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A multi-scale probabilistic atlas of 
the human connectome
Yasser Alemán-Gómez1,2,11 ✉, Alessandra Griffa   3,4,5,11, Jean-Christophe Houde   6,  
Elena Najdenovska   7,8,9, Stefano Magon10, Meritxell Bach Cuadra   7,8,9, 
Maxime Descoteaux6,12 & Patric Hagmann1,12

The human brain is a complex system that can be efficiently represented as a network of structural 
connectivity. Many imaging studies would benefit from such network information, which is not always 
available. In this work, we present a whole-brain multi-scale structural connectome atlas. This tool has 
been derived from a cohort of 66 healthy subjects imaged with optimal technology in the setting of the 
Human Connectome Project. From these data we created, using extensively validated diffusion-data 
processing, tractography and gray-matter parcellation tools, a multi-scale probabilistic atlas of the 
human connectome. In addition, we provide user-friendly and accessible code to match this atlas to 
individual brain imaging data to extract connection-specific quantitative information. This can be used 
to associate individual imaging findings, such as focal white-matter lesions or regional alterations, to 
specific connections and brain circuits. Accordingly, network-level consequences of regional changes 
can be analyzed even in absence of diffusion and tractography data. This method is expected to broaden 
the accessibility and lower the yield for connectome research.

Background & Summary
The human brain is a complex system that can be efficiently represented as a network of gray matter (GM) 
regions interconnected by white-matter (WM) bundles1–3, named the human connectome. This network rep-
resentation proved to be relevant in many fields of cognitive and clinical neuroscience4–6. Cognitive processes 
rely on the dynamic interaction between interconnected elements in neuronal networks, and so can cognitive 
and behavioral impairments as well as pathologic processes be explained by general or specific network fail-
ures7,8. Accordingly, following the current trend of network neuroscience, the knowledge and characterization 
of the connectome underlying brain processes is essential.

Since the first connectome formulations1–3, major progress has been achieved in the field of MRI data acquisi-
tion, post-processing, and validation9–12. It remains that proper, high quality connectomics is demanding in terms 
of equipment and expertise. Also, there is a large body of neuroimaging experiments and data that have been 
or will be collected that are not primarily dedicated to, or are technically not suited for, connectomics analysis,  
but that would potentially benefit from a network-oriented and/or connection-specific analysis a posteriori.

The advent of diffusion weighted imaging (DWI) and DWI-based tractography has opened new perspec-
tives on the study of WM neuroanatomy, enabling the delineation of individual fiber tracts. Diffusion MRI 
data can be aggregated across multiple subjects to construct both DWI-based templates and WM parcella-
tions. The development of DWI-based templates relies on suitable co-registration algorithms to match local 
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diffusion orientation information across subjects. While different multi-step co-registration procedures have 
been proposed, including linear13,14, nonlinear15,16 and/or diffeomorphic17–19 transformations, this operation 
remains particularly challenging given the high dimensionality of diffusion information and could lead to loss of 
inter-subject variability at the voxel level20,21. Furthermore, diffusion tensor imaging (DTI) has been used for the 
development of several diffusion-based templates22, and few High Angular Resolution Diffusion Imaging- and 
Diffusion Spectrum Imaging-based templates17–19,21,23,24 have been proposed. With its Gaussian assumption, DTI 
limits accuracy in crossing fiber areas compared to more advanced DWI techniques.

Diffusion templates can be input to tractography algorithms to delineate WM trajectories and build WM 
parcellations14,18,24 or connectivity atlases25. Alternatively, tractography can be run at the subject level to create 
representative statistical maps of major tracts over a population, providing additional probabilistic informa-
tion26–29. In general, specific tract delineation is achieved by filtering the whole-brain tractograms with selected 
regions of interest, even though voxel-to-voxel connectivity30 and clustering techniques18 have been proposed. 
These approaches often deliver well-known WM bundles (e.g., cortico-spinal tract, fornix, etc.27,31) or specific 
brain subnetworks selected on the basis of anatomical or functional information (e.g., cerebellar connectivity, 
sensorimotor network, etc.21,26,32–34) and may exclude valid connections that are poorly described in literature. 
Atlases based on specific tracts’ filtering enable “virtual dissections” of WM architecture35 but are not specifi-
cally tuned to connectomics research which relies on complete, whole-brain network information. Conversely, 
whole-brain connectivity atlases such as the Brainnetome36, the connectome IIT Human Brain Atlas25 or the 
population-averaged atlas18 provide structural connectivity information between all GM regions in the brain.

With the present work, we intend to deliver a multi-scale connectivity atlas named 'MultiConn' that pro-
vides population-level whole-brain connectomics information and statistics and allows to perform customized 
connectomics analyses with any brain imaging data (without the need for diffusion MRI per se). To this end, 
we develop a probabilistic multi-scale atlas of the human brain connectome that is derived from a cohort of 
normal adults from the Human Connectome Project (HCP)37. The atlas is referenced in standard MNI (Montreal 
Neurological Institute) space with a high-resolution T1-weighted image. Accordingly, multimodal brain images 
can be aligned to the atlas, and individual connectivity matrices can be computed and put in relation with 
clinical or cognitive features. The atlas and its associated open-source code enables the interested user to eas-
ily perform several kinds of brain connectivity analysis even in absence of DWI and tractography data. These 
include (but are not limited to) atlas-based network analysis of quantitative T1-weighted or Magnetization 
Transfer Imaging volumes, with generation of multi-contrast scalar-weighted networks; assessment of WM 
lesion load-such as inflammatory lesions in multiple sclerosis patients or cerebrovascular WM changes in older 
adults-onto whole-brain connections or specific brain subnetworks (‘dysconnectome’ analyses); quantitative 
(scalar-based) analysis of bundles that intersect multiple regions of interest. Notably, the atlas allows to easily 
project alterations of the WM to specific brain connections and understand their impact onto specific cortical 
and subcortical structures or brain circuits.

Compared to previous approaches, the strengths of the connectome atlas proposed in this work rely on: (i) 
A focus on whole-brain WM connectivity for network-oriented analyses, in contrast to specific tracts or circuits 
known from literature26,31,32; (ii) A multi-scale assessment of brain connectivity: compared to other whole-brain 
atlases based on single-scale GM parcellations (e.g., Brainnetome36, IIT Human Brain Atlas25), the MultiConn 
allows to retrieve subject-specific connectivity matrices across four scales of investigation including 95 to 473 GM 
regions of interest, thus enabling connectivity analyses at different granularities referenced to a well-established 
anatomical parcellation (scale 1 corresponds to the Desikan-Killiany parcellation38 and integrates subcortical 
and thalamic structures39); (iii) A particular attention to connectivity estimation techniques: the MultiConn 
atlas implements extensively validated methods aimed at reducing biases such as crossing fiber artefacts (present 
in tensor-based atlases40) and gyral termination biases41. To this end, the MultiConn implements Constrained 
Spherical Deconvolution42 combined with anatomically constrained Particle Filtering Tractography seeded at the 
GM-WM interface and automatic streamline outliers’ rejection which, together, reduce shape, length, volume, 
and gyral termination biases of the reconstructed connections43. All methods used to construct the MultiConn 
atlas are shared as open-source code. (iv) Straightforward accessibility to single-connection probabilistic maps, 
ease of usage and flexibility: We share hundreds-of-thousands probabilistic WM bundles in a convenient and 
memory-efficient way through the Hierarchical Data Format (HDF5). Open-source, Python-based software is 
provided to apply the atlas within different research scopes, including multimodal connectome analysis, group- 
or individual-to-group comparison, and estimation of WM lesions’ impact on the connectome. We note that, 
besides the MultiConn, a few whole-brain connectivity atlases exist that allow to perform customized connec-
tomics analyses18,25,36. These atlases differ in terms of GM parcellations, methodological approaches to atlas con-
struction, and type and format of shared data and software. Future work is encouraged to compare whole-brain 
connectivity atlases-including the MultiConn-in terms of connectivity analyses’ outcome and applicability.

In this manuscript, we detail the technical development to construct the MultiConn atlas and describe 
several technical validations, including the application of the atlas to an external dataset. Our development 
is intended to support the broadest community of fundamental and clinical neuroscientists in performing 
high-end connectomics research.

Methods
Processing pipeline for the human connectome atlas.  The technical pipeline for the construction 
of the human connectome atlas is graphically summarized in Fig. 1. Briefly, each subject T1-weighted brain 
volume was segmented according to a four-scale GM parcellation44,45 (including a diffusion-based segmentation 
of thalamic nuclei39) for which the multi-scale atlas is available. Robust estimation of individual white matter 
bundles between pairs of GM regions was achieved from diffusion weighted imaging using constrained spherical 
deconvolution (CSD)42,46 and anatomically-constrained Particle Filtering Tractography (PFT)43 seeded from the 
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GM-WM interface. The resulting PFT tractogram was carefully dissected in individual white matter bundles 
connecting pairs of gray matter regions.

T1-weighted (T1w) and T2-weighted (T2w) images were aligned to MNI space (ICBM 2009c Nonlinear 
Asymmetric 1 × 1 × 1 mm47) using a multimodal spatial registration framework48 and the resulting affine and 
nonlinear spatial transformations were applied to each scale-specific native WM bundle to map them to this 
stereotactic space. Finally, the individual bundles in MNI space were averaged across the subjects to build the 
scale-specific WM bundles’ spatial probabilistic anatomical maps. All these methodological steps are described 
in detail in the following sections and are available in public scripts.

MRI acquisition.  Atlas dataset.  From the one hundred unrelated subjects of the HCP dataset (U100), 
only the subjects belonging to the releases Q1, Q2 and Q312,37 were selected, for a total of seventy subjects. 
From this cohort, four subjects were discarded because of different technical reasons. For three of them, the 
thalamic clustering failed to provide the expected segmentation pattern and for one the spatial alignment, 

Fig. 1  Processing workflow to create the multiscale probabilistic atlas of the white matter (MultiConn). (a) 
Processing steps applied to each subject. (b) Spatial probability map for a bundle in each of the scales. (c) Atlas-
based connectomes computed using the developed multi-scale atlas.
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obtained by the registration of the streamlines to MNI space, was not accurate. Thus T1w, T2w and DWI of a 
final cohort of 66 healthy subjects (age range 22 to 36 yo, 29 males) were used to build the publicly available, 
probabilistic multi-scale atlas of the human connectome. Each subject was scanned on a Siemens 3 T Skyra 
scanner in Washington University or University of Minnesota. T1w sagittal images were acquired using a 
Magnetization-Prepared Rapid Acquisition Gradient Echo (MPRAGE) sequence with 3D inversion recovery, 
echo time (TE) = 2.14 ms, repetition time (TR) = 2400 ms, inversion time (IT) = 1000 ms, flip angle (FA) = 8°, 
Bandwidth (BW) = 210 Hz per pixel, echo spacing (ES) = 7.6 ms, gradient strength = 42 mT/m, field of view 
(FOV) = 180 × 224 × 224 mm3, voxel size = 0.7 × 0.7 × 0.7 mm3 and acquisition time 7 min 40 s. T2w sagittal 
images were acquired using 3D T2 Sampling Perfection with Application-optimized Contrast by using flip angle 
Evolution (SPACE) sequence with TE  = 565 ms, TR = 3200 ms, BW = 744 Hz per pixel, ES = 3.53 ms, turbo 
factor = 314, FOV = 180 × 224 × 224 mm3, voxel size = 0.7 × 0.7 × 0.7  mm3 and acquisition time 8 min 24 s. 
Multi-slice echo planar imaging (EPI) with multi-band (MB) excitation and multiple receivers were acquired 
with TE = 289.5 ms, repetition time TR = 5520 ms, FA = 78°, refocusing flip angle (rFA) = 160°, BW = 1488 Hz 
per pixel, multiband factor = 3, ES = 0.78 ms, gradient strength = 100 mT/m, FOV = 210 × 180 × 138  mm3, 
voxel size = 1.25 × 1.25 × 1.25 mm3 and b-values = 0, 1000, 2000 and 3000 s/mm2. Each gradient table includes 
approximately 90 diffusion–weighted directions plus 6 b0 acquisitions interspersed in each run. The acquisition 
time was around 63 min. More details about the MRI acquisition protocols are described in Van Essen et al.37.

Image processing steps for building the WM atlas.  Gray matter parcellationAlongside the native T1w and T2w 
images, the HCP database also provides the FreeSurfer (v5.3.0) outputs computed by an optimized processing 
pipeline49. These outputs contain the cortical surfaces (pial and white), the cortical maps (thickness and curva-
ture), and a parcellation of the cortical surfaces containing 34 regions for each hemisphere based on the atlas 
developed by Desikan et al.38. This cortical parcellation corresponds to the first scale of the multiscale cortical 
parcellation methodology developed by Cammoun and colleagues44.

According to the latter method, each region of the right hemisphere of the Desikan cortical parcellation 
(scale 1) was subdivided in sub-regions with uniform surface area of 1.5cm2 approximately, representing the 
finest parcellation (scale 5) of the pial surface in stereotactic space (FreeSurfer fsaverage space). Then, scales 
4, 3 and 2 were obtained by a successive grouping of neighboring regions at the next higher resolution scale. 
Scale 5 was discarded for the atlas construction because of higher spatial-location variability of individual fiber 
bundles in MNI space compared to the other four scales. At scale 5, parcels are small and robust connectivity 
estimation is challenging50. The cortical parcellations of the right hemisphere for the remaining scales (2, 3 
and 4) were then mapped onto the left pial surface in order to obtain a symmetric organization of the cortical 
regions. The boundaries of the projected parcellation for scale 1 were aligned to the boundaries of the original 
left cortical parcellation obtained by Desikan et al.38. Finally, the resulting transformation was applied to the 
projected parcellations of scales 2, 3 and 4 to create the symmetric multi-scale cortical parcellation. At the end 
of the process, four parcellations comprising 68, 114, 216 and 446 cortical regions, respectively, were mapped to 
each subject-specific space to obtain both the individual multi-scale surface-based cortical segmentation and 
the corresponding volumetric parcellation of the cortex (see Fig. 1a). In order to get tractography termination 
masks suitable for the connectomes’ construction, the cortical gray matter regions were dilated toward the WM 
with a radius of 2 mm.

The volumetric parcellations were complemented with bilateral segmentations of different subcortical 
structures and the brainstem. The subcortical structures, including the striatal structures (caudate nucleus, 
putamen and nucleus accumbens), globus pallidum, amygdala, thalamus and hippocampus, and brainstem were 
obtained from FreeSurfer45. Additionally, each individual thalamus was subdivided into seven different nuclei 
using the framework proposed by Battistella et al.39. This approach employs the orientation distribution func-
tions (ODFs) computed from the DWIs to subdivide each thalamus into seven thalamic nuclei: ventral anterior, 
mediodorsal, lateral posterior-ventral posterior group, pulvinar medial-centrolateral group, ventrolateral, ventral 
posterior-ventrolateral group. Eventually, the resulting multi-scale parcellation contained 95, 141, 243 and 473 
gray matter regions which were used as seed regions in the tractography process.

The individual T1w images were also segmented using FAST to obtain a partial volume estimation (PVE) of 
the three tissue classes GM, WM and cerebrospinal fluid (CSF)51.

Tractogram reconstruction.  The DWIs provided by the HCP were already preprocessed by a pipeline including 
the following correction steps49: intensity normalization, head motion correction (with gradient table rotation), 
eddy current and distortion corrections.

The native multi-scale GM parcellation and the tissue segmentation images were interpolated to the 
subject-specific diffusion space using nearest neighbor as interpolation method.

The corrected DWI of each subject was employed to fit a second order tensor for each voxel and compute 
voxel-wise scalar maps (FA: Fractional anisotropy and MD: Mean diffusivity) using Dipy52. The diffusion tensor 
was estimated with a weighted least-squares fitting using only the data corresponding to the lowest b-value shell 
(i.e., b = 1000 s/mm²)53.

The corrected DWIs were also used to estimate the intravoxel fiber orientation distribution function 
(fODF) by using the Constrained Spherical Deconvolution (CSD)42 approach implemented in Dipy. A sin-
gle fiber response function was fixed for all subjects to [15, 4, 4] × 10−4 s/mm2, as recommended in54,55; a 
maximal spherical harmonics order of 8 and all b-value DWI data were used. The fODFs were input to the 
anatomically-constrained Particle Filtering Tractography algorithm43 to obtain the individual tractograms 
where 30 tractography seeds per voxel of the GM-WM interface from the PVE maps were selected. The script to 
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perform the fiber tracking (hcp_script_connectome_atlas_scilpy.sh) is included in the online repository (https://
github.com/connectomicslab/probconnatlas).

The PFT approach reduces length, shape and volume biases of reconstructed connections, it is robust to 
partial volume effects between GM, WM and CSF, and it ensures that streamlines stop at cortical or subcortical 
GM regions43. Only streamlines of length between 20 and 200 mm were kept, which resulted in whole-brain 
tractograms of approximately 2.5 M compressed streamlines (~500 Mb), depending on the brain size and num-
ber of voxels belonging to the GM-WM interface. The streamlines’ compression was done according to the com-
pression pipeline proposed by Presseau and colleagues56 and implemented in scilpy (https://github.com/scilus/
scilpy) with a maximum error of 0.2 mm57,58.

Connectivity estimation and white matter bundles extraction.  An in-house connectivity tool was developed 
to carefully dissect the full PFT tractogram in all combinations of WM bundles based on the dilated multiscale 
parcellations. Firstly, the PFT tractogram of each subject was filtered (see Supplementary material, Supp 1) to 
extract the WM bundle Ck,i,j between each pair of GM regions (i, j) at parcellation scale k (see Fig. 1a). This step 
requires a careful definition of streamline cutting and termination rules and outlier rejection to provide ana-
tomically meaningful WM bundles. Secondly, the streamlines from the WM bundle Ck,i,j considered as outliers 
(streamlines taking anatomically implausible paths) were automatically removed from the final bundle Ck,i,j 
using an algorithm that identifies streamlines creating loops (i.e., winding more than 360 degrees). Outliers are 
then detected using a hierarchical clustering approach based on QuickBundles57,59 with a tree-length threshold 
of 0.260.

For each scale, the filtered WM bundles between each pair of GM regions were individually saved and used 
to build the WM atlas. Besides, individual connectivity matrices were also computed, where weights represent 
the number of streamlines (NOS) belonging to the bundle connecting each pair of regions.
Atlas constructionIndividual T1w and T2w images were nonlinearly warped to their respective reference tem-
plates in MNI space using the multimodal registration approach implemented in Advanced Normalization 
Tools (ANTs)61. The T1w and T2w ICBM 152 brain templates (ICBM 2009c, 1 mm isotropic voxel size, nonlin-
ear, asymmetric47) were used as reference images. The spatial geometric transformations were applied to map 
individual WM bundles to MNI space using the ANTs antsApplyTransformsToPoints subroutine (see Fig. 1a). 
High-resolution volumetric tract density images (TDI)62 containing the number of streamlines passing through 
each voxel were computed for each scale, bundle, and subject. By averaging individual TDIs across subjects, two 
different images were obtained for each WM bundle at each scale: (1) the mean TDI image, and (2) the spatial 
probabilistic anatomical map (SPAM) of the bundle. Each bundle’s SPAM was computed by binarizing the indi-
vidual TDIs (lower threshold equal to one streamline), summing the resulting individual bundle masks across 
the subjects, and dividing the value of each voxel by the number of subjects (66 in this case). These maps (one 
for each brain connection, at different scales) are voxel-wise inter-subject consistency maps which represent the 
probability that a given voxel is traversed by at least one streamline of the considered connection (Fig. 1b). A 
voxel-wise probability threshold can be set by the user of the atlas to exclude low-probability voxels.

The final list of bundles included in the atlas for each scale was defined by setting an inter-subject con-
sistency threshold representing how many subjects have a non-zero fiber count between a given pair of brain 
regions. The thresholding was implemented using the methodology proposed by Betzel et al.63, which creates 
a group-representative network by discarding the connections that are not present in a minimum percentage 
of subjects (consistency threshold) while separately preserving the connectivity density and geodesic length 
of intra- and inter-hemispheric connections. To this end, a length matrix was computed, where each entry is 
the mean geodesic length of the streamlines connecting a regions’ pair. This thresholding approach guarantees 
that the resulting atlas-based connectivity matrices have connectivity density similar to the ones of individual 
subjects, while correcting for possible length-biases linked to the tractography algorithms64. The final numbers 
of bundles included in the atlas are 4222, 9232, 26502 and 89840 for scales 1, 2, 3 and 4 (Figure S1), which corre-
spond to whole-brain connectivity densities of 94.5, 93.5, 90.3 and 80.5%, respectively.

1Different views of the resulting probabilistic white matter atlas for the four scales are presented in Fig. 2. 
The bundles are represented in different colors, and the intensity of the color in single voxels is proportional to 
the voxel probability (across the subjects) of belonging to each bundle. Regions with blurred or mixed colors 
are regions containing the intersection or spatial confluence of multiple fiber bundles. This effect can be clearly 
observed in the corpus callosum (Fig. 2, sagittal views). We note that, due to the high anatomical variabil-
ity among subjects, the spatial reliability of the registration algorithm is lower in juxtacortical regions com-
pared to deep white matter regions. Registration inaccuracies can increase spatial uncertainty and decrease the 
inter-subject voxel probability of belonging to each bundle.

Finally, a set of Python-based functions complements the atlas and facilitates the computation of 
connection-specific scalar values from different image contrasts (e.g., DWI-scalar, quantitative T1, quantita-
tive T2, etc.), allowing (cross-modal) connectomics analyses in the absence of tractography data. The function 
that applies the atlas to custom datasets allows the user to tune the voxel-wise probability threshold and the 
inter-subject consistency threshold, which represent the only two free-parameters of the atlas (see Technical 
Validation and Supplementary material, Supp 5 for suggested parameters’ choice).

Data Records
A summary of the data records related to this study is given in Table 1.

Data records as a contribution.  The main contribution of the presented work is a single data record con-
taining different files with different file formats.

https://doi.org/10.1038/s41597-022-01624-8
https://github.com/connectomicslab/probconnatlas
https://github.com/connectomicslab/probconnatlas
https://github.com/scilus/scilpy
https://github.com/scilus/scilpy


6Scientific Data |           (2022) 9:516  | https://doi.org/10.1038/s41597-022-01624-8

www.nature.com/scientificdatawww.nature.com/scientificdata/

HDF5 files.  The developed multi-scale atlas is presented in four Hierarchical Data Format (HDF5) files (.h5 
extension), each one containing the probabilistic white matter bundles for one of the four connectivity scales. 
As summarized in Table 2, each HDF5 file contains three different groups of datasets: (1) header, (2) matrices 
and (3) atlas.

The header group contains the number of subjects employed to build the atlas and the required information 
to pass from the HDF5 format to Nifti-1 file format. This data is organized in different datasets: subjects: number 
of subjects; dim: image dimensions; voxsize: voxel dimensions; affine: position of the image array data in MNI 
space. The header group also contains scale-specific information about the gray matter regions employed to sep-
arate the bundles (gmregions, gmcodes, gmcolors and gmcoords: names, codes, RGB (red, green and blue) colors 
triplets and spatial coordinates in MNI space, respectively). This information is useful for visualization purposes 
and key to establish the relationship between the WM bundles and the real brain anatomy.

Fig. 2  Orthogonal views of the probabilistic multi-scale white matter bundles atlas. Only a subset of the bundles 
intercepting the selected planes are displayed. Different colors indicate different WM bundles and the intensity 
of the color represents the probability of the voxel to belong to that bundle. Note that, when a voxel contains 
multiple WM bundles, the colors are mixed, i.e., the final color of the voxel is a weighted average of the colors of 
the fiber bundles passing through it.
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The matrices group contains three relevant connectivity matrices computed from the subject’s sample used 
to create the multi-scale atlas: (1) consistency, (2) numbStlines and (3) length matrices. Each element of these 
matrices represents a connection between a pair of GM regions and contains: (1) the number of subjects for 
which at least one streamline was found to connect the two GM regions (consistency matrix); (2) the average 
number of connecting streamlines across subjects (numbStlines matrix); (3) the average geodesic length of the 
connecting streamlines across subjects (length matrix). The consistency and numbStlines matrices for each scale 
are displayed in the supplementary material (Figure S2).

Finally, the atlas group is composed of datasets, one for each WM bundle, which contain the coordinates and 
subject consistency (probabilistic information) of the voxels belonging to the bundle. Specifically, each dataset 
contains a Nx4 matrix where N is the number of voxels belonging to the bundle. The first three columns are the 
X, Y, Z voxel coordinates in MNI space. The fourth column is the ‘subject consistency’, i.e., the number of sub-
jects for which at least one streamline passes through the specific voxel. The names of these datasets are defined 
according to the codes of the GM regions connected by the bundle (e.g., 1_10: bundle connecting regions 1 and 
10).

Nifti-1 files.  In addition to the four HDF5 files, the following complementary images are provided: (1) a 3D 
Nifti-1 image containing the average number of streamlines passing through each voxel across subjects; (2) four 
3D Nifti-1 images (one per scale) with the number of bundles passing through each voxel across subjects; (3) 
four color-coded Nifti-1 images (one per scale) with colors uniquely representing different white matter bun-
dles. The latters are 4D volumetric Nifti-1 images where the fourth dimension represents the red, green and blue 
channels, respectively. For visualization purposes, the colors of the intra-hemispheric bundles are symmetric 
between hemispheres (see Fig. 2). These files, together with the MNI T1w template, can be opened with any 
available Nifti visualization tool such as FSLeyes, AFNI, or Micron.

The data record derived from this work is available through Zenodo65.

Original datasets used.  The used HCP data is provided by the Human Connectome Project, WU-Minn 
Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 
NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell 
Center for Systems Neuroscience at Washington University. All the participants provided written informed con-
sents. All participants provided written informed consents.

Dataset
Human Connectome Project  
(100 unrelated subjects)

Human Connectome Project 
(Test-Retest dataset)

Number of subjects 66 44

Gender (F/M) 38/28 31/13

Age range (years):

 • 22–25 7 4

 • 26–30 25 13

 • 31–36 33 27

 • >36 1

Release:

 • Q1 15 16

 • Q2 21 6

 • Q3 30 2

 • MEG2 5

 • S500 10

 • S900 4

 • S1200 1

Used modalities T1w, T2w and dMRI T1w and dMRI

Study type: Time between acquisitions 
(mean, [min, max]) days

Cross-sectional Longitudinal (2 acquisitions) 
135.15 [18, 328]—

Experimental usage Building the atlas Technical validation of the atlas

Provided output
Probabilistic multi-scale WM 
bundle atlas and a scale-specific 
color-coded 4D image of the WM 
bundles atlas

—

Provenance refer to https://db.humanconnectome.org

Available from https://db.humanconnectome.org

Table 1.  Demographic information of the subjects and summary of the data records related to this work.
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Technical Validation
Evaluation dataset.  To assess the validity of the connectome atlas with respect to its application to user-spe-
cific imaging data, we characterized the differences appearing when segmenting the WM bundles of an inde-
pendent dataset with the developed atlas compared to a tracking-based parcellation. To this end, an independent 
cohort of 44 healthy subjects from the HCP Test-Retest dataset (44 subjects with baseline and follow-up acquisi-
tions) with T1w, T2w and DWI data was selected. These subjects were scanned with the same acquisition protocol 
as the subjects employed to build the probabilistic WM atlas but none of them was used to construct the atlas.

The original and the evaluation datasets are freely available at https://db.humanconnectome.org. The IDs of 
all the subjects, their age and gender are provided in two comma separated files (.csv) stored in the same Zenodo 
repository as the developed atlas65.

Connectivity estimation.  For each subject, and both baseline and follow-up MRI acquisitions, the indi-
vidual WM bundles were parcellated using both the connectome atlas and a tracking-based segmentation. 
The tracking-based segmentation was performed by using two different fiber tracking approaches: (1) SD_
STREAM (Streamlines by using Spherical Deconvolution)66 and (2) iFOD2 (Second-order Integration over Fiber 
Orientation Distributions). These two approaches were selected to evaluate the impact of using deterministic 
(SD_STREAM) or probabilistic (iFOD2) tractography on the comparison with the atlas-based segmentation (see 
Supplementary material, Supp 2).

Both tracking-based segmentation approaches were performed using the Connectome Mapper 3 (CMP3) 
image processing suite (https://connectome-mapper-3.readthedocs.io/en/latest/). The methods described in 
previous sections were employed to obtain the multiscale GM parcellations, the intravoxel fODFs and the dif-
fusion tensors with their corresponding scalar maps. The resulting fODFs were input to both fiber tracking 
algorithms to obtain the streamlines distribution. Finally, the multi-scale structural connectivity matrices were 
computed. The connection strength between each pair of GM regions was quantified as the number of stream-
lines connecting the regions. In addition, for each scalar map (FA map in this case), the connection strength was 
also quantified as the mean scalar value along the bundle connecting each pair of GM regions (Supplementary 
material, Supp 1).

The atlas-based segmentation was obtained by segmenting each T1w image in three different tissue classes 
(GM, WM and CSF) and non-linearly registering the T1w to MNI space using ANTs. The resulting spatial trans-
formation was then applied to map the individual FA images to MNI space. Finally, four structural connectivity 
matrices (one per scale) weighted by the mean FA along each bundle were obtained using the developed multi-scale 
connectome atlas. These operations can be performed using the set of Python tools shared with the atlas (https://
github.com/connectomicslab/probconnatlas). The individual atlas-based FA matrices for all the scales were cre-
ated using an inter-subject consistency threshold equal to 30% and a voxel-wise probability threshold of 0.3. This 
parameters’ combination results in the highest correlation between the atlas-based and the tracking-based FA 
matrices and is therefore suggested for user-specific atlas usages (Supplementary material, Supp 5).

Evaluation: cortical coverage of the developed atlas.  The individual WM volumes of the 44 HCP 
subjects were parcellated using both the developed atlas and the tracking-based methods. Then, different metrics 
and tests were proposed to assess, qualitatively and quantitatively, the accuracy and reproducibility of the connec-
tivity matrices obtained using the atlas-based approach in comparison to the tracking-based approaches.

HDF5 Group HDF5 Dataset Description

header (8 datasets)

nsubjects number of subjects used to build the atlal (nsubjects = 66)

dim image dimensions

voxsize voxel size (mm)

affine position of the image array data in MNI space

gmregions anatomical labels of GM regions

gmcodes numerical IDs of GM regions

gmcolors RGB colors of GM regions

gmcoords spatial coordinates in MNI space of GM region centroids

matrices (3 datasets)

consistency NGM × NGM matrix reporting the number of subjects having at least one streamline for each specific 
brain connection

numbStlines NGM × NGM matrix reporting the average number of streamlines across subjects for each specific 
brain connection

length NGM × NGM matrix reporting the average streamlines’ length across subjects for each specific brain 
connection

atlas (Nbundle datasets) a_b
Na_b × 4 matrix, with Na_b number of voxels in the specific bundle connecting GM regions a and b. 
The first three column are the voxel X,Y,Z coordinate in MNI space; the fourth column is the subject 
consistency (bundle’s probabilistic information)

Table 2.  Content and internal organization of the HDF5 atlas files. There is one HDF5 file per connectivity 
scale. RGB = red, green, blue; GM = gray matter; NGM = number of gray matter regions (95, 141, 243 and 473 for 
scales 1 to 4, respectively); Nbundle = number of bundles (brian connections) reconstructed for a given atlas scale 
(4222, 9232, 26502 and 89840 for scales 1 to 4, respectively).
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The number of bundles reaching each vertex of the white-gray matter interface (white surface) was calcu-
lated to evaluate the cortical coverage of the white matter connections. The coverage was also assessed for gyral 
and sulcal regions separately to detect possible biases in the tracking method to reach both cortical regions. 
To this end, the individual cortical white surfaces of the 44 test-retest subjects were parcellated into gyri and 
sulci by thresholding the curvature values provided by FreeSurfer. The curvature threshold was set to 0, which 

Fig. 3  Cortical coverage of the scale 1 of the atlas projected onto a single subject surface. The cortical coverage 
is represented by the total number of bundles reaching each point of the gray-white matter interface. (a) The 
results are displayed over the inflated surface using a logarithmic scale to enhance the visualization in sulcal 
regions and vertices with low number of bundles. The cortical regions belonging to sulcal areas are outlined in 
the figure. (b) Histogram of the number bundles along the cortex for each scale. The histograms are presented 
for three different regions of interest: the whole cortical surface, the gyral regions and the sulcal basins. Note: 
The cortical coverage for the rest of the scales are shown in the supplementary material (Figures S3, S4 and S5).
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corresponds to the surface point-of-inflexion between gyri and sulci. This is the point where the cortical surface 
shifts from convex to concave or vice versa.

The cortical coverage of the developed atlas can be appreciated in Fig. 3 (but see also Supplementary mate-
rial, Supp 4). The cortical projection of all the bundles onto the individual cortical surface of a subject of the 
test-retest dataset is depicted in Fig. 3a. The number of bundles reaching the sulcal regions is higher than the 
ones reaching the gyral regions. This effect is presented in Fig. 3b for all the scales. In some cases, the number 
of bundles reaching the sulcal basins is the double of the ones reaching the gyral regions (scale 4, gyri: µ = 301, 
sulci: µ = 615). This difference can be mainly explained by two factors: (1) the gyral termination bias inherent to 
tractography algorithms (although the PFT minimizes this bias)67, and (2) the decreased reliability of registra-
tion algorithms in juxtacortical regions68. Despite these factors, a dense spatial coverage of all cortical regions in 
all the scales is achieved, supporting the validity of the connectome atlas and its usage to compute accurate and 
meaningful scalar-weighted connectivity matrices. Each cortical area is reached by at least one atlas bundle at 
the resolution of the cortical-surface sampling, i.e., each cortical vertex is reached by a meaningful number of 
streamlines (Figures S6 and S7).

Evaluation: reproducibility.  The percentage of change in the connection-specific FA values between the 
test and retest acquisitions, segmented with both the connectome atlas or the tracking-based approaches, was 

Fig. 4  Mean FA matrices for both acquisitions and the percentage of difference between them obtained using 
tracking-based and atlas-based approaches for scale 1. (a) and (c) Mean connectivity matrices computed 
using two different fiber tracking approaches: 1) deterministic (SD_Stream) and 2) probabilistic (iFOD2). 
(e) Mean connectivity matrices obtained using the atlas-based approach. These matrices were computed for 
both acquisition and the connection strength between each pair of regions is given by the mean FA value 
along the bundle connecting them. (b), (d) and (f) Histograms of the percentage of difference between the 
connectivity matrices computed for both acquisitions. Notes: Individual tractography-based matrices were 
masked by the binary structure of the common edges, i.e., the connections present in both test and retest data 
(84.71% and 89.26% connections, respectively). Similar graphs for the rest of the scales can be consulted in the 
supplementary material (Figures S9, S10 and S11).
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obtained. This metric was calculated for each connection (i, j) and each scale k of the individual connectivity 
matrices (subject s) according to the following expression:

perCh k i j
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The mean connectivity matrices for scale 1 for both acquisitions, obtained using the atlas-based and the 
tracking-based approaches, are presented at Fig. 4a,c,e. Gray regions represent missing connections. Histograms 
of percentage change are displayed in Fig. 4b,d,f. Note that for tracking-based results (Fig. 4b,d), only common 
edges (i.e., edges present in both test and retest data) were used to generate the histograms of percentage change.

In general, the atlas-based connectivity matrices show spatial patterns similar to the ones obtained using the 
tracking-based approaches. The differences observed between the test and retest acquisitions were similar for 
the tracking-based and the atlas-based approaches (relative change <1.5%). The atlas-based matrices presented 
lower variability in the test-retest percentage change (percentage change standard deviation across connections 
σ = 8.76), compared to deterministic (σ = 14.04) and probabilistic (σ = 12.20) tracking-based approaches.

On one hand, tractography algorithms are known to be sensitive to experimental parameters, partial volume 
effects, noise, head size, and crossing fibers, and they are likely to produce a significant number of false connec-
tions because of streamline propagation errors69. For this reason, any quantitative metric based on fiber-tracking 
inherits these sources of variability which indirectly impact the test-retest reliability of results. Although we 
applied a tractography filtering approach to mitigate tractography biases (Supplementary material, Supp 1), 
the integration of latest developments such as Convex Optimization Modeling for Microstructure Informed 
Tractography (COMMIT270)) among others71, could further improve connectome mapping. On the other hand, 
the atlas-based results are highly reproducible because the set of fiber bundles is selected a priori and assessed in 
the same way in both acquisitions. In this case, the registration algorithm and the voxel-wise probability thresh-
old are the main sources of variability in the obtained connectivity matrices. Poor registration results in inaccu-
rate placement of WM bundles and, therefore, in the selection of noisy voxels for the computation of mean FA 
values. Moreover, different voxel-wise probability thresholds lead to different spatial distributions of the same 
WM bundle, and thus to different sets of voxels for the computation of mean FA values.

Fig. 5  Bland-Altman plots displaying the bundles-wise FA differences between tracking-based and atlas-based 
approaches for the first scale of the developed multi-scale atlas. (a) and (b) Differences between deterministic 
tracking and atlas-based for both acquisitions of the test-retest dataset. (c) Differences in FA values between 
both acquisitions when using deterministic fiber tracking. (d) and (e) Differences between probabilistic 
tracking and atlas-based for both acquisitions of the test-retest dataset. (f) Difference in FA values between both 
acquisitions when using probabilistic fiber tracking. (g) FA differences between both acquisitions when using 
the atlas-based approach. Notes: LoA stands for level of agreements. The Bland-Altman plots for the scales 2, 3 
and 4 are presented in the supplementary material (Figures S12, S13 and S14). Colors represent the probability 
density of the sample estimated using the closest 900 points.
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Evaluation: Differences between tracking-based and atlas-based FA matrices.  Bland-Altman 
plots were created for each scale k and both test and retest acquisitions to evaluate the agreement between 
atlas-based and tracking-based approaches to generate FA-weighted structural connectivity matrices. Concretely, 
two types of plots were created: (1) the mean FA along the atlas bundles were compared to the mean FA along the 
bundles obtained using either deterministic or probabilistic fiber tracking, to determine their similarity and the 
validity of the atlas-based approach. These analyses were independently performed for both test and retest data. 
(2) The test-retest FA values obtained by using the atlas-based and the tracking-based approaches were compared 
to assess the methods’ test-retest reproducibility.

The results of these analyses depicted negligible differences between methodologies (see Fig. 5). In all cases, 
the atlas-based mean FA values were lower than the one obtained using fiber tracking. This is related to the 
decreased reliability of registration algorithms in juxtacortical regions due to inter-subject anatomical varia-
bility. Locally poor registration causes juxtacortical voxels (with lower FA values compared to deep WM) to be 
taken into account for the computation of the mean FA along the bundle, thus decreasing the mean FA of the 
bundle itself.

For all scales, the level of agreement of FA values was higher for the inter-methods comparisons 
(tracking-based vs atlas-based) than for the intra-method comparisons (test vs retest). The agreement obtained 
for scale 4 was lower than the one obtained for the other scales.

Evaluation: Correlation between tracking-based and atlas-based FA matrices.  To complement 
the technical validation, various correlation analyses were performed between the connection-wise FA values 
obtained with the atlas-based and the tracking-based approaches. In all these analyses, the values from all the 
individual matrices were vectorized and concatenated, and two different correlation coefficients were computed.

Firstly, Pearson’s correlation coefficients were computed to quantify the agreement between both 
inter-methods (tracking-based vs atlas-based) and intra-method (test vs retest) FA matrices (see Fig. 6). The 
p-values resulting from these correlations were corrected using false discovery rate (FDR72) and a q-value equal 
to 0.05. Secondly, the Lin’s Concordance Correlation Coefficients (CCC73) were used to assess the reliability 
between methods (see Table 3).

Results for scale 1 are depicted in Fig. 6 and Table 3 (results for the other scales are presented in the 
Supplementary material, Figures S15, S16 and S17).

In all the analyses, a high correlation was observed for all the scales after correcting for multiple comparisons. 
The inter-methods correlation coefficients, for both acquisitions, were lower compared to the intra-method 
(test-retest) correlation coefficients. When increasing the number of bundles, i.e., the atlas scale, the correlation 

Fig. 6  Bundles-wise FA correlations between tracking-based and atlas-based approaches for scale 1 of the 
developed multi-scale connectome atlas. (a) and (b) Correlations between deterministic tracking and atlas-
based FA values for both acquisitions. (c) Correlation of FA values between both acquisitions using deterministic 
fiber tracking. (d) and (e) Correlations between probabilistic tracking and atlas-based for both acquisitions. (f) 
Correlation in FA values between both acquisitions using probabilistic fiber tracking. (g) FA correlation between 
both acquisitions using the atlas-based approach. Note: Dashed line represents correlation equal to one. Colors 
represent the probability density of the sample estimated using the closest 900 points. The correlation results for 
the rest of the scales are presented in the supplementary material (Figures S15, S16 and S17).
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values tend to decrease. Note that high Pearson’s correlation values do not automatically imply a good agreement 
between the compared methods because they evaluate only the linear association of two sets of observations.

Conclusion.  In summary, reliable and reproducible connectivity matrices can be computed from custom data 
using the developed multi-scale probabilistic atlas of the human connectome. The resulting atlas-based connec-
tivity matrices showed similar spatial patterns with highly correlated connection-wise FA values in a test-retest 
setting, close to the FA values observed in the tracking-based connectivity matrices.

The MultiConn atlas provides the neuroscientist with a grounded methodology to compute whole-brain 
multi-modal connectivity maps at multiple spatial granularities when diffusion weighted MRI data are absent, or 
when tractography is not possible or highly challenging (e.g., in presence of white matter lesions). Even though 
the connectome-atlas bundle maps can be prone to false positive artifacts, a complete probabilistic information 
of human connectivity is provided to the user at the best of current processing and tractography techniques, 
allowing for further data selection and filtering according to specific needs and research questions.

Usage Notes
Firstly, the T1w images need to be non-linearly registered to MNI space using a diffeomorphic normalization 
method (e.g., ANTS58). The resulting spatial transformations (Native-to-MNI) should be applied to the individ-
ual scalar maps to spatially align them in MNI space. The final spatial orientation, voxel, and image dimensions 
should coincide with the orientations and dimensions of the reference template employed to build the atlas 
(ICBM 2009c Nonlinear Asymmetric 1 × 1 × 1 mm44). The tools to perform these operations using antsReg-
istration and antsApplyTransforms are freely available at the following github repository: https://github.com/
connectomicslab/probconnatlas.

Once the scalar maps are transformed to MNI space, the multi-scale probabilistic atlas can be used to per-
form different operations. The main usage of the atlas is to compute mean, median and standard deviation values 
of the scalar maps along each WM bundle. This computation outputs connectivity matrices for a selected scale, 
with connection strengths being the mean, median and standard deviation values of the scalar maps along each 
scale-specific bundle.

Another possible usage of the atlas is to extract and/or save some specific bundles. The desired bundles 
should be supplied through a Nifti-1 image or a Comma-Separated Value (.csv) text file. If the Nifti-1 image is a 
binary mask, the bundles intercepting the non-zero values of the mask will be extracted. If the image contains 
different regions of interest (ROIs), only the bundles connecting two or more ROIs will be extracted. In addition, 
all the bundles intercepting any of the Nifti-1 ROIs can be saved in a single binary mask, which can then be used 
to restrict voxel-based analyses to bundles connected to certain region of interest (e.g., to WM bundles reaching 
lesions or tumor masks). In both cases text (csv of Nifti-1 file), if a scalar map is supplied, a table with the mean, 
median and standard deviation values along the select bundles are stored as well.

Code availability
The custom code used to apply the atlas to new subjects is implemented in Python 3.8 and is available at the github 
repository https://github.com/connectomicslab/probconnatlas. This code needs the multi-scale probabilistic atlas 
files stored on the Zenodo repository65. The used and the current version of the software is 1.0. All the parameters 
employed to process the datasets are provided in the atlas files.
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