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Summary 

Projecting the future of cancer incidence in a country is an important task for planning future cancer 

interventions and research and for allocating economic resources. This is a complex exercise, however, 

as is any attempt to anticipate the future. Applying leave-future-out cross-validation to data from three 

Swiss cancer registries (Vaud, Geneva, and Neuchâtel) and the period 1982-2016, we compared the 

predictive performance of a large number of models used in the cancer prediction literature: widely used 

age-period-cohort (APC) models and their Bayesian counterparts (BAPC), classical generalized linear 

models (GLM), autoregressive integrated moving average (ARIMA) models, and linear models (LM). 

Perhaps surprisingly, we found that the simpler a model is, the better it performs in predicting future 

cancer incidence, in line with the famous Occam's razor principle, which recommends looking for 

explanations constructed with the smallest possible set of elements. Models simply extrapolating past 

tendencies (ARIMA, LM) outperformed models seeking to estimate and then project underlying effects 

(GLM, APC, BAPC). Among the first, models relying on few parameters (e.g. low-order ARIMA) 

outperformed more complex higher-order models that closely fit observed data, as well as methods based 

on the well-known AIC selection criterion.  

The best model in our comparative study, an ARIMA(2,1,1), was applied to predict cancer incidence in 

Switzerland until 2025, anticipating a substantial stabilization of the risk of developing cancer for the 

next few years. Combining this trend with the demographic projections of the Swiss Federal Statistical 

Office, however, we anticipated a substantial increase in the annual number of new cancer cases, entirely 

due to demographic changes. This increase was estimated at +18% for men and +11% for women, with 

increases ranging from 4.15% for thyroid in men to 26% for bladder in men. 

Estimating (and predicting) trends in cancer incidence over time can be confounded by changes in cancer 

detection, such as but not limited to: the introduction or modification of screening programs, the use of 

different screening tools, and incidental detection. In the third part of this thesis, we proposed a model 

capable of adjusting for these changes and thus estimating the true underlying trend in cancer incidence.  

 

 

 

 



Résumé 

La projection de l'avenir de l'incidence du cancer dans un pays est une tâche importante pour planifier 

les futures interventions et recherches sur le cancer et pour optimiser l’allocation des ressources. Il s'agit 

toutefois d'un exercice complexe, comme toute tentative d'anticiper l'avenir. En appliquant une 

validation croisée aux données de trois registres suisses du cancer (Vaud, Genève et Neuchâtel) pour la 

période 1982-2016, nous avons comparé la performance prédictive d'un grand nombre de modèles utilisés 

dans la littérature : les modèles âge-période-cohorte (APC) et leurs équivalents bayésiens (BAPC), les 

modèles linéaires généralisés (GLM), les modèles autorégressifs intégrés à moyenne mobile (ARIMA) et 

les modèles linéaires (LM). De manière peut-être surprenante, nous avons constaté que plus un modèle 

est simple, plus il est performant dans la prédiction, conformément au célèbre principe du rasoir d'Occam, 

qui veut que la solution la plus simple soit préférée. Les modèles qui se contentent d'extrapoler les 

tendances passées (ARIMA, LM) sont plus performants que ceux qui tentent d'estimer puis de projeter 

des effets sous-jacents (GLM, APC, BAPC). Le modèle le plus performant a été L’ARIMA (2,1,1). Ce 

dernier s’est notamment révélé meilleur que ceux qui sélectionnent la complexité du modèle avec un 

critère comme l’AIC. 

Ce meilleur modèle a été appliqué pour prédire l'incidence du cancer en Suisse jusqu'en 2025, anticipant 

une stabilisation du risque de développer un cancer dans les années à venir. En combinant cette tendance 

avec les projections démographiques de l'Office fédéral de la statistique, nous avons cependant anticipé 

une augmentation substantielle du nombre annuel de nouveaux cas de cancer, entièrement due aux 

changements démographiques. Cette augmentation a été estimée à +18% pour les hommes et +11% 

pour les femmes, avec des augmentations allant de 4,15% pour la thyroïde chez l'homme à 26% pour la 

vessie chez l'homme. 

L'estimation (et la prévision) des tendances de l'incidence du cancer au fil du temps peut être en partie 

faussée par les changements dans les processus de détection du cancer, tels que, mais sans s'y limiter : 

l'introduction ou la modification des programmes de dépistage, l'utilisation de différents outils de 

dépistage, et la détection opportuniste. Dans la troisième partie de cette thèse, nous avons proposé un 

modèle capable de s'ajuster à ces changements et donc d'estimer la véritable tendance sous-jacente de 

l'incidence du cancer. 

 



Introduction 
 
The main theme of this PhD thesis was to predict the evolution of cancer incidence in Switzerland. This 

was part of an interdisciplinary project supported by the Swiss Cancer League. It combined statistical, 

epidemiological and public health aspects, and used cancer registry data from Vaud, Geneva, Neuchâtel, 

and all Swiss registries combined. The thesis is divided into three parts, each of which has resulted in a 

scientific article, the first two being already published, and the third almost ready for submission. The 

three articles are attached to this thesis. It should be noted that the article related to the second part was 

published in 2022, before the article related to the first part, which was published in 2023. 

 

The starting point of this research was an application of a commonly used method for making predictions 

of the age-standardized incidence of prostate cancer in Switzerland after 2010, based on data observed 

between 1982 and 2010. The result was surprising (Figure 1). As can be seen in this figure, there was a 

trend reversal around the year 2005, with the incidence increasing before that year, and decreasing 

thereafter, as shown by the blue dots in this graphic. Yet, one of the most popular methods to model 

cancer incidence (an APC model extrapolating a drift only, see the first article for more explanations) 

predicted an abrupt and certainly unrealistic increase of the incidence after 2010, as shown by the solid 

cyan line. Another method (an APC model extrapolating all effects) produced very different predictions, 

continuing the downward trend (see the dashed green line). In fact, it turned out that such a scenario 

with a trend reversal was the most difficult one to make accurate predictions. In Figure 1, each grey line 

shows a prediction obtained with a different method, all implemented in the literature on cancer 

incidence. It can be seen that these predictions were extremely different from each other, raising the 

crucial and inevitable question of which method to use. 

 



 

Figure 1 : Prostate age-standardized cancer incidence in blue points, models compared are es9mated with data 
from 1982 to 2010, predic9ons are produced with all the methods from 2011 to 2016; highlighted lines in green 
and dark cyan are two extrapola9on variants of the most used model. 

 

First part 

The first part of this thesis, published in Trächsel et al. (2023), was to review and compare performances 

of models and methods used in the statistical and epidemiological literature to predict cancer incidence.  

 

Numerous prediction methods have been employed in the field of cancer incidence, including age-

period-cohort (APC) models (Carstensen, 2007; Holford, 1983; Rutherford et al., 2012), Bayesian age-

period-cohort (BAPC) models (Riebler et al., 2012; Riebler & Held, 2017; Schmid & Held, 2004), 

autoregressive integrated moving average (ARIMA) time-series models (Hamilton, 1994), neural 

networks (Hastie et al., 2009), joinpoint regression (Lerman, 1980), Poisson and negative binomial 

generalized linear models (GLM) (Cameron & Trivedi, 1998), state space models (Chen et al., 2012; 
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Hamilton, 1994), and vector autoregressive Hilbert–Huang transform (Huang & Attoh-Okine, 2005), 

among others. A recent systematic review of lung cancer incidence prediction studies (Yu et al., 2019) 

indicated that APC, BAPC, GLM, and joinpoint were the most frequently used methods. Most of these 

methods can also be applied using different variants, including various possibilities for the priors, tuning 

parameters, extrapolation methods or model complexity, making the choice even richer. 

 

Although there have been some comparisons between prediction models in the literature, these were 

generally limited to a few models, or different variants of a same class of models (Chen et al., 2012; 

Clements, 2005; B. Møller et al., 2003; Riebler et al., 2012; Zheng et al., 2020). Most of these 

comparisons were also conducted in situations where incidences were almost constantly increasing, 

representing a relatively unchallenging prediction setting. In recent years in Switzerland, however, the 

incidence of certain cancers (e.g., breast, prostate, and skin melanoma;(OFS, 2020) ) have started 

stabilizing or decreasing, as in Figure 1. This adds complexity to the task of predicting incidence trends 

and highlights the importance of comparing the different methods in this new challenging context. 

 

In this first part of the thesis, we thus compared the performance of 165 (variants of) models to predict 

cancer incidence, the most important comparative study to date. We included 70 GLM (including 

joinpoint regression), 12 APC (including different extrapolation methods), 10 BAPC (including different 

priors), 65 ARIMA (with different orders of complexity) and 8 linear models (LM), where we simply 

extrapolated regression lines. All these methods were compared over 150 scenarios obtained from real 

cancer incidence data at different sites (e.g., breast, prostate, colorectal, lung, skin melanoma) from the 

registries of Vaud, Geneva and Neuchâtel, representing many kinds of realistic situations, including 

trend reversals. Models were estimated (or “trained”) on one part of the data to make predictions on the 

other part, and they could be compared with respect to the “truth” which was thus known. 

 

Implementing all methods proved to be challenging. In particular, Bayesian methods were extremely 

time-consuming, with a total computation time of 33 days on a machine with 8 cores to make predictions 

for the 150 scenarios.  



Second part 

In the second part of this thesis, published in Trächsel et al.(2022), we applied the best method identified 

in the first part (a low-order ARIMA model) to make predictions of cancer incidences in Switzerland up 

to 2025. 

 

Predictions were made for the age-standardized incidences of the 12 most frequent cancer sites 

according to the ICD10 codes (Fritz et al., 2000): oral cavity and pharynx (C00-14), stomach (C16), 

colon and rectum (C18-20), lung-bronchus-trachea (C33-34), skin melanoma (C43), breast (C50), 

corpus uteri and uterus NOS (C54-55), ovary (C56), prostate (C61), bladder (C67), thyroid (C73), non-

Hodgkin lymphoma (C82-85, C96), separately for women and men, when applicable. We also made a 

prediction for the other cancers in an “other cancers” category to be able to predict the total number of 

cancers. As done in the literature (Møller et al., 2007), also for Switzerland (Rapiti et al., 2014), 

predictions of age-standardized cancer incidence rates were then combined with the population 

projections of the Swiss Federal Statistical Office (baseline scenario "Average 10-2020") to obtain a 

prediction of the future number of new cancer cases. 

 

It is usual in the literature (H. Møller et al., 2007; Rapiti et al., 2014) to decompose a change (e.g. an 

increase) in the number of new cancer cases over time in two components, one due to the change in the 

epidemiological risk of getting cancer, and another one due to the demographic changes in the 

population. One originality of our work was to decompose such a change not in two, but in three 

components: an epidemiological component, via the evolution of the age-standardized cancer incidence 

rates, capturing the possible changing exposure at the population level to the different risks of getting 

cancer, and two demographic components, namely population growth and population aging. This 

decomposition technique enabled us to emphasize the role of these three components, which might be 

useful for planning, or to evaluate the potential impact of prevention campaigns on cancer incidence, 

which will typically affect only the first component.  

 

 



Third part 

The third part of this work is the most original one, with the ambitious and difficult goal of estimating 

cancer incidence while taking into account (i.e. adjusting for) the changes in the cancer detection 

processes such as but not limited to: the introduction or modification of screening programs, the use of 

different screening tools, and incidental detection. An article is currently in the process of being prepared 

for submission. 

 

A few studies have explored the relationship between screening and cancer incidence, seeking to 

distinguish trends that are due to a real change in cancer incidence in the population from those that are 

due to changes in screening practice, such as an increase in the frequency of screening which would 

inevitably lead to the detection of more new cases of cancer. This might be particularly relevant for 

prostate cancer detected by the prostate-specific antigen (PSA) screening test. For instance, Telesca 

(2008) developed a likelihood model, employing PSA utilization over time to simultaneously estimate 

the mean lead time (the period between diagnosis via screening and the time cancer would have been 

clinically diagnosed with symptoms) and a smooth secular trend (the one that would have occurred 

without the introduction of PSA tests). In another study, Etzioni (2008) investigated the impact of PSA 

screening on prostate cancer incidence separately for low- and high-stage cancers, utilizing multiple 

models and assumptions, including a simulation model of the natural progression of cancer through 

pathologic stages until clinical (symptomatic) detection (Cowen, 1994), and a second simulation model 

of PSA growth rate. Gulati (2014) employed similar models to predict past and future cancer 

overdiagnosis (cancers that would not have been detected in the absence of screening) under continued 

or discontinued PSA screening programs.  

 

The link between cancer screening and cancer stage distribution (from stage I to stage IV) has also been 

examined in the literature. For example, Toyoda (2020) investigated the stage distribution and the 

proportion of screen-detected cases for various cancers using Osaka Cancer Registry data (Japan), 

discovering a strong association between high proportions of screen-detected cases and high proportions 

of low-stage cancers. Cardoso (2022) reached a similar conclusion in Europe based on data from 16 



population-based cancer registries, revealing significantly higher proportions of low-stage cancers 

(stages I and II) among screen-detected cases compared to non-screen-detected cases. 

 

Rather than utilizing a simulation model of cancer progression, or precise data on changes in screening 

practice over time which would be difficult to obtain, our idea was to postulate and to exploit that, in 

the absence of change in the cancer detection, the distribution of cancer stages would remain constant 

(while the level of incidence may, of course, vary). Consequently, we interpret changes in this 

distribution over time as a proxy for changes in detection. Although challenging to test, this assumption 

is consistent with the results of Toyoda (2020) and Cardoso (2022), which demonstrate a strong 

association between screening detection and cancer stage. Loosely using the term “screening” to refer 

to such changes, we thus proposed a “Screening Adjusted Model” (SA model), which includes the real 

trend to be estimated, and the mean of the stage distribution as a confounding variable, lagged to a 

certain time into the past. In order to reduce the number of coefficients in the model, and to get credible 

estimates, we also imposed some structure and constraints on the coefficients. We evaluated the 

performance of the SA model, in comparison with a classical model without adjustment, via simulated 

data according to various scenarios of changes in cancer detection that could be produced by changes in 

the screening practice over time and different real secular trends, where the goal was to get an estimate 

of these trends. We also applied our model to breast cancer data from the registry of Geneva.  

 

In the subsequent sections, we briefly present the results obtained in the three parts of the thesis, before 

discussing their implications, mentioning some potential future work and presenting our concluding 

thoughts. The three articles constitute the final portion of this manuscript. Supplementary materials for 

these articles are provided in a separate document. 

  



Results 
 
In this section, we briefly present the results from the three parts of this thesis described in the 

Introduction, that are related to the three articles attached at the end of this document. 

 

First part 

In the first article, we compared the performance of 165 (variants) of models to predict age-standardized 

cancer incidence. We found that the simplest models, such as ARIMA of order (2,1,1) or (1,1,0) and 

linear models (LM) that simply extrapolate a trend estimated over the last few years, were the most 

effective methods for predicting the evolution of age-standardized incidence rates, both in terms of point 

predictions and in terms of the quality (width and coverage rates) of the prediction intervals. More 

complicated and widely used models, such as APC and BAPC, did not perform as well, while GLMs 

were found to be the worse models for prediction. Methods based on the well-known AIC criterion to 

select a model also showed poor performances. 

 

Unsurprisingly, the most difficult scenarios for prediction were some with a reversal trend, such as the 

situation presented in Figure 1. This is where we observed the greatest disparity between the predictions 

produced by the different methods, as illustrated in this figure. The point is that simple models, such as 

LMs, were able to quickly adapt to new trends, while others, like APC, struggled to do so, especially the 

APC model extrapolating only the drift, which is the most widely adopted to date. 

 

Second part 

In the second article, we predicted the number of new cases of cancer in Switzerland for the years 2019-

2025, for the 12 most frequent cancer sites, separately for women and men. Predictions of age-

standardized incidence was done based on data from years 1987-2018 using an ARIMA of order (2,1,1), 

the best method according to our first article above, which were then combined with demographic 

projections from the Swiss Federal Statistical Office. 

 



According to our model, an overall stabilization of age-standardized incidence is expected in 

Switzerland through 2025 for both sexes, with a projected decrease of less than 1%. For Swiss men, 

slight increases of incidences are anticipated for bladder cancer and skin melanoma, while slight 

decreases are expected for non-Hodgkin lymphoma, lung, bronchus, and trachea, colon-rectum, and 

stomach, with more significant declines for oral cavity & pharynx and thyroid. Prostate cancer incidence 

is expected to remain relatively constant. For Swiss women, slight increases of incidences are predicted 

for cancers of the oral cavity & pharynx and thyroid, while minor decreases are expected for cancers of 

the colon-rectum, breast, and uterus, with more substantial declines for ovarian, lung, bronchus, trachea, 

bladder, and stomach cancers. No changes in incidence are anticipated for cutaneous melanoma and 

non-Hodgkin's lymphoma. 

 

Although age-standardized cancer incidence is expected to remain relatively stable up to 2025 for most 

sites, the number of new cancer cases will increase substantially due to demographic trends. The total 

number of new cancer cases is expected to rise by 18% for men and 11% for women, resulting in a 15% 

overall increase between 2018 and 2025. This growth is entirely attributable to the aging and growth of 

the Swiss population, i.e., to the demographic components, not to the epidemiological component. 

Similarly, predicted increases in the number of new cancer cases for any site are primarily due to the 

demography. The ranking of the three most frequent cancers for men (prostate, lung, colon-rectum) will 

remain unchanged in 2025, while colorectal cancer is expected to become the second most frequent 

cancer for women in 2025, after breast cancer, overtaking lung cancer. 

 

Third part 

In the third article, we propose a Screening Adjusted (SA) model to estimate a trend in incidence rate 

adjusted for (i.e., that would have been observed without) changes in cancer detection, using the mean 

stage distribution as a proxy. Our simulations showed that the SA model provided estimates of incidence 

rates that were closer to those that would be observed in the absence of any changes in the detection 

than when using a classical (e.g., APC) model. The SA model is thus particularly useful for analyzing 

trends of cancer data when, for example, screening practices vary over time, without the need of knowing 



details about when and how these changes occurred. An application of the SA model to estimate 

incidence trends of breast cancer in the canton of Geneva illustrated how the SA estimate may differ 

from the classical one. 

Discussion  
 
The main theme of this thesis is the comparison of statistical models for the projection of future cancer 

incidence, an extremely important task in modern societies where cancer has unfortunately become a 

major public health problem and cause of death. The choice of one projection method can produce very 

different results and is therefore crucial for obtaining sound and useful predictions for policy-makers. 

By exploiting the data from the registers of the cantons of Vaud, Geneva, and Neuchâtel (the oldest 

registers in Switzerland), and using the cross-validation method on these data, we were able to compare 

the predictive performance of a very large number of prediction methods and models (variants), both in 

terms of point prediction accuracy and quality of the prediction intervals. Our findings contrast 

somewhat with the literature on the subject (Chen et al., 2012; Clements, 2005; B. Møller et al., 2003; 

Riebler et al., 2012; Zheng et al., 2020). While in general complex or even very complex methods are 

used, based on the estimation of latent effects such as age, period and/or cohort effects, or attempting to 

select the complexity of the model using a criteria such as the AIC (Akaike Information Criterion), we 

have shown the superiority of using simpler methods such as ARIMA models or classical linear models, 

which simply extrapolate and smooth the most recent observed trends. These methods, less used until 

now in cancer incidence prediction, have indeed proved to be more suitable to adapt to the recent 

stabilizations and trend reversals observed in the Swiss incidence data. 

 

The best model from this large comparative study, a low-order ARIMA model, was then used to predict 

the future evolution of cancer incidence in Switzerland. This model was then combined with the 

population projections of the Swiss Federal Statistical Office (FSO) to obtain a prediction of the 

evolution of the annual number of new cancer cases, which is information more directly exploitable by 

the decision maker. Our results indicate a stabilization of the age-standardized incidence of most cancers 

in the coming years, accompanied by a significant increase in the number of new cases each year, due 



to the increase and aging of the population according to the FSO projections. Indeed, we expect an 18% 

increase in new cancer cases among men and 11% among women, with a particularly strong increase in 

colorectal cancer among the latter, which would take second place after breast cancer in 2025, replacing 

lung cancer. 

 

Since the estimation and extrapolation of cancer incidence trends over time can be affected by changes 

in detection processes (screening programs, detection techniques, opportunistic detection, etc.), in the 

last part (part 3) of the thesis we also worked on the development of a new model able to correct the 

observed incidence for these changes and thus able to estimate the "true" pattern of cancer incidence (at 

constant detection). As all factors affecting the detection process are very difficult to measure, we used 

as a proxy the distribution of detected cancer stages, from stage I to stage IV. Based on several studies 

that have demonstrated the relationship between screening and cancer stage (Cardoso et al., 2022; 

Toyoda et al., 2020), we assumed that this distribution remains roughly stable if no change in the 

detection process occurs, and that it will change, e.g. showing a lower mean stage, if a change in the 

detection process occurs, e.g. the introduction of a new screening practice. Our method therefore consists 

in introducing into a classical model of incidence over time the effect of year-to-year variations in the 

mean stage. These variations are lagged several times in the past, since a change in the mean stage in a 

given year produces effects over several years, which gradually disappear over time. Our model was 

tested on a simulation study mimicking different scenarios with more abrupt or more gradual changes 

in the detection process (and thus in the mean stage) and with different underlying incidences. This is 

the most innovative part of this thesis, an idea that is still not perfect, but which seems to us to be 

promising, although with room for improvement. 

 

The main implication of our study considered as a whole is therefore a recommendation, for those 

interested in prediction in the field of cancer, to avoid using complex methods for this purpose (those 

most commonly adopted at present). These models, such as the Age-Period-Cohort (APC) models or 

their Bayesian counterparts (BAPC models), which produce estimates that are smooth and close to the 

observed data, struggle to adapt to the stabilization and trend changes observed for most cancers in 



recent years. These models are therefore useful for interpreting observed trends but should be avoided 

for projections. The best models according to our comparative study are those that simply extrapolate 

the latest trends, such as the classical linear models, with the addition of a smoothing of these trends, 

such as the ARIMA models. In case of stabilization of the incidence curves, reversal of the trends or 

simply erratic behavior in the last observation period, the ARIMA methods will return a "conservative" 

prediction in the sense of future stabilization, as we obtained for Switzerland. This latter prediction turns 

out to be better than that of the (B)APC models, which is sometimes aberrant as shown in Figure 1. The 

ARIMA models were indeed better not only because they produced predictions closer to the true values 

than the other methods (point accuracy), but also in terms of coverage of the prediction intervals, the 

closest to the nominal value of 95%. Having credible prediction intervals around the future incidence is 

a great advantage and a very important piece of information for those who have to make decisions in 

terms of resource allocation. 

 

Our results are certainly related to the data used to test the different models, namely incidence data in 

three Swiss cantons. However, these data reflect quite well a trend observed more generally in modern 

societies in recent years, with (fortunately) incidences stopping increasing and often entering periods of 

stabilization or changing trend. It is easy to imagine that if the study had been conducted in a context of 

steadily increasing cancer incidence (as was the case a few decades ago for most cancers), the results in 

terms of model rankings might have been different, but in that case all the models would have predicted 

about the same thing (a continuation of that increase) and the choice of the "right" model would have 

been less crucial. 

 

One can, of course, imagine extending our comparative study to other models or model variants. For 

example, in the context of GLM models, we have limited ourselves to the Poisson distribution and the 

logarithmic link function. In the framework of Bayesian APC models, we have considered five different 

priors, the ones most used in the literature. An overdispersion could be introduced in the Poisson model 

and the latter could eventually be replaced by the Negative Binomial distribution in the GLM, as other 

priors could be tested in the framework of Bayesian models. The number of possibilities is of course 



infinite. However, having tested and compared a total of 165 model variants, we do not believe that such 

variations would be able to change the main message of our study. 

 

Another downside of the prediction models, both the ARIMA models and the more complex models 

estimating age, period and cohort effects, is that they do not include additional information about the 

evolution of the exposure to carcinogens and behavioral and environmental risk factors. It would indeed 

be very interesting to take into account this kind of information, but the disadvantage in the context of 

a projection is that it would be necessary to combine the projection of incidence with that of these same 

factors, by introducing an additional element of uncertainty into the projections. A previous attempt to 

introduce additional information on tobacco consumption into the prediction of lung cancer incidence 

has been shown to be unable to improve the prediction (Knorr-Held, 2001). 

 

A further very important point for the decision maker is the possibility of getting predictions not only of 

the future age-standardized incidence of the different cancers, but also of the absolute number of new 

cases. To project new cases, as mentioned, one must combine the expected evolution of incidence with 

population projections, as we have done for Switzerland in our second publication and as is also done 

in general in the literature (H. Møller et al., 2007; Rapiti et al., 2014). Having used an ARIMA model to 

project age-standardized cancer incidence, and differently from the predictions made by an APC model, 

we do not dispose of age-specific predictions of incidence. For this reason, combining incidence with 

population projections required the assumption that the distribution of cancers across age groups remains 

the same over time (which was recognized as a limitation in our paper). This assumption made it possible 

to decompose the expected future evolution of cancer cases into three components, the first 

epidemiological (incidence) and the other two demographic, population increase and aging. Aging was 

found to be more important than increasing population size as a driver of the future number of new 

cancer cases, particularly among men. 

 

Another important limitation in this context, a limitation shared so far by all studies that have combined 

incidence with population projections to obtain a projection of new cases (at least to our knowledge), is 



the impossibility of obtaining prediction intervals, because the population projections carried out by the 

FSO (and in general by the Statistical Offices) do not currently produce such intervals for the expected 

evolution of the population. Instead, scenarios of evolution are provided, and we consider the average 

scenario, which does not include a measure of uncertainty. This aspect therefore deserves to be studied 

further, with the development of population projection techniques that include an estimate of uncertainty. 

The uncertainty in the age-standardized incidence (which we have calculated) might then be combined 

with the estimate of the uncertainty in future demographic trends (which is not yet available) by suitable 

statistical techniques, such as bootstrapping or Monte Carlo simulations. 

 

Finally, the possibility of obtaining an estimate (and eventually a prediction) of incidence adjusted for 

changes in the detection process over time was surely our most ambitious goal. Although several articles 

exist in the literature in this field, to our knowledge, we are the first to have exploited the link between 

changes in this process (e.g. a new prevention campaign) and the distribution of detected cancer stages 

(e.g. a lower mean stage), in order to make this correction with the minimum of information. Thus, we 

only need to know how the mean stage changes over time to obtain an adjusted estimate of incidence. 

However, this information is not as easy to obtain as one might imagine. Indeed, at the time of 

registration of a new cancer, information on the stage of the cancer (I-IV) has only been collected by 

some registries and for some cancer sites (notably breast cancer). Moreover, if these registries (Vaud 

and Geneva) have already been active in 1982, the registration of the stage only becomes reliable for 

some sites from 1991 onwards, when the number of missing data stabilizes at a percentage lower than 

10%. The applicability of our model, which we were able to test extensively on simulated data, is 

therefore considerably limited to certain cantons, certain sites and certain years, by the availability of 

the data. In addition, as our model is based on lagged data (due to the long-lasting effect on the incidence 

of a change in the mean stage), the number of years over which an estimate is possible is further reduced. 

This aspect represents a limitation of our (third) study. In particular, the lack of longer data series 

prevented us from conducting a sensitivity analysis comparing different choices of lagged periods and 

forced us to summarize the distribution of stages with its mean in order to avoid too many parameters 

compared to the data available. Possible solutions could be sought in the aggregation of several 



international sources (but still the percentage of missing values must be comparable in the different 

sources) to improve the estimation of the mean stage effect or the analysis of semi-annual data to 

increase the length of the series available. 

 

Another important limitation of our model is the implicit assumption that changes in the detection 

process do not alter the underlying incidence. While this is true for most cancers, since, for instance, an 

increase in screening will only anticipate a detection that would have occurred later, this is not the case 

for those cancers for which an early detection of precancerous lesions (and their subsequent treatment) 

prevents the occurrence of cancer and therefore reduces the incidence. This is notably the case for 

colorectal cancer, to which our model does not apply in its current form. Our model could be adapted, 

by considering the precancerous lesions as part of the incidence. 

 

In conclusion, modeling and forecasting cancer incidence presents significant challenges. Given the 

limited availability of useful covariates, our capabilities are often limited to extrapolating the most recent 

observed trends. Our study highlighted the predominant role of demographic changes in determining 

future cancer incidence, population aging and growth appearing to be the main drivers in this regard. 

Finally, we have developed a method to adjust past incidence trends for changes in the detection process. 

We hope that this method will allow us to improve prediction, for example by applying an ARIMA 

model not to the observed incidence but to the incidence that has been adjusted for changes in the 

detection process. This approach has great potential for expansion and refinement. I am personally very 

interested in contributing to its future development, such as the development of an R package and the 

application of this model to multiple series of cancer incidence to facilitate its adoption by the scientific 

community. 
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Abstract
This study compares the performance of statistical methods for predicting
age-standardized cancer incidence, including Poisson generalized linear mod-
els, age-period-cohort (APC) and Bayesian age-period-cohort (BAPC) models,
autoregressive integrated moving average (ARIMA) time series, and simple lin-
earmodels. Themethods are evaluated via leave-future-out cross-validation, and
performance is assessed using the normalized root mean square error, interval
score, and coverage of prediction intervals. Methods were applied to cancer inci-
dence from the three Swiss cancer registries of Geneva, Neuchatel, and Vaud
combined, considering the five most frequent cancer sites: breast, colorectal,
lung, prostate, and skin melanoma and bringing all other sites together in a final
group. Best overall performance was achieved by ARIMA models, followed by
linear regressionmodels. Predictionmethods based onmodel selection using the
Akaike information criterion resulted in overfitting. The widely used APC and
BAPCmodels were found to be suboptimal for prediction, particularly in the case
of a trend reversal in incidence, as it was observed for prostate cancer. In general,
we do not recommend predicting cancer incidence for periods far into the future
but rather updating predictions regularly.

KEYWORDS
age-period-cohort models, age-standardized cancer incidence, autoregressive integrated mov-
ing average, Bayesian age-period-cohort models, generalized linear models, interval score,
prediction interval, root mean square error, trend reversal

1 INTRODUCTION

Cancer has progressively become a major public health problem in Western countries like Switzerland where, each year,
about 40,000 new cases are diagnosed and 17,000 induced deaths occur (OFS, 2020). Cancer is the second leading cause
of mortality in Switzerland, and the main cause in females aged 25–84 years, and in males aged 45–84 years (OFS, 2020).
Prediction of cancer incidence is an important public health issue in modern societies to plan resource allocation and
prevention interventions and to help address future cancer research.
Many prediction methods are used in the field of cancer incidence, such as age-period-cohort (APC) (Carstensen, 2007;

Holford, 1983; Rutherford et al., 2012), and Bayesian age-period-cohort (BAPC) (Riebler et al., 2012; Riebler & Held, 2017;
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Schmid & Held, 2004) models, autoregressive integrated moving average (ARIMA) time series models (Hamilton, 1994),
neural networks (Hastie et al., 2009), joinpoint regression (Lerman, 1980), Poisson and negative binomial generalized
linear models (GLM) (A. C. Cameron & Trivedi, 2013a), state space models (H. S. Chen et al., 2012; Hamilton, 1994), and
the vector autoregressive Hilbert–Huang transform (H. S. Chen et al., 2012). In a recent systematic review of 101 published
studies on lung cancer incidence prediction, the most commonly used methods were APC, BAPC, GLM, and joinpoint
(Yu et al., 2019). APCs were largely applied to predict the incidence of common cancer sites (Coupland et al., 2010; Møller
et al., 2002; Rapiti et al., 2014) as well as BAPC (J. K. Cameron & Baade, 2021; W.-Q. Chen et al., 2011; Shi et al., 2021), GLM
(NSW Cancer Institute, 2016; Yang et al., 2005; Zemni et al., 2022), and joinpoint (Lin et al., 2021; Rahib et al., 2021; Wong
et al., 2021). Other studies used ARIMA models (Earnest et al., 2019; Li et al., 2022; Tsoi et al., 2017).
Comparisons among prediction models have been carried out in the literature. For example, Møller (2003) compared

several variants of APC predicting the incidence of the most frequent cancer sites and concluded that APC models using
a power link function were superior to those adopting the canonical logarithmic link. To predict the incidence of lung,
bronchus, and trachea cancers, Riebler (2012) compared BAPC with the Lee–Carter model, a model used in the demo-
graphic field to predict mortality (Lee & Carter, 1992), showing the superiority of BAPC. ARIMA has been compared to
neural networks showing the similar performance (Zheng et al., 2020). Using USA state-level data to predict the incidence
of the most frequent cancer sites, Chen (2012) compared the performance of APC, BAPC, joinpoint regression, state space
models, and the vector autoregressive Hilbert–Huang transform and concluded the superiority of BAPC, although fol-
lowed closely by APC and state space models. In another study (Clements, 2005), generalized additive models (GAM, a
special case of GLM) have shown a better performance than BAPC to predict the incidence of lung cancer.
These comparisons were in general limited to a few models only (e.g., BAPC vs. Lee-Carter, Riebler et al., 2012; or

BAPC vs. GAM, Clements, 2005) or to different variants of the same class of models, for example, APC (Møller et al.,
2003), with the notable exception of the U.S. study (H. S. Chen et al., 2012), which, however, omitted important methods
such as GLM or ARIMA. In addition, most of these comparisons have been made in situations where the incidence was
almost constantly increasing, providing a relatively easy setting for prediction. In recent years in Switzerland, we observed
some trend reversals, as the incidence of some cancers (e.g., breast, prostate, and skin melanoma) has begun to stabilize
or decrease (OFS, 2020). This phenomenon represents an additional difficulty in predicting incidence trends, and it is of
interest to compare the different methods in this context.
In the present paper, we sought to compare a large number ofmethods for predicting the incidence of themost common

cancers, including in situations with a trend reversal, based on cancer incidence data from Switzerland. The methods
compared include Poisson GLM, of which the Lee–Carter model and joinpoint regression are special cases, APC and
BAPC models, ARIMA, and simple linear regression models. We evaluated prediction performance by repeatedly using
leave-future-out cross-validation, that is, dividing the data into a training set (on which the models are fitted) and a test
set (on which the predictions are evaluated) and considering all possible period partitions of the data in these two sets.
This allowed us to produce many prediction settings (scenarios), including some with a trend reversal at the boundary of
the training set.
This paper is organized as follows. The data used for our comparisons are presented in Section 2. Section 3 explains

how we evaluated the performance of a prediction method by leave-future-out cross-validation using different criteria.
All compared methods are described in Section 4. Our results are detailed in Section 5, and a discussion is proposed in
Section 6.

2 DATA DESCRIPTION

2.1 Data sources

Our primary data sources were population-based Swiss cancer registries of the cantons of Vaud, Geneva, and Neuchatel.
Registries record information on all incident cases of malignant neoplasms occurring in their resident population accord-
ing to international rules, such as the International Classification of Diseases for Oncology (Fritz et al., 2000). For each
incident case, information on the incidence date, the patient’s date of birth, and the cancer site are recorded, among others.
We used combined data from the three cancer registries of the cantons of Vaud, Geneva, and Neuchatel because they

are the oldest registries in Switzerland. Incidence records were available from 1982 to 2016, the latter year being the most
recent with complete data. We considered the five most frequent cancer sites: breast, colorectal, lung, prostate, and skin
melanoma and formed a final group including all other sites. Considering separately the two sexes, we thus dealt with
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F IGURE 1 Lexis diagram of an extract of the combined data from the Swiss registries of Vaud, Geneva, and Neuchatel. Selected period:
January 1, 2010–December 31, 2015. Selected age range: 65th to 70th birthday. In each triangle, the top number represents the number of
incident cases 𝐷𝑎,𝑝,𝑐 and the bottom number corresponds to the person-years 𝑌𝑎,𝑝,𝑐 for an age (a), period (p), and birth cohort (c) combination.
For example, during 2012 we had 𝐷67,2012,1944 = 21 new cases of breast cancer among women 67 years old who were born in 1944 (triangle in
bold) and 𝐷67,2012,1945 = 18 new cases among women of the same age who were born in 1945 (dashed triangle). Corresponding person-years
were 𝑌67,2012,1944 = 3663.5 and 𝑌67,2012,1945 = 3547, respectively.

five sites for women (breast, colorectal, lung, skinmelanoma, and others) and five sites for men (prostate, colorectal, lung,
skin melanoma, and others).
Our second source of information was the Swiss Federal Statistical Office (FSO), which produces population figures for

each Swiss canton, informing on how many people are alive at the beginning of a calendar year by age and sex.

2.2 Age, period, and cohort tabulation

Data were aggregated on the three dimensions of age, period, and cohort, using the well-known triangle representation
of the Lexis diagram (Figure 1). For each triangle, data include the number of incident cases for the corresponding age
a (𝑎 = 0,… , 98, 99+), period p (𝑝 = 1982, … , 2016), and birth cohort c (𝑐 = 1882, … , 2016) combination (𝐷𝑎,𝑝,𝑐), and the
number of person-years for the same combination (𝑌𝑎,𝑝,𝑐) in the general population, the latter being calculated from
population data using the classical method presented in Carstensen (2007). APC-specific incidence rates are then defined
by: 𝜆𝑎,𝑝,𝑐 = 𝐷𝑎,𝑝,𝑐∕𝑌𝑎,𝑝,𝑐. Each ratio 𝜆𝑎,𝑝,𝑐 in the Lexis diagram acts as an “observation” in most models considered (see
Section 4). Therefore, for each sex and cancer site, weworkedwith 7000 observations obtained by combining the following
factors: 35 periods (𝑝 = 1982, … , 2016), 100 ages (𝑎 = 0,… , 98, 99+), and 2 triangles (upper/lower) separating people in
two different birth cohorts (e.g., a person reaching the age of 67 in 2012 may have been born in either 1945 or 1944; see
Figure 1). Some of the models below consider only the age and period tabulation:

𝜆𝑎,𝑝 =
1

2

(
𝐷𝑎,𝑝,𝑐

𝑌𝑎,𝑝,𝑐
+
𝐷𝑎,𝑝,𝑐+1

𝑌𝑎,𝑝,𝑐+1

)
=

𝐷𝑎,𝑝

𝑌𝑎,𝑝
(with 𝑐 = 𝑝 − 𝑎) , (1)

or only the age and cohort tabulation:

𝜆𝑎,𝑐 =
1

2

(
𝐷𝑎,𝑝,𝑐

𝑌𝑎,𝑝,𝑐
+
𝐷𝑎,𝑝+1,𝑐

𝑌𝑎,𝑝+1,𝑐

)
=

𝐷𝑎,𝑐

𝑌𝑎,𝑐
(with 𝑝 = 𝑐 + 𝑎) . (2)
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TABLE 1 Summary of quantities related to the triangle tabulation of the Lexis diagram.

𝒂 Age
𝑝 Period
𝑐 Cohort
𝐷𝑎,𝑝 (𝐷𝑎,𝑐; 𝐷𝑎,𝑝,𝑐) Number of new cancer cases for age 𝑎 and period 𝑝 (respectively, age 𝑎 and period c; or age 𝑎, period 𝑝, and

cohort 𝑐)
𝑌𝑎,𝑝 (𝑌𝑎,𝑐; 𝑌𝑎,𝑝,𝑐) Person-years for age 𝑎 and period 𝑝 (respectively, age a and period c; or age 𝑎, period 𝑝, and cohort 𝑐)
𝛌𝑎,𝑝 (𝛌𝑎,𝑐; 𝛌𝑎,𝑝,𝑐) Incidence rates for age 𝑎 and period 𝑝 (respectively, age 𝑎 and period c; or age 𝑎, period 𝑝, and cohort 𝑐)
𝑌∗
𝑎 Person-years for age 𝑎 of a reference population

𝛌∗𝑝 Standardized incidence rates of year 𝑝

2.3 Standardized incidence rates

To compare incidence rates over periods using a single quantity, age-specific incidence rates should be combined taking
into account changes in the population structure over time. This can be achieved by weighting the age-specific inci-
dence rates of a period 𝑝 (𝜆𝑎,𝑝) for the age distribution of a reference population 𝑌∗

𝑎 (𝑎 = 0,… , 99+), resulting in so-called
standardized incident rates:

𝜆∗𝑝 =

∑99+

𝑎=0
𝜆𝑎,𝑝𝑌

∗
a∑99+

𝑎=0
𝑌∗
a

. (3)

It has been shown (Spiegelman & Marks, 1966) that when comparing incidence rates over time, the choice of the ref-
erence population has little impact on the results. The same is true when making predictions. In this study, we chose the
population of the year 2000 of the aggregated cantons of Vaud, Geneva, andNeuchatel as the reference for standardization.
A summary of the notations used for quantities related to the Lexis diagram is provided in Table 1.
The standardized incidence rates 𝜆∗𝑝 (𝑝 = 1982, … , 2016) can be seen in Figure 2 for each sex and cancer site. While

some rates show a monotonic trend, for example, lung cancer, which continues to increase for women and decrease for
men at the present time, other rates show a recent stabilization (breast cancer, skin melanoma) or a trend reversal, in
particular prostate cancer, whose incidence began to decrease in the 2000s after decades of increase.
While the majority of the models considered in this paper use tabulated data by age, period, and/or cohort, predicting

specific incidence rates 𝜆𝑎,𝑝 , 𝜆𝑎,𝑐 or 𝜆𝑎,𝑝,𝑐, we followed the literature (H. S. Chen et al., 2012; Clements, 2005; Møller
et al., 2003) and compared their prediction performance using the standardized incidence rates 𝜆∗𝑝 (3). This is the most
widely used choice when predicting the cancer burden (Møller et al., 2002; Rapiti et al., 2014) and allows the comparison
of the predictions by ARIMA and simple linear regression models which model directly standardized incidence rates (see
Section 4).

3 EVALUATING PREDICTION PERFORMANCE

3.1 Leave-future-out cross-validation

Models were compared by repeatedly applying the principle of leave-future-out cross-validation (Bürkner et al., 2020). The
procedure can be summarized as follows. First, for a given sex/cancer site combination, chose a cutoff time 𝑡 in the range:
𝑡 = 2001, … , 2015. Given the cutoff, the leave-future-out cross-validation consists in (a) fitting a model on incidence rates
from 𝑇0 = 1982 until year t (training set), (b) predicting incidence rates for the second part of the data (test set), that is,
from the year (𝑡 + 1) until the last year available 𝑇 = 2016, and (c) evaluating the prediction performance from (𝑡 + 1) to 𝑇
according to criteria below. Second, repeat the procedure moving 𝑡 in the range 𝑡 = 2001, … , 2015 and for each sex/cancer
site combination. The range for the cutoff 𝑡 is chosen to ensure having at least 20 observations in the training set and at
least one observation in the test set.
Because we had five cancer sites for each sex and 15 possible cutoffs for each sex/cancer site combination

(𝑡 = 2001, … , 2015), we obtained 150 different scenarios (see Figure 3). All models presented in Section 4 will be fitted
on each of these 150 scenarios.
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TRÄCHSEL et al. 5 of 19

F IGURE 2 Standardized incidence rates per 10,000 inhabitants over the period 1982–2016 for the most common cancer sites and the two
sexes. Combined data from the Swiss registries of Vaud, Geneva, and Neuchatel. Reference for standardization: combined population of Vaud,
Geneva, and Neuchatel in 2000.
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6 of 19 TRÄCHSEL et al.

F IGURE 3 Illustration of the 15
leave-future out cross-validation scenarios
for each sex and cancer site, based on
partitioning the time range into a training set
(blue dots) and a test set (red dots) according
to a cutoff time t (working with five cancer
sites for women and five for men resulted in
150 different scenarios).

3.2 Comparison criteria

Our main criterion of prediction performance was the normalized root mean squared error (NRMSE) (Hyndman &
Koehler, 2006), a measure of point prediction accuracy. This criterion takes the following form in each scenario, that
is, for a given cutoff time 𝑡, 𝑡 = 2001, … , 2015, and for each sex/cancer site combination:

NRMSE (𝑡) =

√∑𝑇

𝑥=𝑡+1

(
�̂�∗𝑥 − 𝜆∗𝑥

)2
∕ (𝑇 − 𝑡)∑𝑇

𝑥=𝑡+1
𝜆∗𝑥∕ (𝑇 − 𝑡)

. (4)

Here 𝜆∗𝑥 is the observed (i.e., actual) standardized incidence rates for the period x in the test set and for the considered
sex/cancer site combination, and �̂�∗𝑥 the corresponding predicted standardized incidence rate. The denominator of (4)
represents the mean standardized incidence rate in the test set, allowing normalizing of the statistics. The prediction per-
formance (prediction accuracy) of each model was evaluated by the mean NRMSE (M-NRMSE) across the 150 scenarios.
A smaller M-NRMSE value indicates better accuracy, with a minimum of 0. We also looked at three time horizons for
prediction, assessing separately the short-term M-NRMSE (1–5 years, 𝑡 + 1 ≤ 𝑥 ≤ 𝑡 + 5), medium-termM-NRMSE (6–10
years, 𝑡 + 6 ≤ 𝑥 ≤ 𝑡 + 10), and long-termM-NRMSE (11–15 years, 𝑥 ≥ 𝑡 + 11). This represented 150, 100, and 50 scenarios,
respectively.
In a first sensitivity analysis, we considered an alternative of (4), the normalized mean absolute error (NMAE), defined

as follows for a given cutoff time, 𝑡 = 2001, … , 2015, and for each sex/cancer site combination (Hyndman&Koehler, 2006):

NMAE (𝑡) =

∑𝑇

𝑥=𝑡+1
|̂𝜆∗𝑥 − 𝜆∗𝑥|∕(𝑇 − 𝑡)∑𝑇

𝑥=𝑡+1
𝜆∗𝑥∕ (𝑇 − 𝑡)

, (5)

and considered the mean NMAE (M-NMAE) across the 150 scenarios. In a second sensitivity analysis, we considered the
median (instead of the mean) of the NRMSE and the NMAE across scenarios (Med-NRMSE and Med-NMAE).
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TRÄCHSEL et al. 7 of 19

As an additional comparison criterion, we evaluated the quality of the 95% prediction intervals provided by the different
methods to inform on the prediction uncertainty. For this, we used the coverage rate (CR) and the interval score (IS)
(Gneiting et al., 2007). The CR measures the empirical coverage of a prediction interval, that is, the probability that it
contains the actual standardized incidence rate and is defined as follows for a given cutoff time 𝑡 = 2001, … , 2015, and for
each sex/cancer site combination:

𝐶𝑅 (𝑡) =

∑𝑇

𝑥=𝑡+1
𝐼(𝐿𝑥 < 𝜆∗𝑥 < 𝑈𝑥)

(𝑇 − 𝑡)
, (6)

where 𝐿𝑥 and𝑈𝑥 are the lower and upper bounds of a 95% prediction interval calculated for period 𝑥 (𝑥 = 𝑡 + 1,… , 𝑇) and
𝐼 is an indicator function. The IS is a strictly proper scoring rule, which is related to the width of a prediction interval, with
a penalty in cases where the interval does not contain the actual standardized incidence rate, and is defined as follows for
a given cutoff time 𝑡 = 2001, … , 2015, and for each sex/cancer site combination (Gneiting et al., 2007):

𝐼𝑆 (𝑡) =

∑𝑇

𝑥=𝑡+1

{
(𝑈𝑥 − 𝐿𝑥) +

2

0.05
[(𝐿𝑥 − 𝜆∗𝑥) 𝐼 (𝜆

∗
𝑥 < 𝐿𝑥) + (𝜆∗𝑥 − 𝑈𝑥) 𝐼 (𝜆

∗
𝑥 > 𝑈𝑥)]

}
(𝑇 − 𝑡)

. (7)

The CR of a prediction interval should be as close to 95% as possible, while the IS should be as small as possible with a
minimum of 0. As for our primary criteria, CR and IS were averaged across the 150 scenarios, obtaining a mean CR and a
mean IS (M-CR and M-IS).
Finally,we reported the percentage of scenarios forwhich the fitting algorithmsused by the differentmethods converged

(i.e., they were able to produce predictions), which was not always 100%. Note that all the above criteria were calculated
excluding the few cases where the computation did not converge.
All models below will be evaluated and compared according to all criteria (M-NRMSE, med-NMRSE, M-NMAE, Med-

NMAE, M-CR, M-IS, and convergence rate). All detailed results are given in the Appendix of the Supporting Information.

4 PREDICTIONMETHODS

4.1 Generalized linear models

We considered the Poisson GLM as presented in Chapter 2.4 of A. C. Cameron and Trivedi (2013a). The number of cases
𝐷𝑎,𝑝 (𝐷𝑎,𝑐) in a certain area of the Lexis diagram (see Figure 1) is assumed to followaPoisson distributionwhosemean 𝜆𝑎,𝑝 ⋅
Y𝑎,𝑝 (𝜆𝑎,𝑐 ⋅ Y𝑎,𝑐) depends (usually via a log link) on the age andperiod (or age and cohort). The person-years𝑌𝑎,𝑝 (𝑌𝑎,𝑐) is an
offset of the model. Due to the age= period−cohort relationship, the three variables cannot be introduced simultaneously
in a model, so that we considered data either in squares of the Lexis diagram (age and period) or in parallelograms (age
and cohort, see Figure 1), that is, only two effects were considered at a time, with a possible interaction between the two:

log

(
𝐷𝑎,𝑧

𝑌𝑎,𝑧

)
= log

(
𝜆𝑎,𝑧

)
= 𝑛𝑠𝑘 (𝑎) + 𝑓 (𝑧) + 𝑔 (𝑎) ⋅ ℎ (𝑧) (8)

with 𝑧 = {𝑝, 𝑐}; 𝑓, 𝑔, ℎ = {∅, 𝑖𝑑, 𝑛𝑠k}; 𝑘 = 1,… , 4. The age 𝑎 was introduced into the model with natural splines 𝑛𝑠𝑘, that
is, cubic splines based on 𝑘 knots, linear outside the extreme knots (Ruppert et al., 2003). The period (or the cohort) was
either absent (𝑓 = ∅), either introduced linearly, that is, via an identity function (𝑓 = 𝑖𝑑) or by splines (𝑓 = 𝑛𝑠𝑘). Both age
and period (or age and cohort) were introduced either linearly or by splines in the interaction term, with the constraint
that the degrees of freedom for the period (or the cohort) effect must be lower or equal in the interaction term than in
the main effect. So, if the period (or the cohort) was introduced linearly as the main effect (𝑓 = 𝑖𝑑), it was not introduced
via splines in the interaction (ℎ ≠ 𝑛𝑠𝑘), and if the period (or the cohort) was not introduced as a main effect (𝑓 = ∅), it
was not in an interaction term (ℎ = ∅). For a given number of knots 𝑘, this defined five models without interaction and 12
models with interaction. Varying the number of knots between 𝑘 = 1 and 𝑘 = 4 (beyond which we encountered problems
of lack of convergence of the fitting algorithm), we obtained 4 × (5 + 12) = 68GLM. The Lee–Carter model (1992), a well-
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8 of 19 TRÄCHSEL et al.

established model used in demography to predict mortality rates, is one of those 68 models where the age and the period
are introduced with splines, with an interaction between the two.
Finally, we considered a GLM obtained via a model selection strategy that consists in selecting among the 68 GLM

models the one that best fits the data in the training set according to the Akaike information criterion (AIC), so that a
possibly different GLM is selected in each scenario. This corresponds to a 69th GLM that we call GLM AIC.
The well-known joinpoint regression (Lerman, 1980) was included as a 70th GLM. This is an age-period model with

the period introduced with linear splines, with knots representing times where a change of trend occurs. Unlike classical
splines, where the knots are chosen a priori, knots in joinpoint regression are determined from the data according to AIC.
We only considered a single knot joinpoint model.
Predictions of incidence rates were obtained by extrapolating period, respectively, cohort effects. For age-cohortmodels,

cohort effectsmust be extrapolated for future periods, with the particularity of requiring the prediction of the effect of some
new cohorts and the removal of the effect of old cohorts, as each year some cohorts exit and new cohorts enter. Predictions
of 𝜆𝑎,𝑐 or 𝜆𝑎,𝑝 (�̂�𝑎,𝑐 or �̂�𝑎,𝑝) were then aggregated and standardized according to (3) to obtain predicted standardized
incidence rates �̂�∗𝑝. The variance of �̂�𝑎,𝑐 (or �̂�𝑎,𝑝)was estimated by the delta method as in Chapter 3 of A. C. Cameron and
Trivedi (2013b), and prediction intervals were obtained based on this variance following the implementation provided in
the R package trending (Schumacher & Jombart, 2021).

4.2 Age-period-cohort models

APC models, introduced by Holford (1983), are Poisson GLM allowing to include simultaneously age, period, and cohort
effects. In order to make the model identifiable despite the linear relationship between the three variables, some con-
straints are added (Carstensen, 2007). Whereas age, period, and cohort were originally considered as factors, forcing a
coarse tabulation of 5-year groups (Clayton & Schifflers, 1987; Holford, 1983; Møller et al., 2002), more recent develop-
ments in APC, which we followed in our study, adopted splines to model three effects (Carstensen, 2007; Carstensen
et al., 2022). With the canonical log link of Poisson GLM, a spline APC model takes the following form:

log
(
𝜆𝑎,𝑝,𝑐

)
= 𝑛𝑠𝑘 (𝑎) + 𝑛𝑠𝑘 (𝑝) + 𝑛𝑠𝑘 (𝑐) + drif t. (9)

Here the drift is a linear trend effect, ascribed to both period and cohort and 𝑛𝑠𝑘(𝑝) (respectively, 𝑛𝑠𝑘(𝑐)) are residual
nonlinear effects specific to the period (respectively, the cohort). For these splines, we considered between 𝑘 =3, 4, or
5 knots. In addition to the canonical log link, other link functions (Dunn & Smyth, 2018) have been compared in the
literature for their prediction performance, where the 1/5 power link performed best (Møller et al., 2003). For this reason,
we have adopted the 1/5 power link in our comparisons, as an alternative to the log link (9).
Two options have been adopted in the literature to extrapolate the incidence rates �̂�𝑎,𝑝,𝑐 for future periods and cohorts.

The most common one consists in extrapolating only the drift (Yu et al., 2019); the alternative consists in adding a linear
extrapolation of the nonlinear effects (Rutherford et al., 2012). Both options are compared in our study. Inwhat follows, the
two extrapolation strategies are referred to as drift only, and all effects, respectively. Varying the number of knots between
𝑘 =3, 4 or 5, and considering two link functions and two extrapolation strategies, we obtained 3 × 2 × 2 = 12APCmodels.
AswithGLM, the predictions �̂�𝑎,𝑝,𝑐 were finally aggregated and standardized as in (3) to produce predicted standardized

incidence rates �̂�∗𝑝 and prediction intervals.

4.3 Bayesian age-period-cohort models

A BAPC model (Riebler et al., 2012; Riebler & Held, 2017; Schmid & Held, 2004) has the same formulation as an APC
model, the difference being how age, period, and cohort effects are included in the model and how they are fitted. Instead
of using splines, Bayesian models are based on the first- or second-order random walk (𝑅𝑊1 or 𝑅𝑊2) specification for
each effect of the model:

log
(
𝜆𝑎,𝑝,𝑐

)
= 𝑅𝑊𝑙 (a) + 𝑅𝑊𝑙 (𝑝) + 𝑅𝑊𝑙 (𝑐) , (10)
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TRÄCHSEL et al. 9 of 19

where 𝑙 = 1, 2 is the order of the random walk. Considering, for instance, the period effect (the same holds for age and
cohort effects), a Bayesian first-order random walk takes the following form:

𝑅𝑊1 (𝑝) = Δ𝑝 ∼ 𝑁
(
0, 𝜎21

)
, (11)

whereΔ𝑝 is the difference of the last two period effects.With the 𝑅𝑊1model, each (age, period, and cohort) effect is taken
as being equal to the previous one plus a random number from a normal distribution centered on zero, with variance 𝜎2

1
.

The latter acts as a smoothing parameter: with an infinite variance, the fitted model will pass through all the data points
in the training set, while a small prior variance will give rise to a smoother fit. We considered different choices for the
hyper-prior distribution of parameter 𝜎21 . Our first option was the most commonly adopted distribution, that is, a flat
(noninformative) gamma(1, 5e−5) for the three effects of age, period, and cohort (Riebler & Held, 2017). As alternative
options, we considered a tighter gamma(1, 5e−3), a larger gamma(1,5e−7), and PC(u=1,α=0.01) (Lindgren & Rue, 2015)
priors for the three effects, as well as an option with a gamma(1, 9e−4) for the age effect and gamma(1, 2.5e−4) for the
period and cohort effects, as in Riebler and Held (2017). Considering that we have 7000 observations in the Lexis diagram,
the hyper-prior has a limited effect. When making predictions from a Bayesian 𝑅𝑊1 model, the last fitted period and
cohort effects are extrapolated as constant.
Considering again the period effect as an example, a Bayesian second-order random walk takes the form:

𝑅𝑊2 (𝑝) = Δ2𝑝 ∼ 𝑁
(
0, 𝜎22

)
, (12)

where Δ2𝑝 is the second difference (difference of the difference) involving the last three period effects. In a 𝑅𝑊2 model,
each age, period, and cohort effect is based on the two previous effects and adding a random number from a normal
distribution centered on zero, with variance 𝜎22 . The latter acts again as a smoothing parameter: the smaller the prior
variance, the smoother the fit. The same five priors adopted for 𝜎21 were adopted for 𝜎

2
2 . In a Bayesian 𝑅𝑊2 model, the

future period and cohort effects are predicted by a linear trend based on the last two fitted effects. Compared to an 𝑅𝑊1

model, an 𝑅𝑊2 model will be generally smoother.
Since we considered five priors for each of the 𝑅𝑊1 and 𝑅𝑊2models, we included a total of 10 BAPC in our comparison.

As with GLM and APC models, the predicted rates �̂�𝑎,𝑝,𝑐 from a BAPC model should be combined to obtain predictions
of standardized incidence rates �̂�∗𝑝. Bayesian 𝑅𝑊1 and 𝑅𝑊2 models were fitted using the INLA (Lindgren & Rue, 2015)
and BAPC packages (Riebler & Held, 2017) from R software (R Core Team, 2022) to get point predictions and prediction
intervals, respectively. The package INLA is based on the works of Rue (2009), Martins (2013), and Lindgren (2011, 2008,
2015).

4.4 ARIMA time series models

ARIMA time seriesmodels are econometricmodels defined by combining a difference autoregressivemodelwith amoving
averagemodel (Hamilton, 1994). LetΔ𝑑𝜆∗𝑝 be the standardized rates 𝜆∗𝑝 differenced d times. TheARIMA(h,d,q) is expressed
as

Δ𝑑𝜆∗𝑝 = 𝛼0 + 𝛼1Δ
𝑑𝜆∗𝑝−1 + 𝛼2Δ

𝑑𝜆∗𝑝−2 +⋯+ 𝛼ℎΔ
𝑑𝜆∗

𝑝−ℎ
+ 𝜖𝑝 + 𝜃1𝜖𝑝−1 + 𝜃2𝜖𝑝−2 +⋯+ 𝜃𝑞𝜖𝑝−𝑞, (13)

where 𝜖𝑝 are normally distributed residuals, 𝛼1,. . . ,𝛼ℎ are the coefficients of the autoregressive (AR) part of the model,
𝜃1, … , 𝜃𝑞 are the coefficients of the moving average (MA) part, and 𝛼0 is a constant. In an ARIMA(h,d,q) the predictors
are lagged h data points for the autoregressive part and q residuals are considered for the moving average part, which are
all d differenced. We considered all orders from (0,0,0) to (3,3,3) for (h,d,q) which represents 43 = 64 different models. As
for GLM, we finally considered an ARIMA obtained via a model selection strategy that consists in selecting among the 64
ARIMAmodels the one that best fits the data in the training set according to the AIC, so that a possibly different ARIMA
is selected in each scenario. This corresponds to the 65th ARIMA method that we call ARIMA AIC.
Unlike themodels presented in the previous sections, the predictions obtainedwith anARIMAmodel are based directly

on an extrapolation of the standardized rates (without the need for any aggregation). We used the function ARIMA from
R (R Core Team, 2022) to fit the models, predict the incidence rates, and compute the prediction intervals.
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10 of 19 TRÄCHSEL et al.

4.5 Linear models

In order to get another standard comparator for the above methods, we finally considered a simple linear model (LM)
fitted on the last r data points of the training set:

𝜆∗𝑝 = 𝛼 + 𝛽𝑝 + 𝜖𝑝, (14)

where 𝑝 = (𝑡 − 𝑟 + 1), … , 𝑡, 𝜖𝑝 are normally distributed residuals and 𝛼 and 𝛽 are the intercept and slope of the model,
respectively. Letting 𝑟 vary between 3 and 10 data points, we considered eight LM. In these models, predictions of stan-
dardized incidence rates are made by extrapolating the fitted trend, and prediction intervals are obtained in the classical
framework of regression models.
In summary, considering the five classes ofmodels described in this section, we compared 165 differentmodels: 70GLM,

12 APC, 10 BAPC, 65 ARIMA, and 8 LM. An exhaustive list of all the models compared can be found in Figures A1–A4 of
the Supporting Information Appendix.

5 RESULTS

Allmodels described in Section 4were fitted to the 150 available scenarios detailed in Section 3.1 and evaluated according to
the performance criteria presented in Section 3.2. For eachmodel, the NRMSE and IS distribution over the 150 scenarios is
given in Figures A1–A8 of the Supporting InformationAppendix.Most of these distributions show large variability and are
highly skewed, with M-NRMSE >Med-NRMSE, as M-NRMSE strongly penalizes the poor performance of some models
in particularly difficult scenarios, for example, in the case of a trend reversal (and the same is true for the M-IS).

5.1 Illustration of two selected scenarios

To illustrate the heterogeneity of predictions among models, we have plotted in Figure 4 two selected scenarios, one for
female lung cancer and one for (male) prostate cancer, bothwith a cutoff time of 𝑡 = 2010. In the former, incidence rates are
always increasing, representing a simple setting for predictions, while in the latter the incidences begin to decrease around
2005, giving a more challenging situation for predictions. It can be seen that in the former scenario almost all models
predict similar incidence rates, whereas in the latter the heterogeneity among predictions is impressive, as a trend reversal
occurs towards the end of the training set. In this setting, some models adapt to the new trend (e.g., an APC extrapolating
all effects, represented in green), while others fail to adapt (e.g., an APC extrapolating the drift only, represented in dark
cyan). We can observe that highly flexible models, although fitting closely to the data points in the training set, are not
necessarily the best for prediction in the test set (e.g., ARIMA (3,3,0) in red).
The Supporting Information Appendix contains more detailed results for prostate cancer. Figure A9 shows the predic-

tions of the different models for each of the 15 scenarios (i.e., varying the cutoff time 𝑡) for this cancer site. When the cutoff
time occurs before the trend reversal, all models predict excessively high incidence rates, but some models adapt quicker
than others when the cutoff time occurs during or just after the trend reversal. For each model, Figures A10–A13 give
the NMRSE distribution over the 15 scenarios for prostate cancer, showing a generally worse performance of the methods
(higher NMRSE values and more skewed distribution) than what we had in Figures A1–A4 (when considering all cancer
sites). The NRMSE and IS distributions of each model over the 15 scenarios for all 10 sites considered in this study can be
found in the Supporting Information. In what follows, we discuss and compare the prediction performance achieved by
the different models.

5.2 Comparison within classes of models

In the class of GLM (Section 4.1), recall that we varied (a) the number of knots 𝑘 of the splines between 1 and 4, and (b)
the variables included in the model and the functional forms used. Models with 𝑘 = 3 and 𝑘 = 4 knots achieved smaller
M-NMRSE (Figure 5a). Models including age and period performed better than models including only age or age and
cohort, with better performance when the period was included via splines rather than just linear, while models including
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TRÄCHSEL et al. 11 of 19

F IGURE 4 Illustration of predictions made by the different models in one of the 15 leave-future-out cross-validation scenarios (training
set 1982–2010; test set 2011–2016) for lung (female) and prostate (male) cancer standardized incidence rates. Combined data from the Swiss
registries of Vaud, Geneva, and Neuchatel, 1982–2016. Three models are highlighted (APC extrapolating only the drift, APC extrapolating the
drift + all nonlinear effects, and ARIMA (3,3,0)). All other models are in gray. APC, age-period-cohort; ARIMA, autoregressive integrated
moving average.

an interaction term performed similarly to those without interaction (Figure 5b). The best GLM with 𝑘 = 4 knots was a
model including age and period, along with a linear interaction between the two variables (M-NRMSE = 0.138), while
the best GLM with 𝑘 = 3 knots was a model including age and period without interaction (M-NRMSE = 0.143), the latter
being simpler and converging more often than the former (100% vs. 96%). Both models performed much better than the
more complex Lee–Cartermodel (M-NRMSE= 0.180). On the other hand, the use of AIC for selecting theGLM showed an
extremely poor performance, as did the joinpointmodel (bothM-NRMSE> 7; see also FiguresA1 andA2 in the Supporting
Information Appendix).
In the APC class of models (Section 4.2), we varied the number of knots 𝑘 between 3 and 5, while considering two

possible link functions (log or 1/5 power), and two different extrapolation strategies (drift only or all effects). Results are
summarized in Figure 5c. We found that using the 1/5 power link improved the predictions compared to using the canon-
ical log link, especially when extrapolating the drift only. The optimal number of knots was 𝑘 = 3 when using the first
extrapolation strategy (drift only) and 𝑘 = 5when using the second (all effects). In general, the second extrapolation strat-
egy improved predictions compared to the first. The best APCmodel was thus a model using the 1/5 power link, with five
knots and extrapolating all effects (M-NRMSE = 0.140; see also Figure A3 in the Supporting Information Appendix).
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12 of 19 TRÄCHSEL et al.

F IGURE 5 Mean normalized root mean square error (M-NRMSE) for GLM (a) and (b); APC, BAPC, and LM (c) across 150 scenarios (15
leave-future-out cross-validation scenarios for each sex and five cancer locations per sex) obtained on combined data from the Swiss registries
of Vaud, Geneva, and Neuchatel, 1982–2016. In the labels, “A” indicates GLM only including age; “A+P” (respectively, “A+C”) indicates GLM
including age and period (respectively, age and cohort) without interaction; “A ⋅ P” (“A ⋅ C”) indicates GLM including age, period (respectively,
age, cohort) with interaction. For APC, “drift only” and “all effects” refer to prediction strategies extrapolating only the drift, respectively, the
drift + all nonlinear effects, “log” indicates the logarithmic link, and “pw” is the 1/5 power link. For BAPC, RW1 and RW2 refer to first, and
second-order random walk. APC, age-period-cohort; BAPC, Bayesian age-period-cohort; GLM, generalized linear models; LM, linear model.

In the BAPC class of models (Section 4.3), the choice of the priors for the period, cohort, and age effects had almost
no impact on the M-NRMSE, while (using a PC hyper-prior) the performance was better for the RW1 model (M-
NRMSE= 0.127) than for the more complex RW2 model (M-NRMSE= 0.139), as summarized in Figure 5c (see also Figure
A3 in the Supporting Information Appendix).
In the ARIMA class of models (Section 4.4), we varied the autoregressive, integrated, and moving average orders from

0 to 3. Results are summarized in Figure 6. Changing the autoregressive and the moving average order did not have much
impact on the prediction performance. On the other hand, working with difference data did improve the performance
up to order 1, but got worse beyond. The smallest M-NRMSE was achieved by an ARIMA (2,1,1) (M-NRMSE = 0.078),
with a convergence of 96%, while the best ARIMA with a convergence of 100% was ARIMA (1,1,0) (M-NRMSE = 0.084).
As for GLM, using the AIC criterion to select a possibly different ARIMA model depending on the scenario resulted in a
worse prediction performance (M-NRMSE = 0.119) than when systematically opting for an ARIMA (2,1,1) or (1,1,0) (see
also Figure A4 in the Supporting Information Appendix).
Finally, in the class of LM (Section 4.5), the best performancewas achieved using the last 𝑟 = 7 data points of the training

set to fit the model (M-NRMSE = 0.117; see Figure 5c and Figure A3 of the Supporting Information Appendix).
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TRÄCHSEL et al. 13 of 19

F IGURE 6 Mean normalized root mean square error (M-NRMSE) for ARIMA with orders of each component (AR, I, and MA) between
0 and 3, and an ARIMA AIC across 150 scenarios (15 leave-future-out cross-validation scenarios for each sex and five cancer locations per sex)
obtained on combined data from the Swiss registries of Vaud, Geneva, and Neuchatel, 1982–2016. AIC, Akaike Information Criterion; AR,
autoregressive; ARIMA, autoregressive integrated moving average; MA, moving average.

The Supporting Information Appendix also contains the same summary results as in Figures 5 and 6 for the M-IS
criterion (Figures A14 and A15). Within-class comparisons in terms of M-IS are largely consistent with that obtained
usingM-NMRSE. The best GLMwas amodel with three knots including age and period with an interaction (M-IS= 0.199;
Figures A14, A5, and A6). The best APC was a model using the 1/5 power link, with five knots and extrapolating all effects
(M-IS = 0.504; Figures A14 and A7). The best BAPC was a RW1 model using a gamma(1, 2.5e−4) prior (M-IS = 0.200;
Figures A14 and A7). In the ARIMA class, the best performance was achieved by ARIMA(1,1,0) (M-IS = 0.098; Figures
A15 and A8), while in the class of LM the best performance was obtained using the last 𝑟 = 4 data points (M-IS = 0.181;
Figures A14 and A7).

5.3 Comparison between classes of models

The performance of the best models from each class identified above based either on M-NRSME or on M-IS, as well as
of some other well-known models, is summarized in Table 2, where models are ordered in terms of M-NRSME. Based on
this criterion, simple ARIMAmodels, such as (2,1,1) and (1,1,0) and LM using the last seven data points, performed better
than the best models among the more complex (GLM, APC, and BAPC) classes of models. Looking at detailed results in
Supporting Information Appendix (Figures A1–A4), one can see that ARIMA models with orders up to (3,1,3) as well as
LM models using the last 5–10 data points were also ahead of the other methods. The AIC-based ARIMA outperformed
GLM, APC, and BAPC models, while being inferior to simple ARIMA and LM. Finally, the single knot joinpoint and
Lee–Carter models showed extremely poor performance.
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14 of 19 TRÄCHSEL et al.

TABLE 2 Prediction performance for the best models within each class (GLM, APC, BAPC, ARIMA, and LM) according to the mean
normalized root mean square error (M-NRMSE) and to the mean interval score (M-IS), and for some other selected models, across 150
scenarios (15 leave-future-out cross-validation scenarios for each sex and five cancer locations per sex) obtained on combined data from the
Swiss registries of Vaud, Geneva, and Neuchatel, 1982–2016. Also given is the performance of short-term, medium-term, and long-term
predictions provided by M-NRMSE (1–5 years), M-NRMSE (6–10 years), and M-NRMSE (11–15 years). Alternative criteria include the median
NMRSE (Med-NRMSE), the mean and median normalized mean absolute error (M-NMAE and Med-NMAE), and the mean coverage rate
(M-CR). The last column indicates the percentage of convergence of the methods over the 150 scenarios. Models in this table are ordered
according to M-NRMSE.

M-
NRMSE

1–5
years

6–10
years

11–15
years

Med-
NRMSE

M-
NMAE

Med-
NMAE M-IS M-CR Convergence

ARIMA (2,1,1) 0.078 0.068 0.090 0.120 0.078 0.069 0.065 0.103 93.3 96
ARIMA (1,1,0) 0.084 0.071 0.101 0.141 0.079 0.075 0.069 0.098 96.7 100
LM 𝑟 = 7 0.117 0.079 0.153 0.280 0.076 0.103 0.067 0.234 88.8 100
ARIMA AIC 0.119 0.087 0.150 0.223 0.089 0.105 0.079 0.258 78.3 100
BAPC RW1
PC(u=1,α=0.01)
prior

0.127 0.085 0.175 0.297 0.083 0.111 0.076 0.205 98.3 89

BAPC RW1
gamma(1,5e-3)

0.129 0.086 0.179 0.303 0.086 0.113 0.074 0.200 99.5 88

LM 𝑟 = 4 0.131 0.091 0.168 0.293 0.083 0.116 0.075 0.181 94.6 100
GLM 𝑛𝑠4(𝑎) +

𝑛𝑠4(𝑝) + 𝑎 ⋅ 𝑝

0.138 0.087 0.188 0.357 0.088 0.120 0.074 0.377 61.6 96

BAPC RW2 PC prior 0.139 0.084 0.178 0.384 0.091 0.119 0.074 0.337 99.8 86
APC all effects, pw,
𝑘 = 5

0.140 0.088 0.178 0.360 0.093 0.123 0.078 0.504 61.1 97

GLM 𝑛𝑠3(𝑎) + 𝑛𝑠3(𝑝) 0.143 0.088 0.186 0.373 0.088 0.124 0.077 0.496 59.8 100
GLM 𝑛𝑠3(𝑎) +

𝑛𝑠3(𝑝) + 𝑛𝑠3(𝑎) ⋅ 𝑝

0.149 0.088 0.194 0.413 0.086 0.128 0.075 0.199 85.5 100

APC drift only, pw
𝑘 = 3

0.151 0.105 0.199 0.303 0.105 0.132 0.094 0.607 51.2 85

GLM Lee Carter,
𝑘 = 2

0.180 0.097 0.233 0.557 0.081 0.154 0.070 0.340 76.7 100

Joinpoint 7.519 0.440 7.982 40.299 0.096 4.327 0.088 11.329 53.7 100

Abbreviations: AIC, Akaike Information Criterion; APC, age-period-cohort; ARIMA, autoregressive integrated moving average; BAPC, Bayesian age-period-
cohort; GLM, generalized linear models; LM, linear model. pw, 1/5
power link; RW1, first-order random walk; RW2 second-order random walk.

Largely similar conclusions were obtained in terms of M-IS, with simple models outperforming more complex ones
(Table 2 and Figures A5–A8). Again, the best performance was achieved for simple ARIMA models, followed by LM
(using the last four points). These simple models also presented anM-CR fairly close to 95%. BAPCmodels had in general
wider prediction intervals, resulting also in too high coverage rates (M-CR close to 100% instead of 95% for some of them).
In contrast, coverage rates were clearly too low for GLM and APC, where M-CR could even reach values as low as 50%.
Figure 7 compares the M-NRMSE between model classes separately for each sex and cancer site. Prostate cancer is the

site with the largest variability in model accuracy, as incidence rates showed a trend reversal (Figures 4 and A5), followed
by skin melanoma for both sexes, because of a rate stabilization in recent years (Figure 2). The APC, BAPC, and GLM
models performed particularly poorly in at least one of these difficult cases, while the ARIMA models were among the
best methods whatever the cancer site. Here also, similar results were obtained in terms of M-IS (Figure A16).
When evaluating separately the M-NRMSE of the short-term (1–5 years), medium-term (6–10 years), and long-term

(11–15 years) predictions, we found that, despite inevitably less good performances for long-term predictions than for
mid- and especially short-term predictions, the ranking of the models was largely the same in all three settings (Table 2).
Results of our sensitivity analyses (Section 3.2) are also summarized in Table 2. In a first sensitivity analysis, we repeated
all calculations using M-NMAE instead of M-NRMSE. The ranking of the models stayed mostly the same. In a second
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TRÄCHSEL et al. 15 of 19

F IGURE 7 Mean normalized root mean square error (M-NRMSE) for one model per class, by sex and cancer site (M-NRSME across 15
leave-future-out cross-validation scenarios on combined data from the Swiss registries of Vaud, Geneva, and Neuchatel, 1982–2016 per sex and
cancer site). The number of scenarios for which the fitting algorithm of a method did not converge is indicated at the bottom of the graph for
APC|BAPC. The other methods shown always converged. APC, age-period-cohort; ARIMA, autoregressive integrated moving average; BAPC,
Bayesian age-period-cohort; GLM, generalized linear models; LM, linear model.

sensitivity analysis, we looked at the Med-NRMSE and Med-NMAE. While the performance of the different models was
much closer to each other, the best models remained the simple ARIMA models.
The last column of Table 2 provides the percentage of scenarios for which the fitting algorithm of the different methods

converged, which was 100% for LM, above 95% for ARIMA and GLM, and slightly below (down to 85%) for the APC and
BAPCmodels. The computational time of Bayesian and non-Bayesianmethods is available in the Supporting Information
Appendix (Table A1).

6 DISCUSSION

The objective of this paper was to compare the performance of statistical models for predicting annual age-standardized
cancer incidence rates. The APC method was compared with its Bayesian counterpart BAPC, with simpler GLM
approaches including only age and period or age and cohort in the model, and with ARIMA models based only on time
series of incidence rates. A simple linear regression model (LM) extrapolating the trend fitted on the last few observed
incidence rates was included in the comparison. The prediction performance of each method was evaluated in terms of
point prediction accuracy, the quality of prediction intervals, and the convergence rate of the fitting algorithm on a large
set of scenarios obtained by leave-future-out cross-validation using real data from Swiss cancer registries.
In the class of GLM, including period led to better prediction performance than including cohort (in addition to age) in

the model. Including cohort in the model involves the prediction of new cohort effects mainly based on the most recent
ones containing only few observations. These models are therefore more prone to overfitting than those using period
effects concerning the whole population. On the other hand, the inclusion of a simple (linear) interaction term for age
and period did not improve prediction performance, while including complex interactions (splines) actually worsened
predictions due to overfitting. This was also the case for the Lee–Carter and joinpoint models, and for a GLM model
selected via the AIC. Prediction intervals were particularly poor for GLM as previously found by another study (Møller
et al., 2005), who estimated (aswe did) coverage rates of about 50%. TheAPCapproach, although considerably improved by
the use of a power link (Møller et al., 2003), performed poorlywhen predictionsweremade by extrapolating the drift alone.
The drift alone is, however, themostwidely used strategy to date (Yu et al., 2019). Further extrapolating all nonlinear effects
(Rutherford et al., 2012) improved the predictions in case of a trend reversal. The Bayesian APC models based on second-
order random walk performed very similarly to the classical APC models with splines, while a simpler BAPC based on
first-order randomwalk performed slightly better despite less smooth age, period, and cohort effects. For ARIMA, models
with low-order autoregressive, integrated, and moving average components are to be preferred to more complex model
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structures. A strategy based on selecting the bestARIMAmodel viaAICoverfitted the data and gaveworse predictions than
systematically choosing a simple structure. Finally, increasing the number of data points to fit a simple linear regression
model improved the prediction when including up to 7 years in the past, worsening after this lag.
Comparingmodels among classes, we obtained the best performance for simple ARIMAmodels such as (2,1,1) or (1,1,0).

Nevertheless, most of the simplest ARIMA models, including component orders up to (3,1,3), were ahead of the other
methods. The second-best performing class of models was simple linear regression, where all alternatives using 5–10 data
points to fit the trend outperformed the more complex GLM, APC, and BAPC models. Similar results in terms of ranking
of models were obtained for short, medium, and long-term predictions, and stratifying by cancer site, despite the less
good performance for long-term versus short-term predictions, and for cancers showing a trend reversal. Considering
absolute errors (NMAE) instead of square errors (NRMSE) and taking the median instead of the mean of the NRMSE (or
NMAE) across scenarios did not substantially change the ranking of themodels, still placing simple ARIMAmodels at the
top of the list. However, while the choice of the mean strongly penalizes the most difficult scenarios, the median simply
excludes these particularly complicated situations from the evaluation. For this reason, we have focused mainly on the
mean NRMSE, as it allows us to favor models and methods that do not show aberrant behavior in case of trend reversal or
stabilization, as this is becoming increasingly common (e.g., prostate, breast, and skin melanoma) and a similar pattern
will hopefully be observed in the future for other cancer sites. Finally, looking at the prediction intervals did not alter our
conclusions, with simple ARIMA models still being the best performing models.
Our first observation is that the models that offer the best fit to the data, for example, models selected using AIC, are

not necessarily the best for prediction. The use of AIC may lead to the choice of overly complex models, for example,
GLM or APC including complex interactions with splines, which are likely to overfit the data and are indeed less efficient
for prediction than simpler and smoother models. The second observation is in line with the first one by advocating for
simplicity. Approaches such as APC or BAPC estimate the effects of age, period, and/or cohort separately, considered as
proxies for epidemiological risk factors, such as smoking and other carcinogens.However, when it is amatter of prediction,
we have shown that better performance is obtained by simply extrapolating the trends using models such as ARIMA (or
even simple regression models). As Booth and Tickle (2008) have already noted in the context of mortality projection, an
extrapolation-based approach is often preferable to an explanation- or interpretation-based approach.
Our study has some limitations, all of which could motivate future work. For example, although we considered many

models, we did not include overdispersion in our Poisson models. While this would affect the coverage of the prediction
intervals, it would not greatly change the predictions and thus theNRMSE, ourmain criterion.More generally,many other
prediction models and options can be formulated, for example, using quasi-Poisson or negative binomial distributions or
trying other link functions, and it could become an interesting challenge for researchers to try to identify one that can
outperform ARIMA in comparable settings. Second, we did not take into account the effects of prevention/screening
programs and changes in medical technology and practice on cancer incidence rates. These factors can strongly influence
the (past and future) rates and help identify trend changes (Etzioni et al., 2013). Such effects are however challenging
to analyze, as they evolve over time. For example, the start of a cancer screening program leads to a short-term initial
increase in incidence, followed by a stabilization or sometimes a decrease compared to past trends. Themagnitude of these
temporal effects will depend on the adherence to these prevention programs. Considering the impact of screening when
making predictions is a subject of ongoing work. Another limitation is that we did not account for data underreporting
and its evolution over time, which may introduce artifacts into predictions. In fact, while a high degree of completeness
has been evaluated in Swiss cancer registration (Lorez et al., 2017), a slight underreporting of some cancers cannot be
discarded. Finally, we have only modeled the most common cancers. Although we assume that simpler methods, such
as ARIMA, should be suitable for rare cancers, as they are less prone to overfitting, we have not studied the prediction
performance for these cancers and cannot draw any conclusions on this point. A specific analysis of the most suitable
prediction methods for rare cancers would be another important subject of future work. The same consideration can be
made for the prediction of specific age incidence rates.
In conclusion, we recommend using lower order ARIMAmodels to predict cancer incidence, for example, the ARIMA

(2,1,1) or (1,1,0) models, which achieved the best overall performance in our comparison study. We suggest not using AIC
to select the model, as this appears not to be the best strategy for prediction because it often results in overfitting. While
APC and BAPCmodels remain the best to help interpret changes in cancer incidence trends, we recommend avoiding the
widely used APC model for prediction, especially when the extrapolation is restricted to the drift. Finally, given the large
uncertainty, particularly in the case of a trend reversal, we do not recommend predicting cancer incidence for periods far
into the future but rather updating predictions regularly.
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Abstract

Predicting the short-term evolution of the number of cancers is essential for planning

investments and allocating health resources. The objective of this study was to predict the

numbers of cancer cases and of the 12 most frequent cancer sites, and their age-standard-

ized incidence rates, for the years 2019–2025 in Switzerland. Projections of the number of

malignant cancer cases were obtained by combining data from two sources: forecasts of

national age-standardized cancer incidence rates and population projections from the

Swiss Federal Statistical Office. Age-standardized cancer incidence rates, approximating

the individual cancer risk, were predicted by a low-order Autoregressive Integrated Moving

Average (ARIMA) model. The contributions of changes in cancer risk (epidemiological

component) and population aging and growth (demographic components) to the projected

number of new cancer cases were each quantified. Between 2018 and 2025, age-stan-

dardized cancer incidence rates are predicted to stabilize for men and women at around

426 and 328/100,000, respectively (<1% change). These projected trends are expected

for most cancer sites. The annual number of cancers is expected to increase from 45,676

to 52,552 (+15%), more so for men (+18%) than for women (+11%). These increases are

almost entirely due to projected changes in population age structure (+12% for men and

+6% for women) and population growth (+6% for both sexes). The rise in numbers of

expected cancers for each site is forecast to range from 4.15% (thyroid in men) to 26%

(bladder in men). While ranking of the three most frequent cancers will remain unchanged

for men (1st prostate, 2nd lung, 3rd colon-rectum), colorectal cancer will overtake by 2025

lung cancer as the second most common female cancer in Switzerland, behind breast can-

cer. Effective and sustained prevention measures, as well as infrastructural interventions,

are required to counter the increase in cancer cases and prevent any potential shortage of

professionals in cancer care delivery.
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Introduction

Predicting the future burden of cancer in a country has a pivotal role in cancer control plan-

ning. It provides evidence for policymakers seeking to allocate resources (e.g., cancer care, pre-

vention and research) and to assess the economic burden of cancer. The future number of new

cancer cases will depend on three main components. The first is an epidemiological compo-

nent, i.e. the change in age-standardized cancer incidence rates, which approximates the

change in individual risk factors as well as in preventive actions taken to counter them [1]. The

other two components are demographic, i.e. the growth and aging of the population observed

in many countries.

In general, prediction of the future number of cancer cases in a country is made by combin-

ing a prediction of age-standardized cancer incidence rates, obtained by models that attempt

to identify and extend past trends into the future, with demographic projections of population

size and age structure [2]. Methods to predict age-standardized cancer incidence rates most

often used Age-Period-Cohort (APC) models, considering these three dimensions as proxies

for different risks and preventive factors [2–5]. More recently, methods such as Bayesian Age-

Period-Cohort (BAPC) models [6, 7], joinpoint regression [8, 9] and machine learning [10]

have also been used. The choice of the statistical method can, however, have a significant

impact on prediction. A recent study comparing a large set of prediction models showed the

superiority of ARIMA (Auto Regressive Integrated Moving Average) methods which consis-

tently outperformed more sophisticated methods [11].

In Switzerland, the National Agency for Cancer Registration (NACR) gathers data from

regional cancer registries and produces national incidence figures, extrapolating the expected

number of cancers for the few areas not covered by population-based registries [12, 13]. A

study used these data for the period 1989–2009 to predict, by APC modelling, the evolution of

age-standardized incidence rates up to the period 2015–19 for all cancers combined and for

each of the 12 most frequent cancer sites [14]. Predicted age-standardized cancer incidence

rates were then combined with population projections from the Swiss Federal Statistical Office

(FSO) to forecast the number of new cancer cases to 2015–19. Eight years later, with Swiss can-

cer incidence series available up to the year 2018, these predictions can be compared with the

observed trends, while new predictions are needed.

The first objective of the present study was to predict the age-standardized cancer incidence

rates and the absolute number of new cancer cases in Switzerland, for all cancers combined

and for each of the 12 most frequent cancers from 2019 until 2025. This was done combining

NACR incidence data and Swiss population demographics projections. For the statistical anal-

ysis, we used a low order Auto Regressive Integrated Moving Average (ARIMA) model [15]

for predicting age-standardized cancer incidence rates, as recommended by [11], while adopt-

ing the FSO projections for the demographic evolution. A second objective was to quantify the

contribution of the change in the individual cancer risk, as approximated by age-standardized

cancer incidence rates, and of population aging and growth to the expected change in the

number of new cancer cases between 2018 and 2025.

Method

Cancer incidence data

As primary source of data, we used cancer incidence data that were calculated and produced

by the Swiss National Agency for Cancer Registration (NACR) for all Switzerland. For this,

NACR gathered data recorded by regional population-based cancer registries in Switzerland

and extrapolated national figures including regions not covered by a registry. NACR made
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available for years y = 1987–2018 the age standardized cancer rates l
s
y at the European stan-

dard population s [16]:

l
s
y ¼

X

a2A

ly;aPs;a=Ps ð1Þ

In (1), A is a partition of the ages into 5-year age groups (i.e. 0–4, 5–9, . . ., last open group 85

years and over), λy,a is the age-specific incidence rate for the year y and age group a (a 2 A)

(e.g. a = 0–4 years), and Ps,a/Ps is the proportion of people in the age group a in the standard

population s. We considered age-standardized cancer incidence rates for the 12 most frequent

cancer sites according to the ICD10 codes: oral cavity and pharynx (C00-14), stomach (C16),

colon and rectum (C18-20), lung-bronchus-trachea (C33-34), skin melanoma (C43), breast

(C50), corpus uteri and uterus NOS (C54-55), ovary (C56), prostate (C61), bladder (C67), thy-

roid (C73), non-Hodgkin lymphoma (C82-85, C96). All other cancers were regrouped in the

category “other” (All other ICD10 codes except C44) to allow calculation of the overall cancer

incidence (C00-43, C45-97).

Demographic data

Our projections of cancer incidence based on NACR data were combined with demographic

projections for the Swiss population. For the evolution of the Swiss population from 2021 up

to 2025, we used the so-called “average A00-2020” reference scenario of the Swiss Federal Sta-

tistical Office (FSO) [17]. It predicts globally and by age groups the most plausible growth of

the population based on demographic changes in mortality, migration, and fertility. This refer-

ence scenario predicts a number of women increasing from 4,292,551 in 2018 to 4,538,813 in

2025 (+5.74%) and a number of men increasing from 4,221,778 in 2018 to 4,482,174 in 2025

(+6.17%). For years up to 2020, we used the official population numbers from the FSO.

Modelling and prediction of age-standardized cancer incidence rates

For the choice of a statistical method to predict age-standardized cancer incidence rates, we

referred to a recent comparison of the accuracy of several models and methods, based on the

repeated application of leave-future-out cross-validation on a 35-year series of incidence data

from cancer registries [11]. According to [11], the best predictions are obtained by simply

extrapolating trends in standardized cancer rates (1) by ARIMA (Auto Regressive Integrated

Moving Average, [15]) models. These models showed better accuracy than the more complex

and widely used APC methods and have the advantage of requiring only the age-standardized

rates, while the age-specific incidence rates are not needed. The simple ARIMA(2,1,1) proved

to be the best performing method and was adopted for the present study. Mathematically, this

model can be described as follows. ARIMA(2,1,1) combines a differenced 2-order autoregres-

sive model with a 1-order moving average model, which can be written as:

dls
y ¼ cþ a1dl

s
y� 1
þ a2dl

s
y� 2
þ εy þ y1εy� 1 ð2Þ

In (2), dls
y (y = 1987–2018) are differences between age-standardized rates at two consecutive

years, dls
y ¼ l

s
y � l

s
y� 1

, 2y are normally distributed random errors, and c, α1, α2, θ1 are a con-

stant, two auto-regressive coefficients and one moving average coefficient, respectively. This

model has been fitted to the NACR data described above. Coefficients in model (2) were esti-

mated separately for each cancer site and for each sex, when applicable. We used the ARIMA

function from software R [18] to estimate these coefficients, to estimate (with 95% prediction

intervals) age-standardized cancer incidence rates l̂s
y for years y = 1987–2018, and to predict
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them (with 95% prediction intervals) for years y = 2019–2025. Technically, the estimation

method implemented in R is based on [19].

The percent change in age-standardized cancer incidence rates between 2018 and 2025 was

then estimated by comparing the predicted value for 2025, l̂s
2025

, with estimated value for 2018,

l̂s
2018

, instead of the observed value l
s
2018

. This choice was intended to reduce the impact of ran-

dom fluctuations in 2018, 22018, on our comparisons.

Prediction of the future number of new cancer cases

In order to predict the absolute number of new cases expected each year N̂y, y = 2019–2025,

the predicted age-standardized rates l̂s
y should be conveniently combined with the FSO popu-

lation forecasts by 5-year age classes for the same years. We used the following approximation:

N̂y � Py � l̂
s
y � l

y
y? =l

s
y? ð3Þ

Here, y⋆ is any year in the period 1987–2018 (we considered y⋆ = 2018); y is a future year for

which we wish to make the prediction (y = 2019–2025); Py is the total population for year y

according to the FSO forecast [17]; l̂s
y are predicted standardized rates for year y according to

model (2); l
y
y? ¼

P
a2A ly?;aPy;a=Py (NACR) are cancer rates of year y⋆ standardized on the

population structure at future year y (FSO forecast); and l
s
y? are cancer rates in year y⋆ stan-

dardized on the European standard population s. Approximation (3) is valid provided that the

rate ratio between any two age groups a1, a2 2 A remains approximately stable over time, that

is: ly;a1
=ly;a2

� ly?;a1
=ly?;a2

; y 2 2019–2025, y� = 2018. In that case, the ratio of standardized

rates for years y and y� will not be much affected by the particular choice of standardization, so

that l̂s
y=l

s
y? � l̂y

y=l
y
y�, ensuring validity of (3). Empirically this is generally the case, as shown

by [20].

Factorization of the predicted change in number of new cancer cases

The predicted change in the number of new cancer cases between 2018 and 2025 was factor-

ized into three components [21]. Considering that N2018 ¼ P2018l
2018

2018
, the change (in %) of the

number of new cancer cases between 2018 and 2025 can be expressed as:

D ¼ 100 � N̂2025=N2018 � 1
� �

% ¼ 100 � ð1þ A=100Þ � ð1þ B=100Þ � ð1þ C=100Þ � 1½ �% ð4Þ

In (4), A ¼ 100ðl̂s
2025
=l

s
2018
� 1) is the change (in %) in the number of new cancer cases due to

the change in individual cancer risk, as approximated by age-standardized cancer rates, B ¼
100ðl

2025

2018
=l

2018

2018
� 1Þ is the change (in %) in the number of new cancer cases due to the popula-

tion ageing, and C = 100(P2025/P2018 − 1) the change (in %) due to the population growth. This

factorization allows us to quantify the multiplicative contributions of the epidemiological com-

ponent (A) and the two demographic components (B and C) on the expected future number

of new cancer cases (D).

Results

Over the past decade, we have observed in Switzerland a stabilization of age-standardized can-

cer incidence rates and a steady increase in the number of new cancer cases, as previously pre-

dicted [14]. Our new predictions for age-standardized cancer incidence rates and absolute

number of cancer cases up to 2025 point to a continuation of these trends (Figs 1 and 2).
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While age-standardized rates are expected to remain roughly stable in the coming years

(Fig 1), the number of cancer cases is predicted to increase substantially for each cancer site

and for all cancers combined (Fig 2).

Table 1 shows the expected change in the estimated number of new cancer cases between

2018 and 2025 for each cancer site and sex. This change is also factorized into its epidemiologi-

cal and demographic components, as explained in the Method section, Eq (4). The age-stan-

dardized cancer incidence rates, reflecting changes in cancer risk, are overall expected to

remain roughly stable until 2025 for both sexes (see also Fig 1). For men, a slight increase in

incidence rate is expected for cutaneous melanoma (+2.75%), and bladder cancer (+1.24%),

whereas the incidence rates are expected to decrease slightly for cancers of the lung, bronchus

and trachea (-1.38%), oral cavity and pharynx (-4.61%), stomach (-3.72%), colon-rectum

(-2.15%), thyroid (-5.07%), and for non-Hodgkin’s lymphoma (-1.22%) and to remain approx-

imately constant for prostatic cancer (-0.66%). For women, a slight increase in standardized

incidence rate is foreseen for cancers of the oral cavity and pharynx (+1.99%) and thyroid

(+2.91%), while a slight decrease is predicted for cancers of the colon-rectum (-1.98%), lung,

bronchus and trachea (-4.86%), breast (-1.08%), uterus (-2.24%), ovary (-4.17%) and bladder

(-5.09%), and more markedly for stomach cancer (-8.13%). No change in incidence rate is

expected for cutaneous melanoma (+0.68%) and non-Hodgkin’s lymphoma (+0.17%) in Swiss

women.

The total number of new cancer cases is expected to increase between 2018 and 2025 from

24,987 to 29,553 (+18%) for men and from 20,689 to 22,999 (+11%) for women, i.e. an absolute

increase of 6,876 new cancer cases (+15%) for both sexes. This increase is almost entirely

Fig 1. Observed and projected age standardized rates for all cancers and 12 cancer sites in Switzerland. Bold lines represent actual rates; thinner

lines represent projected rates; shaded areas represent 95% prediction intervals. Men in blue; women in red.

https://doi.org/10.1371/journal.pgph.0001112.g001
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attributable to the projected aging (+12% for men and +6% for women) and growth (+6% for

both sexes) of the Swiss population, since the contribution of the evolution of cancer risk

amounts to less than 1% for both sexes. A rise in the number of new cancer cases is predicted

for each cancer site and sex, with increases ranging from 4.15% for thyroid in men to 26% for

bladder in men. Here also, all increases are primarily due to the demographic evolution, with

the contribution of population aging generally outweighing that of population growth, with

the notable exception of thyroid cancer for both sexes (Table 1). Only for thyroid cancer in

women and cutaneous melanoma in men, an increase in risk partly contributed to the overall

increase in the expected number of new cancer cases. Of note, for the few sites where we fore-

cast a decrease in cancer risk (for example stomach cancer in women), this decrease is insuffi-

cient to offset the increase due to population growth and aging.

Discussion

In this study, we presented projections of the burden of cancer in Switzerland until 2025, in

terms of both age-standardized rates and number of new cases, using, for the first time, the

simple ARIMA method. Altogether, cancer incidence is predicted to stabilize for men and

women, and for most cancer sites. The number of cases is, however, expected to increase by

15% (from 45,676 in 2018 to 52,552 in 2025), more so in absolute and relative terms for men

than women. This increase is almost entirely driven by demographic changes. For men, it is

primarily due to the projected population aging (+12.4%) followed by population growth

(+6.2%) whereas the contributions of population aging and growth to the increase were com-

parable for women (6.0% and 5.7%, respectively).

Fig 2. Observed and projected numbers of new cancer cases for all cancers and 12 cancer sites in Switzerland. Bold lines represent actual numbers;

thinner lines represent projected numbers. Men in blue; women in red.

https://doi.org/10.1371/journal.pgph.0001112.g002
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For all cancers combined, the previous predictions until 2015–19 [14] closely corresponded

to the observed Swiss figures until 2018 [22], i.e. a stable incidence rate for women and a

slightly decreasing incidence rate for men, with an increasing number of cancers for both

sexes. For a few sites such as stomach cancer in men and breast cancer in women, we observed,

however, a less marked dynamic than was expected. This means a lesser decrease in incidence

rate and therefore a larger increase in the number of cancers than predicted by [14]. For breast

cancer, the implementation of mammography screening programs in several Swiss cantons

since 2010, leading to the earlier detection of cancers that would otherwise be diagnosed a few

years later, may explain the difference between predicted and observed breast cancer incidence

rates [23].

Using the ARIMA method recommended by a large comparison study [11], we forecast a

continuation until 2025 of the recent stable trends in age-standardized incidence rates for all

cancers combined (around 426/100,000 in men and 328/100,000 in women) and a stabilization

of incidence for most cancer sites considered. A stabilized age-standardized incidence can

result from the continuation of past recent trends (colon-rectum, breast, prostate, bladder and

non-Hodgkin lymphoma), the leveling off of a downward trend (for men: oral cavity, pharynx,

lung and stomach; for women: corpus uteri, uterus, ovary and thyroid) or the leveling off of an

upward trend (cutaneous melanoma for both sexes and oral cavity, pharynx and lung for

women). While no substantial increase in incidence is forecast for any cancer site, the inci-

dence of stomach cancer in women is predicted to substantially decrease (-8.13%), continuing

Table 1. Estimated numbers of cancer cases for 2018 and predictions for 2025 in Switzerland by cancer site and by sex. Overall predicted changes are factorized (mul-

tiplicatively) into changes in standardized risk (A), in population structure (B), and in population size (C) (Eq (4)).

MEN WOMEN

CANCER SITE Number

of cases

2018

Number

of cases

2025

Change

in risk A

(%)

Change in

pop

structure B

(%)

Change in

pop size C

(%)

Overall

change

(%)

Number

of cases

2018

Number

of cases

2025

Change

in risk A

(%)

Change in

pop

structure B

(%)

Change in

pop size C

(%)

Overall

change

(%)

ORAL CAVITY

& PHARYNX

841 929 -4.61 9.07 6.17 18.46 382 442 1.99 7.29 5.74 15.71

STOMACH 632 731 -3.72 13.15 6.17 15.66 321 338 -8.13 8.4 5.74 5.3

COLON,

RECTUM

2625 3095 -2.15 13.49 6.17 17.9 2050 2319 -1.98 9.14 5.74 13.12

LUNG,

BRONCHUS,

TRACHEA

2844 3358 -1.38 12.76 6.17 18.07 2088 2280 -4.86 8.55 5.74 9.2

SKIN

MELANOMA

1684 2029 2.75 10.45 6.17 20.49 1421 1589 0.68 5.04 5.74 11.82

BREAST 6515 7156 -1.08 5.01 5.74 9.84

CORPUS

UTERI,

UTERUS NOS

961 1060 -2.24 6.7 5.74 10.3

OVARY 654 706 -4.17 6.53 5.74 7.95

PROSTATE 7420 8815 -0.66 12.64 6.17 18.8

BLADDER 1000 1262 1.24 17.41 6.17 26.2 346 383 -5.09 10.3 5.74 10.69

THYROID 241 251 -5.07 3.34 6.17 4.15 540 593 2.91 0.91 5.74 9.81

NON

HODGKIN

LYMPHOMA

937 1109 -1.22 12.85 6.17 18.36 716 815 0.17 7.47 5.74 13.83

OTHER

CANCERS

6763 7974 0.07 10.98 6.17 17.91 4695 5318 -1.31 8.54 5.74 13.27

ALL CANCERS 24987 29553 -0.89 12.40 6.17 18.27 20689 22999 -0.78 5.96 5.74 11.17

https://doi.org/10.1371/journal.pgph.0001112.t001
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the recently reported downward trend in Switzerland [22]. Similarly, the incidence of thyroid

cancer in men, which recorded the greatest increase in incidence of all cancer sites in Swiss

men between 2008–2012 and 2013–2017 [22], is predicted to materially decrease (-5.07%) up

to 2025.

Interpretation of cancer projection is challenging. The latency period between preventive

measures aiming at reducing exposure to specific risk factors and its resulting effect on cancer

incidence–and its magnitude–are difficult to anticipate. Further, the effect of early detection

activities is often difficult to account for. This is particularly true for Switzerland where initia-

tion of organized cancer screening programs and early detection activities mostly occur at

regional level, without uniform or simultaneous application at the national level, and changes

in clinical and diagnostic practices are virtually unpredictable. However, predicted incidence

trends for several cancers are nevertheless largely corroborated by the Swiss epidemiological

context. For example, the expected decrease, or stabilization after a long period of decrease, for

males in incidence of cancers largely attributable to tobacco (oral cavity & pharynx, lung, blad-

der) and the predicted stabilization of incidence for those tobacco-associated cancers in

females, after a long period of increase, are in line with the reduction of smoking prevalence

and smoking ban policy in public places, which occurred later in Switzerland than in most

other countries. The plateauing incidence rate of prostate cancer, the most common cancer in

Swiss men, after years of a steady increase followed by a decrease has largely been attributable

to changes in PSA screening and clinical workup practices [24]. Analogously, the strong rise

between 1998 and 2012 in incidence of thyroid cancer in Switzerland, more pronounced in

women than in men, was shown to be limited to small papillary carcinoma and likely due to

overdiagnosis [25, 26]. The predicted stabilization of incidence in women and slight decrease

in men may reflect recent favourable changes in clinical and diagnostic practices, as for pros-

tate cancer. The predicted attenuation of the rise in melanoma incidence, after years of steady

increase, has also been observed in countries with longstanding and sustained prevention

activities against skin cancer [27–29]

In terms of predicted number of future new cases by 2025, the ranking of the three most

common cancers will remain unchanged in the coming years for men (1st prostate, 2nd lung,

3rd colon-rectum), but colorectal cancer is expected to overtake by 2025 lung cancer as the sec-

ond most frequent female cancer in Switzerland, behind breast cancer.

Comparing our results with recent projection studies from other industrialized countries,

we note that a similar stabilization of incidence rates has overall been expected in 2020 (using

data from 2010–12) in a study applying machine learning algorithms to predict incidence rates

of all cancers and of the four main cancer types (lung, breast, prostate and colon) in Europe

[10]. A study applying a BAPC model recently predicted for Australia an annual increase of

3% in the number of cancer cases between 2016 and 2031 [7]. This annual increase corre-

sponds to an increase of 100(1.037 − 1)% = 23% over a 7-year period, which is higher than the

15% increase obtained in Switzerland over the 7-year period 2018–2025. This difference may

partly be explained by a more marked dynamic of the age-standardized incidence rates pre-

dicted for Australia, i.e. a slight decrease for colon, stomach, and lung cancer in men and an

increase for melanoma and lung cancer in women, in contrast to the stabilization expected for

Switzerland. However, direct comparisons between countries should consider differences in

exposure to risk factors, preventive measures, screening and intensity of diagnostic proce-

dures, even if the evolution of the demographic components appears similar in Australia and

Switzerland, with a continuous growth of life expectancy [30]. In this respect, the situation dif-

fers from the United States, where life expectancy has been stagnating or even decreasing in

the past ten years. As demographic factors strongly influence the future number of cancers,

this could explain, at least in part, the recent prediction of an overall relatively small rise from
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1,735,000 new cancer cases in 2020 to 1,881,000 in 2040 in the United States [9], contrasting

with our projections for Switzerland and those for Europe [10] and Australia [7].

This study has strengths and inherent limitations. One strength is the adoption of the

ARIMA method for prediction. In addition to its demonstrated validity in a model compari-

son study based on a large number of leave-future-out cross-validation scenarios [11], this

method can be directly applicable to standardized rate series without requiring ad hoc meth-

ods to mitigate the predicted dynamics (dumping or forced stabilization), as is often the case

for APC models [5, 14]. However, as the ARIMA models predict standardized rates but not

age-specific rates, an approximation [20] was necessary to combine these predictions with the

demographic forecasts to obtain predicted numbers of cancer cases. A second strength of this

study is that it uses annual rates rather than 5-year average rates for prediction, as is the more

usual practice [5, 14]. Our approach allows us to use more detailed information and to predict

future trends more accurately. However, this choice also entails a limitation when we want to

quantify the variation of the rate between an observed year (2018) and a future year (2025),

regarding the random fluctuations that may occur in a specific year (the year 2018 may present

a rate slightly higher or lower than the trend, precisely due to this random variability). To miti-

gate this effect, we decided to compare the prediction for 2025 to the rate estimated by the

model for 2018, rather than to the observed rate. As ARIMA models are based on moving aver-

ages, this choice smoothed out random fluctuations.

The major limitation of this study is the implicit assumption that no disruptive or unpre-

dictable event will interfere with the continuation of past trends. This assumption, inherent to

any prediction of the future from the past, has been violated twice. First, the Swiss cancer regis-

tration system was profoundly reformed in 2020 when notifications of all oncological diseases

became mandatory. While the Cancer Registration Act (CRA) enabled full coverage of the

population, constraints on patients informed consent and rights to veto prior to any case regis-

tration should affect the future completeness of registration to an—as yet—unknown degree

[31, 32]. The magnitude of this disruption appears very likely to exceed any inaccuracy in the

number of registered cancers (exhaustivity generally exceeds 95% in Swiss registries for most

cancer sites [12]) or any imprecision in the extrapolation method used by NACR for regions

not covered by cancer registry between 1987 and 2018. In this respect, our projections will pro-

vide a valuable baseline to estimate the effect of the CRA. Second, the unexpected COVID-19

pandemic produced some disruption in demographics in the last two years due to an increased

mortality, particularly in older population groups where cancer risk is highest. Whether the

reference scenario of the Swiss Federal Office for Statistics for population projection we used

still holds true is unknown. Delayed cancer diagnosis due to the pandemic and the lockdown

could, to some extent, also temporarily reduce cancer incidence and differently for various

cancer types [33]. No model applied to pre-pandemic data could anticipate this kind of evolu-

tion. For these reasons, we believe that any prediction should not go too far into the future.

We have limited ourselves to 7 years. Another limitation is the time lag inherent to complete

cancer registration data which meant that, as of 2022, 2018 was the latest available year for pre-

dicting the Swiss cancer burden until 2025. The final limitation, which our study shares with

all studies combining a prediction of incidence rates with population projections, is the diffi-

culty to obtain prediction intervals for the absolute numbers of cancer cases as the uncertainty

associated with the prediction of population figures is not available. This could be the subject

of future work.

Despite these limitations, we can reasonably conclude that our simple prediction method

based on ARIMA model was able to project trends in cancer incidence rate and absolute num-

bers of cancers until 2025 which overall concurred with the epidemiological context and

knowledge in Switzerland. These trends generally pointed towards a stabilization of
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age-standardized incidence rates for most cancers, accompanied by a substantial increase in

the numbers of all types of cancer, driven by demographic changes. To counter the unavoid-

able increase in cancer cases, more effective and sustained prevention measures targeting fac-

tors such as obesity, physical activity, healthy diet and tobacco use are necessary. Structural

interventions should also be devised in order to prevent any potential shortage of professionals

in cancer care delivery.
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Estimating cancer incidence accounting for

changes in cancer detection

Bastien Trächsel, Valentin Rousson, Jean-Luc Bulliard, Isabella Locatelli

1 Introduction

Cancer is an important public health issue in modern societies. In Switzerland,

each year, about 45’000 new cases of cancer are diagnosed, and 17’000 deaths are

induced [1]. Cancer is the leading cause of death in women aged 25-84 and men

aged 45-84 [1]. Analysis of population exposure to carcinogens and behavioral

and environmental risk factors is crucial in an epidemiological perspective and

for tailoring specific public health interventions. To this end, monitoring annual

age-standardized cancer incidence rates may provide a partially distorted view,

due to changes in detection over time that may affect observed cancer incidence

rates.

Several studies have analyzed the relationship between screening and cancer

incidence and have attempted to disentangle underlying incidence trends from

the contribution of screening changes, particularly in the context of prostate

cancer and the prostate-specific antigen (PSA) screening test. For example, [2]

developed a likelihood model for observed incidence, using data on PSA screen-

ing frequencies and cancer detection rates over time to simultaneously estimate

the mean lead time, i.e. time by which screening advances clinical diagnosis

with symptoms [3], and a smooth secular incidence trend. In another study

[4], the impact of PSA screening on prostate cancer incidence was investigated
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separately for low- and high-stage cancers, based on a simulation model of the

natural progression of cancer through pathological stages until clinical (symp-

tomatic) detection [5], also including information on age-specific annual PSA

testing frequencies observed in the population. A similar model of prostate can-

cer natural history [6] was adopted by [7] to predict (past and) future cancer

overdiagnosis, i.e. cancers that would not have been detected in the absence of

screening, whether the PSA screening program is continued or discontinued at

some point. These studies show that screening practices can largely impact the

observed trends in cancer incidence.

The association between cancer detection and the cancer stage distribution

has also been abundantly examined. For example, using Osaka Cancer Reg-

istry data (Japan), [8] examined the stage distribution and the proportion of

screen-detected cases for stomach, colorectal, lung, breast and cervical cancer,

and found a strong association over time between high proportions of screen-

detected cases and high proportions of low stage cancers. A similar result was

obtained by [9] based on data from 16 population-based cancer registries (from

Belgium, Denmark, England, France, Italy, Ireland, the Netherlands, Slovenia,

and Spain), showing significantly higher proportions of low-stage cancers (stages

I and II) among screen-detected than non-screen-detected cases.

In the present study, we sought to adjust the observed cancer incidence for

changes in cancer detection such as but not limited to: the introduction or

modification of screening programs, the use of different screening tools, and

incidental detection. Throughout this article, we will loosely refer to changes in

cancer detection as changes in ’cancer screening’. Contrary to [4], we did not

make any assumptions about the progression of cancer over time. Furthermore,

we consider a situation in which data on annual screening frequencies are not

readily available, as is the case in Switzerland. Instead, we assumed that in

the absence of changes in cancer detection, the distribution of cancer stages

among cases remains constant, thus interpreting any change in this distribution
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over time as a proxy for a change in detection. This hypothesis, although

difficult to test, is however consistent with the results of [8, 9] which show a

strong association between screening detection and cancer stage. The paper

is organized as follows: the context is described in Section 2; our adjusting

model is described in Section 3, along with a classical approach to incidence

modeling. Section 4 is devoted to check by simulation the properties of our

proposed approach compared to the classical one, and an application to registry

data is presented in Section 5. A discussion of our principal findings follows in

Section 6.

2 Setting

Cancer is a disease in which certain cells in the body grow uncontrollably and

spread to other parts of the body [10]. Most cancers have four stages, determined

by a variety of factors, including the size and location of the tumor. Stage I

indicates that the cancer is localized in a small area; stage II is cancer that

has grown but has not spread. Stage III is cancer that has grown and spread

to lymph nodes or other tissues. Stage IV (metastatic or advanced cancer)

indicates that the cancer has spread to other organs or areas of the body [11].

In most countries, cancer information is collected through cancer registries. For

example, in Switzerland, there are several population-based cancer registries, of

which the registry of the canton Geneva is the oldest. It records information

on all incident cases of malignant tumors occurring since 1970 in resident pop-

ulation according to international rules, such as the International Classification

of Diseases for Oncology [12]. For each new case, information on the date of

incidence, the site of the cancer and, for some cancer sites and from 1991 on-

wards, the stage of the cancer (I-IV) is systematically recorded, among others.

It should be noted that a new cancer case only enters the registry on the time

of its detection, so that information is only available at that date, for example

regarding the stage of the cancer.
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The underlying cancer trajectory can be represented by a set of probabilities of

transition through the different pathological stages and from each to registra-

tion (Figure 1). In particular, α1,t, .., α4,t in Figure 1 are detection (registration)

probabilities at each stage in a given year t, driving the distribution of cancer

stages that year. For example, the implementation of a thorough screening

campaign results in elevated probabilities α1,t and α2,t for detecting cancer at

early stages (I or II) through screening, otherwise there is a greater chance of

it being clinically detected with symptoms at advanced stages (III or IV). Con-

sider a population of 1 million people. If the cancer risk is constant over time at

γ0 = 1/100, and all transition probabilities remain constant, the number of can-

cers recorded each year Dt will be stable around 10’000, whatever the value of

detection probabilities α1,t, α2,t, α3,t and α4,t, at least after a certain adjustment

period depending on the time of evolution of the tumor. Now consider a sudden

change in screening standards at year 31, such as a new screening program, lead-

ing to an increase in the probabilities of detection by screening at early stages, for

example at times t = 0, ..., 30, αt = (α1,t, α2,t, α3,t, α4,t) = (0.15, 0.25, 0.25, 0.25)

and at times t ≥ 31, αt = (0.4, 0.3, 0.25, 0.20). The impact of this change on

the observed number (incidence) of cancers Dt is illustrated in Figure 2. Dt

will temporarily increase, before returning to previous levels within a few years.

Thus, a sudden change in screening standards will have only a temporary im-

pact on Dt, as also noted by [4], with the magnitude of the change in detection

probabilities at each stage entirely determining the extent of this temporary

deviation in observed incidence. Of course, the situation depicted in Figure 2 is

quite simplistic, because in practice changes in screening patterns are gradual,

even if a new screening standard is suddenly introduced.

The model representing the evolution of the cancer cases in Figure 1 (simplified

by removing γ0,t) is a Markov model with the transition probabilities:
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Pt =


x1,t γ1,t 0 0 α1,t

0 x2,t γ2,t 0 α2,t

0 0 x3,t γ3,t α3,t

0 0 0 x4,t α4,t

0 0 0 0 1

 =

 Wt

α1,t

α2,t

α3,t

α4,t

0 0 0 0 1

 . (1)

Figure 1 and the associated transition matrix Pt serve as the bases for our

simulation study. Here, the incidence Dt will be generated allowing a change in

time of the transition matrix Pt. Different situations will be considered, with

possibly complex baseline incidence patterns and a progressive introduction of

changes in screening habits or improvements in screening techniques leading to a

gradual change of matrix Pt. Our proposed model (next section) will be applied

to the simulated incidence Dt and results compared with the number of new

cancers that would be observed if there were no change in the the transition

matrix Pt (no changes in screening) over time. This theoretical quantity, which

we call D∗
t , can be obtained explicitly from the transition matrix:

D∗
t = γ0,t−r ·Nt−r (2)

In equation (2) Nt represent the amount of population at time t , and r is the lag

corresponding to the average time required for cancers to progress from stage

I to the recorded cancer stage. The last can be obtained as r =
∑4

j=1 Ft(1,j),

with Ft = (I −Wt)
−1

.

In the next section, we present the model we will adopt to estimate D∗
t , i.e. to

adjust the observed incidence Dt for changes in screening. The model will then

be applied to simulated data in Section 6, and to real data from the Geneva

cancer registry in Section 7.

5



Population Yeart Stage I Stage II Stage III Stage IV

Recorded cancer

γ1,t

α1,t

γ0,t γ2,t

α2
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x1,t
x2,t

x3,t x4,t

1

Figure 1: Markov model describing the underlying cancer trajectory through
the different pathological stages of cancer and from each to registration
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3 Model

3.1 Spline model

Modeling the number of new cancer cases Dt over time is generally based on

smoothing functions [13], such as in age-period-cohort (APC) [14, 15, 16] or

Bayesian age-period-cohort (BAPC) [17, 18, 19] models, which rely on cubic

splines or second-order random walks to estimate the effect of age, time (period),

and cohort. As a baseline for comparison, here we adopt a similar, though

simpler, approach based on natural cubic splines (ns) for the time only effect:

log(Dt) = ns(t) + ε (3)

In the following simulation (see Section 4.1 below) we maintained a constant

population to avoid using an offset. We will refer to this model as the NS model.

3.2 Screening Adjusted Model

The model we propose to disentangle underlying trends in cancer incidence from

the effect of changes in screening, as approximated by changes in the cancer stage

distribution, is an Almond distributed lag model with constraints [20, 21].

Let f (t) define a smooth function of the underlying incidence net of changes in

screening (D∗
t ), and sit (i = 1, 2, 3, 4) the observed proportion of new stage I to

IV cancer cases at time t. Information conveyed by sit is a constrained informa-

tion, since
∑4

i=1 sit = 1. For this reason, these quantities can not be introduced

directly into a model. One solution would be using compositional data with

isometric logratio transformation [22], projecting data from a four-dimensional

to a three-dimensional space. However, since each effect must be lagged several

times into the past, this solution would result in too many parameters for a

20-30 year data series.
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We opted to approximate the stage distribution sit (i = 1, 2, 3, 4) by its mean

s̄t:

s̄t =
1

4

4∑
i=1

i · sit (4)

An increase in screening before time t, raising the proportion of stage I cancers

in t, s1t, and lowering the proportions of high-stage cancers s4t, will have a

negative impact on the mean stage s̄t, and will result in a temporary increase

in cancer incidence Dt. Indeed, as seen in previous Section 2, only changes

in cancer detection (and registration) probabilities α, underlying the observed

cancer stage distribution s1, ..., s4 (and its mean s̄t), and not their absolute

value, have an impact on cancer incidence. In addition, a given change has

an impact for several years after its occurrence. Therefore, the mean stage

s̄t was differentiated before entering a distributed lag model [20] on the (log-

transformed) incidence:

log(Dt) = f(t) + β0∆s̄t + β1∆s̄t−1 + ...+ βL∆s̄t−L + εt. (5)

In (5), ∆s̄t represents change in mean stage between two consecutive years,

∆s̄t = s̄t − s̄t−1, and εt are normally distributed errors. Some concerns of this

model are the difficulty to select a maximum lag L and the high multicollinearity

in the s̄t [20].

One classical approach to tackle such multicollinearity is imposing some struc-

ture on the coefficients of the distributed lag-models [20, 21] β using the Almon

polynomial lag model. We assume that the βl, l = 1, ..., L can be represented as

a polynomial in l. For example, we will assume a polynomial of degree 5. This

will ensure that the polynomial is flexible enough.

βl = δ0 + δ1l + δ2l
2 + δ3l

3 + δ4l
4 + δ5l

5 (6)
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log(Dt) = f(t) +

L∑
l=0

(δ0l
0 + δ1l

1 + · · ·+ δ5l
5)∆s̄i−l + εt = f(t) + g(t) + εt (7)

here the effects are decomposed in f(t) representing the underlying incidence

net of changes in screening and g(t) representing the effects of the mean stage

changes.

We constrained the β coefficients 1) to be always negative or zero: βl ≤ 0,

l = 0, .., L, as a decrease in mean stage should (temporarily) raise incidence,

and 2) to be monotonic: dβl/dl ≥ 0, because the impact on the incidence of a

change in mean stage should decrease over time.

The model was estimated via penalized constrained least squares PCLS [23],

with starting values set to δ0 = −L − 1, δ1 = L and δp = 0, for p = 2, .., 5, i.e.

the absolute value of the effects decrease linearly over time. We will refer to

this model as the Screening Adjusted model (SA).

3.3 Comparison metric

In each simulated scenario (see Section 4.1 below) our screening adjusted model

(Section 3.2) will be compared with the classical spline model (Section 3.1)

via the absolute distance between the models’ predicted counts D̂t and the

theoretical incidence in absence of changes in screening D∗
t :

1

T

T∑
t=1

| logD∗
t − log D̂t | (8)

where T is the length of the time period considered.

4 Simulation

4.1 Setting

In our simulation study we considered a constant population over time. Three

different functions for the underlying incidence were considered: flat as in Figure

10



2 (γ0,t constant over time), linear (γ0,t = b·t) or non-linear (γ0,t = sin(1000· t
10 )).

In addition, we varied the time at which the probabilities begin to transition

(t = ∅, t = 19, t = 26), and the duration of the transition period between

two sets of probabilities α (2 or 6 years). In total, we worked with 15 distinct

scenarios (Figure 3). The distance (8) was calculated and averaged over 1000

replications for each scenario.
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Figure 3: Illustration of one simulation of each of the 15 scenarios. The incidence
trends can be either flat, linear or non-linear. The transition time between two
sets of registration probabilities can be either 2 years or 6 years, and the time
at which the screening starts to change can be either ∅, i.e. no changes, 19 or
26. Dots are observed numbers of cases, dark lines are numbers of cases which
would be observed if there was no change in screening
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4.2 Results

First consider as an example one repetition of the last depicted scenario, with

a decreasing underlying incidence following a nonlinear curve and a change in

the transition matrix Pt that occurs gradually in six periods starting at time

t = 26. In Figure 4 the dots represent the observed incidence and the black

line the theoretical incidence (D∗
t ) that would have been observed if there had

been no change in the transition probabilities. Predictions of the NS model,

not surprisingly, follow the pattern of the observed incidence. In contrast, the

SA model manages to correct for the temporary increase in the number of cases

and provides a fairly good estimate of the theoretical incidence.

Global results of our simulation study are reported in Table 1. This table con-

tains for each model the mean absolute distance between the predicted and the-

oretical incidence over the 1000 replicates in each of the 15 scenarios considered,

according to 1) the form of the theoretical incidence: flat, linear or non-linear;

2) the time of the change: no change (t = ∅), change at time 19 (just before the

start of the observation period) or during the observation period at time 26; and

3) the length of the transition period between two sets of probabilities: 2 years

or 6 years. While the performance of the two models is almost identical when

no change in the transition matrix is introduced, it is uniformly better for the

SA model in all other scenarios. The fit of the SA model to the theoretical in-

cidence is slightly better when the change occurs during the observation period

(t=26) than when it occurs just before the beginning of this period (t=19). On

the other hand, the time needed to move from one probability set to another (2

or 6 years) has little impact on the performance of our model.

These results are confirmed in Figure 5 which shows for each model (SA contin-

uous and NS dashed) the distribution of our comparison metric according to the

time of the change. If no change occurs (black curves) not only do both models
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years starting from t = 26
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estimate the same quantity on average (Table1), but the distribution of results

is also almost identical (same variability) for both models. Our model therefore

does not perform worse than a classical model when no short-term effects due

to changes in screening techniques and practices are observed. On the other

hand, the superiority of the SA model over the classical model is evident when

it comes to correcting for such effects, even though the correction is not perfect

and the results show a higher variability than in the case without screening

change (Figure 5, orange and green solid lines).

t=∅ t=19 t=26

SA NS SA NS SA NS

Flat
2 years

0.003 0.003
0.017 0.036 0.012 0.042

6 years 0.014 0.038 0.011 0.042

Increase
2 years

0.005 0.005
0.015 0.035 0.013 0.042

6 years 0.014 0.038 0.012 0.042

Shift
2 years

0.004 0.005
0.017 0.035 0.010 0.042

6 years 0.014 0.038 0.012 0.042

Table 1: Mean absolute distance achieved by the screening adjusted (SA) model
and the natural spline (NS) model over 1000 replications in each of 15 scenarios
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5 Application to registry data

The two models presented above were applied to breast cancer incidence data

in the canton of Geneva. For these data, a sufficiently long period of stage

registration was available, from 1982 to 2016.Because of too high percentages

of missing values in this variable for the years between 1982 and 1990 (>10 %),

we consider only the period 1991-2016 in our analysis. Entering the stages with

8 lags into the model, this allowed us to obtain estimates from 1999 onwards.

The observed incidences and estimates obtained with the NS and SA models

are shown in Figure 6 , with an estimate of the effect of the mean stage (g(t))

in the SA model (centered at zero). If the latter exceeds zero for a few years,

a temporary effect of an increase in screening on the observed incidence is de-

tected and the estimate obtained with the SA model will correct downwards the

estimate obtained with the NS model. This is the case for the periods before

2003 and between 2013 and 2015.
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Figure 6: Screening adjusted breast cancer incidence trend in red, unadjusted
trend in blue, observed incidence in points, and effects explained by the changes
in mean stage (induced by screening changes) in orange (centered). There have
been more screening in the years leading 2005, a stabilization in the years leading
2006-2013 and an increase in the years before 2014-2016.
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6 Discussion

The present study proposes a new method to correct the observed cancer inci-

dence to take into account changes in cancer detection and thus provide an esti-

mate of the incidence evolution that would have been observed if such changes

had not taken place. Unlike previous studies in this field, which make very

strong assumptions about the evolution of a certain cancer from one stage to

another until detection [2][4] and which are based on knowledge of the evolution

over time of the frequency of screening at the population level [6], our model is

based on the simple assumption that, in the absence of changes in detection, the

distribution of stages detected for a certain cancer will remain approximately

constant. Consequently, any change in the distribution of stages, with for ex-

ample a higher proportion of low-level stages, can be interpreted as an effect

of a change in detection, for example an increment in practices due to a new

screening policy. This hypothesis is supported by a series of studies that have

demonstrated the link between screening and stage distribution [8, 9]. We have

thus incorporated the observed changes in the stage distribution, more partic-

ularly changes in the mean stage, into a classical log-linear model of cancer

incidence as a function of time [20, 21], thus adjusting the incidence estimate

for changes in cancer detection (SA model).

In a simulation study considering several scenarios of incidence evolution over

time and introduction of screening changes, our model was able to approach the

theoretical incidence in the absence of screening changes and thus correct a large

part of the bias of the classical estimation, which is highly impacted by these

changes, while presenting a performance identical to that of the classical model

when no screening changes are introduced in the simulation. On real registry

data on breast cancer incidence in the Swiss canton of Geneva, our model cor-

rected for some phases of increased incidence, interpreting them as temporary

effects of an increment in screening during the preceding years . The evolution

of screening over time in a given context is far from being easily identifiable. In
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addition to more or less continuous improvements in screening techniques and

policy changes leading to progressive changes in the use of screening, one can

also expect random fluctuations due to opportunistic cancer detections or other

random variations in the detection process. We believe that our model, without

directly considering screening frequencies over time, but simply the evolution of

the mean stage among detected cases, is able to smooth out such random fluctu-

ations, thus allowing a more accurate estimation and more robust interpretation

of the underlying trend.

The methodology proposed in this paper has also some limitations. The first

is to describe the entire cancer stage distribution by its mean. Although the

latter is a natural choice when one does not wish to multiply the number of

parameters, this simplification leads to some loss of information responsible for

the (small) residual bias in our model. A second limitation is that we implicitly

assume that increasing screening has no impact on the underlying incidence.

This is not true for some cancers when screening detects precancerous lesions

and thus prevents the development of a cancer, which is notably the case for

colon cancer. Our model does not apply to these situations. A third limitation

is related to the availability and quality of registry data, which may limit the

applicability of our model. Indeed, the SA model requires that information on

stage distribution is available for several periods and that the missing stage re-

mains relatively constant over the periods considered for analysis. In practice,

it is often observed that the percentage of missing stages decreases sharply over

time, which may result in difficulties in using cancer stages. In addition, the

completeness and quality of cancer stage registration may vary over time and

across regions and countries. Thus, the application of the SA model may be

limited to certain cancer sites or populations for which cancer stage registra-

tion is of sufficient quality. However, it should be noted that over time, the

completeness and quality of cancer stage registration is very likely to improve,

allowing the model to be used for a greater number of cancer sites. Longer and
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high-quality incidence series will also allow for a more accurate formulation of

the model by introducing the entire stage distribution (through compositional

data) instead of its mean.

Despite these limitations, our results suggest that the SA model can be a useful

tool for adjusting for the effects of screening in cancer incidence data and can

be a valuable addition to the toolkit of cancer researchers and epidemiologists.

Its use can help improve our understanding of cancer incidence trends, aid in

projections of these trends, and help public health policies be more effective.
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Elferink, Sonja Tomšič, Tina Žagar, Arantza Lopez de Munain Mar-
ques, Rafael Marcos-Gragera, Montse Puigdemont, Jaume Galceran, Marià
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