

FIGURE 1 - Interval Score (IS) distribution for 34 GLM (number of knots $k=1$ and $k=2$) across 15 scenarios (15 leave-future-out cross-validation scenarios for the females and the breast cancer) obtained on combined data from the Swiss registries of Vaud, Geneva and Neuchatel, 1982-2016. In the labels, "a", "p", and "c" refer to age, period and cohort, and nsk to natural splines with k knots. The mean IS (M-IS) is indicated with a dotted horizontal line. The numbers on the top of the graph give for each model the number of scenarios outside the plotted region (IS >1). The number on the bottom is the number of scenarios for which the fitting algorithm of a method did not converge. The Lee-Carter (L-C) model is one of these models.

FIGURE 2 - Interval Score (IS) distribution for 34 GLM (number of knots $k=3$ and $k=4$), a GLM AIC (35th model) and joinpoint regression (36 th model) across 15 scenarios (15 leave-future-out cross-validation scenarios for the females and the breast cancer) obtained on combined data from the Swiss registries of Vaud, Geneva and Neuchatel, 1982-2016. In the labels, " a ", " p ", and " c " refer to age, period and cohort, and nsk to natural splines with k knots. The mean IS (M-IS) is indicated with a dotted horizontal line. The numbers on the top of the graph give for each model the number of scenarios outside the plotted region (IS >1.5). The number on the bottom is the number of scenarios for which the fitting algorithm of a method did not converge.

Figure 3 - Interval Score (IS) distribution for 12 APC, 10 BAPC , and 8 LM across 15 scenarios (15 leave-future-out cross-validation scenarios the females and the breast cancer) obtained on combined data from the Swiss registries of Vaud, Geneva and Neuchatel, 1982-2016. For APC, "drift only" and "all effects" refer to prediction strategies extrapolating only the drift, respectively the drift + all non linear effects, "log" indicates the logarithmic link, "pw" the $1 / 5$ power link, and k the number of knots used. For BAPC, RW1 and RW2 refer to first and second-order random walk, "p1" indicates gamma(1, 9e-4) prior for the age effect and gamma(1, 2.5e-4) prior for the period and cohort effects, "p2", "p3", "p4", and "p5" indicate gamma(1, 5e-03), gamma(1, 5e-05), gamma(1, 5e-07) and PC priors for all effects, respectively. For LM, "r" is the number of past periods included in the regression. The mean IS (M-IS) is indicated with a dotted horizontal line. The numbers on the top of the graph give for each model the number of scenarios outside the plotted region (IS >1.5). The number on the bottom is the number of scenarios for which the fitting algorithm of a method did not converge.

Figure 4 - Interval Score (IS) distribution for 64 ARIMA with orders of each component (AR, I and MA) between 0 and 3, and an ARIMA AIC (65 th model) across 15 scenarios (15 leave-future-out cross-validation scenarios for the female and breast cancer site) obtained on combined data from the Swiss registries of Vaud, Geneva and Neuchatel, 1982-2016. The mean IS (M-IS) is indicated with a dotted horizontal line. The numbers on the top of the graph give for each model the number of scenarios outside the plotted region (IS >1). The number on the bottom is the number of scenarios for which the fitting algorithm of a method did not converge.

Figure 5 - Interval Score (IS) distribution for 34 GLM (number of knots $k=1$ and $k=2$) across 15 scenarios (15 leave-future-out cross-validation scenarios for the males and the colorectal cancer) obtained on combined data from the Swiss registries of Vaud, Geneva and Neuchatel, 1982-2016. In the labels, "a", "p", and "c" refer to age, period and cohort, and nsk to natural splines with k knots. The mean IS (M-IS) is indicated with a dotted horizontal line. The numbers on the top of the graph give for each model the number of scenarios outside the plotted region (IS >1.5). The number on the bottom is the number of scenarios for which the fitting algorithm of a method did not converge. The Lee-Carter (L-C) model is one of these models.

FIgure 6 - Interval Score (IS) distribution for 34 GLM (number of knots $\mathrm{k}=3$ and $\mathrm{k}=4$), a GLM AIC (35th model) and joinpoint regression (36th model) across 15 scenarios (15 leave-future-out cross-validation scenarios for the males and the colorectal cancer) obtained on combined data from the Swiss registries of Vaud, Geneva and Neuchatel, 1982-2016. In the labels, " a ", " p ", and " c " refer to age, period and cohort, and nsk to natural splines with k knots. The mean IS (M-IS) is indicated with a dotted horizontal line. The numbers on the top of the graph give for each model the number of scenarios outside the plotted region (IS >1.5). The number on the bottom is the number of scenarios for which the fitting algorithm of a method did not converge.

Figure 7 - Interval Score (IS) distribution for $12 \mathrm{APC}, 10 \mathrm{BAPC}$, and 8 LM across 15 scenarios (15 leave-future-out cross-validation scenarios the males and the colorectal cancer) obtained on combined data from the Swiss registries of Vaud, Geneva and Neuchatel, 1982-2016. For APC, "drift only" and "all effects" refer to prediction strategies extrapolating only the drift, respectively the drift + all non linear effects, "log" indicates the logarithmic link, "pw" the $1 / 5$ power link, and k the number of knots used. For BAPC, RW1 and RW2 refer to first and second-order random walk, "p1" indicates gamma($1,9 \mathrm{e}-4$) prior for the age effect and gamma($1,2.5 \mathrm{e}-4$) prior for the period and cohort effects, "p2", "p3", "p4", and "p5" indicate gamma(1,5e-03), gamma(1,5e-05), gamma($1,5 \mathrm{e}-07$) and PC priors for all effects, respectively. For LM, "r" is the number of past periods included in the regression. The mean IS (M-IS) is indicated with a dotted horizontal line. The numbers on the top of the graph give for each model the number of scenarios outside the plotted region (IS>1.5). The number on the bottom is the number of scenarios for which the fitting algorithm of a method did not converge.

FIgURE 8 - Interval Score (IS) distribution for 64 ARIMA with orders of each component (AR, I and MA) between 0 and 3, and an ARIMA AIC (65 th model) across 15 scenarios (15 leave-future-out cross-validation scenarios for the male and colorectal cancer site) obtained on combined data from the Swiss registries of Vaud, Geneva and Neuchatel, 1982-2016. The mean IS (M-IS) is indicated with a dotted horizontal line. The numbers on the top of the graph give for each model the number of scenarios outside the plotted region ($\mathrm{IS}>1$). The number on the bottom is the number of scenarios for which the fitting algorithm of a method did not converge.

FIGURE 9 - Interval Score (IS) distribution for 34 GLM (number of knots $k=1$ and $k=2$) across 15 scenarios (15 leave-future-out cross-validation scenarios for the females and the colorectal cancer) obtained on combined data from the Swiss registries of Vaud, Geneva and Neuchatel, 1982-2016. In the labels, "a", "p", and "c" refer to age, period and cohort, and nsk to natural splines with k knots. The mean IS (M-IS) is indicated with a dotted horizontal line. The numbers on the top of the graph give for each model the number of scenarios outside the plotted region (IS >1.5). The number on the bottom is the number of scenarios for which the fitting algorithm of a method did not converge. The Lee-Carter (L-C) model is one of these models.

Figure 10 - Interval Score (IS) distribution for 34 GLM (number of knots $\mathrm{k}=3$ and $\mathrm{k}=4$), a GLM AIC (35 th model) and joinpoint regression (36 th model) across 15 scenarios (15 leave-future-out cross-validation scenarios for the females and the colorectal cancer) obtained on combined data from the Swiss registries of Vaud, Geneva and Neuchatel, 1982-2016. In the labels, " a ", " p ", and " c " refer to age, period and cohort, and nsk to natural splines with k knots. The mean IS (M-IS) is indicated with a dotted horizontal line. The numbers on the top of the graph give for each model the number of scenarios outside the plotted region (IS >1.5). The number on the bottom is the number of scenarios for which the fitting algorithm of a method did not converge.

FIgure 11 - Interval Score (IS) distribution for 12 APC, 10 BAPC, and 8 LM across 15 scenarios (15 leave-future-out cross-validation scenarios the females and the colorectal cancer) obtained on combined data from the Swiss registries of Vaud, Geneva and Neuchatel, 1982-2016. For APC, "drift only" and "all effects" refer to prediction strategies extrapolating only the drift, respectively the drift + all non linear effects, "log" indicates the logarithmic link, "pw" the $1 / 5$ power link, and k the number of knots used. For BAPC, RW1 and RW2 refer to first and second-order random walk, "pl" indicates gamma(1, 9e-4) prior for the age effect and gamma(1, 2.5e-4) prior for the period and cohort effects, "p2", "p3", "p4", and "p5" indicate gamma(1,5e-03), gamma(1, 5e-05), gamma(1, 5e-07) and PC priors for all effects, respectively. For LM, "r" is the number of past periods included in the regression. The mean IS (M-IS) is indicated with a dotted horizontal line. The numbers on the top of the graph give for each model the number of scenarios outside the plotted region (IS>1.5). The number on the bottom is the number of scenarios for which the fitting algorithm of a method did not converge.

FIGURE 12 - Interval Score (IS) distribution for 64 ARIMA with orders of each component (AR, I and MA) between 0 and 3, and an ARIMA AIC (65th model) across 15 scenarios (15 leave-future-out cross-validation scenarios for the female and colorectal cancer site) obtained on combined data from the Swiss registries of Vaud, Geneva and Neuchatel, 1982-2016. The mean IS (M-IS) is indicated with a dotted horizontal line. The numbers on the top of the graph give for each model the number of scenarios outside the plotted region ($\mathrm{IS}>1$). The number on the bottom is the number of scenarios for which the fitting algorithm of a method did not converge.

Figure 13 - Interval Score (IS) distribution for 34 GLM (number of knots $\mathrm{k}=1$ and $\mathrm{k}=2$) across 15 scenarios (15 leave-future-out cross-validation scenarios for the males and the lung cancer) obtained on combined data from the Swiss registries of Vaud, Geneva and Neuchatel, 1982-2016. In the labels, "a", "p", and "c" refer to age, period and cohort, and nsk to natural splines with k knots. The mean IS (M-IS) is indicated with a dotted horizontal line. The numbers on the top of the graph give for each model the number of scenarios outside the plotted region (IS >1.5). The number on the bottom is the number of scenarios for which the fitting algorithm of a method did not converge. The Lee-Carter (L-C) model is one of these models.

Figure 14 - Interval Score (IS) distribution for 34 GLM (number of knots $k=3$ and $k=4$), a GLM AIC (35 th model) and joinpoint regression (36th model) across 15 scenarios (15 leave-future-out cross-validation scenarios for the males and the lung cancer) obtained on combined data from the Swiss registries of Vaud, Geneva and Neuchatel, 1982-2016. In the labels, " a ", " p ", and " " " refer to age, period and cohort, and nsk to natural splines with k knots. The mean IS (M-IS) is indicated with a dotted horizontal line. The numbers on the top of the graph give for each model the number of scenarios outside the plotted region (IS>1.5). The number on the bottom is the number of scenarios for which the fitting algorithm of a method did not converge.

Figure 15 - Interval Score (IS) distribution for 12 APC, 10 BAPC, and 8 LM across 15 scenarios (15 leave-future-out cross-validation scenarios the males and the lung cancer) obtained on combined data from the Swiss registries of Vaud, Geneva and Neuchatel, 1982-2016. For APC, "drift only" and "all effects" refer to prediction strategies extrapolating only the drift, respectively the drift + all non linear effects, "log" indicates the logarithmic link, "pw" the $1 / 5$ power link, and k the number of knots used. For BAPC, RW1 and RW2 refer to first and second-order random walk, "p1" indicates gamma(1, 9e-4) prior for the age effect and gamma(1, 2.5e-4) prior for the period and cohort effects, "p2", "p3", "p4", and "p5" indicate gamma($1,5 \mathrm{e}-03$), gamma($1,5 \mathrm{e}-05$), gamma($1,5 \mathrm{e}-07$) and PC priors for all effects, respectively. For LM, "r" is the number of past periods included in the regression. The mean IS (M-IS) is indicated with a dotted horizontal line. The numbers on the top of the graph give for each model the number of scenarios outside the plotted region (IS>1.5). The number on the bottom is the number of scenarios for which the fitting algorithm of a method did not converge.

Figure 16 - Interval Score (IS) distribution for 64 ARIMA with orders of each component (AR, I and MA) between 0 and 3, and an ARIMA AIC (65th model) across 15 scenarios (15 leave-future-out cross-validation scenarios for the male and lung cancer site) obtained on combined data from the Swiss registries of Vaud, Geneva and Neuchatel, 1982-2016. The mean IS (M-IS) is indicated with a dotted horizontal line. The numbers on the top of the graph give for each model the number of scenarios outside the plotted region ($\mathrm{IS}>1$). The number on the bottom is the number of scenarios for which the fitting algorithm of a method did not converge.

Figure 17 - Interval Score (IS) distribution for 34 GLM (number of knots $k=1$ and $k=2$) across 15 scenarios (15 leave-future-out cross-validation scenarios for the females and the lung cancer) obtained on combined data from the Swiss registries of Vaud, Geneva and Neuchatel, 1982-2016. In the labels, "a", "p", and "c" refer to age, period and cohort, and nsk to natural splines with k knots. The mean IS (M-IS) is indicated with a dotted horizontal line. The numbers on the top of the graph give for each model the number of scenarios outside the plotted region (IS >1.5). The number on the bottom is the number of scenarios for which the fitting algorithm of a method did not converge. The Lee-Carter (L-C) model is one of these models.

FIgure 18 - Interval Score (IS) distribution for 34 GLM (number of knots $\mathrm{k}=3$ and $\mathrm{k}=4$), a GLM AIC (35 th model) and joinpoint regression (36 th model) across 15 scenarios (15 leave-future-out cross-validation scenarios for the females and the lung cancer) obtained on combined data from the Swiss registries of Vaud, Geneva and Neuchatel, 1982-2016. In the labels, " a ", " p ", and "c" refer to age, period and cohort, and nsk to natural splines with k knots. The mean IS (M-IS) is indicated with a dotted horizontal line. The numbers on the top of the graph give for each model the number of scenarios outside the plotted region (IS >1.5). The number on the bottom is the number of scenarios for which the fitting algorithm of a method did not converge.

Figure 19 - Interval Score (IS) distribution for 12 APC, 10 BAPC, and 8 LM across 15 scenarios (15 leave-future-out cross-validation scenarios the females and the lung cancer) obtained on combined data from the Swiss registries of Vaud, Geneva and Neuchatel, 1982-2016. For APC, "drift only" and "all effects" refer to prediction strategies extrapolating only the drift, respectively the drift + all non linear effects, "log" indicates the logarithmic link, "pw" the $1 / 5$ power link, and k the number of knots used. For BAPC, RW1 and RW2 refer to first and second-order random walk, "p1" indicates gamma(1, 9e-4) prior for the age effect and gamma(1, 2.5e-4) prior for the period and cohort effects, "p2", " p 3 ", " p 4 ", and " p 5 " indicate gamma($1,5 \mathrm{e}-03$), gamma($1,5 \mathrm{e}-05$), gamma($1,5 \mathrm{e}-07$) and PC priors for all effects, respectively. For LM, "r" is the number of past periods included in the regression. The mean IS (M-IS) is indicated with a dotted horizontal line. The numbers on the top of the graph give for each model the number of scenarios outside the plotted region (IS>1.5). The number on the bottom is the number of scenarios for which the fitting algorithm of a method did not converge.

FIgure 20 - Interval Score (IS) distribution for 64 ARIMA with orders of each component (AR, I and MA) between 0 and 3, and an ARIMA AIC (65th model) across 15 scenarios (15 leave-future-out cross-validation scenarios for the female and lung cancer site) obtained on combined data from the Swiss registries of Vaud, Geneva and Neuchatel, 1982-2016. The mean IS (M-IS) is indicated with a dotted horizontal line. The numbers on the top of the graph give for each model the number of scenarios outside the plotted region ($\mathrm{IS}>1$). The number on the bottom is the number of scenarios for which the fitting algorithm of a method did not converge.

FIGURE 21 - Interval Score (IS) distribution for 34 GLM (number of knots $\mathrm{k}=1$ and $\mathrm{k}=2$) across 15 scenarios (15 leave-future-out cross-validation scenarios for the males and the other sites cancer) obtained on combined data from the Swiss registries of Vaud, Geneva and Neuchatel, 1982-2016. In the labels, "a", "p", and "c" refer to age, period and cohort, and nsk to natural splines with k knots. The mean IS (M-IS) is indicated with a dotted horizontal line. The numbers on the top of the graph give for each model the number of scenarios outside the plotted region (IS >1.5). The number on the bottom is the number of scenarios for which the fitting algorithm of a method did not converge. The Lee-Carter (L-C) model is one of these models.

FIgure 22 - Interval Score (IS) distribution for 34 GLM (number of knots $\mathrm{k}=3$ and $\mathrm{k}=4$), a GLM AIC (35 th model) and joinpoint regression (36 th model) across 15 scenarios (15 leave-future-out cross-validation scenarios for the males and the other sites cancer) obtained on combined data from the Swiss registries of Vaud, Geneva and Neuchatel, 1982-2016. In the labels, " a ", " p ", and " c " refer to age, period and cohort, and nsk to natural splines with k knots. The mean IS (M-IS) is indicated with a dotted horizontal line. The numbers on the top of the graph give for each model the number of scenarios outside the plotted region (IS >1.5). The number on the bottom is the number of scenarios for which the fitting algorithm of a method did not converge.

Figure 23 - Interval Score (IS) distribution for 12 APC, 10 BAPC, and 8 LM across 15 scenarios (15 leave-future-out cross-validation scenarios the males and the other sites cancer) obtained on combined data from the Swiss registries of Vaud, Geneva and Neuchatel, 1982-2016. For APC, "drift only" and "all effects" refer to prediction strategies extrapolating only the drift, respectively the drift + all non linear effects, "log" indicates the logarithmic link, "pw" the $1 / 5$ power link, and k the number of knots used. For BAPC, RW1 and RW2 refer to first and second-order random walk, "p1" indicates gamma(1, 9e-4) prior for the age effect and gamma(1, 2.5e-4) prior for the period and cohort effects, "p2", "p3", "p4", and "p5" indicate gamma(1,5e-03), gamma(1,5e-05), gamma($1,5 \mathrm{e}-07$) and PC priors for all effects, respectively. For LM, "r" is the number of past periods included in the regression. The mean IS (M-IS) is indicated with a dotted horizontal line. The numbers on the top of the graph give for each model the number of scenarios outside the plotted region (IS>1.5). The number on the bottom is the number of scenarios for which the fitting algorithm of a method did not converge.

Figure 24 - Interval Score (IS) distribution for 64 ARIMA with orders of each component (AR, I and MA) between 0 and 3, and an ARIMA AIC (65th model) across 15 scenarios (15 leave-future-out cross-validation scenarios for the male and other sites cancer site) obtained on combined data from the Swiss registries of Vaud, Geneva and Neuchatel, 1982-2016. The mean IS (M-IS) is indicated with a dotted horizontal line. The numbers on the top of the graph give for each model the number of scenarios outside the plotted region ($\mathrm{IS}>1$). The number on the bottom is the number of scenarios for which the fitting algorithm of a method did not converge.

Figure 25 - Interval Score (IS) distribution for 34 GLM (number of knots $k=1$ and $k=2$) across 15 scenarios (15 leave-future-out cross-validation scenarios for the females and the other sites cancer) obtained on combined data from the Swiss registries of Vaud, Geneva and Neuchatel, 1982-2016. In the labels, "a", "p", and "c" refer to age, period and cohort, and nsk to natural splines with k knots. The mean IS (M-IS) is indicated with a dotted horizontal line. The numbers on the top of the graph give for each model the number of scenarios outside the plotted region (IS >1.5). The number on the bottom is the number of scenarios for which the fitting algorithm of a method did not converge. The Lee-Carter (L-C) model is one of these models.

FIgure 26 - Interval Score (IS) distribution for 34 GLM (number of knots $\mathrm{k}=3$ and $\mathrm{k}=4$), a GLM AIC (35 th model) and joinpoint regression (36 th model) across 15 scenarios (15 leave-future-out cross-validation scenarios for the females and the other sites cancer) obtained on combined data from the Swiss registries of Vaud, Geneva and Neuchatel, 1982-2016. In the labels, " a ", " p ", and " c " refer to age, period and cohort, and nsk to natural splines with k knots. The mean IS (M-IS) is indicated with a dotted horizontal line. The numbers on the top of the graph give for each model the number of scenarios outside the plotted region (IS >1.5). The number on the bottom is the number of scenarios for which the fitting algorithm of a method did not converge.

Figure 27 - Interval Score (IS) distribution for 12 APC, 10 BAPC, and 8 LM across 15 scenarios (15 leave-future-out cross-validation scenarios the females and the other sites cancer) obtained on combined data from the Swiss registries of Vaud, Geneva and Neuchatel, 1982-2016. For APC, "drift only" and "all effects" refer to prediction strategies extrapolating only the drift, respectively the drift + all non linear effects, "log" indicates the logarithmic link, "pw" the $1 / 5$ power link, and k the number of knots used. For BAPC, RW1 and RW2 refer to first and second-order random walk, "p1" indicates gamma(1, 9e-4) prior for the age effect and gamma(1, 2.5e-4) prior for the period and cohort effects, "p2", "p3", "p4", and "p5" indicate gamma(1, 5e-03), gamma(1, 5e-05), gamma(1,5e-07) and PC priors for all effects, respectively. For LM, "r" is the number of past periods included in the regression. The mean IS (M-IS) is indicated with a dotted horizontal line. The numbers on the top of the graph give for each model the number of scenarios outside the plotted region (IS >1.5). The number on the bottom is the number of scenarios for which the fitting algorithm of a method did not converge.

Figure 28 - Interval Score (IS) distribution for 64 ARIMA with orders of each component (AR, I and MA) between 0 and 3, and an ARIMA AIC (65th model) across 15 scenarios (15 leave-future-out cross-validation scenarios for the female and other sites cancer site) obtained on combined data from the Swiss registries of Vaud, Geneva and Neuchatel, 1982-2016. The mean IS (M-IS) is indicated with a dotted horizontal line. The numbers on the top of the graph give for each model the number of scenarios outside the plotted region ($\mathrm{IS}>1$). The number on the bottom is the number of scenarios for which the fitting algorithm of a method did not converge.

FIGURE 29 - Interval Score (IS) distribution for 34 GLM (number of knots $\mathrm{k}=1$ and $\mathrm{k}=2$) across 15 scenarios (15 leave-future-out cross-validation scenarios for the males and the prostate cancer) obtained on combined data from the Swiss registries of Vaud, Geneva and Neuchatel, 1982-2016. In the labels, "a", "p", and "c" refer to age, period and cohort, and nsk to natural splines with k knots. The mean IS (M-IS) is indicated with a dotted horizontal line. The numbers on the top of the graph give for each model the number of scenarios outside the plotted region (IS >1.5). The number on the bottom is the number of scenarios for which the fitting algorithm of a method did not converge. The Lee-Carter (L-C) model is one of these models.

Figure 30 - Interval Score (IS) distribution for 34 GLM (number of knots $k=3$ and $k=4$), a GLM AIC (35 th model) and joinpoint regression ($36 t h$ model) across 15 scenarios (15 leave-future-out cross-validation scenarios for the males and the prostate cancer) obtained on combined data from the Swiss registries of Vaud, Geneva and Neuchatel, 1982-2016. In the labels, " a ", " p ", and " c " refer to age, period and cohort, and nsk to natural splines with k knots. The mean IS (M-IS) is indicated with a dotted horizontal line. The numbers on the top of the graph give for each model the number of scenarios outside the plotted region (IS >1.5). The number on the bottom is the number of scenarios for which the fitting algorithm of a method did not converge.

Figure 31 - Interval Score (IS) distribution for 12 APC, 10 BAPC, and 8 LM across 15 scenarios (15 leave-future-out cross-validation scenarios the males and the prostate cancer) obtained on combined data from the Swiss registries of Vaud, Geneva and Neuchatel, 1982-2016. For APC, "drift only" and "all effects" refer to prediction strategies extrapolating only the drift, respectively the drift + all non linear effects, "log" indicates the logarithmic link, "pw" the $1 / 5$ power link, and k the number of knots used. For BAPC, RW1 and RW2 refer to first and second-order random walk, "p1" indicates gamma(1, 9e-4) prior for the age effect and gamma(1, 2.5e-4) prior for the period and cohort effects, "p2", "p3", "p4", and "p5" indicate gamma(1,5e-03), gamma($1,5 \mathrm{e}-05$), gamma($1,5 \mathrm{e}-07$) and PC priors for all effects, respectively. For LM, "r" is the number of past periods included in the regression. The mean IS (M-IS) is indicated with a dotted horizontal line. The numbers on the top of the graph give for each model the number of scenarios outside the plotted region (IS>1.5). The number on the bottom is the number of scenarios for which the fitting algorithm of a method did not converge.

Figure 32 - Interval Score (IS) distribution for 64 ARIMA with orders of each component (AR, I and MA) between 0 and 3, and an ARIMA AIC (65th model) across 15 scenarios (15 leave-future-out cross-validation scenarios for the male and prostate cancer site) obtained on combined data from the Swiss registries of Vaud, Geneva and Neuchatel, 1982-2016. The mean IS (M-IS) is indicated with a dotted horizontal line. The numbers on the top of the graph give for each model the number of scenarios outside the plotted region ($\mathrm{IS}>1$). The number on the bottom is the number of scenarios for which the fitting algorithm of a method did not converge.

Figure 33 - Interval Score (IS) distribution for 34 GLM (number of knots $k=1$ and $k=2$) across 15 scenarios (15 leave-future-out cross-validation scenarios for the males and the skin melanoma cancer) obtained on combined data from the Swiss registries of Vaud, Geneva and Neuchatel, 1982-2016. In the labels, "a", "p", and " c " refer to age, period and cohort, and nsk to natural splines with k knots. The mean IS (M-IS) is indicated with a dotted horizontal line. The numbers on the top of the graph give for each model the number of scenarios outside the plotted region (IS >1.5). The number on the bottom is the number of scenarios for which the fitting algorithm of a method did not converge. The Lee-Carter (L-C) model is one of these models.

Figure 34 - Interval Score (IS) distribution for 34 GLM (number of knots $k=3$ and $k=4$), a GLM AIC (35 th model) and joinpoint regression (36 th model) across 15 scenarios (15 leave-future-out cross-validation scenarios for the males and the skin melanoma cancer) obtained on combined data from the Swiss registries of Vaud, Geneva and Neuchatel, 1982-2016. In the labels, " a ", " p ", and " c " refer to age, period and cohort, and nsk to natural splines with k knots. The mean IS (M-IS) is indicated with a dotted horizontal line. The numbers on the top of the graph give for each model the number of scenarios outside the plotted region (IS >1.5). The number on the bottom is the number of scenarios for which the fitting algorithm of a method did not converge.

Figure 35 - Interval Score (IS) distribution for 12 APC, 10 BAPC, and 8 LM across 15 scenarios (15 leave-future-out cross-validation scenarios the males and the skin melanoma cancer) obtained on combined data from the Swiss registries of Vaud, Geneva and Neuchatel, 1982-2016. For APC, "drift only" and "all effects" refer to prediction strategies extrapolating only the drift, respectively the drift + all non linear effects, "log" indicates the logarithmic link, "pw" the $1 / 5$ power link, and k the number of knots used. For BAPC, RW1 and RW2 refer to first and second-order random walk, "p1" indicates gamma(1, 9e-4) prior for the age effect and gamma($1,2.5 \mathrm{e}-4$) prior for the period and cohort effects, "p2", "p3", "p4", and " p 5 " indicate gamma(1,5e-03), gamma(1,5e-05), gamma($1,5 \mathrm{e}-07$) and PC priors for all effects, respectively. For LM , "r" is the number of past periods included in the regression. The mean IS (M-IS) is indicated with a dotted horizontal line. The numbers on the top of the graph give for each model the number of scenarios outside the plotted region (IS>1.5). The number on the bottom is the number of scenarios for which the fitting algorithm of a method did not converge.

Figure 36 - Interval Score (IS) distribution for 64 ARIMA with orders of each component (AR, I and MA) between 0 and 3, and an ARIMA AIC (65th model) across 15 scenarios (15 leave-future-out cross-validation scenarios for the male and skin melanoma cancer site) obtained on combined data from the Swiss registries of Vaud, Geneva and Neuchatel, 1982-2016. The mean IS (M-IS) is indicated with a dotted horizontal line. The numbers on the top of the graph give for each model the number of scenarios outside the plotted region ($\mathrm{IS}>1$). The number on the bottom is the number of scenarios for which the fitting algorithm of a method did not converge.

Figure 37 - Interval Score (IS) distribution for 34 GLM (number of knots $k=1$ and $k=2$) across 15 scenarios (15 leave-future-out cross-validation scenarios for the females and the skin melanoma cancer) obtained on combined data from the Swiss registries of Vaud, Geneva and Neuchatel, 1982-2016. In the labels, "a", "p", and "c" refer to age, period and cohort, and nsk to natural splines with k knots. The mean IS (M-IS) is indicated with a dotted horizontal line. The numbers on the top of the graph give for each model the number of scenarios outside the plotted region (IS>1.5). The number on the bottom is the number of scenarios for which the fitting algorithm of a method did not converge. The Lee-Carter (L-C) model is one of these models.

FIGURE 38 - Interval Score (IS) distribution for 34 GLM (number of knots $k=3$ and $k=4$), a GLM AIC (35 th model) and joinpoint regression (36 th model) across 15 scenarios (15 leave-future-out cross-validation scenarios for the females and the skin melanoma cancer) obtained on combined data from the Swiss registries of Vaud, Geneva and Neuchatel, 1982-2016. In the labels, "a", "p", and "c" refer to age, period and cohort, and nsk to natural splines with k knots. The mean IS (M-IS) is indicated with a dotted horizontal line. The numbers on the top of the graph give for each model the number of scenarios outside the plotted region (IS >1.5). The number on the bottom is the number of scenarios for which the fitting algorithm of a method did not converge.

Figure 39 - Interval Score (IS) distribution for 12 APC, 10 BAPC, and 8 LM across 15 scenarios (15 leave-future-out cross-validation scenarios the females and the skin melanoma cancer) obtained on combined data from the Swiss registries of Vaud, Geneva and Neuchatel, 1982-2016. For APC, "drift only" and "all effects" refer to prediction strategies extrapolating only the drift, respectively the drift + all non linear effects, "log" indicates the logarithmic link, "pw" the $1 / 5$ power link, and k the number of knots used. For BAPC, RW1 and RW2 refer to first and second-order random walk, "p1" indicates gamma($1,9 \mathrm{e}-4$) prior for the age effect and gamma(1, 2.5e-4) prior for the period and cohort effects, "p2", "p3", "p4", and " p 5 " indicate gamma(1,5e-03), gamma(1,5e-05), gamma($1,5 \mathrm{e}-07$) and PC priors for all effects, respectively. For LM , "r" is the number of past periods included in the regression. The mean IS (M-IS) is indicated with a dotted horizontal line. The numbers on the top of the graph give for each model the number of scenarios outside the plotted region (IS>1.5). The number on the bottom is the number of scenarios for which the fitting algorithm of a method did not converge.

Figure 40 - Interval Score (IS) distribution for 64 ARIMA with orders of each component (AR, I and MA) between 0 and 3, and an ARIMA AIC (65th model) across 15 scenarios (15 leave-future-out cross-validation scenarios for the female and skin melanoma cancer site) obtained on combined data from the Swiss registries of Vaud, Geneva and Neuchatel, 1982-2016. The mean IS (M-IS) is indicated with a dotted horizontal line. The numbers on the top of the graph give for each model the number of scenarios outside the plotted region ($\mathrm{IS}>1$). The number on the bottom is the number of scenarios for which the fitting algorithm of a method did not converge.

