroinflammation plays a role in brain pathology, inter-

acting with non-homeostatic factors like stress, anxiety, depression,

and societal influences, shaping structural brain alterations associated

with obesity (Lazarevich et al., 2016). Evidence from structural mag-

netic resonance imaging (MRI) studies indicates GM and WM alter-

ations linked to obesity/overweight (Fernández-Andújar et al., 2021;

Kullmann et al., 2015). Elevated body mass index (BMI), an established

metric to assess obesity, has been consistently associated with

changes in GM volume. The caudate nucleus (Caud), nucleus accum-

bens (NAc), putamen (Put), and the orbitofrontal cortex (OFC) are

assumed to play a key role in regulating and encoding the rewarding

properties of stimuli (Camara et al., 2009; Chen et al., 2018). Notably,

these regions have shown volumetric reductions in GM associated

with increased BMI, suggesting potential deficits in reward processing

associated with overweight and obesity (Herrmann et al., 2019). The

insular cortex (Ins) is another key structure mediating eating behavior

by integrating external sensory and internal homeostatic information

related to food stimuli (Frank et al., 2013). Volumetric reductions in

the insula further facilitate abnormal eating behavior due to disrupted

integration of metabolic hunger/satiety cues on the one hand, and

reward-related aspects of food, on the other hand (Herrmann

et al., 2019; Smucny et al., 2012). Furthermore, while the link between

obesity and cognitive impairment requires further investigation, hip-

pocampal atrophy in individuals suffering from obesity suggests accel-

erated cognitive decline (Taki et al., 2008). Similarly, GM atrophy in

frontal cortical areas, such as the anterior cingulate cortex (ACC) and

superior, middle, and inferior frontal gyri (SFG, MFG, IFG), points to

weakened inhibition and inadequate reward-driven decision-making

(Saruco & Pleger, 2021; Stillman et al., 2017). Intriguingly, in contrast

to cortical areas, some studies have revealed an increase in GM vol-

ume specifically within subcortical reward structures indicating a com-

plex interplay between cortical and subcortical regions in the context

of reward-related neural mechanisms (García-García et al., 2020; Opel

et al., 2021).

Obesity-related WM alterations exhibit less consistency in the

existing literature. Diffusion-tensor imaging (DTI) is a commonly used

technique to assess microstructural WM properties by modeling

water diffusion in WM bundles (Soares et al., 2013). Fractional anisot-

ropy (FA) and mean diffusivity (MD) are primary DTI parameters,

representing the anisotropy in the directionality of the WM tissue and

the overall magnitude of the water diffusion, respectively. Many stud-

ies link higher BMI to decreased FA and/or elevated MD in several

major WM tracts (Repple et al., 2018; Stanek et al., 2011). A recent

meta-analysis revealed lower FA values associated with higher BMI in

the genu of the corpus callosum (CC), which connects prefrontal

regions (Daoust et al., 2021). This suggests a potential impact on cog-

nitive function and reward processing. Reduced FA has been previ-

ously linked to myelin loss in several neurological and psychiatric

diseases, but the evidence regarding demyelination in obesity is lim-

ited (Alba-Ferrara & de Erausquin, 2013; Kantarci, 2014). On the con-

trary, several studies do not indicate any significant differences in DTI

measures, while other evidence reports a reversed pattern of changes

associated with adiposity (Alosco et al., 2014; Birdsill et al., 2017;

Dekkers et al., 2019).

These inconsistencies may be partly attributed to methodological

limitations in the DTI approach, particularly the insufficient specificity

of the measured parameters and the limited accuracy of WM tract

reconstruction (Okudzhava et al., 2022). For instance, FA alterations

may reflect various underlying factors such as axonal loss or injury,

changes in myelin content, inflammation, or shifts in extracellular and

intracellular water concentrations (O'Donnell & Westin, 2011). Inter-

preting this metric in a biological context is therefore challenging.

Moreover, DTI is unable to accurately model the presence of crossing

fibers within a voxel, which results in errors when reconstructing WM

fibers (Auriat et al., 2015). Therefore, to better understand WM struc-

ture in relation to obesity, it is crucial to apply advanced techniques

that not only improve the accuracy of fiber reconstruction but also

provide biologically interpretable measures. One method that

addresses the limitations of crossing fibers is constrained spherical

deconvolution (CSD). Moreover, the integration of multishell, multitis-

sue CSD (MSMT-CSD) enhances the precision of fiber orientation

estimates within a voxel and reduces the number of spurious peaks

(Jeurissen et al., 2014). Additionally, MSMT-CSD-based novel quanti-

tative fiber tracking methods, such as the SIFT2 microstructure-

informed tractography method, present valid biologically meaningful

measures of WM fiber density (Smith et al., 2015).

When evaluating obesity/overweight, the adequacy of BMI is

questionable given its imprecise measurement of the amount and
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distribution of body fat. Similarly, measures like waist-to-hip ratio

or waist circumference may indicate central (abdominal) obesity

but do not differentiate between distinct fat depots. Conse-

quently, the significance of distinguishing between adipose tissue

(AT) depots is gaining attention in obesity research due to the pro-

found impact of their metabolic functions. Accumulation of vis-

ceral adipose tissue (VAT) in the abdominal area is correlated with

insulin resistance and an elevated risk of metabolic dysfunction

(Luong et al., 2019). Conversely, subcutaneous adipose tissue

(SAT) has been proposed to play a protective role against meta-

bolic syndrome (Porter et al., 2009). A growing body of evidence

links the accumulation of VAT to cognitive decline and late-life

dementia, making abdominal obesity a potential target for early

intervention and prevention strategies (Huang et al., 2022; Ozato

et al., 2021). Furthermore, excessive VAT promotes the accumula-

tion of fatty acids in the liver, contributing to nonalcoholic fatty

liver disease (Hanlon & Yuan, 2022). Importantly, in contrast to

SAT, both liver fat and VAT have been associated with lower GM

volume and WM hyperintensities (Boccara et al., 2023; Lee

et al., 2021; Weinstein et al., 2018).

To address the scarcity and ambiguity of WM findings, this study

aims to explore the interplay between WM connectivity and obesity

by using state-of-the-art microstructure-informed tractography and

quantifying AT compartments using MRI and MR spectroscopy (MRS).

We propose that metabolically more active fat depots will be associ-

ated with distinct patterns of WM connectivity alterations, shedding

light on the intricate relationship between brain structure, adiposity,

and metabolic health.

2 | METHODS

2.1 | Sample

Sixty-five male participants with no history of metabolic, neurological,

or psychiatric conditions were recruited from the University of Lübeck

participants' pool and via advertisements using online platforms. The

participants were between 24 and 61 years old (mean ± SD = 27

± 9.6), with a BMI ranging between 19 and 41 kg/m2 (mean

± SD = 28 ± 4.9). The study was designed and conducted in accor-

dance with the World Medical Association Declaration of Helsinki and

was approved by the Ethics Committee of the University of Lübeck.

All experimental procedures were performed with participants' writ-

ten informed consent.

Prior to participation, all individuals had to fill out a questionnaire

asking about any preexisting neurological or psychiatric conditions.

Fasting glucose, glycated hemoglobin (HbA1c), and triglyceride levels

were assessed to exclude diabetes and an increased risk for cardiovas-

cular and metabolic diseases. Due to data quality check during data

preprocessing, two brain MRI datasets, two whole-body MRI datasets,

and two MRS datasets were removed from further analysis resulting

in a final sample of 63 subjects. Information on the study participants

is summarized in Table 1.

2.2 | Anthropometric measures and Bod Pod

The height and weight of the subjects were measured following over-

night fasting on the day of the investigation. BMI was calculated using

the formula: BMI = weight (kg)/(height [m])2.

Body fat percentage was measured with Bod Pod (Life Measure-

ment, Inc.©), which uses air displacement plethysmography to esti-

mate whole-body fat mass and fat-free mass fractions based on the

volume and density of the body.

2.3 | MRI and MRS acquisition

MRI and MRS were acquired on a 3T whole-body imager

(MAGNETOM Skyra, Siemens Healthcare, Erlangen, Germany) at the

Center of Brain Behavior and Metabolism, University of Lübeck,

Germany. T1-weighted images were acquired using a 64-channel head

coil. A T1 magnetization-prepared rapid gradient-echo sequence was

acquired with the following parameters: repetition time (TR):

2300 ms; echo time (TE): 2.43 ms; flip angle: 8�; voxel size:

0.8 � 0.8 � 0.9 mm3; slice thickness: 0.85 mm.

The diffusion-weighted imaging (DWI) protocol comprised a multi-

shell echo-planar two-dimensional sequence with 107 encoding direc-

tions and 5 different b-values (300, 700, 1000, 2000, and 3000 s/mm2).

A total number of eight b0 (b = 0 s/mm2) volumes were acquired. The

protocol included the following parameters: TR: 5300 ms; TE: 108 ms;

voxel size: 2 � 2 � 2 mm3; slice thickness: 2 mm.

Body MRI was acquired applying a T1-weighted turbo spin echo

sequence with the following parameters: TR: 600 ms; TE: 8.1 ms; flip

angle: 130�; voxel size: 2 � 2 � 10 mm3; slice thickness: 10 mm. Partici-

pants were placed in a prone position with arms extended, the whole-

body scans were acquired from fingers to toes. Participants were

instructed to hold their breath during the 13-s acquisition time to

TABLE 1 Sample characteristics.

Variable Mean SD Range

Age (years) 27 9.6 24–61

BMI (kg/m2) 28 4.9 19.6–41.8

Years of education 15.9 3.04 10–24

Fat (%) 26.9 9.6 4–51

Total fat (L) 31 12.9 13.8–69

Visceral fat (L) 4.4 2.2 1.4–9.2

Subcutaneous fat (L) 10.8 6.4 1.1–29.6

Global body volume (L) 86.6 18.05 62.4–145.2

Total fat ratio (L/L) 0.4 0.07 0.2–0.57

Visceral fat ratio (L/L) 0.05 0.02 0.01–0.09

Subcutaneous fat ratio (L/L) 0.1 0.04 0.02–0.24

Liver fat (%) 3.2 3.0 0.15–14.2

Triglycerides (mg/dL) 121.4 69.3 36–362

HbA1c (%) 5.39 0.23 4.7–6.2

Fasting glucose (mg/dL) 84.5 6.5 78–109
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minimize breathing artifacts. A total number of 15–20 recordings (5 slices

each) was acquired with the table shift set to 10 cm to ensure coverage

of the entire body.

In the liver spectroscopy protocol, a single-voxel stimulated-echo

acquisition mode localization technique was used with TR: 4000 ms

and TE: 11 ms. MRS was performed within a 3 � 3 � 2 cm3 voxel of

interest situated in the posterior part of Segment 7 of the liver avoid-

ing inclusion of blood vessels to optimize the accuracy of metabolic

analysis. The measurement was performed in a fasting state to ensure

an accurate assessment of the liver lipid concentrations.

2.4 | Brain MRI processing

T1-weighted data was preprocessed and reconstructed using FreeSur-

fer 6.0.0 (Fischl, 2012). The standard FreeSurfer analysis pipeline

includes skull stripping, motion correction, Talairach transformation,

intensity normalization, tissue segmentation to classify GM, WM, and

cerebrospinal fluid, and subsequent cortical parcellation and subcorti-

cal segmentation. Parcellation of cortical areas was performed based

on the Desikan–Killiany atlas (Desikan et al., 2006), while the auto-

matic subcortical segmentation atlas (Fischl et al., 2002) was used to

obtain segmentations and labels for subcortical structures.

Multishell DWI data were processed using MRtrix (Tournier et al.,

2012). The preprocessing steps of the MRtrix pipeline include distortion

correction, motion correction, and eddy current correction aimed to mini-

mize artifacts introduced during acquisition (Andersson &

Sotiropoulos, 2016). MSMT-CSD was then applied to estimate the fiber

orientation and magnitude of diffusion within each voxel (Jeurissen

et al., 2014). Estimated fiber orientation density functions allowed subse-

quent reconstruction of WM fibers using an Anatomically Constrained

Tractography algorithm (Smith et al., 2015). Generated tractograms were

further refined with the SIFT2 microstructure-informed tractography

method (Smith et al., 2015) allowing for the filtering of false-positive

streamlines to improve the biological plausibility of the underlying WM

connections. Parcellated FreeSurfer labels and obtained streamline

weights representing a measure of WM connectivity strength were fur-

ther used to construct individual connectomes. Based on previous

research, a subset of 17 relevant regions of interests (ROIs) included bilat-

eral GM areas, specifically the rostral ACC (rACC), caudal ACC (cACC),

rostral MFG (rMFG), caudal MFG (cMFG), SFG, lateral OFC (lOFC), medial

OFC (mOFC), frontal pole (FrP), parahippocampal gyrus (PpG), Ins, thala-

mus (Thal), Caud, Put, pallidum (Pal), hippocampus (Hipp), amygdala

(Amyg), NAc. Therefore, a network containing 34 nodes and an additional

whole-brain network with 82 nodes were derived resulting in 34 � 34

and 82 � 82 symmetrical structural connectivity matrices per participant,

respectively. Connectomes were built using a parcellation scheme from

the Desikan–Killiany atlas.

2.5 | Body MRI and MRS processing

Segmentation and quantification of total adipose tissue (TAT), VAT,

and SAT was carried out using a Matlab-based automatic procedure

based on a modified fuzzy c-means algorithm and an extended

snake algorithm as described by Würslin et al. (2010). The volumes

of AT compartments are calculated by multiplying the number of

segmented pixels by the in-plane pixel dimensions and the slice

thickness.

Intrahepatic lipid (IHL) content was calculated by integrating

water and lipid signals (methylene and methyl) and expressed as a

ratio of a lipid signal to the entire signal in the spectrum (Machann

et al., 2010).

3 | STATISTICAL ANALYSIS

3.1 | Connectome-based predictive modeling

Connectome-based predictive modeling (CPM) (Shen et al., 2017)

was performed to predict individual body composition measures

including BMI, fat%, TAT, VAT, SAT, and IHL by the properties of

individual connectomes. IHL data underwent a logarithmic trans-

formation to account for its skewed distribution. CPM was per-

formed with a 34-node model comprising the anatomical areas

described in the previous section and an 82-node model to assess

the generalizability of this CPM approach to the whole-brain net-

work. Six separate multiple linear regression models were built

including age as a covariate. Both intrahemispheric and interhemi-

spheric connections were taken into account. Leave-one-out

cross-validation (LOOCV) was used to evaluate the model's predic-

tive performance by iteratively training the model on all but one

subject in the dataset and testing it on the left-out subject. The

process was repeated until the model performance was tested on

each subject.

The CPM procedure comprised the following steps: (1) leaving

one subject out; (2) selecting edges using partial correlations (p < .01)

between each edge and body composition measures across remaining

subjects; (3) identifying positive and negative networks; (4) summing

up significant edges for each subject; (5) fitting a linear regression

model using summed up edges as regressors to predict body fat

values; (5) applying fitted model parameters to predict body fat values

in the left-out subject; (6) repeating the procedure for all iterations of

LOOCV.

At the edge selection step, only those edges that significantly cor-

related with the target variable in all iterations of LOOCV were

retained. Following LOOCV, permutation testing with 1000 iterations

was performed to determine the statistical significance of the model's

predictions. The corresponding permutation p-value signifies the pro-

portion of permutations that are greater or equal to the true

prediction.

4 | RESULTS

The MRI-assessed AT metrics were normalized to global body volume

and expressed as ratios. Correlations between body composition vari-

ables are presented in Figure 1.
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4.1 | Predicting body composition profiles:
34-node network

Six models were trained to predict body composition profiles (BMI,

fat%, TAT, VAT, SAT, IHL). LOOCV revealed four positive models

that significantly predicted body composition values. Notably, we

did not observe any significant negative networks. Positive net-

works associated with BMI (r = .46; R2 = .21), fat% (r = .45;

R2 = .20), TAT (r = .46; R2 = .21) and SAT (r = .31; R2 = .10) were

identified (Figure 2). The validity of our findings was confirmed

through permutation testing, which yielded the following p-values:

BMI (p = .005), fat% (p = .005), TAT (p = .001), and

SAT (p = .047).

Pairs of GM nodes exhibiting increased connectivity in the BMI

model included R Amyg-L FrP, R Ins-R mOFC, R Ins-L rACC, R Ins-R

NAc, R rACC-L rACC, and R rMFG- R FrP. Significant edges that

contributed to fat% prediction included R Ins-R mOFC, R Ins-R NAc,

R NAc-L lOFC, R rACC-L rACC, and rMFG- R FrP. Furthermore, R

Ins-R mOFC, R Ins-R NAc, R rACC-L rACC, and rMFG-R FrP nodes

were identified with regard to TAT, and finally, R Ins-R mOFC and

rMFG-R FrP pairs contributed to SAT prediction. The right insula

with the highest nodal degree emerged as a central area signifi-

cantly associated with predicting fat levels. Additional information

on the nodes can be found in the Supplementary Material

(Table S1).

4.2 | Predicting body composition profiles:
82-node network

The whole-brain analysis revealed two significant positive models pre-

dicting fat% (r = .40; R2 = .16) and TAT (r = .45; R2 = .20) (Figure S1).

The significance of the predictive model was further confirmed by

permutation testing which yielded p-values of .013 for fat% and .005

for TAT. No significant negative networks were identified.

Edges that were significantly associated with fat% included R

Ins-R mOFC, R Ins-R Caud, R Ins-R NAc, R rACC-L rACC, R rMFG-

R FrP, L NAc-L IFG (pars orbitalis), R NAc-L lOFC, and L IPL-L lOccG.

A similar network was identified in response to TAT including two

additional connections: L SMG-L PCC and R ITG-R PCC. In both net-

works, the right insula appeared as a main hub contributing to the fat

prediction.

5 | DISCUSSION

In the present study, we investigated the relationship between struc-

tural WM connectivity and the quantity of various AT compartments

in a sample of healthy male subjects using a connectome-based

machine learning approach. Our findings reveal that body composition

metrics, specifically BMI, fat%, TAT, and SAT, can be successfully pre-

dicted based on the properties of individual WM connectomes. Inter-

estingly, no significant associations between WM connectivity and

VAT or IHL were found contrary to our initial expectations based on

their association with metabolic dysfunctions and inflammation.

Alterations in connectivity patterns in 34-node network analysis

have been observed between R Ins and R mOFC, and R FrP and R

rMFG, as well as bilateral rACC, and R Ins and R NAc. Additionally,

interhemispheric connections related to BMI and fat% include L FrP-R

Amyg and L rACC-R Ins, and L lOFC-R NAc, respectively. The whole-

brain analysis confirmed the robustness of our results. It identified a

similar set of connections highlighting the replicability of our results

within the broader context of the entire brain network. Additional

connections identified in this analysis include posterior cingulate

(PCC) connectivity with the temporal lobe, accumbens—inferior fron-

tal, and parietal—occipital interactions. Observed findings expand

upon existing knowledge on brain connectivity in obesity signifying

increased WM fiber density between these regions linked to elevated

body fat.

The Ins is known to be involved in appetite regulation and proces-

sing sensory aspects of food. Receiving afferent projections, Ins pro-

cesses homeostatic signals related to energy status and integrates

them with gustatory, somatosensory, and olfactory aspects of food. It

then relays this converged information to higher-order cortical struc-

tures, a part of the executive control network regulating planning,

decision-making, inhibitory control, and cognitive flexibility (De Araujo

et al., 2020). Numerous task-based functional MRI (fMRI) studies

highlight abnormal insular activation in response to high-calorie versus

low-calorie foods in individuals with obesity (Frank et al., 2012;

Stoeckel et al., 2008). Moreover, evidence from resting-state fMRI

F IGURE 1 Correlations between body composition metrics and
age, with correlation strength represented by the correlation
coefficient, circle size, and color. Empty boxes indicate the absence of
significant correlations. BMI, body mass index; IHL, intrahepatic lipids;
SAT, subcutaneous adipose tissue; TAT, total adipose tissue; VAT,
visceral adipose tissue.
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F IGURE 2 Thirty-four-node-based significant positive networks predicting BMI (1), fat% (2), TAT (3), SAT (4). Amyg, amygdala; cACC, caudal
anterior cingulate cortex; Caud, caudate nucleus; cMFG, caudal middle frontal gyrus; BMI, body mass index; FrP, frontal pole; Ins, insular cortex;
Hipp, hippocampus; lOFC, lateral orbitofrontal cortex; L, left; mOFC, medial orbitofrontal cortex; NAc, nucleus accumbens; Pal, pallidum; PpG,
parahippocampal gyrus; Put, putamen; SFG, superior frontal gyrus; R, right; rACC, rostral anterior cingulate cortex; SAT, subcutaneous adipose
tissue; TAT, total adipose tissue; Thal, thalamus.

6 of 11 OKUDZHAVA ET AL.



underscores decreased insular connectivity suggesting impaired sig-

naling with regard to food-related interoceptive signals on the one

hand, and reward-driven inhibitory regulation on the other (Parsons

et al., 2022). This suggests that an interoceptive awareness system

might override reward-based decision-making and inhibition, further

enabling reward-seeking behavior that results in overeating. Interest-

ingly, our findings reveal significant connectivity changes between Ins

and key components of the reward network—mOFC and NAc. The

NAc, a part of the ventral striatum, plays a crucial role in nonhomeo-

static feeding (Kenny, 2011). Current theories on the role of NAc in

obesity and overeating are linked to “wanting” and “liking” aspects of
food intake (Morales & Berridge, 2020). Specifically, incentive-

sensitization theory suggests that individuals vulnerable to obesity

and binge-eating disorders may exhibit heightened “wanting” for

food, while “liking” remains unaffected. Neuroimaging studies sup-

porting this perspective reveal activation patterns similar to those

seen in drug addiction when individuals prone to overeating are

exposed to food cues (Devoto et al., 2018). Moreover, increased NAc

volume in overweight individuals has been linked to heightened

reward sensitivity and potential predisposition to weight gain (García-

García et al., 2020; Samara et al., 2021).

The role of OFC in integrating sensory, emotional, and cognitive

information to assign a value to reward stimuli is well established

(Seabrook & Borgland, 2020). Research involving rats with OFC

lesions showed they did not reduce their response to food cues after

food devaluation, emphasizing the OFC's role in maintaining knowl-

edge about reward value (Pickens et al., 2005). Rats exposed to a pal-

atable diet displayed similar behavior, suggesting obesogenic diets

might affect this mechanism (Reichelt et al., 2014). In lean individuals,

an fMRI study revealed decreased responses to devalued stimuli in

the OFC and Amyg, while maintaining responses to non-devalued

items (Gottfried et al., 2003). The evidence of increased OFC resting

connectivity (Parsons et al., 2022) and volumetric reductions in the

obese population (Chen et al., 2018; Raji et al., 2010) combined with

our findings of altered OFC connectivity may thus indicate inadequate

food representation in obese individuals due to altered reward devalu-

ation, promoting food overconsumption.

Furthermore, our investigation revealed aberrant connectivity in

key components of the cognitive control and inhibition network,

including FrP, rMFG, and rACC. A weaker MFG activation was

correlated with a greater delay discounting in women with obesity,

indicating heightened impulsivity towards immediate rewards

(Stoeckel et al., 2013). Moreover, reduced activation during complex

monetary tasks predicted greater subsequent weight gain

(Kishinevsky et al., 2012). Anterior Ins and ACC are major elements of

the salience network, implicated in detecting and prioritizing stimuli

from both the external environment and internal states. Resting-state

functional connectivity changes in the salience network have been

identified in obese individuals, although the direction of these changes

varies (Moreno-Lopez et al., 2016; Wijngaarden et al., 2015). Addi-

tionally, obesity-related changes in functional connectivity strength

between the salience and executive function networks, particularly

prefrontal areas, propose impaired integration of information about

the body's internal state, external cues, and cognitive control mecha-

nisms (Borowitz et al., 2020).

In line with these findings, DTI studies consistently demonstrate

FA reductions in the genu of CC, projecting to frontal areas including

OFC, FrP, and rMFG (Daoust et al., 2021; Kullmann et al., 2015).

Moreover, alterations in diffusion metrics in the body of CC, con-

nected to ACC and Ins, have been reported (Xu et al., 2013). This

convergence emphasizes the complementary nature of functional and

structural findings.

Intriguingly, our main findings are predominantly located in the

right hemisphere. Alonso-Alonso and Pascual-Leone (2007) proposed

that the right hemisphere dysfunction, primarily right PFC, could hold

a central role in the dysregulation of top-down control of behavior,

contributing to obesity development. While this hypothesis did not

receive widespread acceptance, recent meta-analyses indicate GM

and WM changes in the right hemisphere, with reduced OFC volume

and decreased FA in the genu of CC linked to higher BMI (Chen

et al., 2020; Daoust et al., 2021). These findings emphasize the poten-

tial relevance of hemispheric lateralization in obesity, encouraging fur-

ther investigation.

In contrast to the results discussed, parts of our hypotheses—spe-

cifically, the anticipated association between WM and VAT or IHL—

could not be confirmed. The lack of findings may originate from the

predominantly minor metabolic fluctuations within our sample, poten-

tially hindering the identification of associated WM pathology. Fur-

ther potential explanations might be due to methodological limitations

that are addressed in the following section. In our study, the robust

association between WM changes and SAT was observed predomi-

nantly because SAT displayed strong correlations with BMI, fat%, and

TAT reflecting a specific body composition trend. Our results suggest

that in our cohort, total body composition metrics reflect brain

changes the best, and further metabolic investigation is required to

delineate the relationship between connectivity and specific AT

depots.

6 | LIMITATIONS

Several limitations need to be taken into consideration in our study.

First, our research primarily focuses on brain regions associated with

hedonic and reward-related processes, which may not fully encompass

the interplay between homeostatic and non-homeostatic factors in obe-

sity regulation. Second, due to its small size and intricate localization,

accurately segmenting the hypothalamus proved challenging, limiting

our ability to explore its role. Third, with a sample size of 63 subjects,

there is a heightened risk of overfitting, potentially affecting predictions.

Fourth, our cross-sectional study design may not capture the complete

temporal dynamics of brain connectivity changes related to specific fat

compartments, highlighting the need for future longitudinal research.

Lastly, our sample lacks adequate age and sex/gender diversity, limiting

the generalizability of our findings to a broader demographic range. This

is significant given that men exhibit a stronger association between

brain abnormalities and excess fat compared to women. This is
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attributed to sex hormones potentially delineating distinct implications

for future interventions (Subramaniapillai et al., 2022).

7 | PERSPECTIVES

The ultimate goal of uncovering the complex relationship between

brain structure and function and body composition is to pave the way

for the development of effective and accessible intervention strate-

gies for obesity. It is important to note that there is no one-size-fits-

all treatment for obesity (Li et al., 2023). To address this complexity, it

is crucial to evaluate different obesity phenotypes, such as normal

weight obesity, metabolically obese normal weight, metabolically

healthy obese, and metabolically unhealthy obese individuals. Further-

more, psycho-behavioral phenotypes based on individual reward sen-

sitivity, cognitive control abilities, and mood and emotion regulation

can help identify individual biomarkers for preventive measures

(Camacho-Barcia et al., 2023). In future studies, it is essential to priori-

tize a comprehensive assessment of fat distribution and quantity.

Exploring these relationships in larger samples should be emphasized,

reducing the risk of overfitting and enabling more accurate predictive

outcomes. Importantly, expanding existing knowledge could be

achieved by using more sensitive tools for finer brain segmentation,

such as the hypothalamus, providing a more holistic understanding of

brain structure in obesity (Billot et al., 2020). Brown AT stands out as

a new promising target due to its role in burning excess fat. Enhancing

brown fat activation and promoting the “browning” of white adipo-

cytes could lead to improvements in glucose and lipid metabolism, as

well as insulin resistance in obese and diabetic individuals (Liu

et al., 2022). Understanding the interplay between AT compartments,

their temporal dynamic, and their interactions with metabolic and hor-

monal factors is essential for pinpointing dysfunctional brain networks

in obesity. Incorporating these aspects can offer valuable insights into

obesity prevention and treatment.

8 | CONCLUSION

Our study highlights the relationship between structural brain connec-

tivity and body composition metrics, emphasizing the role of non-

homeostatic brain regions in regulating eating behavior. Detailed

assessment of obesity phenotypes should further be considered to

untangle this complex relationship and enable tailored treatments,

ultimately leading to better health outcomes and a more sustainable

healthcare system.
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