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a b s t r a c t

Natural populations are of finite size and organisms carry multilocus genotypes. There are, nevertheless,
few results on multilocus models when both random genetic drift and natural selection affect the
evolutionary dynamics. In this paper we describe a formalism to calculate systematic perturbation
expansions of moments of allelic states around neutrality in populations of constant size. This allows us
to evaluate multilocus fixation probabilities (long-term limits of the moments) under arbitrary strength
of selection and gene action. We show that such fixation probabilities can be expressed in terms of
selection coefficients weighted by mean first passages times of ancestral gene lineages within a single
ancestor. These passage times extend the coalescence times that weight selection coefficients in one-
locus perturbation formulas for fixation probabilities. We then apply these results to investigate the
Hill–Robertson effect and the coevolution of helping and punishment. Finally, we discuss limitations and
strengths of the perturbation approach. In particular, it provides accurate approximations for fixation
probabilities for weak selection regimes only (Ns 6 1), but it provides generally good prediction for the
direction of selection under frequency-dependent selection.

© 2009 Elsevier Inc. All rights reserved.
1. Introduction

In the absence ofmutation, any finite populationwill ultimately
become genetically homogeneous as a result of random genetic
drift affecting the evolutionary dynamics. The fate of any allele is
then either its fixation or loss from the population. For this reason,
the fixation probability of a mutant allele is a standard measure
used to evaluate its evolutionary success (Crow and Kimura, 1970;
Hartl and Clark, 2007; Ewens, 2004; Gillespie, 2004). The fixation
probability captures the effects of both genetic drift and natural
selection on gene frequency change, from the appearance to the
eventual fixation or loss of an allele from the population. But the
interaction between genetic drift and selection is complicated and,
besides some special cases, population biologists have renounced
evaluating fixation probabilities exactly. We are thus left with
the necessity of approximating under even the simplest biological
scenarios.
Under one-locus genetics, the fixation probability of a mutant

allele is generally approximated by three different approaches.
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First, the population is assumed to be so large that the interactions
between mutants is neglected. This leads to the branching
process approximation of fixation probabilities (e.g., Haldane,
1927; Bartlett, 1955; Ewens, 2004). Second, the population is
assumed to be large and selection weak, which leads to the
diffusion approximation of fixation probabilities (e.g., Crow and
Kimura, 1970; Gillespie, 2004; Ewens, 2004). Finally, regardless
of population size, selection is assumed to be weak and exact
perturbation results are obtained for fixation probabilities near
neutrality. This leads to the evaluation of first-order perturbation
of fixation probabilities in the strength of selection, which allows
one to compute analytically measures of convergence stability for
continuous traits under a large spectrumof demographic scenarios
in spatially structured populations (e.g., Rousset, 2004; Lessard and
Ladret, 2007a; Lehmann, 2008).
For multilocus genetics, there are few results on fixation

probabilities when both selection and drift simultaneously affect
the evolutionary dynamics, and most results rely on the branching
process approximation (e.g., Barton, 1995; Otto and Barton, 1997).
Yet how these fixation probabilities depend on population size
appears important for Hill–Robertson effects, the evolution of
recombination, or the frequency-dependent selection occurring in
social evolution (e.g., Hill and Robertson, 1966; Otto and Barton,
2001; Wild and Taylor, 2004; Grafen, 2007).
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In this paper we extend the first-order one-locus perturbation
method to an nth-order multilocus perturbation approach. We de-
scribe a formalism to calculate systematic perturbation expansions
of moments of allelic states (expectations of sets of genes sampled
within or between individuals) under arbitrary gene action, which
covers epistatic interactions within genomes as well as synergistic
interactions between them (thus including social behaviors). This
allows us to evaluate nth-order Taylor polynomials in the strength
of selection ofmultilocus fixation probabilities (long-term limits of
the moments). We then extend algorithms for deterministic mod-
els in order to obtain analytical approximations of fixation proba-
bilities under aWright–Fishermodel of reproduction.We illustrate
the method and the approximations by evaluating fixation proba-
bilities of alleles and gametes under two two-locus two-allele set-
tings, one involving the Hill–Robertson effect and the other the
coevolution of helping and punishment.

2. Model

2.1. Notation for L-locus fixation probabilities

The analysis presented in this paper is restricted to a haploid
population of constant size N with no further division into
demographic classes (e.g. no age structure, separate sexes, or
geographic structure). We assume that each individual bears L loci
and that a mutant and a resident allele segregate at each locus (i.e.,
L-locus two-allelemodel, Slatkin, 1971; Christiansen, 1999), which
gives 2L different gamete types in the population.
Our notation (Table 1) draws on the general notation for

multilocus models in infinite populations of Kirkpatrick et al.
(2002) and Roze and Rousset (2008). We denote by pl(i) the
frequency (0 or 1) of the mutant allele at locus l in individual i
of the population. Products of such random variables are noted
pV (i) =

∏
l∈V pl(i), where V is a set of distinct loci sampled from

the same individual in the population (either the L distinct loci
or a subset of it). The average of pV (i) over all individuals in the
population is denoted

pV =
1
N

∑
i

pV (i), (1)

which is itself a random variable. In the abovementioned works,
indicator variables are defined as ζl(i) = pl(i) − ℘l(i) relative to
some reference values ℘l(i) usually (but not necessarily) taken
as the average allele frequency at locus l in the population. This
choice of reference values reduces the number of variables that
need to be considered in infinite populationmodels, but as no such
simplification appears in the finite populationmodelwe do not use
such variables here.
Sets of loci can also be sampled from distinct individuals; for

instance from two individuals, in which case the average of the
product of mutant alleles pV (i)pW (j) sampled from the same or
distinct loci in two distinct individuals is denoted

pV/W =
1

N(N − 1)

∑
i

∑
i6=j

pV (i)pW (j), (2)

where the ‘‘/’’ symbol separates sets of loci sampled from distinct
individuals. We will refer to sets of distinct loci sampled from
the same individual and sets of similar or distinct loci sampled
from different individuals as sets of position. A position refers
to a particular locus in a particular context (Kirkpatrick et al.,
2002, p. 1729); for instance, the place in the genome where the
maternally inherited copy of a given gene resides, or the place in
the genome of a neighbor of a given individual where a particular
gene affecting a social behavior resides.
More generally sets of positions can be sampled from an

arbitrary number of distinct individuals in the population.We thus
introduce the random variable pS , where S ≡ S1/S2/ . . . /S|S|, and
where each Si is a set of loci sampled from the same individual
Table 1
List of symbols.

Symbol Definition

L Number of loci.
N Population size.
r Recombination rate.
wi Fitness of individual i.
fi Fertility of individual i.
pl(i) Frequency (0 or 1) of the mutant allele at locus l in individual i.
pV (i) Frequency (0 or 1) that all loci in the set V in individual i carry the

mutant allele.
pV/W/... Average of pV (i)pW (j) . . . variables over all individuals in the

population sampled without replacement.
p
V
_
/ W

_
/ ...

Average of pV (i)pW (j) . . . variables over all individuals in the
population sampled with replacement.

EpS Expectation of pS .
p Vector of the pS variables (vector of random variables).
Ep Vector of the expectations of the pV variables (vector of EpS

variables).
℘ Vector of expectations of reference variables.
v Vector of deviations (v = Ep− ℘).
d Vector of the sum of deviations (d ≡

∑
∞

t=0 v(t)).
aU Row of A giving the coefficients describing the dynamics of pU .
u Left eigenvector of A◦ associated to a unit eigenvalue.
e Right eigenvector of A associated to a unit eigenvalue.
A Transition matrix of the EpS variables.
A℘ Matrix obtained by row replacement of the rows of A.
Ac Matrix with each row consisting of the left eigenvector of A◦

associated to its unit eigenvalue.
Z Fundamental matrix associated to A◦ .

and |S| is the total number of different individuals fromwhich sets
of loci have been sampled. The variable pS is obtained in a direct
generalization of Eq. (2), by averaging (without replacement) over
all |S| distinct individuals. Conditional on some initial state of the
population, the expectation of pS(t) at time t is given by

E[pS(t)] =
∑
p(t)

pS(t)Pr(p(t)), (3)

where p(t) is a vector collecting the frequencies of the 2L gamete
types in the population at time t; Pr(p(t)) is the distribution of p(t)
at time t conditional on the initial state of the population being
p(0); and the sum is over all possible values of p(t).Wewill use the
expectation operator notation without brackets as a shorthand for
expectation conditional on the initial state p(0) of the population,
e.g., EpS(t) ≡ E[pS(t)].
For a single locus denoted A, EpA represents the probability that

an individual sampled at random from the population carries the
mutant allele at that locus, and EpA/A is the probability that two
distinct individuals sampled at random carry the mutant allele.
For two loci, denoted A and B, EpAB is the probability that a single
individual carries the mutant alleles at both loci while EpAB/A/B is
the probability that, among three randomly sampled individuals,
one carries the mutant alleles at both loci, another individual
carries the mutant allele at locus A and the third individual carries
the mutant allele at locus B. Note that one can also interpret the
subscripts in the EpS variables as being ‘‘alleles’’ or ‘‘gametes’’
(e.g., EpA and EpAB, are respectively, the frequency of allele A and
gamete AB if the mutant alleles are denoted by the same letter as
the locus at which they segregate). The EpS variables can thus be
interpreted as moments of allelic states in exactly the same way
as is usually done in population genetics (Wright, 1931; Crow and
Kimura, 1970; Gillespie, 2004), and we will refer to them as such.
We will generically denote by pU(t) the frequency of a focal

gametic combination U at time t in the population, where U is
the set of mutant alleles at L distinct loci that can be sampled
from the same individual. In the absence of mutation, the focal
gametic combination goes either to fixation (pU(∞) = 1) or is
lost from the population (pU(∞) = 0). The fixation probability
πU of this gamete is thus its expected frequency in the long-term:
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πU = EpU(∞). Our main aim in this paper is to obtain the nth-
order Taylor polynomials of πU with respect to an overall measure
δ of the strength of selection, which may conveniently be defined
as the largest (in absolute value) of a set of selection coefficients.
The nth-order Taylor polynomial of the fixation probability πU of
the focal gamete (or of any other quantity z) will be written as

π
[n]
U =

n∑
k=0

δk

k!
π
(k)
U , (4)

where π (k)U is the kth derivative of πU with respect to δ evaluated
at δ = 0 (nth-order perturbation). Generically the superscripts
[n] and (n) thus denote, respectively, the nth-order Taylor
polynomial and derivative of any quantity. But a special role in
our formalization will be played by zero-order Taylor polynomials,
which refer to quantities evaluated in the neutral process (no
selection, δ = 0). For ease of presentation, we will use the
superscript ◦ to identify any quantity evaluated under neutrality
(e.g.,π [0]U = π

(0)
U = π

◦

U ). Further, in all explicit examples presented
below, we will use only first- and second-order derivatives and
Taylor polynomials. In order to simplify the presentation of these
examples, we will use dot and double dot accents (ż, z̈) to denote
first and second derivatives of any quantity zwith respect to δ, and,
dot and double dot exponents to denote (z �, z ��), first-, and second-
order Taylor polynomials (e.g., z � = z◦+ δż, z �� = z◦+ δż+ δ2z̈/2).
We will evaluate π [n]U by evaluating the perturbations π (n)U ,

which will be carried out by decomposing πU into a sum of ex-
pected gamete frequency changes over one generation (Rousset,
2003; Lessard and Ladret, 2007b), and then compute the perturba-
tions of expected gamete frequency change. To this end, we denote
the change in expected gamete frequency fromgeneration t to t+1
by1EpU(t) ≡ EpU(t + 1)− EpU(t). With this, the fixation proba-
bility can be written as

πU = EpU(∞)

= pU(0)+
∞∑
t=0

1EpU(t). (5)

The change in expected gamete frequency can itself be expanded
in terms of conditional changes as

1EpU(t) =
∑
p(t)

Pr(p(t))E[1pU |p(t)], (6)

where E[1pU |p(t)] is a shorthand for the expected conditional
change in allele frequency [E[pU(t + 1)|p(t)] − pU(t)]. Our goal
is to express E[1pU |p(t)] as a linear function of allelic states, and
then integrate such expressions over all sample paths. For ease of
illustration, we first present the calculations under neutrality and
first-order effects of selection, then illustrate these calculations
with simple examples, and finally generalize to higher-order
perturbations.

2.2. Neutrality

Under neutrality, Eq. (6) becomes

1Ep◦U(t) =
∑
p(t)

Pr◦(p(t))E◦[1pU |p(t)], (7)

where both the expected change in gamete frequency and the
distribution of gamete frequencies are evaluated in the neutral
process (δ = 0). As in infinite populations, E◦[1pU |p(t)] can be
expressed as

∑
X∈X a

◦

XpX (t) for some set of positions X, where
the a◦X ’s are transmission coefficients (Kirkpatrick et al., 2002)
describing the effect of recombination, drift, or both (no selection)
on moments of gamete frequency change, and the set X may
involve sets of gene copies sampled from the same and from
different individuals.
In order to illustrate these notions, we now introduce a two-

locus model with a focal gamete consisting of the mutant alleles at
loci A and B. Because recombination entails that alleles in a gamete
may have distinct parents of origin, we also have to consider the
dynamics of Ep◦A/B in order to account for that of Ep

◦

AB (Kimura,
1963; Ewens, 2004); where Ep◦A/B is the probability that, among
two different individuals, one carries the mutant allele at locus
A and the other carries the mutant allele at locus B. In order to
calculate these variables explicitly, we assume a Wright–Fisher
randomunion of gametemodel (Karlin, 1968; Ewens, 2004, p. 130).
Namely, N haploid parents produce a large number of gametes
that fuse randomly to form diploid zygotes (self-fertilization thus
occurs with probability 1/N), which is immediately followed by
meiosis with recombination rate r to produce haploid juveniles.
Finally, N adults are randomly sampled among the juveniles to
form the next generation.
Under this life-cycle, the probability that two genes, sampled

from two distinct loci from the same individual, descend from the
same individual in the previous generation is (1− r)+ r/N , where
the second term accounts for self-fertilization. In addition,we need
the probability that two genes sampled from distinct loci from
two distinct individuals, descend from the same individual in the
previous generation, which is given by 1/N , whereby

E◦[pAB(t + 1)|p(t)] =
(
1− r

(
N − 1
N

))
pAB(t)

+ r
(
N − 1
N

)
pA/B(t)

E◦[pA/B(t + 1)|p(t)] =
1
N
pAB(t)+

(
N − 1
N

)
pA/B(t). (8)

By subtracting pAB(t) on both sides of the first equation and pA/B(t)
from the second, we obtain

E◦[1pAB|p(t)] = −r
(
N − 1
N

) (
pAB(t)− pA/B(t)

)
E◦[1pA/B|p(t)] =

1
N

(
pAB(t)− pA/B(t)

)
, (9)

which shows that the transmission coefficients determining
E◦[1pAB|p(t)] are −r (N − 1) /N and r (N − 1) /N and those
determining E◦[1pA/B|p(t)] are 1/N and−1/N .
More generally, we have

1Ep◦U(t) =
∑
p(t)

Pr◦(p(t))
∑
X∈X

a◦XpX (t)

=

∑
X∈X

a◦X
∑
p(t)

Pr◦(p(t))pX (t), (10)

where the last sum is the expectation of pX (t) in the neutral
process, denoted Ep◦X (t), so that

1Ep◦U(t) =
∑
X∈X

a◦XEp
◦

X (t), (11)

andwhen U stands for a single gene copy, all a◦X are null, whenever
there are no mutations.
For the random union of gametes model described by Eq. (9),

application of Eq. (11) gives

1Ep◦AB(t) = −r
(
N − 1
N

) (
Ep◦AB(t)− Ep

◦

A/B(t)
)

1Ep◦A/B(t) =
1
N

(
Ep◦AB(t)− Ep

◦

A/B(t)
)
. (12)
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By subtracting the second equation from the first one, themeasure
of expected linkage-disequilibrium (LD) D◦AB(t) ≡ Ep◦AB(t) −
Ep◦A/B(t) can be found to satisfy the relation 1D◦AB(t) =

− (r + (1− r)/N)D◦AB(t), which yields D
◦

AB(t) = [(1 − r)(N −
1)/N]tDAB(0), where DAB(0) = pAB(0) − pA/B(0). By substituting
this result into Eq. (12), itself inserted into Eq. (5), we find that the
fixation probability of the focal gamete is

π◦AB = pAB(0)−
∞∑
t=0

r
(
N − 1
N

)
D◦AB(t)

= pAB(0)−
r(N − 1)DAB(0)
1+ r(N − 1)

. (13)

This result has been derived previously with different approaches
[e.g., Karlin and McGregor, 1968, Table 1; Ewens, 2004, eq. 3.138;
wemention that themeasure of LD defined in this earlierworkwas
pAB−pApB = (pAB−pA/B)(N−1)/N since pApB = pAB/N+pA/B(N−
1)/N].

2.3. First-order effects

Taking the derivative on both sides of Eq. (6) with respect to δ
produces the first-order perturbation

1ĖpU (t) =
∑
p(t)

[
Ṗr(p(t))E◦[1pU |p(t)] + Pr◦(p(t))Ė[1pU |p(t)]

]
. (14)

Using the expression E◦[1pU |p(t)] =
∑
X∈X a

◦

XpX (t) allows us to
simplify the first term in Eq. (14) as∑
p(t)

Ṗr(p(t))E◦[1pU |p(t)] =
∑
X∈X

a◦X
∑
p(t)

Ṗr(p(t))pX (t)

=

∑
X∈X

a◦X ĖpX (t). (15)

Likewise to the neutral case, Ė[1pU |p(t)] can be written as∑
Y∈Y ȧYpY (t) for some set Y, where the ȧY ’s are first-order

selection coefficients that do not depend on any random variable.
For instance, for a one-locus selection model in a random mating
population with a mutant allele at locus A having a selective
advantage δsA over the resident, we have to first-order

Ė[1pA(t)|p(t)] = sA
(
pA(t)− p2A(t)

)
. (16)

The right-hand side of this equation is the classical first-order
approximation of the haploid one-locus selection model [Wright,
1969, p. 30; Crow and Kimura, 1970; Gillespie, 2004, i.e., first-
order Taylor series of δsApA(t)(1−pA(t))/(1+δsApA(t)) evaluated
at δ = 0]. The first-order selection coefficients determining
Ė[1pA(t)|p(t)] are thus given by sA and−sA.
More generally, we have∑

p(t)

Pr◦(p(t))Ė[1pU |p(t)] =
∑
Y∈Y

ȧY
∑
p(t)

Pr◦(p(t))pY (t)

=

∑
Y∈Y

ȧYEp◦Y (t), (17)

and collecting all terms gives

1ĖpU(t) =
∑
Y∈Y

ȧYEp◦Y (t)+
∑
X∈X

a◦X ĖpX (t). (18)

This equation extends the formula for the first-order perturbation
of moments of allelic states in a one-locus model (Rousset, 2003;
Lessard and Ladret, 2007b) to the multilocus case. For a one-locus
model the second term in Eq. (18) is null in the absence ofmutation,
since all a◦X are null in that case.
For the one-locus selection model described by Eq. (16),

application of Eq. (18) gives

1ĖpA(t) = sA

(
Ep◦A(t)− Ep

◦

A
_
/ A
(t)
)
, (19)
where Ep◦
A
_
/ A
(t) is the probability that two individuals sampled

with replacement carry themutant allele (Ep◦
A
_
/ A
(t) = E◦[pA(t)2]).

This probability can be expanded as

Ep◦
A
_
/ A
(t) =

1
N
Ep◦A(t)+

(
N − 1
N

)
Ep◦A/A(t), (20)

where Ep◦A/A is the probability that two individuals sampled
without replacement carry the mutant, which gives

1ĖpA(t) = sA

(
N − 1
N

) (
Ep◦A(t)− Ep

◦

A/A(t)
)
. (21)

For the Wright–Fisher scheme of reproduction, the variable
D◦A(t) ≡ Ep

◦

A(t) − Ep
◦

A/A(t) satisfies D
◦

A(t) = [(N − 1)/N]
t DA(0)

because Ep◦A/A(t+1) = (1/N)Ep
◦

A(t)+[(N − 1)/N] Ep
◦

A/A(t), where
1/N is the probability that two individuals descend from the same
parent. By substituting this result into Eq. (21), itself inserted into
Eq. (5),we find that the first-order Taylor polynomial of the fixation
probability is given by

π �A = pA(0)+ δ

[
∞∑
t=0

sA

(
N − 1
N

)
D◦A(t)

]

= pA(0)+ δsA

(
N − 1
N

)
NDA(0). (22)

This result has been derived previously, and when there is initially
a single mutant allele in the population we have pA(0) =
DA(0) = 1/N (Hill, 1972, eq. 7; Rousset and Billiard, 2000; Lessard
and Ladret, 2007b). As pointed out by Lessard and Ladret, we
can compute the derivative of the ultimate expected frequency
(fixation probability) as the sum of expected derivatives in
each generation if the series of expected derivatives converges
uniformly in a neighborhood of δ = 0. They showed this for the
one-locus Cannings exchangeable model, and this follows more
generally from Eq. (A.10) (see explanations in the Appendix right
after this equation).

2.4. nth-order effects

2.4.1. Recursions for moments of allelic states
The nth-order perturbation of the conditional expected change

in gamete frequency can be written as

E(n)[1pU |p(t)] =
∑
Xn∈Xn

a(n)Xn pXn(t) (23)

for some setXn, where the a
(n)
Xn are nth-order selection coefficients

that do not depend on any random variable. For any n > 0, these
coefficients satisfy∑
Xn∈Xn

a(n)Xn = 0, (24)

because, when every individual in the population bears the same
genotype (e.g., all pXn = 1), no systematic change in gamete
frequency can occur over a selection, recombination or migration
phase. This logic applies to the expected change in frequency
of any genotype for any L-locus model, and for any submodel
involving only a subset of loci of positions. Thus, in a three-locus
model,

∑
Wn∈Wn a

(n)
Wn = 0 for every subset Wn of all sets of

positions involving only one locus, or at most two loci. This implies
that

∑
W∈Wn a

(n)
Wn = 0 for every subset Wn of sets of positions

each involving exactly two given loci. Thus with 3 loci, 7 non-
overlapping sets of coefficients each add up to zero, one set for
each locus, one set for each pair of locus, and the set of coefficients
involving all three loci.
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Differentiating the left- and right-hand side of Eq. (6) n times
with respect to δ, using Leibniz’s rule for the differentiation of
products, inserting Eq. (23), and rearranging allows us to write

Ep(n)U (t + 1) = Ep
(n)
U (t)+

n∑
j=0

(
n
j

)∑
X∈Xj

a(j)X Ep
(n−j)
X (t). (25)

On substitution of this equation into the expansion Ep[n]U (t + 1)
(see Eq. (4)), we obtain after rearrangements a recursion on Taylor
polynomials:

Ep[n]U (t + 1) = Ep
[n]
U (t)+

n∑
j=0

δj

j!

∑
X∈Xj

a(j)X Ep
[n−j]
X (t). (26)

Since a similar recursion can be written for the Taylor polynomials
Ep[n−j]X (t) of any set of allelic states X appearing on the right-hand
side of Eq. (26), the recursion for Ep[n]U can be closed (the same logic
also applies to Eq. (25)). More generally, one can evaluate in this
way the nth Taylor polynomial Ep[n]S of any moment of allelic state
S in the population, be it the complete genetic description of the
population.

2.4.2. Matrix representation
The dynamics of the Taylor polynomials Ep[n]U (t) of the focal

gamete (or more generally of any moment of allelic state) as
described by Eq. (26) are linear in the expectations, which suggests
that they can be evaluated using matrix algebra. To this end, we
gather all the moments affecting the dynamics of Ep[n]U (t) into a
vector, except the lower-order polynomials of the highest-order
moment of any set S of positions involved in the recursion (if we
have Ep��S(t), we do not consider Ep

�
S(t)nor Ep

◦

S(t) in the vector).We
then augment this vector with any additional moment required to
close the system of recursions. The vector gathering the total set
S of positions closing the system is denoted Ep(t) ≡ (EpS(t))S∈S ,
and it satisfies the recursion

Ep(t + 1) = AEp(t), (27)

for some matrix A collecting the transmission and selection
coefficients appearing in Eq. (26). Importantly, Eq. (27) is not
a direct matrix formulation of Eq. (26), as it involves only the
highest-order polynomial of any set of positions S involved in
Eq. (26). This allows us to shrink the size of A, but with the charge
of carrying terms in excess powers in δ, which can subsequently be
disposed of by taking a Taylor series (see below).
In order to illustrate these concepts we use the two explicit

examples introduced above. For the two-locus neutral random
union of gamete model (Eq. (12)), we need the vector Ep(t) ≡
(Ep◦AB(t), Ep

◦

A/B(t)) to follow thedynamics of Ep
◦

AB(t). The dynamics
of this vector is described by the matrix with neutral coefficients
given by

A◦ =

1− r
(
N − 1
N

)
r
(
N − 1
N

)
1
N

N − 1
N

 . (28)

For the the one-locus selectionmodel (Eq. (21)), we need the vector
Ep(t) ≡ (Ep�A(t), Ep

◦

A/A(t)) to track the dynamics of Ep
�
A(t). The

dynamics of this vector can be described by the transition matrix

A� = A◦ + δȦ, (29)

where

A◦ =

(
1 0
1
N

N − 1
N

)
, (30)
gathers all neutral coefficients, while

Ȧ =

sA (N − 1N
)
−sA

(
N − 1
N

)
0 0

 , (31)

gathers all first-order selection coefficients.More generally,we can
express A as a linear combination of matrices A(n) gathering all the
nth-order a(n)Xn selection coefficients.
These examples illustrate that A◦ is a row stochastic matrix

(each element ij is either null or positive, and the rows sum up to
one, which entails at least one eigenvalue 1). But more generally,
A◦ may involve several independent neutral systems, so that A◦ is
a diagonal block matrix, where each block is the transition matrix
of a Markov chain (Grinstead and Snell, 1997; Iosifescu, 2007),
one for each set of sets of positions involving exactly a given
number of distinct loci. For instance, for a two-locusmodelwemay
need to evaluate Ep◦(t) ≡ (Ep◦A(t), Ep

◦

A/A(t), Ep
◦

AB(t), Ep
◦

A/B(t)),
whose dynamics under Wright–Fisher random union of gametes
is described by the two-block diagonal matrix

A◦ =



1 0 0 0
1
N

N − 1
N

0 0

0 0 1− r
(
N − 1
N

)
r
(
N − 1
N

)
0 0

1
N

N − 1
N

 (32)

(see also Eq. (A.2) of the Appendix). The element ij of A◦ gives the
probability that a set of genes sampled in the set of positions i
descend from the set of positions j in the previous generation. As
can be seen from Eq. (32) (or Eq. (A.2)), all elements ij of A◦ are
null when i and j involves sets of positions with a different number
of loci (one loci is involved in the set of positions {A,A/A} while
two distinct loci are involved in the set of positions {AB,A/B}).
All properties of A◦ can thus be deduced from the properties of
each block because each neutral system in a block is a Markov
chain independent from those in the other blocks, and we assume,
without obvious biological restrictions, that each block is a mixing
Markov chain (Iosifescu, 2007, p. 126; a Markov chain is mixing if
it eventually converges to a stable stationary distribution). These
examples also illustrate that in the presence of selection, the A
matrix no longer has the block structure of A◦, and is no longer a
stochastic matrix as some of its elements can be negative (e.g., Eq.
(29)), though all its row sums are still equal to 1, so it still has
eigenvalue 1.

2.5. Fixation probabilities and mean first passage times

2.5.1. Taylor polynomials of fixation probabilities
The Taylor polynomial π [n]U of the fixation probability is given

by Ep[n]U (∞); namely, the long-term limit of the moments in the
absence of mutation, which can either be directly obtained from
the vector Ep[n](∞) (Eq. (27)) or by summing up 1Ep[n]U (t) from
the time of the appearance of the mutant gamete until its eventual
fixation in, or loss from, the population (Eq. (5), see also Eqs. (13)
and (22)). While the first approach seems at first glance more
direct, it involves the evaluation of the eigenvectors ofA associated
with its unit eigenvalues, and the deletion of the excess powers
in δ mentioned above by taking a Taylor series. As will be shown
below, the second approach involves only the inversion of amatrix
considered at neutrality (derived from A◦). This approach has been
used previously in the one-locus model because it allows one
to express fixation probabilities in terms of selection coefficients
and coalescence times (Rousset, 2003; Lessard and Ladret, 2007b).
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The relationship between coalescence times and measures of
genetic association (Slatkin, 1991), such as relatedness coefficients,
then gave a link between fixation probabilities and concepts of
inclusive fitness theory (Hamilton, 1964, 1970). We will extend
this interpretation of fixation probabilities to multilocus models.
By iterating Eq. (27) one could try to express effects of

selection in terms of
∑
∞

t=0 A
t
= (I − A)−1 where I is the identity

matrix. However, matrix inversion is not directly applicable to the
I− Amatrix because A has unit eigenvalues. Correspondingly, ex-
pressions like

∑
t 1ĖpU(t) generate sums like

∑
t
∑
Z∈Z ȧZEp

◦

Z (t)
(e.g. Eq. (18)), which cannot be written as

∑
Z∈Z ȧZ

∑
t Ep
◦

Z (t)
because each sum over t is infinite. Still, the whole expression∑
t
∑
Z∈Z ȧZEp

◦

Z (t) is finite, which is made possible by the fact that∑
Z∈Z ȧZ = 0, and which was implicitly used in our two examples

(see Eqs. (13) and (22)).Wemay thus consider a reference value℘◦Z
such that

∑
t
∑
Z∈Z ȧZEp

◦

Z (t) can be written as
∑
t
∑
Z∈Z ȧZv

◦

Z (t),
where v◦Z (t) ≡ Ep◦Z (t) − ℘

◦
Z(t) is a centered variable. If every∑

t v
◦

Z (t) is finite (for instance because v
◦

Z (t) vanishes geomet-
rically fast) we can evaluate

∑
Z∈Z ȧZ

∑
t v
◦

Z (t). For instance, the
variables D◦AB(t) and D

◦

A(t) in Eqs. (13) and (22) vanish geometri-
cally fast and allowed us to evaluate the sum. Further, fromEqs. (5),
(25) and (26), we can compute the nth derivative or the nth Taylor
polynomial of the fixation probability as, respectively,

π
(n)
U =

n∑
j=0

(
n
j

)
a(j)U · d

(n−j), (33)

and

π
[n]
U = pU(0)+

n∑
j=0

δj

j!

(
a(j)U · d

[n−j]
)
, (34)

where · denotes the dot product, aU is the row of A gathering the
coefficients describing the dynamics of EpU and

d ≡
∞∑
t=0

v(t) (35)

is the sum of the vectors v(t) ≡ (vS(t))S∈S ≡ (EpS(t)− ℘S(t))S∈S
(now considered out of neutrality).
In the Appendix (‘‘Recursion for v(t)’’), we show that appropri-

ate choices for the reference℘◦Z values are the values EpU(t) for the
reference set R in which all loci involved in S are sampled in the
same individual (e.g. if S = A/AB/C then three loci are involved
and R = ABC; for the two-locus random union of gamete model
presented above R = AB, while for the one-locus model R = A).
Then, v(t) satisfies the recursion v(t + 1) =

(
A− A℘

)
v(t), where

A℘ is a matrix obtained directly from the elements of A (no new el-
ement needs to be evaluated separately), and such that I−A+A℘
is non-singular, whereby

d =
(
I− A+ A℘

)−1 v(0). (36)

The Taylor polynomials of d appearing in Eq. (34) consist of the
perturbations d(n) of d, which involve nth-order derivatives of
the matrix

(
I− A+ A℘

)−1, which can themselves be expressed
as a linear combination of the matrices A(n) gathering the
selection coefficients weighted by powers of

(
I− A◦ + A◦℘

)−1
(e.g. Eq. (A.14); Singh, 1990). Hence, only inversions of matrices
computed under neutrality (δ = 0) are required to obtain the
perturbations expansions of the fixation probabilities.

2.5.2. Forward and backward neutral processes
In the one-locus model, the elements of d◦ are mean

coalescence times between gene copies sampled at two or
more different homologous positions. We will now extend this
relationship and show that it holds more generally, for any set of
positions in a multilocus setting. For ease of presentation, consider
that A◦ consists of a single neutral system in the following (as
all the expressions hold with all matrices being diagonal block
matrices where each block satisfies the given arguments). It is
first useful to recall that the transition matrix A◦ used in Ep◦(t +
1) = A◦Ep◦(t) describes a forward process; that is, the change in
moments of allelic states from the present, t = 0, forwards in time.
But A◦ can also be used to describe a backward process

u(h+ 1) = u(h)A◦, (37)

where h proceeds from the present, h = 0, backwards in time,
and where element uV (h) of u(h) gives the probability that the
ancestral lineages of a set of genes sampled from a given set of
positions in the present will be in the set of positions V at time
h. For instance, for the two-locus random union of gamete model
(Eq. (28)), we have u(h) = (uAB(h), uA/B(h)), where uAB(h) is the
probability that the ancestral lineages of two genes sampled at loci
A and B will reside in those loci sampled from the same individual
at time h, while uA/B(h) is the probability that these lineages will
reside in loci sampled from two different individuals. For the one-
locus model (Eq. (30)), we have u(h) = (uA(h), uA/A(h)), where
uA(h) is the probability that the ancestral lineages of two genes
sampled at loci A will be in the same individual at time h, while
uA/A(h) is the probability that these ancestral lineages will reside
in loci sampled from different individuals.
In a one-locus situation, ancestral lines can only coalesce in the

same ancestor so that uA(∞) = 1while uA/A(∞) = 0 (theMarkov
chain describing the neutral system is absorbing). But in the pres-
ence of recombination, gene lineages residing in the same indi-
vidual can also reach positions in different individuals so that the
circulation of several distinct gene lineages between several gene
positions eventually reaches a stationary distribution. In general
there are thus both transient states (all those involving more than
one position at a locus) and a recurrent set of states. The stationary
distribution (probability vectoru) over all ancestral sets of lineages
is given by the left unit eigenvector of the Markov transition ma-
trix (i.e., u = uA◦). This stationary distribution provides the mean
recurrence time (TS = 1/uS); that is, the mean number of steps
it takes (looking backwards in time) for the ancestral lines of a set
of genes, presently in the set of positions S, to return to S. But the
elements of A◦ also allow us to evaluate TSV , which is the expected
number of steps it takes for the ancestral lines of a set of genes in
S to reach the set of positions V , and where by definition TSS = 0
(thus being distinct from the recurrence time TS).
For recurrent states S, we show in the Appendix that the

elements SV of
(
I− A◦ + A◦℘

)−1 are given by (TRV − TSV ) uV + δRV ,
where δRV is the usual Kronecker’s delta notation (Eqs. (A.15)–
(A.21)). With this result, we find that for any recurrent state S, the
Sth element of d◦ is

d◦S =
∑
V∈V

(TRV − TSV ) uVpV (0), (38)

where we again consider the reference set R to be the set in
which all loci involved in S are sampled in the same individual
(moreover, in the same gamete for diploid organisms). This shows
that, regardless of the strength of selection, and the complexity of
the interaction within and between genomes, πU can be expressed
in terms of selection coefficients weighted by mean first passage
times; that is, in terms of genealogical ties.
For transient states S, Eq. (38) is extended in terms of the

mean time TSV spent in transient states V before absorption in
the recurrent set (mean sojourn time), and of the probability
distribution of transient states through which the recurrent set is
first entered, all conditional to the initial state S (Eq. (A.27)). Such
sojourn times can further be related to coalescence times when
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the reference set R is absorbing, as occurs in the one-locus model.
Indeed, the mean coalescence time TSR is the mean time before
the chain is absorbed in R, given that it starts in S, and TSR is thus
the sum over all mean times spent in the different transient states
before coalescence in state R occurs (i.e., TSR =

∑
trans V∈V TSV ,

where the sum is over all transient states, Eq. (A.29)). In particular,
for the one-locus case inwhich there is a single initialmutant allele
at locus, say A, the reference set is R =A, while pA(0) = 1/N and
pV (0) = 0 otherwise. With this we have d◦S = −TSA/N (which
can be obtained directly from Eq. (38) for this special case or, more
generally, from Eq. (A.28)), and we have

π̇A = −
1
N

∑
S∈S

ȧASTSA, (39)

which matches previous results (Rousset, 2003, eq. 15; Lessard
and Ladret, 2007b, eqs. 48–50). These results further reduce when
selection depends only on the genic variance in the population as
described by Eq. (16). Then S = {A,A/A}, and for a randommating
population TAA = 0, T(A/A)A = N , and ȧA ≡ (ȧAA, ȧ(A/A)A) =
(sA(N − 1)/N,−sA(N − 1)/N). On substitution of these variables
into Eq. (39), we recover the result established above (Eq. (22)):

π̇A = sA

(
N − 1
N

)
. (40)

3. Applications

We will present applications of our results by evaluating
explicitly fixation probabilities of alleles and gametes for two-
locus two-alleles models under the Wright–Fisher random union
of gamete life-cycle introduced above (Ewens, 2004). For this
purpose, we first detail the construction of multilocus recursions
for this reproductive scheme.

3.1. Recursions for Wright–Fisher panmictic population

In order to construct A under our life cycle assumptions, we
need recursions for EpS variables over the reproduction and the
recombination phase. Recall that S = S1/S2/ · · · /S|S|, where each
Si is a set of loci sampled from the same individual and |S| denotes
the total number of different individuals in S. The recursions for the
EpS variablesmust take finite population size into account, and can
be directly obtained from recursions derived by Roze and Rousset
(2008, eqs. 40-42) for the infinite island model with finite deme
size, when the dispersal rate is set to zero.
The |S| different individuals from which sets of positions in S

have been sampled in a given offspring generation may have de-
scended from |X | different individuals from the parental genera-
tion (1 6 |X | 6 |S|). These parents carry the sets of positions
S in a different way because coalescence merges and recombina-
tion rearranges sets of positions. The reorganized sets of positions
in the parental generation is denoted X = X1/X2/ · · · /X|X |, and
the contribution of parent i to the offspring generation depends on
its fitness (expected number of offspring reaching the adult stage),
which can bewritten aswi = fi/f , where fi is the relative fecundity
of individual i and f = 1

N

∑
k fk is the average relative fecundity of

individuals in the population.
In order to simplify the presentation of the recursions of

moments of allelic states, we drop from now on the time indices
t attached to any quantity z, and use a prime (z ′) to denote any
quantity after the reproduction stage and a double prime (z ′′)
to denote any quantity after the recombination stage. Hence, a
recursion over the life cycle goes from z to z ′′, which corresponds to
go from z(t) to z(t+1) in thenotationused in theprevious sections.
With this and the above, the conditional expected moments of
allelic state after reproduction is given by

E[p′S |p] =
∑
X∈Cs

P (S, X) Ei1,i2 6=i1,...
[
w
|y1|
i1
w
|y2|
i2
· · · pX1(i1)pX2(i2) · · ·

]
, (41)

where Ei1,i2 6=i1,... means the average over all parents i1, i2 6= i1, . . .
of the population; CS is the set of all ways of allocating |S| offspring
to |X | parents, with |y1| offspring coming from parent i1, |y2|
offspring coming from parent i2, . . . (i.e. |S| =

∑|X |
i=1 |yi| and CS is

the set partition of {1, 2, 3, . . . , |S|} into non-empty subsets); and
P (S, X) is the probability of partition X (coalescence event), which
is given by

P (S, X) =
1

N |S|−|X |

|X |−1∏
y=1

(
1−

y
N

)
. (42)

For instance the expected frequency pU of gamete U after
reproduction is

E[p′U |p] = Ei[wipU(i)], (43)

while that of pU/V is

E[p′U/V |p] =
1
N
Ei[w2i pUV (i)] +

(
N − 1
N

)
Ei,k6=i[wiwkpU(i)pV (k)].(44)

Over the recombination phase one has

E[p′′S |p
′
] =

∑
UV=S1

∑
WX=S2

· · ·

∑
YZ=S|S|

rU|V rW |X . . . rY |Zp′U/V/W/X/.../Y/Z , (45)

where rA|B is the probability that, in a meiotic product, the set A
of loci comes from one parent while the set B comes from another
parent. The sum over UV = S1 means the sum over all partitions U
and V of the set S1 with the partition {S1,∅} included.
As in the structured population case (Roze and Rousset, 2008),

further analysis proceeds by expressing the fitness functions w in
terms of the genotypes at different loci in different individuals (as
described by the p variables, see example below), and expanding
such expressions to various orders of approximation with respect
to the selection coefficients. Because the calculations are tedious to
perform by hand, Roze and Rousset (2008) implemented Eqs. (41)
and (45) inMathematica (Wolfram, 2003), bywhich the evaluation
of the transition matrix A to leading order in selection coefficients
can be automated. We also implemented Eq. (34) in Mathematica
in order to obtain directly the fixation probability to a given order
of accuracy.

3.2. Hill–Robertson effect

We now consider two loci, where the mutant allele at locus A
has a selective advantage δsA over the resident, and the mutant
allele at locus B locus has a selective advantage δsB over the
resident.We assume that alleles affect fecundity in amultiplicative
way: fi = (1 + δsApA(i))(1 + δsBpB(i)), which entails that f =
1+δsApA+δsBpB+δ2sAsBpAB. With this, the fitness of individual i is

wi =
(1+ δsApA(i))(1+ δsBpB(i))
1+ δsApA + δsBpB + δ2sAsBpAB

. (46)

3.2.1. First-order effects on πA
In order to evaluate π �A, we need to compute the recursion for

Ep�A. This is obtained by inserting the first-order Taylor polynomial
of Eq. (46),

w�i = 1+ δsA
(
pA(i) − pA

)
+ δsB

(
pB(i) − pB

)
, (47)
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into Eq. (43), whereby

E�[p′A|p] = Ei[pA(i) + δsA
(
p2A(i) − pApA(i)

)
+ δsB

(
pB(i)pA(i) − pBpA(i)

)
]

= pA + δsA (pA − pApA)+ δsB (pAB − pApB) (48)

where the second line is obtained by noting that p2A(i) = pA(i) and
pB(i)pA(i) = pAB(i). Integrating over all sample paths then produces

Ep�A
′
= Ep�A + δsA

(
Ep◦A − Ep

◦

A
_
/ A

)
+ δsB

(
Ep◦AB − Ep

◦

A
_
/ B

)
, (49)

where

Ep◦
V
_
/ W
≡
1
N
Ep◦VW +

(
N − 1
N

)
Ep◦V/W , (50)

which gives after simplification

Ep�A
′
= Ep�A + δ

(
N − 1
N

) [
sA
(
Ep◦A − Ep

◦

A/A

)
+ sB

(
Ep◦AB − Ep

◦

A/B

)]
. (51)

Recombination does not affect the dynamics of Ep�A
′, thereby

Ep�A
′′
= Ep�A

′
. (52)

These equations show that we need the additional neutral
expectations, Ep◦AB, Ep

◦

A/A and Ep
◦

A/B to close the recursion for
Ep�A. One thus needs to follow the dynamics of the vector Ep ≡
(Ep�A, Ep

◦

A/A, Ep
◦

AB, Ep
◦

A/B). The recursion of the variables evaluated
under neutrality over the reproduction phase is

Ep◦A/A
′
=
1
N
Ep◦A +

(
N − 1
N

)
Ep◦A/A

Ep◦AB
′
= Ep◦AB

Ep◦A/B
′
=
1
N
Ep◦AB +

(
N − 1
N

)
Ep◦A/B, (53)

and over the recombination phase

Ep◦A/A
′′
= Ep◦A/A

′

Ep◦AB
′′
= (1− r)Ep◦AB

′
+ rEp◦A/B

′

Ep◦A/B
′′
= Ep◦A/B

′. (54)

Note that inserting the last two equations of Eq. (53) into the
last two equations of Eq. (54) gives the recursions established
previously (Eq. (28)).
These two systems of equations, in combination with Eqs.

(51) and (52), can then be used to evaluate the transition matrix
A� = A◦ + δȦ of Ep for this model. We implemented this as
A = RS, where S describes the transformation of Ep over the
reproduction phase, and R describes the transformation of Ep
over the recombination phase and is not affected by selection; in
particular, A� = R◦(S◦ + δṠ).
For this model, the reference vector is ℘ = (Ep�A, Ep

�
A, Ep

◦

AB,
Ep◦AB), so that the initial values v(0) are (0, vA/A(0), 0, vA/B(0)),
where

vA/A(0) = −
(
pA(0)− p2A(0)

) ( N
N − 1

)
, (55)

and

vA/B(0) = − (pAB(0)− pA(0)pB(0))
(
N
N − 1

)
. (56)

The first-order Taylor polynomial of the fixation probability of the
mutant is then given by π �A = pA(0)+ δπ̇A with

π̇A = −(N − 1)
(
sAvA/A(0)+

sBvA/B(0)
1+ r(N − 1)

)
, (57)
which is a decreasing function of the recombination rate.
A single initial copy of the mutant allele appears on a mutant

background at locus B with probability pB(0), in which case
vA/A(0) = −1/N and vA/B(0) = −(1 − pB(0))/(N − 1). The
same copy of the mutant appears on a resident background with
probability 1−pB(0), inwhich case vA/A(0) = −1/N and vA/B(0) =
pB(0)/(N−1), so that the initial association betweenmutant alleles
is equal to zero. Theperturbation of the average fixationprobability
of a single mutant is

˙̄πA = pB(0)
(
N − 1
N

)(
sA +

sBN(1− pB(0))
[1+ r(N − 1)](N − 1)

)
+ (1− pB(0))

(
N − 1
N

)(
sA −

sBNpB(0)
[1+ r(N − 1)](N − 1)

)
, (58)

which simplifies to

˙̄πA = sA

(
N − 1
N

)
. (59)

This is precisely the perturbation of the probability of fixation of
a single mutant in a one-locus model (e.g. Eq. (40)). We do not yet
detect any Hill–Robertson effect (Hill and Robertson, 1966; Barton,
1995; Barton and Otto, 2005), as it should involve at least third-
order terms of the form sAs2B. This is so because interference of locus
B on locus A depends on the extent to which the mutant allele at
locus A is associated with themutant at locus B times the selection
coefficient at locus B, and the effect of selection on the LD must be
at least of order sAsB to affect its dynamics (Barton and Otto, 2005;
Roze, in press, and see below).

3.2.2. First-order effects on π �AB
In order to evaluate π �AB we need to compute the recursion for

Ep�AB and Ep
�
A/B. Proceeding as in the last section, we substitute Eq.

(47) into Eq. (43), from which we have

E�[p′AB|p] = Ei[pAB(i) + δsA
(
pA(i) − pA

)
pAB(i) + δsB

(
pB(i) − pB

)
pAB(i)]

= pAB + δsA (pAB − pApAB)+ δsB (pAB − pBpAB) , (60)

where we used pA(i)pAB(i) = pAB(i) and pB(i)pAB(i) = pAB(i) to obtain
the second line, and integrating the recursion over all sample paths
gives

Ep�AB
′
= Ep�AB + δsA

(
Ep◦AB − Ep

◦

A
_
/ AB

)
+ δsB

(
Ep◦AB − Ep

◦

B
_
/ AB

)
. (61)

Inserting Eq. (47) into Eq. (44) gives

E�[p′A/B|p] =
1
N
Ei[pAB(i) + 2δsA

(
pA(i) − pA

)
pAB(i) + 2δsB

(
pB(i) − pB

)
pAB(i)]

+

(
N − 1
N

)
Ei,k6=i

[
pA(i)pB(k) + δsA

(
pA(i) + pA(k) − 2pA

)
pA(i)pB(k)

+ δsB
(
pB(i) + pB(k) − 2pB

)
pA(i)pB(k)

]
, (62)

and integration over all sample paths produces

Ep�A/B
′
=
1
N
Ep�AB +

(
N − 1
N

)
Ep�A/B

+ δ
2
N

(
sA

[
Ep◦AB − Ep

◦

A
_
/ AB

]
+ sB

[
Ep◦AB − Ep

◦

B
_
/ AB

])
+ δ

(
N − 1
N

)(
sA

[
Ep◦A/B + Ep

◦

A/AB − 2Ep
◦

A
_
/ (A/B)

]
+ sB

[
Ep◦A/B + Ep

◦

B/AB − 2Ep
◦

B
_
/ (A/B)

])
, (63)

where

Ep◦
V
_
/ (A/B)

≡
1
N
Ep◦VA/B +

1
N
Ep◦VB/A +

(
N − 2
N

)
Ep◦V/A/B. (64)
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In order to close these recursions, we need the additional neutral
expectations Ep◦A/AB, Ep

◦

B/AB, Ep
◦

A/A/B and Ep
◦

B/A/B. For simplicity,
we evaluate π̇AB only for the case where the double mutant
is introduced initially as a single copy in the population, in
which case the dynamics of Ep◦A/AB is equivalent to that of Ep

◦

B/AB
and the dynamics of Ep◦A/A/B is equivalent to that of Ep

◦

B/A/B. It
is then sufficient to consider the dynamics of the vector
Ep ≡ (Ep�AB, Ep

◦

A/B, Ep
◦

A/AB, Ep
◦

A/A/B). We already have the recur-
sions for the first two moments under neutrality (Eqs. (53)–(54))
and the recursions for the two other ones over the reproduction
phase is

Ep◦A/AB
′
=
1
N
Ep◦AB +

(
N − 1
N

)
Ep◦A/AB (65)

and

Ep◦A/A/B
′
=
1
N2
Ep◦AB +

(
N − 1
N2

)
Ep◦A/B

+ 2
(
N − 1
N2

)
Ep◦A/AB +

(
(N − 1)(N − 2)

N2

)
Ep◦A/A/B. (66)

Over the recombination phase we have

Ep◦A/AB
′′
= (1− r)Ep◦A/AB

′
+ rEp◦A/B/A

′

Ep◦A/A/B
′′
= Ep◦A/A/B

′. (67)

From the above equations, we find that

π◦AB =
1
N
−

(
N − 1
N

)(
r

1+ r(N − 1)

)
, (68)

which is Eq. (13) with DAB(0) = 1/N . The first-order perturbation
of the fixation probability of a double mutant is

π̇AB =

(
N − 1
N

)(
sA + sB

1+ r(N − 1)

)(
3N − 2+ r(2+ N(N − 2))
3N − 2+ r(2+ N(N − 3))

)
, (69)

where the last ratio is approximately equal to one, and with
this approximation our result becomes equivalent to the one
established from consideration of the diffusion operator by Ohta
(1968, eq. 8).

3.2.3. Second-order effects on πA
In order to evaluate the second-order effects of selection on πA,

we have to insert the second-order polynomial

w��i = 1+ δsA
(
pA(i) − pA

)
+ δsB

(
pB(i) − pB

)
+ δ2sAsB

(
pA(i)pB(i) − pAB

)
− δ2 (sApA + sBpB)

×
[
sA
(
pA(i) − pA

)
+ sB

(
pB(i) − pB

)]
(70)

of the fitness function Eq. (46) into Eq. (43). Integrating over all
sample paths yields

Ep��A
′
= Ep��A + δsA

(
Ep�A − Ep

�

A
_
/ A

)
+ δsB

(
Ep�AB − Ep

�

A
_
/ B

)
+ δ2sAsB

(
Ep◦AB − Ep

◦

A
_
/ AB

)
− δ2s2A

(
Ep◦
A
_
/ A
− Ep◦

A
_
/ A

_
/ A

)
− δ2sAsB

(
Ep◦
A
_
/ B
+ Ep◦

A
_
/ AB
− 2Ep◦

A
_
/ A

_
/ B

)
− δ2s2B

(
Ep◦
B
_
/ AB
− Ep◦

A
_
/ B

_
/ B

)
, (71)
where

Ep◦
U
_
/ V

_
/ W
≡
1
N2
Ep◦UVW +

(
N − 1
N2

)
Ep◦U/VW

+

(
N − 1
N2

)
Ep◦UV/W +

(
N − 1
N2

)
Ep◦UW/V

+

(
(N − 1)(N − 2)

N2

)
Ep◦U/V/W (72)

involves sampling sets of loci from three individuals with replace-
ment. These equations illustrate that calculations performed by
hand become rapidly tedious. In the sequel of this paper, therefore,
we present perturbation results calculated directly with Mathe-
matica.
We obtain that the second-order perturbation of the average

fixation probability of the mutant allele is

¨̄πA = s2A

(
N − 1
N

)(
N(2N − 7)+ 4
3N − 2

)
, (73)

and as expected we do not yet detect any Hill–Robertson effect.

3.2.4. Third-order effects on πA
In order to evaluate the third-order perturbation ofπA, we need

to calculate the dynamics of EpA from the third-order expansion of
wi (Eq. (46)). The resulting recursion and those of the associated
moments are complicated. Taking a large size approximation (large
N as in the diffusion limit) did not simplify them enough to gain a
better intuitive understanding of the possible interference of locus
B on locus A. Nevertheless, in order to gain such an understanding
we turn to the following considerations. Themutant alleles at both
loci, A and B, provide a fitness advantage to their carriers, and the
extent to which selection on the mutant at locus B is likely to spill
over onto the change of gene frequency at locus A depends on the
LD between the two alleles. This can be seen by inserting Eq. (46)
into Eq. (43), and expressing1EpA = E[E[p′A|p] − pA] as

1EpA = E
[
δsApA(1− pA)
1+ δsApA

]

+ E

[
(pAB − pApB)

(
δsB + δ2sAsB

)
(1+ δsApA)

(
1+ δsApA + δsBpB + δ2sAsBpAB

)] . (74)

This equation illustrates that if the LD defined as pAB − pApB is
positive (LD calculated by sampling loci from different individuals
with replacement pApB = p

A
_
/ B
), selection at locus B will facilitate

the spread of the mutant at locus A, while if the LD is negative,
interference between loci occurs.
The initial LD, averaged over the two backgrounds in which

a mutant may appear, is equal to zero (see section ‘‘First-order
effects on πA’’). For interference to occur, the interaction between
selection and drift must thus lead to the built-up of an LD such that
the average (over the two backgrounds) of the second expectation
in Eq. (74) is negative. As the random variable in Eq. (74) is not
linear in pAB, its expectation may depend on all the moments of
the LD distribution. A third-order Taylor expansion in the selection
strength gives

E

[
(pAB − pApB)

(
δsB + δ2sAsB

)
(1+ δsApA)

(
1+ δsApA + δsBpB + δ2sAsBpAB

)]
=
(
δsB + δ2sAsB

)
E[pAB − pApB]

− δ3sAs2BE[(pAB − pApB)
2
] − δsB(1+ δsA)

× E[(pAB − pApB) (2δsApA + δsBpB)] + O
(
δ3

N2

)
. (75)



44 L. Lehmann, F. Rousset / Theoretical Population Biology 76 (2009) 35–51
The first term on the right-hand side reflects the increase in the
selective pressure on the mutant at locus A due to increased
fecundity to its carrier when the allele is associated to the mutant
at locus B, while the second and third terms reflect the increase in
competition felt by the carriers of themutant allele at locus Awhen
its is associated to the other mutant allele. The first competition
term depends on the second moment E[(pAB − pApB)2] of LD
(whose average over the two backgrounds in which the mutant
may initially appear can be thought of as the variance of LD)
and is always positive, even in the neutral case. The expectation
in the second competition term will built up if the covariances
between LD and the beneficial alleles build up, which will occur
because mutant allele frequencies increases more rapidly when
there is a positive LD (Barton and Otto, 2005, p. 2357, we also
mention that the terms in Eq. (75) agree qualitatively with those in
eq. 4a obtained by Barton and Otto by perturbing the deterministic
regime).
Eq. (75) shows that if the average of the expected LD is negative,

interference occurs regardless of the parameter values. The initial
variance in LD does indeed lead to a negative average expected LD
in the presence of selection (Barton and Otto, 2005; Roze, in press),
and in order to see this under our life-cycle assumptions, it is useful
to express the LD as

E[p′AB − p
′

Ap
′

B] =

(
N − 1
N

)
E[p′AB − p

′

A/B]

=

(
N − 1
N

)
E[E[p′AB|p] − E[p

′

A/B|p]], (76)

where, on substitution of Eqs. (43) and (44), we obtain after
rearrangements

E[p′AB − p
′

Ap
′

B] =

(
N − 1
N

)
× E

[(
N − 1
N

) (
Ei[wipAB(i)] − Ei,k6=i[wiwkpA(i)pB(k)]

)
︸ ︷︷ ︸

LD after selection

−
1
N
Ei[wi(wi − 1)pAB(i)]

]
. (77)

Under our multiplicative selection scheme, the LD after selection
is the same as that before selection. Hence, if the initial average
LD is zero, the average of the first term in Eq. (77) is zero. The
second term in Eq. (77) is the increase in coalescence probability
resulting from selection acting on gamete AB. The effect of this
increase in coalescence probability on LD is zerowhen themutants
initially reside on two different gametes (pAB(i) = 0), and thus
when the initial LD is negative. This illustrates the notions that
selection does not act symmetrically on the two different initial
LDs created by the appearance of a mutant allele on a polymorphic
background (Barton and Otto, 2005), and, consequently, that a
negative average expected LD will build up under second-order
effects of selection (Barton and Otto, 2005; Roze, in press; under
first-order effects we have E�i[wi(wi − 1)pAB(i)] = 0). This
shows that the average change of mutant frequency at locus A
is decreased by the presence of the mutant allele segregating
at locus B; namely, interference between alleles occurs, and the
Hill–Robertson effect kicks in.
In order to quantify the reduction in the fixation probability

due to interference, we computed 1πHR, the average third-order
perturbation of π̄A minus the same quantity with sB set to zero.
The resulting equation is complicated and its explicit expression
is presented in the Appendix (Eq. (A.34)). In the absence of
recombination (r = 0 in Eq. (A.34)), the reduction of the fixation
Fig. 1. Hill–Robertson interference was estimated in simulations and compared to
predictions (Eq. (A.34) of the Appendix) for 49 combinations of model parameters
(sA = sB , NsA = 1 to 500, r = 0.001 to 0.1, N = 100 to 10000, pB(0) = 1/N to
1/2). The range of interference values considered led us to use an inverse logistic
scale (z → efz/(1+ efz), with f = 10000) on both axes. Error bars are±2 standard
errors. The dotted lines show twofold and tenfold over- and under-prediction of
the observed interferences. Greater that twofold prediction errors therefore occur
mostly for NsA > 2 (circled-shaped symbols). The two top-left outliers have NsA =
200 and 500, and r = 0.001.

probability is given by

1πHR = −sAs2BpB(0)(1− pB(0))N
2

×

(
36N3 − 81N2 + 66N − 20
108N3 − 270N2 + 240N − 72

)
, (78)

where the ratio is approximatively equal to 1/3 when N becomes
large. In the presence of recombination, another approximation
can be obtained by assuming large population size, in which case
we have 1πHR = −sAs2BpB(0)/(2r

2) + O(1/N2), where we also
assumed that pB(0) � 1. This result does not imply that the
perturbation approach is valid only for Nr > 1, because the exact
third-order result for1πHR (Eq. (A.34)) is valid for any combination
of values of r and N (i.e., no singularity when r → 0 for all N). The
perturbation approach does, therefore, not make any assumption
on the value r should take given that of N .
In Figs. 1 and 2, we compare the exact third-order result for

1πHR (Eq. (A.34)) with those obtained from simulations for sA =
sB and sB = 10sA, respectively. When NsB ≤ 5, the observed
fixation probability departs from the predicted one as the latter
increases (which here corresponds not only to relatively large
sB but also large initial value, pB = 0.5, of the preexisting
segregating allele when the mutant appears). When NsB > 5,
relatively large discrepancies can be observed when the predicted
values are low, in particular in large populations. Hence, the
perturbation approach is valid forweak selection regimes only, and
involves assumptions on the values δ can take given that of N .
The limitation to the weak selection regime of the perturbation

approach can be understood from two considerations. First, an
even Taylor polynomial in a selection coefficient s will give
qualitatively equivalent answers for strong large positive and large
negative s, which is not the desired answer in general. Second,
in one-locus models (and surely in many multilocus models),
large Ns matters more than large s, and thus for small |s| but
large |Ns| Taylor polynomials will give poor approximations. This
can be illustrated by the well-known diffusion approximation for
the fixation probability of a single mutant allele with selective
coefficient s over the resident, which is

π =
1− e−2s

1− e−2Ns
, (79)
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Fig. 2. Same as in Fig. 1 except that sA = 10sB , N = 100, and NsA and pB(0) values
as given in the box of the graph (21 parameter combinations). The top-left outlier
has r = 0.001.

which illustrates that the fixation probability depends on the Ns
product (Crow and Kimura, 1970; Gillespie, 2004; Ewens, 2004).
As pointed out by Hill (1972), Taylor polynomial expansions in
powers of s of this expression are ill-behaved for large Ns values.
For example the polynomials of degree 4 of Eq. (79) in s is

1
N
+
s(N − 1)
N

+
s2 ((N − 3)N + 2)

3N
−
s3(N − 1)2

3N

−
s4
(
N
(
N3 − 10N + 15

)
− 6

)
45N

, (80)

which turns out to be negative for s > 0.05 when N = 100; the
same results hold for even-order polynomials of degree≥ 4. Thus
the perturbation approximation of the diffusion result works only
for low Ns. Polynomials of order up to 100 are easy to evaluate
using theMathematica implementation of the above algorithms, so
it can be checked that the general perturbation method presented
here yields expansions for the one-locus model that are very close
to expansions of the diffusion approximation. For instance, the
first-order perturbation in Eq. (80) agreeswith Eq. (40), the second-
order perturbation in Eq. (80) is numerically close to Eq. (73),
and the fourth-order perturbations become equivalent for large N .
Thus, the general method works only for low Nδ values essentially
because the fixation probabilities depend also on Nδ so that they
are poorly approximated by Taylor polynomials in δ, which can
be thought of as the largest of the selection coefficient in the
multilocus setting.

4. Discussion

We have presented a formalism to evaluate nth-order per-
turbation expansions of moments of allelic states in finite pop-
ulations of constant size without class structure under arbitrary
strength of selection δ and gene action. This covers epistatic in-
teractions within genomes as well as synergistic interactions be-
tween them. This formalism should apply unchanged to geograph-
ically structured populations, although the dimension of the ma-
trices to be considered could become prohibitive. Taking a dif-
fusion limit (large N , small δ) to simplify the recursions may be
useful in some cases. In the absence of mutation, the long-term
limit of themoments providemultilocus fixation probabilities. Our
analysis shows that, regardless of the strength of selection, fix-
ation probabilities can be expressed in terms of selection coeffi-
cients weighted bymean first passage times. As detailed in the sec-
tion ‘‘Results’’, these relationships generalize the one-locus result,
where the mean first passage times are mean coalescence times,
which can themselves be expressed in terms of relatedness coef-
ficients (Slatkin, 1991), thereby providing a link to concepts of in-
clusive fitness theory (Hamilton, 1964, 1970).
We have also illustrated how to evaluate the recursions

necessary to compute explicitly the moments of allelic states
under a Wright–Fisher random union of gametes model. This
allowed us to apply the approach to a two-locus model with
multiplicative effects on fitness in order to obtain analytical
expressions for the Hill–Robertson effect under small population
size. The Hill–Robertson effect depends on interactions between
loci, and it involves at least third-order perturbations of selection
on gene frequency change (e.g., Eq. (78)). Comparison of the
perturbation method with the results from simulations show
that the analytical results give good predictions of the fixation
probabilities for only low Nδ values (practically, Nδ 6 1). In other
words, the perturbation approximation works only under weak
selection regimes.
By contrast, Otto and Barton (1997) have developed approx-

imations of the Hill–Robertson effect that are valid specifically
for stronger selection and very large population size. The limita-
tion of the perturbation analysis follow from the fact that fixa-
tion probabilities depend on the product Nδ in the one-locus case
(Eq. (79)), and are thus not well approximated in expansions in δ
when Nδ > 1. Our analysis of the Hill–Robertson effect shows that
this carries over to the two-locus case, and the same is likely to
hold in a general multilocus context. Thus, unless complemented
by other results, the perturbationmethod yieldsmainly qualitative
results, whose quantitative relevance must be checked on a case-
by-case basis.
Nevertheless, one-locus first-order perturbations of the effect

of selection on allele frequency change in deterministic models
give excellent prediction for long-term phenotypic evolution
under a wide spectrum of biological applications involving local
genetic drift (as occurs in the infinite island model) with weak
assumptions about the frequency of different types of mutations
(e.g., Geritz et al., 1998; Pen, 2000; Le Galliard et al., 2003; Leturque
and Rousset, 2002; Guillaume and Perrin, 2006). Local genetic
drift in infinite structured populations (or global genetic drift in
finite panmictic populations) allows populations to cross invasion
thresholds (i.e., peak shift or stochastic tunneling) that would not
be possible if the local (or total) population was of infinite size.
In one-locus models, first-order perturbation of gene frequency
change (or of fixation probabilities) predict well the direction of
selection when invasion thresholds can be crossed by genetic drift.
This is exemplified by the application of Hamilton’s rule to the
evolution of altruistic helping and dispersal in spatially structured
population, where the relatedness quantifies the fluctuations in
allele frequency among demes due to local genetic drift under
neutrality (e.g., Hamilton and May, 1977; Taylor, 1992; Pen, 2000;
Rousset, 2004; Guillaume and Perrin, 2006).
One-locus first-order perturbations are, therefore, indicative of

the direction of selection on a mutant allele when genetic drift
plays a crucial role in the evolutionary dynamics. Do multilocus
first-order perturbations of fixation probabilities predict well the
direction of selection in that case? The situation becomes more
complicated in two-locus models, where the interaction between
loci is likely to depend on the relative magnitude of population
size and recombination rate. We compared analytical results of
two-locus two-alleles models involving social interactions such as
the coevolution of helping and punishment following the strong-
reciprocity protocol (see Eqs. (A.37)–(A.44), and further examples
in prep.), with those of simulations, and our results suggest that
first-order perturbation seem to predict well the direction of
selection in a multilocus context, unless selection becomes very
strong (Fig. 3).
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Fig. 3. Comparison of the change in the fixation probabilities π̇A and π̇B for helping
and punishment predicted by the analytical model (Eqs. (A.41) and (A.43), dots in
the figure) with that observed from simulations (squares, for 106 trials), for the
case where a single mutant helping allele appears simultaneously with a single
punishment allele (i.e.,N−1 individuals in the population bear the residents alleles
at both loci). The panels of the left column stem for the change in the fixation
probability of the helping allele, while the panels on the right column stem for
that of the punishment allele. Each row of panels gives the change in fixation
probabilities under different selection strengths as a function of the recombination
rate. For all panels we have N = 50, and the remaining parameter values are
CH = 0.001, CP = 0.001, BH = 0.005, and DP = 0.01 for the first row of panels;
CH = 0.01, CP = 0.01, BH = 0.05, and DP = 0.1 for the second row; and CH = 0.05,
CP = 0.05, BH = 0.25, and DP = 0.5 for the last row.

In the case of the coevolution of helping and punishment first-
order perturbations show that the fixation probabilities of both
a mutant helping and a mutant punishment allele introduced
initially on the same gamete (i.e., N − 1 individuals in the
population bear the residents alleles at both loci) is greatly
increased when the population size is decreased provided the
recombination rate is weak (Eqs. (A.41) and (A.43)). However,
the perturbations of fixation probabilities also reveal that once
it is taken into account that a mutant helping allele may
appear on different backgrounds (either a mutant or a resident
background at the punishment locus depending on the frequency
of the punishment allele), the average perturbation of fixation
probability of a helping allele does no longer depend on the
recombination rate, and it decreases as population size decreases
(Eq. (A.42)). This suggests that, holding everything else constant,
finite population size may actually inhibit rather than favor the
evolution of helping under the strong-reciprocity protocol. More
generally, first-order perturbation may allow us to predict long-
term phenotypic evolution in a multilocus context by taking into
account the effect of the finiteness of populations.
In summary our analysis has yielded two results. First, we have

shown how to evaluate perturbation expansions for moments of
allelic states under arbitrary strength of selection and gene action,
and express multilocus fixation probabilities in terms of first pas-
sage times; that is, in terms of genealogical ties. Second, we have
highlighted some shortcomings and advantages of using perturba-
tion expansions to approximate fixation probabilities. This is rel-
evant for further theoretical developments as the evaluation of
such approximations has attracted a lot of attention in the context
of one-locus frequency-dependent selection (e.g., Wild and Tay-
lor, 2004; Ohtsuki and Nowak, 2006; Lessard and Ladret, 2007b;
Grafen, 2007; Kurokawa and Ihara, 2009), and the inclusion of so-
cial evolution into multilocus models with genetic drift remains to
be explored.
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Appendix

A.1. Recursion for v(t)

In this Appendix we show how to define directly from A
reference values℘S(t), and a vector v(t) ≡ (vS(t))S∈S ≡ (EpS(t)−
℘S(t)) of centered variables whose elements vanish geometrically
fast for large t . This allows us to evaluate d ≡

∑
∞

t=0 v(t) by matrix
inversion. For ease of presentation we start with the neutral case,
and then generalize to any order of approximation.

A.1.1. The neutral case
Under neutrality, the coefficient determining the dynamics of

each moment of allelic state can be gathered in a transition matrix
A◦ such that the vector Ep◦(t) consisting uniquely of neutral
moments of allelic state satisfies

Ep◦(t + 1) = A◦Ep◦(t). (A.1)

For instance, for a two-locus model we may need to evaluate the
dynamics of Ep◦A/A(t) and that of Ep

◦

AB(t). In this case, we have
to consider Ep◦(t) ≡ (Ep◦A(t), Ep

◦

A/A(t), Ep
◦

AB(t), Ep
◦

A/B(t)), whose
dynamics is described by the matrix

A◦ =

 1 0 0 0
a◦1 1− a◦1 0 0
0 0 a◦2 1− a◦2
0 0 a◦3 1− a◦3

 , (A.2)

where a◦1 is the probability that two genes, sampled from
homologous loci in twodistinct individuals, descend from the same
individual in the previous generation; a◦2 is the probability that
two genes, sampled from distinct loci from the same individual,
descend from the same individual in the previous generation and
a◦3 is the probability that two genes, sampled from distinct loci
from distinct individuals, descend from the same individual in the
previous generation.
In order to obtain a recursion for v◦(t) ≡ (v◦Z (t))Z∈Z ≡

(Ep◦Z (t)−℘
◦

Z (t)), where
∑
∞

t=0(Ep
◦

Z (t)−℘
◦

Z (t)) is finite, it suffices
to choose the ℘◦Z (t)’s so that every element of v

◦(t) vanishes
geometrically fast for large t . In particular for any set Z of loci
sampled from the same or different individuals, p◦Z (t) and ℘

◦

Z (t)
must converge to the same value for large t , when polymorphism
is lost at the set of loci involved in Z .
As noted in the main text and illustrated by Eq. (A.2), the A◦

matrix is block diagonal, with one block for each set of loci.We thus
consider one reference value for each block. This reference value
could be chosen as any of the Ep◦V (t) variable involved in the block,
and for definiteness we choose it to be the variable standing for
gene copies all taken in the same individual (i.e., Ep◦A(t) and Ep

◦

AB(t)
for the two blocks in the above example). Formally, a reference
vector can be defined as

℘◦(t) ≡ (℘◦Z (t))Z∈Z ≡
∑
R∈R

eREp◦R(t), (A.3)

whereR is the set of all reference values, one for each independent
neutral systems appearing in A◦; that is, one for each block. Each
eR is a right eigenvector of one block, associated with a unit
eigenvalue of the regular Markov chain A◦, and augmented with
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zero on rows corresponding to the other blocks. For Eq. (A.2),
we have R = {A,AB} with corresponding eigenvectors eA =
(1, 1, 0, 0) and eAB = (0, 0, 1, 1), which produces the reference
vector ℘◦(t) = (Ep◦A(t), Ep

◦

A(t), Ep
◦

AB(t), Ep
◦

AB(t)).
With this definition of ℘◦(t), we will show that v◦(t) ≡

Ep◦(t) − ℘◦(t) vanishes for large t . To achieve our construction
we also need a matrix A◦℘ such that

v◦(t + 1) =
(
A◦ − A◦℘

)
v◦(t), (A.4)

where all eigenvalues of A◦ − A◦℘ are< 1 in modulus, so that

d◦ ≡
∞∑
t=0

v◦(t) =
∞∑
t=0

(
A◦ − A◦℘

)t v(0)
=
(
I− A◦ + A◦℘

)−1 v◦(0) (A.5)

is bounded, and where v◦(0) is the initial vector of centered
variables.
If Eq. (A.4) holds, then

Ep◦(t + 1)− ℘◦(t + 1) =
(
A◦ − A◦℘

)
(Ep◦(t)− ℘◦(t)), (A.6)

which gives(
A◦ − A◦℘

)
℘◦(t) = ℘◦(t + 1)− A◦℘Ep

◦(t). (A.7)

We define A◦℘ so that both sides of this equation are null. First
consider the left-hand side. By definition, ℘◦(t) belongs to the
unit-eigenvalue eigenspace of A◦, i.e., A◦℘◦(t) = ℘◦(t), and thus
we need to define A◦℘ such that A

◦

℘℘◦(t) = ℘◦(t). It suffices to
define A◦℘ as the matrix where all rows involved in any given block
of equations are replaced by that row of the given block which
describes the recursion for the reference value for this block (which
we have taken to be the variable in this block standing for gene
copies all taken in the same individual). For the example given
above Eq. (A.2), this gives

A◦℘ =

1 0 0 0
1 0 0 0
0 0 a◦2 1− a◦2
0 0 a◦2 1− a◦2

 . (A.8)

With our definition of A◦℘ , all its rows contain the one-
generation recursion for the reference value of their respective
block, so that the elements of A◦℘Ep

◦(t) are the reference values
in the next generation, that is, the elements of ℘◦(t + 1), and the
right-hand side of Eq. (A.7) also vanishes. By construction, then,
the unit eigenspace of A◦ is entirely contained in the null space of
A◦−A◦℘ . Further, all eigenvalues ofA

◦
−A◦℘ are<1 inmodulus. This

can be seen by writing this matrix as (I − C)A◦ where C is a block
diagonal matrix where the elements of each block are zero, except
the column for the reference set of positions for the block, which
elements are 1. Then the eigenvalues of I−C are found to be 0 or 1.
For any vector x represented as

∑
i xibi in the basis of eigenvectors

(bi) of A◦, with eigenvalues 0 ≤ λi ≤ 1 (in modulus),

(A◦ − A◦℘)x = (A
◦
− A◦℘)

∑
i;λi<1

xibi = (I− C)
∑
i;λi<1

λixibi, (A.9)

which confirms that A◦ − A◦℘ is a strict contraction matrix.

A.1.2. The result for any order of approximation
Formally, the above construction does not depend on consider-

ing neutral expectations. That is, we redefine v(t) ≡ (vZ (t))Z∈Z ≡
(EpZ (t)−℘Z (t))where the reference value for any set of positions
Z is the expected value (under selection) of the gamete frequency
for gene copies at all loci in Z being all taken in the same individ-
ual. We define A℘ from A by the same row-replacement operation
throughwhichwe definedA◦℘ . It remains to show thatwe still have
A℘(t) = ℘(t), A℘℘(t) = ℘(t), and there the argument needs to
bemodified sinceA no longer has the same block structure asA◦. In
the non-neutral matrix the recursion (hence the row of thematrix)
for a focal set of positions, say AB, can involve effects from selection
on other set(s) of positions, say on some locus C. Then the row for
AB involves non-zero elements for some columns standing for the
non-focal set of loci ABC (e.g., columns ABC andABC/Cmay be non-
zero), while in the neutral matrix recursions for AB involve only
sets of positions involving exactly loci A and B. However, within
each row (here the AB row) the sum of coefficients for a given set
of loci (here ABC) involving one ormore additional loci is necessar-
ily null (as noted in themain text, this can be seen by consideration
of the case where the additional loci are not polymorphic). Thus if
the reference vector has identical elements among all rows cor-
responding to each non-focal set of loci, these constant values for
each non-focal set do not affect the elements of A℘(t), nor those
of A℘℘(t), for the focal set.
From the above considerations, Eqs. (A.3) and (A.7) hold out of

neutrality (◦ specifier removed), and

d ≡
∞∑
t=0

v(t) =
∞∑
t=0

(
A− A℘

)t v(0) = M−1v(0) (A.10)

where

M ≡ I− A+ A℘ . (A.11)

The eigenvalues of A − A℘ are all < 1 (in modulus) in some
neighborhood N of δ = 0 because those of A◦ − A◦℘ are all < 1
(in modulus). Thus all elements of the series

∑
t

(
A− A℘

)t can be
seen to converge uniformly inN and, assuming that the derivatives
of
(
A− A℘

)
up to given order n are finite in N , the nth-order

derivative of the fixation probabilities can be computed as the sum
of derivatives of gamete frequency change over one generation.
Eq. (A.10) can hardly be used in its full exact form since

it potentially involves very large matrices, needed for an exact
description of the evolution of the population. However, it yields
the nth-order Taylor polynomial as

d[n] = (M−1)[n]v(0) =

(
n∑
k=0

δk

k!
dkM−1

dδk

)
v(0), (A.12)

which can be used in Eq. (34), and where reduced matrices can
be substituted to M for computation of the low-order terms. For
instance, the first derivative ofM−1 with respect to δ is

dM−1

dδ
= −(M◦)−1

dM
dδ
(M◦)−1, (A.13)

which yields the first-order Taylor polynomial

d� =
(
I− A◦ + A◦℘

)−1 [I+ δ (Ȧ− Ȧ℘
) (

I− A◦ + A◦℘
)−1] v(0), (A.14)

where Ȧ is the first-order perturbation of the row stochasticmatrix
A◦, in which the row sums of perturbation terms are null, and Ȧ℘ is
constructed from Ȧ exactly in the sameway as A℘ is obtained from
A; namely, Ȧ℘ = CȦ.

A.2. Cumulative moments of allelic states and mean first passage and
sojourn times

A.2.1. Fundamental matrix of a neutral system
Our goal in this section is to express the elements of d◦ and

(M◦)−1 in terms of mean first passage and sojourn times. For ease
of presentation of the argument, we will only consider a single
diagonal block of the matrix A◦ in the proofs below, as all the
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expressions hold with all matrices being diagonal block matrices
where each block satisfy the given proofs (think of A◦ as consisting
of a single neutral system).
In our calculations we will use the so-called fundamental

matrix Z associated to the transition matrix A◦. For an absorbing
Markov chain, the fundamental matrix is usually defined as (I −
Q)−1, where Q is the transition matrix stripped of the rows and
columns representing the absorbing states (Grinstead and Snell,
1997, p. 417). For a regular transition matrix, it is defined as

Z ≡ (I− A◦ + A◦c)
−1 (A.15)

(Grinstead and Snell, 1997, p. 456), where A◦c ≡ limt→∞(A◦)t
is a matrix of which each row is a left eigenvector denoted u
of A◦ associated to its unit eigenvalue (i.e., u = uA◦). For a
regular Markov chain (one neutral system) u is uniquely defined
as a probability vector, and when A◦ consists of several neutral
systems (several blocks) it is build up in a straightforward
generalization of that case, being built from the probability
(eigen)vectors for each of the regularMarkov chains describing the
recursions for a set of loci (block). A single neutral system may
actually consist of an indecomposable Markov matrix (Iosifescu,
2007, p. 96), i.e., a matrix which includes both transient states
and a single recurrent class, the latter further not always reduced
to a singleton. For instance, the dynamics of the vector Ep ≡
(Ep◦AB, Ep

◦

A/B, Ep
◦

A/AB, Ep
◦

A/B/A) is described by an indecomposable
Markov matrix (see the recursions for this chain given by Eq. (28)
and Eqs. (65)–(67)). To such matrices we will apply the definition
of the fundamentalmatrix for regular chains, which is applicable to
all mixingMarkovmatrices (Iosifescu, 2007, p. 133), thus including
absorbing chains. This will serve us because the fundamental
matrix can be expressed in terms ofmean first passage and sojourn
times, which will then be used to express (M◦)−1 in terms of such
times by employing

(M◦)−1 = Z− CZ+ C, (A.16)

where (for each block)C is amatrixwhich elements are zero except
the column for the reference set of positions for the block, which
elements are 1 (see Eqs. (A.30)–(A.33)). We develop the argument
for regular matrices first.

A.2.2. Regular neutral systems
A standard result for regular chains is that the mean first

passage time TSV , which is the expected number of steps it takes
(looking backwards in time) for the set of gene lineages under
focus, presently in the set of positions S, to reach the set of positions
V , is given by

TSV =
zVV − zSV
uV

, (A.17)

(Grinstead and Snell, 1997, p. 456-459). With this, the SV th
element of the fundamental matrix of a regular chain can be
expressed as

zSV = zVV − TSVuV , (A.18)

so that the SV th element of Z− CZ is
zSV − zRV = (TRV − TSV ) uV , (A.19)

which, along with Cv(0) = 0, allows us to write the Sth element of
d◦ = (Z− CZ+ C) v◦(0) as

d◦S =
∑
V∈V

(TRV − TSV ) uV (pV (0)− pR(0)) . (A.20)

Because
∑
V∈V TSVuV is equal to a constant for all S (Grinstead and

Snell, 1997, p. 468, Levene and Loizou, 2002, p. 744),we finally have

d◦S =
∑
V∈V

(TRV − TSV ) uVpV (0). (A.21)
A.2.3. Indecomposable neutral systems
For indecomposable matrices, A◦ can be represented in the

standard way, as

A◦ =
(
R 0
S Q

)
, (A.22)

where R describes an ergodic chain (here assumed regular) among
recurrent states,Q collects the transition probabilities between the
transient states, and S collects the transition probabilities from
transient-to-recurrent states. For such an indecomposable matrix

lim
t→∞

(A◦)t =
(
R◦c 0
R◦c 0

)
, (A.23)

where R◦c is defined from R as previously described for regular
matrices (Iosifescu, 2007, p. 126). Applying the definition of
the fundamental matrix for regular matrices (Eq. (A.15)) to
indecomposable matrices gives

Z ≡ (I− A◦ + A◦c)
−1

=

(
(I− R◦ + R◦c)

−1 0
(I− Q)−1S(I− R◦ + R◦c)

−1 (I− Q)−1

)
. (A.24)

The diagonal blocks in Z are the fundamental matrices for the
recurrent and transient states. The SV th element of the recurrent
block of Z is thus given by Eq. (A.18), while the SV th element of the
recurrent block of Z− CZ is given by Eq. (A.19). The SXth element
of (I − Q)−1 is the mean time spent in state X starting from state
S before absorption in the recurrent set (mean sojourn time). The
SV th element of the transient block of Z− CZ is then equal to zero.
Because the elements of S are the transition probabilities from
transient states to recurrent states, the SW th element of (I−Q)−1S
is seen to contain the probabilities (denoted φSV ) that the chain
starting from a transient state S first reaches the recurrent set in
state W (i.e., the absorption probabilities). This leads to the SV th
element of the transient-to-recurrent block of Z being given by∑
rec W∈V

φSW zWV =
∑

rec W∈V

φSW (zVV − TWVuV )

= zVV −
∑

rec W∈V

φSWTWVuV , (A.25)

where the sum is over all recurrent states. The SV th element of the
transient-to-recurrent block of Z− CZ then becomes

∑
rec W∈V

φSW zWV − (zVV − TRVuV ) =

(
TRV −

∑
rec W∈V

φSW TWV

)
uV . (A.26)

Collecting terms, we have that for a recurrent state S, d◦S is given
by Eq. (A.21), as in the regular case, while for a transient state S, d◦S
is given by

d◦S =
∑
rec V∈V

(
TRV −

∑
rec W∈V

φSWTWV

)
uVpV (0)

+

∑
trans V∈V

TSV (pV (0)− pR(0)), (A.27)

where the second sum is over all transient states, in which TSV is
defined as themean time spent in V starting from S before entering
the recurrent set (mean sojourn time). When the recurrent set
consists of a single absorbing state (as occurs in a one-locus model
or in a multilocus context without recombination), and that this
absorbing state is taken to be the reference set, Eq. (A.27) simplifies
to

d◦S =
∑

trans V∈V

TSV (pV (0)− pR(0)), (A.28)
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where we used φSR = 1. Further, if there is initially a single mutant
allele in the population for a one-locus model, pV (0) = 0 and
pR(0) = 1/N , whereby

d◦S = −
1
N
TSR, (A.29)

where TSR =
∑
trans V∈V TSV is the mean time to absorption in R,

given that a set of gene lineages initially resides in S (Grinstead
and Snell, 1997, p. 419); that is, the mean coalescence time.

A.2.4. Expressing (M◦)−1 in terms of Z
In this Appendix, we express (M◦)−1 =

(
I− A◦ + A◦℘

)−1 in
terms of the fundamentalmatrix Z as defined in Eq. (A.15), which is
applicable to all mixing Markov matrices (Iosifescu, 2007, p. 133).
From the definition of M◦, we have I − A◦ = M◦ − A◦℘ and on
substitution into Eq. (A.15) gives Z = (M◦ + A◦c − A◦℘)

−1. Left-
multiplying both sides of this equation byM◦ + A◦c − A◦℘ , we have
M◦Z = I −

(
A◦c − A◦℘

)
Z, and then right-multiplying by Z−1 and

taking inverses, we obtain

(M◦)−1 = Z
(
I−

(
A◦c − A◦℘

)
Z
)−1

. (A.30)

For each block, the rows of the matrix
(
A◦c − A◦℘

)
Z are all identical

and we can thus express this matrix in terms of the tensor
product of two vectors. We can then apply the Sherman–Morrison
formula (Bartlett, 1951, eq. 2), by which we obtain

(
I−

(
A◦c − A◦℘

)
Z
)−1
= I+

(
A◦c − A◦℘

)
Z

1+ τ
, (A.31)

where τ is equal to the row sum of
(
A◦c − A◦℘

)
Z. Because the row

sums of Z are equal to one (Grinstead and Snell, 1997, p. 458;
Iosifescu, 2007, p. 132), we have ZA◦℘ = A◦℘ and ZA◦c = A◦c , so
that insertion of Eq. (A.31) into Eq. (A.30) gives

(M◦)−1 = Z+

(
A◦c − A◦℘

)
Z

1+ τ
. (A.32)

It now remains to evaluate τ ,A◦cZ andA
◦

℘Z. From the definitions
of A◦c and Z, A◦cZ = A◦c and I − A◦c = (I− A◦) Z (Grinstead and
Snell, 1997, p. 458-459). We have previously noted that A◦℘ = CA,
where (for each block)C is amatrixwhich elements are zero except
the column for the reference set of positions for the block, which
elements are 1. Premultiplying I−A◦c = (I− A◦) ZbyC, one obtains

A◦℘Z = CZ− C+ A◦c , (A.33)

which shows, first, that the row sums of A◦℘Z are equal to one, as
those of A◦c , so that τ = 0 in Eq. (A.32); second, that (M

◦)−1 =
Z− CZ+ C.

A.3. Explicit expression for Hill–Robertson effect1πHR

For third-order effects of selection we find that the reduction in
the fixation probability of a mutant allele A due to interference is
given by

1πHR = −sAs2BpB(0)(1− pB(0))
X1
X2
, (A.34)

where

X1 = N2
[
N(3N − 2)+ (N − 2)(N − 1)(N + 2)r − 2(N − 2)(N − 1)r2

]
×
[
20− 66N + 81N2 − 36N3 − (N − 1)(N(3N(4N − 21)

+ 88)− 40)r + 2(N − 2)(N − 1)2(3N − 5)r2
]

(A.35)
and

X2 = 6N((N − 1)r + 1)(3N + (N − 2)(N − 1)r − 2)
×
[
2(r − 2)r2N5 + r((44− 17r)r − 26)N4

+ (r − 1)(13r(4r − 7)+ 18)N3

− (r − 1)(r(73r − 134)+ 45)N2

+ 4(r − 1)(3r − 2)(4r − 5)N − 12(r − 1)3
]
. (A.36)

When r = 0, Eq. (A.34) reduces to Eq. (78) of the main text.

A.4. Two-locus model with social effects: Coevolution of helping and
punishment

A.4.1. Biological scenario
In this Appendix, we present the first-order perturbations of

fixation probabilities for a two-locus model where the alleles
segregating in the population might have phenotypic effects on
the fecundity of actors and receptors; namely, we consider social
traits that result in frequency-dependent selection. We assume a
helping and a punishment locus and that each individual interacts
with its N − 1 neighbors. We model interactions according to
the strong-reciprocity protocol (e.g., Bowles and Gintis, 2004) in
exactly the same way as detailed in Lehmann et al. (2007, eq. 5)
for the interactions taking place among individuals within patches
of size N . Bearing a mutant helping allele at locus A causes the
actor to provide a benefit BH/(N − 1) to a single partner at a direct
fecundity cost CH/(N−1) to himself. Individuals bearing a mutant
punishment allele at the B locus express an act of punishment at
a cost CP/(N − 1) to self, conditional on their partners not having
expressed helping, which decreases the fitness of the recipient by
DP/(N − 1). Individuals bearing the resident alleles at each locus
take the benefits and pay no direct costs. With these assumptions,
the relative fecundity of individual i is given by

fi = 1+
1

N − 1

∑
k,k6=i

[−CHpA(i) + BHpA(k) − CP(1− pA(k))pB(i)

−DP(1− pA(i))pB(k)]. (A.37)

With this fecundity function we can compute the fitness of
individual i as wi = fi/f , where the average fecundity is given by
f = 1+ (BH− CH)pA− (CP + DP)

(
pB − pA/B

)
. Inserting the fitness

function into Eq. (43) and assuming that CH, BH, CP, and DP are of
order δ, the recursion for the conditional frequency of the mutant
allele a locus U (U = A or U = B) can be written to the first-order
in selection strength as

E�[p′U | p] = pU − CHpAU + BHpA/U − CP
(
pBU − pBU/A

)
−DP

(
pB/U − pAU/B

)
− (BH − CH)pApU

− (CP + DP)
(
pBpU − pA/BpU

)
. (A.38)

Integration over all sample paths then allows us to obtain the
recursion for the unconditional frequency of the helping and
punishment alleles, respectively, as

Ep�A
′
= Ep�A − CHEp

◦

A + BHEp
◦

A/A − CP
(
Ep◦AB − Ep

◦

A/AB

)
− (BH − CH) Ep◦

A
_
/ A
+ (CP + DP)

(
Ep◦
A
_
/ B
− Ep◦

A
_
/ (A/B)

)
(A.39)

and

Ep�B
′
= Ep�B − CHEp

◦

AB + BHEp
◦

A/B − CP
(
Ep◦B − Ep

◦

A/B

)
−DP

(
Ep◦B/B − Ep

◦

AB/B

)
− (BH − CH) Ep◦

A
_
/ B

+ (CP + DP)
(
Ep◦
B
_
/ B
− Ep◦

B
_
/ (A/B)

)
, (A.40)
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where all neutral moments of allelic states have already been
encountered in the main text (see Eqs. (53)–(54) and Eqs. (65)–
(67)). These equations then allow us to construct A for both the
mutant helping and punishment alleles.

A.4.2. Results
We find that the first-order perturbation of the fixation

probability of a single mutant helping allele (pA(0) = 1/N) is a
complicated function of the model parameters and in particular
of the recombination rate r and the initial frequency pB(0) of the
punishment allele. When a single helping allele arises on a single
mutant punishment background (pB(0) = 1/N), the first-order
perturbation simplifies to

π̇A = −CH −
BH − CH
N

+
(DP − CP)

(
N + r(N − 1)2

)
− CP (N − 2)

{1+ r (N − 1)}{3N − 2+ r (N − 2) (N − 1)}
, (A.41)

which is a decreasing function of the recombination rate. The
second term on the right-hand side is a cost, while the third term
is a benefit, which is decreasing when population size increases,
and is likely to dominate the cost. For instance, in the absence of
recombination (r = 0) and when population size becomes very
large (tends to infinity), the cost vanisheswhile the benefit reduces
to 2(DP − 2CP)/3.
We find that the average perturbation of the fixation probability

of a single mutant (over the two backgrounds at locus B on which
the mutant may appear) is given by

˙̄πA = −CH −
BH − CH
N

+ pB(0)
(
DP −

DP + CP
N

)
, (A.42)

which is increasing in population size but independent of the re-
combination rate. Hence, finite population size decreases the se-
lective pressure on helping once it is taken into account that the
helping allele may appear on two different backgrounds. Letting
population size become very large, the right-hand side of Eq. (A.42)
then reduces to the gradient of selection on gene frequency change
found in deterministic models with basic structure similar to the
present stochastic one (Lehmann et al., 2007, eq. 17, see also Gard-
ner et al., 2007).
The perturbation of the fixation probability of a single mutant

punishment allele at locus B when it arises on a single mutant
background at locus A is given by

π̇B = −CP +
DP + CP
N

+

(
−CH −

BH − CH
N

)
/(1+ r(N − 1))

+

(
N − 1
N

)
(DP + CP) (N − 2− 2r (N − 1))+ CPrN2

{1+ r (N − 1)}{3N − 2+ r (N − 2) (N − 1)}
, (A.43)

and the average perturbation of the fixation probability of a single
punishment allele (over the two backgrounds at locus A on which
the mutant may appear) is

˙̄πB = (1− pA(0))
(
−CP +

DP + CP
N

)
, (A.44)

which is a decreasing function of population size and again in-
dependent of the recombination rate. As was observed for help-
ing, letting population size become large, the right-hand side of
Eq. (A.44) then reduces to the gradient of selection on gene fre-
quency change in deterministic models for the evolution of pun-
ishment (Lehmann et al., 2007, eq. 20, see also Gardner et al., 2007).
In Fig. 3we checked these analytical resultswith those obtained

from simulations by comparing the predicted perturbations
given by Eqs. (A.41) and (A.43) with observed ones. This figure
illustrates that the change of the direction of selection as a
function of the recombination rate is well predicted by the first-
order perturbations even when selection is not weak, although
discrepancies arise when selection is very strong.
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