
BASIC PHYSIOPATHOLOGY OF GENERAL HEMATOLOGY

A SYNOPSIS OF HEMATOLOGY

Pierre-Michel Schmidt Pierre Cornu Anne Angelillo-Scherrer with the collaboration of : Stéphane Quarroz Valérie Parlier Pieter Canham van Dijken

Version 15.0, 2013

SERVICE OF HEMATOLOGY CHUV - Lausanne

CONTENTS

Part 1 : Red Blood Cell (RBC) pathology	PAGES
Differentiation of blood cells	10
Normal ranges in hematology	11
Erythropoiesis	12
Evaluation of anemia	13 - 16
Reticulocytes	16
Mechanisms of anemia	17 - 19
Pathophysiological classification of anemias	20
Hyporegenerative normocytic normochromic anemia	21
Anemia of renal failure	22
Pure red cell aplasia / Erythroblastopenia	23
Bone marrow aplasia	24
Aplastic anemia	25 - 28
Microcytic hypochromic anemia	29 - 47
Iron metabolism	30
Hepcidin regulation	31
Iron cycle	32
Transferrin cycle / Ferritin, transferrin receptors and DMT 1 regulation	33
Iron deficiency anemia	34 - 37
Physiological losses and bioavailability of iron	34
Stages of iron deficiency development / Serum iron, transferin and ferritin	35
Etiology of iron deficiency anemia	36
Treatment of iron deficiency	37
Anemia of chronic disease / Inflammatory anemia	38
Heme synthesis / Porphyrias	39
Hemoglobin degradation	40
Hemoglobin structure	41
Hemoglobins / Interaction O ₂ and 2,3 DPG	42
Hemoglobin dissociation curve	43
Anemia with iron utilization disorder	44 - 47
Sideroblastic anemia	44
Thalassemias	45 - 47
Macrocytic normochromic hyporegenerative anemia	48 - 61
Pathophysiology of macrocytic megaloblastic anemia	49
Chemical structure of vitamin B_{12}	50
Vitamin B_{12} and folates / General data	51

CONTENTS (2)

	PAGES
Absorption of vitamin B ₁₂	52
LDH and anemia	53
DNA synthesis anomaly and consequences / Schilling test	54
Normal and megaloblastic erythropoiesis	55
Causes of vitamin B ₁₂ deficiency	56
Pernicious anemia	57 - 59
Causes of folate deficiency	60
Workup of macrocytic anemia	61
Normocytic normochromic regenerative anemia	62 - 89
Acute blood loss	62 - 63
Hemolytic anemia / Basic data	64 - 65
Measure of RBC half life	66
Hemolytic anemia due to corpuscular defect	67 - 83
RBC glycolysis	68 - 69
RBC enzymopathies	70 - 73
Glucose-6-phosphate dehydrogenase deficiency	71 - 73
Structure of RBC membrane	74
Anomaly of RBC membrane	75 - 80
Hereditary spherocytosis (autosomal dominant)	76 - 77
Paroxysmal Nocturnal Hemoglobinuria	78 - 80
Hemoglobin anomalies (Hemoglobinopathies)	81 - 83
Sickle cell disease	82 - 83
Hemolytic anemia due to extracorpuscular defect	84 - 89
Immune hemolytic anemia	84
Toxic hemolytic anemias	85 - 86
Hemolytic anemia of infectious origin	87
Hemolytic anemia due to mechanic RBC fragmentation	88 - 89
Thrombotic thrombocytopenic purpura (TTP) / Hemolytic uremic syndrome (HUS)	88
Thrombotic microangiopathy / Diagnostic algorithm	89

Part 2 : White Blood Cell (WBC) pathology

Differential leukocyte count	91
Neutrophil granulocytes kinetics	92
Etiology of neutrophilic leukocytosis	93
Toxic changes of neutrophils	94
Myelocytosis and erythroblastosis	95

CONTENTS (3)

	PAGES
Neutropenia	96 - 98
Hereditary morphological neutrophil anomalies	99
Eosinophils	100
Basophils / Mastocytes	101
Monocytes / Macrophages	102 - 103
Lymphocytes	104 - 115
Lymphoid organs / B and T lymphocytes in bone marrow and peripheral blood	104
B-lymphocytes	105
Steps of B-lymphocyte maturation in secondary lymphoid organs	106
T-lymphocytes / Thymic selection	107
B- and T-lymphocyte differentiation markers	108
NK-lymphocytes (Natural Killer lymphocytes)	109
Lymphocytes / Immune response	110 - 113
Lymphocytosis / Lymphopenia / Plasmacytosis / Mononucleosis syndrome	114 - 115
Tumors of hematopoietic and lymphoid tissues	116 - 204
WHO classification 2008	116 - 118
Myeloid neoplasms	119 - 162
Myeloproliferative neoplasms	120 - 137
Polycythemia Vera	121 - 122
Differential diagnosis of erythrocytosis	123 - 125
Chronic myelogenous leukemia	126 - 128
Essential thrombocythemia	129 - 131
Differential diagnosis of thrombocytosis	132
Primary myelofibrosis	133 - 134
Chronic neutrophilic leukemia / Chronic eosinophilic leukemia, NOS	135
Mastocytosis	136
Myeloid and lymphoid neoplasms with eosinophilia and anomalies of PDGFRA, PDGFRB or FGFR1	137
Myelodysplastic syndromes (MDS)	138 - 147
General features / Myelodysplasia	138 - 139
Morphological signs of myelodysplasia	140
Classification of MDS / Peripheral blood and bone marrow features	141
Differential diagnosis of MDS and acute myeloid leukemia (AML) / Other anomalies in MDS	142
Prognostic scores of MDS / IPSS and WPSS / revised IPSS (IPSS-R)	143 - 144
Other adverse prognostic factors in MDS	145
Complications / Evolution / Survival	146
Treatment of MDS	147
Myelodysplastic / myeloproliferative neoplasms : Chronic myelomonocytic leukemia	148

CONTENTS (4)

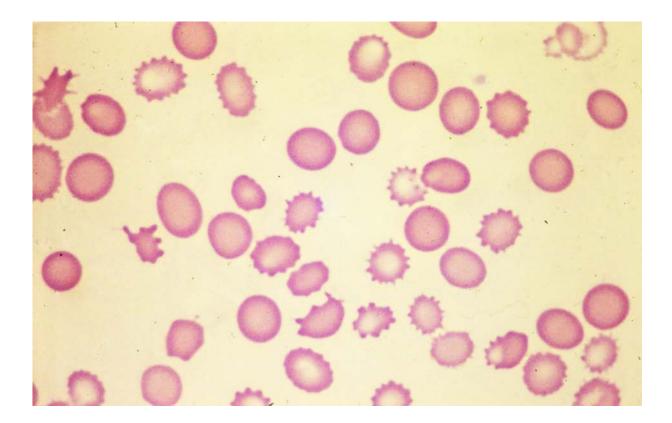
	PAGES
Acute myeloid leukemia (AML)	149 - 162
Epidemiology	149
Clinical features of AML	150 - 151
Bone marrow and peripheral blood features	152
WHO classification 2008	153 - 156
Prognostic factors	157
Karnofsky performance status	158
Therapeutical principles	159
Chemotherapy of AML	160
Kinetics of leukemic cells in relation with treatment	161
Hematopoietic stem cell transplantation	162
Lymphoid neoplasms	163 - 204
General data	163 - 168
Simplified classification (WHO 2008)	163
Proof of monoclonality	164
Clinical stage / ECOG clinical performance status / Prognostic factors / Predictive factors	164
Staging (Ann Arbor)	165
Initial assessment / IPI and aaIPI scores	166
Treatment of lymphoid neoplasms	167
B-cell differentiation / Relationship to major B-cell neoplasms	168
Precursor B or T-cell lymphoid neoplasms	169 - 174
Lymphoblastic leukemia / lymphoma	169
B-cell lymphoblastic leukemia / lymphoma, NOS	170
B-cell lymphoblastic leukemia / lymphoma with recurrent genetic anomalies	171
T-cell lymphoblastic leukemia / lymphoma	172
Immunological markers of ALL- B and ALL-T	173
Treatment of lymphoblastic leukemia / lymphoma	174
Mature B-cell lymphoid neoplasms	175 - 195
Chronic lymphocytic leukemia (CLL)	175 - 179
Definition / Symptoms and clinical features / Peripheral blood count	175
Rai and Binet classification	176
Course / Complications / Differential diagnosis	177
Prognostic factors	178
Treatment of CLL	179
B-cell prolymphocytic leukemia	180
Hairy cell leukemia	180

CONTENTS (5)

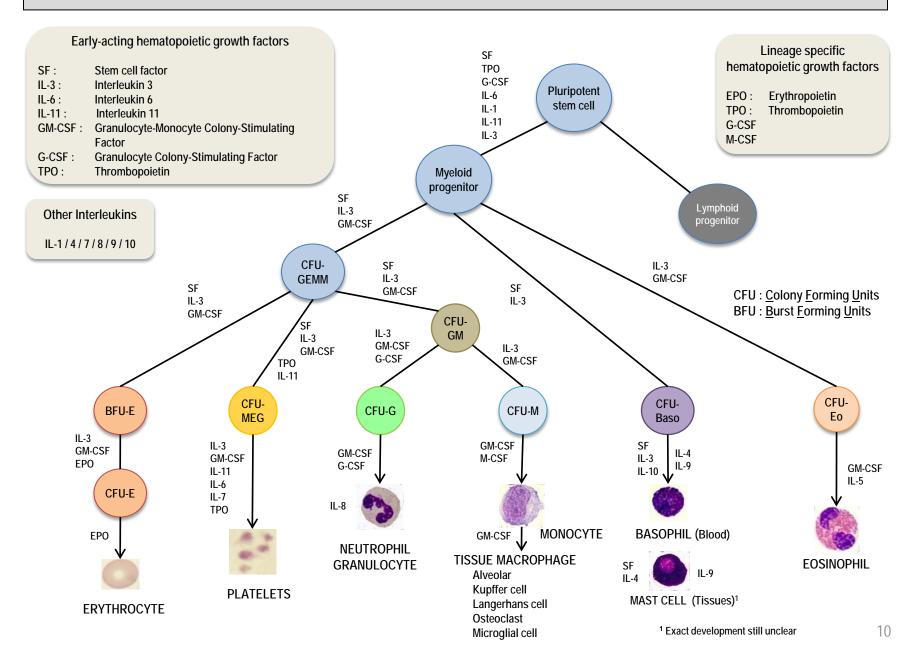
	PAGES
Splenic B-cell marginal zone lymphoma (SMZL)	181
Splenic B-cell marginal zone lymphoma / leukemia, unclassifiable	181
Splenic diffuse red pulp small B-cell lymphoma (SMZL-diffuse variant)	181
Hairy cell leukemia-variant ("prolymphocytic variant")	181
Lymphoplasmacytic lymphoma / Waldenström macroglobulinemia	182
Follicular lymphoma (FL)	183
Mantle cell lymphoma (MCL)	184
Burkitt lymphoma	185
Burkitt type acute lymphoblastic leukemia	185
Diffuse large B-cell lymphoma (DLBCL)	186
Plasma cell neoplasms	187 - 194
Definition / WHO classification 2008 / Heavy chain diseases	187
Diagnostic work-up / Frequence of the different paraproteinemias	188
Free light chains (FLC) measurement in serum / κ / λ ratio	189
Differential diagnosis of MGUS, smoldering myeloma and plasma cell myeloma / Clinical course	190
Prognostic factors / Durie and Salmon staging	191
Prognostic factors / Impact of ISS and combination ISS with κ /λ ratio on survival	192
Complications of plasma cell myeloma	192
Treatment	193
Risk related treatment algorithms	194
Immunological markers, cytogenetics and molecular biology in B-cell lymphoid leukemias	195
Mature T and NK-cell lymphoid neoplasms	196 - 200
T-cell prolymphocytic leukemia (T-PLL)	196
T-cell large granular lymphocyte leukemia (T-LGL)	196
Chronic lymphoproliferative disorders of NK-cells (CLPD-NK)	197
Aggressive NK-cell leukemia	197
Adult T-cell leukemia / lymphoma	198
Sézary syndrome	199
Immunological markers, cytogenetics and molecular biology in T- and NK-cell lymphoid leukemias	200
Hodgkin lymphoma	201 - 204
Symptoms / Clinical features / Histology	201
Staging / Cotswolds revision of Ann Arbor classification	202
Differential diagnosis / Prognostic factors / Complications	203
Treatment / Prognosis and response predictive factors	204

CONTENTS (6)	
Part 3 : Hemostasis	PAGES
Exploration methods	206
Thrombus and embolus	207
Main actors of hemostasis	208
Role of the liver in hemostasis	209
Steps of hemostasis / Primary hemostasis	210 – 211
Von Willebrand factor	212
Production of platelet from the megakaryocyte	213
Secondary hemostasis / Coagulation	214
Tissue factor : main initiator of coagulation	215
Coagulation factors	216 - 217
Vitamin K dependent coagulation factors	217
Coagulation cascade	218 - 220
Classical scheme	218
Conceptual changes	219 - 220
Factor XIII and fibrin stabilization	221
Natural anticoagulants	222
Tertiary hemostasis / Fibrinolysis	223
Hemorrhagic syndrome / Primary hemostasis	224 - 233
Vascular purpura	224
Prolongation of occlusion time (PFA-100 [™] / PFA-200 [™])	225
Acquired thrombopathy	226
Hereditary thrombopathy	227
Thrombocytopenia	228 - 233
Definition / Hemorrhagic risk / Recommendations	228
Thrombocytopenia in the setting of bi- or pancytopenia	229
Solitary central thrombocytopenia	229
Solitary peripheral thrombocytopenia	230 - 232
Non immunological thrombocytopenia	230
Immunological thrombocytopenia	231
Heparin induced thrombocytopenia (HIT)	231
Primary immune thrombocytopenia (PIT)	232
Investigation of thrombocytopenia	233
Hemorrhagic syndrome / Coagulation	234 - 246
Acquired coagulation anomalies	234
Hemophilia	235 - 236
Von Willebrand disease	237 - 238

CONTENTS (7)


Thromboembolic disease	239 - 247
Virchow's triad / Risk factors	239
Targets of anticoagulant drugs	240
Treatment and prophylaxis	241 - 243
Antiplatelet drugs	241
Heparin, thrombin and factor Xa inhibitors	242
Vitamin K antagonists	243
INR	243
Fibrinolytic agents	243
Anticoagulation principles	244
Indications of new anticoagulant drugs	245
Effects of anticoagulant drugs on clotting tests	246
Antiphospholipid antibodies syndrome (Lupus anticoagulant) : Treatment algorithm	247

Part 4 : Diagnostic algorithms


Anemia	249
Normocytic normochromic hyporegenerative anemia	250
Microcytic hypochromic anemia	251
Macrocytic anemia	252
Regenerative anemia	253
Erythrocytosis	254
Absolute neutropenia	255
Absolute neutrophilia	256
Absolute lymphocytosis	257
Absolute eosinophilia	258
Absolute monocytosis	259
Monoclonal immunoglobulin	260
Thrombocytopenia	261
Thrombocytosis	262
Prolonged prothrombin time (PT / Quick)	263
Prolonged activated partial thromboplastin time (aPTT)	264
Conclusion	265

Part 1

RED BLOOD CELL PATHOLOGY

DIFFERENTIATION OF BLOOD CELLS

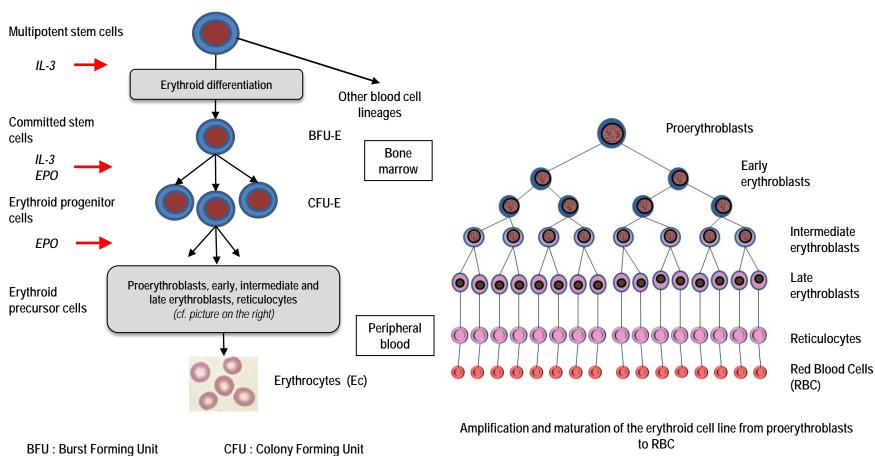
NORMAL RANGES IN HEMATOLOGY

	UNITS	MEN	WOMEN
HEMOGLOBIN ¹ (Hb)	g / L	133 – 177	117 – 157
HEMATOCRIT ¹ (Hct)	%	40 – 52	35 – 47
ERYTHROCYTES ¹ (Ery)	T/L	4.4 - 5.8	3.8 – 5.2
MCV	fL	81 – 99	
МСН	pg	27 -	- 34
МСНС	g / L	310 -	- 360
RDW ² (Anisocytosis index)	%	<	15
RETICULOCYTES (relative value)	‰	5 – 15	
RETICULOCYTES (absolute value)	G/L	20 – 120	
LEUKOCYTES	G/L	4 -	10
THROMBOCYTES / PLATELETS	G/L	150 -	- 350

 1 Increased values with prolonged stay at high altitude 2 RDW $\,:\,$ Red cell distribution width

T/L:	Tera / L	$= 10^{12} / L$
G/L:	Giga / L	$= 10^9 / L$
fL :	Femtoliter	= L ⁻¹⁵
pg :	Picogram	$= g^{-12}$

LCH-CHUV,	2012
LCH-CHUV,	2012


COMPLEMENTARY INDICES *	

INDEX	UNIT	REFERENCE INTERVAL**
HYPO ³	%	< 5.0
MCVr / MRV ⁴	fL	104 - 120
CHr⁵	pg	28 - 33.5
IRF ⁶	%	2.3 - 15.9
MPV ⁷	fL	7 - 11.5
PDW ⁸	%	9.0 - 13.0

* Indices produced by hematological analyzers

- ³ HYPO : Hypochromic RBC fraction
- ⁴ MCVr : Mean Cellular Volume of reticulocytes ** or
- MRV : Mean Reticulocyte Volume **
- ⁵ CHr : Cellular Hemoglobin Content of reticulocytes **
- ⁶ IRF : Immature Reticulocyte Fraction**
- ⁷ MPV : Mean Platelet Volume **
- ⁸ PDW : Platelet Distribution Width **
- ** These indices may vary depending on the type of analyzer and of preanalytic condittions

ERYTHROPOIESIS

to RBC

Classical schedule of erythropoiesis. Cytokines like Interleukin 3 (IL-3) act on stem cells and primitive BFU-E; Erythropoietin (Epo) acts on more mature BFU-E but principally on CFU-E and on the erythroblastic compartment

EVALUATION OF ANEMIA

3 PARAMETERS

3 INDICES

RETICULOCYTE COUNT

PARAMETERS

HEMOGLOBIN (g / L) RED BLOOD CELL COUNT (T / L = 10^{12} / L) HEMATOCRIT (%)

ANEMIA = DIMINUTION OF HEMOGLOBIN (WHO 1997)

Child	< 5 years	< 110 g / L
Child	5-11 years	< 115 g / L
Child	12-14 years	< 120 g / L
Adult r	man	< 130 g / L
Adult v	voman	< 120 g / L
Pregna	ant woman	< 110 g / L

EVALUATION OF ANEMIA (3)

RED BLOOD CELL INDICES

- MCV : <u>Mean Corpuscular Volume</u> (Hct / RBC) x 10 (fL)
- MCH : <u>Mean Corpuscular Hemoglobin</u> Hb / RBC (pg)
- MCHC : <u>Mean Corpuscular Hemoglobin Concentration</u> : (Hb / Hct) x 100 or (MCH / MCV) x 1'000 (g / L)

MORPHOLOGICAL CLASSIFICATION OF ANEMIAS

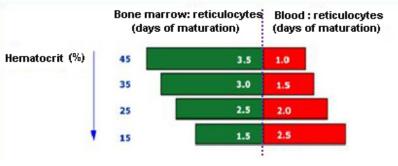
	MCV	MCH	MCHC
Normocytic normochromic	no	no	no
Microcytic hypochromic	Û	Û	Û
Macrocytic normochromic	A	∇	no

EVALUATION OF ANEMIA (4) RETICULOCYTES

Absolute reticulocyte count :

- < 120 G / L : Hyporegenerative anemia
- > 120 G / L : Regenerative anemia

Reticulocyte production index (RPI)


RPI = Reticulocytes (%) / 10 x reticulocyte maturation time in blood (days)¹ x Hematocrit / 45

Normal :	1.0 - 2.0
Hyporegenerative anemia :	< 2.0
Regenerative anemia :	> 2.0

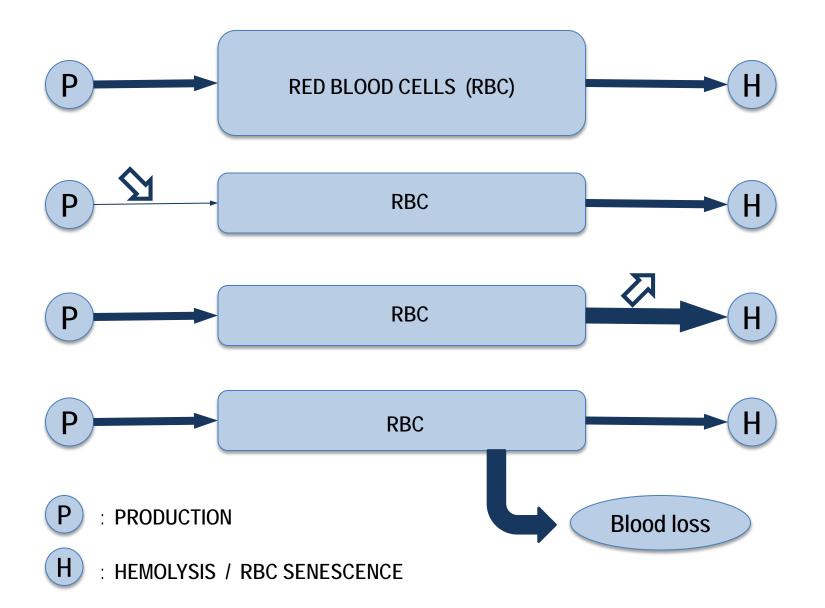
¹ Reticulocyte have a total maturation time of 4.5 days :

- Normally 3.5 days in bone marrow and 1 day in peripheral blood
- In case of hematocrit reduction reticulocytes leave the bone marrow earlier at a less mature stage, → maturation > 1.0 day in peripheral blood (where the reticulocyte count is performed)

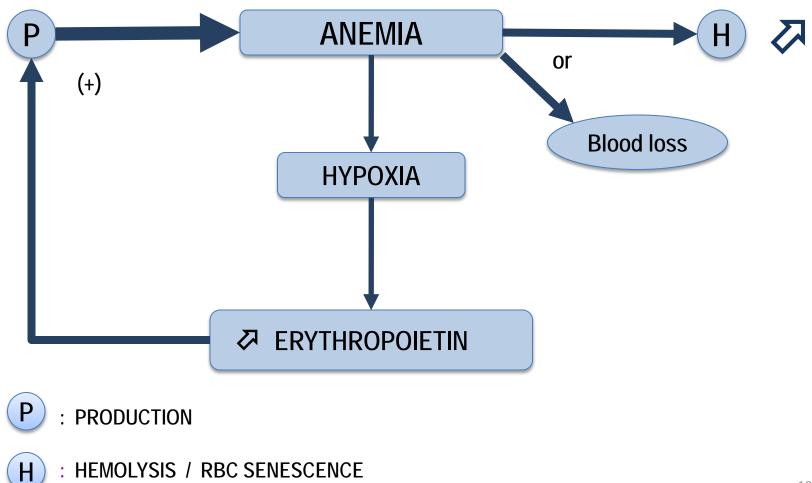
Reticulocyte maturation related to anemia severity¹

Reticulocytes distribution related to RNA² content :

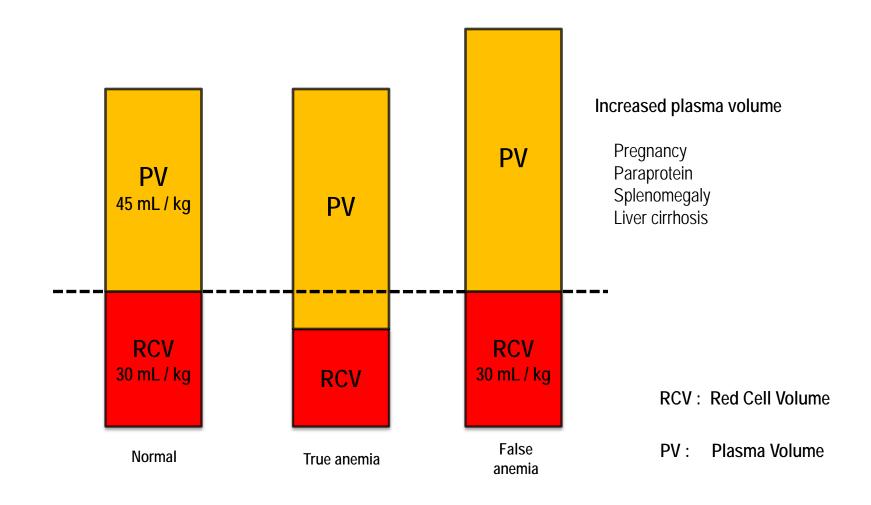
- HFR (High-Fluorescence Reticulocytes) : high
- MFR (Medium-Fluorescence Reticulocytes : medium
- LFR (Low-Fluorescence Reticulocytes : low


Immature reticulocytes (IRF : Immature Reticulocyte Fraction³)

Mature reticulocytes


² By flow cytometry

³ Increase of this fraction may precede the reticulocyte increase in peripheral blood. Therefore it can be an early sign of recovery or stimulation of erythropoiesis. e.g.: a) after bone marrow / stem cell transplantation; b) monitoring of EPO treatment


MECHANISMS OF ANEMIA

MECHANISMS OF ANEMIA (2)

MECHANISMS OF ANEMIA (3) WHOLE BLOOD, RED CELL, PLASMA VOLUME

ANEMIA PATHOPHYSIOLOGICAL CLASSIFICATION

HYPOREGENERATIVE ANEMIA

(Reticulocyte count < 120 G / L / RPI^1 < 2.0)

NORMOCYTIC NORMOCHROMIC

Renal failure Pure Red Cell Aplasia (Erythroblastopenia) Bone marrow aplasia Bone marrow infiltration Anemia of chronic disease / Inflammatory anemia Hypothyroidism

MICROCYTIC HYPOCHROMIC

Iron deficiency Anemia of chronic disease / Inflammatory anemia Iron utilization disorder (sideroblastic anemia, thalassemia)

MACROCYTIC NORMOCHROMIC

Vitamin B₁₂ and / or folate deficiency Cytotoxic drugs Alcoholism, liver disease, hypothyroidism Myelodysplastic syndrome Bone marrow aplasia

REGENERATIVE ANEMIA

(Reticulocyte count > 120 G / L / $RPI^1 > 2.0$ / $IRF^2 \varnothing$)

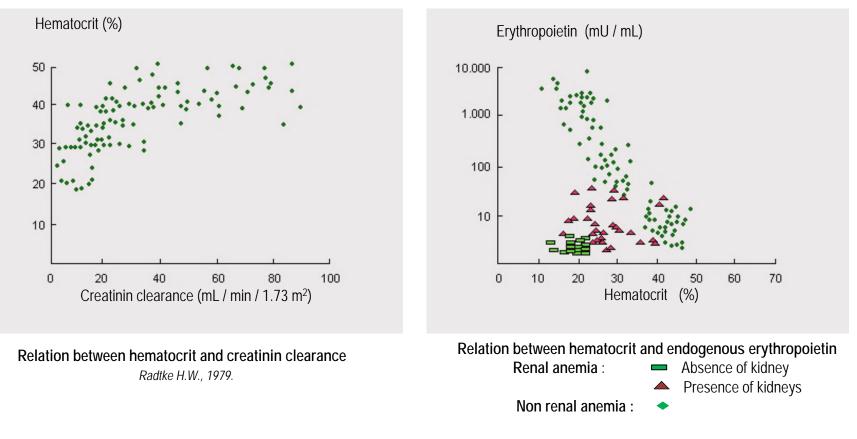
NORMOCYTIC NORMOCHROMIC

Acute blood loss Hemolytic anemia ¹ RPI : Reticulocyte Production Index ² IRF : Immature Reticulocyte Fraction

HYPOREGENERATIVE NORMOCYTIC NORMOCHROMIC ANEMIA

MCV :	normal	81 – 99 fL
MCH :	normal	27 – 34 pg
MCHC :	normal	310 – 360 g/L
Reticulocyte count :		< 120 G/L

CLASSIFICATION


SOLITARY ANEMIA

RENAL FAILURE PURE RED CELL APLASIA (ERYTHROBLASTOPENIA) HYPOTHYROIDISM¹

IN THE CONTEXT OF PANCYTOPENIA ("CENTRAL" ORIGIN)

BONE MARROW APLASIA¹ BONE MARROW INFILTRATION (Acute leukemia, lymphoid neoplasm, metastatic cancer) BONE MARROW FIBROSIS HEMOPHAGOCYTOSIS

ANEMIA OF RENAL FAILURE

Modified from Caro J., 1979.

Treatment : rHuEpo 100-300 U / kg / week IV or SC

In Beutler E., Lichtman M.A., Coller B.S., Kipps T.J.: Williams Hematology, 5th edition 1995; McGraw-Hill: p. 456 & 458.

PURE RED CELL APLASIA - ERYTHROBLASTOPENIA

HEREDITARY

BLACKFAN-DIAMOND ANEMIA

ACQUIRED

PRIMARY

SECONDARY

THYMOMA (~ 5% thymomas are associated with red cell aplasia) LYMPHOID NEOPLASM CANCER (lung, breast, stomach, thyroid, biliary tract, skin) COLLAGEN VASCULAR DISEASE PARVOVIRUS B19 PREGNANCY DRUG INDUCED : Anticonvulsants Azathioprine Chloramphenicol Sulfonamides Isoniazid Procainamide

BONE MARROW APLASIA ETIOLOGY

HEREDITARY BONE MARROW APLASIA

FANCONI ANEMIA DYSKERATOSIS CONGENITA

ACQUIRED BONE MARROW APLASIA / APLASTIC ANEMIA

IDIOPATHIC (> 2/3 of cases)

SECONDARY

Irradiation Chemicals (benzene...)

Drugs

Obligate bone marrow aplasia (direct cytotoxicity) Cytotoxic drugs (alkylating agents) Occasional or uncommon bone marrow aplasia Chloramphenicol Phenylbutazone Gold salts Viral infection (EBV, Hepatitis, Parvovirus B19, CMV, HIV) Immune disorder (thymoma) Paroxysmal Nocturnal Hemoglobinuria (PNH) Hypoplastic myelodysplastic syndrome Pregnancy

APLASTIC ANEMIA (AA) GENERAL DATA

Stem cell failure, leading to pancytopenia without splenomegaly Immune mechanisms play an etiologic role in idiopathic AA

FEATURES :

Severe bone marrow hypocellularity with a decrease in all cell lines with remaining fat and marrow stroma Normal residual hematopoietic cells. Absence of fibrosis or infiltration by abnormal *(malignant)* cells Non megaloblastic hematopoiesis *(light RBC macrocytosis in peripheral blood is frequent)* Symptoms of pancytopenia : bleeding, relapsing infections depending upon severity of the disease

CLASSIFICATION :

MODERATE AA	SEVERE AA (SAA)	VERY SEVERE AA (VSAA)
Marrow cellularity < 30% of normal \Im of at least 2 of 3 cell lines below normal. ANC ² > 0.5 G / L	Marrow cellularity < 20% of normal and at least 2 of following criteria : ARC ¹ < 40 G / L / ANC ² < 0.5 G / L / platelets < 20 G / L	Similar to SAA but with : ANC ² < 0.2 G / L and / or infection(s)

¹ARC : Absolute Reticulocyte Count

² ANC : Absolute Neutrophil Count

PROGNOSIS:

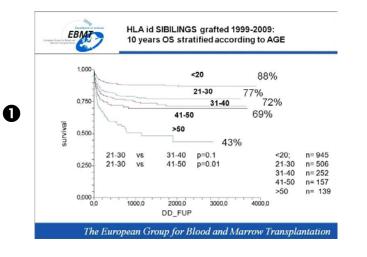
Related to severity of the disease

Without treatment less than 30% of patients with SAA or VSAA survive at 1 year

Response to treatment depends on the type of therapy, on patient age which limits indication to bone marrow transplantation

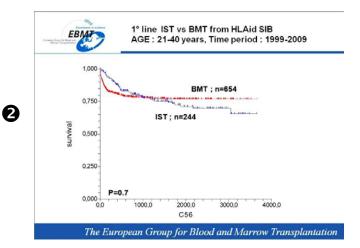
No age related limitation for immunosuppressive therapy

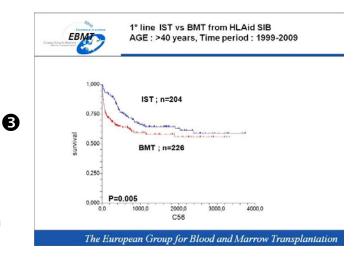
DRUG INDUCED BONE MARROW TOXICITY


OBLIGATE :	dosis related	Alkylating agents
OPTIONAL :	dosis related dosis unrelated	Chloramphenicol Chloramphenicol

CHLORAMPHENICOL INDUCED APLASTIC ANEMIA

	DOSE RELATED TOXICITY	DOSE UNRELATED TOXICITY
INCIDENCE	FREQUENT	UNCOMMON
BEGIN	IMMEDIATE	DELAYED (months)
SYMPTOMS	LIGHT	SEVERE (infection, bleeding)
COURSE	SPONTANEOUSLY FAVORABLE	FREQUENTLY FATAL


APLASTIC ANEMIA (AA) (3) TREATMENT


BONE MARROW TRANSPLANTATION vs IMMUNOSUPRESSIVE TREATMENT

- Survival of SAA patients treated by bone marrow transplantation (BMT)¹ is strongly age dependent. Increase of treatment related mortality proportional to age is the main cause
- For patients aged 21 to 40 years, bone marrow transplantation (BMT) appears equivalent to immunosuppressive treatment (IST), or slightly better at longer term
- Over 40 years of age, upfront IST is the treatment of choice

¹ In SAA and VSAA transplantation of bone marrow appears better than transplantation of peripheral blood stem cells

Probability to find an HLA-compatible sibling as bone marrow / hematopoietic stem cells donor : 20 - 30 %

APLASTIC ANEMIA (AA) (4) TREATMENT (2)

TREATMENT :

Withdrawal of potentially offending agents

Supportive care (Blood and platelet transfusions to be used selectively in candidates to HST¹)

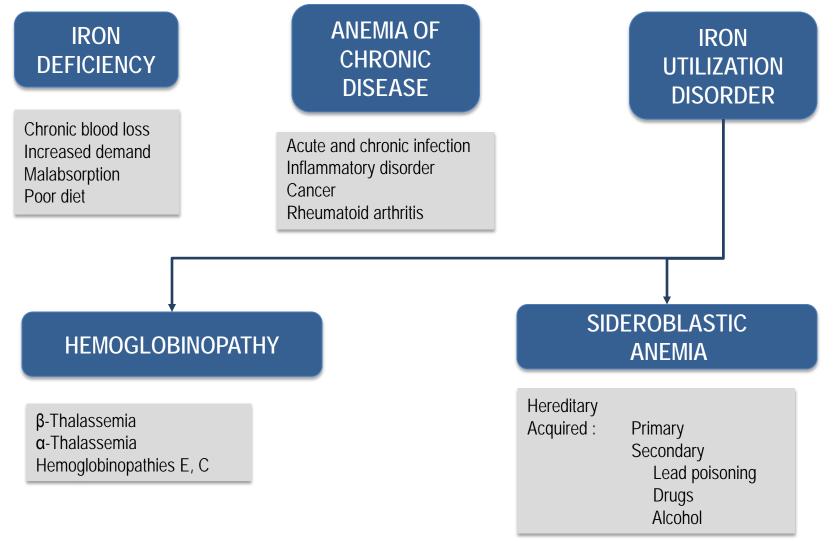
Immunosuppressive treatment (IST) :

Anti-thymocyte globulin + Cyclosporin (± high dose steroids), mostly used

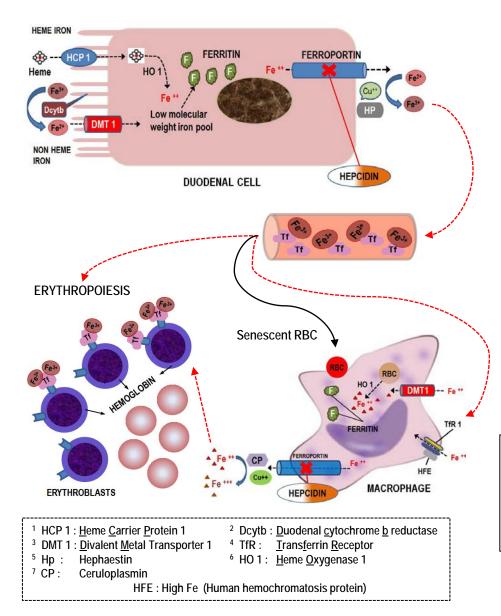
Hematopoietic stem cell transplantation (HST):

Syngeneic, allogeneic in case of HLA-matched sibling / HLA-matched unrelated donor, reduced intensity conditioning transplant

MODERATE AA	SEVERE AA & VERY SEVERE AA		
ALL AGES	< AGE 20 AGE 20 - 40		> AGE 40 ²
Imunosuppression : Anti-thymocyte globulin (ATG) + Cyclosporin ± steroids ± G-CSF	HST if HLA-matched sibling donor If not, immunosuppression : Anti-thymocyte globuline (ATG) + Cyclosporin \pm steroids \pm G-CSF Consider HST ¹ from HLA-matched unrelated donor for a child or adolescent patient with VSAA	HST if HLA-matched sibling donor If not, immunosuppression : Anti-thymocyte globulin (ATG) + Cyclosporin ± steroids ± G-CSF Possibly HST from HLA-matched unrelated donor	Imunosuppression : Anti-thymocyte globulin (ATG) ³ + Cyclosporin ± steroids ± G-CSF


¹HST : Hematopoietic Stem cell Transplantation

For SAA and VSAA bone marrow transplantation appears superior to transplantation with peripheral blood hematopoietic stem cells


² Risk of transplant related mortality (e.g. GVHD) increasing with age

³ For elderly patient with SAA or VSAA immunosuppressive treatment should omit ATG because of its toxicity

MICROCYTIC HYPOCHROMIC ANEMIA DECREASED MCV, MCH AND MCHC

IRON METABOLISM

IRON ABSORPTION :

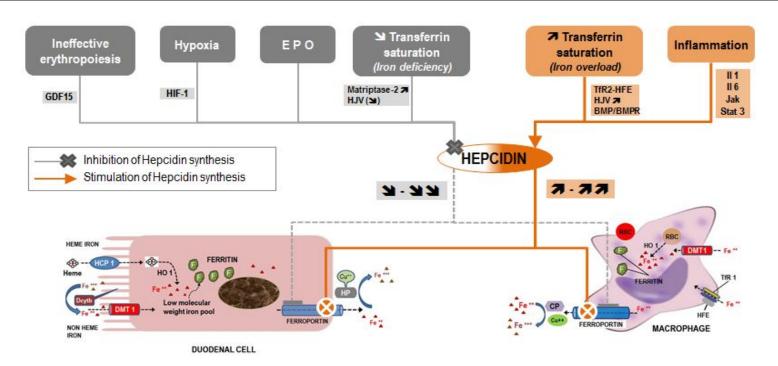
Heme iron :

1. Duodenal cell :

Probably through HCP 1¹ pathway \rightarrow heme degradation through Heme Oxygenase (HO 1⁶) \rightarrow iron recycling \rightarrow Low molecular weight Fe^{*++} pool \rightarrow binding to Ferritin (*binding up to 4'000 Fe⁺⁺ atoms*)

2. Macrophage : phagocytosis of senescent RBC \rightarrow heme degradation through Heme Oxygenase 1 (HO 1⁶) \rightarrow Fe⁺⁺ \rightarrow Fe⁺⁺ pool \rightarrow Ferritin \rightarrow Hemosiderin

Non-heme iron duodenal cell / macrophage : reduction of Fe⁺⁺⁺ to Fe⁺⁺ by $Dcytb^2 \rightarrow absorption$ by DMT 1³

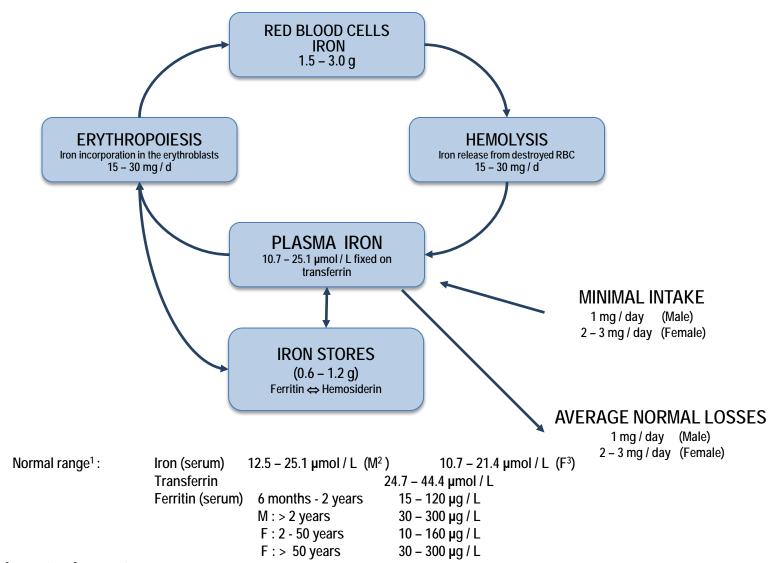

IRON CIRCULATION

Fe⁺⁺ leaves the cell *(duodenal cell or macrophage)* through the Ferroportin pathway, regulated by Hepcidin *(cf. below)* \rightarrow Iron reoxidation to Fe⁺⁺⁺ through Hephaestin (Hp⁵) *(duodenal cell)* or Ceruloplasmin (CP⁷) in presence of Cu⁺⁺ *(macrophage)* \rightarrow iron binding to Transferrin (Tf) *(specific bivalent transporter protein)* \rightarrow iron dependent cells *(i.e. bone marrow erythroblasts for heme synthesis)* through binding to the Transferrin Receptors (TfR⁴)

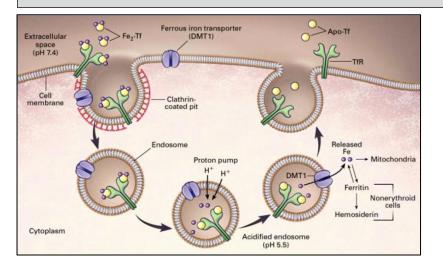
 \triangleleft Hepcidin : \bowtie Ferroportin (cellular internalization) $\rightarrow \bowtie$ iron release which remains in the cell \rightarrow functional iron deficiency \rightarrow iron overload in macrophages (e.g. anemia of chronic disorders / inflammatory anemia)

 $\$ Hepcidin : \Leftrightarrow or $\$ Ferroportin \rightarrow favoring iron transfer to cells. (*e.g. iron deficiency anemia*) cf. following page

IRON METABOLISM REGULATION BY HEPCIDIN


Hepcidin controls Ferroportin function and by this way regulates iron uptake and distribution. Mechanisms in grey color lead to Hepcidin decrease which results in normal or increased iron uptake and transfer

Causes of increased **Hepcidin** production are shown in **orange** color. Increased **Hepcidin** causes retention of iron in the duodenal cells and macrophages by turning down **Ferroportin** pathway (functional iron deficiency)


Rare mutations of **DMT 1** or **Matriptase-2 genes** cause iron deficiency anemia, refractory to oral iron administration (**IRIDA** : Iron-Refractory Iron Deficiency Anemia)

HCP 1 : <u>Heme Carrier Protein 1 / DMT 1 : Divalent Metal Transporter 1) / Dcytb : D</u>uodenal <u>Cyt</u>ochrome <u>B</u> (Ferrireductase) HP : <u>Hep</u>haestin / CP : <u>Ceruloplasmin / HO 1 : <u>Heme O</u>xygenase 1 / HFE : <u>High Fe</u> (Hemochromatosis protein) / TfR : <u>Transferrin Receptor</u> HIF-1 : <u>Hypoxia Induced Factor 1 / HJV : <u>Hemojuvelin / BMP / BMPR : B</u>one <u>M</u>orphogenetic <u>P</u>rotein / GDF15 : <u>G</u>rowth <u>D</u>ifferentiation <u>Factor 15</u> Matriptase -2 : Membrane protein (Gene : TMPRSS6) causing Hemojuvelin lysis</u></u>

IRON CYCLE

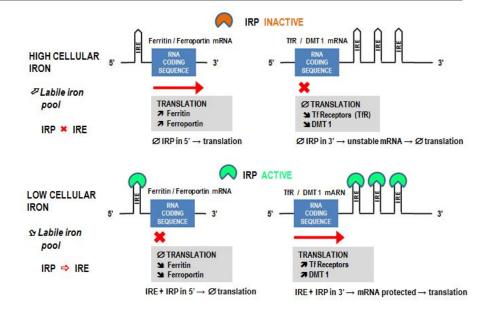
TRANSFERRIN CYCLE

 $\begin{array}{lll} TfR: & Transferrin \ Receptor. \ Binds \ 2 \ molecules \ of \ bivalent \ transferrin \\ DMT \ 1: & \underline{D}ivalent \ \underline{M}etal \ \underline{T}ransporter \ 1. \ Transport \ in \ the \ cell \ of \ non-heme \ iron \\ APO-Tf: \ Apotransferrin \\ \end{array}$

Andrews N.C. : Disorders of Iron Metabolism. NEJM 1999; 341 : 1986-1995.

REGULATION OF FERRITIN, TRANSFERRIN RECEPTOR AND DMT1

IRP : Iron Regulatory Protein(s) (sensors of intracellular labile iron) **IRE(s) :** Iron Responsive Elements (mRNA motives)


Interactions between IRE(s) and IRP lead to regulation of ferritin, DMT 1 and transferrin receptor (TfR) synthesis related to the iron load of the labile intracellular pool

High cellular iron (iron overload) \rightarrow IRP(s) with low or absent activity :

- 1. \bigtriangledown Ferritin and ferroportin mRNA \rightarrow \vartriangleright synthesis \rightarrow \vartriangleright iron storage facility
- 2. $\$ TfR and DMT 1 mRNA \rightarrow $\$ synthesis \rightarrow $\$ iron absorption and transport capacity

Low intracellular iron pool (iron deficiency) \rightarrow IRP(s) active \rightarrow IRE binding :

- 1. \boxdot Ferritin and ferroportin mRNA $\rightarrow \boxdot$ synthesis $\rightarrow ~ \rightleftarrows$ iron circulation
- 2. ${\oslash}$ mRNA of TfR and DMT 1 \to ${\oslash}$ synthesis \to ${\oslash}$ absorption and transport of iron

IRON DEFICIENCY ANEMIA PHYSIOLOGICAL IRON LOSSES

MAN : 1 mg / day : basal losses (cellular desquamation, integuments, urine, feces, sweat)

WOMAN : 1 mg / day : basal losses

+ menstruations : 2 – 3 mg / day

- 50% if oral contraception
- + 100% if intrauterine device

IRON BIOAVAILABILITY

ABSORPTION :

Heme iron 25 – 30%

Non heme iron 1 – 7%

- Ascorbates, citrates, tartrates, lactates
- ☆ Tannates, wheat, calcium, phosphates, oxalates, soya proteins

STAGES OF IRON DEFICIENCY DEVELOPMENT

	STAGE 1	STAGE 2	STAGE 3
FERRITIN	۲	۲	<u>ال</u>
IRON (Bone marrow)	۲	Absent	Absent
TRANSFERRIN (Serum)	Normal	A	2
IRON (Serum)	Normal		۲
HEMOGLOBIN	Normal	Normal	۲
MCV	Normal	Normal	۲
МСНС	Normal	Normal	ъ

MICROCYTIC HYPOCHROMIC ANEMIA SERUM IRON - TRANSFERRIN - FERRITIN

	SERUM IRON	TRANSFERRIN	FERRITIN
IRON DEFICIENCY	∿		۲
Inflammatory Anemia	۲	۲	₽
IRON UTILIZATION DISORDER	\$	no / 🖄	₽

SOLUBLE TRANSFERRIN RECEPTORS :

Increased in isolated iron deficiency but also when combined with inflammatory processes Normal in isolated inflammatory anemia

RBC ZINC PROTOPORPHYRIN (low specificity) :

Increased in severe iron deficiency, but also in inflammatory anemia and lead poisoning

RING SIDEROBLASTS :

Increased in sideroblastic *anemia* (indication to bone marrow examination), cf. p. 44

ETIOLOGY OF IRON DEFICIENCY

Chronic blood loss Increased iron demand Malabsorption Poor diet

CAUSES OF CHRONIC IRON LOSS

Uterine (menorrhagia, metrorrhagia), digestive bleeding (hematemesis, melaena), parasites (hookworm), hematuria Chronic intravascular hemolysis (Paroxysmal Nocturnal Hemoglobinuria) Frequent blood donations, phlebotomies, provoked bleedings (Lasthénie de Ferjol syndrome)

Chronic bleeding (microcytic hypochromic hyporegenerative anemia) must imperatively be distinguished from acute blood loss (normocytic normochromic regenerative anemia). Remember that 1 L of blood = 500 mg of iron

INCREASED IRON DEMAND

Pregnancy Breast feeding (maternal milk : 0.3 – 0.5 mg / L) Growth

IRON DEMAND IN PREGNANCY

Increased maternal total red cell volume	500 mg
Fetal needs	290 mg
Placenta	25 mg
Basal iron loss (0.8 mg / d for 9 months)	220 mg
TOTAL :	1'035 mg

FUNCTIONAL IRON DEFICIENCY

Absence of adequate erythropoietin response in case of anemia secondary to renal failure or to an inflammatory process with ferritin level in normal or high range (cf. p. 37-38)

CAUSAL TREATMENT

IRON SUBSTITUTION (anemia correction <u>and</u> iron stores reconstitution) Oral substitution :

Basic data : 1 L of blood = 500 mg of iron and 160 g of hemoglobin.1 g of hemoglobin : 500 / 160 = ± 3 mg of iron Blood volume : 75 mL / kg. Iron reserves : 1'000 mg

Example : Woman, 56 years old, BW 50 kg, hemoglobin 80 g / L Iron needs for anemia correction and iron stores reconstitution :

[Blood volume (L) x (160 - Hb patient) x 3] + 1'000 mg \rightarrow [3.75 x (160 - 80) x 3] + 1'000 mg = 1'900 mg of iron

Patient receives 100 mg elementary iron q.d. with a mean resorption of 15 mg q.d. Duration of substitution : 1'900 / 15 = 126 days (±4 months) Anemia correction within ±1 month. Iron deficiency corrected when serum ferritin in normal range

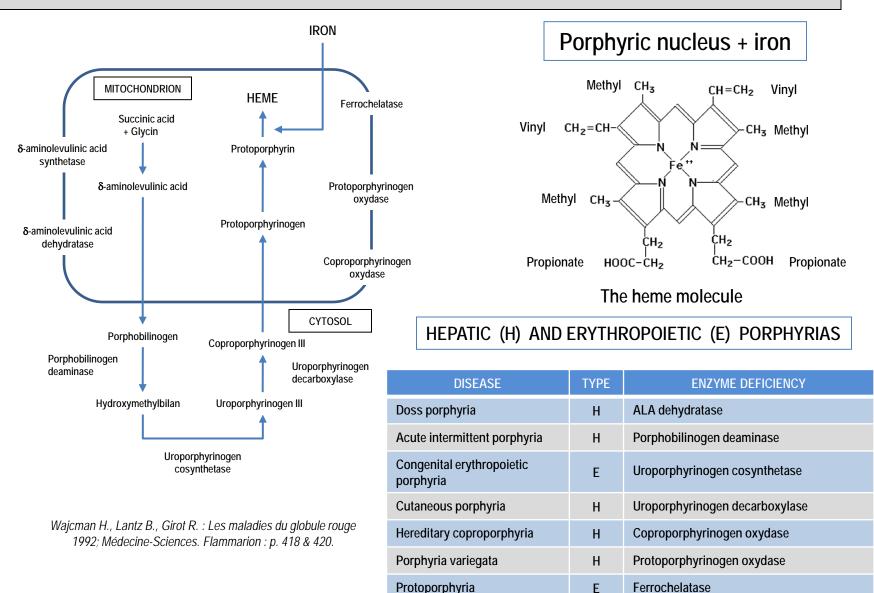
Parenteral substitution : 100-200 mg IV 1-3 x weekly or perfusion of 500-1'000 mg (15 mg / kg) of ferric carboxymaltose once or twice

 Indications :
 Functional iron deficiency (Hb content in reticulocytes (CHr¹) < 28 pg; hypochromic RBC fraction (HYPO¹) : > 5%)

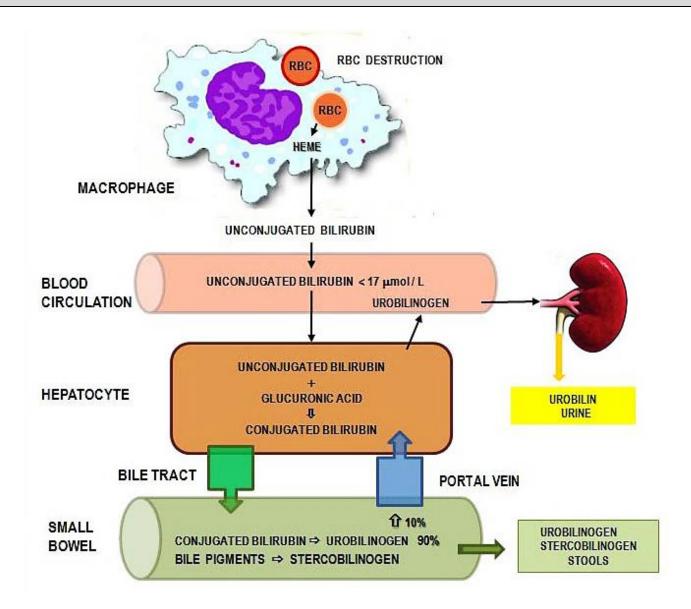
 Malabsorption syndrome
 Digestive oral iron intolerance

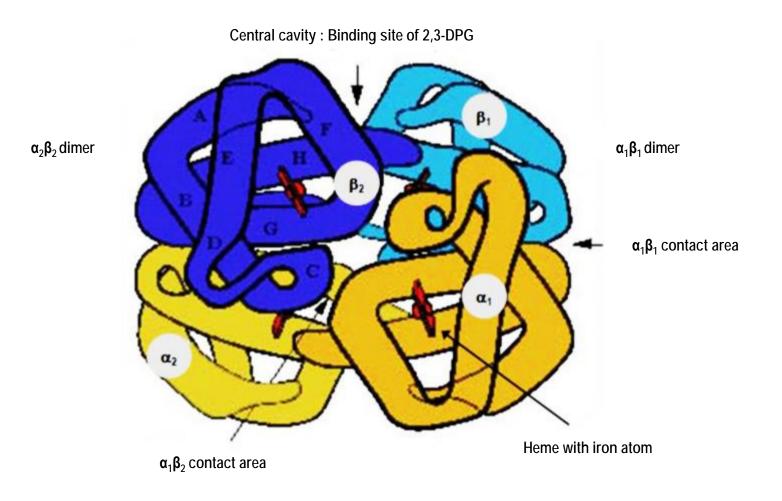

 Digestive oral iron intolerance
 1 These 2 parameters can only be measured by certain hematological analyzers

 Important chronic, persisting hemorrhage
 1 analyzers

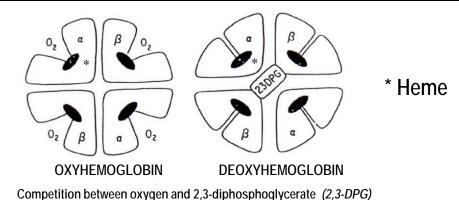

 Rare mutations of DMT 1 genes (vegetarians²) or of Matriptase-2 : IRIDA (cf. p. 31)

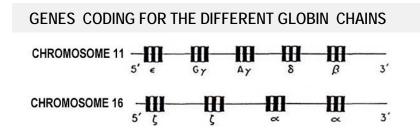
² In case of normal balanced diet, DMT 1 mutations have no consequence, due to normal absorption of heme iron through HCP 1 pathway

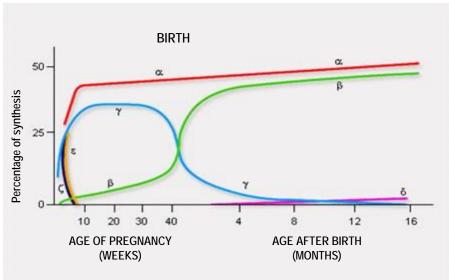

ANEMIA OF CHRONIC DISORDERS / INFLAMMATORY ANEMIA


HEME SYNTHESIS

HEMOGLOBIN DEGRADATION

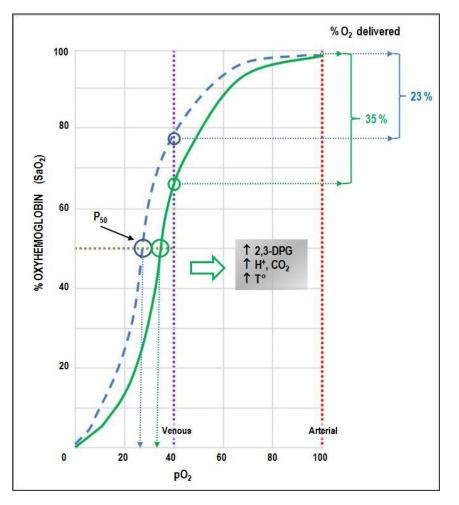

HEMOGLOBIN STRUCTURE

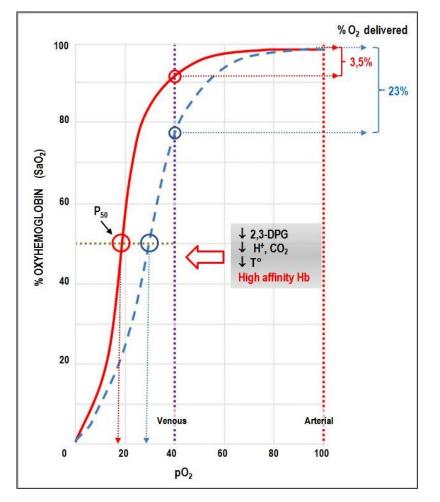

Hemoglobin tetramer with contact areas


41

HEMOGLOBIN / INTERACTION O2 AND 2,3-DPG

GLOBIN HEMOGLOBIN **STRUCTURE ξ**₂ ε₂ Gower 1 Embryonic hemoglobins Portland $\xi_2 \gamma_2$ Gower 2 α₂ ε₂ $\boldsymbol{\alpha}_2 \boldsymbol{\beta}_2$ Α Adult hemoglobins A_2 (1.5 – 3.0%) $\boldsymbol{\alpha}_2 \boldsymbol{\delta}_2$ F (< 1%) $\alpha_2 \gamma_2$





Synthesis of the different globin chains during ontogenesis

Modified from Wajcman H., Lantz B., Girot R. : les maladies du globule rouge 1992; Médecine-Sciences Flammarion : p. 12.

HEMOGLOBIN DISSOCIATION CURVE

Left shift of the hemoglobin dissociation curve through \Im of 2,3-DPG : $\overline{\land}$ of oxygen affinity of hemoglobin *In this situation : 20% diminution of O*₂ *tissues delivery*

Normal curve : - - - -

ANEMIA WITH IRON UTILIZATION DISORDER SIDEROBLASTIC ANEMIA

PATHOPHYSIOLOGY

Anomaly of porphyric nucleus synthesis Presence of ring sideroblasts (bone marrow) Role of vitamin B₆ (Pyridoxin)

CLASSIFICATION

Acquired sideroblastic anemia :	Primary Secondary Lead poisoning Isoniazid Chloramphenicol Pyrazinamide Alcohol
Hereditary sideroblastic anemia :	X - linked

mia : X - linked Autosomal Mitochondrial

ANEMIA WITH IRON UTILIZATION DISORDER (2) THALASSEMIA

PATHOPHYSIOLOGY

GLOBIN SYNTHESIS DEFECT

Great genetic heterogeneity at molecular level (DNA lesions, i.e. more or less important deletions, point mutations)

- α -Thalassemia : \Im or absence of globin α -chain synthesis
- **β**-Thalassemia : $\$ or absence of globin **β**-chain synthesis

CENTRAL (BONE MARROW) AND PERIPHERAL HEMOLYSIS THROUGH TETRAMERS INSTABILITY

- α_4 for β -Thalassemia
- β_4 for α -Thalassemia (Hemoglobin H)

α-THALASSEMIA

CLINICAL VARIETIES	CHROMOSOME 16	
Normal	αα / αα	
Asymptomatic carrier	-α/αα	
α -Thalassemia minor	$ / \alpha \alpha \text{ or } - \alpha / - \alpha$	
Hemoglobin H disease	/ - α	
Moderate, sometimes severe chronic anemia Splenomegaly		
Inclusion bodies		
Hemoglobin Bart (γ ₄) Hydrops fetalis (intrauterine death)	/	

DIAGNOSIS

Search for inclusion bodies Electrophoresis of a fresh¹ hemolysate at alkaline or neutral pH. Isoelectric focusing (Hb H) DNA analysis

¹ Hb H is unstable !

β-THALASSEMIA

$\boldsymbol{\beta}\text{-THALASSEMIA}$ MINOR

β / $\beta^{\scriptscriptstyle +}\text{-thal or}\ \beta$ / $\beta^{\scriptscriptstyle 0}$ (heterozygocity)

"Micropolyglobulia" : e.g. RBC : 6.2 T / L, Hb : 105 g / L, MCV : 62 fL Target cells, coarse basophilic stippling. Hb electrophoresis : \checkmark Hb A₂ and F Genetic counseling

β-THALASSEMIA INTERMEDIA

 β : normal β gene β^0 : mutation with no β chain synthesis

 $\beta^{\scriptscriptstyle +}$: mutation with residual low β chain synthesis

 β^{0} -thal / β^{+} -thal (double heterozygocity) or

 β^+ -thal / β^+ -thal (homozygocity) \rightarrow marked \cong of β -chain synthesis (β^+ gene) Anemia of variable severity (70 – 100 g / L) depending on the amount of residual β -chain synthesis (gene β^+) Transfusion requirements less important than in β -thalassemia major

β-THALASSEMIA MAJOR

 β^{0} -thal / β^{0} -thal (homozygocity) \rightarrow absence of β chains synthesis

 β^0 -thal / β^+ -thal (double heterozygocity) \rightarrow severe \cong of β -chain synthesis

Severe anemia, hemolytic icterus, erythroblasts on blood smear

Splenomegaly, hepatomegaly

Growth retardation

Hb electrophoresis : 5 or absence of Hb A

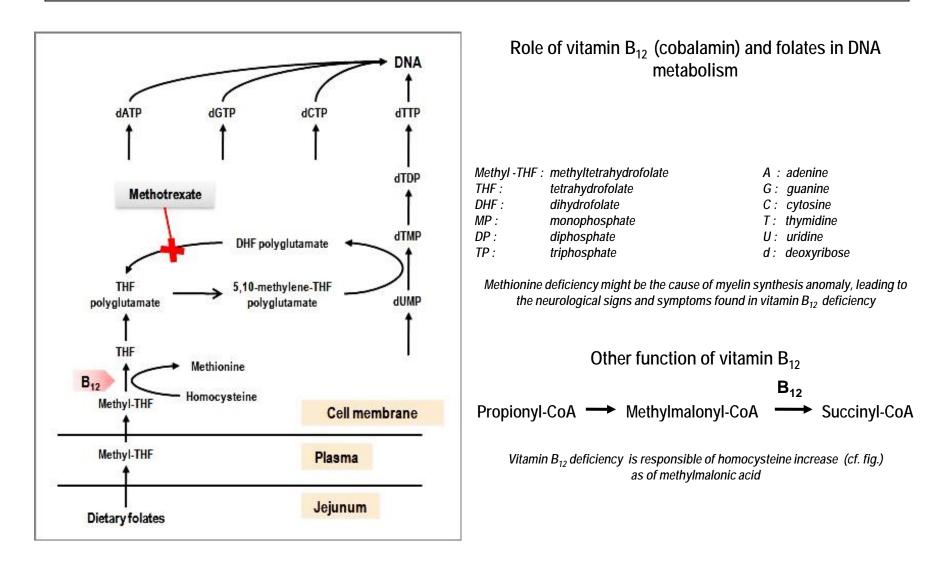
Hb F 20-80 %

Treatment : Transfusions, iron chelation, allogeneic stem cell / bone marrow transplantation

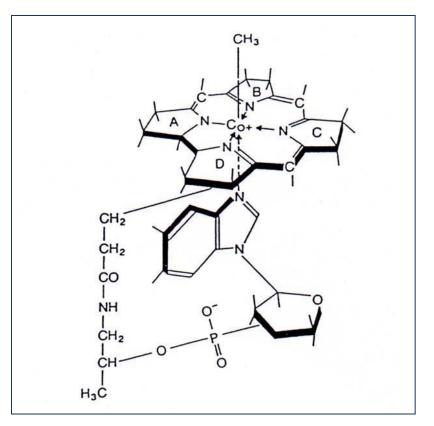
MACROCYTIC NORMOCHROMIC HYPOREGENERATIVE ANEMIA

MCV :	2	> 99 fL
MCH :	∇	> 34 pg
MCHC :	normal	310 – 360 g / L
Reticulocyte count :		< 120 G / L

CLASSIFICATION


MEGALOBLASTIC MACROCYTIC ANEMIA

Vitamin B₁₂ deficiency Folate deficiency Cytotoxic drugs 6-mercaptopurin 5-fluorouracil Cytarabin Hydroxyurea Methotrexate Zidovudin (AZT)


NON MEGALOBLASTIC MACROCYTIC ANEMIA

Alcoholism Liver disease Myxedema Myelodysplastic syndrome

MEGALOBLASTIC MACROCYTIC ANEMIA PATHOPHYSIOLOGY

VITAMIN B₁₂ AND FOLATES CHEMICAL STRUCTURE

Structure of folic acid (pteroylglutamic acid) : pteridine nucleus + para-aminobenzoic acid + glutamate(s)

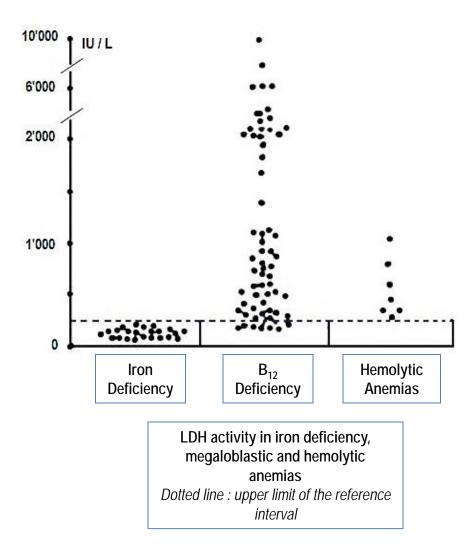
Structure of methylcobalamin (plasma) Other compounds : deoxyadenosylcobalamin (tissues), hydroxocobalamin and cyanocobalamin (used in treatment of vitamin B₁₂ deficiency)

Hoffbrand A.V., Pettit J.E. : Essential Haematology, 3th edition 1993; Blackwell Science : p. 54 & 57.

VITAMIN B₁₂ AND FOLATES GENERAL DATA

	VITAMIN B ₁₂	FOLATES	
Balanced diet (/ day)	7–30 µg	200 – 250 µg	
Daily needs	1 – 2 μg	100 – 150 µg	
Origin	Animal	Vegetables, liver, yeast	
Cooking (heat)	Few effect	Thermolabile	
Stores	2 – 3 mg	10 – 12 mg	
Exhaustion of stores	2-4 years	3-4 months	
Absorption			
Site	lleum	Jejunum	
Mechanism	Intrinsic factor	Conversion to methyltetrahydrofolate	
Transport	Transcobalamins (TC) TC I and III or haptocorrins or R proteins : Binding to food proteins then cobalamins transport TC II : transport and intracellular cobalamins transfer	Albumin	
Active physiological forms	Methyl- and deoxyadenosylcobalamins	Polyglutamates	
Compounds used for therapeutic substitution	Hydroxocobalamin Cyanocobalamin	Folic acid (pteroylglutamic acid)	
Serum levels (physiological)	133 – 675 pmol / L ¹	7.0 – 45.1 nmol / L ¹	

¹LCC-CHUV, 2012


ABSORPTION OF VITAMIN B₁₂

Cobalamins of dietary origin are bound unspecifically to the food proteins. In the stomach peptic digestion at low pH splits proteins from cobalamins which then bind to R proteins *(or haptocorrins)* of salivary origin. In the duodenum R proteins are degradated by pancreatic proteases which allows the binding of cobalamins to the intrinsic factor of gastric origin. The ileal receptor of the vitamin B_{12} / IF complex is the cubulin

TC I and TC III are abundant in the secondary granules of neutrophils

LDH AND ANEMIA

Modified from Emerson P.M., Wilkinson J.H., Br J Haematol 1966; 12: 678-688.

MEGALOBLASTIC ANEMIA WITH DNA SYNTHESIS ANOMALY

Nuclear maturation slowdown Optimal hemoglobin concentration reached before the usual 4 mitosis Reduction of the number of mitosis Increased size of the cells Bone marrow : megaloblasts Peripheral blood : megalocytes ("macroovalocytes") Intramedullary and peripheral hemolysis Demonstration of the usual 4 mitosis

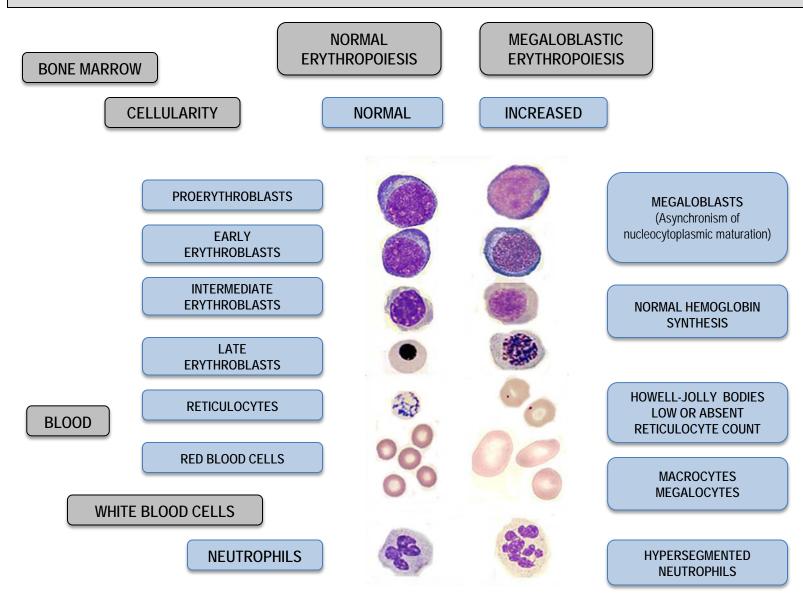
Bone marrow with megaloblastic hyperplasia by erythroid stem cell recruitment through erythropoietin

SCHILLING TEST

Saturation of transcobalamins by IM injection of 1 mg vitamin $B_{\rm 12}$

Oral administration of 0.5 -1 μ g radiolabeled vitamin B₁₂

48 hours urine collection and measure of excreted radioactivity

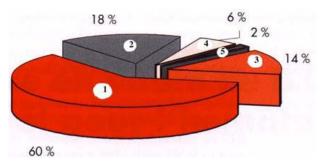

In case of pathological result repeat the test with concomitant oral intrinsic factor administration (IF)

	Urinary excretion of radiolabeled vitamin B_{12} (%)			
	B ₁₂ alone	B ₁₂ + IF		
Normal subject	18 (9 – 36)	-		
Pernicious anemia	0.5 (0 – 1.2)	13 (6 – 31)		
Malabsorption (gluten enteropathy)	3.6 (0 – 19)	3.3 (0 – 10)		

Results obtained with 0.5 μ g of radiolabeled oral vitamin B₁₂

Modified from Lee G.R., Wintrobe's Clinical Hematology, 9th edition 1993; Lea & Febiger : p. 776.

NORMAL AND MEGALOBLASTIC ERYTHROPOIESIS


Modified from Chandrasoma P., Taylor C.R. : Concise Pathology, 3th edition 1998; Appleton & Lange.

CAUSES OF VITAMIN B₁₂ DEFICIENCY

MALABSORPTION

- Gastric origin : Achlorhydria Pernicious anemia Partial or total gastrectomy Congenital intrinsic factor deficiency
- Intestinal origin : Resection of terminal ileum Crohn's disease Gluten induced enteropathy Fish tapeworm (Diphyllobothrium latum) infestation

Dietary deficiency

- 1. Non dissociation of Vitamin B_{12} from the transport proteins or insufficient digestion of dietary vitamins B_{12}
- 2. Pernicious anemia
- 3. Undefined
- 4. Malabsorption
- 5. Poor diet

Distribution of causes of vitamin B₁₂ deficiency in adults

PERNICIOUS ANEMIA

PATHOPHYSIOLOGY

Atrophic gastritis of immune origin with lack of intrinsic factor

HEMATOLOGY

Macrocytic megaloblastic anemia Neutropenia with hypersegmented neutrophils Thrombocytopenia

CLINICAL ASPECTS

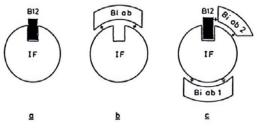
Atrophic glossitis (Hunter's glossitis), dyspepsia Combined degeneration of the dorsal (posterior) and lateral spinal columns (paresthesias, pain, gait disturbance, pallesthesia diminution, pyramidal syndrome) → Methionine synthesis defect ? Psychiatric symptoms (irritability, depression) Melanic skin hyperpigmentation (uncommon !) Sterility, asthenospermia

PERNICIOUS ANEMIA (2) LABORATORY

LABORATORY TESTS

- A Methylmalonic acid (plasma). Normal range : < 0.28 µmol / L¹
- → Homocysteine (plasma). Normal range : 5 15 µmol / L¹

Solution Section Sec

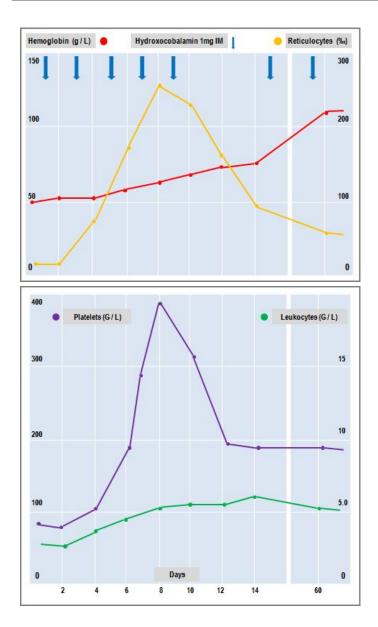

SCHILLING TEST

Pathological but normalized after simultaneous administration of vitamin B₁₂ + intrinsic factor

Antiparietal cells
(± 90%)1Anti-intrinsic
factor (± 50%)Specificity-+Sensitivity+-

ANTIBODY SCREENING

¹ Antiparietal cells antibodies can be found in normal individuals (5-20%) and in myxedema (~ 30%)


Schematic presentation of intrinsic factor (IF), vitamin B₁₂
and of antibody directed against intrinsic factor :
a) Normal binding between IF and vitamin B₁₂
b) Blocking antibody

c) Coupling antibody

Modified from Lee G.R. : Wintrobe's Clinical Hematology, 9th edition 1993; Lea & Febinger : p. 753.

PERNICIOUS ANEMIA (3) RESPONSE TO HYDROXOCOBALAMIN SUBSTITUTION

After systemic application of Hydroxocobalamin

 Bone marrow becomes normoblastic within 48 hours Persistance of giant metamyelocytes up to 12 days (even longer)

Because of duration of hematopoïetic lineages maturation :

- 6th 10th day, reticulocytes increase («reticulocyte peak»), normalisation of platelet and leucocyte counts if previously lowered
- · Normalisation of hemoglobin level after 2 months only

Modified from Hoffbrand A.V., Moss P.H.A., Pettit J.E. : Essential Haematology 5th edition 2006; Blackwell Publishing : p 55.

CAUSES OF FOLATE DEFICIENCY

DIETARY DEFICIENCY

MALABSORPTION

Gluten induced enteropathy Wide jejunal resection Crohn's disease

INCREASED DEMAND

- Physiological : Pregnancy Lactation Prematurity Growth
- Pathological : Hemolytic anemia Cancer, myeloid or lymphoid neoplasm Inflammatory process

DRUGS

Anticonvulsants (e.g. : Diphenylhydantoin) Barbiturates Salazopyrin

ALCOHOLISM

WORKUP OF MACROCYTIC ANEMIA WITH OR WITHOUT NEUTROPENIA AND / OR THROMBOCYTOPENIA

1. RETICULOCYTE COUNT

Regenerative anemia ?

2. FOLATES AND VITAMIN B_{12} SERUM LEVELS

DNA synthesis disorder ?

- 3. TESTS OF THYROID FUNCTION Hypothyroidism ?
- 4. ALCOHOLISM INVESTIGATION

5. IF 1-4 NEGATIVE \rightarrow BONE MARROW CYTOLOGY AND HISTOLOGY

Myelodysplastic syndrome ? Bone marrow aplasia ?

NORMOCYTIC NORMOCHROMIC REGENERATIVE ANEMIA

MCV :	normal	81 – 99 fL
MCH :	normal	27 – 34 pg
MCHC :	normal	310 – 360 g / L
Reticulocyte count :		> 120 G / L

ACUTE BLOOD LOSS

BLOOD LOSS	% BLOOD VOLUME	SYMPTOMS
0.5 – 1.0 L	10 – 20	Possible vaso-vagal reaction
1.0 – 1.5 L	20 – 30	Tachycardia / hypotension
1.5 – 2.0 L	30 – 40	Reversible hypovolemic shock
> 2.0 L	> 40	Irreversible hypovolemic shock

ACUTE BLOOD LOSS (2)

Evolution in 2 phases :

- 1. Hypovolemia (1-3 days)
- 2. Volemia normalization

Anemia is only found during phase of volemia correction

Anemia normocytic normochromic as far as iron stores not exhausted

1 L of blood = 500 mg of iron

Increase of the reticulocyte count from the 4th day, possibly neutrophilic leukocytosis with left shift, myelocytosis (presence of some peripheral blood myelocytes and metamyelocytes), thrombocytosis

Treatment :

Phase 1 : Packed red cells <u>and</u> plasma Phase 2 : Packed red cells

HEMOLYTIC ANEMIA BASIC DATA

HISTORY

Ethnic origin, family history Stay in a foreign country Drug treatment Prior transfusion(s), pregnancy(-ies)

CLINICAL FEATURES

Jaundice Splenomegaly

HEMOGRAM

Normocytic normochromic anemia Particular situations : Absence of anemia in case of compensated hemolysis Microcytic anemia : thalassemia, hemoglobinopathies E, C, PNH¹ Macrocytic anemia : high reticulocyte count, associated folate deficiency Regeneration signs Polychromasia Increased reticulocyte count Presence of peripheral blood erythroblasts Red blood cell morphology Spherocytes, schistocytes, sickle cells, target cells

HEMOLYTIC ANEMIA BASIC DATA (2)

BLOOD CHEMISTRY

➢ unconjugated bilirubin

Ø LDH

☆ haptoglobin

Urobilinuria

ISOTOPIC TESTS (⁵¹Cr): cf. next page

EXTRAVASCULAR HEMOLYSIS

"Sensitization" of circulating RBC and destruction by the monocyte / macrophage system (spleen, liver, lymph nodes, bone marrow)

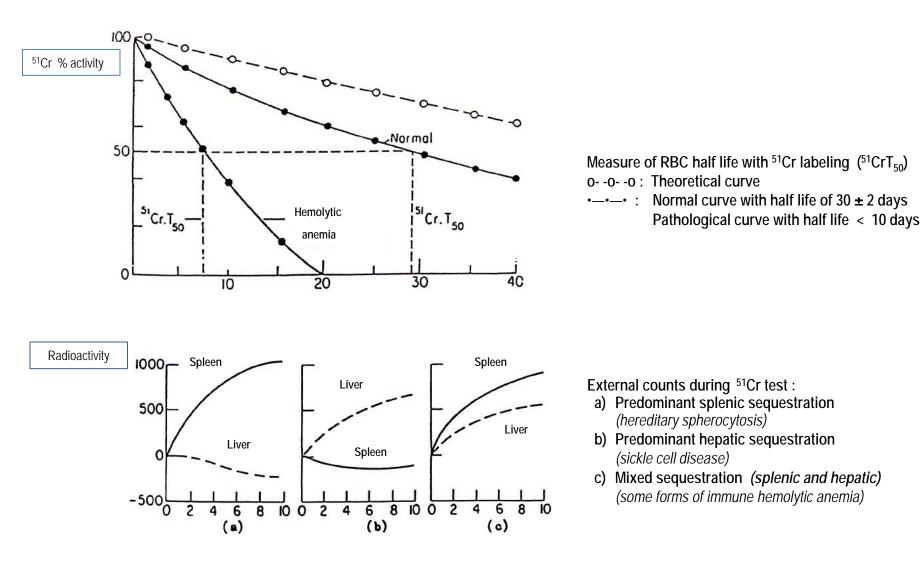
INTRAVASCULAR HEMOLYSIS

P plasmatic Hb (> 50 mg / L)

 Hemoglobinuria

 Hemosiderinuria

HEMOLYSIS DUE TO CORPUSCULAR ANOMALY


Hereditary (except PNH¹) Homozygous or heterozygous

HEMOLYSIS DUE TO EXTRACORPUSCULAR ANOMALY

Acquired

¹ PNH : Paroxysmal Nocturnal Hemoglobinuria

MEASURE OF RED BLOOD CELLS HALF LIFE ⁵¹ Cr LABELLING

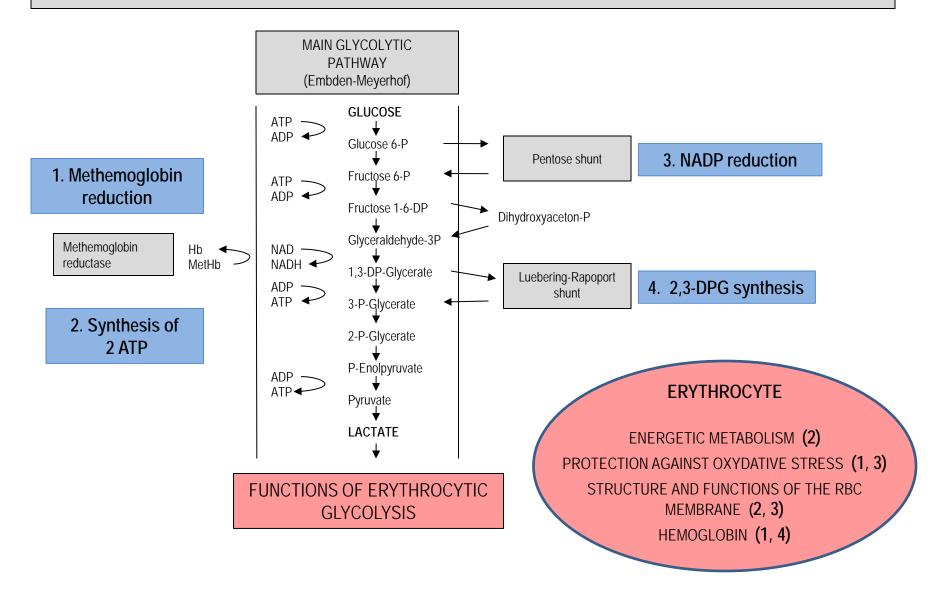
HEMOLYTIC ANEMIA DUE TO CORPUSCULAR DEFECT

ENZYMOPATHY

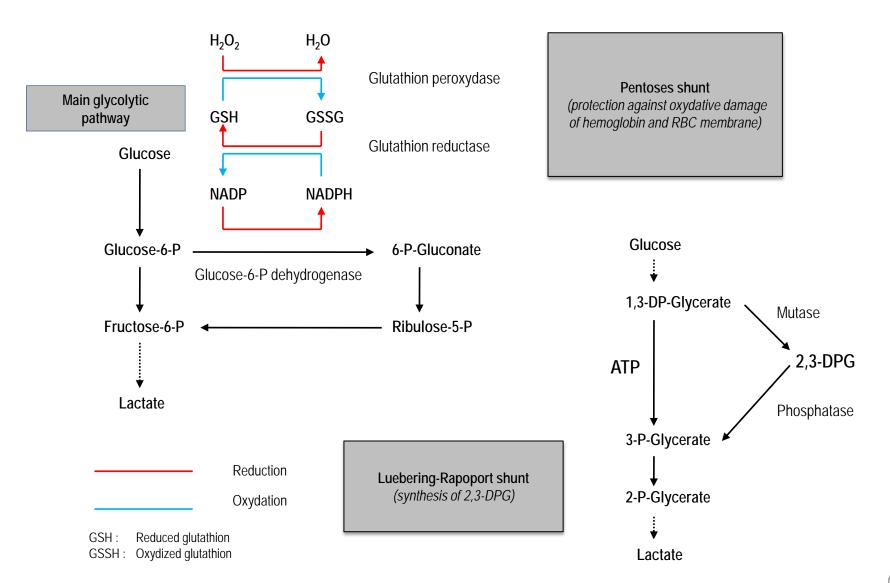
RBC MEMBRANE ANOMALY

HEMOGLOBINOPATHY

Diminution (or absence) of globin chains synthesis


THALASSEMIAS (cf. p. 45-47)

Substitution (or deletion) of a residue on a globin chain


SICKLE CELL DISEASE HEMOGLOBINS E, C UNSTABLE HEMOGLOBINS HEMOGLOBINS M¹ HEMOGLOBINS WITH INCREASED OR REDUCED OXYGEN AFFINITY

¹ M : Methemoglobin

GLYCOLYSIS OF RED BLOOD CELLS

GLYCOLYSIS OF RED BLOOD CELLS (2)

RED BLOOD CELL ENZYMOPATHY

FREQUENT

PENTOSE SHUNT

Glucose-6-phosphate dehydrogenase (G-6-PD) deficiency (> 400 . 10⁶ cases, > 300 variants)

EMBDEN-MEYERHOF PATHWAY

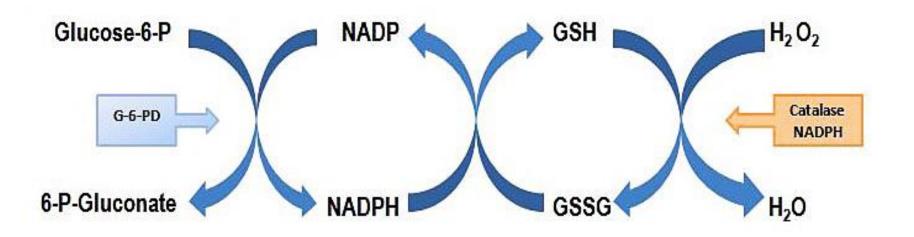
Pyruvate kinase deficiency (< 1'000 cases) Glucose phosphate isomerase deficiency (< 200 cases)

UNCOMMON

EMBDEN-MEYERHOF PATHWAY

Deficiency in : Hexokinase, phosphofructokinase, aldolase, triose phosphate isomerase, diphosphoglycerate mutase, phosphoglycerate kinase (< 20 cases)

GLUCOSE-6-PHOSPHATE DEHYDROGENASE DEFICIENCY (G-6-PD)


Variants	Position of residue				
	68	126	188	227	323
B (+)	Valine	Asparagine	Serine	Arginine	Leucine
A (+)		Aspartic acid			
A (-)	Methionine				
A (-)				Leucine	
A (-)					Proline
Mediterranean			Phenylalanine		

Amino acid substitution in some variants of G-6-PD

B (+) : A (+) : A (-) : Mediterranean [formerly B (-)] : X-linked recessive deficiency Hemolysis : Physiological form, predominant Physiological form, 30% African colored 11% African American : activity 5-15% of normal Activity < 1%

Chronic (uncommon) Usually induced by : drugs, fever, fava beans (Favism)

GLUCOSE-6-PHOSPHATE DEHYDROGENASE DEFICIENCY (G-6-PD) (2) PATHOPHYSIOLOGY

Reduced glutathione (GSH) protects the -SH groups of the RBC membrane and hemoglobin

During hemolytic crisis, presence of *Heinz bodies* in the RBC after staining with brilliant cresyl blue = denatured hemoglobin *(oxidized)*

Decrease in hemolysis during reticulocyte response (young RBC are relatively enzyme rich)

GLUCOSE-6-PHOSPHATE DEHYDROGENASE DEFICIENCY (G-6-PD) (3)

Main substances able to induce hemolytic crisis in G-6-PD deficiency¹

ANTIMALARIAL DRUGS

Primaquine, pamaquine, pentaquine, quinine

SULFONAMIDES

Sulfacetamide, sulfamethoxazole, sulfanilamide, sulfapyrine, sulfoxone, thiazosulfone

ANTIBIOTICS AND BACTERIOSTATIC AGENTS

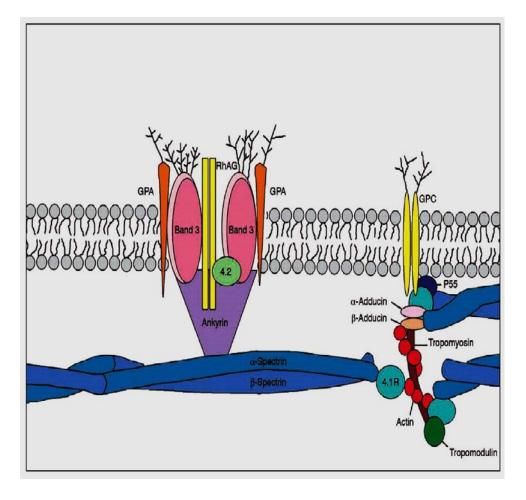
Para-aminosalicylic acid, nalidixic acid, nitrofurantoin, chloramphenicol, methylene blue, niridazole

ANALGESICS

Acetanilide, amidopyrine, paracetamol

OTHERS

Toluidin blue, naphtalene, phenylhydrazine, probenecid, trinitrotoluen


FOOD

Beans (fava beans...)

¹ Because of disease polymorphism, these substances are not necessarily dangerous for all G-6-PD deficient subjects. Nevertheless they should be avoided because of the unpredictable tolerance of each subject

Modified from Wajcman H., Lantz B., Girot R. : Les maladies du globule rouge 1992; Médecine-Sciences Flammarion : p. 262.

STRUCTURE OF RED BLOOD CELL MEMBRANE

Composite structure with double layer lipidic membrane anchored to a two-dimensional elastic network **(cytoskeleton)** with tethering sites (transmembrane proteins)

Vertical fixation involves the cytoplasmic domain of **Band 3** protein, **Ankyrin**, **Protein 4.2** and **Spectrin**

Horizontal interaction involves **Spectrin** (α - and β -chains), with **Protein 4.1R**, **Actin**, **Tropomodulin**, **Tropomyosin** and **Adducins**

Protein 4.1R interacts also with the transmembrane **Glycophorin C** (GPC) and protein P55 in a triangular mode

GPA :	Glycophorin A
RhAG :	Rhesus Antigen

ANOMALY OF RED BLOOD CELL MEMBRANE

HEREDITARY SPHEROCYTOSIS

AUTOSOMAL DOMINANT (cf. next pages) AUTOSOMAL RECESSIVE (frequent in Japan; protein 4.2 mutations) AUTOSOMAL DOMINANT WITH ACANTHOCYTOSIS

HEREDITARY ELLIPTOCYTOSIS

Anomaly of spectrin, protein 4.1

HEREDITARY STOMATOCYTOSIS

ABETALIPOPROTEINEMIA WITH ACANTHOCYTOSIS¹

¹ Not to be mistaken for acanthocytosis secondary to severe liver disorder

HEREDITARY SPHEROCYTOSIS AUTOSOMAL DOMINANT

PATHOPHYSIOLOGY

Anomalies of spectrin, ankyrin, band 3, which may be combined <u>Spherocytes</u> with loss of plasticity and splenic trapping *(sequestration)*

 Volume usually normal

 Diameter ↔

 Surface ↔

 Increase of membrane permeability for Na⁺ (♂ glycolytic activity)

CLINICAL FEATURES

Chronic hemolytic anemia

- A if : pregnancy exercise intercurrent viral infection (EBV, etc)
- Splenomegaly Negative Coombs test ☆ osmotic resistance ↗ autohemolysis, corrected by glucose Pure splenic RBC destruction Aplastic crises (Parvovirus B19) Frequent cholelithiasis

TREATMENT

Splenectomy (severe forms only)

AUTOSOMAL DOMINANT HEREDITARY SPHEROCYTOSIS (2)

Clinical classification of hereditary spherocytosis (HS)

	Trait	Light HS	Moderate HS	Moderate to severe HS ¹	Severe HS ¹
Hb (g / L)	Normal	110 – 150	80 – 120	60 - 80	< 60
Reticulocyte count (‰)	1 – 30	30 – 80	≥ 80	≥ 100	≥ 100
Spectrin content ² (% of normal)	100	80 – 100	50 - 80	40 – 80	20 – 50
Spherocytes	-	+	+	+	+ with poikilocytosis
Osmotic resistance	normal	normal / 🖄	ልወ		ልወ
Autohemolysis	slightly 🖉	মম	মম	মম	৯৯৯
Splenectomy (indication)	-	-	-/+	+	+

¹ Values in absence of transfusion. Patients with severe HS are transfusion dependent

² Reference values (\pm SD) : 245 \pm 27 x 10⁵ spectrin dimers / RBC

In most patients ankyrin content is reduced in parallel. A low number of patients present with absence of band 3 or protein 4.2; in this case HS is light to moderate with normal amounts of spectrin and ankyrin

Modified from Eber S.W., Armbrust R., Schröter W., J Pediatr 1990; 117 : 409-416, & Pekrun A., Eber S.W., Kuhlmey A., Schröter W., Ann Hematol 1993; 67 : 89-93.

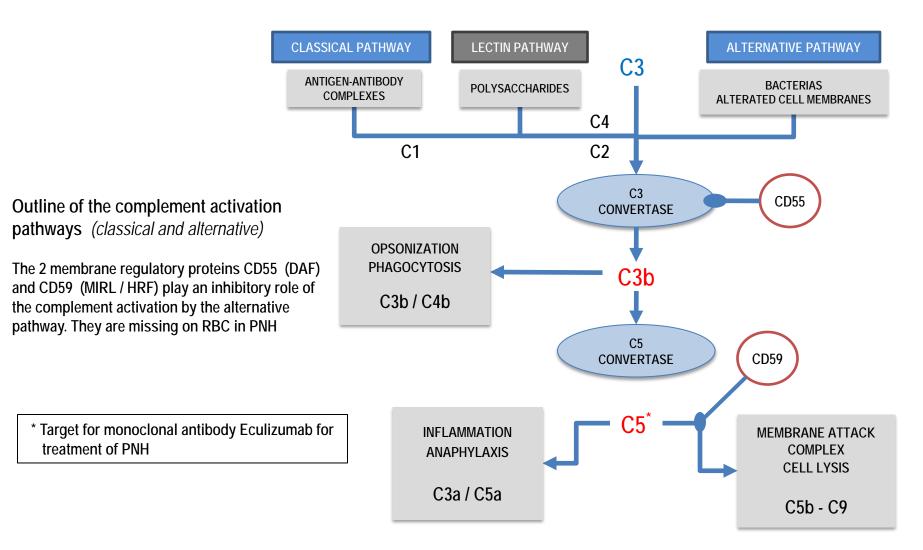
PAROXYSMAL NOCTURNAL HEMOGLOBINURIA (PNH) PATHOPHYSIOLOGY

Mutation of a gene on chromosome X coding for the glycosyl phosphatidyl inositols (membrane anchoring proteins) named PIGA (= \underline{P} hosphatidyl Inositol Glycan complementation class \underline{A}) with deficiency of membrane anchor proteins

3 types of RBC :

PNH I :normalPNH II :intermediatePNH III :abnormal

RBC lysis by complement due to membrane protein anomalies like :


CD55 : Decay Accelerating Factor (DAF) CD59 : Membrane Inhibitor of Reactive Lysis (MIRL) / Homologous Restriction Factor (HRF)

Clonal anomaly of hematopoietic stem cell

Lysis affects also neutrophils and platelets which also present functional anomalies

Relation with aplastic anemia

PAROXYSMAL NOCTURNAL HEMOGLOBINURIA (PNH) (2)

PAROXYSMAL NOCTURNAL HEMOGLOBINURIA (PNH) (3)

CLINICAL FEATURES

	Hemolytic anemia with h	nemoglobinuria (nocturnal)
		luring sleep ? (controversial) g on the size of the PNH III clone. Promoted by infections, surgery, violent exercise, alcohol,
	Splenomegaly	
		estations (Budd-Chiari syndrome : thrombosis of hepatic veins)
	Median survival :	14.6 years (Socié G. et al., Lancet 1996; 348 : 573-577.)
	Causes of death :	Thromboses Hemorrhage
	Possible evolution :	Aplastic anemia Acute leukemia
DIAGNOSI	S	
	Immunophenotyping :	Deficiency(-ies) of CD55 (DAF), CD59 (MIRL / HRF), CD58 (LFA-3) on <i>RBC</i> ; CD55, CD59, CD58, CD16, CD24 and CD66b on <i>neutrophils</i> : markers anchored on the cellular membrane by the way of <u>G</u> lycosyl <u>P</u> hosphatidylinositols (<i>GPI-linked</i>) FLAER test (Sutherland D.R. et al., Cytometry Part B (Clinical Cytometry) 2007; 72B : 167-177 and Am J Clin Pathol 2009; 132 : 564-572.)

Ham-Dacie test (acid test¹) Sucrose test¹

TREATMENT

Transfusion **Eculizumab** (monoclonal antibody anti-C5) **Iron substitution if deficiency** (may increase hemolysis by stimulation of PNH III clone) Allogeneic stem cell transplantation (ev. bone marrow) in severe cases

¹ These tests are obsolete and should be replaced by immunophenotyping

ANOMALY OF HEMOGLOBIN HEMOGLOBINOPATHY

Approximately 1'000 mutants (2008) Frequent mutants : S, E, C

SICKLE CELL DISEASE (Hb S) : cf. following pages

HEMOGLOBIN E

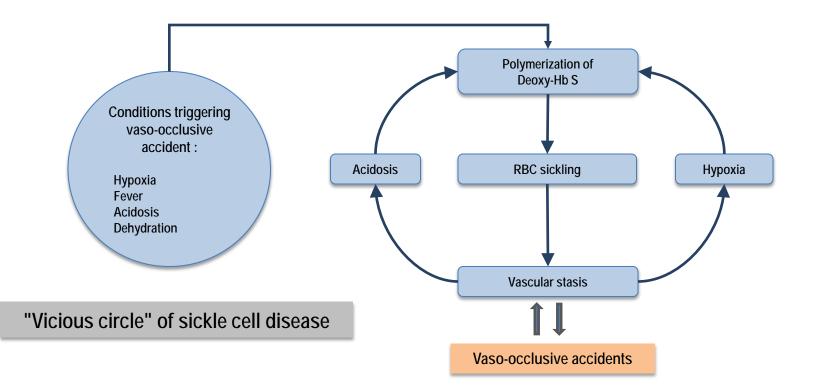
 β 26 Glu \rightarrow Lys South-East Asia Microcytic anemia with target cells

HEMOGLOBIN C

 β 6 Glu \rightarrow Lys Africa Microcytic anemia with target cells

UNSTABLE HEMOGLOBINS

Hb Zurich (β 63 His \rightarrow Arg) Hemolysis with Heinz bodies after intake of oxidant drugs *(sulfonamides)*


HEMOGLOBINS M

Cyanosis due to methemoglobinemia

HEMOGLOBINS WITH INCREASED OR REDUCED OXYGEN AFFINITY

SICKLE CELL DISEASE PATHOPHYSIOLOGY

Autosomal recessive transmission Hemoglobin S : β 6 Glu \rightarrow Val Polymerization in deoxygenated form : shape alteration of RBC to *drepanocytes* ("sickling") with loss of plasticity

SICKLE CELL DISEASE (2)

Africa, Arabia, India, Mediterranean region, African Americans

CLINICAL FEATURES

HETEROZYGOUS VARIETY (A - S)

Approximately 30% of Hemoglobin S Asymptomatic, occasionally kidneys may be affected with hyposthenuria, hematuria (microinfarctions of medullary zone) Avoid severe hypoxemia (apnea diving, general anesthesia) Protection against malaria

HOMOZYGOUS VARIETY (S - S)

Symptomatic since the age of 6 months : Hb F \rightarrow Hb S 5 typical clinical manifestations :

- 1. Vaso-occlusive crises
- 2. Splenic sequestration crises (children < 4 years)
- 3. Aplastic crises
- 4. Hemolytic crises
- 5. Infectious complications

DIAGNOSIS

Hemoglobin electrophoresis

Screening by Emmel test or in vitro RBC sickling test (sodium metabisulfite as reducing agent)

TREATMENT

Rest / hydration / analgesia / exchange transfusion(s) Hydroxyurea (increased synthesis of Hb F)

HEMOLYTIC ANEMIA DUE TO EXTRACORPUSCULAR DEFECT

IMMUNOLOGICAL

AUTOIMMUNE (AIHA)

Warm autoantibodies : IgG, IgA ± C3, C3 alone

Idiopathic AIHA (20%) Secondary AIHA (80%) Lymphoid neoplasm (50%) Infectious disease (30%) Lupus erythematosus, other systemic autoimmune disease (15%) Cancer (ovary, stomach), drugs, others (5%) Cold autoantibodies (cold agglutinins) : IgM + C3 Polyclonal (idiopathic, EBV, CMV, Mycoplasma pneumoniae)

Monoclonal (lymphoid neoplasm, cold agglutinins disease)

ALLOIMMUNE

Transfusion accident (ABO or Rhesus incompatibility) Neonatal hemolytic anemia Organ or bone marrow graft with ABO incompatibility

IMMUNOALLERGIC

Drugs (penicillin and derivatives)

TOXIC INFECTIOUS MECHANICAL HYPERSPLENISM

All causes of splenomegaly, e.g. hepatic cirrhosis with portal hypertension. Presence of associated other cytopenias HEMOPHAGOCYTOSIS

Viral, bacterial, fungal and parasitic infections in immunodeficient patients

TOXIC HEMOLYTIC ANEMIA OXIDATIVE ORIGIN

PATHOPHYSIOLOGY

Hemoglobin oxidation to methemoglobin, then transformation to *hemichromes* which precipitate to form *Heinz bodies*. Oxidation of RBC membrane components

RESPONSIBLE SUBSTANCES

Industrial chemicals (nitrites, chlorates, naphtalene, aniline derivatives) Drugs

MAIN DRUGS ABLE TO INDUCE OXYDATIVE HEMOLYTIC CRISIS

ANTIMALARIALS	Pamaquine, pentaquine, primaquine, quinine
SULFONAMIDES	Sulfacetamide, sulfamethoxazole, sulfanilamide, sulfapyridine, sulfoxone, thiazosulfone, etc.
ANTIBIOTICS AND BACTERIOSTATIC AGENTS	Para-aminosalicylic acid, nalidixic acid, nitrofurantoin, chloramphenicol, etc.
ANTIPARASITIC DRUGS	Niridazole
ANALGESICS	Acetanilide, amidopyrine, paracetamol, phenacetin, etc.
OTHERS	Chloramine, formaldehyde, chlorates, nitrites, methylene blue, toluidine blue, naphtalene, phenylhydrazine, probenecid, trinitrotoluene

TOXIC HEMOLYTIC ANEMIA (2) MULTIFACTORIAL ORIGIN

LEAD POISONING

Pathophysiology

Heme synthesis defect *(inhibition of porphyrin metabolism enzymes)* Inhibition of pyrimidine-5-nucleotidase Inhibition of membrane pumps activity

Clinical features

Acute abdominal pain Neurological signs (central and peripheral) Articular, renal, hepatic manifestations, arterial hypertension RBC morphology Coarse basophilic stippling

COPPER POISONING

Pathophysiology Enzymatic inhibition (G-6-PD in particular) Clinical features Vomiting, abdominal pain Hepatic cytolysis, renal failure Etiology Vine treatment Wilson disease Contamination of dialysis fluids

VENOMS (spiders, snakes, scorpions)

HEMOLYTIC ANEMIA OF INFECTIOUS ORIGIN

DIRECT ACTION ON RED BLOOD CELL

PARASITES

MALARIA

Plasmodium falciparum, vivax, malariae, ovale

Protection by : Enzymopathy Hemoglobinopathy Membrane anomaly Blood group Duffy (-) : *PI. vivax*

BABESIOSIS

BACTERIAS

CLOSTRIDIUM PERFRINGENS (septic abortion)

BARTONELLOSIS (Oroya fever)

OTHER PATHOPHYSIOLOGICAL MECHANISM

Immunological (cold agglutinins due to Mycoplasma pneumoniae, EBV infection) Microangiopathic hemolysis (HIV)

HEMOLYTIC ANEMIA DUE TO MECHANIC RBC FRAGMENTATION SCHISTOCYTES

CARDIOVASCULAR DISORDERS

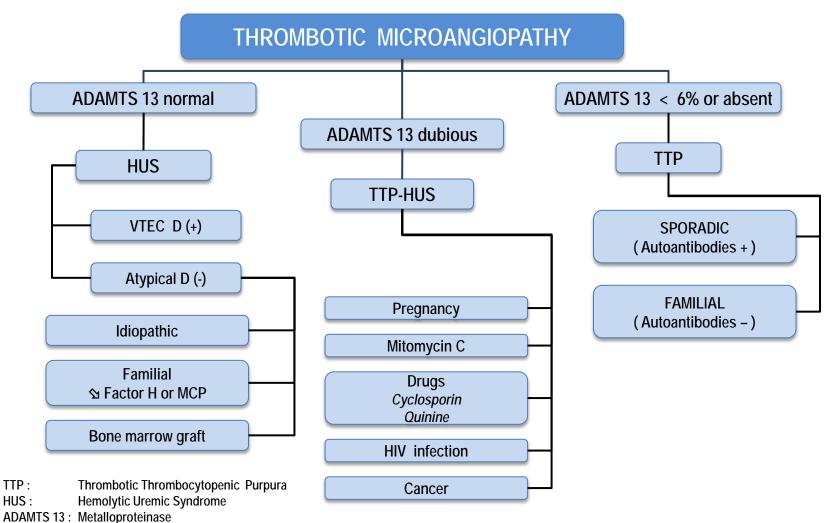
Valvular heart disease, operated or not Anomalies of great blood vessels (aortic coarctation) Extracorporeal circulation

MICROANGIOPATHY

THROMBOTIC THROMBOCYTOPENIC PURPURA (TTP1) (Moschcowitz syndrome)

ADAMTS 13 deficiency (metalloprotease cleaving high molecular weight von Willebrand factor multimers)

Clinical features :	Fever
	Hemolytic anemia
	Thrombocytopenia
	Neurological symptoms
	Renal failure
Treatment :	Plasma exchanges (3-4 L / 24 h)


HEMOLYTIC UREMIC SYNDROME (HUS²)

Sporadic form	(D* -HUS) : ± 10% pediatric cases	
Epidemic form	(D* +HUS): Verotoxin associated (Escherichia coli O15) adults ± 15%	7 : H7) : children ± 85%,
Clinical features :	Predominant renal failure	
	Gastroenteritis with bloody diarrheas (D+ HUS)	
Treatment :	Dialysis	* Diarrheas

DISSEMINATED INTRAVASCULAR COAGULATION TRAUMATIC ORIGIN (march hemoglobinuria)

¹TTP : <u>Thrombotic Thrombocytopenic Purpura</u> ²HUS : <u>Hemolytic Uremic Syndrome</u>

HEMOLYTIC ANEMIA DUE TO MECHANIC RBC FRAGMENTATION (2) (SCHISTOCYTES)

VTEC :

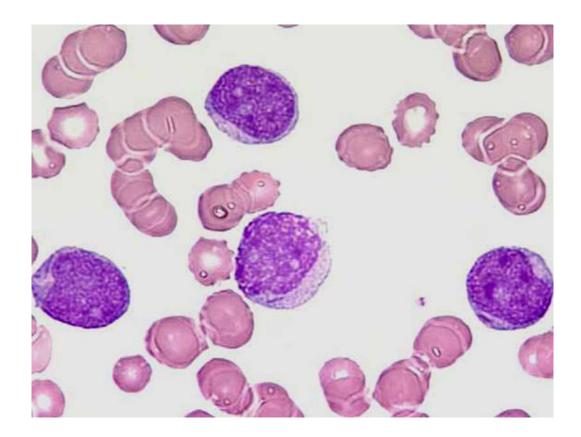
D :

Η:

MCP:

Verotoxin-E. Coli (0157 : H7)

Membrane Cofactor Protein


Diarrheas

Complement factor

Modified from Liu J., J Thromb Thrombolysis 2001; 11 : 261-272, quoted in Hoffman et al. : Hematology, Basic Principles and Practice 4th edition 2005; Elsevier : p. 2288.

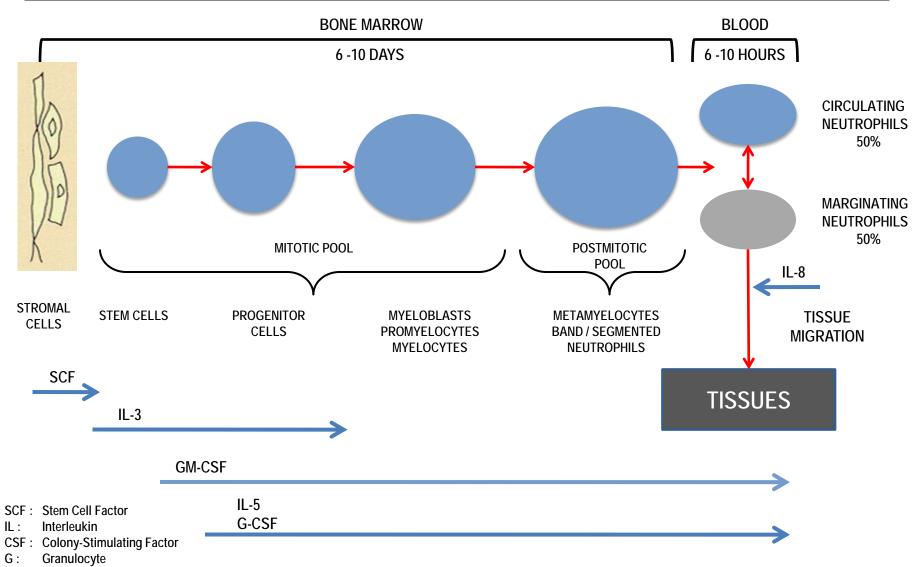
Part 2

WHITE BLOOD CELL PATHOLOGY

DIFFERENTIAL LEUKOCYTE COUNT

LEUKOCYTES : 4.0 – 10.0 G / L		
	RELATIVE VALUES (%)	ABSOLUTE VALUES (G / L)
NEUTROPHILS	40 – 75	1.8 – 7.5
EOSINOPHILS	1 – 5	0.05 – 0.3
BASOPHILS	0 – 1	0.01 – 0.05
MONOCYTES	2 – 8	0.2 – 0.8
LYMPHOCYTES	25 – 40	1.5 – 4.0

LCH-CHUV, 2012


Left shift :

Band neutrophils (non segmented neutrophils) > 1.0 G/L if leukocyte count > 4 G/L > 25% if leukocyte count ≤ 4 G/L

Important to distinguish between relative and absolute counts :

e.g. :	chronic lymphocytic leukemia	Leukocyte count :	100 G / L
		Neutrophils :	2%
		Lymphocytes :	9 8%
	\rightarrow	Neutropenia relative but non absolute	
	\rightarrow	Lymphocytosis relative and absolute	

NEUTROPHIL GRANULOCYTES KINETICS

M: Monocyte

ETIOLOGY OF NEUTROPHILIC LEUKOCYTOSIS (NEUTROPHILIA) (NEUTROPHIL COUNT > 7.5 G / L)

PHYSIOLOGICAL, USUALLY MODERATE

Neonate Violent exercise Menstruation Pregnancy

PATHOLOGICAL

Inflammatory process

Bacterial infection localized (abscess) or generalized (septicemia) Cancer Inflammatory arthritis

Tissue necrosis (myocardial infarction, pancreatitis, etc.)

Regenerative phase of acute blood loss or hemolytic anemia

Tobacco smoking, stress

Drugs (steroids, G-CSF, GM-CSF, lithium)

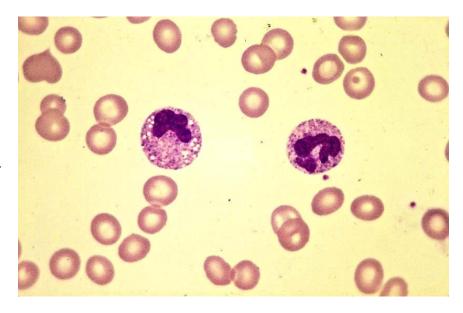
Myeloproliferative neoplasms

TOXIC CHANGES OF NEUTROPHILS

Leukocytosis (leukocyte count > 10.0 G / L)

Neutrophilia (neutrophil count > 7.5 G / L)

Neutrophil left shift : band neutrophil count > 1.0 G / L (or > 25% if leukocyte count \leq 4.0 G / L)


Coarse granules of neutrophils, toxic granules

Doehle bodies (basophilic cytoplasmic inclusions)

Cytoplasmic vacuoles

Myelocytosis (usually moderate)

Toxic changes are seen in inflammatory process (acute or chronic bacterial infection, cancer, inflammatory arthritis) and tissue necrosis Possible exceptions : neutropenia of salmonellosis, lymphocytosis of brucellosis and pertussis

MYELOCYTOSIS AND ERYTHROBLASTOSIS

DEFINITION

Presence in the peripheral blood of immature cells of neutrophilic lineage (metamyelocytes, myelocytes, promyelocytes) with or without erythroblasts

	Erythroblasts	Myelocytosis
Inflammatory process (bacterial infection, cancer, etc. ¹)	-	+
Rupture of bone marrow-blood barrier (skeletal cancer metastasis with bone marrow infiltration)	+	+
Chronic myelogenous leukemia	- / +	+++
Primary myelofibrosis	+ (+)	+ (+)
Regeneration phase after acute blood loss or hemolysis	+ to +++	+
Recovery from agranulocytosis, G-CSF, GM-CSF	-	+ (+)

¹ An important leukocytosis associated with toxic changes of neutrophils and myelocytosis is called <u>leukemoid reaction</u>

NEUTROPENIA

DEFINITIONS

RELATIVE NEUTROPENIA :	< 40%
ABSOLUTE NEUTROPENIA :	< 1.8 G / L
AGRANULOCYTOSIS :	< 0.5 G / L (major risk of infection)

CLASSIFICATION OF ABSOLUTE NEUTROPENIAS

PSEUDONEUTROPENIA

Excess neutrophil margination (fasting patient, correction after meal) Splenic sequestration ("pooling"): Hypersplenism

TRUE NEUTROPENIA

Reduced production and / or excessive destruction / demand

TRUE NEUTROPENIA IMPAIRED PRODUCTION

QUANTITATIVE

Bone marrow aplasia

Bone marrow infiltration

Bone marrow fibrosis

T-cell large granular lymphocytic leukemia (T-LGLL)

Cyclic neutropenia

Chronic ethnic or idiopathic neutropenia

QUALITITIVE

Vitamin B₁₂ and / or folate deficiency Myelodysplastic syndrome

TRUE NEUTROPENIA (2) REDUCED PRODUCTION AND / OR EXCESSIVE DESTRUCTION

INFECTIOUS NEUTROPENIA¹

Viral (influenza, hepatitis, varicella, measles, rubeola, EBV, HIV) Bacterial (salmonellosis, brucellosis, sepsis with Gram negative germs) Parasitic (malaria)

IMMUNE NEUTROPENIA

Alloimmune (neonatal neutropenia)

Autoimmune (disseminated lupus erythematosus, rheumatoid arthritis, drugs)

Immunoallergic

Drugs : Mianserin (antidepressant), sulfasalazine, phenylbutazone (antiinflammatory agents), cotrimoxazole (antiinfective), metamizole (analgesic), carbamazepine (anticonvulsant), carbimazole (antithyroid drug)

¹ Immune pathogenic mechanism possible

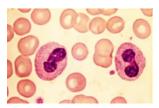
HEREDITARY MORPHOLOGICAL NEUTROPHIL ANOMALIES

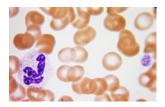
PELGER-HUET ANOMALY

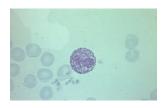
Neutrophils with bilobate nucleus (not to be mistaken for neutrophil left shift !) Autosomal dominant anomaly¹

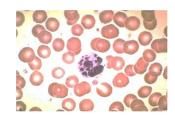
MAY-HEGGLIN ANOMALY

Basophilic cytoplasmic inclusions (RNA)² Moderate thrombocytopenia with giant platelets Autosomal dominant anomaly


ALDER-REILLY ANOMALY


Coarse purple granules in neutrophils, monocytes and lymphocytes Autosomal recessive anomaly


CHEDIAK-HIGASHI SYNDROME


Giant granules in neutrophils, eosinophils, monocytes and lymphocytes Neutropenia (infection) Thrombocytopenia (hemorrhage) Hepatosplenomegaly Autosomal recessive anomaly

¹ Acquired variety in myelodysplastic syndrome : "pelgeroid" nuclei = pseudo-Pelger ² Döhle bodies

EOSINOPHILS

FUNCTIONS

Positive chemotaxis for histamine *(secreted by mastocytes)* Immune complex phagocytosis Destruction of certain parasite larvae after prior antibody sensitization

EOSINOPHILIA (> 0.3 - 0.5 G / L)

Parasitosis (helminths) Allergy (allergic rhinitis, bronchial asthma) Drug (penicillins, cephalosporins, analgesics, phenothiazines, anticonvulsants...) Systemic inflammatory disease (polyarteritis nodosa) Cancer Adrenal insufficiency Hypereosinophilic syndrome Myeloid and lymphoid neoplasms Acute myeloid leukemia with inv(16) or t(16;16) Myeloid and lymphoid neoplasms with eosinophilia and anomalies of PDGFRA, PDGFRB or FGFR1 Chronic eosinophilic leukemia, NOS¹

BASOPHILS / MASTOCYTES

DEFINITION

Blood :	basophilic granulocytes
Tissues :	tissue basophils or mastocytes

FUNCTIONS

Surface receptors for IgE Fc fragment "Bridging" effect of several IgE molecules by the specific allergen with degranulation and release of histamine *(bronchospasm in asthma bronchiale)*, heparin and a chemotactic factor for eosinophils

BASOPHILIA (> 0.05 - 0.1 G / L)

Myeloproliferative neoplasm Allergy Hypothyroidism

MASTOCYTOSIS (cf. p. 136)

MONOCYTES / MACROPHAGES FUNCTIONS

Chemotaxis, phagocytosis, killing

Antigen presentation to lymphocytes with help of HLA class I (T CD8 +) or class II (T CD4 +, B) molecules

Secretion

Hydrolases (acid phosphatase) Lysozyme Complement fractions Tumor Necrosis Factor (TNF) Interleukin-1 (IL-1)

Brain :	Fever
Liver :	CRP
Neutrophils :	Activation
T lymphocytes :	GM-CSF, G-CSF, M-CSF, IL-2-7
NK lymphocytes :	Activation
Endothelial cells :	Proliferation, GM-CSF, M-CSF, IL-1, IL-5-7

Activation by y-Interferon, TNF and GM-CSF

- CRP : C-Reactive Protein
- IL : Interleukin
- CSF: Colony-Stimulating Factor
- G: Granulocyte
- M: Monocyte

MONOCYTES / MACROPHAGES (2)

ABSOLUTE MONOCYTOSIS (> 0.8 – 1.0 G / L)

REACTIVE

Infectious disease (tuberculosis, bacterial endocarditis, salmonellosis, brucellosis, malaria)

Recovery phase of bacterial infection

Recovery from agranulocytosis

Alcoholic hepatic disease

G-CSF or GM-CSF treatment

MALIGNANT

Chronic myelomonocytic leukemia

Acute myeloid leukemia with t(9;11), acute myelomonocytic leukemia, acute monocytic leukemia

MONOCYTOPENIA

Hairy cell leukemia

LYMPHOCYTES / LYMPHOID ORGANS

LYMPHOID ORGANS

Primary :Bone marrow (lymphoid stem cells : CFU-L, B-cell differentiation and maturation)Thymus (T-cell differentiation and maturation, thymic selection)

- Secondary : Lymph node
- (B and T) Spleen

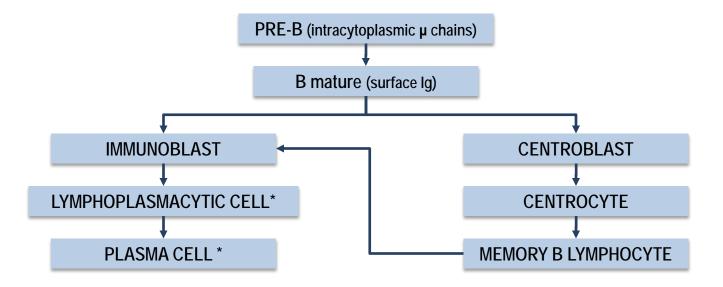
Digestive tract mucosa

Respiratory tract mucosa

PROPORTION OF B- AND T-LYMPHOCYTES IN BONE MARROW AND PERIPHERAL BLOOD

BONE MARROW	PERIPHERAL BLOOD			
B≥T	T > B			
CD8 > CD4	CD4 > CD8			

B-LYMPHOCYTES


BONE MARROW

PRECURSORS :	CFU-L CD34 +
PRO-B :	CD34 +, TdT +, HLA-DR +, CD19
EARLY PRE-B :	Rearrangement of immunoglobulins genes (heavy chains then light chains)
	CD20 expression
PRE-B :	Intracytoplasmic μ chains expression
IMMATURE B :	Surface IgM expression

MIGRATION TO BLOOD AND SECONDARY LYMPHOID ORGANS

→ MATURE B CELLS (surface IgM and IgD expression)

STEPS OF B-LYMPHOCYTE MATURATION IN SECONDARY LYMPHOID ORGANS

* Plasmatic immunoglobulin (lg) secretion

	IgG	lgA	IgM	lgD	lgE	
Molecular weight (x 1'000)	140	160 ¹ (400 ²)	900	170	190	¹ Serum IgA
Sedimentation constant	7 S	7 S ¹ (11 S ²)	19 S	6.5 S	8 S	² Secretory IgA
Placental transfer	Yes	No	No	No	No	
Serum level (g / L)	8 – 12	1.4 – 4.0	0.5 – 1.9	0.03 - 0.4	0.0001	Examples :
Half life (d)	21	7	5	2.8	2.3	IgG $\gamma_2 \kappa_2$ or $\gamma_2 \lambda_2$
Heavy chain	γ (1-4)	α (1-2)	μ	δ	3	IgM $(\mu_2 \kappa_2)_5$ or $(\mu_2 \lambda_2)_5$ (pentamers)
Light chain			κorλ			N /

T-LYMPHOCYTES / THYMIC SELECTION

MEDULLARY PRECURSORS (CFU-L) CD34 +

MIGRATION TO THYMUS

CORTICAL ZONE :

TCR expression (T-Cell Receptor), CD2, CD3

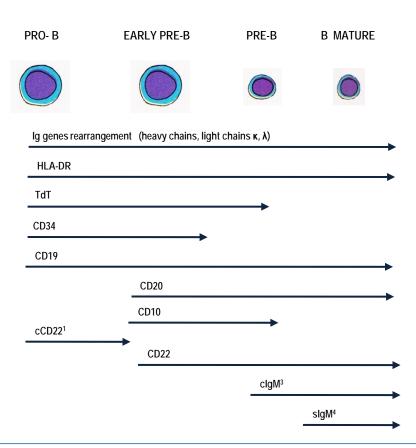
TCR gene rearrangement ($_{v\delta}$ then $_{\alpha\beta}$)

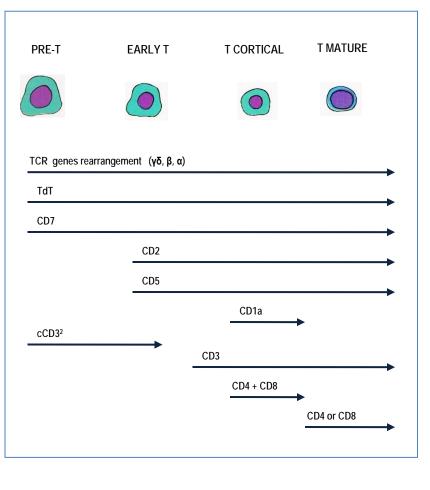
<u>Positive selection</u>¹: amplification of CD4 + CD8 + thymocytes with affinity for " self " class I and II molecules of the HLA system

MEDULLARY ZONE :

<u>Negative selection</u>¹: elimination of thymocytes with affinity for class I and II HLA molecules in contact with " self " antigens (clonal deletion)

Expression of CD2, CD3, CD4 + CD8 - or CD4 - CD8 +


MIGRATION TO PERIPHERAL BLOOD AND SECONDARY LYMPHOID ORGANS


¹ During positive and negative selections approximately 90% of T-lymphocytes (thymocytes) are eliminated through apoptosis (cell death)

B- AND T-LYMPHOCYTE DIFFERENTIATION MARKERS

B-LYMPHOCYTE DIFFERENTIATION

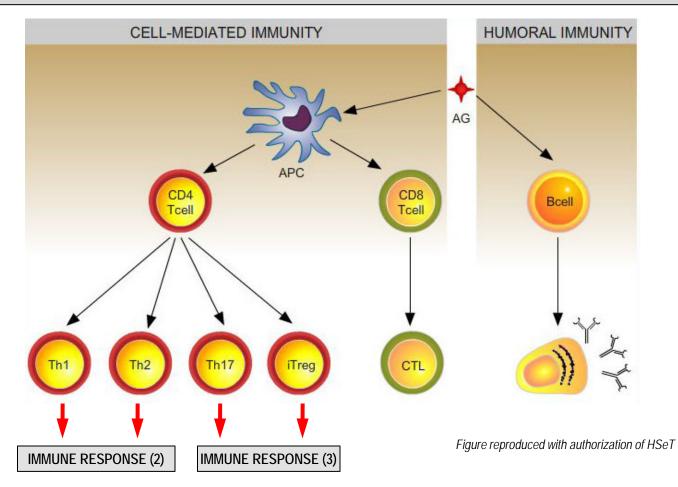
T-LYMPHOCYTE DIFFERENTIATION

¹ cCD22 : intracytoplasmic CD22

² cCD3 : intracytoplasmic CD3

³ clgM : intracytoplasmic lgM

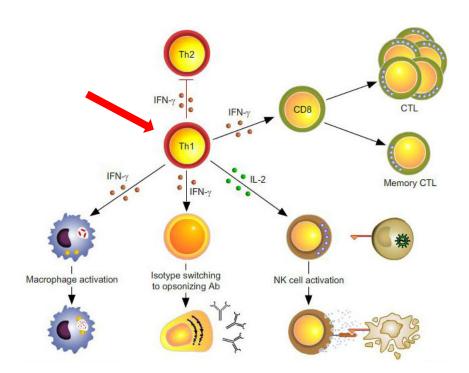
⁴ slgM : surface lgM

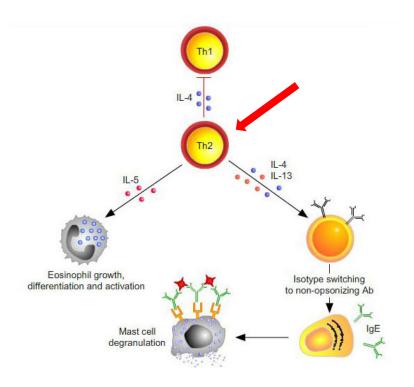

Large granular lymphocytes (LGL variety)

CD3 -, CD2 +, CD8 + / -, CD16 +, CD56 +, CD57 + / -, absence of TCR

Cytotoxicity

- Inhibited by the presence of surface receptors for HLA class I molecules expressed by "self " cells Stimulated by reduced synthesis (or transport) of HLA class I molecules (virus infected cells, tumor cells)
- 2. CD16 + (Fc receptor) : binding of antibody to surface antigen \rightarrow binding of a NK lymphocyte by the Fc, leading to activation

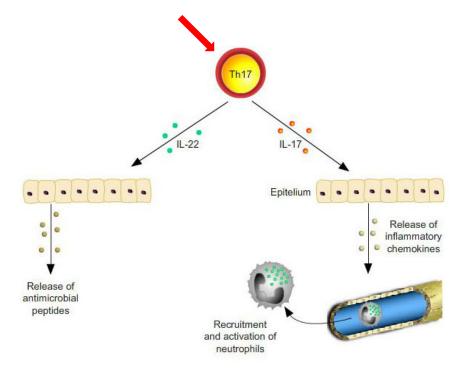

LYMPHOCYTES / IMMUNE RESPONSE



Functionally, the adaptive immune system can be divided into two arms : **cell-mediated and humoral** immunity. B cells are responsible for the humoral response. B cells interact directly with antigen **(Ag)** and then differentiate into antibody-secreting cells. T cells are responsible for the cell-mediated immunity. They recognize antigens as short antigen fragments presented on the surface of antigen-presenting cells **(APC)**

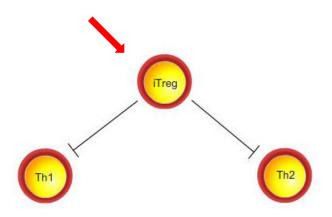
T cells exist as two main functional groups : the Helper T cells (Th), which respond to antigen by producing cytokines and the cytotoxic T cells (CTL) which respond to antigen by releasing cytotoxins. Depending on signals they receive from APC, the helper T cells can differentiate into four main subsets, with distinct profile of cytokines (Th1, Th2, Th17 and iTreg)

LYMPHOCYTES / IMMUNE RESPONSE (2)


Th1 cells are required for defense against intracellular pathogens. They are characterized by the production of IFN- γ and IL-2. IFN- γ activates the microbicidal activity of macrophages, stimulates B cells to produce antibodies that are involved in the opsonization and phagocytosis of particulate microbes, and enhances the development of long-term memory CD8 T cells. IL-2 increases the cytolytic activity of natural killer cells (*CTL NK*)

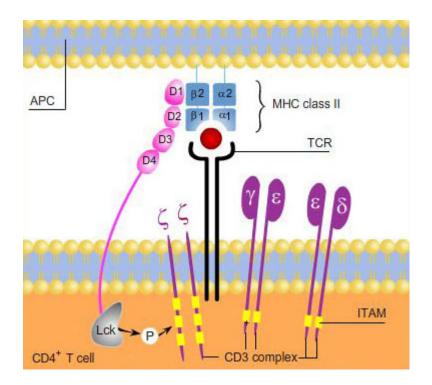
Figures reproduced with authorization of HSeT

Th2 cells are required for defense against extracellular pathogens. They are characterized by the production of IL-4, IL-5 and IL-13. IL-4 stimulates B cell proliferation and induces isotype class switch to IgG1 and IgE and so plays a role in IgE-dependent mast cellmediated reactions. IL-5 acts largely on eosinophils. IL-13 is homologous to IL-4 and induces many of the same functions, including inducing IgE isotype switching


LYMPHOCYTES / IMMUNE RESPONSE (3)

LYMPHOCYTES Th 17

Th17 cells are the most recently discovered subset of Th cells and are thought to be important effector cells in host defense against extracellular bacteria and fungi. They are characterized by the production of IL-17 and IL-22. IL-17 triggers the release of pro-inflammatory chemokines by epithelial cells, and various other tissues and cell types, helping thus the recruitment of neutrophils. IL-22 increases acute-phase reactants in hepatocytes and induces the expression of β -defensins in epithelial cells of the gastrointestinal tract and skin


LYMPHOCYTES iTreg

Induced **Treg cells** have functions in the suppression of Th1 and Th2 cell immune responses. Whether Treg cells also suppress Th17 cell responses is less clear

Figures reproduced with authorization of HSeT

LYMPHOCYTES / IMMUNE RESPONSE (4) CD 4 ET CD 8 CO-RECEPTORS OF T-LYMPHOCYTES

CD4 is a monomer that interacts via its two distal Ig domains (D1 and D2) with the $\beta 2$ domain of MHC class II

CD8 is a dimer (either homodimer α or heterodimer $\alpha\beta$) that interacts via its α chain with the $\alpha3$ domain of MHC class I

APC : Antigen Presenting Cell

LYMPHOCYTOSIS

RELATIVE : > 40% *ABSOLUTE : >* 4.0 G / L

REACTIVE

Infection : viral bacterial (pertussis, tuberculosis, brucellosis, syphilis)

Thyrotoxicosis Hyposplenism

MALIGNANT Lymphoid neoplasm

ABSOLUTE LYMPHOPENIA < 1.5 G / L

ACQUIRED

HIV, Hodgkin lymphoma, chemotherapy, radiotherapy, steroids, ATG (Anti-thymocyte globulin), autoimmune disorder

CONGENITAL

SCID (Severe Combined Immune Deficiency) IDIOPATHIC

PATHIC

PLASMACYTOSIS

REACTIVE :	Rubella (German measles)
	Other viral infection
MALIGNANT :	Plasma cell leukemia
	Plasma cell myeloma

MONONUCLEOSIS SYNDROME

Absolute lymphocytosis with polymorphic lymphocytes

(T-lymphocytes reactive to the infected B-lymphocytes)

Etiology : EBV¹ (infectious mononucleosis)

Lymphadenopathy	100%		
Fatigue	90%		
Pharyngitis syndrome	80%		
Splenomegaly	> 50%		
Possibly hemolytic anemia and	Possibly hemolytic anemia and / or autoimmune thrombocytopenia, agranulocytosis		
cardiac / neurological / respirat	cardiac / neurological / respiratory complications, splenic rupture		

CMV (cytomegalovirus infection, frequently promoted by immunosuppression)

HIV (primary infection) Other virus (e.g. hepatitis) Toxoplasmosis

¹ Also involved in the pathogenesis of certain lymphoid neoplasms (African Burkitt, Hodgkin lymphoma, lymphoid neoplasms + HIV)

TUMORS OF HEMATOPOIETIC AND LYMPHOID TISSUES WHO CLASSIFICATION 2008

MYELOID NEOPLASMS (cf. p. 119-162)

LYMPHOID NEOPLASMS (cf. p. 163-204)

B-CELL NEOPLASMS

PRECURSOR B-CELL NEOPLASMS

B-lymphoblastic leukemia / lymphoma

MATURE B-CELL NEOPLASMS

Chronic lymphocytic leukemia / small lymphocytic lymphoma B-cell prolymphocytic leukemia Splenic B-cell marginal zone lymphoma Hairy cell leukemia Splenic B-cell lymphoma / leukemia, unclassifiable Splenic diffuse red pulp small B-cell lymphoma Hairy cell leukemia-variant Lymphoplasmacytic lymphoma Waldenström Macroglobulinemia Heavy chain diseases Plasma cell neoplasms Extranodal marginal zone lymphoma of Mucosa-Associated Lymphoid Tissues (MALT lymphoma) Nodal marginal zone lymphoma Follicular lymphoma Primary cutaneous follicle centre lymphoma Mantle cell lymphoma

¹ DLBCL : Diffuse large B-Cell Lymphoma

- ² NOS : Not Otherwise Specified
- ³ ALK : Anaplastic Lymphoma Kinase

Diffuse large B-cell lymphoma (DLBCL¹), NOS² T-cell / histiocyte rich DLBCL Primary DLBCL of the CNS Primary cutaneous DLBCL, leg type EBV positive DLBCL of the elderly DLBCL associated with chronic inflammation Lymphomatoid granulomatosis Primary mediastinal (thymic) large B-cell lymphoma Intravascular large B-cell lymphoma ALK³ positive large B-cell lymphoma Plasmablastic lymphoma Large B-cell lymphoma arising in HHV8-associated multicentric Castleman disease Primary effusion lymphoma Burkitt lymphoma B-cell lymphoma, unclassifiable, with features intermediate between **DLBCL and Burkitt lymphoma** B-cell lymphoma, unclassifiable, with features intermediate between **DLBCL and Hodgkin lymphoma**

Swerdlow S.H., Campo E., Harris N.L., Jaffe E.S., Pileri S.A., Stein H., Thiele J., Vardiman J.W. : WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, 4th ed. 2008; IARC, Lyon.

TUMORS OF HEMATOPOIETIC AND LYMPHOID TISSUES WHO CLASSIFICATION 2008 (2)

T-CELL AND NK-CELL NEOPLASMS

PRECURSORS T-CELL NEOPLASMS

T-cell lymphoblastic lymphoma / leukemia

MATURE T-CELL AND NK-CELL NEOPLASMS

T-cell prolymphocytic leukemia T-cell large granular lymphocytic leukemia Chronic lymphoproliferative disorders of NK-cells Aggressive NK-cell leukemia Systemic EBV-positive T-cell lymphoproliferative disorders of childhood Hydroa vacciniforme-like lymphoma Adult T-cell leukemia / lymphoma Extranodal NK / T-cell lymphoma, nasal type Enteropathy-associated T-cell lymphoma Hepatosplenic T-cell lymphoma Subcutaneous panniculitis-like T-cell lymphoma Mycosis fungoides Sézary syndrome Primary cutaneous CD30 positive T-cell lymphoproliferative disorders Primary cutaneous gamma-delta T-cell lymphoma Peripheral T-cell lymphoma not otherwise specified Angioimmunoblastic T-cell lymphoma Anaplastic large cell lymphoma (ALCL), ALK¹ positive Anaplastic large cell lymphoma (ALCL), ALK¹ negative

¹ALK : Anaplastic Lymphoma Kinase

HODGKIN LYMPHOMA (HODGKIN DISEASE) (cf. p. 201-204)

Swerdlow S.H., Campo E., Harris N.L., Jaffe E.S., Pileri S.A., Stein H., Thiele J., Vardiman J.W.: WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, 4th ed. 2008; IARC, Lyon.

TUMORS OF HEMATOPOIETIC AND LYMPHOID TISSUES WHO CLASSIFICATION 2008 (3)

IMMUNODEFICIENCY-ASSOCIATED LYMPHOPROLIFERATIVE DISORDERS

Lymphoproliferative diseases associated with primary immune disorders Lymphomas associated with HIV infection Post-Transplant Lymphoproliferative Disorders (PTLD) Early lesions Plasmacytic hyperplasia Infectious mononucleosis-like PTLD Polymorphic PTLD Monomorphic PTLD (criteria for one of the B-cell or T / NK-cell neoplasms of immunocompetent host) Classical Hodgkin lymphoma-type PTLD Other iatrogenic immunodeficiency-associated lymphoproliferative disorders

HISTIOCYTIC AND DENDRITIC CELL NEOPLASMS

Histiocytic sarcoma Langerhans cell histiocytosis Langerhans cell sarcoma Interdigitating dendritic cell sarcoma Follicular dendritic cell sarcoma Fibroblastic reticular cell tumor Indeterminate dendritic cell tumor Disseminated juvenile xanthogranuloma

MYELOID NEOPLASMS

MYELOPROLIFERATIVE NEOPLASMS (MPN)

MYELOID AND LYMPHOID NEOPLASMS WITH EOSINOPHILIA AND ANOMALIES OF PDGFRA, PDGFRB OR FGFR1

MYELODYSPLASTIC SYNDROMES (MDS)

MYELODYSPLASTIC / MYELOPROLIFERATIVE NEOPLASMS (MDS / MPN)

ACUTE MYELOID LEUKEMIAS (AML) AND RELATED PRECURSOR NEOPLASMS

ACUTE LEUKEMIAS OF AMBIGUOUS LINEAGE

STEM CELL PROLIFERATION AND DIFFERENTIATION IN MYELOID NEOPLASMS

	STEM CELL Genetic mutation Humoral factors Cellular interactions			
	Proliferation Differentiation			
Myeloproliferative neoplasms	+	+		
Myelodysplastic syndromes Myelodysplastic / myeloproliferative neoplasms	±	±		
Acute myeloid leukemias (AML) and related precursor neoplasms Acute leukemias of ambiguous lineage	+	-		

MYELOPROLIFERATIVE NEOPLASMS

GENERAL FEATURES

Stem cell somatic mutation upstream from the myeloid precursor cell Proliferation and maturation Increase in peripheral blood of cells arising from one or more lineages Myeloid metaplasia *(extramedullary hematopoiesis)* Frequent bone marrow fibrosis Platelet function disorders Hyperuricemia Possible transformation in acute leukemia

WHO CLASSIFICATION 2008

Polycythemia Vera (PV) Chronic myelogenous leukemia (CML) *BCR-ABL* 1 + Essential thrombocythemia (ET) Primary myelofibrosis Chronic neutrophilic leukemia Chronic eosinophilic leukemia, NOS¹ Mastocytosis (cf. p. 136) Myeloproliferative neoplasm, unclassifiable

¹ NOS : <u>Not Otherwise Specified</u>

POLYCYTHEMIA VERA (PV)

SYMPTOMS AND CLINICAL SIGNS

Facial erythrocyanosis Water pruritus Epigastralgia Hyperviscosity (thromboembolic manifestations, headache, dizziness, paresthesias) Splenomegaly

DIAGNOSTIC CRITERIA

	A1	Hb > 185 g / L (men), > 165 g / L (women) ¹ or increased isotopic RBC mass > 25% of predicted value	PV established if :
MAJOR	A2	Presence of <i>JAK2</i> V617F ² or other functionally similar mutation such as <i>JAK2</i> exon 12 mutation ³	A1 + A2 and one minor criterion or : A1 and 2 minor criteria
MINOR	B1	Bone marrow biopsy showing hypercellularity for age with trilineage growth (panmyelosis) with prominent erythroid, granulocytic and megakaryocytic hyperplasia	¹ Hemoglobin or hematocrit > 99th percentile of method-
	B2	Endogenous erythropoietin serum level below the reference range for normal	specific reference range for age, sex, altitude of reside or hemoglobin > 170 g / L in men, > 150 g / L in wome associated with a documented and sustained increase at least 20 g / L from an individual's baseline value tha
	B3	Spontaneous erythroid colony formation <i>in vitro</i> without EPO	cannot be attributed to correction of iron deficiency

Swerdlow S.H., Campo E., Harris N.L., Jaffe E.S., Pileri S.A., Stein H., Thiele J., Vardiman J.W. : WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, 4th ed. 2008; IARC, Lyon.

POLYCYTHEMIA VERA (2)

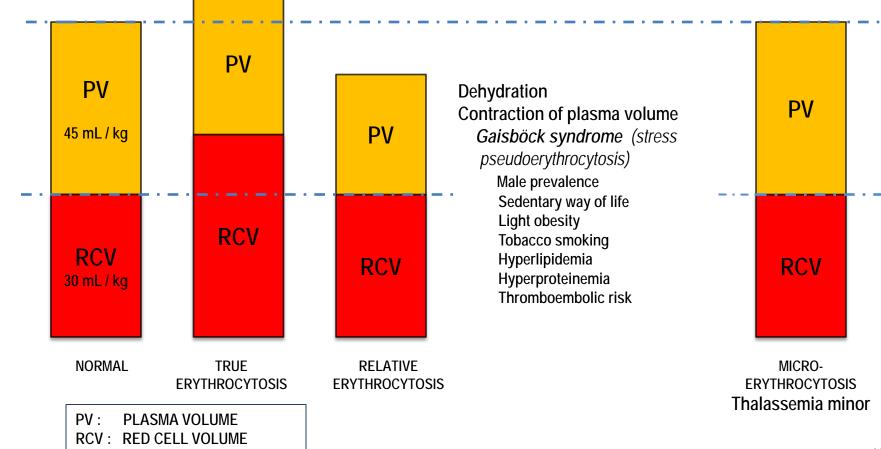
COMPLICATIONS

Thromboembolic Hemorrhagic Evolution to myelofibrosis, ~10% (post-polycythemic phase), (cf. p. 131) Transformation in myelodysplastic syndrome or acute leukemia (> 10% after treatment with cytotoxic drugs)

PROGNOSIS

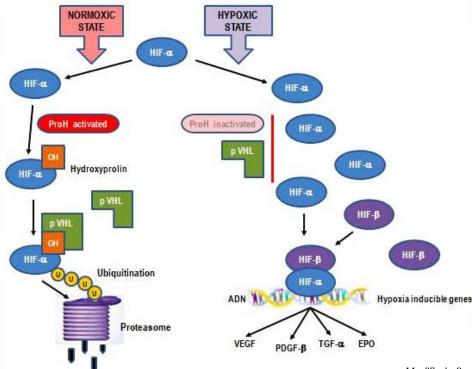
Median survival : > 10 years

TREATMENT (*Targets : hematocrit < 45%; platelets < 450 G / L*) Phlebotomies


Hydroxyurea, Pipobroman, α -Interferon, pegylated α -Interferon

Aspirin

³²P : age > 70 years in case of insufficient compliance of the patient (increased risk of leukemic transformation !)


Investigational : JAK2 ± specific tyrosine kinase inhibitors (TKI)

DIFFERENTIAL DIAGNOSIS OF ERYTHROCYTOSIS RBC VOLUME AND PLASMA VOLUME

DIFFERENTIAL DIAGNOSIS OF TRUE ERYTHROCYTOSIS

PRIMARY	Congenital EPO receptor mutation			
ERYTHROCYTOSIS	Acquired	Anomaly of erythroid precursors (Polycythemia Vera)	EPO 🖄	
SECONDARY ERYTHROCYTOSIS	Congenital	Absence of erythroid precursors anomaly Mutations impairing the system of tissue oxygenation sensing High O ₂ -affinity hemoglobins	EPO ᄸ or normal	
	Acquired	Appropriate or abnormal EPO secretion		

SENSING PROCESS OF TISSULAR OXYGENATION

In state of normal oxygenation HIF- α protein is rapidely degraded by the action of prolin-hydroxylase and von Hippel-Lindau protein, followed by ubiquitination and destruction in the proteasome

In hypoxic state HIF- α degradation is blocked. The protein is activated by dimerization with HIF- β . The complex acts as a promoter of various genes involved in synthesis of growth factors like EPO

pVH Prol U: VEC	: Hypoxia Inducible Factor IL : von Hippel-Lindau protein H : Prolin-Hydroxylase Ubiquitin GF : Vascular Endothelial Growth Factor
	GF : Vascular Endothelial Growth Factor GF : Platelet-Derived Growth Factor
	- Tissue Growth Factor

DIFFERENTIAL DIAGNOSIS OF TRUE ERYTHROCYTOSIS (2)

PRIMARY ERYTHROCYTOSIS

CONGENITAL

Mutation of EPO¹ receptor

ACQUIRED

Polycythemia Vera

SECONDARY ERYTHROCYTOSIS

CONGENITAL

Mutation of VHL² gene *(Chuvash erythrocytosis)* Mutation of PHD2³ Mutation of HIF-2- α^4 O₂ high-affinity hemoglobins 2,3-diphosphoglyceromutase deficiency

ACQUIRED

Appropriate EPO¹ production

Central hypoxia

Chronic pulmonary disorder, cardiopulmonary right-left shunt, CO intoxication, chronic smoking, hypoventilation syndromes incl. sleep apnea, prolonged stay at high altitude

Local renal hypoxia

Renal artery stenosis, terminal renal failure, hydronephrosis, polycystic kidneys, post renal transplantation erythrocytosis

Abnormal EPO¹ production

Tumors : cerebellar hemangioblastoma, meningioma, parathyoid carcinoma / adenoma, hepatocellular carcinoma, renal cell carcinoma, pheochromocytoma, uterine leiomyoma

Drugs : androgens

Exogenous EPO¹ application

Therapeutical indication Illicit application (doping !)

IDIOPATHIC ERYTHROCYTOSIS

- ¹ EPO : Erythropoietin
- ² VHL : Von Hippel-Lindau (recessive mutations)
- ³ PHD2 : Prolyl-Hydroxylase Domain (dominant mutations)
- ⁴ HIF : Hypoxia Inducible Factor (dominant mutations)

CHRONIC MYELOGENOUS LEUKEMIA (CML)

SYMPTOMS AND CLINICAL FEATURES

Fortuitous diagnosis - asymptomatic patient Digestive symptoms (abdominal heaviness, bloating) Splenomegaly Thrombosis Hemorrhage Leucostasis (CML with very high leukocyte count)

BLOOD PICTURE

Leukocytosis with neutrophilia Neutrophil left shift Myelocytosis (20-50%) Basophilia Frequent thrombocytosis Low leukocyte alkaline phosphatase score (obsolete test)

PROGNOSTIC SCORES

The efficacy of TK inhibitors, as primary treatment of choice, has reduced the interest for the prognostic Sokal¹ (1984) or Hasford¹ (1998) scores, validated for chemotherapy treatment A new score (EUTOS²) might be a prognostic tool to assess the probability of reaching complete cytogenetic remission. Its validation needs confirmation

CYTOGENETICS

¹ See : <u>www.leukemia-net.org/content/leukemias/cml/cml_score</u> ² See : www.leukemia-net.org/content/leukemias/cml/eutos_score

Philadelphia chromosome (Ph) = t(9;22)(q34;q11.2) : 90-95% of cases, t(9;22) variants : 5-10% *BCR-ABL 1* fusion gene : 100% of cases

² Hasford J. et al.: Predicting complete cytogenetic response and subsequent progression-free survival in 2060 patients with CML on imatinib treatment : The EUTOS score. Blood 2011; 118 (3) : 686-692.

CHRONIC MYELOGENOUS LEUKEMIA (CML) (2)

COURSE IN 3 PHASES PROGNOSIS Depends on : CHRONIC 4-5 years **Clinical stage Prognostic factors** ACCELERATION¹ < 6-8 months Response to tyrosine kinase inhibitors **10-19%** (blood and / or nucleated bone marrow cells) Blasts **Basophils** ≥ 20% (blood) A Failure free survival 1.00 -Thrombopenia < 100 G / L (treatment independent) 0.90 0.80 **Clonal genetic evolution** 0.70 0.60 Probability 0.50 Thrombocytosis > 1'000 G / L (unresponsive to treatment) 0.40 0.30 0.20 Increasing splenomegaly and leukocytosis (unresponsive to 0.10 0.00 treatment) 12 18 24 30 36 42 48 54 6 60 0 Months from imatinib start 210 202 199 191 182 174 165 133 93 70 38 12 B Event free survival TRANSFORMATION 1.00 0.90 Blasts : \geq 20% (blood and / or nucleated bone 0.80 0.70 0.60 marrow cells) Probability 0.50 0.40 Extramedullary blast cell proliferation 0.30 0.20 0.10 0.00 12 18 24 30 36 42 48 54 Months from imatinih star N. at risk: 210 200 190 181 170 158 146 118 85 65 ¹Modified from Vardiman J.W., Harris N.L., Brunning R.D.: The World Health Organization (WHO) classification of the myeloid neoplasms. Blood 2002; 100 : 2292-2302. Actuarial curves of relapse free survival (A) and event free survival (B), including failure and withdrawal of Imatinib (all causes included)

Cervantes F & al., Haematologica 2010; 95 :1317-1324.

TREATMENT

Tyrosine kinase inhibitors (TKI)

☆ proliferation and apoptosis induction of the BCR-ABL 1 + cell lineages Possible TKI resistance due to different mutations

	Mutation	Imatinib <i>(Glivec®)</i>	Dasatinib (Sprycel®)	Nilotinib (Tasigna®)	Bosutinib (Bosulif®)
Efficacy (+ / -) of TKI in presence of the main mutations	T315I	-	-	-	-
	V299L	_	_	+	-
	T315A	+	_	+	+
	Y253H, E255K/V, F359V/C/I	-	+	-	+
	F317L	-	-	+	+

Hydroxyurea (HU)

 α -Interferon (α -IFN), pegylated α -Interferon

Table after : NCCN Guidelines Version 3.2013.

Allogeneic hemopoietic stem cell / bone marrow transplantation : only established curative treatment (in case of TKI resistance, in acceleration and transformation phases)

Investigational : farnesyltransferase inhibitors, Decitabine, Cladribine, Isotretinoid, Homoharringtonine, antisense oligonucleotides, immunotherapy

AGE BASED THERAPEUTIC SELECTION

< 60 years : in case of insufficient response to TK inhibitor allogeneic hemopoietic stem cell / bone marrow transplantation. Probability of HLA compatible sibling donor 20-30% Possible graft from unrelated donor. 5 year survival rate : 50-70% Relapse after transplantation treated by infusion of donor lymphocytes (GVL effect¹)

> 60 years : Imatinib, α-Interferon (+ Cytarabine), Hydroxyurea

¹ GVL : Graft-Versus-Leukemia

SYMPTOMS AND CLINICAL FEATURES

Arterial or venous thrombosis Hemorrhage by thrombopathy Erythromelalgia Splenomegaly (< 50%)

	DIAGNOSTIC CRITERIA	¹ Sustained during the work-up process
1	Sustained platelet count ≥ 450 G / L ¹	 ² Approximately 50% of cases ³ i.e. <i>MPL</i>W515L, W515K : 1-4%
2	JAK2V617F ² mutation present or other clonal marker ³	⁴ Requires failure of iron replacement therapy to increase Hb level to PV range if decreased serum ferritin
3	Exclusion of : PV ⁴ , primary myelofibrosis ⁵ , <i>BCR-ABL1</i> positive CML ⁶ , myelodysplastic syndrome ⁷ or other myeloid neoplasm	 Exclusion of PV based on Hb and Hct levels. Measure of RBC mass not required ⁵ Absence of relevant reticulin fibrosis, collagen fibrosis, peripheral blood leukoerythroblastosis or hypercellular marrow with
4	Exclusion of secondary thrombocytosis ⁸ , normal iron stores	megakaryocyte morphology typical for primary myelofibrosis (Small to large megakaryocytes in dense clusters with aberrant nuclear / cytoplasmic ratio and hyperchromatic, bulbous or
5	Bone marrow biopsy : proliferation mainly of megakaryocytic lineage with increased numbers of enlarged mature megakaryocytes No significant increase or left-shift of neutrophil granulopoiesis or erythropoiesis	 ⁶ Absence of <i>BCR-ABL</i> 1 ⁷ Absence of dyserythropoiesis and dysgranulopoiesis
		⁸ Exclusion of secondary thrombocytosis (cf. p. 132)
	DIAGNOSIS REQUIRES CRITERIA 1 + 2 + 3 or 1 + 3 - 5	(The presence of a condition associated with secondary thrombocytosis may not exclude the diagnosis of ET if the first 3 criteria are met)

ESSENTIAL THROMBOCYTHEMIA (2)

POSSIBLE COURSE

Polycythemia Vera Myelofibrosis (cf. p.131) Acute leukemia (3-10%)

TREATMENT

Hydroxyurea Pipobroman α-IFN, pegylated α-IFN Anagrelide (could potentially favor evolution to myelofibrosis) Aspirin (platelet antiaggregant)

MEDIAN SURVIVAL

Depending on the risk factors¹

Age ≥ 60	years and	leukocytes \geq 15 G / L :	10 years
-----------------	-----------	------------------------------	----------

Age \geq 60 years or leukocytes \geq 15 G / L : 17 years

Age < 60 years and leukocytes < 15 G / L : 25 years

ESSENTIAL THROMBOCYTHEMIA (3)

Diagnostic criteria for post-PV and post-ET myelofibrosis (MF)					
REQUIRED	1	Ocumentation of a previous diagnosis of WHO-defined (2008) PV or ET			
CRITERIA	2	Bone marrow fibrosis grade 2-3 (on 0-3 scale) cf .p.134			
	1	Post-PV MF : Anemia ¹ or sustained loss of either phlebotomy alone or cytoreductive treatment requirement for erythrocytosis Post-ET MF : Anemia ¹ or \geq 20 g / L decrease from baseline hemoglobin level			
	2	Leukoerythroblastic peripheral blood picture			
ADDITIONAL CRITERIA (2 required)	3	Increasing palpable splenomegaly of > 5 cm from baseline (distance from the left costal margin) or newly palpable splenomegaly			
	4	Post-ET MF : Increased LDH			
	5	Development of > 1 of 3 constitutional symptoms : weight loss > 10% in 6 months, night sweats, unexplained fever (> 37.5°C)			

DIFFERENTIAL DIAGNOSIS OF THROMBOCYTOSIS

DEFINITION

Platelet count > 350 - 400 G / L

CAUSE OF ERROR

Important RBC microcytosis, presence of numerous schistocytes

CLASSIFICATION

PRIMARY THROMBOCYTOSIS

Myeloproliferative neoplasm (cf. p. 120-136)

Essential thrombocytosis, Polycythemia Vera, chronic myelogenous leukemia, primary myelofibrosis

Myelodysplastic syndrome (cf. p. 138-147)

5q-syndrome

SECONDARY THROMBOCYTOSIS

Iron deficiency Splenectomy, asplenia¹ Surgery Infection, inflammation Autoimmune disorder Metastatic cancer Lymphoid neoplasm Acute phase / regeneration of acute hemorrhage or hemolysis

¹Presence of Howell-Jolly bodies in RBC

PRIMARY MYELOFIBROSIS DIAGNOSIS

	1	Proliferation of atypical megakaryocytes ¹ with either reticulin and / or collagen fibrosis or : In absence of significant reticulin fibrosis, megakaryocyte changes + increased marrow cellularity with granulocytic proliferation and often decreased erythropoiesis (<i>i.e. prefibrotic cellular-phase disease</i>)	¹ Small to large megakaryocytes in dense clusters with
MAJOR CRITERIA	2	Exclusion of : PV ² , <i>BCR-ABL1</i> positive CML ³ , MDS ⁴ or other myeloid neoplasms	aberrant nuclear / cytoplasmic ratio and hyperchromatic, bulbous, or irregularly folded nuclei
CRITERIA	3	Presence of JAK2V617F ⁷ mutation or other clonal marker (<i>e.g.</i> MPLW515K/L ⁸) or : In absence of clonal marker, exclusion of bone marrow fibrosis or changes secondary to infection, autoimmune disorder or other chronic inflammatory condition, hairy cell leukemia or other lymphoid neoplasm, metastatic malignancy or toxic (<i>chronic</i>) myelopathy ⁵	 ² Requires failure of iron replacement therapy to increase Hb level to the PV range if ferritin level is decreased. Exclusion of PV is based on Hb and Hct levels. RBC mass measure not required ³ Absence of <i>BCR-ABL1</i> ⁴ Absence of dyserythropoiesis and dysgranulopoiesis
	1	Leukoerythroblastosis	⁵ Conditions associated with reactive myelofibrosis do not exclude PMF. Diagnosis to be considered if other
MINOR CRITERIA	2	Increased serum lactate dehydrogenase (LDH) level	criteria are met
	3	Anemia ⁶	⁶ Degree of anomaly borderline or marked
	4	Splenomegaly ⁶	⁷ Approximately 50% of cases
			⁸ < 5% of cases

DIAGNOSIS : ALL 3 MAJOR + 2 MINOR CRITERIA

PRIMARY MYELOFIBROSIS (2)

 BLOOD COUNT :
 RBC, WBC and platelet counts in relation with disease stage

 Tear drop RBC (dacryocytes), erythroblastosis and myelocytosis, platelet anisocytosis

SEMIQUANTITATIVE GRADING OF BONE MARROW FIBROSIS (MF)

- MF 0 Scattered linear reticulin with no intersections (cross-overs), corresponding to normal bone marrow
- MF 1 Loose network of reticulin with many intersections, especially in perivascular areas
- MF 2 Diffuse and dense increase in reticulin with extensive intersections, occasionally with focal bundles of collagen and / or focal osteosclerosis
- MF 3 Diffuse and dense increase in reticulin with extensive intersections and coarse bundles of collagen, often associated with osteosclerosis

		LILLE ¹ PROGNOSTIC SCORE				
² Risk factors:	Risk group	Factors ² (n)	% of patients	Median survival (months)		
 Hb < 100 g/L Leukocytes < 4 G/L or > 30 G/L 	Low	0	47	93		
	Intermediate	1	45	26		
	High	2	8	13		

COMPLICATIONS	TREATMENT
Splenic infarction Infections <i>(neutropenia)</i> Bleeding <i>(thrombocytopenia and / or platelet anomalies)</i> Acute leukemia (5-30%)	Wait and watch Hydroxyurea Transfusion support Sectorial splenic radiotherapy Splenectomy Allogeneic bone marrow transplantation with non myeloablative conditioning Investigational : pegylated α-Interferon; Thalidomide (± prednisone), Lenalidomide (± prednisone), Pomalidomide (immunomodulators); Etanecerpt (TNF-α inhibitor)

¹ Dupriez B. et coll. : Prognostic factors in agnogenic myeloid metaplasia : a report of 195 cases with a new scoring system. Blood 1996; 88 : 1013-1018.

CHRONIC NEUTROPHILIC LEUKEMIA

1	Peripheral blood : WBC ≥ 25 G / L, neutrophils > 80% WBC, immature granulocytes < 10% WBC, myeloblasts < 1% WBC
2	Bone marrow : percentage and number of neutrophilic granulocytes increased, normal maturation, myeloblasts < 5% of nucleated marrow cells, megakaryocytes normal or left shifted
3	Hepatosplenomegaly
4	No cause of physiological neutrophilia. If present, demonstration of clonality of myeloid cells
5	No BCR-ABL1 fusion gene, no rearrangement of PDGFRA, PDGFRB, FGFR1
6	No evidence of other myeloproliferative neoplasm, or myelodysplastic syndrome or myelodysplastic / myeloproliferative neoplasm. Monocytes < 1 G / L

CHRONIC EOSINOPHILIC LEUKEMIA, NOS1

1	Eosinophilia \geq 1.5 G / L
2	No BCR-ABL1 fusion gene or other myeloproliferative neoplasm or myelodysplastic / myeloproliferative neoplasm
3	No FIP1L1-PDGFRA fusion gene (or other rearrangement of PDGFRA), no rearrangement of PDGFRB or FGFR1
4	Blast cell count in peripheral blood and bone marrow < 20%, no inv(16)(p13.1q22), t(16;16)(p13.1;q22), no other feature diagnostic of acute myeloid leukemia (AML)
5	Presence of a clonal or molecular genetic abnormality or blasts > 2% in PB or > 5% in bone marrow

If these criteria are not met, the diagnosis may be reactive eosinophilia, idiopathic hypereosinophilia or idiopathic hypereosinophilic syndrome (HES) (*cf. p. 100*) ¹NOS : Not Otherwise Specified

MASTOCYTOSIS

CLASSIFICATION

Cutaneous mastocytosis (urticaria pigmentosa), diffuse cutaneous mastocytosis, solitary cutaneous mastocytosis Systemic mastocytosis (indolent or aggressive) Mastocytic leukemia Mastocytic sarcoma Extracutaneous mastocytoma

SYSTEMIC MASTOCYTOSIS

Clonal mastocyte proliferation *(tissue basophils)* with secretion of tissular mediators : Histamine, heparin, leukotrienes, prostaglandins, PAF (Platelet Activating Factor), Cytokines (TNF)

Target organs :	Bone marrow Lymph nodes Spleen, liver Heart		Biochemistry : Immunophenotype : Genetics :	 ➢ of serum tryptase CD9, CD33, CD45, CD68, CD117, CD2 or CD2/CD25 Frequent KIT mutation (Asp816Val)
	Presence of cutaneous localisation or not Osteoblastic bone lesions, less frequently osteolytic			
Symptoms :	Cutaneous flash, pruritu Abdominal pain Bronchospasm	S		
Evolution :	Indolent forms Aggressive forms	5	osis associated with i ic leukemia	myeloid or lymphoid neoplasia
Treatment :	Antihistamines, α -Interferon, tyrosine kinase inhibitors, anti-leukotrienes			
Survival :	Nearly normal for indolent forms Few months for aggressive forms			

MYELOID AND LYMPHOID NEOPLASMS WITH EOSINOPHILIA AND ANOMALIES OF *PDGFRA*, *PDGFRB* OR *FGFR1*

MYELOID AND LYMPHOID NEOPLASMS WITH PDGFRA REARRANGEMENT
--

1 Myeloproliferative neoplasm with prominent eosinophilia

2 Presence of *FIP1L1-PDGFRA* fusion gene

Acute myeloid leukemia and lymphoblastic leukemia / lymphoma with eosinophilia and *FIP1L1-PDGFRA* are also assigned to this category. If molecular analysis is not available, diagnosis is suspected if : 1) Ph-negative myeloproliferative neoplasm with features of chronic eosinophilic leukemia; 2) splenomegaly; 3) high level of vitamin B_{12} ; 4) increase of serum tryptase; 5) increase of BM mast cells

Tyrosine Kinase activity : disease is responsive to TK- inhibitors (Imatinib mesylate)

	MYELOID NEOPLASMS WITH PDGFRB REARRANGEMENT
1	Myeloproliferative neoplasm often with prominent eosinophilia, sometimes neutrophilia or monocytosis
2	Presence of t(5;12)(q33;p13) or variant translocation. Demonstration of ETV6-PDGFRB fusion gene or of rearragement of PDGFRB

Hematological features : chronic myelomonocytic leukemia with / without eosinophilia, chronic eosinophilic leukemia, Ph-neg. chronic myelogenous leukemia with eosinophilia, primary myelofibrosis, juvenile myelomonocytic leukemia with eosinophilia, acute myelogenous leukemia, chronic basophilic leukemia

	MYELOID AND LYMPHOID NEOPLASMS WITH FGFR1 ANOMALIES
1	Myeloproliferative neoplasm with prominent eosinophilia and sometimes neutrophilia or monocytosis or acute myeloid leukemia or precursor T- or B-cell lymphoblastic leukemia / lymphoma (often associated with peripheral blood or bone marrow eosinophilia)
2	Presence of t(8;13)(p11;q12) or variant translocation with FGFR1 rearrangement in myeloid cells, lymphoblasts or both

MYELODYSPLASTIC SYNDROMES (MDS) GENERAL FEATURES

Somatic mutation of a hemopoietic stem cell upstream of myeloid precursor cells

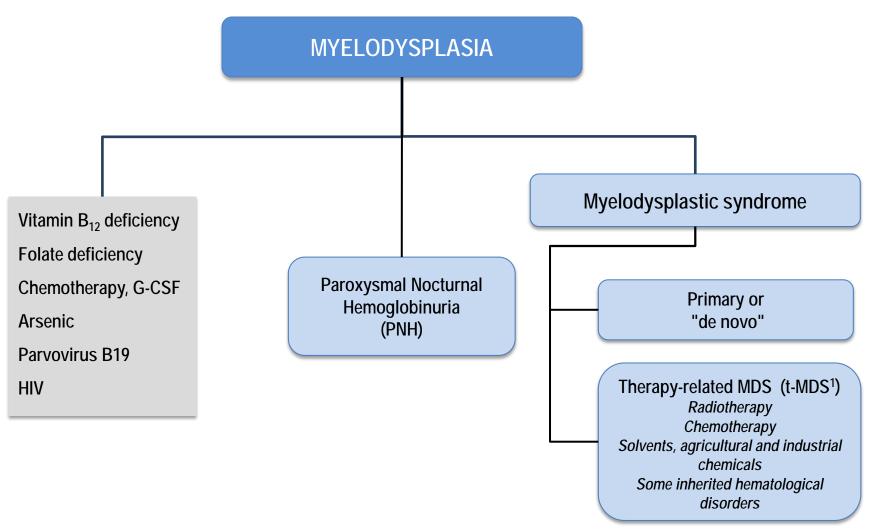
Myelodyplasia (dysmyelopoiesis):	Proliferation	+ / -
	Maturation	+ / -
	Apoptosis	+

Peripheral blood with 1-3 cytopenia(s)

WHO classification considering :

Presence of signs of dysplasia affecting only one ("unilineage") or more cell lineages ("multilineage")

Blast cells in peripheral blood or bone marrow : < 20%


Presence or absence of Auer rods

Presence or absence of ring sideroblasts : < 15% or $\ge 15\%$ (bone marrow)

Peripheral blood monocytosis > 1.0 G / L

Possible transformation in acute leukemia

MYELODYSPLASIA

¹ In WHO classification 2008 included in separate category under : *Therapy-related myeloid neoplasms*

MORPHOLOGICAL SIGNS OF MYELODYSPLASIA DYSMYELOPOIESIS

	PERIPHERAL BLOOD	BONE MARROW	
Dyserythropoiesis	Macrocytosis (frequent) Anisocytosis Poikilocytosis Anisochromasia Coarse basophilic granules	Nuclear Megaloblastic changes Nuclear budding, internuclear bridging Karyorrhexis, hyperlobation Cytoplasmic Vacuolization Ring Sideroblasts (RS) Periodic acid-Schiff (PAS) staining +	
Dysgranulopoiesis	Pse Irregular h Decreased gr Pseudo Cheo	nusually large size eudo-Pelger hypersegmentation anules or agranularity diak-Higashi granules Auer rods	
Dysmegakaryopoiesis (platelets)	Giant platelets Lack of granules	Micromegakaryocytes Hypolobated nuclei Multinucleated megakaryocytes	

CLASSIFICATION OF MDS PERIPHERAL BLOOD AND BONE MARROW FEATURES

DISEASE	PERIPHERAL BLOOD	BONE MARROW
Refractory Cytopenias with Unilineage Dysplasia (RCUD) : RA, RN, RT ¹	Unicytopenia (rarely bicytopenia) No or rare blasts (< 1%) ²	Unilineage dysplasia : ≥ 10% of cells in one myeloid lineage; blasts < 5% Ring Sideroblasts (RS) < 15%
Refractory Anemia with Ring Sideroblasts (RARS)	Anemia No blasts	Erythroid dysplasia only Ring Sideroblasts ≥ 15%, blasts < 5%
Refractory Cytopenia with Multilineage Dysplasia (RCMD)	Cytopenia(s), no or rare blasts (< 1%) ² No Auer rods Monocytes < 1 G / L	Dysplasia in \ge 10% of cells in \ge 2 myeloid lineages, blasts < 5%, no Auer rods Ring Sideroblasts ± 15%
Refractory Anemia with Excess Blasts-1 (RAEB-1)	Cytopenia(s), blasts < 5%, no Auer rods Monocytes < 1 G / L	Uni- or multilineage dysplasia, blasts 5-9% No Auer rods
Refractory Anemia with Excess Blasts-2 (RAEB-2)	Cytopenia(s), blasts 5-19%, Auer rods \pm^3 Monocytes < 1 G / L	Uni- or multilineage dysplasia Blasts 10-19%, Auer rods \pm^3
Myelodysplastic Syndrome - Unclassified (MDS-U)	Cytopenias Blasts ≤ 1%	Evident dysplasia in less than 10% of cells in one or more myeloid cell lines with MDS cytogenetic anomaly, blasts < 5%
Myelodysplastic Syndrome associated with isolated del(5q)	Anemia Normal or increased platelet count No or rare blasts (< 1%)	Normal or increased megakaryocytes with hypolobulated nuclei, blasts < 5%, no Auer rods, isolated del(5q)

¹ RA : Refractory Anemia; RN : Refractory Neutropenia; RT : Refractory Thrombocytopenia

² If bone marrow blast percentage < 5%, but 2-4% blasts are present in the blood, the diagnostic is RAEB-1. RCUD and RCMD with 1% blasts in blood are classified as MDS-U

³ Cases with Auer rods and < 5% blasts in blood and < 10% in bone marrow are classified as RAEB-2

DIFFERENTIAL DIAGNOSIS OF MYELODYSPLASTIC SYNDROME AND ACUTE MYELOID LEUKEMIA IMPORTANCE OF BONE MARROW ERYTHROBLASTS PERCENTAGE

ERYTHROBLASTS (in % of total nucleated bone marrow cells)			
< 50%		≥ 5	0%
Blasts in % of total nucleated bone marrow cells			non erythroid e marrow cells
≥ 20 %	< 20%	< 20%	≥ 20 %
AML	MDS		AML

Modified from Bennett J.M. & al. : Proposed revised criteria for the classification of acute myeloid leukemia. Ann Intern Med 1985; 103 : 620-625. Modifications according to WHO classification 2008.

AML : Acute Myeloid Leukemia

MDS : Myelodysplastic Syndrome

ANOMALIES RELATED TO MYELODYSPLASTIC SYNDROME

FUNCTIONAL ALTERATIONS	Neutrophils : Platelets :	Motility, adhesion, phagocytosis, bactericidal ability Aggregation
IMMUNOLOGICAL DISORDERS	Polyclonal gammo Hypogammaglobul Paraprotein Autoantibodies Decreased counts o	
ACQUIRED HEMOGLOBINOPATHY	α -Thalassemia My	velodysplastic Syndrome (ATMDS)

MYELODYSPLASTIC SYNDROME PROGNOSTIC SCORES

Prognostic scores evaluate the risk of leukemic transformation

1. IPSS (International Prognostic Scoring System)

Score	0	0.5	1.0	1.5	2.0	Risk groups	Score
Cytopenia(s)	0 – 1	2 – 3				Low	0
Blasts ¹ (%)	< 5	5 – 10	_	11 – 19	20 – 30 ²	Intermediate-1	0.5 – 1.0
. ,	-			11 - 19	20 - 30-	Intermediate-2	1.5 – 2.0
Karyotype	Favorable	Intermediate	Unfavorable			High	≥ 2.5

¹ Blasts in bone marrow ² This percentage is now considered as AML according to WHO 2008

	Hemoglobin < 100 g / L Neutrophils < 1.8 G / L Platelets < 100 G / L	K	Un	nfavorable :	Normal karyotype, -Y, del(5q), del(20q) Chromosome 7 anomalies, complex anomalies (≥ 3) Other anomalies
--	--	---	----	--------------	---

2. WPSS (WHO classification-based Prognostic Scoring System)

Variables	0	1	2	3		Risk groups	Score
WHO category	RA, RARS, 5q-	RCMD, RCMD-RS	RAEB-1	RAEB-2		Very low	0
						Low	1.0
Karyotype	Favorable	Intermediate	Unfavorable	-		Intermediate	2.0
Transfusion requirement	Ø	Regular ¹	-	-		High	3.0 - 4.0
	Very high	5.0 - 6.0					

3. WPSS-R²: anemia instead of transfusion requirement (Hb < 90 g/L (men), < 80 g/L (women)

² Malcovati L. & al.: Impact of the degree of anemia on the outcome of patients with myelodysplastic syndrome and its integration in the WHO classification based Prognostic Scoring System (WPSS). Haematologica 2011; 96 : 1433-1440.

MYELODYSPLASTIC SYNDROME IPSS SCORE REVISED 2012 (IPSS - R)

PROGNOSTIC IMPACT OF CYTOGENETIC ANOMALIES

CYTOGENETIC PROGNOSTIC GROUPS	CYTOGENETIC ANOMALIES
Very good	• -Y • del(11q)
Good	 None del(5q) del(12p) del(20q) Double anomaly included del(5q)
Intermediate	 del(7q) +8 +19 i(17q) Every other independent unique or double clone
Unfavorable	 -7 in∨(3) t(3q) del(3q) Double anomaly included -7 / del(7q) ≤ 3 complex anomalies
Very unfavorable	 > 3 complex anomalies

2 SCORE CALCULATION Adding points corresponding to

actual prognostic criteria

PROGNOSTIC CRITERIA Cytogenetics Blasts bone marrow (%)		0	0,5	1,0	1,5	2,0	3,0	4,0
		Very good ≤ 2		Good		Intermediate 5 - 10	Unfavorable > 10	Very unfavorable
				>2-<5				
Hemoglobin	(g / L)	≥ 100		8-<10	< 8			
Platelets	(G/L)	≥ 100	50 - < 100	< 50				
Neutrophils	(G/L)	≥ 0.8	< 0.8					

PROGNOSTIC RISK related to score

PROGNOSTIC RISK	SCORE
Very low	≤ 1 .5
Low	<mark>> 1</mark> .5 - 3.0
Intermediate	> 3.0 - 4.5
High	> 4.5 - 6.0
Very high	> 6.0

PROGNOSTIC IMPACT OF IPSS-R SCORE

RISK	Very low	Low	Intermediate	High	Very high
SURVIVAL					
Patients (n = 7012) (%)	19	38	20	13	10
Median survival (years)	8.8	5.3	3.0	1.6	0.8
EVOLUTION TO AML					
Patients (n = 6485) (%)	19	37	20	13	11
$\begin{array}{l} \mbox{Median duration} \rightarrow 25\% \\ \mbox{evolution to AML} & (years) \end{array}$	Not reached	10.8	3.2	1.4	0.73

A IPSS-R calculator can be used on the MDS-Foundation Website :

http://www.mds-foundation.org/ipss-r-calculator/

D'après Greenberg P.L & al.: Revised International Prognostic Scoring System for Myelodysplastic Syndromes. Blood 2012; 120: 2454 - 2465.

MYELODYSPLASTIC SYNDROMES UNFAVORABLE PROGNOSTIC FACTORS

Age > 60 years	
Performance status / comorbidities	Mutations of FLT3 gene
White blood cells > 20 G / L	Absence of TET2 mutation
Lymphocytes < 1.2 G / L	Monosomy 5 or del(5q) + other chromosomal anomaly
Severe anemia	
Refractory thrombocytopenia	Transfusion dependency
High percentage of CD 34 expressing precursor cells	Bone marrow fibrosis
MCV < 100 fL	Low level of circulating endothelial cells
Increased expression of WT1 (Wilms tumor gene)	Presence of ALIPs (<u>Abnormal Localization of Immature</u> Precursors) on BM histology

MYELODYSPLASTIC SYNDROMES COMPLICATIONS / COURSE / SURVIVAL

COMPLICATIONS

Recurrent infection Bleeding episodes Immunologic disorders

5 YEAR CUMULATIVE RISK OF TRANSFORMATION IN ACUTE LEUKEMIA¹

RA, RARS :	< 2%
RCMD, 5q- syndrome :	~ 10%
RAEB-1:	11%
RAEB-2 :	40%

RA :	Refractory anemia
	Refractory Anemia with Ring Sideroblasts
	Refractory Cytopenia with Multilineage Dysplasia
RAEB :	Refractory Anemia with Excess Blasts

SURVIVAL RELATED TO PROGNOSTIC SCORES

	WPSS	
8.8 years	Score 0	8.5 years
5.3 years	Score 1.0	6.0 years
3.0 years	Score 2.0	3.5 years
1.6 year	Score 3.0-4.0	1.7 year
0.8 year	Score 5.0-6.0	0.1 year
	5.3 years 3.0 years 1.6 year	8.8 yearsScore 05.3 yearsScore 1.03.0 yearsScore 2.01.6 yearScore 3.0-4.0

¹ Germing U., Strupp C., Kuendgen A., Isa S., Knipp S., Hildebrandt B., Giaconidis A., Aul C., Gattermann N., Haas R.: Prospective validation of the WHO proposals for the classification of myelodysplastic syndromes. Haematologica 2006; 91 : 1596-1604.

² Greenberg P.L. & al. : Revised International Prognostic Scoring System for Myelodysplastic Syndromes. Blood 2012; 120 : 2454 - 2465.

TREATMENT OF MYELODYSPLASTIC SYNDROME

SYMPTOMATIC TREATMENT

Transfusional supportive care (*RBC*, *platelets*) Iron chelators (*oral or parenteral application*) Antibiotics Erythropoietin + G-CSF, IL-11 (*⊲ platelets*)

CHEMOTHERAPY

Antimetabolites : Azacitidine, Decitabine, Cytarabine Antiangiogenic, anticytokine drugs : Thalidomide, Lenalidomide *(5q- syndrome)*

IMMUNOSUPPRESSIVE THERAPY (Hypocellular MDS) : **ATG** (*Anti-Thymocyte Globulin*) ± cyclosporin

ALLOGENEIC STEM CELL / BONE MARROW TRANSPLANTATION

(< 60 years, HLA identical donor, possibly with reduced intensity conditioning)

Investigational¹: TNF-α inhibitors (Etanercept) Clofarabine (nucleosidic analogue of adenosine) Arsenic trioxide Histone deacetylase inhibitors (valproic acid) Farnesyltransferase inhibitors Thrombopoietin analogues (Romiplostim)

MYELODYSPLASTIC / MYELOPROLIFERATIVE NEOPLASMS

CLASSIFICATION

CHRONIC MYELOMONOCYTIC LEUKEMIA ATYPICAL CHRONIC MYELOID LEUKEMIA, *BCR-ABL1* NEGATIVE JUVENILE MYELOMONOCYTIC LEUKEMIA REFRACTORY ANEMIA WITH RING SIDEROBLASTS (RARS) ASSOCIATED WITH THROMBOCYTOSIS MYELODYSPLASTIC / MYELOPROLIFERATIVE NEOPLASM, UNCLASSIFIABLE

Refractory anemia with ring sideroblasts (RARS) associated with marked thrombocytosis

CHRONIC MYELOMONOCYTIC LEUKEMIA

DIAGNOSTIC CRITERIA

- 1. Persistent peripheral blood monocytosis > 1.0 G / L
- 2. Absence of Philadelphia chromosome or BCR-ABL1 fusion gene
- 3. No rearrangement of PDGFRA, PDGFRB (should be specifically excluded in cases with eosinophilia)
- 4. < 20% blasts (myeloblasts, monoblasts and promonocytes) in peripheral blood and in the bone marrow
- 5. Signs of dysplasia in one or more myeloid lineage(s)
 - If dysplasia minimal or absent : 1 + 2 + 3 + 4 with :
 - Presence of acquired cytogenetic or molecular anomaly or :

persisting monocytosis (> 3 months) and exclusion of any other cause of monocytosis (cf. p.103)

VARIANTS : CMML-1 : blasts (and promonocytes) < 5% (peripheral blood), < 10% (bone marrow) CMML-2 : blasts (and promonocytes) 5-19% (peripheral blood), 10-19% (bone marrow) or presence of Auer rods

UNFAVORABLE PROGNOSTIC CRITERIA : Severe anemia + high leukocytosis (leukostasis !) + splenomegaly

EVOLUTION :Progression to acute myeloid leukemia :15-30%Median survival :20-40 months

ACUTE MYELOID LEUKEMIA (AML) EPIDEMIOLOGY

IONIZING RADIATION

ALKYLATING AGENTS

BENZENE AND DERIVATIVES

MYELOPROLIFERATIVE NEOPLASMS (MPN)

MYELODYSPLASTIC SYNDROMES (MDS)

MYELODYSPLASTIC / MYELOPROLIFERATIVE NEOPLASMS (MDS / MPN)

TRISOMY 21

PRIMITIVE IMMUNODEFICIENCY

FANCONI ANEMIA (bone marrow aplasia of genetic origin)

PAROXYSMAL NOCTURNAL HEMOGLOBINURIA

CLINICAL FEATURES OF ACUTE MYELOID LEUKEMIA

SIGNS OF BONE MARROW FAILURE

Anemia	\rightarrow	fatigue, dyspnea
Neutropenia	\rightarrow	infection
Thrombocytopenia	\rightarrow	hemorrhage

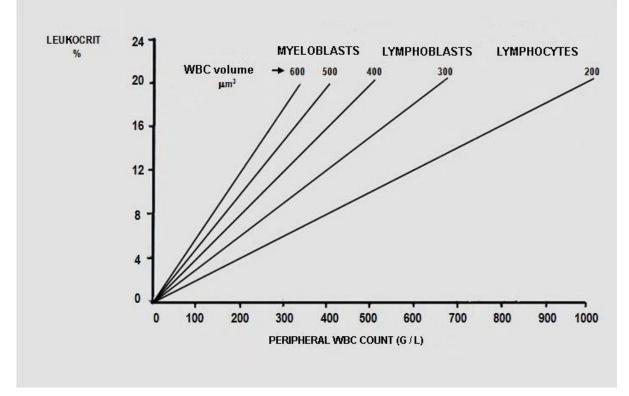
TUMORAL SIGNS DUE TO BLASTIC INFILTRATION

Frequently absent Gingival involvement¹ Cutaneous involvement¹ Neuromeningeal involvement¹ Lymphadenopathy, splenomegaly

OTHER DISORDERS

Lysozyme tubulopathy¹ Uric nephropathy Electrolytic disorder $(\oslash K^+, \oslash Ca^{++})$

¹Acute myelomonocytic, monoblastic or monocytic leukemia


CLINICAL FEATURES OF ACUTE MYELOID LEUKEMIA (2)

DISSEMINATED INTRAVASCULAR COAGULATION : DIC

Mainly acute promyelocytic leukemia with t(15;17)(q24;q21); PML-RARA

LEUKOSTASIS

Mainly acute myelomonocytic, monoblastic or monocytic leukemia

ACUTE MYELOID LEUKEMIA BONE MARROW AND PERIPHERAL BLOOD

BONE MARROW

≥ 20 % BLASTS

PERIPHERAL BLOOD

PERIPHE BLOO		1	2	3	4	5
HEMOGLOBIN	g / L	78	117	82	97	56
MCV	fL					112
WBC	G/L	320	0.9	7.6	115	3.1
PLATELETS	G/L	12	12	97	426	76

1. Acute myeloid leukemia with very high WBC count (hyperleukocytosis)

2. Aleukemic acute myeloid leukemia (absence of blasts or rare blasts in peripheral blood)

3. Acute myeloid leukemia with normal WBC count (blasts : 85% in peripheral blood)

4. Acute transformation of myeloproliferative neoplasm (persisting thrombocytosis)

5. Acute transformation of myelodysplastic syndrome (macrocytosis !)

ACUTE MYELOID LEUKEMIA (AML) WHO CLASSIFICATION 2008

CRITERIA

CYTOLOGY - CYTOCHEMISTRY - IMMUNOPHENOTYPING - CYTOGENETICS - MOLECULAR BIOLOGY

CLASSIFICATION

ACUTE MYELOID LEUKEMIA WITH RECURRENT CYTOGENETIC ABNORMALITIES

Cytogenetics	Rearrangement	Hematological features	
t(8;21)(q22;q22)	RUNX1-RUNX1T1	AML generally with neutrophil lineage maturation	
inv(16)(p13.1q22) ou t(16;16)(p13.1;q22)	CBFB-MYH11	Myelomonocytic AML with abnormal bone marrow eosinophils	
t(15;17)(q24;q21)	PML-RARA	Acute promyelocytic leukemia and microgranular variant	
t(9;11)(p21;q23)	MLLT3-MLL	AML usually associated with monocytic differentiation	
t(6;9)(p22;q34)	DEK-NUP214	AML frequently with basophilia, multilineage dysplasia \pm monocytosis	
inv(3)(q21q26.2) or t(3;3)(q21;q26.2)	RPN1-MECOM	AML with often normal or <a>Platelet count in peripheral blood; <a> of atypical megakaryocytes in the bone marrow; multilineage dysplasia	
t(1;22)(p13;q13)	RBM15-MKL1	Peripheral blood and bone marrow similar to the acute megakaryoblastic leukemia NOS ¹ , cf. p.156	

Provisional entities : AML with NPM1 or CEBPA mutations (cf. p. 157)

ACUTE MYELOID LEUKEMIA (AML) WHO CLASSIFICATION 2008 (2)

ACUTE MYELOID LEUKEMIA WITH MYELODYSPLASIA RELATED CHANGES

AML from previous MDS or MDS / MPN AML with MDS-related cytogenetic anomaly AML with multilineage dysplasia

THERAPY-RELATED MYELOID NEOPLASMS (t-AML, t-MDS, t-MDS / MPN)

Alkylating agents, ionizing radiation therapy, topoisomerase II inhibitors, antimetabolites, antitubulin agents

ACUTE MYELOID LEUKEMIA, NOS¹

cf. p.155-156 Acute basophilic leukemia Acute panmyelosis with myelofibrosis

MYELOID SARCOMA

MYELOID PROLIFERATIONS RELATED TO DOWN SYNDROME

BLASTIC PLASMACYTOID DENDRITIC CELL NEOPLASM

ACUTE LEUKEMIAS OF AMIBIGUOUS LINEAGE

Acute undifferentiated leukemia Mixed phenotype acute leukemia with t(9;22)(q34;q11.2); *BCR-ABL1* : B (or T) and myeloid lineages Mixed phenotype acute leukemia with t(v;11q23); *MLL* rearranged Mixed phenotype acute leukemia B / myeloid, NOS¹ Mixed phenotype acute leukemia T / myeloid, NOS¹ ¹NOS : Not Otherwise Specified

ACUTE MYELOID LEUKEMIA (AML) WHO CLASSIFICATION 2008 (3)

ACUTE MYELOID LEUKEMIA, NOS

With minimal differentiation :	Blasts \ge 20% of NMC ¹ , P ² + and SB ³ + < 3%, presence of myeloid markers : CD34 +, CD13 + and / or CD117 +, CD33 + (60%); T-marker : CD7 + (40%)
Without maturation :	Blasts \ge 90% of NENC ⁴ , P + and SB + \ge 3%, promyelocytes \rightarrow neutrophils \le 10% of NENC, CD34 +, CD13 +, CD33 +, CD117 +, generally CD15 -, CD65 -
With maturation :	Blasts 20-89% of NENC, P+, SB+, promyelocytes \rightarrow neutrophil \geq 10% of NENC, CD34 +, CD13 +, CD33 +, CD65 +, CD11b +, CD15 +
With myelomonocytic differentiation :	Blasts 20-79% of NENC. Monoblasts \rightarrow monocytes \geq 20% of NENC and / or monocytosis in peripheral blood \geq 5 G / L, P+, ANBE ⁵ +, DE ⁶ +, CD34 +, CD13 +, CD33 +, CD65 +, CD15 + [monocytic differentiation : CD14 +, CD4 +, CD11b +, CD11c +, CD64 +, CD36 +, CD68 + (PGM1 ⁷), CD163 +, lysozyme +]

¹NMC : Nucleated Marrow Cells; ² P : Peroxydase; ³SB : Sudan Black; ⁴NENC : Non Erythroid Nucleated Cells ⁵ANBE : α-naphtyl-butyrate esterase; ⁶DE : double esterase ANBE + CAE *(chloroacetate esterase)*; ⁷PGM1 : phosphoglucomutase 1

ACUTE MYELOID LEUKEMIA (AML) WHO CLASSIFICATION 2008 (4)

ACUTE MYELOID LEUKEMIA, NOS (2)

With monoblastic or monocytic differentiation :	Monoblastic : Monoblasts ≥ 80% of NENC ¹ Monocytic : Monoblasts < 80% of NENC, presence of promonocytes and monocytes, $P^2 \pm$, ANBE ³ +, CD34 +, CD13 +, CD33 +, CD15 +, CD65 +, CD14 +, CD4 +, CD11b +, CD11c +, CD64 +, CD68 +, CD36 +, lysozyme +
With erythroblastic differentiation :	Erythroleukemia (Erythroid / myeloid) : \geq 50% erythroid precursors (with signs of dysplasia, PAS ⁴ ±, glycophorin +) of NMC ⁵ , \geq 20% myeloblasts of NENC (myeloid markers of AML minimal or without differentiation) Pure erythroid leukemia : \geq 80% of dysplastic erythroid precursors (basophilia, vacuoles, PAS +, glycophorin +), without myeloblastic component
With megakaryoblastic differentiation :	Blasts \ge 20% of NMC; \ge 5% of blasts must express markers of megakaryocytic lineage : CD34 +, CD CD41 + (glycoprotein IIb/IIIa) and / or CD61 + (glycoprotein IIIa), CD42 ± (glycoprotein Ib), vW ⁶ +. Other markers : CD13 ±, CD33 ±, CD36 +

¹NENC : Non Erythroid Nucleated Cells; ²P : Peroxydase; ³ANBE : α-naphtyl-butyrate esterase; ⁴PAS : Periodic acid-Schiff ⁵NMC : Nucleated Marrow Cells; ⁶vW : von Willebrand

PROGNOSTIC FACTORS IN ACUTE MYELOID LEUKEMIA (AML)

		FAVORABLE	UNFAVORABLE	
Age		< 50 y	> 60 y	
Karnofsky ¹ Index	ĸ	> 60%	< 60%	
Phenotype		CD34 - MDR1 ² neg	CD34 + MDR1 pos	
Leukocytes (WE	BC)	< 30 G / L	> 30 G / L	
Post chemo- and / or radiotherapy Prior hematological disorder (MPN, MDS, other)		No	Yes	
Genetics		t(8;21), inv(16) / t(16;16), t(15;17)	Complex karyotypic anomalies, -5, -7, t(6;9), 3q26, 11q23 aberrations [except t(9;11) (p21;q23)]	
Molecular genetic	Mutations	NPM1 ³ ,CEBPA ⁴	FLT3-ITD ⁵ , MLL-PTD ⁶ , WT1 ⁷ , KIT (CD117) NPM1 + FLT3	
alterations	Overexpression	Apoptosis promoters (bax, ♂bax / BCL2 ratio)	EVI1 ⁸ BAALC ⁹ , Apoptosis inhibitors (BCL2) ERG ¹⁰ , MN1 ¹¹	

¹ Karnofsky Index : patient performance index, cf. next page; ² MDR : Multidrug Resistance; ³ NPM1 : Nucleophosmine, member 1; ⁴ CEBPA : CCAAT / Enhancer Binding Protein α ; ⁵ FLT3-ITD : Fms-Like tyrosine Kinase 3-Internal Tandem Duplication (*Tyrosine kinase receptor*); ⁶ MLL-PTD : Myeloid / Lymphoid or Mixed Lineage Leukemia-Partial Tandem Duplication; ⁷ WT1 : Wilms' Tumor 1; ⁸ EVI1 : Ecotropic Viral Integration site 1; ⁹ BAALC : Brain and Acute Leukemia, Cytoplasmic; ¹⁰ ERG : ETS (Erythroblast Transformation Specific)-Related Gene; ¹¹MN1 : Meningioma 1

KARNOFSKY PERFORMANCE STATUS

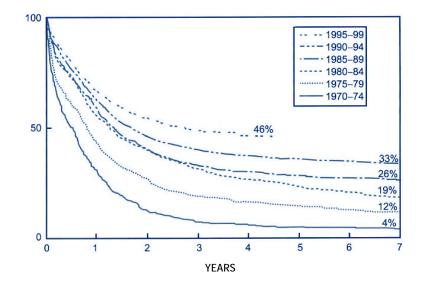
LEVEL OF PERFORMANCE	%	CRITERIA
	100	Normal, no complaints; no evidence of disease
Normal activity No assistance needed	90	Able to carry on normal activity; minor signs or symptoms of disease
	80	Normal activity with effort; some signs or symptoms of disease
	70	Cares for self; unable to carry on normal activity or to do active work
Impaired activity Ambulatory assistance needed	60	Requires occasional assistance but is able to care for most of his / her needs
	50	Requires considerable assistance and frequent medical care
Assistance dependent Hospital care desirable	40	Disabled; requires special care and assistance
	30	Severely disabled; hospitalization is indicated although death not imminent
	20	Very sick; hospitalization necessary; active supportive treatment necessary
Terminal care	10	Moribund; fatal processes progressing rapidly
	0	Deceased

ACUTE MYELOID LEUKEMIA THERAPEUTICAL PRINCIPLES

SUPPORTIVE CARE

TREATMENT OF INFECTION TRANSFUSION SUPPORT (RBC, platelets)

CHEMOTHERAPY


INDUCTION CONSOLIDATION INTENSIFICATION

HEMOPOIETIC STEM CELL / BONE MARROW TRANSPLANTATION

ALLOGENEIC (\rightarrow 60 y) MINI-ALLO TRANSPLANT

Reduced intensity conditioning transplant Compatible sibling donor : 20-30% of patients have an HLA identical sibling donor Unrelated donor

AUTOLOGOUS (peripheral blood stem cells / BM)

Survival improvement for patients 15-59 years of age from 1970-1999 (UK MRC : United Kingdom Medical Research Council)

Burnett A.K. : Treatment of acute myeloid leukaemia in younger patients. Clinical Haematology 2001; 14 : 95-118.

TREATMENT OF ACUTE MYELOID LEUKEMIA CHEMOTHERAPY

CYTARABINE + ANTHRACYCLIN (Daunorubicin, Idarubicin) : "7 + 3" CYTARABINE + MITOXANTRONE

TAD (6-Thioguanine + Cytarabine + Daunorubicin); Etoposide

Complete remission rate *(after 1st or 2nd induction cycle)*, survival rate after consolidation and intensification : highly variable in relation with presence of main adverse risk factors or not :

Age > 60 years Low perfomance index Adverse cytogenetic and / or molecular anomalies History of chemotherapy or radiation exposition History of myelodysplasia or other hematological disorder

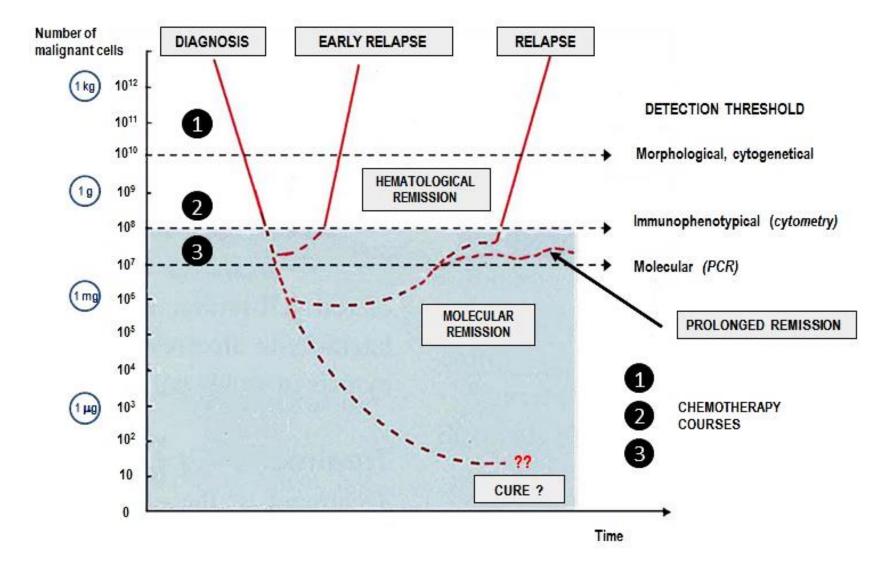
Improvement of survival after autologous or allogeneic hematopoietic stem cell transplantation (with reduced intensity conditioning for patients over 60) Relapse free 5 year survival rate (allogeneic HLA-identical donor) : 18-59%

ATRA (all-trans retinoic acid) + Cytarabine and Anthracyclin :

Acute promyelocytic leukemia t(15;17)(q24;q21); PML-RARA

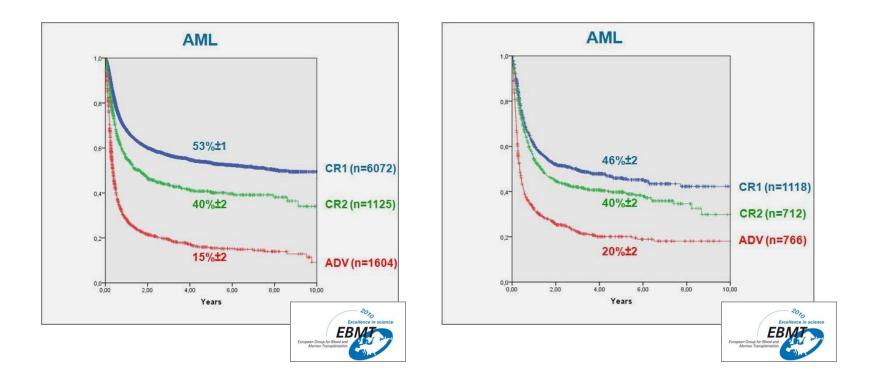
TREATMENT OF RELAPSE¹

Fludarabine, Decitabine, Clofarabine, inhibitors of farnesyltransferase (Tipifarnib), of MDR1², BCL2³, FLT3⁴, tyrosine kinase (if KIT mutation), antiangiogenic drugs (anti-VEGF : Bevacizumab), anti-CD33 (Gemtuzumab, Lintuzumab), Arsenic trioxide for acute promyelocytic leukemia


¹ Most mentioned new drugs (apart from arsenic trioxide) are still on clinical trials

³ BCL2 : B-Cell Leukemia / Lymphoma 2 (protooncogene, inhibitor of apoptosis)

⁴FLT3 : Fms-Like tyrosine Kinase 3 (tyrosine Kinase receptor)


² MDR : Multidrug Resistance

KINETICS OF LEUKEMIC CELLS UNDER TREATMENT

ACUTE MYELOID LEUKEMIA : ALLOGENEIC TRANSPLANTATION

ADULTS TRANPLANTED BETWEEN 1999 AND 2009 ALLOGENEIC TRANSPLANT HLA COMPATIBLE SIBLING DONOR ADULTS TRANSPLANTED BETWEEN 1999 AND 2009 ALLOGENEIC TRANSPLANT UNRELATED HLA COMPATIBLE DONOR

Modified from EBMT Registry 2010 European Group for Blood and Marrow Transplantation.

LYMPHOID NEOPLASMS¹ (WHO 2008)

PRECURSOR B-CELL OR T-CELL NEOPLASMS

B-cell lymphoblastic leukemia / lymphoma T-cell lymphoblastic leukemia / lymphoma

MATURE B-CELL NEOPLASMS (cf. p. 175-195)

MATURE T-CELL AND NK-CELL NEOPLASMS (cf. p. 196-200)

HODGKIN LYMPHOMA (cf. p. 201-204)

IMMUNODEFICIENCY-ASSOCIATED LYMPHOPROLIFERATIVE DISORDERS

¹ Former lymphoproliferative syndromes, malignant lymphomas

LYMPHOID NEOPLASMS (2)

PROOF OF MONOCLONALITY

Expression of one type only of light chain (κ or λ) on the lymphocyte surface (B)

Rearrangement of Ig genes (B)

Presence of paraprotein (B)

Rearrangement of TCR¹ genes (T)

Cytogenetics (B,T, NK)

CLINICAL CONDITION PERFORMANCE STATUS OF THE EASTERN COOPERATIVE ONCOLOGY GROUP (ECOG)

GRADE	ECOG
0	Fully active, able to carry on all pre-disease performance without restriction
1	Restricted in physically strenuous activity but ambulatory and able to carry out work of a light or sedentary nature
2	Ambulatory and capable of all selfcare but unable to carry out any work activities. Up and about < 50% of waking hours
3	Only capable of limited selfcare, confined to bed or chair > 50% of waking hours
4	Completely disabled. Cannot carry on any selfcare. Totally confined to bed or chair

PROGNOSTIC FACTORS

Histology (low grade → high grade) Staging Tumor volume ("bulky") Performance status (ECOG score) LDH serum level Presence or not of inflammatory syndrome

CLINICAL BEHAVIOUR (survival without treatment)

Indolent	years
Aggressive	months
Highly aggressive	weeks

¹ TCR : T-Cell Receptor

LYMPHOID NEOPLASMS (3) STAGING (ANN ARBOR CLASSIFICATION)

STAGES	EXTENSION
I	Involvement of single lymph node region
le	Limited involvement of single extralymphatic organ or site
II	Involvement of two or more lymph node regions on the same side of the diaphragm alone
lle	With involvement of limited contiguous extralymphatic organ or tissue
Ш	Involvement of lymph node regions on both sides of the diaphragm
IIIs	With spleen involvement
IIIE	With limited, contiguous extralymphatic organ or site
IIIES	With limited involvement of contiguous extralymphatic organ or site and spleen
IV	Diffuse or disseminated foci of involvement of one or more extralymphatic organ(s) or tissue(s) (digestive tract, liver, lung, bone marrow, bone) with or without associated lymphatic involvement

LYMPHOID NEOPLASMS (4) INITIAL ASSESSMENT

Lymph node or tissue biopsy

(Histology, immunophenotyping, molecular biology, cytogenetics)

Staging :

Clinical examination CT-scan (if indicated PET-CT) Bone marrow cytology and histology (Spinal tap : CSF¹ examination)

Evaluation of prognosis :

Histological type (low grade vs. high grade malignancy) IPI² score or aaIPI³ (aggressive lymphoid neoplasms) : 1 pt. / criterion Clinical condition (ECOG⁴ score) 0 - 1 vs. ≥ 2 Ann Arbor I-II vs. III-IV Extranodal involvement 0-1 vs. > 1 site LDH ≤ normal value vs. > normal level

Assessment of possible etiology :

History of immunosuppression (EBV) Prior chemotherapy and / or radiotherapy HIV, HTLV-1 serology

Further tests :

ECG, creatinin, calcemia, liver tests, search of paraprotein, β_2 -microglobulin

¹ CSF : Cerebrospinal fluid	² IPI : International Prognostic Index	³ aaIPI: age adjusted IPI, 3 prognostic factors : ECOG + Ann Arbor + LDH	

IPI SCORE	TX WITHOUT RITUXIMAB OVERALL SURVIVAL AT 5 YEARS (%)	TX WITH RITUXIMAB OVERALL SURVIVAL AT 3 YEARS (%)
0 - 1	73	91
2	51	81
3	43	65
4-5	26	59

Age ≤ 60 years vs. > 60 years

aalPI SCORE	≤ 60 YEARS OLD OVERALL SURVIVAL AT 5 YEARS (%)	> 60 YEARS OLD OVERALL SURVIVAL AT 5 YEARS (%)
0	83	56
1	69	44
2	46	37
3	32	21

Modified from Freedman A.S .& Friedberg J.V. : Evaluation, staging and prognosis of non-Hodgkin lymphoma.; January 2013, UpToDate.

LYMPHOID NEOPLASMS (5) TREATMENT

HIGHLY AGGRESSIVE LYMPHOID NEOPLASM (e.g. Precursor B- or T-cell lymphoblastic leukemia / lymphoma)

CHOP¹, DHAP²... Intensification with autologous transplantation or stem cell reinfusion

Overall 5 years survival about 25%

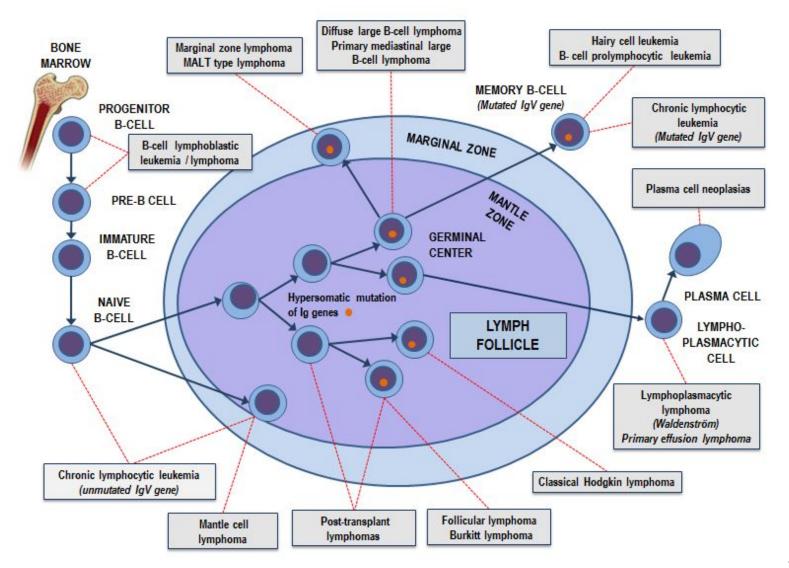
AGGRESSIVE LYMPHOID NEOPLASM (e.g. diffuse large B-cell lymphoma)

CHOP, MACOP-B³, BACOP⁴, ACVP⁵, CHOP¹ + Rituximab (anti-CD20) Intensification + autologous transplant

Overall 5 years survival about 30-40% (dependent on IPI score, cf. previous page)

INDOLENT LYMPHOID NEOPLASM (e.g. follicular lymphoma grade 1-2)

Radiation therapy, α-Interferon, purine analogues (*Fludarabine*, *Cladribine*), monoclonal antibodies : Rituximab (*Mabthera®*) alone or in combination, radioimmunoconjugates : Ibritumomab (*Zevalin®*), CVP⁶, CHOP¹


Overall 5 years survival about 50-70%

- ¹CHOP : Cyclophosphamide + Doxorubicin + Vincristine + Prednisone
- ²DHAP : Dexamethasone + Cisplatin + Cytarabine
- ³MACOP-B : Methotrexate + Doxorubicin + Cyclophosphamide + Vincristine + Bleomycin + Prednisone
- ⁴BACOP : Cyclophosphamide + Doxorubicin + Vincristine + Bleomycin + Prednisone

⁵ ACVP : Doxorubicin + Cyclophosphamide + Vincristine + Prednisone

⁶ CVP : Cyclophosphamide + Vincristine + Prednisone

B-CELL DIFFERENTIATION RELATIONSHIP TO MAJOR B-CELL NEOPLASMS

PRECURSOR B OR T-CELL LYMPHOID NEOPLASMS

LYMPHOBLASTIC LEUKEMIA / LYMPHOMA

B-cell lymphoblastic leukemia / lymphoma, NOS¹ (B-ALL / B-LL)

B-cell lymphoblastic leukemia / lymphoma with recurrent genetic anomalies

T-cell lymphoblastic leukemia / lymphoma

¹ NOS : Not Otherwise Specified

B-CELL LYMPHOBLASTIC LEUKEMIA / LYMPHOMA, NOS

B ACUTE LYMPHOBLASTIC LEUKEMIA (B-ALL)

Bone marrow usually involved, peripheral

blood frequently

Extramedullary involvement

Central nervous system

Lymph nodes, spleen, liver

Testes

Pancytopenia

Leukocyte count decreased, normal or very high

B LYMPHOBLASTIC LYMPHOMA (B-LBL)

Most frequent sites of involvement

Skin

Soft tissues

Bone marrow

Lymph nodes

B-CELL LYMPHOBLASTIC LEUKEMIA / LYMPHOMA WITH RECURRENT GENETIC ANOMALIES

CYTOGENETICS	FUSION TRANSCRIPT	PROGNOSIS
t(9;22)(q34;q11.2)	BCR-ABL 1	very poor
t(v;11q23)	MLL rearranged	poor
Hypodiploidy (< 46 chromosomes)		poor
t(1;19)(q23;p13.3)	TCF3-PBX1	intermediate
t(5;14)(q31;q32)	IL3-IGH	intermediate
t(12;21)(p13;q22)	ETV6-RUNX1	good ¹
Hyperdiploidy (51-65 chromosomes)		good ¹

¹ In absence of adverse prognostic factors : age > 10 years, higher initial WBC count, slow response to initial therapy, minimal residual disease after therapy, CNS involvement at diagnosis

Frequent mediastinal (thymic) involvement

Lymphadenopathies

Extranodal sites : skin, tonsils, liver, spleen, central nervous system, testes

High leukocyte count

High risk disease in childhood (induction failure, early relapse, isolated CNS relapse)

In adults, better prognosis than for B-ALL with adverse prognostic cytogenetic anomalies

LYMPHOBLASTIC LEUKEMIA / LYMPHOMA IMMUNOLOGICAL MARKERS

	MARKERS	PRO-B	EARLY PRE-B	PRE-B	B MATURE
B-ALL :	CD19	+	+	+	+
DALL .	CD10	-	+	+	-
PRO-B or EARLY PRE-B CD10 -	CD20	-	+ / -	+	+
	CD22	+ cyto	+	+	+
EARLY PRE-B or EARLY PRE-B CD10 + or COMMON PRE-B ALL	CD34	+ +	+	-	-
	HLA-DR	+	+	+	+
PRE-B	TdT	+ + +	+ +	+	+ / -
B MATURE (type Burkitt ALL) cf. p.185	clgM ¹	-	-	+	
	sIgM ²	-	-	-	+
	MARKERS	PRE-T	EARLY-T	T CORTICAL	t mature
T-ALL :	CD7	+	+	+	+
	CD2	-	+	+	+
PRE-T	CD5	-	+	+	+
EARLY-T	CD1a	-	-	+	-
T CORTICAL	cCD3 ¹	+	+	-	-
T MATURE OR MARROW T	CD3	-	-	+/-	+
	CD4 & CD8	-	-	+	-
¹ clgM, cCD3 : Intracytoplasmic lgM, CD3	CD4 or CD8	-	-	-	+
² slgM : IgM expressed on cell surface	TdT	+	+	+	+

TREATMENT OF LYMPHOBLASTIC LEUKEMIA / LYMPHOMA

PREDNISONE - VINCRISTINE - ANTHRACYCLINS - MITOXANTRONE - ASPARAGINASE

PRINCIPLES :	Induction - Consolidation	on - Mainte	nance	
RESULTS :	Adults ¹ (1991-2002) :	CR [*] :	64-93%	
		DFS** :	20-42%	(at 5 years)
	Children ² :	CR* :	88-96%	(2 children / 3 cured at 5 years)

ALL BCR-ABL 1+	Chemottherapy alone (historical controls) ³	Chemotherapy + Imatinib (%) (n = 45) ⁴	
Hematological CR*	71	96	Followed, if possible, (age ≤ 55 years, related or
Molecular CR [*]		29	unrelated donor) by bone marrow / stem cell transplantation in CR
Overall survival (at 18 months)	39	65	
DFS ^{**} (at 18 months)	31	51	*CR : Complete Remission **DFS : Disease Free Survival

Developments of therapeutical possibilities :

Stratification for risk factors

Allograft in patients with unfavorable risk factors, early autologous transplantation with peripheral blood progenitor cells Nucleosidic analogues (Clofarabine, Nelarabine), FMdC (ribonucleotide reductase inhibitor), Trimetrexate (dihydrofolate reductase inhibitor), liposomal Vincristine, Flavopiridol (Cyclin-Dependent Kinase (CDK) inhibitor), monoclonal antibodies (anti-CD20, anti-CD52) Arsenic trioxide, proteasome or tyrosine kinase inhibitors⁵

¹ Hoelzer D., Gökbuget N. : Acute lymphocytic leukemia in adults, in Hoffman R. et al., Hematology : Basic Principles and Practice 2005; Elsevier : p. 1181.

² Rivera G.K., Crist W.M. : Acute Lymphoblastic Leukemia, in Handin R.I. et al., Blood : Principles & Practice of Hematology 1995; J.P. Lippincott : p. 758.

³ Larson R.A. : Induction therapy for Philadelphia chromosome positive acute lymphoblastic leukemia in adults; January 2013, UpToDate.

⁴ Labarthe A. et al. : Imatinib combined with induction or consolidation chemotherapy in patients with de novo Philadelphia chromosome-positive acute lymphoblastic leukemia : results of the GRAAPH-2003 study. Blood 2007; 109 : 1408-1413.

⁵ Thomas D.A. et al. : New agents in the treatment of acute lymphocytic leukaemia. Clinical Haematology 2002; 15 : 771-790.

MATURE B-CELL LYMPHOID NEOPLASMS

CHRONIC LYMPHOCYTIC LEUKEMIA (CLL)

DEFINITION

Monoclonal B-cell lymphoid proliferation

SYMPTOMS AND CLINICAL FEATURES

Fortuitous diagnosis Lymph node enlargement Splenomegaly Relapsing infections Severe anemic syndrome Hemorrhagic manifestations

BLOOD PICTURE

Relative and absolute lymphocytosis Monoclonality shown by cell surface markers : Coexpression of CD5 / CD19 $\kappa \text{ or } \lambda$ expression

CLASSIFICATION (cf. next page)

Rai Binet

RAI CLASSIFICATION (1975)

STAGE	CRITERIA	MEDIAN SURVIVAL (MONTHS)
0	Isolated monoclonal lymphocytosis (peripheral blood and bone marrow)	150
I	0 + lymphadenopathies ¹	101
II	0 and 1 + splenomegaly ² and / or hepatomegaly ²	71
III	0 and Hb < 100 g / L \pm tumoral syndrome	19
IV	0 and platelets < 100 G / L \pm tumoral syndrome	19

BINET CLASSIFICATION (1981)

STAGE	LYMPHOID SITES ³	Hb AND PLATELETS	MEDIAN SURVIVAL (MONTHS)
А	< 3	Hb ≥ 100 g / L	Comparable to age- matched control
В	≥ 3	Platelets ≥ 100 G / L	84
С	Irrelevant	Hb < 100 g / L <u>or</u> Platelets < 100 G / L	24

¹ Cervical, axillary, inguinal lymph nodes on clinical examination

² On abdominal palpation

³ Cervical, axillary, inguinal lymph nodes, splenomegaly and hepatomegaly on clinical examination

Rai K.R., Keating M.J. : Staging and prognosis of chronic lymphocytic leukemia; January 2013, UpToDate.

CHRONIC LYMPHOCYTIC LEUKEMIA (3)

COURSE AND COMPLICATIONS

Infection secondary to :

B-cell immunological defect Potential neutropenia (mainly secondary to chemotherapy)

Autoimmune manifestation¹

Hemolytic anemia with positive direct Coombs test (advanced stage : 11%) Immune thrombocytopenia (early stage : 2-3%) Pure red cell aplasia / Erythroblastopenia (early stage : 6%)

Prolymphocytoid transformation (~ 10%)

Transformation to diffuse large B-cell lymphoma (DLBCL) : Richter syndrome (1-10%)

Arisk of developing another neoplasm : bone, skin, thyroid, ENT region, lung

DIFFERENTIAL DIAGNOSIS

Viral or bacterial lymphocytosis (cf. p. 114)

Other lymphoid neoplasm

¹ Diehl L.F., Ketchum L.H.: Autoimmune disease and chronic lymphocytic leukemia : autoimmune hemolytic anemia, pure red cell aplasia, and autoimmune thrombocytopenia. Semin Oncol 1998; 25 : 80-97.

CHRONIC LYMPHOCYTIC LEUKEMIA (4) PROGNOSTIC FACTORS

PARAMETER	FAVORABLE	UNFAVORABLE
Rai or Binet stages	Low	High
Bone marrow lymphocytic infiltration	Focal	Diffuse
Peripheral lymphocytosis doubling time	> 12 months	< 12 months
Immunophenotyping	CD38 -, ZAP-70 - ¹	CD38 +, ZAP 70 +, 주 CD20, 주 CD52
Conventional cytogenetics or FISH	Normal karyotype Del(13)(q14.3) isolated	Del(11)(q22.3) Del(17)(p13.1) / TP53 anomalies
IgV genes (variable region of immunoglobulins)	Mutated	Unmutated
Others		Dysfunction or ⊅ of p53 expression ⊅ TNF-α, β ₂ -microglobulin, IL-6, 8, 10, LDH, VEGFR-2 ²

¹ ZAP-70 : Zeta chain-Associated Protein : tyrosine kinase restricted to T- and NK-lymphocytes under normal physiological conditions ² Vascular Endothelial Growth Factor Receptor-2

Modified from Rai K.R., Keating M.J.: Staging and prognosis of chronic lymphocytic leukemia; January 2013, UpToDate.

CHRONIC LYMPHOCYTIC LEUKEMIA (5) TREATMENT

"Wait and watch" as long as possible

Alkylating agents (Chlorambucil, Bendamustine)

Purine analogues (Fludarabine, Cladribine)

Polychemotherapy (CVP¹, CHOP¹)

Proapoptotic drugs (monoclonal antibodies) : *Rituximab : anti-CD20*, *Alemtuzumab* (*MabCampath*) : *humanized anti-CD52*, *Ofatumumab : humanized anti-CD20* (*Affinity for CD20*)

Lenalidomide (relapsing or refractory CLL)

Steroids

Polyvalent immunoglobulin concentrates (in case of relapsing infections related to B immunological defect)

Allogeneic transplantation

(< 50 years, HLA identical donor, disease with rapid evolution. 5 years relapse free survival : 44%)

Splenectomy (possibly splenic irradiation) : in case of very large painful spleen with severe cytopenias

Large splenomegaly, few or absent lymphadenopathies			
Lymphocytosis > 100 G / L, anemia and thrombocytopenia (50% of cases)			
Large cells with prominent nucleolus :			
Treatment :	CHOP (cf. p. 167), purine analogues (fludarabine, cladribine),		
	chemotherapy + Rituximab, splenectomy		
Median survival : 30-50 months			

Immunophenotype :	CD19 +, CD20 +, CD22 +,	
	CD23 + (10-20%), cCD79a +,	
	CD79b +, FMC-7 +, CD5 + (20-30%)	
Cytogenetics :	del 17p, TP53 mutation (~ 50%), del 13q14 (~ 25%)	

HAIRY CELL LEUKEMIA (HCL)

Splenomegaly without lymphadenopathies

Pancytopenia

Leukocytes usually < 4 G / L, > 10 G / L (10-20%), exceptionally > 200 G / L, monocytopenia

Presence of tricholeukocytes, **TRAP** + (*Tartrate Resistant Alkaline Phosphatase*)

Bone marrow fibrosis

Complications : Recurrent infections Vasculitis or other immune disease Neurological disorders Bleeding occurrence Bone lesions

Immunophenotype :	CD19 +, CD11c +, CD22 +,
	CD25 +, CD103 +, CD123 +
Immunohistochemistry :	Annexin A1 +, Cyclin D1 \pm

Treatment : Purine analogues (+ Rituximab), α-interferon, splenectomy, anti-CD22 immunotoxins, anti-CD25 Overall survival at 10 years : > 90%

SPLENIC B-CELL MARGINAL ZONE LYMPHOMA (SMZL)

Splenomegaly

Variable presence in peripheral blood of villous lymphocytes Occasionally autoimmune thrombocytopenia or anemia Small monoclonal serum paraprotein 1/3 of cases) Clinical course indolent Treatment : splenectomy

Immunophenotype : CD20 +, cCD79a +, CD5 -, CD25 + / -, CD11c + / -, CD103 -, CD123 - (~ 3% of cases +)

SPLENIC B-CELL LEUKEMIA / LYMPHOMA, UNCLASSIFIABLE

Splenic diffuse red pulp small B-cell lymphoma

Frequently massive splenomegaly Usually low lymphocytosis, presence of villous lymphocytes Sometimes cutaneous infiltration *(pruritic papules)* Indolent lymphoma, not curable; beneficial effect of splenectomy

Hairy cell leukemia-variant (HCL-v) - "Prolymphocytic variant of HCL"

Average WBC count ~ 35 G / L, ☆ platelets (~ 50%), ☆ RBC (~ 25%) Lymphocytes : hybrid features of prolymphocytic leukemia and classical hairy cell leukemia

Absence of monocytopenia

Treatment :Rituximab, anti-CD22 immunotoxinUsually no response to purine analogues and to α-Interferon

Immunophenotype :	CD20 +, CD25 -, CD5 -, CD103 -,
	CD123 -, CD11c -, CD10 -, CD23 -,
	lgG +, lgD -
Immunohistochemistry :	Annexin A1 -

Cytochemistry :	TRAP - or weakly +
Immunophenotype :	Identical to classical HCL
	except : CD25 -, CD123 - / +

LYMPHOPLASMACYTIC LYMPHOMA WALDENSTRÖM MACROGLOBULINEMIA

Lymphoplasmacytic bone marrow infiltration Splenomegaly, hepatomegaly and / or adenopathy in 15-30% of patients Peripheral blood may be involved : mixture of small and large lymphocytes, sometimes with eccentric nucleus and pronounced cytoplasmic basophilia Mainly IgM paraproteinemia (WM) : hyperviscosity syndrome (IgM > 30 g / L) Possible cryoglobulinemia (~ 10%) (Raynaud phenomenon, vasculitis) Anemia of variable severity Hemodilution Bone marrow failure Autoimmune hemolytic anemia (cold agglutinins) Polyneuropathy with sensory and motor defect (anti-MAG¹ antibodies) **Bleeding tendency** (thrombocytopenia + thrombopathy) Indolent lymphoid neoplasm **Differential diagnosis :** IgM MGUS² (IgM < 30 g / L, no anemia, hepatosplenomegaly, adenopathies nor general symptoms; bone marrow lymphoplasmacytic cells < 10%) Treatment : Plasmapheresis if hyperviscosity syndrome **Rituximab alone or combined with purine analogues** (Fludarabine, Cladribine) CHOP³, corticosteroids, splenectomy Relapse : Bortezomib, Everolimus (immunosuppressive drug), Imatinib, Alemtuzumab, BCL2 anti-sense oligonucleotides, Perifosine (Akt inhibitor), allotransplant Median survival : 5-10 years

FOLLICULAR LYMPHOMA

~ 20% of non Hodgkin lymphomas, median age : 60 years, sex ratio 1 : 1.7

Origin :	Centrocytes and centroblasts from the germinal center of the lymph follicle		
Histology : Follicular architecture with centrocytes (cells of small to medium size with cleft nuclei) and centr			
	Aggressiveness dependent on the proportion of centroblasts : 1) grade I : 0-5 centroblasts / field;		
	2) grade II : 6-15 centroblasts / field; 3) grade III : > 15 centroblasts / field (magnification : 40x)		
Localisations :	Peripheral lymphadenopathies, hilar, mediastinal, spleen (40%), liver (50%), bone marrow (60-70%) Tumor bulks of the digestive tract, urinary tract, with symptoms or not, epidural		

B symptoms in 20% of cases : fever, sweats, weight loss

Immunophenotype :slg +(lgM : 50-60%, lgG : 40%), HLA-DR +, CD19 +, CD20 +, CD79a +, CD21 +, CD10 + (60%), CD5 -, CD11c -, CD23 - / +, CD43 -Cytogenetics :t(14;18)(q32;q21) : ~ 85% of cases, with lgH / BCL2 rearrangement (overexpression of BCL2¹), 3q27 anomalies, less frequent variants
t(2;18)(p12;q21), t(8;22)(q21;q11) and / or rearrangement BCL6 : 5-15% (more frequent in grade III aggressive follicular lymphomas)

Prognostic :

FLIPI² (Follicular Lymphoma International Prognostic Index)

Risk factors (1 point / factor) :	Score	Risk groups	Survival rate at 5 years (%)	Survival rate at 10 years (%)
Age > 60 years Ø LDH	0-1	Low	91	71
Hb < 120 g / L Ann Arbor stages III-IV	2	Intermediate	78	51
# lymphatic sites > 4	3-5	High	52	36

Treatment :

Localized, asymptomatic type : "wait and watch" Localized and symptomatic type : radiotherapy, possiblity surgical excision Aggressive type : Rituximab, radio-immunoconjugate anti CD20 (Ibritumomab, Ositumomab), CVP or CHOP (cf. p.167) + Rituximab, Fludarabine + Rituximab Allogeneic transplant (young patient with HLA identical donor)

¹ Oncogene inhibitor of apoptosis

² Modified from Solal-Céligny P., Roy P., Colombat P. et al. : Follicular Lymphoma International Prognostic Index. Blood 2004; 104 : 1258-1265.

MANTLE CELL LYMPHOMA

	~ 7% of non Hodgkin lymphomas, median age : 68 years, sex ratio : 3:1					
	Origin : Na	Origin : Naïve B Lymphocytes of the mantle zone of lymphatic follicle				
	Histology : 1)	Small cleaved cells, centrocytic type; 2) blastoid aggressive variant; 3) pleiomorphic aggressive variant				
	Localizations : Ly	mphadenopathies, splenomegaly (40-60%), bone marrow (> 60%), peripheral blood, digestive track,				
	W	aldeyer ring				
	B symptoms in > 1/3 of cases : fever, sweats, weight loss					
	Immunophenotype : slgM \pm lgD, λ light chains, CD19 +, CD20 +, CD5 + (rarely -), CD43 +, FMC-7 +, CD10 -, BCL6 -, CD23 - (or weak +)					
Immunohistochemistry: Cycline D1 (BCL1) + (> 90%)						
	Cytogenetics :	Rearrangement of Ig, t(11;14)(q13;q32) : 50-65% by conventional genetics, ~ 100% by FISH or PCR				

Prognosis : FLIPI¹ (*Eollicular Lymphoma International Prognostic Index*) seems more reliable than IPI (*cf. previous page*) or even MIPI (*Mantle Cell Lymphoma International Prognostic Index*) based on age, performance index, LDH level and leukocyte count, ± Ki67 expression (*proliferation index*)

Risk factors (1 point / factor) :	Score	Risk group	Survival rate at 5 years (%)
Age > 60 years ➢ LDH Hb < 120 g / L Ann Arbor, stages III-IV # lymphatic sites > 4	0-1	Low	65
	2	Intermediate	42
	≥3	High	8

Treatment :Indolent type (absence of tumor bulk or general symptoms : "wait and watch"
Low aggressive type (scores 1-2) : CHOP or CVP (cf. p. 167) ± Rituximab
Aggressive type (scores ≥ 3) :Hyper-CVAD (Cyclophosphamide + Vincristine + Doxorubicin
+ Dexamethasone) ± Rituximab, autologous graft
Bortezomib, Bendamustine + Rituximab, FCM (Fludarabine +
Cyclophosphamide + Mitoxantrone) ± Rituximab, Cladribine,
Temsirolimus (m-TOR inhibition), Thalidomide, Lenalidomide,
Non myeloablative allogeneic transplant

¹ Møller M.B. and coll. : Mantle Cell lymphoma : prognostic capacity of the Follicular Lymphoma International Prognostic Index. Br J Haematol 2006; 133 : 43-49.

BURKITT LYMPHOMA

Types :	1) Endemic (Africa); 2) Sporadic; 3) Linked to AIDS Association to EBV (Epstein-Barr Virus), mostly in endemic type			
Localization :	alization :Frequent involvement of central nervous system in all 3 typesInvolvement of jaw and other facial bones in the endemic typeAbdominal involvement (ileocecal region), ovaries, kidneys, breasts in the sporadic typeLymphadenopathies and bone marrow involvement in AIDS linked type			
Rapidly progressiv	/e, frequently bulky : important abdominal tumor mass	es		
Treatment :	CODOX-M ¹ / IVAC ² + intrathecal Methotrexate EPOCH ³ + Rituximab (patients > 60 years)	Immunophenotype :	slgM +, CD19 +, CD20 +, CD22 +, CD10 +, BCL6 +, CD38 +, CD77 +, CD43 +, BCL2 ± (20%), TdT -, Ki67 +	
Variant type :	Acute lymphoblastic leukemia Burkitt type Blood and bone marrow involvement	Cytogenetics : Overexpression of MYC immunoglobulin heavy	t(8;14)(q24;q32), variants t(2;8)(p12;q24), t(8;22)(q24;q11) C oncogene, mostly through translocation to an chain gene	
Blast cells with hyperbasophilic cytoplasm with vacuoles Frequent involvement of CNS at diagnosis Treatment : cf. p.174 (treatment of lymphoblastic leukemia / lymphoma) Extreme chemosensitivity (risk of acute tumor lysis syndrome)				

¹ CODOX-M : Cyclophosphamide + Vincristine + Doxorubicin + Methotrexate high dose

² IVAC : Ifosfamide + Cytarabine + Etoposide

³ EPOCH : Etoposide + Vincristine + Doxorubicin + Cyclophosphamide + Prednisone

n

DIFFUSE LARGE B-CELL LYMPHOMA (DLCBL)

~ 25% of r	non-Hodgkin lymj	homas, more common in males than in females, median age at diagnosis : 68 years			
Features :	Features : Cervical lymph node bulk ou abdominal mass with rapid growth B symptoms (fever, sweats, weight loss) in 30% of cases Stage I-II (~ 40%), III-IV (~ 60%) at initial presentation Extranodal and extramedullary involvement (> 40%) : Digestive track (stomach and ileocecal region) Bone, testis, breast, spleen, Waldeyer ring, salivary gland, thyroid, liver, kidney, adrenal, skin, bone marrow (11-27%)				
Morpholog		ells, prominent nucleoli and basophilic cytoplasm ariants: Centroblastic Immunoblastic Anaplastic			
Molecular subgroups:		Germinal Centre B-cell-like : GCB Activated B-cell-like : ABC			
Immunophenotype :slg (50-75%) : slgM > slgG > slgA, CD19 +, CD20 +, CD22 +, CD79a +, CD45 +, CD10 + (30-60%), CD5 - (10% +)Immunohistochemistry :expression of BCL2 + (25-80%), BCL6 + (60-90%), rearrangement of BCL6, Ki67 + (proliferation index) : > 40%Cytogenetics :t(14;18)(q32;q21) with BCL2 gene translocation (20-30%), 3q27 anomalies (BCL6 gene), MYC rearrangement (> 7)					
		1) T-cell / histiocyte rich DLBCL; 2) Primary CNS DLBCL; 3) Primary cutaneous leg type DLBCL; 4) Chronic inflammation associated DLBCL			
Prognosis : Depends on aalPl (Depends on aaIPI (age adjusted International Prognostic Index). cf. p.166			
Int		CHOP (cf. p. 167) or CEOP ¹ + Rituximab, R-CEPP ² , chemotherapy + radiotherapy ("Bulky") Intrathecal chemotherapy, surgery in case of spinal cord compression toriness or relapse : R-ICE ³ followed by autologous stem cell transplant			

¹ CEOP : Cyclophosphamide + Epirubicin + Vincristine + Prednisone; ²R-CEPP : Rituximab + Cyclophosphamide + Etoposide + Procarbazine + Prednisone ³ R-ICE : Rituximab + Ifosfamide + Carboplatin + Etoposide

PLASMA CELL NEOPLASMS

Clonal expansion of mature B cells, after isotypic switch of heavy chains, secreting a homogeneous immunoglobulin (= paraprotein) Occasional biclonality

Presence of paraprotein is also called monoclonal gammopathy

1) IgG, IgA and light chains gammopathies : Plasma cell neoplasms

2) IgM and heavy chains gammopathies :

a) Lymphoplasmacytic lymphoma (Waldenström macroglobulinemia) cf. p. 182

b) Heavy chain deposition diseases

WHO CLASSIFICATION 2008

	HISTOLOGY	CLINICAL SITES
γ heavy chain disease	Lymphoplasmacytic lymphoma	Lymph nodes, Waldeyer ring, bone marrow, spleen, liver, blood
μ heavy chain disease	Chronic lymphoid leukemia	Spleen, liver, bone marrow, blood
α heavy chain disease (IPSID)¹	Extranodal marginal zone lymphoma of mucosa associated lymphoid tissue (MALT) ²	Small bowel, mesenteric lymph nodes

¹ IPSID : Immunoproliferative small intestinal disease ² MALT : Mucosa-Associated Lymphoid Tissue

PLASMA CELL NEOPLASMS DIAGNOSIS

DIAGNOSTIC WORK-UP

Paraprotein pattern

Protein electrophoresis, immunofixation, quantitative immunoglobulins dosage (serum) Free light chains (FLC), κ / λ ratio (serum) Protein electrophoresis, immunofixation (urine)¹

Peripheral blood examination

(inclusive platelets, reticulocytes and microscopic blood smear examination / RBC rouleaux formation)

Blood chemistry:

Creatinin, Calcium, Albumin, LDH, β_2 -microglobulin, CRP, alkaline phosphatase, ALAT, ASAT

Bone marrow examination

Cytology and histology, immunophenotyping, cytogenetics and FISH²

Radiology work-up

Conventional Xray examination : spine, skull, pelvis and long bones, to be completed by CT / IRM (e.g. whole body) / PET-CT (Bone scintigram poorly reliable)

- 1 Not necessary in case of serum free light chains dosage with κ / λ ratio, except for amyloidosis work-up
- ² FISH : Fluorescent In Situ Hybridization

TYPES OF PARAPROTEINS¹ / FREQUENCY

TYPE	%	ТҮРЕ	%
lgG	50	lgD, lgM, biclonal	< 10
lgA	20	Absence of paraprotein	~3
Light chains	20	IgE	<1

*PARAPROTEIN = MONOCLONAL IMMUNOGLOBULIN

PLASMA CELL NEOPLASMS FREE SERUM LIGHT CHAINS (FLC) AND κ / λ FLC RATIO

Immunonephelometric measurement of free kappa (κ) or lambda (λ) monoclonal light chains in serum (FLC) is of diagnostic, prognostic and monitoring relevance

The result can also be expressed as the ratio of κ to λ free light chains amounts

Reference range :

 $\begin{array}{l} FLC \; \kappa : 3.3 - 19.4 \; mg \, / \, L \\ FLC \; \lambda : 5.7 - 26.3 \; mg \, / \, L \\ \kappa \, / \, \lambda \; ratio : \; 0.26 \; - 1.65 \end{array}$

Examples:

- FLC κ : 9.6 mg / L FLC λ : 16.5 mg / L κ / λ ratio : 9.6 / 16.5 = 0.58 (normal)
- FLC κ : 2.5 mg / L FLC λ : 32.8 mg / L κ / λ ratio : 2.5 / 32.8 = 0.076 (< 0.26)¹
- FLC κ : 28.0 mg / L FLC λ : 6.25 mg / L κ / λ ratio : 28.0 / 6.24 = 4.48 (> 1.65)²

 1 Low abnormal by excess of λ FLC 2 High abnormal by excess of κ FLC

INDICATIONS TO FLC AND κ / λ RATIO MEASUREMENT

Replaces quantitative measurement of urine light chains by immunofixation in the work-up algorithm of monoclonal gammopathy documented by serum electrophoresis and immunofixation *(except for amyloidosis work-up)* Diagnostic parameter of non secretory (or low secretory) plasma cell myeloma Complementary diagnostic parameter of plasma cell myeloma with complete paraprotein Risk parameter for MGUS evolution to plasma cell myeloma Risk parameter for smoldering plasma cell myeloma to symptomatic myeloma

- Risk parameter for progression of solitary plasmacytoma
- Prognostic parameter (independent risk factor) for plasma cell myeloma

Monitoring parameter during and after treatment of plasma cell myeloma :

Early treatment response indicator

Indicator of response quality (normalization of values allows the definition of a «stringent» complete remission)

Early relapse indicator

Modified from : Dispenzieri A. & al. International Myeloma Working Group guidelines for serum free light chain analysis in multiple myeloma and related disorders. Leukemia 2009; 23 : 215-224.

MGUS AND PLASMA CELL MYELOMA DIFFERENTIAL DIAGNOSIS / COURSE

DIFFERENTIAL DIAGNOSIS OF MGUS, SMOLDERING AND SYMPTOMATIC PLASMA CELL MYELOMA

	MGUS	SMOLDERING MYELOMA	SYMPTOMATIC MYELOMA
Plasma cells (Bone marrow)	< 10%	≥ 10 %	>10%
Monoclonal immunoglobulin (lg)	< 30 g / L Souther Ig : 30-40% of cases FLC ¹ no / slight Ø	> 30 g / L ² So other lg : > 90% of cases FLC ¹ \bigtriangledown . κ / λ ratio abnormal	> 30 g / L² ☜ other Ig usual FLC¹ ↗ ↗. κ / λ ratio abnormal
CRAB ³	0	0	CRAB ³ + / ++

¹ FLC : Free Light Chain (serum). κ / λ ratio : ratio of FLC κ amount to FLC λ amount

²A paraprotein level > 30 g / L is not mandatory. Lower levels do not exclude plasma cell myeloma if other criteria present

³CRAB : Myeloma related organ involvement : Hypercalcemia (C), Renal failure (R), Anemia (A), Bone lesions (B)

RISK OF MGUS OR SMOLDERING MYELOMA PROGRESSION RELATION TO κ / λ RATIO

D		PROGNOSTIC CRITERIA	RISK OF PROGRESSION	% PATIENTS	
a. MGUS		normal κ / λ ratio ¹ paraprotein < 15 g / L IgG type	< 5% at 30 years	± 40%	
	3 - 5 % of patients > 70 years	κ / λ ratio 0.25 – 4.0	\pm 20% at 30 years	$\pm 60\%^{2}$	
is je		κ / λ ratio < 0.25 / > 4.0	\pm 45% at 30 years	± 30%	
	SMOLDERING	κ / λ ratio 0.125 – 8.0	± 50% at 15 years	-	
	MYELOMA	κ / λ ratio < 0.125 ou > 8.0	\pm 80% at 15 years	-	

The measurement of FLC and κ / λ ratio ist a key parameter for the follow-up of MGUS or indolent plasma cell myeloma. It is a reliable, independent risk factor

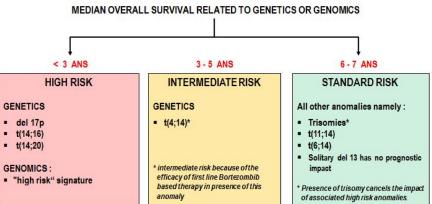
Initial measurement allows to define a patient group with excellent prognosis for whom follow-up may be done at large intervals (*e.g. yearly*)

PLASMA CELL MYELOMA PROGNOSTIC FACTORS

Paraprotein serum level : IgG or IgA Type of paraprotein : IgA unfavorable Level of serum free light chains and κ / λ ratio β_2 - microglobulin level (serum) Hypercalcemia (C) Renal failure (R) Anemia $\leq 100 \text{ g} / \text{L}$ (A) Bone lesion(s) (B)				
Bone marrow infiltration > 50% Performance index ≥ 3				
Cytogenetics (or FISH) of bone ma	rrow plasmocytes ¹			
	Definitions of risk factors are in constant evolution under the influence of clinical therapeutical trials			
IgH TRANSLOCATIONS LOSS OF	GENOMIC BALANCE			
t(14;16)* No t(14;20)* Ga t(11;14) Mo	/perdiploid on-hyperdiploid* ain of q1* onosomy 13 el(17p)*			
Genomics : GEP ² "high risk sigi	nature"			
°	erall survival and overcoming adverse prognosis in			
	multiple myeloma. Blood. 2013; 21 : 884-92.			

DURIE & SALMON STAGES

STAGE	DESCRIPTION			
I	Low tumor mass All following criteria Hemoglobin > 100 g / L IgG serum < 50 g / L or IgA serum < 30 g / L Normal calcemia Urine paraprotein < 4 g / day No generalized bone lesions			
II	Values intermediate between I and III			
III	High tumor mass One or more following criteria Hemoglobin < 85 g / L IgG serum > 70 g / L or IgA serum > 50 g / L Calcemia > 3 mMol / L Urine paraprotein > 12 g / day			
А	Creatinin (serum) < 170 µMol / L			
B Creatinin (serum) > 170 μMol / L				


PLASMA CELL MYELOMA PROGNOSTIC FACTORS (2)

ISS (International Staging System) : 8'449 patients¹

STAGE	PARAMETERS	MEDIAN SURVIVAL (MONTHS)
1	$\begin{array}{l} \beta_2\text{-m}^2 < 3.5 \text{ mg} \ / \ L \\ \text{Albumin} \ \geq 35 \text{ g} \ / \ L \end{array}$	62
2	$\begin{array}{l} \beta_2 \text{-m}^2 < 3.5 \mbox{ mg / L} \\ Albumin < 35 \mbox{ g / L} \\ ou \ \beta_2 \text{-m}^1 \ge 3.5 \ \text{-} < 5.5 \mbox{ mg / L} \end{array}$	44
3	β₂-m² ≥ 5.5 mg / L	29

¹ Modified from : Greipp P.R. et al. : International staging system for multiple myeloma. J Clin Oncol 2005; 23 : 3412-3420.

 $^{2}\beta_{2}$ -m : β_{2} -microglobulin

¹ After Bergsagel P.L. et al. : Improving overall survival and overcoming adverse prognosis in the treatment of cytogenetically high-risk multiple myeloma. Blood 2013; 121 : 884-92.

Prognostic impact of κ / λ ratio³ on ISS

RISK GROUP	1 YEAR SURVIVAL %	5 YEARS SURVIVAL %	MEDIAN SURVIVAL (MONTHS)
ISS Stage I			
κ / λ ratio 0.03 - 32	87.6	41.5	51
κ / λ ratio < 0.03/> 32	88.9	29.8	41
ISS Stage II			
κ / λ ratio 0.03 - 32	83.2	35.2	40
κ / λ ratio < 0,03 / > 32	77.5	20.5	30
ISS Stage III			
κ / λ ratio 0.03 - 32	67.6	24.4	17
κ / λ ratio < 0.03 / > 32	62.5	15.3	23

 $^{3}\kappa$ / λ ratio of serum Free Light Chains (FLC)

Modified from Snozek C.L.H., Katzmann J.A., Kyle R.A. & al. Leukemia 2008; 22 : 1933–1937.

COMPLICATIONS

Hyperviscosity syndrome (mostly IgA, IgG3)

Neurologic :compression (spinal or radicular)Renal :light chain, calcic or uric nephropathy,
amyloidosis, plasma cell infiltration

Infectious

Hematological :

bone marrow failure, thrombopathy

PLASMA CELL MYELOMA TREATMENT

INDICATION : Symptomatic plasma cell myeloma (with CRAB type symptoms) Presence at diagnosis of unfavorable risk factor(s) is not by itself an indication to treatment

Bortezomib, Lenalidomide, Thalidomide, possibly in combination or with high dose Dexamethasone

Bortezomib + Cyclophosphamide + Dexamethasone (high or reduced dosage)

Radiotherapy (solitary plasmocytoma)

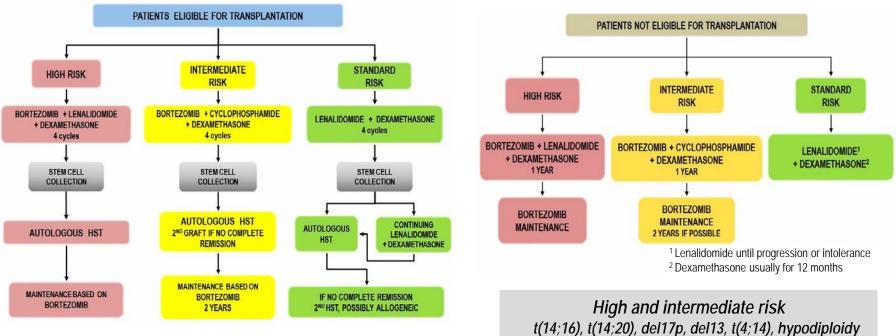
Supportive care (transfusions of RBC, platelets, antibiotics, analgesics, bisphosphonates)

Plasmapheresis (hyperviscosity syndrome)

Intensification with autologous $HST^1 \le 70$ years²

Allogeneic transplant (stem cell or bone marrow) < 55 years, possible cure, important treatment related mortality, GVH +++. Allograft with reduced intensity conditioning

As reserve : Melphalan + Prednisone, VAD³, VBAP⁴, VMCP⁵, VDT-PACE⁶


- ³ VAD : Vincristine + Doxorubicine + Dexamethasone "high dose"
- ⁴ VBAP : Vincristne + BCNU + Doxorubicine + Prednisone
- ⁵ VMCP : Vincristine + Melphalan + Cyclophosphamide + Prednisone
- ⁶ VDT-PACE : Bortezomib + Dexamethasone + Thalidomide + Cisplatine + Doxorubucine + Cyclophosphamide + Etoposide

¹ Hematopoietic Stem cell Transplantation (peripheral blood stem cells or bone marrow)

² In relation with adequate clinical status and performance index : \leq 78 years of age

PLASMA CELL MYELOMA TREATMENT (2)

EXAMPLES OF RISK RELATED TREATMENT ALGORITHMS

Eligibility for transplant :

- Autologous : age ≤ 70 years¹. Good performance index. Acceptable risk of treatment related complications
- Allogeneic : age ≤ 55 years. Good performance index. High risk of autologous transplant failure or relapse after autologous transplant In case of doubt consider transplant with reduced intensity conditioning

MATURE B-CELL LYMPHOID NEOPLASMS

Contribution of immunological markers, cytogenetics and molecular biology

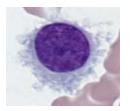
	slg	CD19	CD5	CD23	CYTOGENETI	CS OTHERS
CLL	+/-	+	+	+		
B-PLL	+	+	- / +	- / +	Del 17p(~ 509 Del 13q14(~ 25	
HCL	+	+	-	-		TRAP + CD11c + CD25 + CD103 +
SMZL	+	+	- / +	-		
FL	+	+	-	-	t(14;18)(q32;q2	21) CD10+ BCL2
MCL	+	+	+	-	t(11;14)(q13;q3	2) Cyclin D1
		CD123 ¹	CD2	25	CD11c	CD103
HCL		22 / 23 95%	24 / 969		25 / 25 100%	25 / 25 100%
HCL VARIANT		1 / 11 9%	0 / 1 0%		11 / 11 100%	4 / 11 36%
SMZL		1 / 29 3%	18 / 649		10 / 26 38%	0 / 25 0%

CLL : Chronic lymphocytic leukemia

HCL: Hairy cell leukemia

FL: Follicular lymphoma

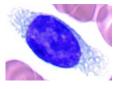
B-PLL : B-cell prolymphocytic leukemia


SMZL : Splenic B-cell marginal zone lymphoma

MCL : Mantle cell lymphoma

BCL2: B-cell Leukemia / Lymphoma 2 Protooncogene, inhibitor of apoptosis or cell death

The contribution of morphology remains paramount for the differential diagnosis of B-cell prolymphocytic leukemia, hairy cell leukemia and its variant form as for splenic B-cell marginal zone lymphoma


Prolymphocytic leukemia (Cell with big nucleolus)

Hairy cell leukemia ("Hairy" pattern of cytoplasm)

Hairy cell leukemia variant ("Hairy" pattern of cytoplasm + big nucleolus)

Splenic marginal zone B-cell lymphoma (Villous lymphocytes : hairy pattern at the poles of cytoplasm)

MATURE T-CELL AND NK-CELL LYMPHOID NEOPLASMS

T-CELL PROLYMPHOCYTIC LEUKEMIA (T-PLL)

Hepatosplenomegaly, generalized lymphadenopathy, occasionally effusion of serous membranes (pleura) High WBC count > 100 G / L (> 200 G / L in 50% of patients)

Skin involvement (20% of cases)

Aggressive disease, median survival < 1 year

Treatment : anti-CD52 (alemtuzumab)

Immunophenotype :	CD2 +, CD3 + (sometimes weakly), CD7 +, CD52 + CD4 + / CD8 - (60%); coexpression CD4 / CD8 (25%); CD4 - / CD8 + (15%) CD1a - even with 25% of cases CD4 + / CD 8 +
Cytogenetics :	inv(14)(q11;q32), t(14;14)(q11;q32), t(X;14)(q28;q11), i(8)(q10) t(8;8)(p23;q11), +8, del(6q), del(11q) Rearrangement of TCR genes

T-CELL LARGE GRANULAR LYMPHOCYTE LEUKEMIA (T-LGL)

Serious neutropenia, variable anemia (sometimes severe due to red cell aplasia)

Moderate splenomegaly

Frequent autoantibodies, immune complexes and hypergammaglobulinemia

Association with rheumatoid arthritis

Indolent clinical course, median survival ~ 13 years

Immunophenotype :	CD3 +, CD2 +, CD8 +, CD4 -/+, CD57 + and
	CD 16 + (> 80% of cases)
Cytogenetics :	Rearrangement of TCR genes

CHRONIC LYMPHOPROLIFERATIVE DISORDERS OF NK-CELLS (CLPD-NK)

Usually asymptomatic, some cases with systemic symptoms, cytopenia(s)

Sometimes in association with solid tumors, vasculitis, neuropathy, autoimmune disorders

Clinical course generally indolent : rare cases of spontaneous complete remission or of tranformation in aggressive

NK-cell leukemia

Immunophenotype :CD3 -, CD4 -, CD8 -, CD16 +, CD56 + (usually weak), CD57 -Cytogenetics :Absence of TCR genes rearrangement

AGGRESSIVE NK-CELL LEUKEMIA

Rare, prevalent in Asia, median age : 42 years

Strong association with EBV

Principal involved sites : peripheral blood, bone marrow, spleen, liver

Fulminant clinical course (coagulopathy, hemophagocytosis syndrome)

Median survival : < 2 months

Immunophenotype :CD2 +, CD3 -, CD56 +, CD 57 -Cytogenetics :del (6)(q21q25), del 11q , TCR genes in germline configuration

Japan (1977), Caribbean regi	on, Central Africa					
Clinical variants : Acute (most common) Lymphomatous Chronic Smoldering						
Lymphadenopathy, hepatosp	Lymphadenopathy, hepatosplenomegaly					
Skin involvement (rash, pape	ıles, nodules)					
Leukocytes : 5 – 100 G / L						
Lymphocytes with lobated nu	Lymphocytes with lobated nucleus Immunophenotype : CD2 +, CD3 +, CD5 +, usually CD4 +, CD 7 -, CD8 -					
Association with HTLV-1 virus Immunochemstry : Negative ALK						
Hypercalcemia Cytogenetics : Rearrangement of TCR genes						
Combol for and brock and brock and the second state of the second						

Survival for acute and lymphomatous variants : 2 weeks to > 1 year

SEZARY SYNDROME (SS)

Skin involvement (Mycosis fungoides)

Erythema, pruritus, generalized erythroderma Pautrier's microabscesses (epidermotropism)

Presence of Sézary cells in peripheral blood (> 5%) Lymphocytes with convoluted, cerebriform nucleus (cleft)

Secondary infiltration of tissues and organs

Lymph nodes, bone marrow, lungs, heart, kidneys, bone

Aggressive disease

Overall survival rate : 10-20% at 5 years

Stages of Mycosis fungoides and Sézary syndrome

Stages	Extension
IA/B	Exclusive skin involvement (patch / plaque) A : skin < 10% of cutaneous surface B : skin > 10% of cutaneous surface
II A / B	Stage I with : A : clinical lymph node involvement or : B : cutaneous tumors
III	Erythroderma : > 80% of cutaneous surface
IV A / B	A : histological lymph node involvement or Sézary cells in peripheral blood B : secondary infiltration of tissues and organs

Modified from : Baumann Conzett K. et coll. : Lymphomes cutanés. Classification et recommandations thérapeutiques. Forum Med Suisse 2009, 42 : 744-749.

Immunophenotype :	CD2 +, CD3 +, CD5 +, CD4 + (usually) CD8 -, CD26 -, CD7- (or weakly +)
Cytogenetics :	TCR genes rearrangement

MATURE T-CELL AND NK-CELL LYMPHOID NEOPLASMS Contribution of immunological markers, cytogenetics and molecular biology

	CD4	CD8	CD56	RTCR	OTHERS
T-PLL	+	+/-	-	+	inv(14)
T-LGL	- / +	+	-	+	CD3 +
CLPD-NK	-	-	+ (weak)	-	CD3 -
ATLL	+	-	-	+	-
SS	+	-	-	+	-

RTCR : Rearrangement of genes coding for variable part of TCR (T-Cell Receptor)

- T-PLL : T-cell prolymphocytic leukemia
- T-LGL : T-cell large granular lymphocytic leukemia
- CLPD-NK : Chronic lymphoproliferative disorders of NK-cells
- ATLL : Adult T-cell leukemia / lymphoma
- SS : Sézary syndrome

HODGKIN LYMPHOMA

SYMPTOMS AND CLINICAL FEATURES

B symptoms:

Unexplained persistent and recurrent fever > 38°C during the previous month Recurrent drenching nights sweats during the previous month Unexplained loss of > 10% of body weight during the 6 months before initial staging

Other symptoms : pruritus alcohol-induced pain (usually abdominal)

Lymphadenopathy(-ies)

Mediastinal involvement mainly in nodular sclerosis subtype Abdominal (and splenic) involvement mainly in mixed cellularity subtype

HISTOLOGY

Reed-Sternberg cells (most often of B-cell origin)

5 histological types : Nodular lymphocyte predominant Hodgkin lymphoma Classical Hodgkin lymphoma

Nodular sclerosis type Lymphocyte-rich type Mixed cellularity type Lymphocyte-depleted type

HODGKIN LYMPHOMA (2)

STAGING - COTSWOLDS REVISION (1989) OF THE ANN ARBOR CLASSIFICATION

STAGE	DESCRIPTION				
I	Involvement of a single lymph node region or lymphoid structure (e.g. spleen, thymus, Waldeyer ring)				
II	Involvement of two or more lymph node regions on the same side of the diaphragm (the mediastinum is a single site; hilar lymph nodes are lateralized). The number of anatomic sites involved should be indicated by suffix (e.g. II ₃)				
III	Involvement of lymph nodes regions or structures on both sides of the diaphragm				
III ₁	With or without spleen involvement (III _s) and with hilar splenic, coeliac or portal nodes involvement				
III ₂	With paraaortic, iliac or mesenteric nodes involvement				
IV	Diffuse or disseminated involvement of one or more extranodal organs or tissues, with or without associated lymph node involvement				
At any disease s	 tage : A No symptoms B Fever, sweats, loss of weight X Bulky disease (widening of the mediastinum ≥ 1/3 of the internal transverse diameter of the thorax at the level of T 5/6 interspace or > 10 cm maximum dimension of a nodal mass) E Involvement of a single extranodal site, contiguous or proximal to the known nodal site 				

Modified from : Lister T.A. et al. : Report of a committee convened to discuss the evaluation and staging of patients with Hodgkin's Disease : Cotswolds meeting. J Clin Oncol 1989; 7 : 1630-1636.

HODGKIN LYMPHOMA (3)

DIFFERENTIAL DIAGNOSIS

Anaplastic large T cell lymphoma : t(2;5)

UNFAVORABLE PROGNOSTIC FACTORS

Large tumor mass (e.g. : bulky mediastinal) Presence of B symptoms Primary refractory form IPS = International Prognostic score (advanced stages of disease)Serum albumin < 40 g / L Hemoglobin < 105 g / L Male gender Stage IV disease Age \geq 45 years WBC count > 15 G / L Lymphocyte count < 0.6 G / L (or > 8% of leukocyte differential count)

COMPLICATIONS

Immediate, treatment related Infection(s) Azoospermia, early menopause Secondary leukemia / cancer

HODGKIN LYMPHOMA (4)

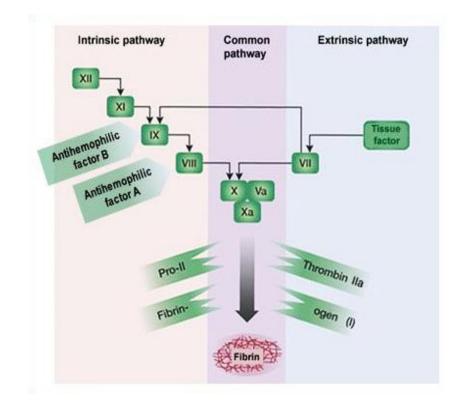
TREATMENT

Radiotherapy Chemotherapy M(C)OPP, ABVD, M(C)OPP + ABVD MIME, CEP, DHAP, BEACOPP, ICE

Autologous / allogeneic transplant

PROGNOSIS AND PREDICTIVE FACTORS

Curable disease in more than 85% of cases by modern radiation and chemotherapy Prognosis is function of staging, clinical and laboratory parameters

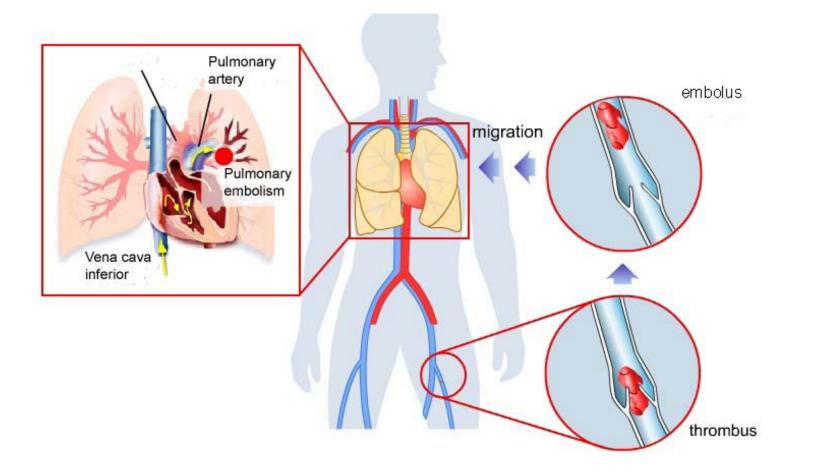

Response after 2 courses of ABVD by FDG-PET imaging is a relevant prognostic indicator in advanced stage disease¹

M(C)OPP :	Mustard gas analog (or Cyclophosphamide) + Vincristine + Procarbazine + Prednisone
ABVD :	Adriamycin + Bleomycin + Vinblastine + Dacarbazine (DTIC)
MIME :	Mitoguazone + Ifosfamide + Methotrexate + Etoposide
CEP :	Lomustine + Etoposide + Prednimustin
DHAP :	Dexamethasone + Cisplatin + Cytarabine
BEACOPP :	Bleomycin + Etoposide + Doxorubicin + Cyclophosphamide + Vincristine + Procarbazine + Prednisone
ICE :	Ifosfamide + Carboplatin + Etoposide

¹ Gallamani A. et al. : Early interim 2-(¹⁸F)fluoro-2-deoxy-D-glucose positron emission tomography is prognostically superior to international prognostic score in advanced-stage Hodgkin's lymphoma : a report from a joint Italian-Danish study. J clin Oncol 2007; 25 :3746-3752.

Part 3 HEMOSTASIS

primary hemostasis secondary hemostasis (coagulation) blood clot tertiary hemostasis (fibrinolysis)

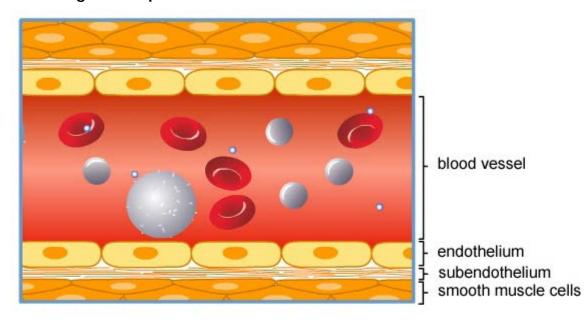


HEMOSTASIS EXPLORATION METHODS

PRIMARY HEMOSTASIS	Capillary resistance Platelet count (RI : 150 – 350 G / L) PFA-100 ^{TM 1} (or PFA-200 TM) Measure of platelet aggregation (ADP, arachidonic acid, adrenalin-heparin, collagen, TRAP-6, U46619, ristocetin) Measure of platelet secretion Quantification of platelet receptors by flow cytometry Examination of platelet morphology by electronic microscopy
SECONDARY HEMOSTASIS (Coagulation)	Prothrombin time (PT, Quick) (Exploration of extrinsic pathway) Activated partial thromboplastin time (aPTT) (Exploration of intrinsic pathway) Thrombin time (TT) (Exploration of fibrin formation) Fibrinogen and factors II, V, VII, VIII, IX, X, XI, XII level Investigation of factor XIII deficiency (Fibrin stabilizing factor) Investigation of activation (Fibrin monomers and D-dimers)
TERTIARY HEMOSTASIS	Euglobulins lysis time Fibrinogen level D-Dimers level Plasminogen level α2-antiplasmin level Plasminogen level PAI-1 level <i>(Plasminogen Activator Inhibitor-1)</i>

¹ PFA-100[™] / PFA-200[™] (*Platelet Function Analyzer*) : *in vitro* measure of the time to occlusion of a membrane (measure of platelet adhesion and aggregation process). Replaces, if device available, the classical bleeding time

THROMBUS AND EMBOLUS



Thrombus : inappropriate clot formation in a blood vessel (artery or vein)

Embolus : migrating thrombus

MAIN ACTORS OF HEMOSTASIS

Blood vessels Platelets Coagulation proteins

Synthetizes most of the Synthetizes most of the proteins involved in proteins involved in fibrinolysis and its coagulation and its regulation regulation

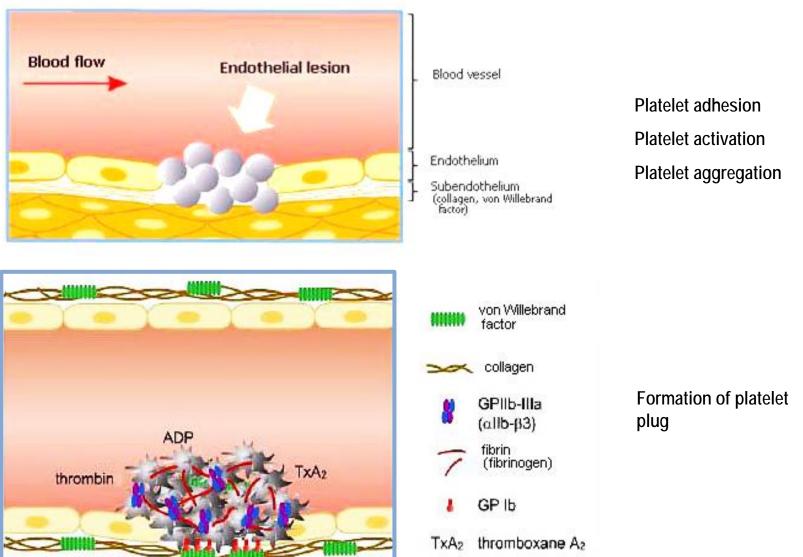
Synthetizes thrombopoietin responsible for platelet production from the megakaryocytes

STEPS OF HEMOSTASIS

PRIMARY HEMOSTASIS

Vascular time

Vasoconstriction (vascular spasm)


Platelet time

Platelet adhesion to the vessel lesion Platelet plug formation and stabilization

SECONDARY HEMOSTASIS (coagulation) Coagulation cascade Clot formation

TERTIARY HEMOSTASIS (fibrinolysis) Clot lysis

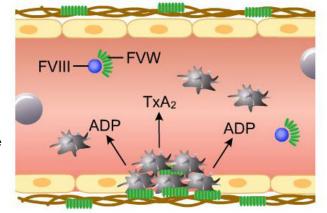
STEPS OF PRIMARY HEMOSTASIS

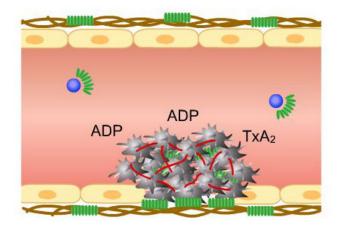
VON WILLEBRAND FACTOR

Synthetized by endothelial cells and megakaryocytes

Composed of a series of multimers : the very high molecular weight multimers are physiologically

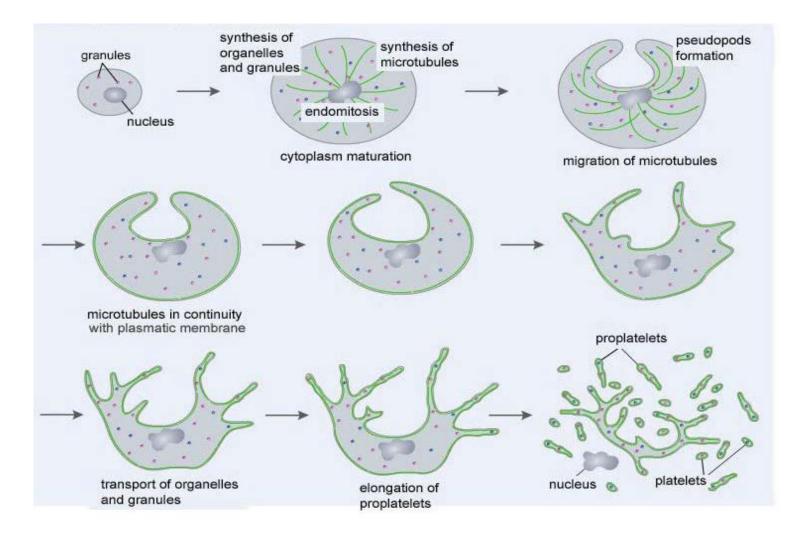
degraded by a specific protease (ADAMTS 13), leading to prevention of spontaneous platelet


aggregates formation (TTP, cf. p. 88-89)


Involved, in vitro, in the process of platelet adhesion to subendothelial fibers

Mandatory for *in vitro* ristocetin induced platelet aggregation

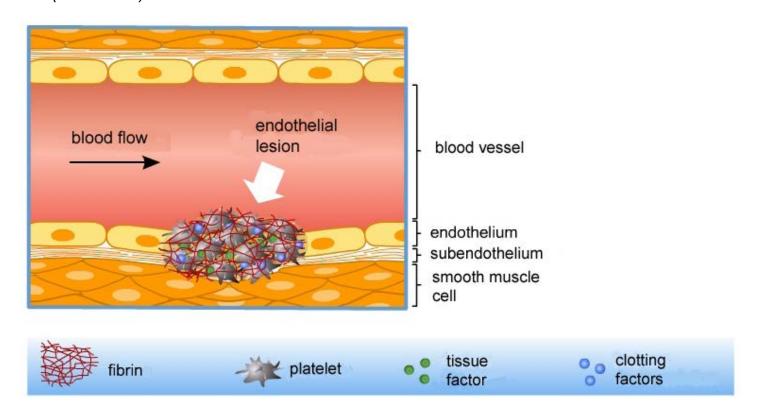
Transport of factor VIII to vascular lesion


Bound to factor VIII, it prolongs its life span

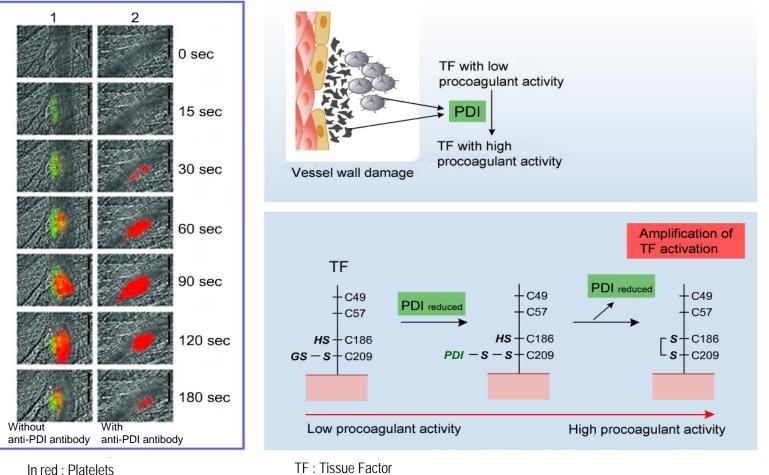
TxA2 : Thromboxane A2FVW : von Willebrand factorADP : Adenosin DiphosphateFVIII : Factor VIII

PLATELET PRODUCTION FROM THE MEGAKARYOCYTE

1 mature megakaryocyte produces 2'000-3'000 platelets


SECONDARY HEMOSTASIS COAGULATION

Coagulation (blood clotting) needs interaction of :


Plasmatic proteins (coagulation factors and inhibitors) A tissular protein (tissue factor)

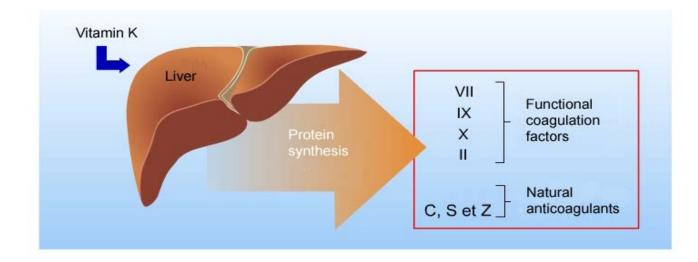
Platelets

Calcium

TISSUE FACTOR : MAJOR INITIATOR OF COAGULATION

TF : Tissue Factor

In green : PDI (protein disulfide isomerase)

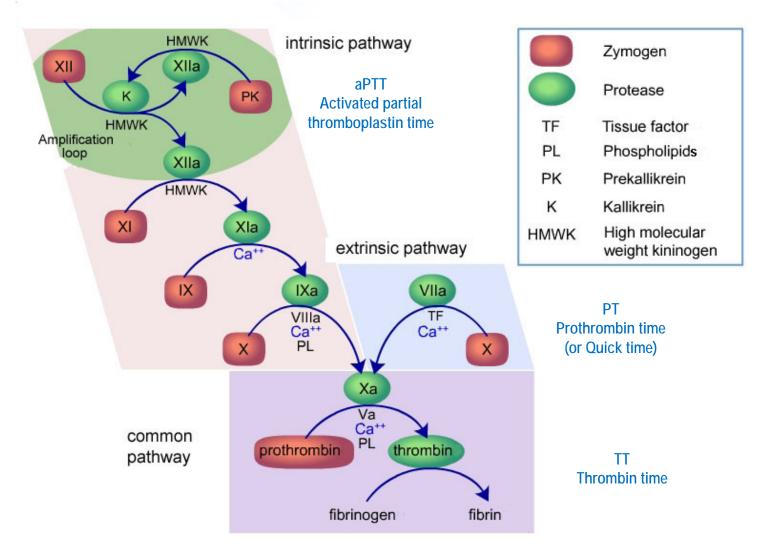

Adapted from : Reinhardt C. & coll. : Protein disulfide isomerase acts as an injury response signal that inhances fibrin generation via tissue factor activation. J Clin Invest. 2008; 118 : 1110-1122.

Cho J. & coll. : A critical role for extracellular protein disulfide isomerase during thrombus formation in mice. J Clin Invest. 2008; 118 : 1123-1131.

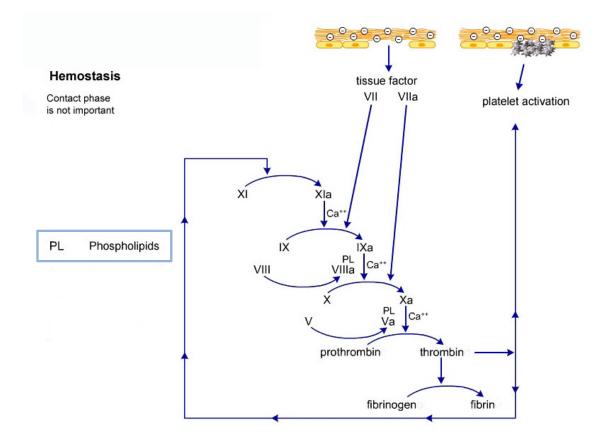
COAGULATION FACTORS

FACTOR	NAME	HALF-LIFE (hours)	PRODUCTION	VITAMINE K DEPENDENCE
High molecular weight kininogen	Fitzgerald factor	150	Liver	-
Prekallikrein	Fletcher factor	35	Liver	-
Factor I	Fibrinogen	90	Liver	-
Factor II	Prothrombin	65	Liver	+
Factor V	Proaccelerin	15	Liver	-
Factor VII	Proconvertin	5	Liver	+
Factor VIII	Antihemophilic factor A	12	Liver (sinusoidal cells)	-
Factor IX	Christmas factor or antihemophilic factor B	24	Liver	+
Factor X	Stuart-Prower factor	40	Liver	+
Factor XI	Antihemophilic factor C	45	Liver	-
Factor XII	Hageman factor	50	Liver	-
Factor XIII	Fibrin stabilizing factor	200	α subunit : <i>monocytes,</i> <i>megakaryocytes, platelets</i> β subunit : <i>liver</i>	-
Factor vW	von Willebrand factor	15	Endothelium Megakaryocytes	-

VITAMIN K DEPENDENT FACTORS


These coagulation factors are synthetized by hepatocytes

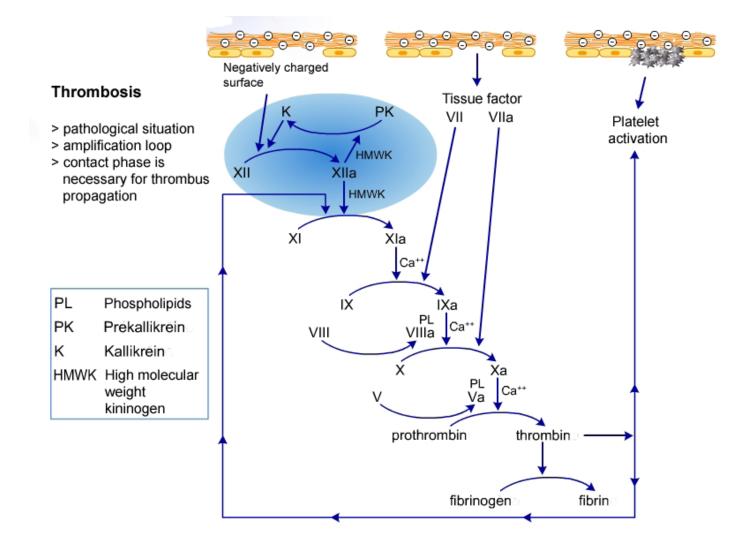
Vitamin K is necessary for complete functional synthesis


Vitamin K (liposoluble), in reduced state, works as a cofactor to a carboxylase which transforms 10-12 glutamic acid (Glu) residues in γ -carboxyglutamic acid (Gla)

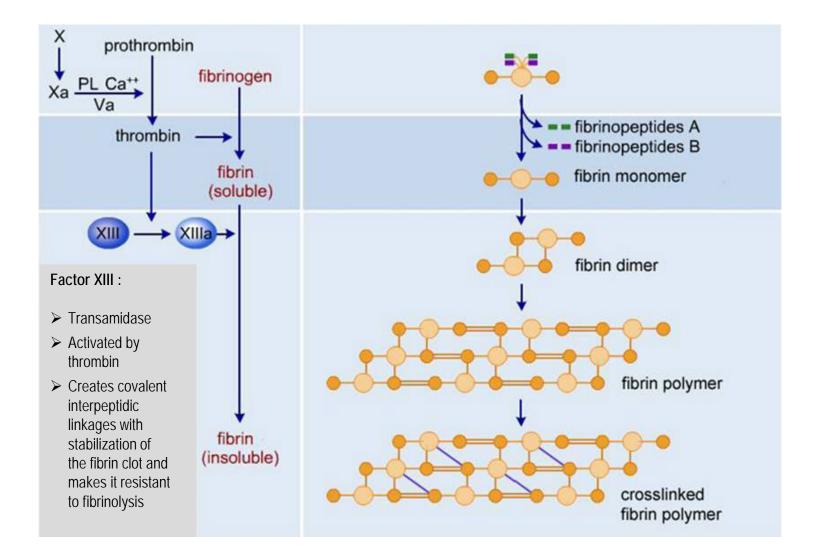
Vitamin K dependent factors bind to the cell membranes through this GIa domain, in presence of Ca^{++} $\,$

COAGULATION CASCADE CLASSICAL SCHEME

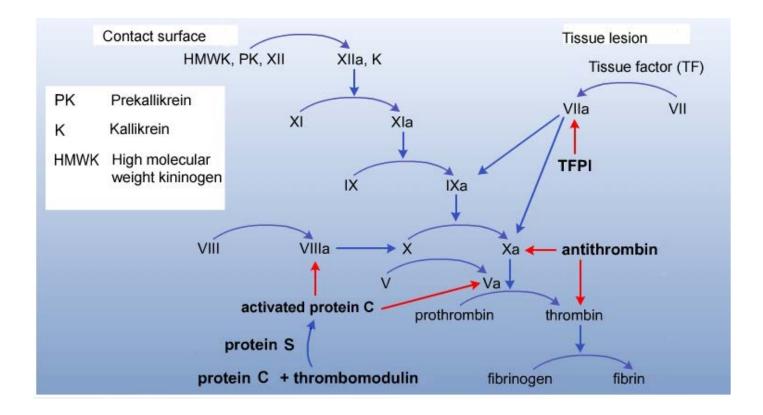
COAGULATION CASCADE (2) CONCEPTUAL CHANGES


Factor XI may be activated by thrombin as well as by factor XIIa

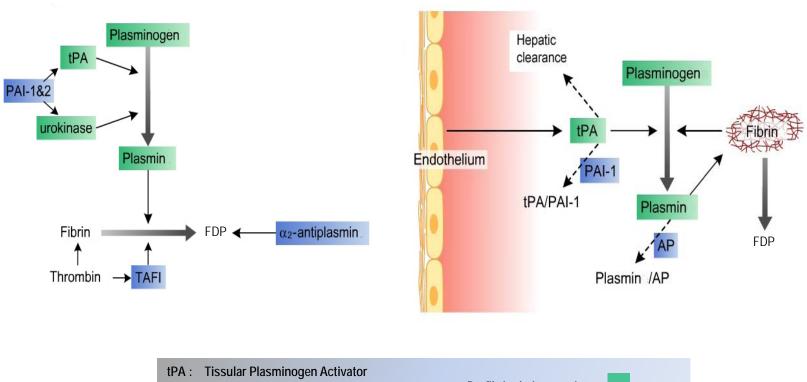
Factor XI deficiency is responsible for bleeding whereas deficiencies in factor XII, prekallikrein or high molecular weight kininogen do not cause bleeding


In experimental models factor XI and factor XII deficiencies have antithrombotic effect

Factor XII is activated by negatively charged surfaces, activated platelets and clot surface


COAGULATION CASCADE (3) CONCEPTUAL CHANGES (2)

FACTOR XIII AND FIBRIN STABILIZATION



NATURAL ANTICOAGULANTS

TFPI (*Tissue Factor Pathway Inhibitor*) is an effective inhibitor of factor VII - Tissue factor complex Antithrombin neutralizes all procoagulant serine proteases (*thrombin, factors IXa, Xa and XIa*) The protein C - protein S system inhibits factors Va and VIIIa Protein S acts also as TFPI cofactor

TERTIARY HEMOSTASIS FIBRINOLYSIS

Intravascular fibrinolysis

PAI: Plasminogen Activators Inhibitors 1 and 2 Profibrinolytic proteins FDP: Fibrin Degradation Products Antifibrinolytic proteins TAFI Thrombin Activatable Fibrinolysis Inhibitor α_2 -antiplasmin

AP:

HEMORRHAGIC SYNDROME PRIMARY HEMOSTASIS

Reduced capillary resistance with platelet count¹, PFA-100^{™2} (or PFA-200[™]) tests of platelet function, coagulation, and fibrinolysis in normal range

VASCULAR PURPURA

NON INFLAMMATORY

Senile purpura Ehlers-Danlos syndrome (collagen abnormality) Vitamin A deficiency Treatment with steroids, Cushing disease Chronic and pigmented dermatitis Osler disease (Hereditary hemorrhagic telangiectasia)

INFLAMMATORY (VASCULITIS)

Drug induced (Penicillin, non steroidal antiinflammatory drugs) Autoimmune disease (SLE, RA, PAN, Crohn's disease) Bacterial infection Viral infection (hepatitis B, CMV, EBV, parvovirus) Lymphoid neoplasm Cancer Rheumatoid purpura (Henoch-Schönlein) Cryoglobulinemia Hypergammaglobulinemia Idiopathic

- SLE : Systemic Lupus Erythematosus
- RA: Rheumatoid arthritis
- PAN : Panarteritis nodosa
- EBV : Epstein-Barr Virus
- CMV : Cytomegalovirus

HEMORRHAGIC SYNDROME PRIMARY HEMOSTASIS (2)

Prolonged occlusion time¹ (PFA-100[™] or PFA-200[™])

With normal platelet function tests

Thrombocytopenia Secondary thrombocytosis

With platelet function anomaly and aPTT within normal range

Thrombopathy : acquired hereditary Thrombocytosis of myeloproliferative neoplasms (cf. p. 120-136)

With platelet function anomaly and prolonged aPTT

Von Willebrand disease (cf. p. 237-238)

	Normal (seconds) ¹	Aspirin	von Willebrand	Glanzmann ²	Bernard-Soulier ²
Col / EPI ³	84 – 160	2	~	~	R
Col / ADP ⁴	68 – 121	normal	∇	∇	\bigtriangledown

¹Occlusion time (PFA-100[™] ou PFA-200[™])

¹LCH-CHUV, 2012

² cf. p. 225

³ Col / EPI : Collagen / Epinephrin

⁴Col / ADP : Collagen / Adenosin-5'-diphosphate

ACQUIRED THROMBOPATHY

DRUGS

Aspirin	Irreversible inhibition of the cyclo-oxygenase		
Clopidogrel (Plavix [®])	Irreversible binding of metabolite to ADP receptors type P2Y ₁₂ on platelets		
Prasugrel (Efient®)			
Ticagrelor (Brilique®)	Reversible antagonist of ADP receptors type P2Y ₁₂ on platelets		
Abciximab (ReoPro [®])	Fab fragment of humanized chimeric antibody against glycoprotein IIb-IIIa (GP) receptors		
Eptifibatide (Integrilin®)			
Tirofiban (Agrastat®)	Reversible inhibition GPIIb-IIIa receptors		

RENAL FAILURE

PARAPROTEINEMIA

MYELOPROLIFERATIVE NEOPLASM OR MYELODYSPLASTIC SYNDROME

Autosomal recessive transmission
GP IIb-IIIa deficiency
Pathological aggregation tests with ADP,
adrenalin, collagen and arachidonic acid
Normal aggregation on ristocetin (primary phase)
Platelet count within normal range
Absence of morphological anomaly

STORAGE POOL DISEASE

Anomalies of dense granules *(ADP deficiency)* Pathological aggregation on ADP, adrenalin and collagen and frequently with arachidonic acid Platelet count within normal range Absence of morphological anomaly on electronic microscopy

BERNARD-SOULIER SYNDROME

Autosomal recessive transmission (rarely dominant) GP Ib / IX / V deficiency Absence of aggregation on high concentration ristocetin Thrombocytopenia of variable importance Presence of giant platelets

GRAY PLATELET SYNDROME

Anomalies of α granules Platelet aggregation tests usually abnormal with ADP and collagen Thrombocytopenia of variable importance Giant, agranular platelets, of gray color on blood smear Absence of normal α granules and vacuolization of platelets on electronic microscopy

THROMBOCYTOPENIA

DEFINITION

Platelet count < 150 G / L

HEMORRHAGIC RISK

(In case of normal platelet function)

Low if platelet count in range of 50 to 150 G / L

High by platelet count < 20 G / L

SOME RULES OR RECOMMENDATIONS

Every thrombocytopenia has to be controlled on a blood smear (exclude pseudothrombocytopenia due to EDTA anticoagulation of the probe)

By platelet count < 50 G / L, measure of occlusion time (PFA-100[™] or PFA-200[™]) is useless

If platelet functions are correct, the occlusion time on PFA-100TM (or PFA-200TM) becomes prolonged if platelet counts < 100 G / L. Platelet count at 70 G / L with normal occlusion time does not allow exclusion of hemorrhagic risk in case of surgical procedure

At similar platelet levels the hemorrhagic risk is higher in case of "central" thrombocytopenia than in thrombocytopenia of "peripheral" origin

THROMBOCYTOPENIA (2) IN THE SETTING OF BICYTOPENIA OR PANCYTOPENIA

Hypersplenism (e.g. severe hepatic failure)

Bone marrow dysfunction

Aplasia	
Infiltration :	Myeloid or lymphoid neoplasm, osteomedullary cancer metastasis
Dysplasia :	Reversible (Vitamin B ₁₂ or folate deficiency)
	Refractory (Myelodysplastic syndrome)
Fibrosis	

Reduction of thrombopoietin synthesis (e.g. severe hepatic failure)

	CENTRAL	PERIPHERAL
Megakaryocytes	۲	Usually 🖉
Mean platelet volume (MPV ¹)	№ ²	⊲
Etiology	Thiazide Alcohol	cf. p. 230-232

¹ MPV : Mean Platelet Volume Δ EDTA anticoagulation of probe increases platelet size proportionally to delay between sampling and analyzis

² Frequently increased in myeloproliferative neoplasm and myelodysplastic syndrome

SOLITARY PERIPHERAL THROMBOCYTOPENIA NON IMMUNOLOGICAL

BY ANOMALY OF PLATELET DISTRIBUTION

Hypersplenism

BY PLATELET DESTRUCTION

Alcohol

Disseminated Intravascular Coagulation (DIC) Extracorporeal circulation Thrombotic Thrombocytopenic Purpura (TTP)¹ Hemolytic Uremic Syndrome (HUS)² HELLP³ syndrome (10% of preeclampsias) Renal transplant rejection Allogeneic stem cell or bone marrow transplantation

¹ TTP : Thrombotic Thrombocytopenic Purpura

² HUS : Hemolytic Uremic Syndrome

³ HELLP : <u>Hemolysis</u>, <u>Elevated Liver function tests</u>, <u>Low Platelets</u> (in pregnancy)

SOLITARY PERIPHERAL THROMBOCYTOPENIA (2) IMMUNE

PRIMARY

Primary immune thrombocytopenia (Primary ITP), cf. next page

SECONDARY

Due to autoantibody or immune complexes

Drugs : Quinine

Heparin : Heparin-induced thrombocytopenia (HIT¹)

- Type I: Early onset thrombocytopenia (< 24 h) and transient
- Type II : 0.5-5% of patients treated by UFH² Thrombocytopenia onset on treatment day 4 to 20 Thrombotic complications Presence of anti-PF4³-Heparin (IgG) antibodies

Infection (Helicobacter Pylori, hepatitis C, HIV, CMV, varicella, herpes zoster, malaria) Autoimmune disease (SLE⁴, Evans syndrome⁵) Common variable type immune deficiency Lymphoid neoplasm, cancer Bone marrow / hematopoietic stem cell transplantation

Due to alloantibody

Neonatal thrombocytopenia Posttransfusion purpura

- ¹HIT : Heparin Induced Thrombocytopenia ² UFH : Unfractionated Heparin
- ³PF4 : Platelet Factor 4
- ⁴ Systemic lupus erythematosus
- ⁵ Autoimmune hemolytic anemia <u>and</u> thrombocytopenia

PRIMARY IMMUNE THROMBOCYTOPENIA (Primary ITP¹)

Acquired solitary thrombocytopenia (platelets < 100 G / L) of immunological origin Antibodies directed against platelets and megakaryocytes, probable ☆ of thrombopoietin (TPO) Diagnosis by exclusion of all other causes of thrombocytopenia

Clinical presentation : Children : Often preceded by viral infection Course usually benign with frequent spontaneous remission				
Adults :	Persisting thrombocytopenia, Depending on duration :	, often relapsing or chronic Newly diagnosed : ≤ 3 months Persistent : 3-12 months Chronic : > 12 months		
Bone marrow exa	mination :	Age > 60 :Exclusion of myelodysplastic syndromeAge < 60 :		
Treatment :	Minor bleeding Major bleeding	Prednisone 1-2 mg / kg qd orally, Dexamethasone 40 mg orally for 4 d Prednisone orally or Methyprednisolone 125-1'000 mg IV, d 1-5 Immunoglobulins IV : 0.4 g / kg d 1-5 or 1 g / kg, d 1-2 If necessary platelet transfusion(s)		
Refractory ITP ¹ ITP : <u>I</u> mmune <u>T</u> hrombocyto <u>P</u> enia		Splenectomy Rituximab, TPO receptor agonists <i>(Romiplostim, Eltrombopag)</i> Azathioprine, Micophenolate mofetil, Danazol, Cyclosporin A, Cyclophosphamide, Alemtuzumab <i>(humanized anti-CD52)</i> , combined chemotherapy, Etanercept <i>(TNF-α inhibitor)</i> , allogeneic HST		

INVESTIGATION OF THROMBOCYTOPENIA

Complete blood count Blood smear examination

> Pseudothrombocytopenia? RBC fragmentation (schistocytes)? Toxic changes of neutrophils ? Lymphocyte stimulation ? Absolute lymphocytosis ? Erythroblastosis and / or myelocytosis ? Parasites ?

Complete coagulation tests with search for coagulation activation (DIC)

Bone marrow examination (cytology and histology) Direct Coombs test (antiglobulin test) Viral serology (HIV, HCV, EBV, CMV) SLE¹ serology Thyroid function tests Helicobacter pylori screening (to be considered in refractory or relapsing ITP²) Anti-HLA antibodies Antiplatelet antibodies (this test is frequently difficult to carry out, as it needs a platelet count rarely high enough at diagnosis)

¹ Systemic lupus erythematosus ² ITP : Primary Immune Thrombocytopenia

HEMORRHAGIC SYNDROME SECONDARY HEMOSTASIS (COAGULATION)

CONSTITUTIONAL ANOMALIES

Hemophilias (factors VIII, IX), von Willebrand disease, *cf. p. 235-238* Fibrinogen, factors II, V, VII, X, XI, XIII deficiencies

ACQUIRED ANOMALIES

Hepatocellular failure (deficiencies of fibrinogen, factors II, V, VII, X) Vitamin K deficiency (deficiencies of factors II, VII, IX, X) Disseminated intravascular coagulation (DIC)

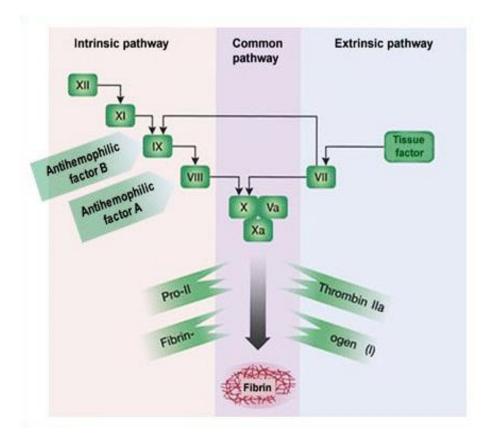
Bacterial or parasitic infections

Cancer (lung, pancreas, prostate)

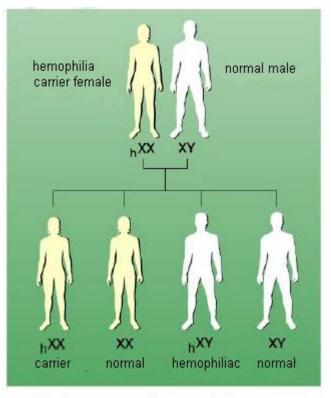
Acute leukemia, particularly Acute Promyelocytic Leukemia, t(15;17)(q24;q21)

Obstetrical complications

Amniotic liquid embolism Placental retention Eclampsia Septic abortion


Invasive surgery Extended burns Transfusion complications Vascular malformations (Kasabach-Merritt syndrom)

Coagulation inhibitors (circulating anticoagulants)


Alloaantibodies against factor VIII (5-10% of hemophilia patients)

Autoantibodies against factor VIII (acquired hemophilia A) : pregnancy, postpartum, rheumatoid arthritis, lupus erythematosus, cancer, drugs

HEMOPHILIA

Recessive X-linked transmission Absence of familial context in 30% of hemophilia patients : de novo mutation

hX = hemophilia defect carrying X chromosome

Risk for offsprings of a couple of a carrier woman and a normal man :

50% of the sons with hemophilia 50% of daughters are carriers

HEMOPHILIA (2)

INCIDENCE

Hemophilia A : 1 / 10'000, 5 x more frequent than hemophilia B

HEMOPHILIA	FACTOR LEVEL (%)	HEMORRHAGIC SYNDROME
Light ¹	5 – 40	Surgery Dental extraction Important trauma / injury
Moderate	1 – 5	Light trauma (e.g. sport)
Severe ²	< 1%	Several bleeding episodes / month Frequent spontaneous hemorrhages Frequent hemarthrosis episodes

TRFATMFNT

Paracetamol, tramadol, codeine, opiates Analgesia :

Aspirin and NSAID³ absolutely contraindicated except Celecoxib (Celebrex[®])

Factors concentrates or recombinant factors. Desmopressin (DDAVP) : light forms

Factor VIII : distribution ½ -life 4 hours, plasmatic ½-life 12 hours

Factor IX : distribution ½-life 2 hours, plasmatic ½-life 24 hours

Orthopedic surgery : hemarthrosis

In case of inhibitors : recombinant factor VIIa (NovoSeven®), Factor Eight Inhibitor By-passing Activity (FEIBA NF®)

¹ Carrier female may have occasionally light symptoms

² Females may only have severe symptoms if the father is hemophiliac and the mother carrier

³ NSAID : Non Steroidal Antiinflammatory Drugs

VON WILLEBRAND DISEASE

Quantitative or qualitative anomaly of von Willebrand factor

The most common constitutional hemorrhagic disorder (incidence $\sim 1\%$ of whole population)

Transmission autosomal, dominant or recessive

Symptomatic disease in ~ 1% of patients

6 different types of disease; type 1 is the most frequent (75% of cases)

Mucosal and cutaneous bleeding (epistaxis, menorrhagia)

Biological signs : PFA-100[™] or PFA-200[™] prolonged¹, PT normal, aPTT prolonged ☆ Factor VIII, ☆ Factor von Willebrand (antigen and activity)

Occasional acquired form : associated with with lymphoid, plasmacytic, myeloproliferative neoplasms, etc.

¹ Replaces bleeding time if device available

VON WILLEBRAND DISEASE (2)

CLASSIFICATION

TYPE	TRANSMISSION	FvW ACTIVITY	RIPA ¹	FvW MULTIMERS
TYPE 1 (quantitative 와)	AD ²	± severe 🛚	\bar{b}	uniform 😒 / all sizes present
TYPE 2 (qualitative anomaly)				
2A	AD ² ev. AR ³	\$	۲	☆ of large multimers
2B	AD ²	۵	₽4	☆ of large multimers
2M	AD ² ev. AR ³	۵	\S1	uniform 🏾 / all sizes present
2N	AR ³	⇔	⇔	\$
TYPE 3 (severe)	AR ³	<u> </u>	<u>ର</u> ାଜ - ଷ	undetectable

¹ RIPA : Ristocetin-Induced Platelet Aggregation

² AD : Autosomal Dominant

³AR : Autosomal recessiv

⁴ At Ristocetin concentration lower than 0.6 mg/mL

Modified from : The National Heart, Lung and Blood Institute. The Diagnosis, Evaluation and Management of Von Willebrand Disease, Bethesda, MD; National Institutes of Health Publication 2007, 08-5832.

TREATMENT

Desmopressin (DDAVP = 1-Deamino-8-D-Arginine VasoPressin : Octostim[®], possibly Minirine[®]), IV, SC ou intranasal Increases factor von Willebrand secretion as of factor VIII. Useful only type 1 disease

Factor VIII or factor von Willebrand concentrates (e.g. Haemate P[®], Wilate[®])

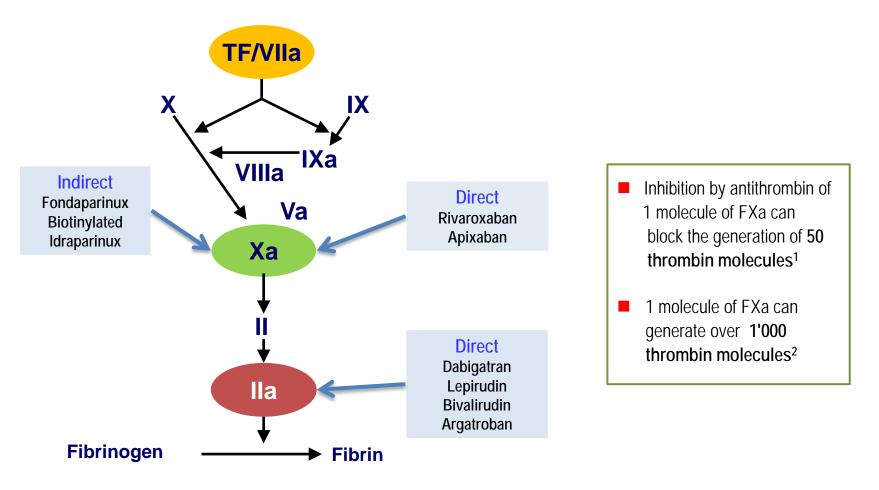
Antifibrinolytics : tranexamic acid (Cyklokapron®)

Topical preparations

Recombinant factor VIII preparations do not contain von Willebrand factor

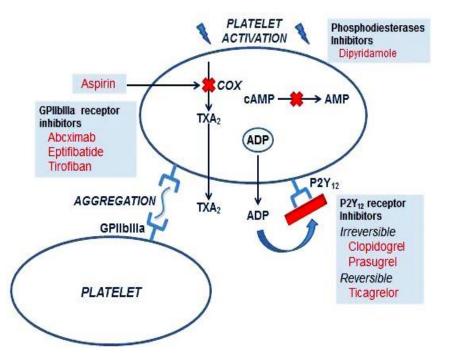
DDAVP TEST

Allows to asses in asymptomatic situation the efficacy of desmopressin application. In case of good response, Desmopressin will be used prophylactically prior to surgical procedure or dental extraction


THROMBOEMBOLIC DISEASE

VIRCHOW'S TRIAD	Stasis + vascular lesion + blood hypercoagulability	
MAIN RISK FACTORS		
Arterial thrombosis :	Arterial hypertension Hyperlipidemia, diabetes mellitus Tobacco smoking	
Venous thrombosis :	 Stasis (bed rest, dehydration, Plasma viscosity, varicose veins) Surgery (in particular hip and abdomen) Pregnancy and post-partum Estrogens, contraceptive pills Cancer Behçet disease Constitutional coagulations anomalies (cf. table) 	

Deficiency / anomaly	Prevalence (healthy european individuals) (%)	Prevalence (patients with deep vein thrombosis) (%)	Estimated relative risk
Antithrombin III, protein C, protein S	1 – 2	1 – 3	8 –10
Factor V Leiden heterogygous homozygoous	3 – 10 0.06 – 0.25	15 1.5	3 – 7 50 – 80
Heterozygous prothrombin gene mutation G20210A	1 – 3	5 – 6	2 – 4


Venous or arterial	Myeloproliferative neoplasm
thrombosis :	Heparin induced thrombocytopenia (HIT)
	Hyperhomocysteinemia
	Lupus anticoagulant, antiphospholipid syndrome :
	Paradoxical aPTT prolongation in the context of venous or arterial thrombosis, recurrent fetal loss or other pregnancy related complications
	Primary or secondary : SLE ("Lupus anticoagulant"), infections, neoplasms, drugs
	Treatment : <i>cf. p.</i> 247 Treatment algorithm

TARGETS OF ANTICOAGULANTS

¹ Wessler S. & Yan E.T. : On the antithrombotic action of heparin. Thrombo Diath Haemorth 1974; 32 : 71-78. ² Mann K.G. et al. : What is all that thrombin for ? J Thromb Haemost 2003; 1 : 1504-1514.

THROMBOEMBOLIC DISEASE TREATMENT AND PREVENTION

Aspirin blocks synthesis of thromboxane A_2 by irreversible acetylation of cyclooxygenases (COX) *Clopidogrel (Plavix®) and Prasugrel (Efient®)* cause irreversible inhibition of P2Y₁₂ ADP receptor *Ticagrelor (Brilique®)* is a reversible antagonist of P2Y₁₂ ADP receptor

Dipyridamole increases platelet cyclic AMP through inhibition of phosphodiesterases (*Asasantine*[®] : *dipyridamole* + *aspirin*)

Abciximab (ReoPro®) is an antagonist of GP IIb/IIIa receptor

Etifibatide (Integrilin®) and Tirofiban (Agrastat®) reversibly inhibit GP IIb-IIIa receptor

THROMBOEMBOLIC DISEASE TREATMENT AND PREVENTION (2)

HEPARINS, THROMBIN AND FACTOR Xa INHIBITORS

Heparins Unfractioned : Liquemin [®] , Calciparin [®]	Fixation and activation of AT ¹ , inhibition of factors Xa and IIa, inhibition of platelets, interaction with endothelium			
Low molecular weight : Nadroparin (Fraxiparin [®] or Fraxiforte [®]), Dalteparin (Fragmin [®]), Enoxaparin (Clexane [®]), Certoparin (Sandoparin [®])	Fixation and activation of AT ¹ , inhibition of factor Xa, very low inhibition of factor IIa, absence of platelet inhibition, few interactions with endothelium			
Danaparoid (Orgaran [®])	High affinity for AT III ¹ , anti-Xa activity, no effect on platelets			
Hirudin analogues : Lepirudin (Refludan [®]) Bivalirudin (Angiox [®])	Direct inhibition of thrombin			
Argatroban (Argatra®) Dabigatran (Pradaxa [®])				
Pentasaccharide : Fondaparinux (Arixtra®) Rivaroxaban (Xarelto®) Apixaban (Eliquis®)	Pure anti-Xa activity			

THROMBOEMBOLIC DISEASE TREATMENT AND PREVENTION (2)

VITAMIN K ANTAGONISTS

Therapeutic agents

Acenocoumarol (Sintrom[®]) (½ life : 8-11 hours) Phenprocoumon (Marcoumar[®]) (½ life : 32-46 hours)

Inhibition of γ-carboxylation of vitamin K dependent factors (FII, FVII, FIX, FX)

Biological monitoring of treatment with vitamin K antagonists (INR : International Normalized Ratio)

INR = (PT patient [seconds] / PT control [seconds])^{ISI}

ISI = International Sensitivity Index : sensitivity index of employed reagent compared to international reference reagent

Therapeutical ranges

	Low limit	Target	High limit
Primary and secondary prevention of venous thromboembolic disease	2.0	2.5	3.0
Mechanical prosthetic cardiac valves ¹	2.5	3.0	3.5

FIBRINOLYTIC AGENTS

Tissular plasminogen activator, t-PA (Actilyse[®]), Streptokinase (Streptase[®]), Urokinase (Urokinase HS medac[®])

¹ For more information : Salem D.N. and al. : Valvular and Structural Heart Disease : American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest 2008; 133 : 593-629.

VENOUS TRHOMBOEMBOLIC DISEASE ANTICOAGULATION GUIDELINES

INITIAL (Options, depending on situation)

UNFRACTIONATED HEPARIN^{1,2} : Bolus IV 80 UI / kg (2'500-5'000 UI), then 400-600 UI / kg / 24 h (usually : 25'000-40'000 UI / 24 h) as continuous

IV infusion To be favored in case of severe renal failure

LOW MOLECULAR WEIGHT HEPARIN :

e.g. : Enoxaparin (Clexane[®]): 2 mg / kg / 24 h in 2 SC inj. In elderly patients, by BW < 50 kg or > 100 kg : dosage of plasmatic anti-Xa activity after 2nd or 3d dose, 3-5 h after SC injection Caution by creatinin clearance < 30 mL / min FONDAPARINUX (Arixtra®): 7.5 mg SC / d 5 mg by body weight (BW) < 50 kg, 10 mg if BW > 100 kg Contraindication : creatinin clearance < 30mL / min No control of platelet count needed

EARLY SWITCH TO ANTIVITAMIN K DRUGS (Acenocoumarol : Sintrom[®])

3 mg / d orally from the first or second treatment day (2 mg / d by age > 70 ans, BW < 50 kg or initial PT < 85%). INR control after the first 2 doses By INR > 1.8 : Δ dosis of 3d day By INR between 1.2 and 1.8 : same dosis on 3d day By INR < 1.2 : light dosis \eqsim on 3d day Target : allow stopping of the in initial anticoagulation (*SC ou IV*) < 5 days and / or after 2 consecutive INR at 24 h interval > 2.0

DURATION OF ANTICOAGULATION

Postoperative limited deep vein thrombosis of the leg, increased bleeding risk Proximal deep vein thrombosis / Secondary pulmonary embolism Deep vein thrombosis / Idiopathic pulmonary embolism 6 week 3 months 6-12 months (or more if persisting risk factor without increased bleeding risk)

Recurrent deep vein thrombosis and / or pulmonary embolism

Long term

¹ Activated partial thrombopoplastin time (aPTT) controls must be 1.5 - 2.5 time over basic value. Daily heparin dosis is consequently adapted ² Heparin administration has to be kept as short as possible [*Arisk of heparin induced thrombocytopenia (HIT) with prolonged heparin treatment*]

INDICATIONS FOR THE NEW ANTICOAGULANTS ANTI - Xa AND ANTI - IIa

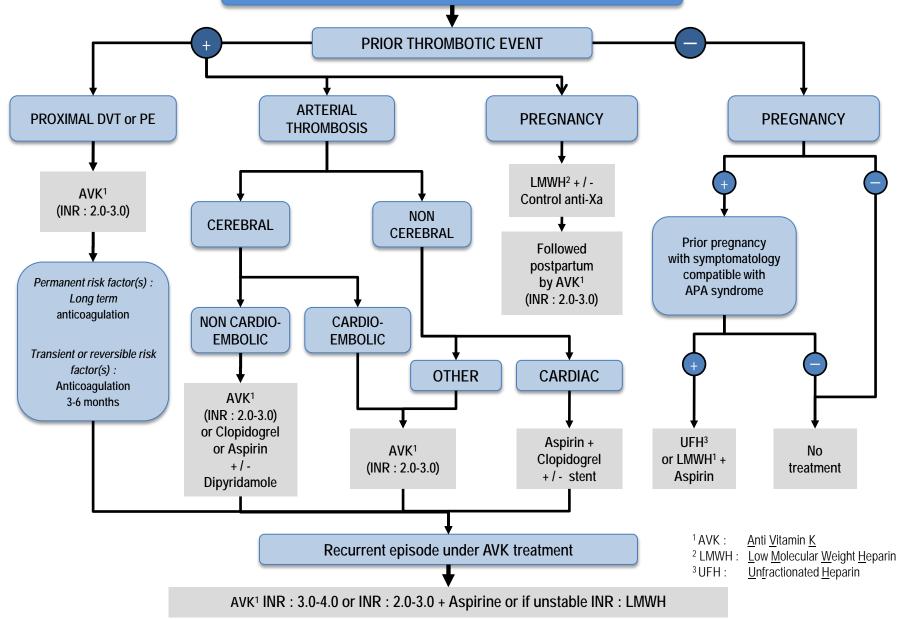
INDICATION	Rivaroxaban	Apixaban	Dabigatran		
PREVENTION OF VTE ³	 Prevention of DVT¹: Major orthopedic procedures of lower extremities (hip or knee prosthetic replacement) 	 Prevention of VTE³ in adult patients : After scheduled operation for hip or knee prosthetic replacement 	No indication		
TREATMENT OF VTE ³	Treatment of DVT ¹ Prevention of DVT ¹ and PE ² recurrence	No indication	No indication		
PREVENTION OF AIS ⁴ RELATED TO NON VALVULAR AF ⁸	Prevention of AIS ⁴ and of SE ⁶ related to AF ⁸	No indication	Prevention of AIS ⁴ and SE ⁶ in patients with non valvular AF ⁸ associated with one or more of following risk factors : • Previous AIS ⁴ , TIA ⁵ or SE ⁶ • LVEF ⁷ < 40% • Symptomatic cardiac failure \geq classe II NYHA ⁹ • Age \geq 75 years • Age \geq 65 years with one of following affections : diabetes, coronaropathy or arterial hypertension		

¹ DVT : Deep Vein Thrombosis; ² PE : Pulmonary embolism; ³ VTE : Venous Thromboembolism; ⁴ AIS : Acute Ischemic Stroke; ⁵ TIA : Transient Ischemic Attack; ⁶ SE : Systemic Embolism; ⁷ LVEF : Left Ventricular Ejection Fraction; ⁸ AF : Atrial Fibrillation; ⁹ NYHA : New York Heart Association

After : CHUV, Lausanne : recommendations regarding use of Rivaroxaban, Apixaban et Dabigatran, Version January 1, 2013.

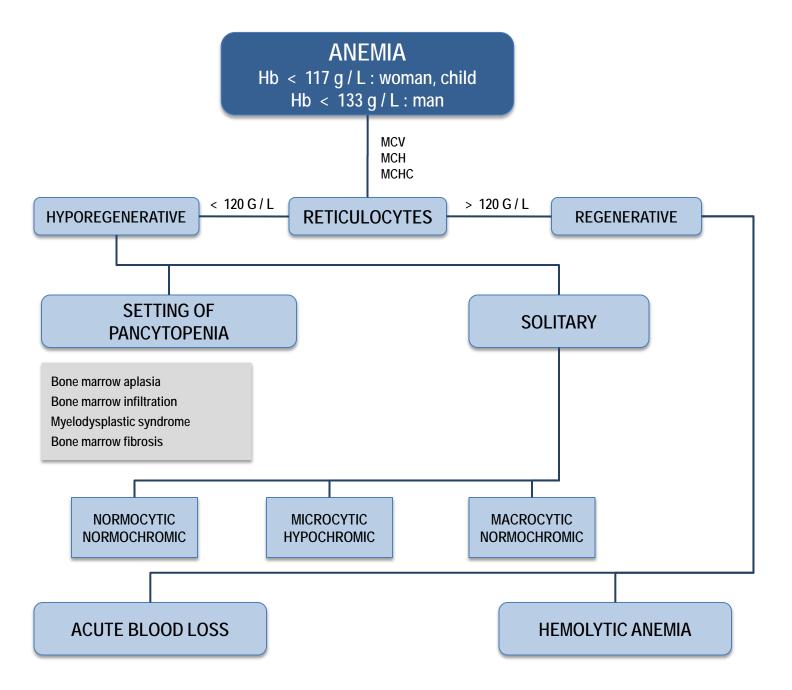
EFFECTS OF ANTICOAGULANTS ON COAGULATION TESTS

ANTICOAGULANT	TARGETS	aPTT	PT ²	INR	TT	FIBRINOGEN	D-DIMERS	ANTI- Xa	ANTI-IIa
Vitamine K antagonists	II, VII, IX, X, protein C and S	∇	Ŷ	\bigtriangledown	\bigtriangledown	⇔	⇔	⇔	⇔
Unfractionated heparin	IIa et Xa (AT-dependent)	∇	⇔	⇔	∇	⇔	⇔	A	~
Low molecular weight heparin	Xa (AT-dependent)	\Leftrightarrow	⇔	⇔	\bigtriangledown	⇔	⇔	A	⇔
Dabigatran (Pradaxa [®])	lla ¹	~	∿	∇	\bigtriangledown	\$	⇔	⇔	~
Rivaroxaban (Xarelto [®])	Xa ¹	∇	₪	∇	⇔	\$	⇔	⊲	⇔
Apixaban (Eliquis®)	Xa ¹	\bigtriangledown	∿	\bigtriangledown	⇔	⇔	⇔	⊲	⇔
	ation factors are montioned by their								

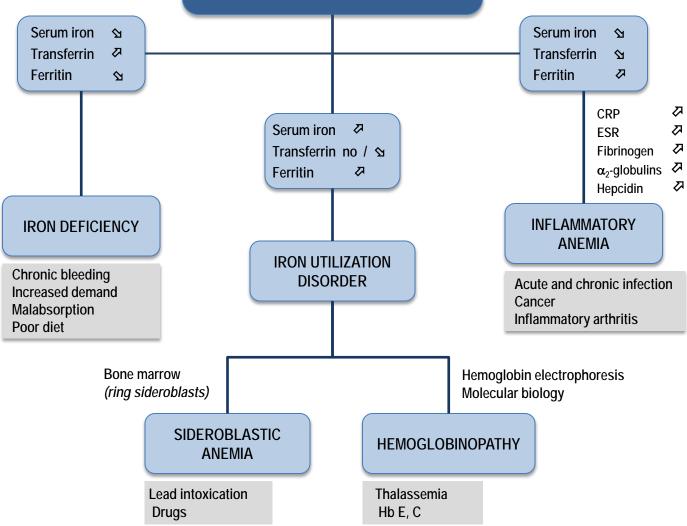

AT = antithrombin. Coagulation factors are mentioned by their roman numeral. «a» means «activated»

¹ Free and bound form

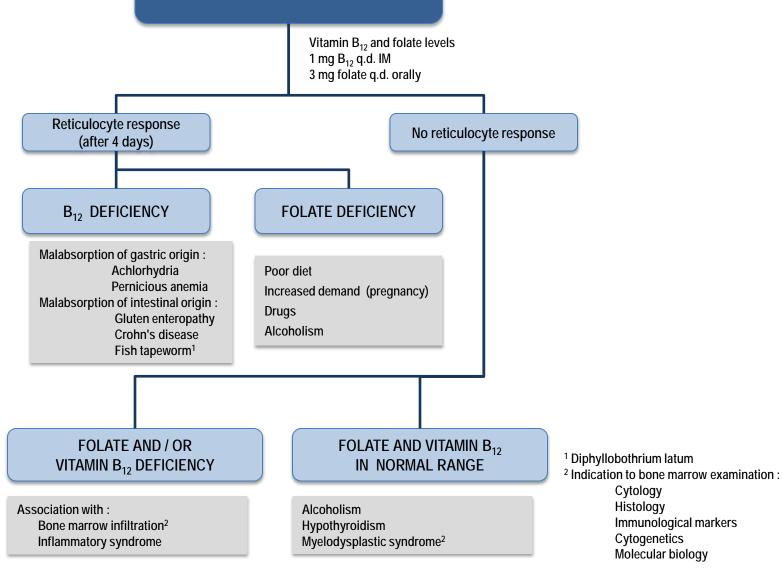
² PT (Quick) expressed in %

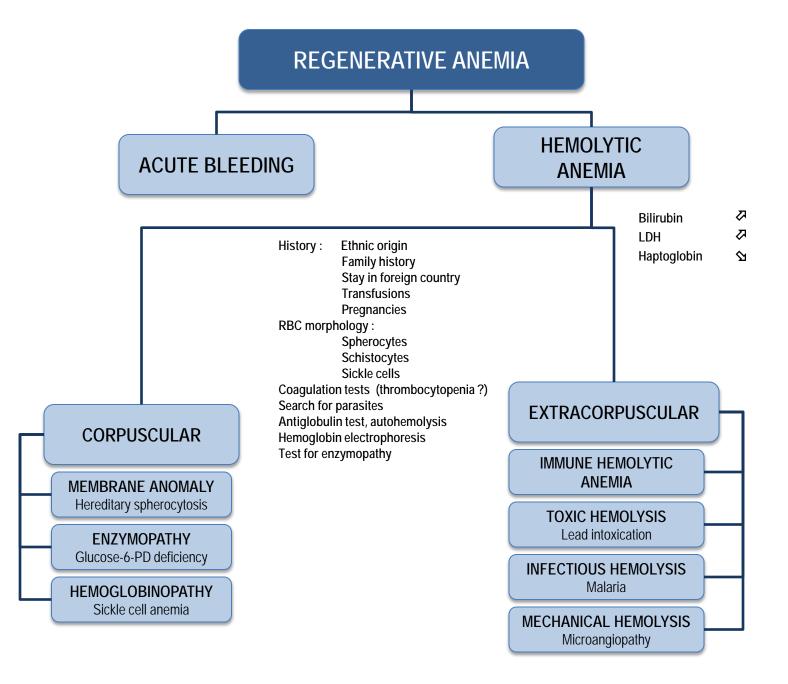

After : Gavillet M., Angelillo-Scherrer A. Quantification of the anticoagulatory effet of novel anticoagulants and management of emergencies. Cardiovascular Medicine 2012;15 : 170-179.

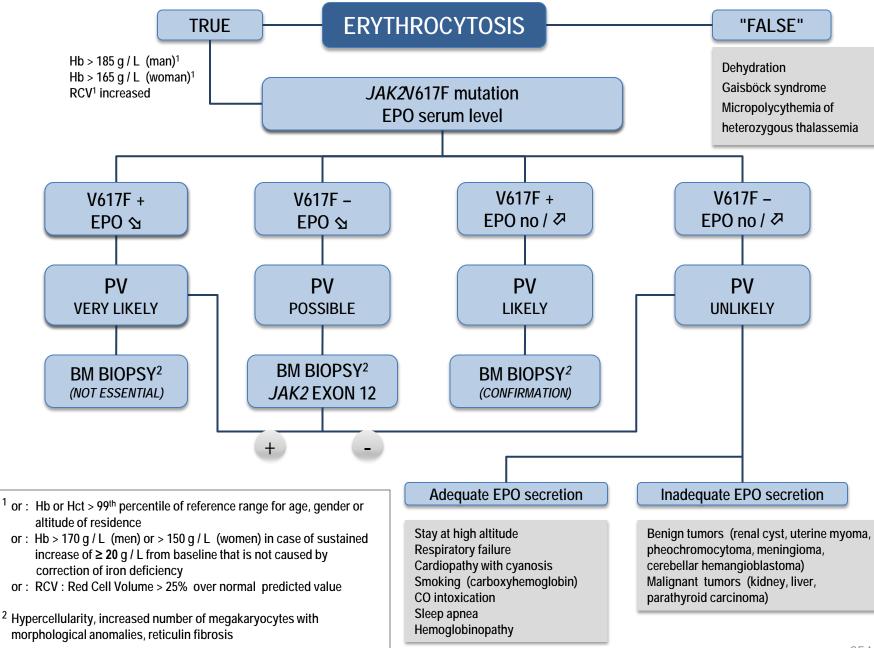
ANTIPHOSPHOLIPID ANTIBODIES (APA)

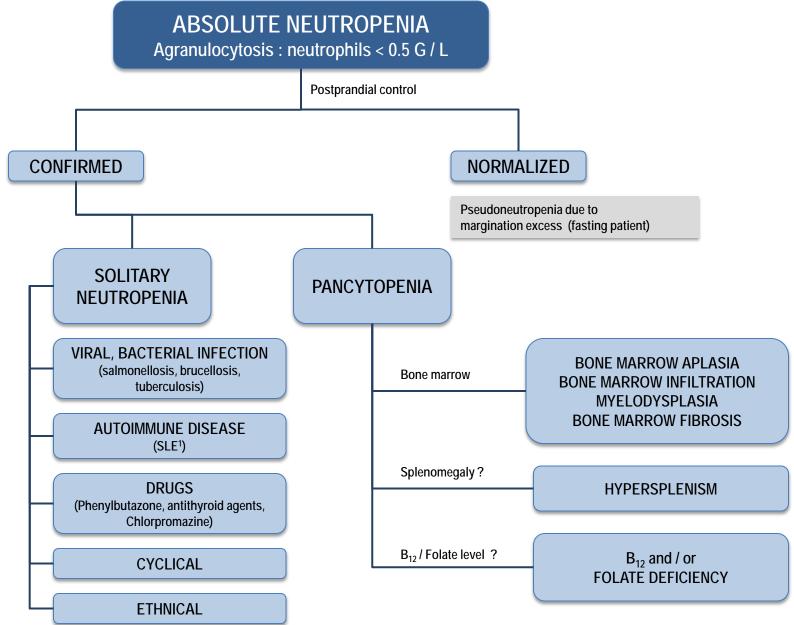

Modified from Giannakopoulos B., Krilis S.A.: How I treat the antiphospholipid syndrome. Blood 2009; 114 : 2020-2030.

Part 4 DIAGNOSTIC ALGORITHMS

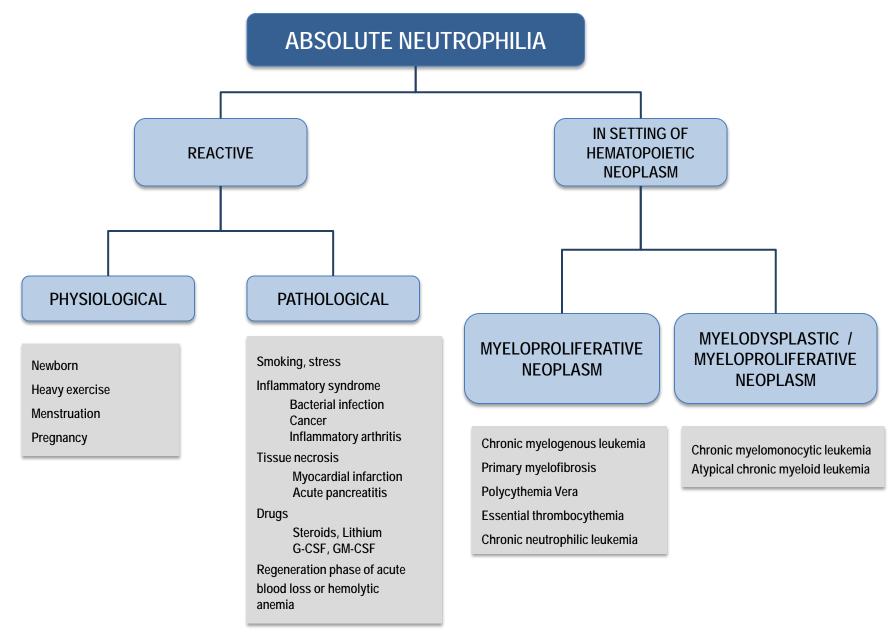


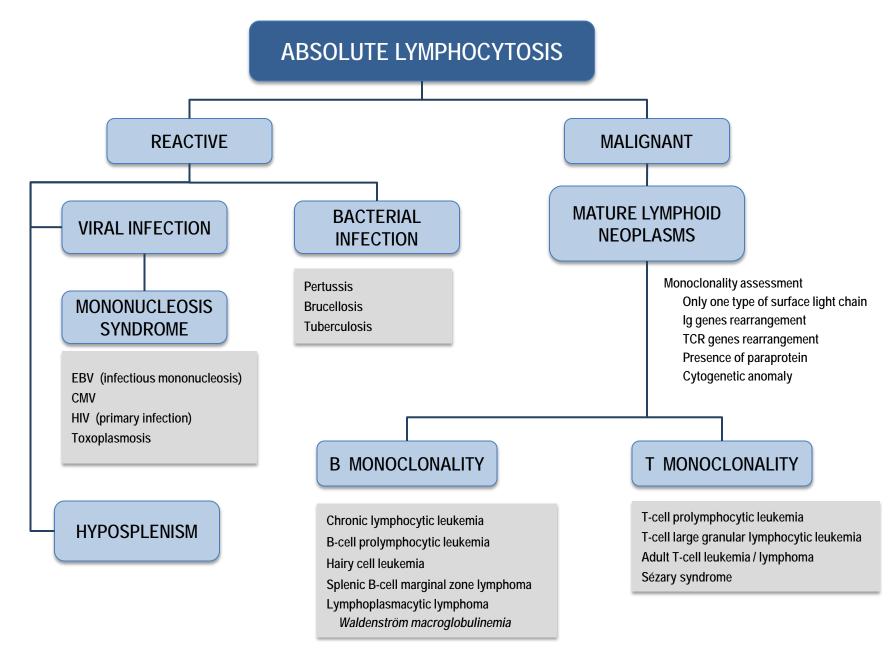

NORMOCYTIC NORMOCHROMIC **HYPOREGENERATIVE ANEMIA** WBC Platelets SOLITARY ANEMIA PANCYTOPENIA Bone marrow **BONE MARROW APLASIA HEMODILUTION** MARROW INFILTRATION MARROW FIBROSIS Fluid retention Pregnancy Splenomegaly Splenomegaly? HYPERSPLENISM Paraprotein CRP Creatinin Thyroid tests **INFLAMMATORY RENAL FAILURE SYNDROME** Bone marrow PURE RED CELL **HYPOTHYROIDISM APLASIA**

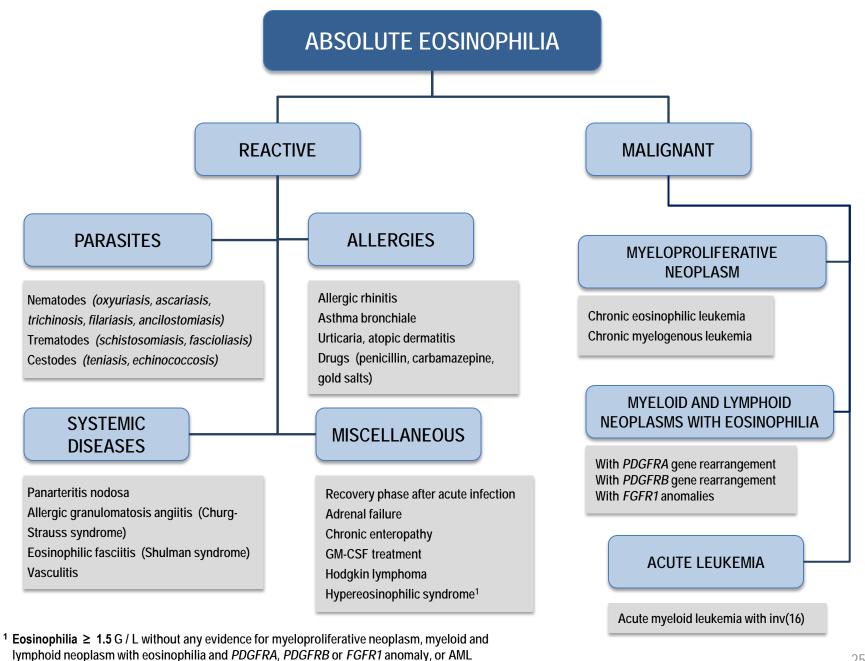

MICROCYTIC HYPOCHROMIC ANEMIA

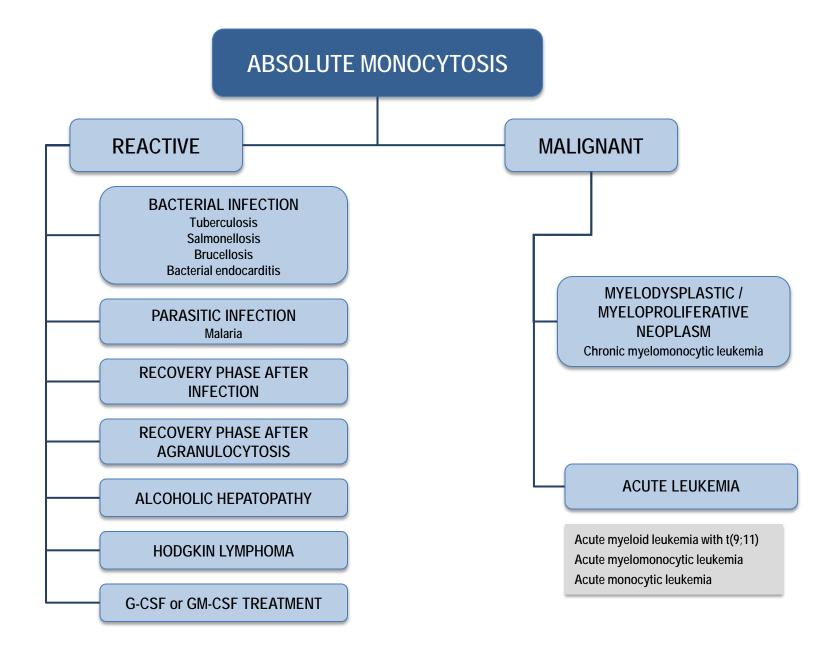


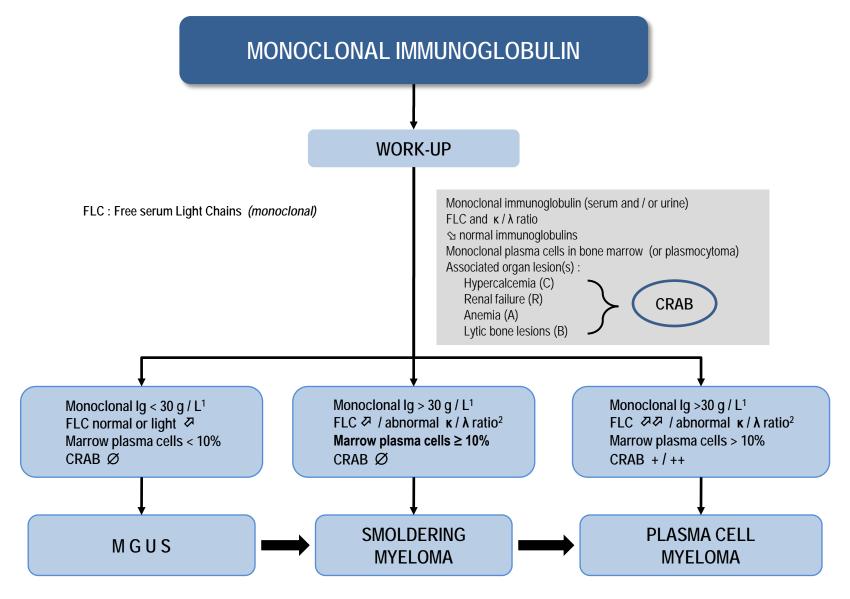
MACROCYTIC ANEMIA

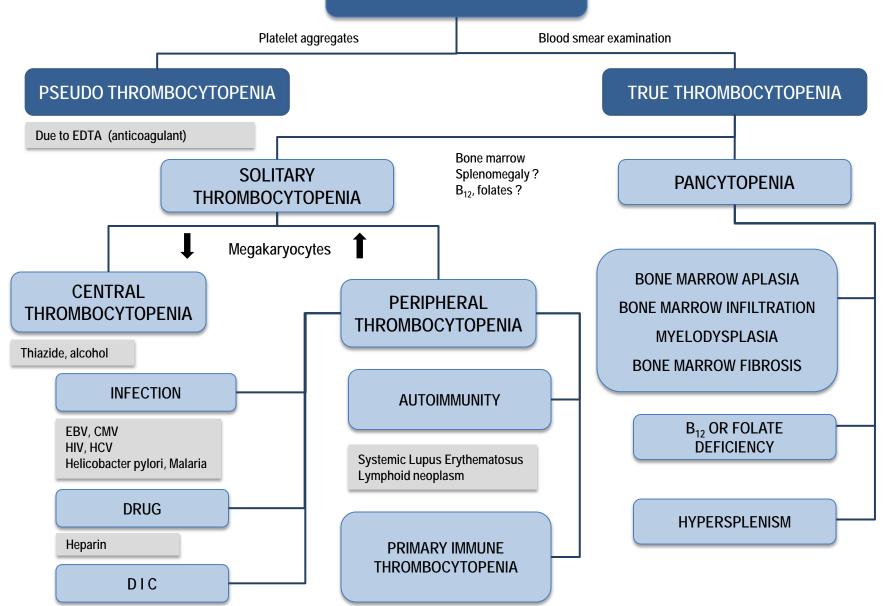


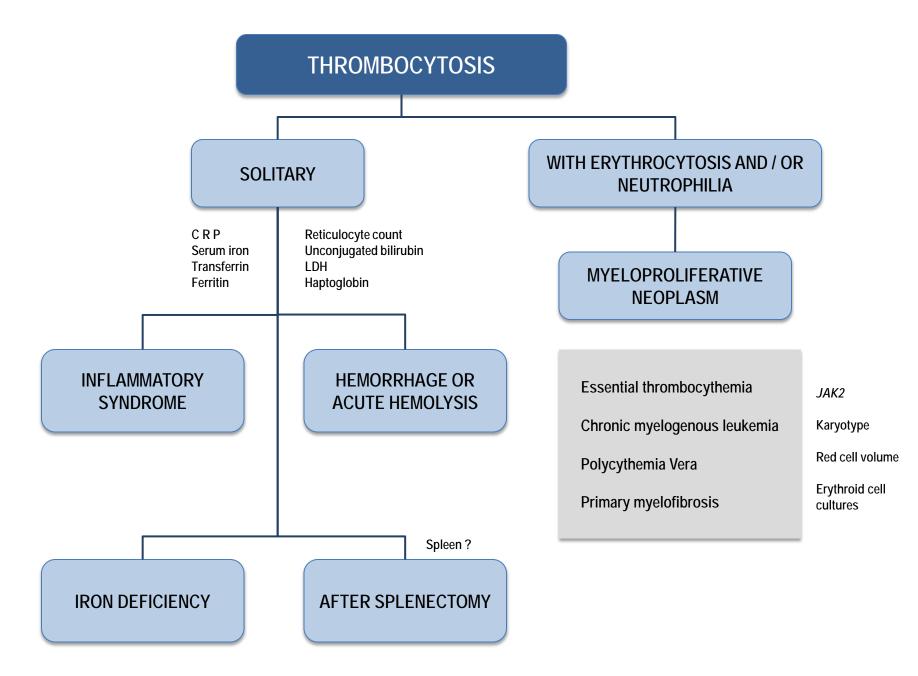


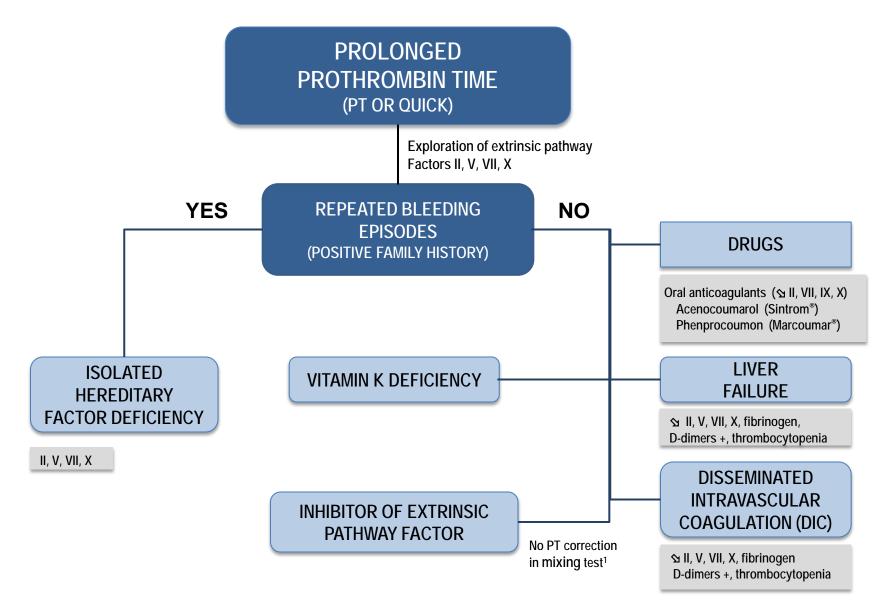




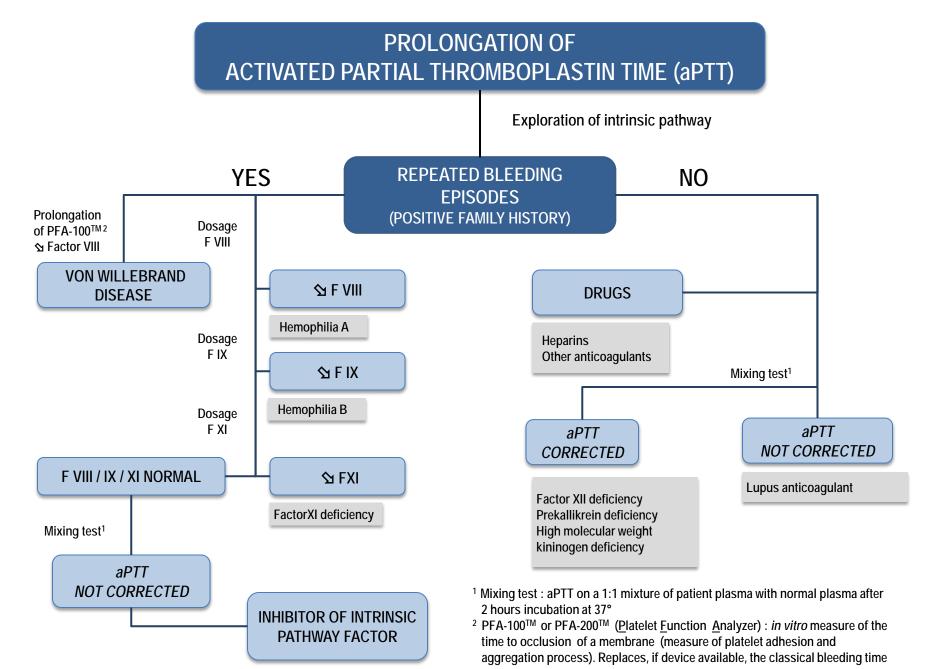

¹ SLE : Systemic Lupus Erythematosus




¹Ig level may be lower for diagnosis if other criteria are present


 $^{2} \bigtriangledown$ ratio if kappa (κ) light chains increased

 \mathfrak{L} ratio if lambda (λ) light chains increased


THROMBOCYTOPENIA

¹ Mixing test : PT / Quick on a 1:1 mixture of patient plasma with normal plasma after 2 hours incubation at 37°

BY WAY OF CONCLUSION

Authors and Collaborators :

Pierre-Michel Schmidt, MD, Hematology Service, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne (Switzerland) Pierre Cornu, MD, Past chairman, Board for Postgraduate and Continuous Medical Education, Swiss Society of Hematology Anne Angelillo-Scherrer, MD and PhD, Assistant Professor, Service and Central Laboratory of Hematology, CHUV Valérie Parlier, PhD, Unité de Cytogénétique du Cancer, Service de Génétique Médicale du CHUV Stéphane Quarroz, Technician in Biomedical Analyses, Head of Unit, Central Hematology Laboratory (LCH), CHUV Pieter Canham van Dijken, MD Transfusion Medicine is presently not covered in this synopsis Related morphological inconography may be found on : http://ashimagebank.hematologylibrary.org

Remarks or suggestions for improvement of this document are welcome and may be addressed to the authors : Pierre-Michel Schmidt : <u>pmschmidt@vtx.ch</u>

Pierre Cornu : pierre.cornu@hin.ch

Anne Angelillo-Scherrer : <u>anne.angelillo-scherrer@chuv.ch</u>

April 2013