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Abstract. Across the globe, temperatures are predicted to increase with consequences for many taxo-
nomic groups. Arthropods are particularly at risk as temperature imposes physiological constraints on
growth, survival, and reproduction. Given that arthropods may be disproportionately affected in a warmer
climate—the question becomes which taxa are vulnerable and can we predict the supposed winners and
losers of climate change? To address this question, we resurveyed 33 ant communities, quantifying 20-yr
differences in the incidence of 28 genera. Each North American ant community was surveyed with 30 1-m2

plots, and the incidence of each genus across the 30 plots was used to estimate change. From the original
surveys in 1994–1997 to the resurveys in 2016–2017, temperature increased on average 1°C (range, −0.4°C
to 2.5°C) and ~64% of ant genera increased in more than half of the sampled communities. To test Thermal
Performance Theory’s prediction that genera with higher average thermal limits will tend to accumulate at
the expense of those with lower limits, we quantified critical thermal maxima (CTmax: the high tempera-
tures at which they lose muscle control) and minima (CTmin: the low temperatures at which ants first
become inactive) for common genera at each site. Consistent with prediction, we found a positive deceler-
ating relationship between CTmax and the proportion of sites in which a genus had increased. CTmin, by
contrast, was not a useful predictor of change. There was a strong positive correlation (r = 0.85) between
the proportion of sites where a genus was found with higher incidence after 20 yr and the average differ-
ence in number of plots occupied per site, suggesting genera with high CTmax values tended to occupy
more plots at more sites after 20 yr. Thermal functional traits like CTmax have thus proved useful in pre-
dicting patterns of long-term community change in a dominant, diverse insect taxon.
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INTRODUCTION

As global temperatures increase, it is essential
to build functional models that predict the
responses of populations, communities, and
ecosystems (Walther et al. 2002, Parmesan and

Yohe 2003, Deutsch et al. 2008, Hellmann et al.
2008, IPCC 2014). Ectotherms are often a focus of
such efforts, given the clear link between temper-
ature and the growth, survival, and reproduction
of organisms whose body temperatures track
that of their environment (Chown and Nicolson
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2004, Calosi et al. 2008, Colinet et al. 2015).
Arthropods are (mostly) ectotherms that com-
prise ~46% of Earth’s animal biomass (Bar-On
et al. 2018) and may represent up to 5–10 million
of Earth’s species (Ødegaard 2000). Yet declines
in arthropod abundance and species richness are
already being documented with subsequent
effects on ecosystem stability and the structure of
food webs (Resasco et al. 2014, Diamond et al.
2016, Hallmann et al. 2017, Valtonen et al. 2017,
van Klink et al. 2020, Welti et al. 2020). The abil-
ity to predict which arthropod taxa increase and
which decrease—the “winners and losers”—is a
crucial test for any theory predicting biotic
responses to climate change.

Thermal Performance Theory posits the perfor-
mance of an ectotherm should increase with tem-
perature along a left-skewed curve up to an
optimum before a quick decrease, after which the
ectotherm ultimately loses muscle control and dies
(Kingsolver and Huey 2008, Angilletta 2009, Sin-
clair et al. 2016). Two of the variables from a ther-
mal performance curve—the critical minimum
temperature (CTmin) at which an organism loses
mobility and the critical maximum temperature
(CTmax) at which it loses muscle control—hold
considerable promise for predicting the responses
of taxa to warming since both vary geographically
(Deutsch et al. 2008) and within ecological com-
munities (Kaspari et al. 2015). If, for example, pop-
ulations that increase as environmental
temperatures rise also have higher CTmaxs, then
these variables should have predictive value that
may be scaled up to and across communities. Sur-
prisingly, while we have long known that small
temperature changes can increase generalist but-
terfly populations and lead to asymmetric range
expansions (Parmesan et al. 1999, Warren et al.
2001, Chen et al. 2011), we know of little data on
how the thermal limits of co-occurring popula-
tions in a warming environment predict which
populations will increase and decrease (Stuble
et al. 2013).

Ants (Hymenoptera: Formicidae) are an abun-
dant, ecologically important group of insects
(Hölldobler and Wilson 1990, Del Toro et al. 2012)
with peak thermal maxima higher than many
other model ectotherm taxa like flies and lizards
(Huey et al. 2009, Kellermann et al. 2012, Diamond
and Chick 2018). Moreover, changes in ant abun-
dance likely ramify through ecosystems given

their roles in biological control, nutrient cycling,
seed dispersal, and soil aeration (Philpott and
Armbrecht 2006, Lengyel et al. 2010, Griffiths et al.
2018, Swanson et al. 2019) while often acting as
important bioindicators of disturbance and change
(Andersen and Majer 2004, Parr et al. 2004, Del
Toro et al. 2010). Here, we present two sets of data
—an initial survey in the mid-1990s and a resur-
vey approximately 20 yr later using the same
methods—from 33 North American ant communi-
ties. Our goal was to quantify changes in local inci-
dence of 28 common genera. At each site, we also
measured CTmin and CTmax of common species.
We combine these two datasets to test the predic-
tion that a 20-yr warming trend has favored gen-
era with higher thermal maxima and minima, as
predicted by Thermal Performance Theory.

MATERIALS AND METHODS

Study sites and their temperature
In 2016–2017, ants were resampled from May

to August across North America at 33 sites previ-
ously sampled in 1994–1997 (Fig. 1; Kaspari et al.
2000, Kaspari et al. 2019). These sites spanned
15.7° in latitude and 51.6° in longitude from
warm southwestern deserts in California to cool
northeastern deciduous forests in Massachusetts.
Many of these sites occur at Long-Term Ecologi-
cal Research (LTER) stations, National Ecological
Observatory Network (NEON) field sites, or
within protected areas such as national or state
parks and forests (Appendix S1: Table S1).
Monthly temperature data from 1993 to 2017

were extracted from the Parameter-elevation
Regressions on Independent Slopes Model
(PRISM) datasets at Oregon State University.
These values were derived at a 4-km spatial reso-
lution from the grid cell overlapping each of the
33 sampling sites. For each site, we calculated the
average mean annual temperature (hereafter
MAT) and the change in temperature between
the two surveys’mean annual temperatures mea-
sured from June to May of the preceding year
(hereafter ΔTemp). We then created average
MAT and ΔTemp values for each ant genus from
the sites where that genus occurred.

Sampling ants at each site
At each site, we used identical sampling meth-

ods from the original survey by setting out 30 1-

 v www.esajournals.org 2 July 2021 v Volume 12(7) v Article e03645

ROEDER ETAL.



m2 plots, 10 m apart in a 330-m transect. Within
each plot, ants were collected by hand while sift-
ing through litter, debris, and vegetation. Each
plot was then baited for 30 min with Keebler
Sandies Pecan Shortbread cookies, a commonly
used ant bait, and all ant strays were collected.
As plots were 10 m apart, we caveat our collec-
tion methods as workers could not be assigned
to unique colonies and the lack of colony identity
was an unavoidable limitation. Specimens were
identified to genus using taxonomic keys (e.g.,
Fisher and Cover 2007) and then compared to a
reference collection maintained at the University
of Oklahoma by the senior author from the origi-
nal sampling event.

We quantified the change in incidence for each
genus that occurred at 3 or more sample sites.
We excluded genera that only occurred at one or
two sites as these taxa were rare and usually only
collected in the 2016–2017 resurvey (e.g., Neiva-
myrmex army ants occurring in one plot total).
For both the original and resurvey, we calculated
the incidence of each genus as the number of
plots (out of 30) at each site where it was

recorded. Our measure of change was deter-
mined as:

Δ¼ Nnew

NnewþNoriginal

� �

where Nnew represents the number of sites
where a genus’ incidence was higher in the
new survey and Noriginal represents the num-
ber of sites where a genus’ incidence was
higher in the original survey. We did not
include sites where no change occurred (i.e.,
static sites) as these made up a small portion
of the total number of genus by site compar-
isons (nine out of 337, 2.7%) and measures of
change with and without these nine genus by
site combinations were highly correlated (Pear-
son correlation, t = 45.41, r = 0.99, P < 0.001).
Our measure of change is thus the proportion
of sites (0.0–1.0), excluding static sites, where
a genus’ incidence had increased in 2016–2017
compared to 1994–1997. As an example, if a
genus had a value of 0.2 that would indicate
that incidence in the new survey was higher
at only 20% of the sites where that genus

Fig. 1. Geographic distribution of sampled ant communities at 33 sites that have increased in temperature by
an average of 1°C after 20 yr. The color of each point is scaled along a gradient from light blue, indicating a slight
decrease in temperature, to bright red, indicating an increase in temperature.
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occurred while at the other 80% of sites, inci-
dence was lower.

Thermal tolerance and phylogenetic signal
We measured the critical thermal minima

(CTmin) and maxima (CTmax) of ants using a
ramping protocol commonly used to measure
thermal tolerance (Kaspari et al. 2015, Bujan et al.
2020a). For most of the common species at each
site, we collected at least ten live workers and
placed individual workers into 1.5-mL microcen-
trifuge tubes that had been modified with model-
ing clay to remove a thermal refuge in the cap
(Roeder et al. 2018a). For CTmax, we placed five
vials with ants into a Thermal-Lok 2-position dry
heat bath (USA Scientific, Orlando, Florida, USA;
advertised accuracy � 0.2°C) prewarmed to
36°C. Every 10 min, ants were checked to see
whether they had reached their critical thermal
limit by rotating the vials and looking for a right-
ing response. The temperature was then
increased to 2°C, and the process was repeated
until all ants had lost muscle control. Similarly,
for CTmin, we placed five ants into an EchoTherm
IC20 chilling/heating dry bath (Torrey Pines Sci-
entific, Carlsbad, California, USA; advertised
accuracy � 1°C) precooled to 20°C and followed
the methods above except we decreased the tem-
perature 2°C every 10 min. We averaged species
values within a genus to create genus-level
CTmax and CTmin values (Appendix S1: Table S2).
We found little within-genus variation in CTmax

and CTmin, especially compared to cross-genus
variation (see Appendix S1: Table S2). Standard
error values within a genus were on average
around 0.7°C for CTmax and 1.2°C for CTmin

while the range in average CT values across gen-
era was 14.4°C for CTmax and 11.0°C for CTmin.
Because of these differences and others who have
used genus-level CT values (Boyle et al. 2021,
Guo et al. 2020), we believe our response vari-
ables are justified.

We tested for phylogenetic signal in ant ther-
mal traits by calculating Pagel’s λ using an ant
phylogeny (Moreau and Bell 2013) pruned to
include the genera for which we measured ther-
mal tolerance. We added one genus that was not
present in the original tree, Ponera, as a sister
group to Hypoponera and ran separate analyses
for CTmax and CTmin as we did not measure
CTmin for the genus Stigmatomma. Pagel’s λ

considers how traits that are distributed on a
phylogeny compare to those expected from
Brownian motion by transforming the original
tree using the parameter λ, which ranges from
zero to one (Pagel 1999). As λ approaches one,
traits show greater phylogenetic signal.

Statistical analyses
All analyses were run in R, version 3.5.1. We

used an information theoretic approach to rank
multiple generalized linear regressions (GLM)
with binomial error distributions that compared
thermal traits (CTmax and CTmin) and environ-
mental variables (MAT and ΔTemp) to our mea-
sure of change. We tested CTmax and CTmin

separately as we had additional data for the
CTmax of the genus Stigmatomma. Pagel’s λ was
calculated to check thermal traits for a phyloge-
netic signal in the ape and phylosignal packages.
Regression models were ranked by Akaike’s

information criterion (AIC), and ΔAIC values for
each model were calculated from the difference
of the AIC of ith model and the model with the
lowest AIC value. Akaike weights (wi) were then
calculated and represent a weight of evidence
that model i was the best fit (Burnham and
Anderson 2002). Regressions were visually
inspected for non-linear relationships (i.e., quad-
ratic and cubic relationships) and compared to
their linear counterparts using AIC. Cragg and
Uhler pseudo-r2 values were determined using
the pscl package. For multiple regression models,
predictor variables were checked for multi-
collinearity using a variance inflation factor (VIF)
cutoff = 3 in the car package. We also calculated
Pearson correlation coefficients between (1)
CTmax and CTmin to check for a trade-off in ther-
mal traits, (2) a genus’ ΔTemp and MAT to exam-
ine if genera occurring in warm locales were
experiencing greater changes in temperature,
and (3) a genus’ proportional change in incidence
and the magnitude of that change (i.e., average
change in number of plots occupied) to check
whether genera increasing at more sites were
also increasing at more plots within those sites.

RESULTS

Mean annual temperatures of our study sites
ranged 24.2°C, from a cold Alpine tundra in Col-
orado (MAT = −1.0°C) to a warm desert in
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southern California (MAT = 23.2°C). The mean
increase across sites was 1.0°C (�0.1 SE) between
the two sampling events (range, −0.4°C in a New
Mexico high desert to +2.5°C in a Missouri
mixed hardwood forest; Fig. 1). We collected 28
ant genera at three or more of the 33 sites. Of
these genera, 18 (64%) had higher incidence in
2016–2017 than in the original sample 20 yr
prior.

Ant incidence change increased with CTmax
CTmaxs varied 14.4°C from a low of 38.8°C in

Brachymyrmex to a high of 53.2°C in Forelius.
CTmins ranged less, from 0.2°C in Prenolepis to
11.2°C in Brachymyrmex. A genus’ CTmax and
CTmin were not correlated (Pearson correlation,
t = −0.89, r = −0.17, P = 0.383). We also found
no phylogenetic signal that would account for
the variation in CTmax (λ = 0.37, P = 0.665) or
CTmin (λ < 0.01, P = 1) across these common
genera.

While the ΔTemp experienced was correlated
with MAT (Pearson correlation, t = −2.71,
r = −0.47, P = 0.012), variance inflation factors
suggest little collinearity between CTmax (VIF =
1.4), MAT (VIF = 1.6) and ΔTemp (VIF = 2.1).
We tested these correlated, but not colinear, pre-
dictors and found that as a genus’ CTmax value
increased so did the proportion of communities
in which its incidence—the number of plots
occupied—likewise increased 20 yr hence (Fig. 2
a; Table 1). Moreover, CTmax was the only
parameter in each model within two AIC of the
top model, accounting for 17.2% of the variation
in the proportion of sites where genera increased
(Table 1; GLM, y = 0.06x − 2.66, AIC = 105.89,
wi = 0.35).

As the relationship with CTmax appeared non-
linear, we further tested and found that a quad-
ratic and cubic fit were better than the linear
model, accounting for an additional 13–15% of
the variation for increasing incidence (Table 2).
In the quadratic model, which had the lowest
AIC value, incidence peaked and then slightly
decreased for thermally tolerant ant genera with
CTmax values above the average of 46.1°C (Fig. 2
a). In contrast, a genus’ CTmin was unrelated to
its 20-yr change in incidence with CTmin values
clustering around the genera mean of 5.7°C
(Fig. 2b; Table 1). There was also a strong, posi-
tive correlation between a genus’ change in

incidence and the magnitude of that change
(Fig 3; Pearson correlation, t = 8.37, r = 0.85,
P < 0.001). In other words, genera with high

Fig. 2. Relationship between ant thermal traits and
the proportion of sites where that genus was found
with higher incidence after 20 yr (i.e., Δ per genus).
Panel (a) depicts CTmax and panel (b) depicts CTmin.
Each point is a genus. The color of each point ranges
from light blue to bright red indicating decreasing to
increasing average temperature change, respectively,
at sites where that genus was found (see Fig. 1 for
more details). Vertical dashed lines represent average
CTmax or CTmin across all genera. Genus values that
are above the horizontal dashed line represent an over-
all increase in the new survey while genus values
below this line represent a decrease.
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CTmax values tended to occupy more plots at
more sites after 20 yr.

DISCUSSION

Thermal performance curves are bracketed by
two functional traits—CTmin and CTmax—of
great potential utility for predicting changes in
an ectotherm’s performance, and hence its abun-
dance, in a warming world. Here, we realize that
utility—predicting genera that are increasing or
decreasing—by combining a new regional data-
set on 20-yr changes with a dataset on the ther-
mal tolerances of common ant genera. To our

knowledge, this is the first study to successfully
combine long-term community-level changes
and thermal traits to predict the winners and
losers under climate change in a common and
ecologically important arthropod group.

Genera with high CTmax are more likely to
increase
A key focus of research in global change biol-

ogy is the identification of functional traits—
aspects of the phenotype linked to fitness (McGill
et al. 2006, Kraft and Ackerly 2010, Soudzilovs-
kaia et al. 2013, Wong et al. 2019)—that predict
population responses to warming. We used a

Table 1. AIC scores and weights of multiple linear regression models testing how thermal traits (CTmax or
CTmin), mean annual temperature (MAT), and the change in temperature between the two surveys (ΔTemp)
affected the proportion of sites where genera have increased in incidence.

Model Intercept Trait MAT ΔTemp AIC ΔAIC wi Pseudo-r2

Critical thermal maxima
CTmax −2.66* 0.06* — — 105.89 0.00 0.35 0.17
CTmax + MAT −2.45 0.07* −0.05 — 106.74 0.85 0.23 0.21
CTmax + ΔTemp −2.76 0.07 — 0.03 107.88 1.99 0.13 0.17
CTmax + MAT + ΔTemp −1.44 0.06 −0.07 −0.32 108.34 2.45 0.10 0.22
Null 0.33* — — — 109.05 3.16 0.07 —
ΔTemp 0.69* — — −0.39 109.76 3.87 0.05 0.05
MAT + ΔTemp 2.00* — −0.08 −0.76 109.87 3.98 0.05 0.11
MAT 0.55 — −0.02 — 110.89 5.00 0.03 0.01

Critical thermal minima
Null 0.36* — — — 104.15 0.00 0.31 —
ΔTemp 0.65 — — −0.32 105.31 1.16 0.17 0.03
MAT + ΔTemp 1.75 — −0.06 −0.64 106.02 1.87 0.12 0.08
MAT 0.53 — −0.01 — 106.06 1.91 0.12 <0.01
CTmin 0.37 <−0.01 — — 106.15 2.00 0.11 <0.01
CTmin + ΔTemp 0.74 −0.01 — −0.34 107.26 3.11 0.07 0.03
CTmin + MAT + ΔTemp 1.75 0.02 −0.07 −0.65 107.95 3.80 0.05 0.08
CTmin + MAT 0.52 0.01 −0.02 — 108.05 3.90 0.04 <0.01

Note: Models are ordered by the lowest ΔAIC. wi values are rounded to two decimal places and may not sum to 1. Values in
boldface and accompanied by an asterisk (*) indicate a significant coefficient at P < 0.05.

Table 2. Linear, quadratic, and cubic regression models testing relationships between ant genera critical thermal
maxima (CTmax) and the proportion of sites where genera increased in incidence.

Model Intercept x x2 x3 AIC ΔAIC wi Pseudo-r2

Quadratic −33.88* 1.42* −0.01* — 103.50 0.00 0.50 0.30
Cubic 164.35 −11.62 0.27 <−0.01 104.47 0.97 0.31 0.32
Linear −2.66* 0.06* — — 105.89 2.39 0.15 0.17
Null 0.33* — — — 109.05 5.55 0.03 —

Note: Models are ordered by the lowest ΔAIC. wi values are rounded to two decimal places and may not sum to 1. Values in
boldface and accompanied by an asterisk (*) indicate a significant coefficient at P < 0.05.
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functional trait approach to dissect how diversity
within the ants—for example, CTmax varying
14.4°C across 28 common genera—informs how
their community occurrence has shifted after
20 yr. Our results reveal that CTmax is necessary,
but not sufficient to predict winners and losers.
An inspection of Figure 2a reveals that genera
that are increasing (i.e., occupying more plots in
their respective communities) occur across
almost the entire range of CTmax; those that are
decreasing are heavily biased toward low ther-
mal tolerance (i.e., CTmax < 46°C). Some of these
genera (e.g., Brachymyrmex and Stigmatomma)
declined 80% from the mid-1990s samples and
were found in forests with relatively high
degrees of warming (+1.6°C).

The resulting nonlinearity suggests a few
working hypotheses. The first proposes the rea-
sonable notion that more than one trait determi-
nes trends in an ant genus’ incidence. In this
case, some aspect of natural history allows low
CTmax genera like Myrmecina, Ponera, and Stru-
migenys to increase while co-occurring

Brachymyrmex and Stenamma decrease. At the
same time, some of the most thermophilic genera
like Monomorium and Forelius (CTmax = 53°C)
that are active at the hottest parts of the day have
incidence levels that are relatively stable com-
pared to large colony dominants like Cremato-
gaster, Formica, and Solenopsis (CTmax = 46°–
51°C). Here, we suggest that more modest
increases in temperature, especially in the
already hottest desert ecosystems, may provide
no advantage to the thermophiles while increas-
ing the competitive ability of the dominant gen-
era that forage in these communities for most
hours of the day, including night when warming
is most prevalent (Cerdá et al. 1998, Alward et al.
1999, Barton and Schmitz 2018, Roeder et al.
2018a). Both of these hypotheses are likely
informed by trade-offs in thermal and other func-
tional traits (Bujan et al. 2016, Penick et al. 2017).

Resistance to climate change in ecological
communities
The relationship between thermal tolerance

and abiotic conditions has been mixed for arthro-
pods: Meta-analyses have generally shown a
weak-to-nonexistent relationship between a pop-
ulation’s CTmax and the mean annual tempera-
ture of the habitat or geographic range (Addo-
Bediako et al. 2000, Sunday et al. 2011, Hoffmann
et al. 2013, Bujan et al. 2020a). Instead, upper
thermal limits are often more phylogenetically
constrained by evolutionary history, a result that
has been documented for ants (Diamond et al.
2012) but one we did not observe in our analyses.
We posit the lack of signal is partially due to
reduced sample size—28 genera compared to 40
genera in Bujan et al. (2020a) and 156 species in
Diamond et al. (2012)—which parallels a similar
result observed in communities of montane ants
in southern Africa (Bishop et al. 2017). More
specifically, we only used data from ants that
occurred in three or more sites and thus genera
like Atta, Acromyrmex, and Cyphomyrmrex, all of
which are fungus gardeners with low thermal
tolerance, were not included. If these groups
were included, a phylogenetic signal in heat tol-
erance may have been observed. But why do
analyses of population data fail to find CTmaxs
tracking environmental temperature?
One possible answer is the diversity of CTmaxs

in any given ecological community potentially

Fig. 3. Correlation between the proportion of sites
where a genus was found with higher incidence after
20 yr (i.e., Δ per genus) and the average difference in
number of plots occupied per site (i.e., magnitude Δ
per genus). The color of each point ranges from light
blue to bright red indicating decreasing to increasing
average temperature change, respectively, at sites
where that genus was found (see Fig. 1 for more
details). The horizontal dashed line represents a mag-
nitude Δ = 0.
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promotes the coexistence of some suite of spe-
cies. For example, a moderately diverse grass-
land community may support a low CTmax

Prenolepis winter ant, the nocturnal and crepus-
cular low CTmax Lasius, two dominant Cremato-
gaster and Solenopsis species that maintain large
colonies and forage most hours of the day, and
thermophile specialists like Forelius and Monomo-
rium that emerge for a few superheated hours
daily (Prather et al. 2018, Roeder et al. 2018a). As
microclimate is increasingly found to be an
important abiotic factor structuring communities
(Potter et al. 2013, Storlie et al. 2014, Kaspari
et al. 2015, Woods et al. 2015), our measure of
temperature—MAT—may underestimate the
available thermal niche space in many temperate
North America locations. Yet certain tropical spe-
cies like army ants (Baudier et al. 2015, Baudier
et al. 2018) may be less resistant to moderate
increases in temperature, if the more uniform
temperatures in the tropics promote thermal spe-
cialization. If this scenario is true, we should
expect community-level comparisons of thermal
tolerance across tropical sites to show better
matches between environmental temperature
and CTmax. This, indeed, seems to be the case in
a Panama rainforest, where the CTmaxs of ants
from the tropical canopy are consistently higher
than those from the cooler shaded understory
30 m below (Kaspari et al. 2015). However, an
alternative explanation could be that tropical
ectotherms operate within a narrow range of
temperatures because the tropics are simply hot-
ter (Payne and Smith 2017).

Second, the functional traits CTmax and CTmin

are uncorrelated in our dataset (P = 0.383) sug-
gesting they are not constrained by a trade-off,
which allows for a diversity of thermal ranges
(i.e., CTrange = CTmax − CTmin) to occur. Among
the ants we studied, there are at least three rea-
sons to evolve a broad thermal range. The first is
to be an opportunistic generalist: Tapinoma is a
cosmopolitan genus (Menke et al. 2010) which
we collected from Massachusetts to New Mexico
and maintains a thermal range from 3.1°C to
50.0°C; it also increased at 73% of our study sites.
The second is to occupy a thermally variable nest
site: The largely arboreal genus Crematogaster
lives in twigs and branches that supercool in
winter and superheat in summer; its thermal
range averaged 4.4°–51.2°C and its incidence

increased at 58% of sites. Finally, genera common
at high elevations also experience the greatest
range of temperature: Leptothorax, which we pri-
marily collected along elevational gradients in
Colorado and Oregon, had a thermal range from
3.8° to 51.4°C and increased at 67% of its sites.
These three genera—Tapinoma, Crematogaster,
and Leptothorax—had among the lowest CTmins
but all increased in the 2016–2017 resurvey, likely
in part due to their high CTmaxs.
In contrast to CTmax, CTmin is unpredictive of

genus-level change in North American ants. This
is not for a lack of existing variation in CTmin

which is similar (11.0°C) to CTmax (14.4°C). Yet
this result is somewhat surprising as environ-
mental temperatures can be important correlates
of lower thermal tolerances in ants, at least across
elevation and geography (Warren and Chick
2013, Bishop et al. 2017, Diamond and Chick
2018, Bujan et al. 2020a). Perhaps one reason for
this discrepancy is the varying cost of a mis-
match between the environmental temperature
and either of the two thermal limits. Given the
non-linear, accelerating nature of a thermal per-
formance curve, small increases in temperature
near the peak of the curve have a stronger effect
on performance and, as a consequence, small dis-
crepancies between the temperature at peak per-
formance and CTmax potentially have a greater
effect on an organism’s performance—the rate it
traverses the curve—compared to small changes
in CTmin.

Caveats and next steps
The temporal dynamics of ecological commu-

nities arise from multiple factors acting at vary-
ing time scales (Schröder et al. 2005, Fukami and
Nakajima 2011, Dornelas et al. 2014, Christensen
et al. 2018, Roeder et al. 2018b). Here, we focused
on large chunks of undisturbed habitat (reducing
the potential effects of fragmentation) where rel-
atively long-lived species frequently nest under-
ground (and thus have a thermal refuge) while
often collectively acting as dietary generalists
(avoiding the complexities of ontogenetic niche
shifts). The ants, by many lines of reasoning, are
thermophilic ectotherms that should benefit from
moderate warming.
Furthermore, given the importance of long-

term data in understanding biotic change in the
Anthropocene (Hallmann et al. 2017, Cardinale
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et al. 2018, Eisenhauer et al. 2019), our dataset
has both strengths and weakness. Strengths
include using standardized methods to quantify
20-yr differences in incidence for all the common
ant genera across 33 habitats ranging from desert
to tundra and testing hypotheses from important
theory using a new dataset on thermal tolerance.
A weakness is that we examine two snapshots
separated by 20 yr rather than a series of annual
surveys. Thermal traits were also not quantified
in the original surveys during the mid-90s, and
thus, we cannot account for the potential of ther-
mal traits plastically varying through time.
Surely, documenting how CTmax and CTmin

change daily, seasonally, and annually will be an
important topic for future research (Nelson et al.
2018, Bujan et al. 2020b). That said, these 33
resurveys required two years and over three
person-years to collect and analyze. Resurveys
with short between sample intervals (e.g.,
monthly or yearly surveys as performed in stud-
ies of rodents [Ernest et al. 2016] and trees [Hub-
bell et al. 2014]) would unquestionably improve
our ability to quantify patterns and causes of
change in North American ant communities.
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