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Abstract

This paper explores empirically whether the supply or the demand un-

certainty, the time to maturity, and the slope of the term structure (sto-

rage), explain the realized volatility of nearby commodity futures 5‐min

returns. I find support for the “uncertainty resolution” and the “theory of

storage” hypotheses while the “time to maturity” hypothesis is rejected.

These results are robust to the inclusion of autoregressive terms in the

baseline model. Next, I evaluate the in‐ and out‐of‐sample forecasting

ability of models including these economic variables and find mixed re-

sults. Finally, I test the validity of these forecasts in expected shortfall

modeling.
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1 | INTRODUCTION

The realized volatility (RV) framework introduced by Andersen and Bollerslev (1998a, 1998b) delivers higher
forecast accuracy than generalized autoregressive conditional heteroskedasticity (GARCH) or stochastic volatility
models for spot and futures prices of stocks, bonds, and currencies. Yet, the literature on the RV of commodity
futures is scarce. While commodity futures share many commonalities with financial assets, the physical nature of
their underlyings introduces specificities such as inventory, consumption, or decay. Hence, I ask whether the
introduction of economic variables (EVs), which characterize individual commodity futures contracts, helps to
model their RV.

I start the analysis with a regression model that tests whether seasonality (uncertainty resolution), time to maturity
(Samuelson conjecture), and the slope of the term structure (a proxy for inventories), explain commodity futures RV.
The empirical analysis is based on three groups of commodities (agriculture, energy, and metals). I select the three
most liquid commodity contracts in each group, over the 2008–2019 period, and estimate the system of equations with a
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Seemingly Unrelated Regression (SUR), to account for omitted variables common to commodity contracts.1 I capture
seasonal variations of RV with dummies reflecting critical months. In line with economic predictions, this variable is
statistically significant at the 1% level for agricultural products (seasonal crops) and natural gas (higher heating
demand in winter). I also study the time to maturity, a controversial variable related to the functioning of futures
markets. The time to maturity positively determines the commodity futures RV, with statistical significance at the 1%
level (for eight out of the nine commodities). Lastly, consistent with the theory of storage, I show that the slope of the
term structure is related to the RV. More specifically, the absolute value of the slope shows a positive relation with RV
that is statistically significant at the 1% level for the three energy contracts and copper.

Given the strong and long‐lasting autocorrelation of RV, I introduce several autoregressive specifications in the
baseline model. I find that the explanatory power of EVs is robust to this inclusion. I first introduce the heterogeneous
autoregressive RV (HAR; see Corsi, 2009). The motivation for using the HAR is based on the econometric performance
(both in‐ and out‐of‐sample), and justified by the general long‐term memory that commodity futures RV exhibit. I
show that the explanatory power of EVs is not altered since EVs are altogether statistically significant at the 1% level. I
repeat this test with two alternative competing models: the HEXP in which the lagging terms are exponentially smoothed,
and the HARQ which accounts for measurement errors (see Bollerslev et al., 2016, 2018), respectively. I find that the
explanatory power of EVs remains when these alternative specifications are considered. Finally, I test the baseline model
nested with autoregressive and measurement errors variables in time‐varying (TV) parameter models (HAR‐TV and
HARQ‐TV) (see, e.g., Casas et al., 2019; Chen et al., 2018). The explanatory power of EVs is also robust to these
specifications. I carry on with a horse race of all competing models, that nest EVs or not, and compare their in‐ and out‐
of‐sample forecast accuracy at three different horizons. In‐sample, the best performing model for 1‐day ahead forecasts is
the HARQ‐TV, whereas the HAR‐TV outperforms for the 1‐week and 1‐month horizons. Out‐of‐sample, the HARQ
dominates when the forecast horizon is lower than 1‐week, whereas the EVHARQ‐TV produces the best forecasts at
the 1‐month horizon. Comparing one to one the 1‐day ahead forecasts of each model, I find that EVs yield lower errors at
the 1% level, when they are introduced in the HEXP, HAR‐TV, and HARQ‐TV, compared to their constrained version.
I use these out‐of‐sample forecasts in multiquantile VaR regressions, and extract expected shortfall for up to four coverage
levels. I jointly test the parameters for the forecast bias, and uncover that the simple autoregressive models (HAR and
EVHAR) provide the lowest rejection rates.

The contribution of this article is threefold. First, commodity futures are widely overlooked in the RV literature in
comparison to other asset classes. To fill this void, I explore the performance of RV models that include theoretically
motivated EVs. Second, I show that the addition of EVs to autoregressive models improves their explanatory power,
and the accuracy of their forecasts. Since the RV provides a better approximation of the true latent volatility process
than the (G)ARCH and stochastic volatility approaches, the re‐examination of such EVs in this context is particularly
relevant (see Andersen & Bollerslev, 1998b). Finally these tests also highlight the contracts peculiarities in terms of RV.

The remainder of the article proceeds as follows. Section 2 develops the literature review on RV and, more
specifically, its economic determinants. Section 3 presents the research design, including the data organization and
models to test. Section 4 discusses the empirical results. Section 5 compares the performance of out‐of‐sample forecasts
from both autoregressive and EV models in tail risk management. Section 6 concludes.

2 | PREVIOUS RESEARCH AND HYPOTHESES

The daily realized variance is defined as:

 ( )RV r(Δ) ,t
j

t j+1
2

=1

1 Δ

Δ, + ×Δ
2≡

∕

(1)

where 1 Δ∕ is the number of observations in 1 day and rΔ
2 represents the squared change in intraday (log) prices (see,

e.g., Andersen et al., 2007). Andersen and Bollerslev (1998a) show that the realized variance is the limit of the
integrated variance, as the frequency increases to infinity:

1The agriculture contracts are corn, soybeans, and wheat. The energy contracts are crude oil, heating oil, and natural gas. The metal contracts are
gold, copper, and silver.
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 RV σ s ds κ slim (Δ) ( ) + ( )t
t

t

t s tΔ 0
+1
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+1
2

< +1

2


→

→
(2)

The right‐hand side of Equation (2) is the integrated variance of the diffusion process σ , and discrete jumps of size κ.
Disentangling jumps from the continuous process is an empirical issue (see, e.g., Aït‐Sahalia, 2002, 2004).

Generally, RV (square root of the realized variance) is computed using constant time‐intervals ranging from 1 to 30min
(see, e.g., Aït‐Sahalia et al., 2005; Andersen et al., 2011b). Patton and Sheppard (2015) use consecutive transactions. When
5‐min RV is taken as the benchmark, Liu et al. (2015) find little evidence that it is outperformed by any other measure.
However, when using inference methods that do not require to specify a benchmark, there is some evidence that more
sophisticated measures outperform. For example, Andersen et al. (2011b) propose two estimators of particular interest: (a) the
average estimator and (b) the optimal estimator. The linear forecasts obtained by averaging standard sparsely sampled RV
measures generally perform on par with the best alternative robust measures. Overall, 5‐min RV is difficult to beat.

2.1 | Stylized facts

Changes in consecutive (log) prices of financial assets, including stock, bonds, and currencies, present common
characteristics that are also shared by commodities futures:

(a) Standard deviation dominates the mean over daily and weekly return horizons;
(b) Daily, weekly, and monthly horizons show excess kurtosis versus a normal distribution;
(c) Squared and absolute returns are strongly autocorrelated;
(d) There are periods of high volatility (volatility clustering); and
(e) Outliers and jumps are more frequent than they should be (vs. a normal distribution).

Two main differences between commodity and stock index futures have been documented. The first noticeable
discrepancy is the inverse asymmetric reaction between commodity futures price and volatility, that is, the “inverse
leverage effect,” arising from shocks on inventories. Typically, when the resources are scarce, the supply on the
corresponding market becomes inelastic. A decrease of one unit in inventory leads to a dramatic price upward revision
(see Carpantier, 2010; Carpantier & Dufays, 2012; Carpantier & Samkharadze, 2012; Ng & Pirrong, 1994).

The second difference with other financial assets has to do with the underlying stochastic process that generates
price changes. Commodity futures price changes are positively skewed and, contrary to stock returns, this skewness
strongly shows up at the contract level (see, e.g., Gorton & Rouwenhorst, 2006).

2.2 | The economic determinants of RV

Anderson and Danthine (1983) hypothesize that the key determinant of volatility is the time at which the production
uncertainty is resolved. The uncertainty resolution is seasonal, for instance at the end of a crop when the supply is
publicly known (see also Anderson, 1985). This seasonality should be particularly visible for agricultural products
whose production are concentrated in a single annual harvest in the northern hemisphere.2 It should also be present
for the natural gas contract since the demand rises every winter in the northern hemisphere. Despite the fact that these
turning points should primarily affect the cash market, Anderson and Danthine (1983) additionally show that the link
between the cash and futures markets ensures the volatility diffusion from the former to the latter. The research also
shows that intangible commodities like electricity or those whose exchange value is higher than their consumption
value, such as gold or silver, behave more like traditional financial assets. Anderson (1985), Khoury and Yourougou
(1993), and Galloway and Kolb (1996) find a seasonal component in volatility, combined with a time to maturity effect.

Samuelson (1965, 1976) conjectures that the volatility of commodity contracts is higher when the remaining time to
maturity is lower. Despite many empirical tests, the results are contradictory. On the one hand, Rutledge (1976) and

2See the statistics from the US Department of Agriculture: https://www.nass.usda.gov/. Although soybeans production is also very large in the
southern hemisphere, the underlying product specifications and delivery locations of the contract studied are all in the northern hemisphere.
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Grammatikos and Saunders (1986) do not find evidence of any increase in volatility. On the other hand, Milonas (1986), and
Galloway and Kolb (1996) find support for all commodities. Consistent with the Samuelson hypothesis, Bessembinder et al.
(1996) develop a model in which the spot price has negative covariance with the slope of the term structure. This implies a
temporary price change, which is more likely to occur in real assets than in financial assets. Indeed, recent empirical tests on
the NIKKEI (Chen et al., 2000) and on the S&P 500 futures (Moosa & Bollen, 2001) strongly reject the Samuelson
conjecture, whereas Bessembinder et al. (1996) find empirical support mainly for agricultural commodity futures.

The theory of storage states that the relation between the volatility of storable commodities and the level of inventories is
convex and negative (see, e.g., Brennan, 1958; Kaldor, 1939; Working, 1933). More recent versions of the theory of storage in
equilibrium (e.g., Deaton & Laroque, 1992) also predict this link, which is confirmed empirically (see Carpantier and
Samkharadze, 2012; Fama & French, 1988; Geman & Nguyen, 2005; Geman & Ohana, 2009; Ng & Pirrong, 1994).
Inventories are difficult to measure at the aggregate level with a daily frequency. At the monthly frequency however, Gorton
et al. (2012) find empirical evidence of a negative relation between actual inventories and the spot price volatility. More
importantly, they confirm the tight link between the term structure and inventories. Thus, because the term structure is
readily measurable at any frequency, this variable allows to test inventory‐related hypotheses at the daily frequency. Kogan
et al. (2009) extend the theory of storage prediction to a nonmonotonic and convex relation between volatility and
inventories. They first document empirically that the volatility increases when the inventory levels approach their physical
limits (empty or filled storage). To explain this “v‐shape” pattern, they derive a model that links the volatility to investment
constraints through the capacity of firms to absorb demand shocks. They introduce the slope of the term structure
conditioned on its sign in GARCH models, and find that the corresponding coefficients are statistically significant at the 1%
level (see also Haugom et al., 2014). To conclude, both low and high inventories lead to high volatility. Consequently, I state
my hypotheses as follows. The volatility of commodities futures:

(a) is seasonal for commodities that show seasonality in the supply or the demand,
(b) increases when the time to maturity decreases, and
(c) is positively related to the intensity of both low and high inventory states.

2.3 | Endogenous determinants of RV

The main idea of Corsi (2009) is that the RV at time t depends on past values of the RV at time t t t p− 1, − 2, …, − , where
p can be very high (20 or more), suggesting a long‐memory process. However, this process is mean reverting toward a long‐
term component. Therefore, the transitory component of the daily variance relates to the RV at t − 1 and the introduction of
two additional components (weekly and monthly RVs) smooths its dynamics. Altogether, these variables give a parsimonious
representation of the typical volatility exponential decay (see, e.g., Andersen et al., 2003). In the empirical part of the paper,
Corsi (2009) estimates the model with the S&P 500 index, the USD/CHF exchange rate, and a 30‐year US T‐Bond futures.
Based on the BIC criterion, the 1‐day ahead in‐sample performance of this model is higher than that of an AR (22), which
clearly shows that the HAR (3) model is parsimonious. Out‐of‐sample, the model steadily outperforms the short‐memory
models (AR (1) and AR (3)) at the 1‐day, 1‐week, and 1‐month horizons. In addition, it is on par with an (long‐memory)
ARFIMA model. Lastly, the superior performance of the ARFIMA and HAR (3) increases with the forecasting horizon.

Several versions of the model have been proposed using the RV, its log, and its square. Andersen et al. (2007) show
that the log of RV is the closest to normality and that jumps are negligible in terms of RV forecasting. Microstructure
effects could introduce measurement errors, which lead to biased coefficients. Nevertheless, the residuals of log RV are
still heteroskedastic, and the parameters of the HAR are not constant over time (see Buccheri & Corsi, 2019). Using a
simple linear process could be insufficient for at least three reasons: (a) jumps, (b) measurement errors, and (c) time‐
varying parameters. Andersen et al. (2011a) consider that RV has (i) a continuous component for the day that is well
described by an HAR‐GARCH model, (ii) a jump component for the day, and (iii) a GARCH component for the night,
leading to the HAR‐CJN model. However, the out‐of‐sample performance of this model is just slightly higher than that of
the HAR.

Given the measurement error that plagues the estimation of RV, Bollerslev et al. (2016) introduce the “realized quarticity”
(RV) in the HAR model. The authors write an extension (HARQ model) where the coefficients are a linear function of the
quarticity. The idea is to put less weight on past high values of RV when they are subject to potential mismeasurement. By the
same token, this variable is supposed to capture microstructure effects and jumps. However, HARQ also shows signs of
misspecification. As an alternative, Corsi and Reno (2012), and Patton and Sheppard (2015) examine whether the RV reacts
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symmetrically to positive and negative shocks that affect prices, that is, the so‐called “leverage effect.” Casas et al. (2018) nest
both models. Cipollini et al. (2017) show that HARQ is observationally equivalent to another model where a quadratic term in
RV accounts for a faster mean reversion when volatility is high. They argue that the realized quarticity and a time‐varying
mean seem to play a more important role than measurement errors. In these models, the time‐varying coefficients are linear
functions of the realized quarticity (parametric specification). Chen et al. (2018) generalize this approach by considering a log
HAR model with time‐varying coefficients of unspecified functional forms (HAR‐TV). These coefficients are approximated
with a local linear function of time. Casas et al. (2018) extend Chen et al. (2018) in two directions. First, they consider a
potential asymmetric reaction to negative shocks. Second, the coefficients are no longer a local linear function of time but a
linear function of the realized quarticity (semiparametric approach). Unfortunately, the forecasting performance of the RV is
not examined specifically since the main purpose of the paper is to forecast the stock market.

Bekierman and Manner (2018) take a different stance. They propose a state‐space representation of the HAR model
that can be augmented by functions of the realized quarticity. They attribute the higher performance of the state‐space
HAR models to the fact that the realized quarticity is a noisy proxy for the true measurement error, which is likely to
be greater in periods of high volatility. Furthermore, their state‐space models are able to capture other sources of time
variation in the parameters that are not explained by the measurement error. Buccheri and Corsi (2019) generalize the
state‐space representation approach in several directions. Their state‐space model allows for a time‐varying error, and
considers that the updated parameters depend on the level of uncertainty that is based on the score function. This
model (SHARK) appears to perform very well, both in‐ and out‐of‐sample, but there is no straightforward extension for
multivariate estimations.3

Overall, significant progress has been made with the development of sophisticated specifications. Their main
purpose is to clean the data from microstructure effects, and to account for an asymmetric reaction to negative
exogenous shocks. Yet, the focus of empirical applications has been on stock indices, currencies, individual stocks,
bonds, and less frequently on futures contracts. The following methodology details the implementation of the afore-
mentioned benchmark models to test the contribution of EVs.

3 | METHODOLOGY

I start with a linear model that incorporates the EVs discussed in Section 2.2. Then, I test whether these economic
determinants have explanatory power beyond that of the past realizations of RV. Finally, I test several specifications
allowing coefficients to vary over time. All specifications are systems of equations (SUR), estimated with FGLS.
Therefore, they account for the contemporaneous correlation of error terms across equations induced by potential
omitted variables common to all contracts.

3.1 | Baseline model

To check whether the economic determinants of RV have any explanatory power, three EVs observable at the daily
frequency are considered. First, I introduce monthly dummies for the corn, soybeans, wheat, and natural gas contracts,
to test for seasonal effects (uncertainty resolution hypothesis). The monthly dummies are set in July for the agricultural
products, which corresponds to the harvest month of the soft red winter wheat contract in the United States, and more
generally for winter wheat in the northern hemisphere. It also corresponds to the “filling”month for corn and soybeans
in the northern hemisphere, which is more critical than the subsequent harvesting months. For the natural gas, I select
January which corresponds to the coldest month, and to the highest consumption month in the United States,
historically. This choice also matches the unconditional seasonal pattern of RV that is displayed in Figure 1.4

Second, I introduce the log of the time to maturity (Samuelson hypothesis), crossing the timestamp with the
contract maturity information available in the full ticker.5 I set it on a calendar basis, since I assume that the latent

3Multivariate RV series modeling is out of the scope of this paper.
4For supply‐related information of agricultural products see, https://ipad.fas.usda.gov/countrysummary/. For demand‐related information of the
natural gas see, https://www.eia.gov/outlooks/steo/report/natgas.php. For the unconditional level of historical RV of other contracts see Appendix
Figure A1.
5Bessembinder et al. (1996) consider the square root of time to maturity instead of the log.

MARÉCHAL | 1739

 10969934, 2021, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/fut.22250 by B

cu L
ausanne, W

iley O
nline L

ibrary on [18/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://ipad.fas.usda.gov/countrysummary/
https://www.eia.gov/outlooks/steo/report/natgas.php


maturity information exists even when futures are not traded.6 Finally, consistent with the theory of storage, I consider
the slope of the nearest term structure. Since the maturity gap differs across contracts, I normalize the slope measured
for each contract by the maturity gap.7 More specifically, I test the “v‐shape” hypothesis (Kogan et al., 2009; Haugom
et al., 2014) by adding a “backwardation” dummy set to “1” when the slope of the nearest term structure is negative,
and “0” otherwise. Its interaction with the slope allows to capture simultaneously the inventory effects related to either
the “v‐shape” or the traditional theory of storage. The following model is estimated:

FIGURE 1 Unconditional monthly average RV. These plots display the monthly average of daily RV for the nearby futures contract
written on corn, soybeans, wheat, and natural gas. The red line represents the average and the gray area represents the 90% confidence
bands. For a better alignment, the plot of the natural gas contract is centered in January. The sample period is May 5, 2008–April 1, 2019.
The number of observations per contract is 2755. RV, realized volatility

6This is also the methodology underlying the VIX computation. In unreported robustness tests I also use business time with virtually no differences
in the results.
7The contracts maturities are reported in Appendix Table A1.
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RV α α M α TM α SL α B

α B SL

= + + + +

+ × + ϵ ,
c t c c c t c c t c c t c c t

c c t c t c t

, 0, 1, , 2, , 3, , −1 4, , −1

5, , −1 , −1 ,
(3)

where Mc t, is a dummy equal to “1” during the critical month of the corresponding contract and to “0” otherwise,TMc t,

is the (log) time to maturity, SLc t, −1 is the annualized (log) term structure slope between the nearby and first deferred
contract, and Bc t, −1 is a dummy equal to “1” (“0”) when this slope is in backwardation (contango). These variables are
defined in the Appendix Table A2.

3.2 | The autoregressive components of RV

Next, I control for the autoregressive component of the RV by introducing five different specifications, that is, the HAR
(Corsi, 2009), the HEXP (Bollerslev et al., 2018), the HARQ (Bollerslev et al., 2016), the HAR‐TV (Chen et al., 2018),
and the HARQ‐TV. I choose these models because they are parsimonious and competitive in terms of explanatory
power and forecasting ability.

• EVHAR

The EVHAR model is,

 α′EVRV β RV β RV β RV= + + + + ϵ ,c tc t c c t c c t t c c t t c t, , 1, , −1 2, , −2 −5 3, , −6 −22 , (4)

where RVc t, is the log RV in time t for commodity EVc, c t, is the vector of EVs in Equation (3) and a constant, RVc t n t p, − −

is the log average RV computed over the days t n− to t p− (previous week and month, see Corsi, 2009).

• EVHEXP

The Heterogeneous Exponential of Bollerslev et al. (2018) is similar to the HAR. It uses mixtures of exponentially smoothed

past log RV. Each term is computed as, RV =c t
CoM λ

i
e

e e e,
( )

=1
500

+ + +

iλ

λ λ λ

−

− −2 −500⋯
, with ( )λ = ln 1 +

1

CoM
, for decay rates

λ = 0.693, 0.182, 0.039, and 0.008 corresponding to centers of mass (CoM) of 1, 5, 25, and 125 days, respectively:

α′EVRV γ RV γ RV γ RV γ RV= + + + + + ϵ ,c tc t c c t
CoM

c c t
CoM

c c t
CoM

c c t
CoM

c t, , 1, , −1 2, , −1 3, , −1 4, , −1 ,
1 5 25 125 (5)

• EVHARQ

The HARQ uses the realized quarticity to account for measurement errors. Barndorff‐Nielsen and Shephard (2002)
define the estimator of the log‐realized quarticity (hereafter, RQt) as:


( )

RQ
r

r
=

2

3
t

i i t

i i t

=1
1 Δ

,
4

=1
1 Δ

,
2 2

∕

∕

I retain a parsimonious version of the model where only the first coefficient of the HAR is penalized for measurement errors,

 α′EVRV δ δ RQ RV δ RV δ RV= + ( + ) × + + + ϵ ,c tc t c Q c c t c t c c t t c c t t c t, , 1, 1 , , −1 , −1 2, , −2 −5 3, , −6 −22 , (6)

3.3 | Are the parameters time‐varying?

• EVHAR‐TV

To check whether parameters are time‐varying, the semiparametric (local kernel) estimation approach is employed (see
Casas et al., 2019; Chen et al., 2018). This method also allows for an estimation in system (SUR), which makes the
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comparison with the competing models consistent. I use the Nadaraya–Watson (Nadaraya, 1964; Watson, 1964)
estimator,


α x

K x x y

K x x
ˆ ( ) =

( − )

( − )
,h

i
n

h i i

j
n

h j

=1

=1

where K is the Epanechnikov kernel for a bandwidth h. The procedure uses “leave‐one‐out cross‐validation” to select
the optimal bandwidth. An additional advantage of the kernel regression is that the covariance matrix of errors for the
feasible generalized least squares (FGLS) is itself time‐varying, with a bandwidth selected similarly. The model is,

 α′ τ EVRV θ τ RV θ τ RV θ τ RV= ( ) + ( ) + ( ) + ( ) + ϵ ,t c tc t c t c t c t c t t c t c t t c t, , 1, , −1 2, , −2 −5 3, , −6 −22 , (7)

where the coefficients α τ( )t
′ are time‐varying, τ =t

t

T
the smoothing variable for t T= 1, 2, …, , and T the sample size.

• EVHARQ‐TV

The following model nests time‐varying parameters and measurement errors, penalizing the first term of the HAR‐TV
with the (log) realized quarticity. The model is,




α′ τ EVRV ϕ τ ϕ τ RQ RV ϕ τ RV

ϕ τ RV

= ( ) + ( ( ) + ( ) ) × + ( )

+ ( ) + ϵ ,

t c tc t c t Q c t c t c t c t c t t

c t c t t c t

, , 1, 1 , , −1 , −1 2, , −2 −5

3, , −6 −22 ,

(8)

3.4 | Data and descriptive statistics

3.4.1 | Data and variable definition

Nine contracts evenly spread in three main subgroups, that is, agriculture (wheat, corn, and soybeans), energy (WTI crude oil,
natural gas, and heating oil), and metal (copper, gold, and silver) are selected because they have the highest open interest and
turnover in their own subgroup.8 From the Barchart API, I download 5‐min closing prices of the nearby and first deferred
commodity futures contracts from May 6, 2008 to January 18, 2019.9 The data include a timestamp and the maturity date of
each contract, and are restricted to the Globex session (exchange market) only. The trading hours are reported in Appendix
Table A1, along with the corresponding maximum 5‐min observations per day. Finally, estimations of the SUR system
requires a perfect time match of the nine contracts, to avoid forward‐looking bias entering the residuals covariance matrix in
the FGLS. Consequently, I set a common cut‐off time at 4 p.m., CT, which I define as the end of the trading day.10

I compute 5‐min log price changes for each nearby futures contract available as r f f= −c t j c t j
N

c t j
N

, , , , , , −1
, where f is the

log of the futures price and the subscripts c t, , and j stand for commodity, day, and time of the observation, respec-
tively. The arithmetic RV (ARV) is defined as follows:

ARV r=c t

j
t j,

=1

1 Δ

,Δ×
2

∕

and the log RV (RV) as follows:

RV ARV= ln( )c t c t, ,

where 1 Δ∕ is the number of observations available given then market open hours of each contract. I choose the 5‐min
sampling since previous literature document its performance over alternative frequencies (see, e.g., Liu et al., 2015).11

8Contracts specifications are in the Appendix Table A1, and their liquidity characteristics in Table A4.
9https://www.barchart.com/
10In unreported robustness tests, I roll the nearby onto the first deferred 5 business days before maturity, with virtually the same results. Previous research
on futures price changes justify this procedure because of possible market squeezes and thinly traded contracts immediately before the maturity.
11Summary statistics in the Appendix Table A3 also show that it is a reasonable choice across the nine contracts, when compared to alternative
frequencies.
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3.4.2 | Summary statistics of 5‐min RV and daily market data

Table 1 compares both distributional and memory properties of the ARV and RV. The daily mean of the ARV ranges
from 1.02% (gold) to 2.72% (natural gas). The ARVs of commodity futures exceed those found in previous literature for
exchange rates, sovereign bonds, and stock indices. Instead, they are included in the range of typical RVs found for
large traded stocks. For instance, the mean of the ARV is 0.5% for the US T‐Bond, 0.67% for the DEM/USD exchange
rate, and 0.93% for the S&P 500 over the 1986–2002 period (see Andersen et al., 2007). On the other hand, Bollerslev
et al. (2016) find that, over the 1997–2013 period, the mean ARV of 27 Dow Jones stocks is in the 1.68%–5.42% range.
Buccheri and Corsi (2019) find a slightly larger but similar range (0.95%–11.10%), for 18 NYSE stocks over the
2006–2014 period. Overall, the null hypothesis of normality is rejected for both the ARV and RV. However, in line with
Andersen et al. (2003), the RV distribution is closer to normality than that of the ARV. The skewness of the ARV is at
least twice that of the RV for eight contracts, and even more for the crude oil contract. The excess kurtosis of the ARV is
also much larger (up to two orders of magnitude for the crude oil contract). Moreover, the persistence increases when
using the RV in place of the ARV. The Ljung‐Box statistics of the RV are twice those of the ARV for eight contracts. The
log‐periodogram parameters of the RV are also superior for agriculture and energy, but not for metal products. Overall,
the memory properties of the ARV and RV are similar to previous results found for exchange rates (Andersen et al.,
2003, 2007), S&P 500, and US T‐Bonds (Andersen et al., 2007).

Table 2 reports the four moments of the distribution for the nine nearby futures contracts. The average log price
changes (Panel A) is close to zero over the sample period, for all contracts. Similar to financial assets, their distributions
strongly depart from normality, with an average SD that vastly exceeds the mean and an important excess kurtosis,
from 1.93 (wheat) to 17.04 (corn). The skewness that has long been perceived as positive in commodity futures,
together with positive excess returns, also range from −1.17 (soybeans) to 0.33 (natural gas) (see Gorton &

TABLE 1 Summary statistics: Daily RV

Agriculture Energy Metal

Corn (C) Soybeans (S)
Wheat
(W)

WTI crude
oil (CL)

Heating
oil (HO)

Natural
gas (NG) Gold (GC)

Copper
(HG) Silver (SI)

Daily arithmetic realized volatility, ARVt

Mean% 1.72 1.41 1.94 2.06 1.80 2.72 1.02 1.57 1.83

σ% 1.01 0.80 0.84 1.21 0.93 1.36 0.58 0.93 1.06

Skewness 7.50 4.86 2.41 4.13 2.82 4.35 2.94 2.84 2.96

Kurtosis 145.87 52.33 11.81 49.42 21.66 46.60 16.78 11.57 16.52

JB 2,471,897 325,629 18,710 288,677 57,598 258, 315 36,358 19,095 35, 395

Q(20) 4856 6723 7139 26,574 25,471 8768 18,971 27,365 15,973

d 0.24 0.35 0.32 0.50 0.50 0.41 0.44 0.59 0.49

Daily logarithmic realized volatility, RVt

Mean% −415.13 −434.90 −400.54 −400.03 −412.02 −369.11 −468.93 −427.66 −412.04

σ% 46.48 46.19 41.54 46.69 43.93 39.85 50.87 46.46 52.02

Skewness 2.06 2.37 2.16 0.51 0.42 0.55 1.61 0.65 0.58

Kurtosis 13.73 17.02 18.39 0.61 0.36 1.01 13.22 1.14 7.55

JB 23,627 35,914 41,036 161 95 259 21, 286 343 6706

Q(20) 11,283 10,703 8201 32,443 31,598 18,330 12,106 23,773 11,329

d 0.34 0.40 0.32 0.52 0.53 0.51 0.33 0.51 0.38

Note: This table reports summary statistics for four estimators of daily realized volatility. These estimators are based on 5‐min log price changes of the nearby
futures commodity contract. I display these statistics for the arithmetic realized volatility ARVt and the log realized volatility RVt . The table displays the first
four moments of the distribution, the Jarque‐Bera statistic JB, the Ljung‐Box statistic (20th order serial correlation) Q(20), and the parameter d of the log‐
periodogram regression (Geweke & Porter‐Hudak, 1983; Robinson, 1995) based on a bandwidth exponent of 4/5 as in Andersen et al. (2003). The sample period
is May 5, 2008–April 1, 2019 for nine commodity futures contracts. The number of observations per contract is 2755.
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Rouwenhorst, 2006). I additionally provide the proportion of days during which the contracts are in contango, which
stands between 60.16% (soybeans) and 97.55% (wheat). The group means is 81%, 80.12%, and 67.55%, for agriculture,
energy, and metal, respectively. These statistics differ from the classical view according to which agricultural products
are more subject to contango, given their important storage costs (see, e.g., Fama & French, 1987; Keynes, 1930).
Nonetheless, it does confirm that precious metals have the least contango, given the irrelevance of storage costs with

TABLE 2 Summary statistics: Daily market‐level data

Agriculture Energy Metal

Corn
(C) Soybeans (S)

Wheat
(W)

WTI crude
oil (CL)

Heating
oil (HO)

Natural
gas (NG) Gold (GC)

Copper
(HG)

Silver
(SI)

Panel A: Daily log price changes of nearby contracts

Mean% −0.02 −0.01 −0.02 −0.02 −0.02 −0.05 0.01 −0.01 −0.004

σ% 1.92 1.60 2.07 2.38 1.93 2.96 1.12 1.73 1.99

Skewness −1.07 −1.17 0.16 0.05 −0.17 0.33 −0.07 −0.16 −0.99

Kurtosis 17.04 9.30 1.93 4.19 3.10 3.25 7.52 4.01 7.55

Q(20) 26.54 31.48 31.37 52.41 30.09 60.09 17.29 74.53 22.54

Contango% 85.30 60.16 97.55 80.50 74.52 85.36 71.62 62.39 68.68

Optimal
sampling (min)

43 20 30 21 17 29 14 18 25

Panel B: Trading volume (in million USD)

Mean 1466.37 2151.16 827.84 16, 506.63 1658.83 2548.02 8529.10 1948.14 2, 699.74

σ 1223.27 2111.44 621.02 9594.49 1172.04 1461.08 11, 200.83 2205.74 3, 003.31

Skewness 0.86 1.06 0.60 0.54 0.57 1.31 1.34 1.42 2.13

Kurtosis 0.82 1.81 0.64 0.89 −0.39 5.47 2.01 2.96 11.25

Min 0.03 0.06 0.04 0.13 0.08 0.60 0.08 0.07 0.07

Max 8277.70 15, 145.34 4330.91 73, 000.47 6605.90 15, 031.34 94, 868.16 16, 387.95 35, 581.24

Panel C: Minutes with at least one transaction

Mean 528.16 518.13 509.41 1201.31 675.81 898.16 679.75 704.80 744.90

σ 254.11 316.54 264.43 308.60 260.95 258.02 604.09 556.00 552.40

Skewness −0.47 −0.17 −0.61 −0.99 −0.60 −0.52 0.22 −0.15 −0.31

Kurtosis −0.70 −1.28 −0.67 2.71 0.49 2.50 −1.48 −1.54 −1.50

Min 1 1 1 1 1 3 1 1 1

Max 1051 1054 1051 1380 1353 1378 1380 1375 1380

Panel D: Bid‐ask spread (in bps)

Mean 2.67 1.27 2.19 1.93 1.33 2.99 0.68 1.26 1.82

σ 1.73 1.31 1.86 1.73 1.46 2.42 0.85 1.43 1.80

Skewness 0.65 2.35 2.54 1.55 1.85 3.91 2.65 2.39 2.00

Kurtosis 3.62 13.64 28.30 4.92 7.16 63.38 14.26 10.30 8.48

Min 0.01 0.00 0.01 0.04 0.09 0.15 0.00 0.00 0.00

Max 16.61 16.04 30.23 14.98 15.65 52.10 10.19 13.37 17.41

Note: This table reports summary statistics of daily data for nine nearby commodity futures contracts. I display the statistics for the log price changes (Panel A),
the trading volume (Panel B), the number of minutes with at least one transaction (Panel C), and the bid‐ask spread estimated on 1‐min data with the Roll
(1984) methodology (Panel D). I report the first four moments of the distributions, the minima, and the maxima. Panel A also reports the Ljung–Box statistic
(20th order serial correlation for the log price changes) Q(20) and the proportion of days during which the nearest term structure was in contango. Finally, I
report the optimal sampling in minutes based on Aït‐Sahalia et al. (2005, p. 361), assuming that the microstructure noise is gaussian and only driven by the bid‐
ask spread. The sample period is May 5, 2008–April 1, 2019. The number of observations per contract is 2755.
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regard to their underlying value (see, e.g., Ng & Pirrong, 1994). Finally, I report the optimal sampling frequency, to
identify the best trade‐off between resolution and market microstructure noise (see Aït‐Sahalia et al., 2005). This
optimal sampling is roughly related to the market trading volume (Panel B), minutes per day that have at least a
transaction (Panel C), and bid‐ask spread (Panel D). In brief, these results tend to indicate that the higher the trading
activity, the lower the bid‐ask spread and the higher the optimal sampling frequency. In the remainder of the article, I
define RV as the log RV computed with a 5‐min sampling frequency.12

4 | RESULTS

4.1 | In‐sample estimation

4.1.1 | EV and EVHAR

Table 3 reports the coefficient estimates of the EV (Equation 3) and the EVHAR (Equation 4) models.
In the EV specification, the monthly dummies associated with agricultural products (July) and the natural gas

contract (January) are positive, and statistically significant at the 1% level. This first result is consistent with the
seasonal RV structure displayed in Figure 1 and the uncertainty resolution hypothesis (see Anderson & Danthine,
1983). Second, there is a positive relation between the time to maturity and volatility. For seven out of nine contracts,
the corresponding coefficients are statistically significant at the 1% level, in contradiction with the Samuelson con-
jecture. Third, in line with Kogan et al. (2009) and Haugom et al. (2014), I find that for the crude oil contract, the
magnitude of the slope matters but not its sign. SL (contango) loads positively, the interacted variable SL B×

(backwardation) loads negatively, and both coefficients are statistically significant at the 1% level. Thus, contango and
backwardation states are positive predictors of RV, supporting the “v‐shape” hypothesis. This pattern is present for the
crude oil, heating oil, natural gas, and copper contracts. The contango slope coefficient SL of the wheat contract is also
positive and significant at the 1% level, but not the backwardation slope coefficients. This result is likely induced by the
fact that the wheat contract is in contango 97.55% of the time over the sample period. The SL coefficient is negative and
significant at the 1% level for the corn, gold, and silver contracts, thereby showing a negative contango‐RV relation. If
the result for the corn contract is difficult to explain (or is spurious), those for the gold and silver contracts may be
related to previous empirical evidence. For instance, Ng and Pirrong (1994) document that precious and industrial
metals have large differences in their inventory‐volatility relations, explained by the fact that scarcity is irrelevant for
the precious metals group. Finally, the explanatory power of the EV model also varies across contracts, with R2 for
individual equations ranging from 2% (copper) to 26% (crude oil).

When I include the HAR terms into the EV specification, the explanatory power of the models is improved, with
adjusted R2 ranging from 33% (soybeans) to 75% (crude oil). The likelihood ratio test (constrained vs. unconstrained
model) rejects the null hypothesis at the 1% level showing that EVs continue to explain the RV beyond the auto-
regressive terms.13 The HAR coefficients are statistically significant at the 1% level and closely aligned with those of
Andersen et al. (2007) for the DEM/USD exchange rate, S&P 500, and US T‐Bond. In the EVHAR model, the statistical
significance levels of the monthly dummies decrease to 5% for the agricultural products. They remain at the 1% level for
the natural gas (coefficient size in the EV model three times larger than in the EVHAR). This points to a more
pronounced seasonal structure for natural gas that seems difficult to capture only with autoregressive terms (see
Geman & Ohana, 2009). Similarly, the time to maturity coefficients only maintain statistical significance at the 1% level
in metal products. Switching from the EV to the EVHAR model, the statistical significance of the “v‐shape” coefficients
is maintained at the 1% level for all energy contracts. Even if the explanatory power of EVs is partly subsumed by the
HAR terms, and that memory properties capture some of the EV features, their contribution is robust from both futures
markets (time to maturity), and supply and demand (seasonality and term structure slope) perspectives. Therefore, I
keep EVs in the forthcoming autoregressive specifications and test further the robustness of their contribution.

12RV summary statistics with alternative sampling frequencies of 1‐, 5‐, 15‐, and 60‐min are reported in Appendix Table A3. It verifies the good
compromise that the 5‐min sampling delivers, both for distributional and memory properties. The 5‐min frequency remains also superior to the
aggregated measure that averages all the aforementioned variables, which is reported at the bottom of the table (see Andersen et al., 2011b).
13The constrained model estimations are reported in Appendix Table A5.
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4.1.2 | Alternative autoregressive specifications

Table 4 reports the joint estimation of the EVHEXP (Equation 5) and EVHARQ (Equation 6) models.
Given their important lag structure (500 lags, and up to 125‐day CoM), HEXP variables are likely to impact the

cyclical EVs: monthly dummies and time to maturity. For instance, the 125‐day CoM coefficient is negative and
statistically significant at the 1% level for the soybeans contract, one of the “seasonal” commodities. Indeed, this
variable is centered with a half‐year lag, its negative coefficient points to a seasonal structure of the RV, in which one
season is in a high state, relative to the “opposite” season. Instead, this parameter remains positive and statistically
significant at the 1% level, for the heating oil and silver contracts, which was not hypothesized to be seasonal. In all
contracts, the monthly dummies are robust to this deep lag structure, and remain statistically significant at the 1% level.
In addition, the significance of the time to maturity and term structure‐related coefficients are comparable to those of
the EVHAR. Most of the variance in the EVHEXP is explained by the 1‐day CoM coefficient (equivalent to a 1 day‐lag)
and the 25‐day CoM coefficient, which display statistical significance at the 1% level for nine and seven contracts,
respectively. The 5‐day CoM coefficient is statistically significant at the 5% level for five contracts only. These results
indicate that the (EV)HEXP may still properly explain the RV in a more parsimonious specification. Lastly, the
likelihood ratio EVHEXP HEXP∕ , which tests the null that the contribution of EVs is nil in the HEXP model is
statistically significant at the 1% level, which implies that the EVs' contribution is also robust to this model.14

The coefficients related to the quarticity are statistically significant at the 5% level for six contracts, while the
inclusion of the HARQ does not affect the coefficient of the seasonal dummy (statistically significant at the 5% and 1%
level for the natural gas and agricultural products, respectively), it does affect the other EVs. Seven out of nine time to
maturity coefficients in the EVHARQ specification are smaller than those of the EVHAR, suggesting that measurement
errors (or faster mean reversion when volatility is high) may relate to contract maturity (see Cipollini et al., 2017). The
coefficients associated with the slope decrease further after the inclusion of the realized quarticity but not consistently
across contracts. The explanatory power of the EVHARQ is consistently higher than those of the EVHAR and EVHEXP
in terms of individual equations and system R2. Lastly, the likelihood ratio EVHARQ HARQ∕ , which tests the null that
the contribution of the EVs is nil in the HARQ specification, is also rejected at the 1% level. This supports the
robustness of EVs when both autoregressive and measurement error terms are included.

4.1.3 | Time‐varying coefficients

Table 5 reports the results of the EVHAR and EVHARQ models with time varying parameters (EVHAR‐TV, Equation 7
and EVHARQ‐TV, Equation 8). The means of the coefficients time series and their minima and maxima.

The extrema provide information about the extent to which parameters are time‐varying. The largest ranges
are obtained for the intercepts (RV spread of up to 23 for the corn contract), and EVs.15 In contrast, all autoregressive
parameters are more stable across contracts (minimum–maximum RV range of 4 at most). The larger range of
the intercept compared to the autoregressive coefficients aligns with the results of the score‐driven HAR (SHAR; see
Buccheri & Corsi, 2019). The means of the parameters of the EVHAR(Q)‐TV lie in the same range as those of the static
EVHAR(Q), and the improvement in explanatory power when the specification accounts for measurement errors is
similar. The likelihood ratio tests EVHAR TV HAR TV‐ ‐∕ and EVHARQ TV HARQ TV‐ ‐∕ are statistically significant at the
1% level, implying that EVs significantly improve the explanatory power of the most exhaustive autoregressive spe-
cifications, which accounts for both measurement errors and time‐varying parameters. Moreover, the extrema ranges
of the HAR‐TV‐ and HARQ‐TV‐related parameters are considerably reduced after the inclusion of the EVs16. For
instance, the range in RV of the intercepts of the silver contract decreases from 0.93 in the HAR‐TV, to 0.12 in the
EVHAR‐TV, which suggests that EVs play a role in capturing the structural/long‐term levels of the RV.

The cyclical components of EVs, time to maturity and monthly dummies, are partly captured by the time‐varying
intercepts. Yet, in both models, these parameters remain time‐varying. This points to a nonlinear relation between the
EVs and the level of RV (see, e.g., Hong, 2000). The term structure‐related coefficients remain heterogeneous, with only
five contracts that display slope and interaction parameters following the “v‐shape” pattern (jointly positive and

14The results of the estimation of the restricted HEXP and HARQ specifications are reported in Appendix Table A5.
15See also Appendix Figure A2 for the time‐varying pattern of the intercepts. Other coefficients are available upon request.
16I report the results of the estimation of the restricted HAR‐TV and HARQ‐TV in Appendix Table A6.
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negative, respectively). Finally, I find that time‐varying coefficients are statistically different from zero at the 1% level. It
provides evidence that even when the coefficients are small, they are mildly time‐varying.

4.1.4 | EV and RV: A synthesis

In Table 6, I summarize the results for the EVs across the nine contracts. For each model and variable, I report how
many coefficients are significant at the 5% level (negative or positive).

First, the coefficients for the monthly dummies are positive and significant at the 1% level for all four contracts and
six models. The robustness of this seasonal term, even in autoregressive specifications, is striking. This clearly supports
the contribution of EVs, beyond that of the autoregressive components and the uncertainty resolution hypothesis (see
Anderson & Danthine, 1983).

Second, the results of the time to maturity are partly robust. In the restricted EV model, seven out of
nine contracts have positive coefficients, significant at the 5% level. When this variable is nested in the alter-
native static (time‐varying) models, four (eight) coefficients remain positive and significant at the 5% level,
although the interpretation of the significance in the dynamic version is not straightforward. Altogether these
results strongly reject the Samuelson hypothesis, since the time to maturity coefficients are positive and
significant at the 1% level. Moreover, the rejection of the Samuelson hypothesis found in the precious metal,
which are supposed to behave more like financial assets, also relates to the results for the NIKKEI and S&P 500
futures (see Chen et al., 2000; Moosa & Bollen, 2001). Contrary to Bessembinder et al. (1996), I do not find
empirical support for this hypothesis in agricultural commodity futures. Coefficients are not statistically
significant at the 1% level.

Third, the results regarding the term structure provide mixed support to the theory of storage and the “v‐shape”
hypotheses. Four out of nine commodity contracts have statistically significant coefficients at the 1% level. I relate these
results to the contract‐storage peculiarities detailed in Section 4.1.1. In particular, the contracts for which the “v‐shape”
hypothesis is supported are those supposed to embed important storage costs (three energy commodities and copper).
However, the coefficients of the three agricultural contracts, also viewed as having significant storage costs, do not
display the “v‐shape” pattern. Lastly, despite the mixed results of the baseline model, they hold across autoregressive
specifications, with from three (EVHARQ) to six contracts (EVHAR‐TV and EVHARQ‐TV) displaying the “v‐shape”
pattern.

To summarize the aforementioned results, EVs alone do explain the RV. When autoregressive terms are added, the
explanatory power of the regressions increases and the size of the EVs coefficients decreases but their sign and
statistical significance are maintained. This indicates that the information content of the EVs is captured to some extent
by the various lags of the HAR(Q) and HEXP. Yet, the unrestricted versions (with EVs) improve the explanatory power
of the models. Moreover, all likelihood ratios reject the null of no improvement (at the 1% level) when EVs are added.
Thus, the remainder of the paper analyzes how EVs improve the in‐ and out‐of‐sample forecast accuracy of these
models.

TABLE 6 Summary of EV performance

EV EVHAR EVHEXP EVHARQ EVHAR‐TV EVHARQ‐TV

M 4+ 4+ 4+ 4+ 4+ 4+

TM 7+ 4+ 4+ 4+ 8 1+ −∕ 8 1+ −∕

SL 5 3+ −∕ 4 2+ −∕ 4 1+ −∕ 3 2+ −∕ 6 3+ −∕ 6 3+ −∕

B 4 3+ −∕ 2− 2− 2− 4 5+ −∕ 4 5+ −∕

SL B× 1 4+ −∕ 1 4+ −∕ 4− 1 4+ −∕ 2 7+ −∕ 2 7+ −∕

Note: This table summarizes the performance of the EV across the nine contracts, in the restricted and in all autoregressive specifications. For each model, I
report the number of occurrence that each EV is positive at the 5% level (X+), or negative at the 5% level (X−). M is the monthly dummy set to “1” during the
month of uncertainty resolution and to “0” otherwise, and is included in only four out of nine contracts, TM is the (log) time to maturity, SL is the log of the
nearest term structure slope, B is a dummy set to “1” (“0”) when the slope of the nearest term structure is negative (positive). The sample period is April 22,
2010–April 1, 2019.
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4.2 | In‐sample performance

I compute in‐sample forecasts from the 11 models at the 1‐day, 1‐week, and 1‐month horizons. I keep the time to
maturity and monthly dummies contemporaneous since those are deterministic variables. Therefore, the set of in-
formation that determines their future state is fully available ex ante for every agent, such that this approach does not
entail forward‐looking bias. Table 7 reports the results of the Model Confidence Set (MCS) procedure with which the
performance of the models is directly compared based on the three loss functions, that is, mean squared errors (MSE),
mean absolute errors (MAE), and QLIKE (see Hansen et al., 2011; Patton, 2011).

Table 7 reports the tests related to the 1‐day ahead forecasts. The HARQ‐TV emerges as the best model with the
three loss functions. The EVHARQ ranks second, although the MAE losses are excluded from the 90% confidence
interval. The 1‐week and 1‐month ahead comparisons indicate that the HAR‐TV is superior, excluding those of the 1‐
month ahead MSE, for which the HARQ‐TV ranks first. These results are in line with those of Bollerslev et al. (2016)
for the S&P 500 (MSE) and 27 Dow Jones stocks. However, for longer horizons they find the opposite. Thus, across all
models, only a single EV‐based model (the EVHARQ) steps up in the 90% confidence set for the MSE and QLIKE
losses, at the 1‐day horizon. Lastly, the losses are consistently smaller (greater) in the static (time‐varying) versions of
the models, when EVs are included. This points to time‐varying specifications appropriately capturing the time
variations of EVs through the levels (intercepts).

4.3 | Out‐of‐sample performance

I compute out‐of‐sample forecasts at the 1‐day, 1‐week, and 1‐month horizons based on a training period from April 22,
2010 to January 30, 2013. I obtain the static model forecasts by computing RV[ ]t . For the time‐varying specifications,
I use the multistage nonparametric predictor approach (see Chen et al., 2004, 2018). In this procedure, I compute the
one‐step ahead conditional expectations and reuse them to select the new conditional optimal bandwidth for the next
step(s), iteratively. Next, I use the MCS procedure and the modified Diebold‐Mariano test (Harvey et al., 1997) to
benchmark these out‐of‐sample forecasts (see Diebold & Mariano, 1995). The results are reported in Table 8. In this
analysis, I add the RiskMetrics model as a generic benchmark, given its wide use in risk management.17 The Risk-
Metrics model is a parsimonious version of the HEXP with a single exponentially smoothed lagged variable. The decay
rate λ is set at 6%, which corresponds to a 16‐day CoM. Although the RiskMetrics is not calibrated for log variances or

TABLE 7 In‐sample model comparison

Note: This table reports the results of the model confidence set procedure (see Hansen et al., 2011). The reported values for each model are the mean of the
losses of the three functions: (i) squared errors MSE σ h= ( ˆ − )2, (ii) absolute errors  MAE σ h= ˆ − , and (iii) QLIKE h= ln +

σ

h

ˆ 2
. When applicable, the

superscripts n1, 2, …, indicate the ranking of the models that are included in the confidence interval 90%
 . I display the results for 1 day, 1 week, and 1 month

ahead. The sample period is April 22, 2010–April 1, 2019. The number of observations is 2255 × 9 = 20295.

17https://www.msci.com/documents/10199/5915b101‐4206‐4ba0‐aee2‐3449d5c7e95a.
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volatilities, in unreported tests, I find that this decay rate remains a good trade‐off for log RVs. The RiskMetrics
equation is,

RV μ μ RV= + + ϵ ,c t c c c t
CoM

c t, 0, 1, , −1 ,
16

Table 8, Panel A shows that the HARQ strictly dominates all other models at the 1‐day and 1‐week horizons. In
addition, the benefit of including EVs vanishes over these horizons. However, at the 1‐month horizon, the best
performing model is the EVHARQ‐TV, and its MSE (MAE) is almost a third (half) of the HARQ‐TV model. The
forecast improvement arising from EVs is present in almost all models and for all loss functions. This supports the
benefits of including these exogenous variables when the time horizon increases. These forecasting improvements may
also come from the fact that the time to maturity and monthly dummies are deterministic variables. As they are readily
available for the n‐ahead periods, they could improve the forecasting power at longer horizons. Finally, Table 8, Panel
B reports the results of a one‐to‐one direct comparison of the 12 models using the modified Diebold‐Mariano test, at the
1‐day ahead horizon and for the MSE loss. These results indicate a strict dominance of the HARQ and EVHARQ‐TV
models. When these two models are compared, the χ2 statistic is not statistically significant (−1.31), hence supporting
their equally superior forecasting ability at this horizon, in line with previous results. Finally, these individual com-
parisons allow to test the forecasting accuracy improvement of the unconstrained (with EVs) versus their constrained
autoregressive counterparts. EVs inclusion is beneficial (statistically significant at the 1% level) in the HEXP, HAR‐TV,
and HARQ‐TV, whereas it is not useful (statistically significant at the 10% level) in the HAR and HARQ‐TV
specifications.

TABLE 8 Out‐of‐sample model comparison

Note: Panel A reports the results of the model confidence set procedure (see Hansen et al., 2011). The reported values for each model are the mean of the losses
of the three functions: (i) squared errors MSE σ h= ( ˆ − )2, (ii) absolute errors  MAE σ h= ˆ − , and (iii) QLIKE h= ln +

σ

h

ˆ 2
. When applicable, the

superscripts n1, 2, …, indicate the ranking of the models that are included in the confidence interval 90%
 . I report the results for the 1 day, week, and month

forecasts. Panel B reports the χ2 statistics for the modified Diebold‐Mariano test (see Diebold & Mariano, 1995 and Harvey et al., 1997). The null hypothesis is
that the model in the row‐entry is equal to the one of the column‐entry. I report the statistics for the 1‐day ahead forecasts MSE. The in‐sample period is April
22, 2010–January 30, 2013 and the out‐of‐sample period is January 31, 2013–April 1, 2019. The number of observation in the out‐of‐sample period
is 1555 × 9 = 13995.

***p < 0.01.; **p < 0.05.; *p < 0.1.
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5 | TAIL ‐RISK MODELING

I now use the out‐of‐sample forecasts from the 12 models, and compare their ability to forecast the (left) tail risk. A
large strand of literature adopts the expected shortfall (ES) methodology, in place of the value at risk (VaR). I adopt the
multiquantile regression approach (see, e.g., Bayer & Dimitriadis, 2020; Couperier & Leymarie, 2020). It models the left
tail of a distribution with a high granularity, since any sequence of coverage levels may be used. Table 9 reports the
p‐values testing the coefficients from forecast accuracy panel regressions, RV RVβ β= +t t0 1

, where
RV RV RV RV= [ , , …, ]t t t t1, 2, 9,

′. The null hypotheses are:

• H β τ β τ p: ( ( ) + ( )) =J j
p

j j0, =1 0 11

• H β τ: ( ) = 0J j
p

j0, =1 02
and  β τ p( ) =j

p
j=1 1

• H β τ: ( ) = 0I j
p

j0, =1 0

• H β τ p: ( ) =S j
p

j0, =1 1

where p is the number of quantiles, and τj is the corresponding quantile level for j p= 1, 2, …, . In other words, J1 tests
the null hypothesis that the sum of the intercepts and slopes sum to p J, 2 that the sum of the intercepts and slopes
sum to zero and p, respectively, and I (S) that the sum of the intercepts (slopes) sum to zero (p), individually.

The J2 test rejects the null hypothesis for the EV, the time‐varying, and the RiskMetrics models when p = 1

(equivalent to the 97.5% VaR), and for finer granularities up to p = 4.18 The alternative test, J1 whose null hypothesis is
that the sums of all multiquantile regressions parameters (both intercepts and coefficients) are equal to p, is only
rejected for the HAR‐TV and p = 2, at the 10% level. Similarly, I and S hypotheses are almost never rejected at the 5%
level. Therefore, I focus on the rejection rates of J2 to compare the relative performance of the models. First, the static
parameter version of the HAR delivers the highest p‐values (minimum of 0.25). The p‐value decreases as the coverage
(the granularity of the quantile subdivisions) increases, in line with Couperier and Leymarie (2020). In static parameter
(time‐varying) specifications, the inclusion of EVs decreases (increases) the expected‐shortfall forecasting perfor-
mance.19 The bottom of the panel presents the J2 statistics for p = 4, at the 1‐week and 1‐month horizon. In brief, the
1‐week horizon does not reveal any dominance from the restricted or unrestricted specifications. Instead, at the
1‐month horizon, all unrestricted EV models generate p‐values that are higher than their restricted versions.

In Table 10, I present the percentage of violations occurring over the sample for each contract, for a single quantile
regression, with a coverage level set at the 97.5% VaR. The horizon of the out‐of‐sample forecasts is of 1 day.

On average, the EVHARQ provides the lowest violation percentage at the 97.5% VaR level, but there are important
disparities across contracts. There is no systematic benefit arising from the EVs inclusion. Similarly, the most complex
time‐varying specifications do not deliver better forecasts in terms of VaR violations. Since ES aggregates information
from the left tail, the noise arising from the center and the right tail of the distribution may shadow the actual ES
signal.20 Finally, in four contracts, the single EV model yields the lowest violation percentages. Despite the fact that
these results stand for a single coverage level, and do not encompass an entire expected shortfall violation, they point to
the benefits of including EVs when modeling tail risk of some contracts.

6 | CONCLUSION

This study aims to test whether EV, theoretically related to the volatility of commodity futures contracts, add value to
autoregressive RV models. Using joint estimations for nine commodities, my results strongly support the uncertainty
resolution hypothesis (see Anderson, 1985; Anderson & Danthine, 1983). I also find that the RV is positively related to
time to maturity, which rejects the Samuelson hypothesis. Lastly, the inclusion of the slope of the term structure yields
mixed results. On the one hand, I find support for the theory of storage and “v‐shape” hypothesis of Kogan et al. (2009)
for the heating oil, natural gas, copper, and crude oil contracts (see also Haugom et al., 2014). On the other hand, I do

18The Mincer–Zarnowitz test is a particular case of the J2, when there is a single coverage level: p = 1.
19Appendix Table A7 reports the coefficients of the predictive regressions for each coverage level τ , individually, when the number of quantiles is set
to p = 4. It also shows that while all specifications yield a significant forecasting bias, the static HAR and EVHAR models generate the lowest bias,
and this for all coverage levels used.
20I thank an anonymous referee for this comment.
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not identify any support for the remaining contracts. However, concerning precious metals, it is likely that the
determinants of the term structure are unrelated to supply and demand, and to their inherent storage issues. Finally,
the performance of the EV considered alone, lies below those of all autoregressive models, including their most
parsimonious versions such as RiskMetrics. However, nesting EVs in the autoregressive specifications always brings a
statistically significant improvement in explanatory power, at the 1% level. The inclusion of EVs also improves the out‐
of‐sample forecast accuracy of three (HEXP, HAR‐TV, and HARQ‐TV) out of five models, at the 1‐day horizon
(significant at the 1% level). It additionally improves the out‐of‐sample forecasting accuracy for a longer time horizon
(1‐month ahead), even in specifications accounting for measurement errors and time‐varying coefficients. These gains
vanish for expected shortfall backtests from multiquantile regressions. Yet, surprisingly, for four out of nine contracts,
the EV model alone generates less 97.5% VaR violations than any other model and delivers good results for the
remaining contracts.
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TABLE A3 Summary statistics: Daily RV with alternative sampling frequency

Agriculture Energy Metal

Corn (C) Soybeans (S)
Wheat
(W)

WTI crude
oil (CL)

Heating
oil (HO)

Natural
gas (NG) Gold (GC)

Copper
(HG) Silver (SI)

Panel A: RVt 1‐min sampling

Mean% −402.74 −430.24 −393.64 −396.43 −409.49 −363.35 −466.62 −424.40 −406.93

σ% 42.72 46.16 40.80 46.28 44.28 38.46 50.95 46.48 51.43

Skewness 3.24 3.15 3.08 0.29 0.51 0.30 1.83 0.89 0.67

Kurtosis 25.50 24.11 27.48 1.96 3.95 3.41 15.20 3.52 9.34

JB 79,586 71,432 91,174 481 1916 1379 28, 121 1784 10, 245

Q (20) 7995 9645 7340 32, 279 29, 356 17, 552 11, 641 23, 501 10, 770

d 0.35 0.38 0.30 0.53 0.45 0.48 0.34 0.50 0.40

Panel B: RVt 5‐min sampling

Mean% −415.13 −434.90 −400.54 −400.03 −412.02 −369.11 −468.93 −427.66 −412.04

σ% 46.48 46.19 41.54 46.69 43.93 39.85 50.87 46.46 52.02

Skewness 2.06 2.37 2.16 0.51 0.42 0.55 1.61 0.65 0.58

Kurtosis 13.73 17.02 18.39 0.61 0.36 1.01 13.22 1.14 7.55

JB 23, 626 35, 914 41, 036 161 95 259 21, 286 343 6706

Q (20) 11, 283 10, 703 8201 32, 443 31, 598 18, 330 12, 106 23, 773 11, 329

d 0.34 0.40 0.32 0.52 0.53 0.51 0.33 0.51 0.38

Panel C: RVt 15‐min sampling

Mean% −421.47 −437.96 −404.39 −402.19 −414.20 −373.01 −470.73 −429.22 −414.93

σ% 50.33 47.83 43.27 47.97 45.23 41.54 52.02 47.27 52.95

Skewness 1.64 2.17 1.93 0.47 0.37 0.47 1.55 0.55 0.67

Kurtosis 10.42 15.17 16.09 0.53 0.37 1.02 12.22 0.91 6.59

JB 13, 738 28, 629 31, 470 132 77 223 18, 283 236 5, 197

Q (20) 10, 848 9618 7178 29, 330 28, 077 15, 463 11, 447 21, 689 10, 863

d 0.35 0.39 0.31 0.51 0.48 0.44 0.31 0.49 0.37

Panel D: RVt 60‐min sampling

Mean% −427.89 −441.96 −409.07 −406.34 −418.90 −378.32 −475.29 −432.69 −419.19

σ% 56.01 52.20 48.10 51.65 49.39 47.09 55.49 50.68 56.73

Skewness 1.23 1.67 1.45 0.34 0.23 0.32 1.34 0.39 0.81

Kurtosis 7.13 11.01 10.89 0.39 0.26 0.58 9.67 0.74 5.56

JB 6549 15, 229 14, 596 72 33 86 11, 567 132 3854

Q (20) 8606 7318 5406 21, 352 20, 053 10, 619 8700 16, 626 8127

d 0.31 0.35 0.31 0.42 0.40 0.42 0.30 0.41 0.32

Panel E: RVt average of 1‐, 5‐, 15‐, and 60‐min sampling

Mean% −414.66 −435.20 −400.61 −400.22 −412.68 −369.68 −469.49 −427.72 −412.20

σ% 45.93 46.20 41.28 46.88 44.33 40.14 51.17 46.66 51.57

Skewness 2.14 2.38 2.20 0.50 0.40 0.55 1.62 0.60 0.77

Kurtosis 14.40 17.07 18.86 0.56 0.34 1.05 12.90 1.04 6.87
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TABLE A3 (Continued)

Agriculture Energy Metal

Corn (C) Soybeans (S)
Wheat
(W)

WTI crude
oil (CL)

Heating
oil (HO)

Natural
gas (NG) Gold (GC)

Copper
(HG) Silver (SI)

JB 25, 942 36, 111 43, 102 154 85 268 20, 329 289 5695

Q (20) 10, 643 10, 475 8160 31, 440 30, 408 17, 361 11, 800 22, 889 11, 387

d 0.35 0.39 0.32 0.52 0.52 0.50 0.33 0.50 0.39

Note: This table reports statistics on daily log realized volatility sampled at 1, 5, 15, and 60 min‐intervals in panels A to D, respectively. In panel E, I add the
statistics for the average of these four measures, as in Andersen et al. (2011b). For each panel, I report the four moments of the distribution, the Jarque‐Bera
statistic (JB Χ 2), the Ljung‐Box statistic for the 20th order serial correlation (Q(20)), and the parameter of the log‐periodogram regression based on a bandwidth
exponent of 4/5(d), as in Andersen et al. (2003). The sample period is May 5, 2008–April 1, 2019. The number of observations per contract is 2755.

TABLE A4 Average daily turnover and open interest over 5 years before the sample

Energy
WTI crude
oil (CL)

Heating
oil (HO)

Brent crude
oil (LCO) Gasoil (LGO)

Natural
gas (NG)

RBOB
gasoline (RB)

Turnover 15, 126.82 3, 476.32 7, 860.83 2, 804.78 5, 093.58 3, 969.98

Open interest 28, 209.41 8, 962.40 15, 468.90 7, 704.32 16, 167.50 3, 528.27

Agriculture Corn (C)
Feeder
cattle (FC)

Kansas
wheat (KW)

Live
cattle (LC)

Lean
hogs (LH) Soybeans (S) Wheat (W)

Turnover 1, 891.39 203.31 329.13 955.63 478.49 3, 056.77 1, 111.43

Open interest 10, 752.81 1192.12 2208.12 6597.15 2756.31 10, 155.23 5678.65

Metal Gold (GC) Copper (HG) Platinum (PL) Silver (SI)

Turnover 4, 252.86 1227.43 227.20 1300.46

Open interest 13, 488.65 3792.76 625.33 4339.29

Soft Cocoa (CC) Cotton (CT) Coffee (KC) Orange juice (OJ) Raw sugar (SB)

Turnover 177.56 467.97 602.04 58.25 626.54

Open interest 1644.18 3395.23 4724.07 433.67 4592.96

Note: This table reports the average daily turnover and open interest in millions USD for 20 contracts components of the SP‐GSCI/BCOM, before the sample
period selection. The pre‐sample period is January 1, 2003–April 30, 2008, and the contracts selected for the study are in bold font.
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FIGURE A1 Unconditional monthly average RV. These plots display the monthly average of daily RV for the nearby futures contract
written on crude oil, heating oil, gold, copper, and silver. The red line represents the average and the gray area represents the 90%
confidence bands. The sample period is May 5, 2008–April 1, 2019. The number of observations per contract is 2755. RV, realized volatility
[Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE A2 Time‐varying intercepts in the EVHAR‐TV model. This plot displays the pattern of time‐varying intercepts in the joint
estimation of the EVHAR‐TV model (SUR). The intercept unit is RV for the nine nearby futures contracts. The sample period is May 5,
2010–April 1, 2019. The 90% confidence intervals are displayed with the shaded area and the number of observations per contract is 2755
[Color figure can be viewed at wileyonlinelibrary.com]
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