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Abstract

Humans are genetically 99.9% identical. Can you believe it? However, despite this close
similarity, even the slightest variation in the remaining 0.1% can lead to significant
differences in phenotypic traits and disease susceptibility. Biobanks have greatly increased
our understanding of how genetic variations affect complex traits through Genome-Wide
Association Studies (GWAS) by collecting genetic and phenotypic data for hundreds of
thousands of individuals. However, efficient data processing methods are crucial to fully
exploit their potential. Despite the progress made, there is still a wealth of untapped
information in biobanks that could revolutionize our understanding of complex traits.
Haplotypes are a promising resource in this regard, as they can be inferred directly from
genotypes without requiring additional recruitment or data collection.

In this thesis, I explored the use of haplotypes to maximize the potential of existing biobanks
and enhance the characterization of the impact of genetic variants on complex traits. To
achieve this, I have developed innovative methods for estimating haplotypes from large
biobanks (Chapter I) and inferring the parental origin of the resulting haplotypes (Chapter II).

Chapter I presents a method to estimate haplotypes and describes the phasing of the UK
Biobank whole-genome and whole-exome sequencing data. It illustrates the importance of
the resulting haplotype estimates to discover rare genetic conditions called Compound
Heterozygotes (CH). These occur when an individual carries two non-identical copies of
loss-of-function mutations, one inherited from each parent, resulting in a double gene
knockout. In addition, this chapter shows how my haplotype estimates improve imputation
accuracy, especially at rare variants that are under-represented in smaller cohorts, enhancing
the ability to capture causal variants in downstream GWAS.

Chapter II presents an innovative approach to determine the parent-of-origin of haplotypes
that does not rely on prior knowledge of parental genomes. I first demonstrate how this
information can be used to discover phenotypic effects that depend on the parent-of-origin of
the genetic variant, referred to as parent-of-origin effects. In addition, I also illustrate the
importance of the parent-of-origin of haplotypes to identify genetic factors involved in human
fertility, by detecting genetic variants whose inheritance deviates from the expected
Mendelian inheritance pattern.
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Résumé

Les humains sont génétiquement identiques a 99,9 %. Pouvez-vous le croire? Cependant,
malgré cette similitude étroite, la moindre variation dans les 0,1 % restants peut entrainer des
différences significatives dans les traits phénotypiques et la susceptibilité aux maladies. Les
biobanques ont considérablement amélioré notre compréhension de la facon dont les
variations génétiques affectent les traits complexes grace aux études d'association a 1'échelle
du génome entier (GWAS) en collectant des données génétiques et phénotypiques pour des
centaines de milliers d'individus. Cependant, des méthodes efficaces de traitement des
données sont cruciales pour exploiter pleinement leur potentiel. Malgré les progres réalisés, il
existe encore une mine d'informations inexploitées dans les biobanques qui pourraient
révolutionner notre compréhension des traits complexes. Les haplotypes sont une ressource
prometteuse a cet égard, car ils peuvent étre déduits directement des génotypes sans
nécessiter de recrutement ou de collecte de données supplémentaires.

Dans cette these, j'ai exploré I'utilisation des haplotypes pour maximiser le potentiel des
biobanques existantes et améliorer la caractérisation de 1'impact des variants génétiques sur
les traits complexes. Pour y parvenir, j’ai développé des méthodes innovantes d'estimation
d'haplotypes a partir de grandes biobanques (Chapitre 1) et d'inférence de 1'origine parentale
de ces haplotypes (Chapitre II).

Le chapitre I présente une méthode pour estimer les haplotypes et décrit le phasage des
données de séquengage du génome entier et de l'exome entier de UK Biobank. Il illustre
lI'importance des estimations d'haplotypes pour découvrir des conditions génétiques rares
appelées hétérozygotes composés (CH). Ces conditions surviennent lorsqu'un individu porte
deux copies non-identiques de mutation perte de fonction, une héritée de chaque parent,
entrainant une double inactivation du géne. En outre, ce chapitre montre comment mes
estimations d'haplotype améliorent la précision de l'imputation, en particulier pour les
variantes rares qui sont sous-représentées dans les cohortes plus petites, améliorant ainsi la
capacité de capturer les variantes causales dans les GWAS.

Le chapitre II présente une approche innovante pour déterminer le 1’origine parentale des
haplotypes qui ne repose pas sur une connaissance préalable des génomes parentaux. Je
démontre premieérement comment ces informations peuvent étre utilisées pour découvrir des
effets phénotypiques qui dépendent de 1’origine parentale de la variation génétique, appelés
effets d'origine parentale. En outre, j’illustre l'importance de [’origine parentale des
haplotypes pour identifier les facteurs génétiques impliqués dans la fertilit¢ humaine, en
détectant les variations génétiques dont I'héritage s'écarte du modele d'héritage mendélien
attendu.
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Introduction

The interplay between human genetic variations and external factors, such as environment
and behavior, is responsible for the wide range of phenotypic diversity found among
individuals and their varying levels of susceptibility to diseases. Over the past decade, there
has been significant research into the impact of single genetic variants on diseases and
complex traits. This research has been made possible by large biobanks containing tens of
thousands of individuals, enabling researchers to investigate the relationship between
genotype and phenotype. However, there is much more than genotype information to be
utilized from these biobanks, such as how multiple variants segregate together across

generations to form haplotypes, the units of inheritance of the human genome.

This introduction provides a brief overview of the current understanding of genetic variants,
from their identification, classification, and segregation into haplotypes, to the common

method to test their association with complex traits and diseases.

Genetic variations in the human genome

The divergence from the reference genome

Genetic variations, also known as polymorphisms, refer to differences in the DNA sequence
among individuals. These genetic differences contribute to the phenotypic diversity among
individuals and can influence disease susceptibility within and across populations'. The
genetic variations of an individual are usually identified by comparing its DNA sequence
with a reference genome?. The first ‘draft’ of the human genome was released by the

17, also known as the Human

International Human Genome Sequencing Consortium in 200
Genome Project, which covered approximately 94% of the human genome®’. This was a
pioneer approach in the establishment of a reference genome, which kept improving over the
years. The current reference genome was compiled by the Genome Reference Consortium in
2013% Tt is a representation of the average genetic information of the human population that
was assembled by combining the genome of multiple individuals to represent the best modern
human genome. This reference genome is regularly updated to fix errors, fill gaps or add

newly discovered variants. However, some individuals, such as those from isolated
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populations, may substantially deviate from the reference genome since it is constructed
based on a particular population and primarily consists of approximately 70% of the
sequences from a single individual’. This discrepancy with the reference genome adversely
affects the precision of genetic variant mapping. To address this, a novel initiative aims at
assembling a human pangenome reference to represent the genomic diversity across human
populations, which should improve genome mapping for diverse ancestries’"'. Furthermore,

the Telomere-to-Telomere (T2T) project'?

is expected to enhance genome mapping accuracy
by generating the first comprehensive sequence of a human genome. This will particularly
improve mapping at repeated elements such as human satellite repeat arrays or on the short
arm of acrocentric chromosomes that are not well represented in the current reference

genome.

The size of genetic variations

Variations between an individual’s genome and the reference genome can take many
forms™". Single changes in the DNA sequence, known as Single Nucleotide Polymorphisms
(SNPs), are the smallest genetic variation in terms of size, although these can have dramatic
consequences on disease susceptibility. These are typically transitions, which is a change
between two purines or two pyrimidines, and transversion, which is a change between a
purine and a pyrimidine. Larger genetic variants can occur, referred to as structural variations.
The largest structural variations are copy number variations (CNVs) and chromosomal
rearrangements, such as inversions and translocations, that can involve kilobases to
megabases. There also exist smaller structural variations, such as insertions and deletions,
also known as indels, and tandem repeats. They typically involve one base pair to one
kilobase". Importantly, the detection of structural variants that typically involve more than 50
base pairs is challenging using short-read sequencing and depends on the accuracy of
mapping the sequencing reads to the reference genome. Diverse approaches have already
been developed to address this concern'*'¢, but the most promising might be the upcoming

pangenome reference since several structural variants are population-specific'’.

The origin of genetic variations

Genetic variations can result from multiple sources. Although the process of DNA replication
is highly accurate, the number of errors of the DNA polymerase is estimated at once every
10*-10° nucleotides'®, with the exact rate depending on multiple factors such as the cell type,

the stage of the cell cycle, the DNA damage or stress. Only a small fraction of these novel
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genetic variations are maintained in the human genome, as the DNA repair mechanisms
correct most of the replication errors. Around 107"’ mutations per base pair per cell division

1'°. This means that even

persist and can contribute to the genetic variability of an individua
with billions of base pairs in the human genome, the number of errors per division is still
relatively small. However, these errors accumulate over time and can impact an individual's
health. In addition to spontaneous mutations resulting from replication errors, changes in the
DNA sequence can be induced by transposable elements®, and external factors, such as
radiation®’ or viruses, which can incorporate their own DNA into the host genome.
Unexpectedly, approximately 8% of the modern human genome is attributed to human

endogenous retrovirus (HERVs), which likely indicate ancient retroviral infections of the

germ cells®.

The functional consequences of genetics variations

The influence of genetic variations is diverse, ranging from having no impact on phenotypic
traits, known as "silent" variations, to having a significant effect. Regulatory variants, located
in non-coding regions such as enhancers or promoter elements, impact the regulation of gene
expression and have the potential to either decrease or increase the expression of a given
gene, without modifying the protein structure?’. The annotations of regulatory variants can be
achieved using several methods. For instance, ChIP-seq is a technique used to characterize
genetic variants that affect protein-DNA interactions®. ATAC-seq is used to identify open
chromatin regions and their associated regulatory elements, including transcription factor
binding sites*!. In addition, regulatory variants can be identified by assessing their association
with molecular phenotypes through quantitative trait locus (QTL) analysis with molecular
traits (molQTL). For instance, the genetic variants can be associated with the expression of a
gene (eQTL), protein levels (pQTL), splicing patterns (sQTL), or methylation levels
(meQTL)®. Despite these techniques' effectiveness in annotating regulatory variants and
providing evidence on their functional consequences, the annotation can be challenging since

the impact of regulatory variants can vary depending on the cell type.

On the other hand, coding variants are found within gene sequences and can have different
effects depending on the change in the codons. Synonymous variants are variants that modify
the codon, but do not alter the encoded amino acid, resulting in an unmodified protein
sequence. While they were previously considered "silent", studies have shown that these

variants can affect the speed of protein translation because of the differences in tRNAs
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availability, and therefore can have significant impact on cellular processes?. On the other
hand, missense variants result in a different codon and alter the amino acid of the encoded
protein, potentially affecting its structure and efficacy. Lastly, nonsense variants change the
original codon into a stop codon, resulting in a truncated protein, which ultimately can result
in the loss-of-function of the protein. While a large number of computational methods have
been implemented to predict the impact of variants, which usually leverage protein sequence,
structures and gene annotations, the accurate prediction of variant effects remains
challenging®’. Recently, a novel strategy’® combined the Variant Effect Predictor (VEP) of
Ensembl® and a loss-of-function (LoF) effect estimator (LOFTEE)* to distinguish annotation
artifacts usually found when investigating loss-of-function variants®'. For example, nonsense
variants that truncate the protein sequence were initially classified as LoF. However, the
protein may actually still be functional if the variant is located close to the end of the gene

sequence (i.e terminal truncation variants)®°.

The frequency of genetic variations

The frequency of genetic variants within a population is determined by a variety of factors,
including genetic drift, spontaneous mutation rates, recombination events, and migration
patterns. Natural selection also plays a crucial role in determining the frequency of genetic
variants by promoting those that offer a selective advantage and eliminating those that
provide a disadvantage. For example, LoF variants are on average deleterious since they
truncate the protein and likely alter its function. Hence, they are under strong negative
selection and typically maintained at very low frequency in the population®*!. As a result,
large-scale genetic cohorts are required to capture them, typically in the order of tens of
thousands of individuals. Investigating these deleterious variants has been a goal of the
Genome Aggregation Database (GnomAD), which aggregated and harmonized the genomes
of more than 140,000 individuals to discover over 400,000 genetic variants that completely
silence gene expression levels®. Although difficult to capture, the study of LoF variation is
crucial since they can provide valuable insights into the underlying biology of diseases and
inform the development of new diagnostic, treatment, and preventive approaches. For
example, LoF variants within the PCSK9 gene have been found to lower LDL-cholesterol
levels. This discovery provided evidence for the development of drugs to reduce the risk of

cardiovascular disease, due to its relation with LDL-cholesterol levels, by targeting PCSK9%2,
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Recent advancements in genetic research, notably with the decreased price of sequencing
technologies, have allowed for the sequencing of protein-coding polymorphisms in more than
450,000 individuals of the UK Biobank cohort, which provides unprecedented resolution for
evaluating the impact of rare coding variation on human diseases and complex traits**. This
cohort allowed for the identification of more than 12 million coding variants of which the
vast majority are rare (~99.6% of variants with Minor Allele Frequency (MAF) < 1%), with
notably ~46% of variants present in only one individual (i.e singleton)**. To better
characterize the occurrence of rare variants and to understand their impact on the protein

products, extensive annotation work has been conducted?®.
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Figure 1. Distribution of rare variants per annotation in the UK Biobank.
Distribution of rare variants (MAF<0.1%) counts (y-axis) across the 22 autosomes
(x-axis). Top: protein loss-of-function (pLoF); middle: missense; bottom: synonymous.

Changes between blue and gray colors indicate changes between chromosomes.
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Expectedly, LoF variants are the least frequent among the identified rare coding variants
(Figure 1). This is not surprising since these variants have a strong impact on gene function
and are therefore more likely to be quickly purified from the population. In contrast, missense
variants were found to be more frequent than synonymous variants, even though they have a
more deleterious effect on gene function. This discrepancy between the frequency of
missense and synonymous variants may be due to the fact that only modifications of the third
base of a codon can create synonymous variants, while modifications of the remaining codon
positions can create missense variants, except for the three stop codons. Overall, this
large-scale sequencing effort provides important insights into the distribution of rare coding
variants and their potential impact on human health and disease, and allowed for the first time

to characterize the impact of rare coding variants on more than 4,000 phenotypes®.
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Inheritance of genetic variations

Somatic and germline genetic variations

Variations in the DNA sequence can be classified into two general categories - germline and
somatic variations®. Somatic mutations are genetic alterations that occur in an individual's
body cells during lifetime. These mutations are only present in a specific subset of cells that
are derived from the same lineage as the original cell in which the mutation arose. On the
other hand, germline mutations are genetic variations that occur in the DNA sequence of the
germ cells, which means that they are transmitted to the next generation and present in every
cell of the offspring®. Somatic and germline mutations both have the potential to impact
human health in significant ways, including the development of various diseases. However,
only germline mutations have a unique role in causing inherited disorders, such as sickle cell

35,36

disease*** or Huntington's disease”’. In addition, they can influence the evolution of a species

by altering the genetic makeup of the population over time*®.

The random segregation of alleles during meiosis

In humans, the inheritance of genetic material from parents follows Mendelian rules, where
half of the genetic material comes from each parent. This involved that the alleles segregate
randomly such that each gamete receives only one allele from each parent with equal
probability. Meiosis is the biological process that leads to the production of gametes, such as
sperm and egg cells, from germline cells. This process enables the transfer of genetic
material, as well as germline genetic variations, to future generations. It is a two-stage
division process that gives rise to four haploid gametes, each containing a different
recombinant version of the parental genome®. This is achieved through crossing-over, a
process during which homologous chromosomes pair up and exchange sections of DNA,
which creates genetic diversity among the resulting haploid cells, as each cell receives a
unique combination of genetic information from the parents (Figure 2A). Crossing-over
occurs more frequently at specific regions of the genome called recombination hotspots®,
meaning that the genetic material is more likely to break and exchange during meiosis.
Conversely, other regions of the genome have very low or no recombination, meaning that
the genetic material in those regions is less likely to be recombined. As a result, alleles that
are located on chromosome segments that are not frequently broken by crossovers tend to be

inherited together as haplotype segments*.
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Haplotype, the unit of inheritance

A haplotype is defined by a specific combination of alleles located on the same chromosome
of an individual. These alleles tend to be co-inherited together because of their close physical
proximity on the chromosome, which means that they are less likely to be segregated during
meiosis because they span regions that have only little evidence of genetic recombination* .
The size of haplotypes can vary depending on the genetic context being examined. For
instance, at the smallest possible resolution (i.e at the individual level), an individual inherits
a complete paternal haplotype, which is a recombined version of the two paternal
homologous chromosomes, as well as a complete maternal haplotype. Similarly, by moving
up the family tree, one can observe the paternal homologous chromosomes as two haplotypes

inherited from the individual's parents. Consequently, the offspring haplotypes are a mosaic

of the four grandparental haplotypes (Figure 2B).

The size of haplotypes is informative for genetic studies. Short haplotypes have less
variability and provide less information about genetic relationships between individuals or
populations, while longer haplotypes may contain more genetic variations, but be more useful
for genetic association studies. Indeed, two individuals share haplotype segments whose
length depends on the number of generations separating them. The more generation, the more
meiosis and the more chance to break a haplotype segment by recombination event*'. As a
result, the length of haplotype segments shared between individuals is inversely correlated
with their distance in terms of meiosis. The concept of haplotype segments is fundamental for
Identity-By-Descent (IBD) mapping, which involves identifying shared haplotypes that are

inherited from a common ancestor between two individuals without any recombination

event* (Figure 2B).

Linkage disequilibrium

Genetic positions from two different haplotype segments and separated by high rate of
recombination are in linkage equilibrium, which means that the occurrence of the first allele
is independent of the occurrence of the second allele in the population. Conversely, genetic
positions located in the same haplotype segment are correlated across individuals as they are
frequently inherited together. This correlation is referred to as linkage disequilibrium

(LD)43 ,45,46.

Let us consider a pair of alleles 4 and B at two loci, occurring with frequencies f; and f;.

These two alleles can occur at the same time in the AB haplotype segment at a frequency f;;.
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The co-occurence of 4 and B can be random, and the frequency of the AB haplotype is given
by fap=ff,. However if 4 and B co-occur more frequently than expected by change, and are

therefore in LD, f,; differs from f,f;. Hence, the level of LD between A and B is quantify

47,48.

by

Dag = fa — fafs

Since this equation depends on allelic frequencies, it is usually normalized to allow the

comparison between different pairs of alleles across the genome®:

D/ - D/DmaT

where D,,,. is the maximum difference across the genome.

More commonly, LD is measured by the correlation between pairs of loci across a population,

expressed as*:

r? = D%p/(pa(1 —pa)ps(1l — pB))

There is a tight relation between LD, recombination rate and haplotype segments. Regions
with low recombination have high LD and tend to have large haplotype segments, whereas
low LD associates with high recombination rate and smaller haplotype segments. For
example, Let us consider the 4B haplotype, a haplotype containing the two loci 4 and B, with
a polymorphism at the 4 locus which now has two possible alleles, 4 and a. It means that the
only existing haplotypes in the population are the 4B haplotype and the aB haplotype (Figure
2C). Let us then consider that a polymorphism occurs at the B locus in an individual carrying
the AB haplotype. This creates a third pool of haplotype: the Ab haplotype. These three pools
of haplotype are the only to persist in the population as long as there is no recombination
between the 4 and b alleles. It means that b always co-localizes with A4, and that the allele b is
in complete LD with the allele 4. As the number of generations increases, the chance for the
Ab haplotype to be broken by meiosis increases, which eventually gives rise to a fourth

haplotype, the ab haplotype®.
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Figure 2. The meiosis process structures the genome into haplotype segments through
crossing-over.

A) Meiosis stages of a schematic diploid cell containing a single pair of homologous
chromosomes. Each homologous chromosome is indicated by a different color. B)
Schematic representation of the propagation of haplotype segments across generations.
Each ancestral haplotype (i.e homologous chromosome) is represented by a different color.
IBD segments indicate haplotype segments that are inherited from a common ancestor. C)
Schematic representation of the impact of recombinations on LD. Each nuance of blue

indicates a different haplotype pool. Adapted from [*].
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Genotyping

Sequencing technologies

DNA genotyping is the process of determining the genetic variations, or variants, in the
genome of individuals. It can be used to identify genetic variations that are associated with
diseases, to determine the ancestry of individuals, or to study the evolution of species. The
development of DNA sequencing was pioneered by Frederic Sanger and colleagues in 1977
when sequencing the first virus® genome™. It was the first widely used method for sequencing
DNA and is nowadays referred to as the traditional method of DNA sequencing. Notably, the
Human Genome Project was based on the Sanger sequencing method and took around

thirteen years to produce the first ‘draft’ of the human genome™*.

In Sanger sequencing, the process starts with amplifying the DNA using polymerase chain
reaction (PCR) for then fragmenting this DNA. To sequence these DNA fragments, also
known as reads, the strategy is to add one nucleotide at a time to a growing chain of DNA by
using a combination of normal nucleotides and di-deoxynucleotides (ddNTPs), which lack a
3’-OH group and stop the extension of the DNA strand. Each of the four different ddNTPs
has a different fluorescent label that emits a signal when added to the growing chain of DNA.
As a result, the series of fluorescent signals correspond to the order of nucleotides in the
DNA fragment being sequenced. Although Sanger sequencing can still be used today, it has
largely been replaced by more efficient and high-throughput Next-Generation Sequencing

(NGS) technologies™.

NGS refers to high-throughput DNA sequencing technologies that can generate large
amounts of DNA sequence data in a short amount of time™. Illumina sequencing and PacBio
sequencing are probably the most common NGS technologies, but they differ in several key
ways. PacBio sequencing technology produces longer read lengths, ranging from several
kilobases to tens of kilobases, compared to Illumina that produces reads in the order of
100-300 base pairs. Next, PacBio sequencing has higher accuracy compared to Illumina. This
is particularly useful for applications such as de novo genome assembly or haplotyping. On
the other hand, Illumina sequencing has a higher throughput, which means that it can
generate more data in a single run, and can also generate a much larger amount of data in the
same amount of time. This makes it more efficient for large-scale projects in which large
amounts of data are required, such as for the assembly of large biobanks. Finally, Illumina
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sequencing is generally more cost-effective compared to PacBio sequencing, with lower

upfront costs and lower cost per base of data generated™.

Over the past decade, a new method of DNA sequencing known as Nanopore sequencing has
emerged as a potential alternative to the conventional NGS technologies. This real-time
sequencing technology works by passing DNA molecules through a nanopore and measuring
the changes in electrical current™ . It is capable of producing longer read lengths than NGS,
ranging from several kilobases to over 100 kilobases, exceeding the read length of PacBio™.
Its sequencing accuracy seems however to be intermediate between PacBio and Illumina
sequencing and the amount of data generated (i.e throughput) is reduced compared to the
NGS technologies. The major benefits of this technology are (i) the length of the reads, (ii)
the direct sequencing without requiring amplification, (iii) real-time sequencing, enabling

monitoring the sequences, and (iv) the small size of the nanopore sequencing devices™*°,

Regardless of the sequencing technology used, whether PacBio or Nanopore, there is a debate
between long reads and short reads in DNA sequencing. Although long reads have been
criticized for lower accuracy compared to short reads, proper correction and assessment can
make them equally accurate. Notably, they improve de novo assembly, mapping certainty and
transcript isoform identification, and are particularly effective in assembling complex
genomes and resolving complex genomic regions, such as structural variants. Importantly,
they are at the center of the telomere-to-telomere project, which uses ‘ultra-long-reads’
Nanopore sequencing to resolve missing genomic sequence from the current reference
genome (i.e GRCh38), such as centromeric regions and other repeat-rich sequences'**’*. On
the other hand, short reads have a much higher throughput, which is often a better
cost-effective alternative when assembling large biobanks, and they are supported by a wide

range of quality control pipelines and by a large variety of analysis tools>.

Genotyping strategies

Beside the various sequencing technologies, there are multiple options for genotyping, which
include whole-genome sequencing and targeted sequencing. Whole-genome sequencing
(WGS) is a method that sequentially reads the entire DNA content of an organism's genome,
providing a complete picture of its genetic material. The sequencing pipeline includes DNA
extraction, amplification and fractionning in small segments called reads, which get
sequenced and reassembled together by being piled up against a reference sequence. Any

position that differs from the reference sequence is called a genetic variant, and the allele that
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differs is usually referred to as alternative allele, in contrast to reference allele. Genotype
calling methods determine the genotype of each individual along the genome, being encoded
as the number of alleles not matching the reference sequence at a given genomic position (i.e
number of alternative alleles). In WGS technologie, the genome is usually sequenced at a
coverage of 30x, which means that on average 30 reads cover the same genetic position
(Figure 3A). The more reads covering the same genetic position, the more confident are the
genotype calls. Although providing high accuracy genotype calls, high coverage WGS
methods limited the recruitments of large cohorts because of its expensive price. It is only
recently that the price of the NGS techniques dropped, with a cost of ~1,000 dollars to
sequence an entire human genome in high quality. This notably allowed researchers to
assemble large WGS cohorts, such as the UK Biobank that recently regrouped 150,119 WGS

genomes®.

On the other hand, if one is looking to analyze only specific regions of the genome, a targeted
approach such as whole-exome sequencing or microarray-based genotyping can be a

cost-effective alternative to WGS, as these techniques only genotype a portion of the genome.

Microarray-based genotyping , also referred to as DNA microarray or SNP array, is a
genotyping method that utilizes a solid surface with a large number of probe sequences to
detect specific genetic variants in a sample®-**, The fragmented target DNA sample is labeled
with fluorescent dye and, when hybridized to the complementary probes on the microarray,
produce a fluorescence signal. This signal is then quantified and analyzed to determine the
genotype of the sample. Although it only sequences genetic positions included as probe
sequences (Figure 3B), the microarrays can be customized to contain for example
population-specific SNPs. The main benefit of this method is its high-throughput capacity
and the ability to genotype multiple markers simultaneously. This cost-effective method has
notably been utilized in the creation of biobanks aimed at examining the impact of common

variants on complex traits®>®.

Whole-exome sequencing (WES) is a method that involves capturing, sequencing and
analyzing the exons. It is a cost-effective way to obtain a large amount of genomic
information, as it only sequences the approximately 1-2% of the genome that is encoding for
proteins, rather than the entire genome (Figure 3C). This method is commonly used in
medical genetics to identify the underlying genetic cause of a disease, especially in cases

where the disease is caused by mutations in a small number of genes®. In addition, it is also
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used to study protein-altering variants across large cohorts of individuals, which for example
allow to characterize the contribution of rare coding variations across a large variety of

complex traits and diseases®.

Finally, low-coverage whole genome sequencing (IcWGS) offers a cost-effective alternative
for researchers seeking to sequence the entire genome at reduced costs®®. Unlike hcWGS
methods, which generate on average a sequencing depth of 30x, low-coverage sequencing
generates a limited amount of reads per genomic location (Figure 3D). As a result, the
accuracy of the sequence obtained through low-coverage sequencing can be lower than the
one obtained through other sequencing methods. Despite this limitation, IcWGS is
particularly well suited for population genetic studies, for example when the global

population characteristics are investigated rather than the individual’s genotype level.
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Eigure 3. Sequencing technologies.

Schematic representation of the sequencing coverage of whole-genome sequencing 30x
(A), microarray hybridisation (B), whole-exome sequencing coverage (C) and
low-coverage whole-genome sequencing (D). Sequencing reads are indicated by blue
rectangles. In (B), the blue rectangles represent the microarray hybridization probes. Two

schematic genes are represented by gray rectangles (exons) in the bottom panel.
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Haplotype estimation

DNA sequencing, either WGS, WES, SNP-array or low-coverage sequencing, provides
punctual information for each variant site as a pair of alleles, or base pairs. At the genome
level, this takes the form of unordered combinations of alleles, as the sequencing only
quantifies the number of non-reference alleles at each variant site after comparison with a
reference genome. However, the sequencing does not specify whether alleles of consecutive
genomic positions co-localize on the same haplotype and are co-inherited from the same
parent as a haplotype segment. This information is important in genomic analysis notably to
identify haplotype segments shared from a common ancestor (i.e IBD), for admixture
mapping or imputation. Hence, the correct localization of allele, also referred to as the phase
of alleles, must be estimated from the genotype data to reconstruct the correct haplotypes.

This process is termed phasing®.

Hidden Markov Model in sequence data analysis

The general phasing method aims to decompose an individual’s genotype into two
haplotypes, with alleles correctly attributed to each one of the haplotypes. It relies on the use
of a Hidden Markov Model (HMM), which is revealed to be useful when modeling
phenomena of stochastic nature whose intermediate states are inaccessible (i.e hidden), and

only the final outcome can be observed.

The Li & Stephens model®®, inspired by an HMM used in speech recognition®, is a landmark
in sequence analysis. Since it was published in 2003, it has been applied time and time again
to solve problems that have arisen with the age of NGS, such as imputation, phasing and IBD
mapping. It aims at modeling LD through the underlying recombination rate inherent to the
human population. The starting point of this model is the search for the recombination rate
parameters that maximize the likelihood of observing a set of haplotypes. Li & Stephens
approximated the expression of this likelihood with a “product of approximate conditionals”
probabilities. These approximate probabilities are defined in such a way that an observed
haplotype is seen as a mosaic of the K known haplotypes that constitute the reference panel,
which corresponds to the K possible states of the HMM. The reference haplotypes from
which the mosaic is built are selected at each position on the basis of a global probability,
which includes transition and emission probabilities. Transitions between states (i.e., jumps

between haplotypes) are equivalent to recombination events, and are represented by the
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transition probability. The emission probability models the fact that, for a particular locus and
considering the most likely reference haplotype at this locus, the observed allele can be either

a copy of the allele present in the reference, or a different allele (i.e., a mutation).

The following sections present first the basics of HMM within the framework of sequence
analysis, and then the application of this HMM to phasing. It is also important to note that a
very similar approach is used for imputation purposes, as well as for IBD mapping or
admixture mapping. These applications have been covered as part of an unpublished review
that has been written in collaboration with Barbara Mota and from which this section has

been adapted.

The core Hidden Markov Model

An HMM is described by (i) K possible states, (ii) the number of observations obtained from
a single state, (iii) the probabilities of transition between states, (iv) the probabilities of an
observation given that the system is in a particular state, and (v) the probability of the initial

state®.

Let us consider a reference panel # made of K haplotypes, each one having A7 markers.
From the reference panel we can estimate the probability of observing a target haplotype h,
Pr(h|H), The observed haplotype can be built by assembling different parts from different
reference haplotypes, allowing for imperfect copies. We can define the possible sequences of
M markers obtained in this fashion by the means of paths®. The value of r(h|H) can be

obtained as following by considering all possible paths »:

Pr(h|H) =3, Pr(hlp, H)Pr(p|H) (D)

allp

To decompose this equation, let us consider a fixed path p = kik2...kx going through the
reference panel of haplotypes. This path corresponds to a sequence of unobserved copying
labels of length M (i.e, a mosaic of reference haplotypes). The term I (p|H) is the
probability of the path » given the set of K haplotypes (eq.2), and it is defined as the product
of the probability of the first haplotype in the sequence (eq.3) and the product of the
probabilities of transition between states at positions m and m + 1, P 7(km+1lkm). The term
Pr(km+1lkm), defined in eq.4, models the effect of recombination, that is, transition
probability between haplotypes, where % and km+1 denote the copying labels at marker m

and m + 1, respectively, and Ok represents the probability of a transition.
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Pr(p|H) = Pr(ky) [Tp—; Pr(km1lkm) )

Pr(k) =1/2M 3)

Pr(k |k ) — (1 - ekmkarl) me = km+1
m+1|Fm [ otherwise @)

For a position m of this path, the copied allele can differ from the allele in the haplotype

being copied from, which corresponds to a mutation. The effect of mutation is captured by
the term Lr(hlp, H), probability of observing a haplotype h given path p and panel #. If hm

and pm denote the alleles at marker m of h and P, respectively, then P(|p,H) can be

written as:

Pr(hlp, H) = [T py—y Pr(hm|pm) (5)

Pr(ho|pm) = (L—p) if pm=hn
e i otherwise (6)

In other words, P7(hm|pm) =1 when marker m in path » differs from marker m in the

target haplotype h.

The figure 4 illustrates this HMM. Let us consider K = 6 haplotypes in a reference panel H,
M =13 markers, 7= (1 —#) and ¥ = (1 —0). We can compute L7(2|p, H) for the path »

(Eigure 4, in black) as:

Pr(hlp, H) = nnnpnnnnnn (7)
Pr(plH) = s b p 0 pap O1p e (8)
Pr(hlp) = swn n m b qp ey m0 e b 0 i e 9)

If we consider eq.9 with reordered terms according to the M markers, we understand that
each independent marker m of path » is characterized by the joint probabilities of (i) having

the same allele as the marker m in the target haplotype h (emission probability) and (ii)
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having the same state (i.e., haplotype) compared to marker m — 1 (transition probability),

except for marker 71 that has its own transition probability independent of previous states.
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Figure 4. Representation of the HMM model.
A set of K = 6 haplotypes genotyped at M = 13 markers compose the reference panel.
The most straightforward path P for the target haplotype h is shown in black. The

sequence of copying labels is colored according to the path P.

In this description of the method, we used # and # to refer to the transition and to the
emission probabilities, respectively, in order to simplify the notation. The actual calculation
of these parameters in the Li & Stephens model is somewhat different. The recombination
probability (i.e., transition state probability) is defined as a function of the physical distance

between markers as well as of the recombination and crossover rates®, and can be written as:
I-0)=0-v)+x ; 0=% (10)

vzl—exp<m). . . .
K is a parameter estimating the recombination, with Ne =

where
effective diploid population size and "m+1 — "m = average rate of crossover per unit physical
distance and per meiosis between m and m+ 1. These parameters incorporate the
assumption that, if m and m + 1 are physically close to each other, they are likely to come

from the same haplotype.
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In the same way, the mutation probability (i.e, emission probability) is defined as :
_ K ¢ . __9
I—p) =% tamms & H= w9 (11)

where ¢ is the population mutation rate based on the coalescent theory and estimated with

] —11y-1
the Waterson coefficient Oy ) .

Hidden Markov Model in haplotype estimations

The most efficient phasing algorithms are inspired from the Li & Stephens HMM®, such as
Beagle™ and SHAPEIT”'. For each individual, these methods first consider all possible
haplotypes that can be inferred from the observed genotype. Then, for each of the putative
target haplotypes h, one can compute the probability of observing ~ given a panel of
reference haplotypes A . The target haplotype » with the maximum probability P(2[H) is the

most likely to be observed.

Figure 5A provides a visual explanation of the phasing method. It considers an individual
genotyped at M = 13 markers, with 2 heterozygous and 11 homozygous sites, as well as 4
putative target haplotypes that can be inferred from the genotype (i.e., the number of target
haplotypes to consider is 2x2¢!, where ¢ is the number of heterozygous sites. It takes into
account all pairs of complementary haplotypes). Target haplotypes are colored according to
their most straightforward path » through the reference panel # . In this example, we can
consider equal values for the emission probability of each target haplotype (i.e, none of them
differs in terms of allele content compared to its path, meaning that no de novo mutation
occurred). To simplify, let us also consider the transition probability ¢ constant. This implies
that the most likely target haplotype to infer is the one with the least transitions, as shown in
red. In this example, we considered only one path » per target haplotype, whereas in a real

phasing algorithm all possible paths » through # are considered in order to compute P(h|H),
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Figure S. HMM applied to infer haplotypes from an individual's genotype.
A) k = 6 haplotypes genotyped at M = 13 markers constitute the reference panel $HS.
Four putative target haplotypes can be built from the sample genotype, which include two

heterozygous markers (bold). The target haplotype in red is the most likely to infer since it

maximizes £ (PP, H) | B) Phasing of haplotypes using SHAPEIT5”! and Beagle5.472.
Each line represents a haplotype (y-axis) along the chromosome 20 (x-axis). Changes

between red and blue represent a phasing switch error.

The quality of the phasing largely depends on the size of the reference panel and the ancestry
of individuals. When the reference panel's ancestry and relatedness align more closely with
the target individual, the estimations become more accurate. The accuracy of estimations can
be assessed using pedigree information and parental genomes by comparing the phased
haplotypes of the offspring with paternal and maternal genomes. It allows identifying phasing

switch errors, which occur when paternal alleles are attributed to the maternal haplotype, and

vice versa (Figure 5B).
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The impact of genetic variants on complex traits

Mendelian disorders, also referred to as monogenic disorders, occur when a single genetic
variant is responsible for the disorders. The variant is likely located within the coding part of
the genome and has a strong effect, such as LoF variants, which usually results in severe
consequences on human health. Because of negative selection, such variants with large effect

sizes are typically maintained in low frequency within the population™.

On the other hand, complex traits are quantitative phenotypes that have a high variability
resulting from both genetic factors and environmental factors. The genetic mechanisms of
complex traits imply that many genetic variants are involved, usually involving multiple
genes. It results that the effect sizes of individual variants are small, and therefore that many

individuals are necessary to detect them™.

The concept of heritability

The genetic contribution to a phenotypic variability is called heritability”. It refers to the
proportion of the phenotypic variability that can be explained by genetic variants. It ranges
from 0, meaning that none of the variation is due to genetics, to 1 when the entire variance
can be attributed to genetic variations. It was initially estimated from twins or family-based
studies. The principle consists in comparing the phenotypic similarities of individuals within
the same family to unrelated individuals, or by comparing monozygotic twins to dizygotic
twins’®"". In recent years, scientists have used genome-wide association studies (GWAS) to
estimate the heritability of various phenotypes at the population level. This method has the
advantage of combining genetic and phenotypic data from thousands of individuals,
providing a more accurate representation of the phenotypic variability within a population,
and allowing to evaluate the heritability of diverse phenotypes. One example of a phenotype
that has been extensively studied in this context is human height’*”. However, while twin
studies initially estimated the heritability of height to be close to 0.8%*!, recent GWAS

studies have reported a lower heritability of ~0.45%%,

The large discrepancy between the heritability estimated from related individuals and the
heritability estimated from genetic variants, such as in GWAS, is referred to as missing
heritability. Various factors have been proposed to explain this discrepancy®*. One
explanation is that GWAS usually do not account for rare genetic variants, which can have a

t86

significant impact on traits such as height™. Another reason could be that the genetic markers
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used in GWAS do not perfectly correlate with the causal variant, which means they do not
capture as much of the phenotypic variance and lead to an underestimation of heritability™.
Additionally, interactions between genes, the environment, and epigenetics also contribute to
the complex interplay that makes it challenging to fully understand the heritability of traits.
Lastly, structural variants, which are often not detected by short-read sequencing technology,

may also play a role in missing heritability.

Despite these limitations, GWAS has proven to be useful in identifying the independent
genetic variants contributing to variation in human height, as well as highlighting the
population-specific nature of these associations. Recently, a total of 12,111 SNPs have been
found to account for 40% of the variability in human height in the European population.
However, these SNPs could only explain ~15% of the height variation in non-European

populations®.

Genome-wide association study

Associations between genetic factors and phenotype, typically the complex trait or disease of
interest, are assessed using genome-wide association studies (GWAS)*". The underlying idea
is to scan each variable position across a large cohort of individuals and to assess whether its
occurrence is associated with the phenotype using a linear regression model. This is
represented by the equation y=Xp+¢&, where y is the phenotype vector, X is the genotype
vector, [ is the effect size, which corresponds to the effect of carrying one copy of the risk
allele, and € represents errors. To improve the accuracy of these estimates, this model is
commonly adjusted for confounding factors such as age, sex, and principal components

(PCs)™,.

While the recent increasing size of biobanks, such as the UK Biobank, which regroups
~500,000 individuals®, or the Estonian Biobank®, which regroups ~200,000 individuals,
allowed to increase the power to discover small genetic effects such as those involved in
complex traits, they also revealed some limitations of the traditional linear regression model.
Assembling cohorts with a large number of individuals from the same population resulted in
the inclusion of related individuals, which can introduce bias in association testing and lead
to inaccurate results®’. Hence, standard fixed-effect models, such as linear regression, were
restricted to the set of unrelated individuals. In the UK Biobank for example, this resulted in
using a subset of 344,397 individuals®. Therefore, it was crucial to implement advanced

statistical techniques that account for the familial correlation structure among biobanks to
39


https://paperpile.com/c/MfTpoL/sMY4
https://paperpile.com/c/MfTpoL/sMY4
https://paperpile.com/c/MfTpoL/oPWE
https://paperpile.com/c/MfTpoL/8phQ
https://paperpile.com/c/MfTpoL/u7BZ
https://paperpile.com/c/MfTpoL/UJRo
https://paperpile.com/c/MfTpoL/oPWE
https://paperpile.com/c/MfTpoL/u7BZ

overcome this limitation and ensure accurate results. This has been addressed by the use of
linear mixed models (LMM)¥, which explicitly account for relatedness by conditioning on a
genetic relatedness matrix (GRM). In the UK Biobank, this substantially increased the sample
size to 456,422 individuals®, providing a ~30% increase in sample size compared to when
using fixed-effect models. This approach is nowadays being implemented in the most
efficient GWAS softwares that are capable of handling association testing for hundreds of

thousands of individuals®!*2.

Although modern biobanks collect phenotype and genotype data for hundreds of thousands of
individuals, recent research suggests that millions of individuals are necessary to saturate the
genome in association signals®?. Therefore, it is crucial to continually increase the sample size
of cohorts to improve the precision and accuracy of GWAS findings. A larger sample size
permits more precise effect size estimation, increases statistical power, and enables the
detection of smaller genetic effects. Currently, the most significant sample sizes for GWAS
result from collaborative efforts among researchers who share data across multiple studies.
By conducting meta-analyses, these efforts can surmount these challenges and augment the

GWAS's effective sample size®.

Cost-effective GWAS

Increasing the sample size of GWAS studies can be challenging due to logistical and financial
constraints. In the case of large biobanks, financial constraints are often the primary limiting
factor. As a result, cost-effective alternatives to WGS have been employed, such as
microarray genotyping. However, since it genotypes only a subset of genomic positions, the
missing information must be predicted from a reference panel of haplotypes, a process
referred to as imputation”. While this improves the chances of pinpointing causal variants,
the accuracy of genotype imputation largely depends on a reference panel of phased
haplotype that is used to perform the genotype predictions. The more accurate the phasing,
the more informative the reference panel will be, and the better the imputation accuracy will
be. In addition to the accuracy of the phasing, the size of the reference panel is also an
important factor that affects the accuracy of imputation. A larger reference panel provides
more genetic diversity, which increases the chances of finding haplotypes that match the
missing genotypes in the study sample. This leads to better imputation accuracy, particularly

for rare variants that may not be well-represented in smaller reference panels. Therefore, it is
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essential to use a high-quality phasing algorithm and a reference panel that is large enough to

capture the diversity of genetic variation present in the target population.

Genetic effects

While efficient methods have been developed to associate genetic variants with complex
traits and diseases, they are mostly designed to account for additive effects, which means that
the effect of having two copies of the risk allele is assumed to be twice the effect of having a
single copy of the risk allele. In other terms, an additive effect measures the independent
contribution of each allele at the same locus. However, it is well known that there exists a
wide range of genetic effects that can not be fully captured by linear models. The most
common are probably the dominant and recessive effects, which measure the interaction of
the two alleles at the same locus. In the dominant effect, one risk allele is sufficient to cause
the phenotype, and there is no phenotypic difference between having one or two copies. In
the recessive effect, two risk alleles are necessary to provoke the phenotype, and there is no
phenotypic difference between having no or one copy (Figure 6).

Less common but not least, genetic effects can also be specific to haplotypes and depends on
the epigenetic genetic background. Parent-of-Origin effects are phenotypic effects that
depend on the parental origin of the risk allele. Therefore, the risk allele has an effect only
when it locates on a specific parental haplotype, for example on the maternally inherited
haplotype (Figure 6D). Such effects likely result from genomic imprinting, a mechanism of
DNA methylations (i.e imprints) that silence genes. Imprints are sex-specific and established
during the gametogenesis, meaning that the offspring inherit the paternal haplotype together
with male-specific imprints, as well as the maternal haplotype with female-specific imprints.
It results that some genes are always expressed from the same parental haplotype across
individuals, and that risk alleles have an effect only when locating on this particular

haplotype.
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Figure 6. Genetic effects on complex traits and diseases.

Schematic representations of Additive (A), Dominant (B), Recessive (C) and
Parent-of-Origin (D) effect. The phenotypic effects (y-axis) is stratified by the copy
number of the risk allele (x-axis). Red lines indicate simulated linear estimates (i.e what
can be captured using linear models). In (D), risk alleles are stratified by copy number and

parental origin.
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Haplotype estimation

The recent release of the whole-genome sequencing data for 150,199 individuals by the UK
Biobank represents a significant milestone in the field of genomics, as it provides an
unprecedented opportunity to assemble a large and diverse reference panel for genetic
analyses. However, despite the potential benefits of such a resource, there are also significant
challenges associated with processing and analyzing such a large amount of data. Current
phasing methods are not well-suited to handle such a large amount of sequencing data,
particularly when it comes to phase rare variants that are present in less than 1/1000
individuals. Phasing rare variants is particularly challenging and can lead to inaccurate

haplotype estimates which have major impacts on downstream analysis®.
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Part 1. Haplotype estimation in sequenced biobanks

The first part of this chapter outlines my contribution and involvement in the phasing
software SHAPEITS5, which builds on previous versions of the software®. The manuscript is
presented in Appendix A. In this work, we introduce a new version of the SHAPEIT
software, which is specifically designed to effectively and accurately phase rare genetic
variants in large sequenced biobanks. The manuscript describes the phasing of the WGS and
WES data of the UK Biobank cohort, showcases the accuracy of this phasing compared to
concurrent methods and provides evidence for the utility of the phased haplotypes in

detecting compound heterozygotes events.

I am the co-first author of this manuscript. It consists in collaboration within the research
group, with three first authors that contributed equally to the work. My contributions were
focused on phasing the WGS and WES data, as well as writing the corresponding
manuscript sections. Furthermore, we created a dedicated website containing software and
documentation, in which I authored the phasing tutorial for the UK Biobank WGS, WES,
and SNP-array data.

This manuscript is currently in review in Nature Genetics. Alongside with the manuscript, I
am responsible for generating the haplotypes for the upcoming release of the UK
Biobank data in July 2023. The dataset comprises over 700 million variants across 200,031
individuals, with most being rare (~97% having MAF<0.1%). This call set will be the most
efficient reference panel for imputing individuals of European ancestry. Consequently, it will

likely be used in hundreds of GWAS.
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Part I1. Haplotype estimates for genotype imputation

Phased haplotypes are commonly utilized as a reference panel for genotype imputation. In the
part I of this chapter, the construction of a phased reference panel from UK Biobank WGS
data is described, alongside with a brief summary of its effectiveness in CH event discovery
and genotype imputation. However, a more detailed explanation of the utility of this reference

panel for genotype imputation is presented in a separate manuscript.

The second part of this chapter outlines my involvement in a manuscript presenting a novel
implementation of the low-coverage imputation software Glimpse”®, named Glimpse2. The
manuscript is presented in Appendix B. The purpose of this software is to handle the recent
improvement of reference panels for genotype imputation, since existing softwares do not
scale efficiently with hundreds of thousands of reference haplotypes. The manuscript explains
the method and demonstrates the effectiveness of using the UK Biobank phased haplotype as
a reference panel for imputation, in comparison to alternative reference panels and across
various populations. In addition, it also showcases the increased power of downstream
GWAS using sequencing coverages as low as 0.5x compared to SNP array. I am the second
author of this manuscript. My contribution to this manuscript includes conducting the
GWAS experiments, assessing the impact of sequencing coverages on GWAS accuracy,
writing the relevant section of the manuscript, and discussing the design of the experiments

and the rationale of the project. The manuscript is currently in review in Nature Genetics.
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Chapter ||

The parental origin of haplotype estimates

Although phasing algorithms can be used to reconstruct haplotypes from genotype data, they
cannot determine whether a haplotype was inherited from the mother or the father. The
typical method to determine the parent-of-origin (PofO) of haplotypes compares the offspring
haplotypes with parental genomes. However, due to the limited availability of parental
genomes in modern biobanks, it can be challenging to assign the origin of haplotypes for a
large number of individuals. What sparked my interest is that, while increasing the sample
size in standard GWAS necessitates genotyping more individuals, there are numerous existing
haplotype for which the parent-of-origin information is not yet available. In the UK Biobank
for example, the PofO can be inferred from parental genomes for ~5,000 individuals,
representing only 1% of the available haplotypes. Therefore, increasing the number of
individuals with parent-of-origin assigned can be done by developing innovative methods to

analyze existing data.
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Part 1. Inference of the Parent-of-Origin of haplotypes

The first part of this chapter describes the implementation of an approach to infer the
parent-of-origin of alleles using close relatives instead of parental genomes. The article is
presented in Appendix C. Compared to the traditional approach using parental genomes, this
allowed us to increase by 5 times the number of individuals with PofO assigned in the UK
Biobank. Briefly, this approach combines (i) kinship estimates to identify close relatives and
to group them into parental groups, (ii) IBD sharing and phasing to assign parental origin to
haplotypes, and (iii) haploid imputation to increase the SNPs density. Finally we tested the
parental origin of alleles for association with phenotypes to characterize parent-of-origin

effects in the human genome.

I am the main author of this article. I worked on the study design, the implementation of
the method, performed the GWAS experiments, wrote the manuscript and created an online

database to host the summary statistics®’.
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Part I1. Parental inheritance distortion

The second part of chapter II illustrates an alternative use of the parent-of-origin of alleles,
which consists in investigating genetic factors contributing to human fertility. The
fundamental concept behind this approach is that alleles inherited less frequently from one
parent may have a significant impact on reproductive functions or gametic competition. The
advantage of such an approach is that, while GWAS studying genetic effect on human
fertility usually use proxy phenotypes, such as the number of children ever born or the age at
first birth, our approach does not require any phenotype. It only assesses distortion from the

expected Mendelian inheritance pattern.

This is an ongoing project. I am the main researcher on this project. The Appendix D
presents the preliminary results under the form of a draft manuscript of the current state of the
project and is formatted into Abstract, Introduction, Results, Future analysis, and Methods

section.
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Discussion

The central theme of this thesis is the importance of haplotypes in genomic analysis.
Haplotypes are derived from genotype data and have various applications, including detecting
compound heterozygote events, studying parental origin and their effects on complex traits,
and investigating Mendelian inheritance patterns. The primary motivation for focusing on
haplotypes is their underutilization in biobanks, despite being obtainable at no extra cost,
beyond computations, from existing data. As a result, this thesis aims to showcase how
efficient method developments can leverage haplotypes from existing genotype data to

maximize the potential of current biobanks.

Two main approaches have been developed to achieve this goal. The first involves estimating
haplotypes from genotype data, which is notably essential for assembling large reference
panels of haplotypes used for genotype imputation. The second approach involves inferring
the parental origin of haplotypes using available close relatives, which is a significant
breakthrough in parent-of-origin effect mapping since it largely increases the sample size

compared to the traditional inference that uses parental genomes.

Although the two chapters in this thesis are distinct, they are closely linked. Accurately
estimating haplotypes is crucial for performing PofO inference of resulting haplotypes. The
final section of this thesis outlines potential future applications and improvements of both
chapters, culminating in a novel perspective on evaluating the phenotypic impact of rare

variants.
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Haplotype estimation

Chapter I of this thesis presents a novel implementation of the SHAPEIT phasing software
that has been specifically designed to cope with the large number of individuals and variants
contained in modern sequenced biobanks, with a particular focus on the phasing of rare
variants. In addition, the phasing of the UK Biobank's WGS and WES data is described,
along with the application of the resulting haplotypes to compound heterozygous calling and

array imputation, showcasing the utility of such phasing for genetic analysis.

This research article focuses on the phasing of the initial UK Biobank WGS release,
encompassing 150,119 individuals. However, subsequent releases have expanded the dataset
to 200,031 individuals, with plans to include approximately 500,000 individuals by
November 2023%. As sample sizes increase, novel haplotype estimation becomes necessary
to improve phasing accuracy. This is particularly important for rare variants, where phasing
accuracy improves with a larger minor allele count’’. Larger sample sizes provide more
accurate phasing for variants, increasing their value for downstream analysis. Therefore, it is
crucial to update the haplotype estimation method for each release to ensure the best possible
accuracy for genetic analysis. The method and pipeline developed in this study will be used
to process the upcoming release of the UK Biobank and provide the research community with

the most accurate haplotype estimates possible.

The limited knowledge about the phase of rare alleles in large cohorts of unrelated
individuals previously limited several research areas. However, accurate phasing of rare
variants in this study allows for their inclusion in downstream CH event detection, which is

9,100 and are

crucial since rare LoF variants are often the primary contributors to disease
potential therapeutic targets*. Previously, CH investigations were limited to families, where
parental genomes were used to determine independent inheritance of two mutations within
the same gene. This approach helped to assess the contribution of rare and severe CH events
to diseases but did not provide insight into the prevalence of CH events in healthy

populations. By expanding the sample size used to detect CH events, a better understanding

of the genetic basis of diseases, especially regarding gene essentiality, can be achieved.

The contribution of phasing to CH event detection will become particularly important with
two key aspects. First, the upcoming release of the UK Biobank WGS data, scaling up to

~500,000 individuals, will increase the number of observed gene double knockout and
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contribute to a better characterization of CH events. Secondly, haplotype estimates serve as a
reference panel for imputation. Larger reference panel sizes result in more accurate
imputation, with a significant increase in accuracy for rare variants. This accurate imputation

of rare variants enables their use in the CH event detection process.

A second manuscript developed by the research group and introduced in Chapter II
demonstrated the use of a reference panel derived from UK Biobank WGS data for genotype
imputation, specifically for large biobanks that employ microarray genotyping technology to
reduce costs'”'. For instance, the OFH project aims to recruit 5 million UK participants and
will likely use microarray genotyping technology'®?. Since the ancestry of these individuals
will be similar to the UK Biobank cohort, the reference panel I generated will likely be
used to impute those 5 millions individuals. In addition this reference panel is the most
effective to impute any cohort of European ancestry and will likely be used in hundreds of
GWAS studies. The current reference panel constructed using 150,000 individuals from the
UK Biobank WGS data provides high accuracy imputation of variants found in 1/1,000
individuals. However, the upcoming release of the UK Biobank WGS is expected to
significantly improve imputation accuracy, enabling the imputation of variants present in
1/10,000 individuals with sufficient accuracy for downstream analyses. This improved
reference panel will be particularly advantageous for enhancing the imputation of rare
variants, including protein-modifying variants that are only present in a few copies in the UK
Biobank WES. Consequently, the ability to map CH events using imputed variants will be
strengthened, as LoF variants will be more common in the population with the larger sample

size.

Although the phasing performed on the UK Biobank WGS data set is highly accurate, there is
still room for improvement. The current call set provides a phasing probability per variant per
individual, enabling easy identification and exclusion of badly phased variants for
downstream analysis. However, given the frequency of singletons in the dataset (~46%)%,
and the low phase confidence reported for singletons (mean accuracy= ~65%), losing this
amount of information is undesirable. Thus, improving the phase at singleton and any other
low confidence phasing sites is crucial for efficient downstream analysis, such as detecting
CH events. To address this issue, our group is currently working on a follow-up which briefly
consists in identifying variants with low phasing probability for each individual, and

searching for nearby common variants with high phasing probability that co-localize on the
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same read as the low probability rare variant. This approach allows to deduce the phase of the
rare variants as being the same as the phase of the common variants. While computationally
demanding, this approach will allow to re-localize poorly phased alleles onto the correct

haplotype and to considerably increase the phasing accuracy, in particular at singletons.

Finally, the accurate phase of rare variants provided by my work opens novel perspectives in
large-scale association analysis of rare variants. Current methods for assessing the impact of
rare variants on complex traits involve burden tests, which aggregate deleterious variants
within a gene and test the resulting gene burden for association with a trait®®. While these
tests typically focus on protein-modifying variants, alternative approaches are emerging, such
as testing rare intergenic variants within a gene cis-window that are likely located in
regulatory elements. However, no previous study has integrated haplotype information into
these analyses due to the lack of accurate phase at rare variants. Using our haplotype
estimation method in the UK Biobank WES and WGS, researchers can test the gene burden
at the haplotype level. In particular, this approach is interesting for investigating the burden
of rare variants at known imprinted genes, for which only the paternal or maternal copy of the
gene is expressed. Indeed, Appendix C shows that testing paternal and maternal alleles
separately leads to stronger significance compared to normal additive tests in case of
parent-of-origin effects. Therefore, it is reasonable to expect that burden testing at imprinted
genes will be more efficient when considering the parental haplotypes separately.
Considering that burden testing usually involves a small power due to the limited number of
individuals carrying rare variants, this approach has the potential to increase the

characterization of the effect of rare variants at imprinted loci.
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The parental origin of haplotype estimates

Chapter II presents an approach to infer the PofO of individuals without any prior knowledge
of genealogy or available parental genomes. This approach leads to a considerable expansion
in the number of individuals with PofO assignments, which enhances the statistical power to
discover PofO effects. Furthermore, it showcases the importance of the parent-of-origin
information in the identification of genetic factors associated with human fertility. Despite
caveats of this approach as discussed in the published article, it constitutes a promising
alternative to family-based studies since it benefits from the increasing sample size of

biobanks.

Indeed, as the number of individuals in a cohort increases, the number of individuals with
PofO inferred can be proportionally increased. Moreover, the number of individuals with at
least a third-degree relative in the cohort increases quadratically with the total number of
individuals (Figure 7). As a result, since the approach presented relies on the availability of
close relatives, it suggests that it has an exponential potential on very large datasets. The
upcoming Our Future Health (OFH) project'®, which aims to recruit 5 million UK
participants, will be enriched in close relatives since individuals will be recruited from the
same population. This is anticipated to increase the PofO sample size to approximately 20%
of the total number of individuals, representing 1 million individuals with PofO inference.
First, this cohort will constitute the largest available with PofO inference and significantly
strengthen the benefit of this approach that exploits the inherent degree of relatedness of
modern biobanks. Second, considering that 5.4 million individuals have allowed to saturate
the association signal for standing height, I anticipate that one million individuals will

provide a saturated map of PofO effects across the human genome.

The PofO approach can identify genetic loci with PofO effects on phenotypes, but it only
provides candidate genes and does not specify the parental-specific expression nature of these
candidates. Although PofO loci discovered can be associated with imprinted genes, the PofO
associations can also underlie a more complex mechanism in which non-imprinted genes

interact with imprinted genes to generate PofO effects'”

, which requires further investigation.
To advance our understanding of PofO effects on phenotypes, omics data, specifically RNA
sequencing, needs to be integrated. First, by combining GWAS signals with RNA sequencing

data, novel candidate imprinted genes can be identified, and RNA sequencing can confirm
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the PofO specific expression patterns, improving classification accuracy. Second, by
analyzing gene co-expression and co-regulation via joint expression quantitative trait loci
(eQTL) analysis, this approach can identify networks of gene interactions consisting of
imprinted and non-imprinted genes that have the potential to cause PofO effects and
contribute to complex traits. This would be particularly interesting since current catalogs of

imprinting genes are thought to be incomplete because they imperfectly capture imprinting in

adults'®.
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Figure 7. Relatedness in the UK Biobank cohort.
Number of individuals with at least one third degree relative (y-axis) among an increasing

number of individuals randomly sampled from the UK Biobank cohort (x-axis).

The majority of knowledge about imprinted genes comes from animal breeding, where
initially, genomic regions likely to contain imprinted genes have been identified by
phenotypic screening of uniparental disomy mice'®”. In contrast, human studies have focused
on investigating the parental-specific allelic expression of candidate imprinted genes using
family data, which has confirmed some of the imprinted genes identified in animal
studies'**'”’. In addition, human imprinted genes involved in severe disorders have been

characterized, such as in the Prader-Willi and Angelman syndromes'®'”. However, the
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current classification of imprinted genes in humans is considered incomplete and mainly
includes imprinted genes with complete imprinting patterns. Recent studies suggest that
subtle imprinting patterns may exist in humans, but these are challenging to detect due to the
small differences in parental allelic expression and require large-scale family transcriptome
data'®!"°, However, most existing large-scale expression data contain unrelated individuals,
making it difficult to study such patterns. In addition, the degree of parental-specific
monoallelic expression varies depending on the tissue and developmental stage'"', which adds
another layer of complexity to the study of imprinted genes. To address this challenge, a
recent study aimed to identify novel candidate imprinted genes using allele-specific

expression data from different tissues'™

. Although unrelated individuals were used to identify
the candidate genes, they were validated notably using family transcriptome data to
distinguish the paternally and maternally inherited alleles, emphasizing the current need of

including family data in the study of imprinted genes.

In this context, the PofO inference method developed here can provide a significant advance
in the identification of candidate imprinted genes from gene expression data, since it allows
to determine the PofO of alleles across a set of unrelated individuals, and therefore does not
require family data to validate the findings. Notably, it would allow the study of imprinting at
two different layers. First, for examining the parent-of-origin specific allelic expression of
genes. Second, by scanning for PofO specific association between genetic variants and gene
expression level, namely PofO eQTLs. However, the caveat of such approaches is to require a
transcriptome cohort large enough to contain close relatives, typically in the order of tens of

thousands of individuals.

One potential solution to this challenge is to completely eliminate the need for family data
and to develop a method to infer the PofO of alleles at the gene expression level, by taking
advantage of the current classification of genes exhibiting a complete imprinting expression
pattern. This can be achieved by mapping RNA reads to haplotypes and utilizing genes with
complete imprinting as a reference for haplotype labeling: RNA reads corresponding to
maternally expressed genes will map to the maternally inherited haplotype, while RNA reads
corresponding to paternally expressed genes will map to the paternally inherited haplotype.
The utilization of this approach is expected to increase the number of individuals for which
the PofO can be inferred as it does not depend on the availability of close relatives, and

would be a promising approach if large biobanks start RNA sequencing. However, this
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approach is limited by the extent at which phasing can be achieved. Specifically, current
phasing methods can efficiently resolve the co-inheritance of alleles located on the same
chromosome (i.e intra-chromosomal phasing)’'. Regrettably, these methods are incapable of
resolving inter-chromosomal phasing, meaning that the first haplotype of a given
chromosome may not necessarily be co-inherited with the first haplotype of the next
chromosome. As a result, the proposed solution necessitates the presence of at least one
imprinted gene per chromosome to label the haplotypes. In addition, it is also limited by the

tissue-specific nature of imprinting'®*'"

, which might limit the use of the current set of
known imprinted genes. Therefore, the approach would be more effective if applied to
multiple tissues, which would enable for a better understanding of the tissue-specificity of

imprinting and improve the accuracy of haplotype labeling.
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Conclusion

Despite more than 15 years of GWAS research, the scientific community's interest in
association analysis has not waned. While GWAS has been successful in identifying genetic
variants associated with complex traits, there is still room for improvement in utilizing the
vast amount of existing data. To fully leverage the potential of existing biobanks data, there is
a need to enhance data processing, inference, and testing methodologies. In this thesis, I
developed efficient methods for inferring haplotypes and their parental origin from existing
biobanks, and I demonstrated the practical applications of my inferences. I am confident that

my work will have a significant impact on the community for various reasons.

The phased haplotypes generated as part of this thesis, which will be continuously updated
with the upcoming data releases, constitute a resource that will be employed in various
analyses. Firstly, these haplotypes enable the detection of compound heterozygote events in
large-scale population cohorts. Secondly, they enable integrating the phase of rare variants in
gene burden analysis and allow for these analyses to be conducted at the haplotype level.
Thirdly, they represent the best available reference panel for the European population.
Consequently, the reference panel that I generated will be utilized in numerous GWAS

studies.

The PofO inference method I developed is a significant advance that enables the study of
PofO effects in large-scale biobanks. This methodology is expected to be employed in
numerous large-scale cohorts, uncovering numerous novel signals that will improve our
current comprehension of PofO effects on complex traits and the underlying biology of the
imprinting mechanism. Within a few years, this methodology will likely enable the study of
PofO effects in one million individuals, providing a saturated map of PofO effects across the

entire human genome.

Although my work demonstrates two methods for maximizing the potential of current
biobanks, additional innovative strategies are necessary. To uncover novel associations that
traditional methods may have missed, future efforts should concentrate on creating and

combining diverse methodologies.
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Appendix A

Accurate rare variant phasing of
whole-genome and whole-exome sequencing
data in the UK Biobank

This manuscript is presented in Chapter 1.

The online version and the supplementary material can be downloaded from

https://www.nature.com/articles/s41588-023-01415-w .
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Phasing involves distinguishing the two parentally inherited copies of each

chromosome into haplotypes. Here, we introduce SHAPEITS, a new phasing
method that quickly and accurately processes large sequencing datasets and
applied it to UK Biobank (UKB) whole-genome and whole-exome sequencing

data. We demonstrate that SHAPEITS phases rare variants with low switch
error rates of below 5% for variants present in just 1 sample out 0f100,000.
Furthermore, we outline amethod for phasing singletons, which, although
less precise, constitutes an important step towards future developments.
We then demonstrate that the use of UKB as areference panel improves the
accuracy of genotype imputation, which is even more pronounced when
phased with SHAPEIT5 compared with other methods. Finally, we screen
the UKB data for loss-of-function compound heterozygous events and
identify 549 genes where both gene copies are knocked out. These genes
complement current knowledge of gene essentiality in the human genome.

Modern genetic association studies are increasingly based on
whole-genome or whole-exome sequencing (WGS/WES) for hundreds
of thousands of samples collected as part of nationwide biobanking
initiatives*. Compared with previous studies based on single nucleo-
tide polymorphism (SNP) arrays, WGS and WES data can identify rare
variants (e.g., minor allele frequency below 1%), allowing a systematic
characterization of their contribution to trait heritability’, functional
relevance® and effects on various traits and diseases™. In this context,
haplotype phasing of rare variants, which involves distinguishing the
two parentally inherited copies of each chromosome into haplotypes,
addsalayer of biologically relevantinformation and unlocks new analy-
ses. Forinstance, phasingis crucial to identify compound heterozygous
events, whichoccur whenboth copies of agene contain nonidentical,
heterozygousmutations. In the case of Mendelian disorders, compound
heterozygosity is one of the most common inheritance models forrare
recessive diseasesin nonconsanguineous individuals’®. Previous efforts
toidentify compound heterozygous eventsinlarge cohorts provided
valuable insights, yet these either relied onimputed data® or ignored

phasing information®. Compound heterozygous event identification
requires high-confidence phase information to be considered when
rare variants are analyzed, such as in gene-based burden test analysis™.
The most common approach to phase rare variants without parental
genomes or long-readsinlarge cohorts of individuals is statistical phas-
ing, whichleverages information across individuals to make estimation
ofhaplotypes". This technique is well established for common variants
typed on SNP arrays, where phase informationis used, for instance, to
perform genotype imputation, admixture analysis" and genealogy
estimation". Phasing methods have been optimized to scale to the
thousands of samples in modern SNP array datasets, and the time is
ripetodothe same for the millions of rare variant sites presentin WGS/
WES datasets. As an example, the WGS data for 150,119 UKB samples
comprise three orders of magnitude more variants than the Axiom
array data, around 96% of them having aminor allele frequency (MAF)
below 0.1%. Phasing large scale WGS/WES datasets is challenging and
new methods able to handle large amounts of rare variants are now
emerging®”. Recently, acomputationally efficient solution for rare
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Fig.1|Rationale of SHAPEITS. a, All samples are phased at common variants
(MAF = 0.1%). b, Phasing of a given rare variant onto the haplotypes at
commeon variants. Conditioning haplotypes used in the estimation share long
matches with the target (greenand blue) and are not monomorphicatthe
rare variant. Since heterozygous genotypes for the rare variant are unphased,

LoF variants

the minor alleles at those are assumed to be on both haplotypes (i.e., forcing
homozygosity). c, Singleton phasing by assigning the new allele on the target
haplotype with the shortest match. d, Compound heterozygous event mapping
based on the rare variant phasing (a-c).

variant phasing has been implemented in Beagle v.5.4 (refs. 16,17), in
which common and rare variants are phased separately: in afirst step,
a standard phasing method is used to obtain haplotypes at common
variants, and inasecond step rare heterozygous sites are phased onto
theresulting haplotypes using genotype imputation technique. This
type of strategy, based on haplotypescaffolds, hasbeenused in other
contexts, such as in genotype imputation®, integration of family data”
and external phasing information™.

In this work, we describe SHAPEITS, a method designed to accu-
rately phase rare variants inlarge WGS/WES datasets, including single-
tons, with moderate accuracy, while attributing phasing confidence
scores. We applied it to estimate haplotypes for 150,119 and 452,644
UKB samples with WGS and WES data, respectively. We demonstrate
the benefit of using these two haplotype collections as reference panels
for SNP array imputation and finally show that the phase inferred at
rare variants in the WES dataset can be screened to reliably identify
compound heterozygous loss-of-function (LoF) mutations, probably
leading to complete gene knockouts.

Results

Overview of the SHAPEITS phasing method

SHAPEITS performs haplotype phasing of WGS or WES data using three
different phasing models, each focusing onaspecific type of variants:
(1) common variants are phased using the SHAPEIT4 model™, (2) rare
variants are phased onto the resulting haplotypes using an imputa-
tion model and (3) singletons are phased using a coalescent-inspired
model. See Fig. 1 for an illustration of the phasing scheme. Common
variants are defined as having a MAF above 0.1% and are phased using
an optimized version of the SHAPEIT4 algorithm, known to perform
well on large sample sizes (Fig. 1a).

The resulting haplotypes are used in a second stage as a scaffold
onto which rare variants (MAF < 0.1%) are phased one after another,
following a methodology similar to that of Beagle v.5.4 (refs. 16,17). To
cope with the large numbers of rare variants, SHAPEITS uses a sparse
data representation for rare variants: only genotypes carrying at least
one copy of the minor allele are stored in memory and considered for
computation, thereby discarding all genotypes being homozygous for
themajor allele**:. SHAPEITS phases each rare heterozygous genotype
conditioning on a small number of informative haplotypes (Fig. 1b).

For a specificrare variant, these conditioning haplotypes are chosen so
that (1) they belong to samples being locally identical-by-descent (IBD)
with the target sample and (2) they are polymorphic at the rare variant
(that is, at least a few carry a copy of the minor allele). To comply with
the first requirement, SHAPEITS uses a positional Burrows-Wheeler
transform (PBWT) data structure™ built on all the scaffold haplotypes
atcommonvariants. Thisallowsrapid identification of shared segments
between haplotypes. To ensure representation of the minor allele inthe
conditioning set (second requirement), the method performsasecond
PBWT passrestricted tothe subset of samples carryinga copy of the minor
allele. Thissecond passis performed efficiently by leveraging the sparse
representation of the genotypes. We then determine the alleles carried
by the conditioning haplotypes at the rare variant of interest, which
is straightforward when homozygous. However, when a conditioning
sampleis heterozygous, theallele carried by each of its two haplotypesis
unknown. Inthis case, ourmodelassumes that both haplotypescarry the
minoralleleasdoneinBeagle v.5.4 (refs.16,17). Once the conditioning set
of haplotypesisassembled, SHAPEIT5 uses the Liand Stephens model**
togetthe mostlikely phase configuration of the rare allele by imputation
(that is, either on its first or second target haplotype; Supplementary
Fig.1). The strength of our model resides in the guarantee that eachrare
heterozygous genotype is phased from a conditioning set containing
long haplotype matches and carrying copies of the two possible alleles.

For singleton variants (minor allele count (MAC) of 1), SHAPEITS
uses another phasing model that (1) assumes singletons to be recent
mutation events and (2) leverages IBD sharing patterns between haplo-
types to make inference (Fig. 1c). Specifically, our model identifies
the longest possible match in the dataset for each target haplotype.
By definition, these matches point to haplotypes sharing recent com-
mon ancestors with the target and their lengths indicate the number
of generations separating them: the shorter the match, the older the
common ancestor. Our model assumes that an older commonancestor
means more time foramutationto occur onthat lineage and therefore
assigns the minor alleles of singletons to the target haplotype with the
shortest match™.

Phasing UKB exomes and genomes
We used SHAPEIT5to phase haplotypes for three different UKB sequenc-
ing datasets: (1) WGS data on chromosome 20 for 147,754 samples and
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around 13.8 million SNPs and indels after quality control, (2) WES data
for 452,644 samples and around 26 million variants and (3) WGS data
for the full set of 150,119 samples and around 603 million variants. For
(1) and (2), we included only samples for which Axiom array data are
available and excluded parental genomes for duos (parent-offspring
pairs) and trios (parent-offspring triplets) to measure phasing accu-
racy in the offspring. Numbers of samples, trios, duos and variants
after quality control are givenin Supplementary Table 1. Phasing of the
WES dataset was performed for each chromosome independently and
phasing of the WGS was done in overlapping chunks of around 4.5 Mb
on average to leverage parallelization on the UKB Research Analysis
Platform (RAP). We compare the performance of our method with
Beagle v.5.4 (refs. 16,17) (default parameters) on the WES and WGS
datasets on chromosome 20.

Phasing performance in the UKB data

To assess phasing performance, we used the available white British
trios (719 for WES, 31 for WGS) and duos (432 for WGS). Using these,
we (1) derived a true set of haplotypes for the offspring using inher-
itance logic, (2) performed statistical phasing of the WES and WGS
datasets after having excluded parental genomes and (3) compared
the offspring haplotypes obtained by statistical phasing with the true
set obtained in (1). We assessed how close the two sets of haplotypes
are by measuring the switch error rate (SER), which is the fraction of
successive heterozygous genotypes phased differently. When looking
at overall SER using different validation sets (duos, trios), different sets
ofvariants (all variants or common variants only) and different sample
sizes, we found minor differences between SHAPEITS and Beagle v.5.4
onthe WGS data (Supplementary Fig. 2a-c). However, when consider-
ing only Axiom array positions, lower SER is observed with SHAPEITS5
(Supplementary Fig. 2d). We did not find the same pattern when phasing
the Axiom array data only (n=5,000 to n =480,000): the two meth-
ods exhibit similar accuracy regardless of sample size (Extended Data
Fig.1). We obtained low SER (<0.2%) on the largest sample sizes for
both methods, to the point that switch errors and genotyping errors
cannot be distinguished (Extended Data Fig. 2).

Akey feature of the WES and WGS datasets is the large number of
rare variants they contain. The number of heterozygous genotypes is
low at these variants and they have a small contribution in global SER
measurements. We therefore stratified the SER within bins of MACs
tofocus onrarevariants. We assigned heterozygous genotypes todif-
ferent MAC bins depending on the variant frequency and computed
ineach MAC bin the fraction of them being correctly phased (relative
tothe previous heterozygous genotype, regardless of its MAC). When
doing so, we found that SHAPEITS phases rare variants with higher
accuracy thanBeagle v.5.4 inboththe WGS and WES datasets (Fig. 2a,b).
Forinstance, SHAPEITS5 and Beagle v.5.4 phase rare variants inthe WGS
data(MACbetween1land 20) with SER of 4.36% and 8.76%, respectively,
whichisa50.2% drop. Inthe WES dataset, the same variant category is
phased by SHAPEITS with a switch error rate of 2.93% compared with
5.18% with Beagle v.5.4 (42.67% reduction). Overall, SHAPEIT5 phases
rare variants in the WES and WGS with20% to 50% fewer switch errors
compared with Beagle v.5.4, depending on MAC. This improvement
inaccuracy is also observed when only using trios for validation (Sup-
plementary Fig. 3) and depends on sample size (Supplementary Fig. 4).
Significant differences between the two methodsare observed in data-
sets comprising atleast 50,000 samples and increase with sample size.

In a large sequencing dataset, a singleton can be the product of
several causes, including recent mutation, de novo mutation, somatic
mutation or genotyping error. SHAPEITS aims to resolve the phase
of recent mutations. We estimated the fraction of singletons falling
in this category using duos and trios in the WGS data. We measured
the fraction of singletons in offspring that is not supported by the
genotype dataavailable for the parents. In duos, we found that 47.36%
of the singletons are supported by the genotyped parent, whereas

52.64% are not (Extended Data Fig. 3a), deviating from the expected
50% and suggesting that 5.26% of the singletons are not inherited
from parents (assuming no inheritance bias). Consistently, intrios we
found that 4.52% of the singletons in the offspring are not inherited
from the parents (none of the parents carry the minor allele; Mendel
inconsistency; Extended DataFig. 3b). Together, this shows that most
singletons (-95%) areinherited and can therefore be phased using both
inheritance logic in trios and duos and our model. In the WGS data-
set, we obtained SER of 35.1% and 36.6%, respectively (Extended Data
Fig. 3c,d). In the WES dataset, we obtained an SER of 35.2% (Fig. 2b).
Whilerelatively high, thisisasignificant deviation from the expected
50% from previous models (binomial test P values <3.7 x 10™; Extended
Data Fig. 3c,d).

All computations were performed onthe UKB RAP. The RAP offers
achoice of two priority levels for computations: ‘spot’ (lower cost) and
‘on demand’ (higher cost). Assuming that all computing is performed
on demand, Beagle v.5.4 and SHAPEITS5 require £57.80 and £65.20 of
computing costs (as of October 2022) to phase chromosome 20 WGS
data (n=147,754), which correspond to approximately £2,890 and
£3,258 for the entire genome (Supplementary Table 2). However, these
are conservative estimates, as SHAPEITS allows phasing of the datain
chromosomal chunks (in parallel), therefore greatly reducing the need
for using ‘on demand’ priority.

SHAPEITS5 phasing improves genotype imputation accuracy
Several downstream analyses in disease and population genetics
require haplotype-level data. One example is genotype imputation,
whichuses WGS dataas areference panel to predict missing genotypes
in SNP array data. As the accuracy of genotype imputation depends on
thereference panel, we quantified phasing errors using genotype impu-
tation, which has two main advantages. First, it provides a validation
alternative to SER that is easy to partition by minor allele frequency.
Second, it assesses the phasing quality across all samples, and not only
onasmallsubset with parental genomes available. Weimputed a subset
0f' 1,000 UKB British samples with SNP array data available, together
with WGS and WES as validation.

First, weshow that genotypeimputation using the UKB WGS refer-
ence panel greatly outperforms the previous generation of reference
panels, such as the Haplotype Reference Consortium (HRC)* (Fig. 2¢),
inline with previous findings showing that large WGS panels enhance
imputation’. For both UKB WGS and WES, we find that the reference
panels phased with SHAPEITS5 outperform those phased with Beagle
v.5.4 at rare variants (MAC < 500; Fig. 2c,d and Extended Data Fig. 4),
consistent withthe SER estimates reported in Fig.2a,b. As an example,
imputation using the WGS or WES reference panel phased with
SHAPEITS provides an increase of squared Pearson coefficient of
around 0.05 for variants with a MAC between 2 and 5. In an associa-
tion study, this corresponds to an increase of 5% in effective sample
size when testing these variants for association, due only to better
reference panel phasing™. Even singletons are better imputed using
the SHAPEITS5 panel. Despite the low overall accuracy at these variants,
which restricts their utility in downstream analyses, this confirms on
alarger scale the validity of our singleton phasing.

SHAPEITS introduces a metric of phasing confidence at rare het-
erozygous genotypes (MAF < 0.1%), which corresponds to the prob-
ability of the reported phase. This allows controlling for phasing errors
and utilizing phasing certainty in downstream analyses. Phasing con-
fidencelies between 0.5and 1, wherelindicates no uncertainty in the
phase and 0.5 means that the two phasing possibilities are equally
likely. Singletons are attributed a phasing confidence of 0.5 as phasing
confidence cannot be computed for them. We assessed the phasing
accuracy at different confidence scores (Extended Data Fig. 5) and
show that filtering variants with a threshold of 0.99 controls the SER
to amaximum of around 2% for WGS data and around 1% for WES data
while keeping most variants (forinstance, >75%and >40% variants with
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MAC 2-5areretained). Thisallows researchers to confidently userare
heterozygous genotypesintheir analyses.

Identification of LoF compound heterozygotes

Compound heterozygous events occur in an individual when both
copies of agene contain atleast one heterozygous variant. Compound
heterozygosity is oftenstudied in the context of LoF variants, which are
expected to have highly deleterious effects on genes—equivalent to a
homozygous gene knockout. Indeed, compound heterozygous events
have been linked to several diseases including cancer, birth defects
and Alzheimer’s disease™” . The accurate haplotype phasing across
the UKB performed in this study, including extremely rare variants,
allows the identification of individuals and genes with compound
heterozygous events. For this, we gathered 383,637 high-confidence
LoF variants (stop-gain, frameshift or essential splice variants) phased
across 374,826 white British individuals and 17,689 protein-coding genes
(Methods). We found thatagene has, onaverage, 22.3 LoF variants across
the cohort and anindividual has, on average, 7.8 LoF variants (Extended
DataFig.6). Todetermine compound heterozygous events, we identify
individuals with LoF mutationsin both copies of agene. Owing to their
higher error rates and the risk of introducing false positives, we opted
to exclude singletons from these analyses. A total of 2,150 (12%) out
of 17,689 protein-coding genes tested had at least one individual with

two or more LoF variants, and thus liable for compound heterozygous
identification. From those 2,150 genes, we found 549 (26%) genes with
one or more individuals with compound heterozygous LoF variants
(Fig. 3a), foratotal of 779 gene-individual events (766 distinct individu-
als; Extended Data Fig. 7 and Supplementary Data 1). When consider-
ing only high-confidence haplotype calls (phasing confidence score
>0.99), we stillidentify 80% (441) genes and 79% (614) of the compound
heterozygous eventsidentified in the full dataset, indicating that these
mostly rely on high-confidence haplotype calls (Fig. 3a and Extended
DataFig. 7). We found that the 549 compound heterozygous genes are
highly depleted in several lists of known essential genes, compared
with the 2,150 genes with two or more LoF variants (odds ratio (OR)
0.1-0.48 across essential gene lists, P<9.7 x 1073 Fig. 3b). Conversely,
compound heterozygous genes are enriched in lists of nonessential
and homozygous LoF tolerant genes (OR 1.2-2.7 across nonessential
gene lists; Fig. 3¢). The comparison with genes with two or more LoF
variants in the same individual ensures that the signal observed is not
due tothe mere presence or absence of LoF variants inthose genes, but
rather the avoidance of themoccurringinbothgene copies. Asthe UKB
is composed largely of healthy individuals, a depletion of compound
heterozygous events in essential genes is expected.

When comparing with phasing performed with Beagle v.5.4,
we found 673 compound heterozygous genes (962 events) that are
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Fig.3 | Compound heterozygousidentification in the UKB WES data phased
with SHAPEITS. a, Number of genes with at least one individual with compound
heterozygous LoF variants across several categories: Full data, all LoF variantsin
the study, except singletons; High confidence, LoF variants excluding calls with
phasing confidence score <0.99; and Random phasing, shuffling phasing of all
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heterozygous genes presence in several lists of essential genes (Methods).
Background is composed of 3,018 genes with =2 LoF mutations; xaxis is capped
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between the number of individuals with compound heterozygous events and
the expected number of individuals given the number of variants, per gene.
Missense (n=14,336 genes) and synonymous (n = 9,816 genes) events are shown
in addition to LoF events (n =2,150 genes) as acomparison. Thelength of the
box corresponds to the interquartile range (IQR) with the center line and values
corresponding to the median, and the upper and lower whiskers represent the
largest or lowest value no further than1.5% IQR from the third and first quartile,
respectively. Pvalues between categories correspond to two-sided Wilcoxon
test Pvalues.

significantly depleted in essential genes but atreduced levels compared
with SHAPEITS phasing (Extended Data Fig. 8). Finally, as a control,
we attributed the phase of variants randomly, whichled to 1,792 com-
pound heterozygous genes and 17,241 events (Fig. 3a), which did not
display depletion in essential genes, as expected (Fig. 3b). Together,
these results indicate that accurate haplotype phasing is crucial for
theidentification of bona fide compound heterozygous events.

The finding that compound heterozygous genes are depleted
in essential genes indicates that such events are avoided, at leastina
subset ofthe genes. To explore this further, we compared the number
of expected and observed compound heterozygous events per gene,
based on the variant distribution in the UKB cohort, assuming that
each variant phase is independent (Methods). For LoF variants, we
observed a marked decrease in observed compound heterozygous
events compared with expected, confirming evidence for negative
selection (Fig. 3d). Conversely, when considering variants with syno-
nymous effect (Extended Data Fig. 9 and Supplementary Data 1), the
number of observed compound heterozygous events is not depleted
(medianratio =1.4; Fig. 3d), indicating no or low selective pressure to
reduce synonymous variant compound heterozygous events for most
genes. When considering missense or low-confidence LoF variants
(referred to as missense for simplicity), we observed a mild decrease

in observed events compared with expected (meanratio=0.8; Fig. 3d
and Supplementary Data 1), consistent with the possible deleterious
effect of some missense variants. In addition, we found that missense
compound heterozygous genes had only mild ornodepletionfor essen-
tial genes, whereas synonymous compound heterozygous genes either
had nosignificant depletions or were even enriched in some essential
gene sets (Extended Data Fig. 9). Overall, our results demonstrate
that the accurate phasing at rare variants with SHAPEITS allows us to
screen for compound heterozygous events across the UKB cohort with
high confidence, revealing that LoF compound heterozygous events
areunder strongselective pressure in essential genes, as expected by
their high negative impact.

Discussion

WepresentSHAPEITS, atool for phasingrarevariantsinlargesequencing
datasets. SHAPEITS phases common variants first tocreateahaplotype
scaffold. Subsequently, rare variants are phased one ata time on this
scaffold. A key difference from Beagle v.5.4 is the use of individualized
panels of haplotypes for rare variant phasing. SHAPEITS ensures
representation of the minor alleles at rare variants, which leads to
accuracy improvements that are more pronounced in larger
sample sizes. We produced phased genomes for the UKB WGS and
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WES data for acompute cost below £4,000. The haplotype estimates
have low SERs, with rare variants down to doubletons being phased
with high confidence. Thisaccurate phasing enables highly accurate
genotype imputation whenused as areference panel. Beyond meas-
uring error rates, we also validated phased haplotypes biologically
by identifying compound heterozygous events, which we found
highly depleted in essential genes, as expected. In addition, we
achieved singleton phasing, albeit with higher error rates and there-
fore with limited downstream utility. However, we view this as an
advance in phasing models as previous approaches were unable to
phasesingletons.

Although of substantial interest, previous knowledge of com-
pound heterozygous cases comes mostly from case studies in fami-
lies”* and thereis currently no method toidentify these eventsin large
biobanks systematically. Here, we show that high-quality phasing
of rare variants with SHAPEITS allows compound heterozygosity to
be studied at the biobank-scale level, which can greatly increase the
number of events characterized compared with the use of family
data, in addition to exploring their association with new pheno-
types. As a proof-of-principle, we screened all protein-coding genes
for compound heterozygous events with high-confidence LoF vari-
ants and found 549 genes predicted to be fully knocked out across
816 UKB individuals out of the 374,826 individuals considered in
this study. This complements other lists of nonessential genes™,
with the main difference that these knockouts are found in vivo in
humans. Approximately 0.22% of the UKB cohort had at least one
gene knockout by compound LoF heterozygous events. This observed
frequency of events matches previous estimates in outbred healthy
cohorts™. UKB participants are not expected to have any rare and/
or severe genetic diseases as their average age is 56 years, which is
after the age of onset for most rare diseases. This partially explains
why the gene knockouts observed are strongly depleted in several
lists of essential genes. However, we still found 52 genes deemed as
essential in at least one of the essential gene lists we analyzed. We
canconceive three possible scenarios to explain these specific cases.
First, the mutations had a moderateimpact on the individual and did
not resultin severe disease. As an example, we found one individual
with pulmonary embolism while having a knockout of the essential
gene ADAMI19—a gene reported for its involvement in pulmonary
disease” . Second, compensatory mutations canrescue the deleteri-
ous effect of the knockout. For instance, we observed one individual
with a knockout of CFFTR—an essential gene found to be rescued by
several gain-of-function mutations across the genome® . Finally,
some of the compound heterozygous events discovered may be false
positivesdriven by incorrect phasing or erroneous LoF annotations.

We foresee that rare variant phasing in large sequencing studies
such as the UKB has the potential to unlock many applications and
analyses. First, other types of functional variants can be screened for
compound heterozygous effects, for instance, combining LoF and
missense or regulatory variants*’. Second, phase information can
beincluded in rare variant burden testing approaches, which usually
consider only amixture of the two haplotypes. Third, usingaccurately
phasedreference panelsallows phasing of extremely rare variants with
high accuracy, evensingletons to some extent, for any new sequenced
genome from the same population. This is beneficial for diagnosis of
rare and severe diseases caused by compound heterozygous effects,
such as in the Genomics England dataset*, in which diagnosis yield
could be increased by incorporating phase information.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butionsand competing interests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/541588-023-01415-w.
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Methods

Ethics statement

This study relied on analyses of genetic data from the UKB cohort,
which was collected with informed consent obtained from all partici-
pants. Data for this study were obtained under the UKB applications
licence number 66995. Alldataused inthis research are publicly avail-
able toregistered researchers through the UKB data-access protocol.

Common variant phasing

For common variant phasing (MAF = 0.1%), SHAPEITS5 is based largely
on the previous SHAPEIT version (v.4). Briefly, it updates the phase
of each sample in turn within a Gibbs sampler iteration scheme: each
sampleis phased by conditioning on other samples’ haplotypes using
the Li and Stephens model*. Two main features, already part of the
SHAPEIT4 model, allow fast phasing at common variants: (1) first,
the haplotype sampling step has linear complexity in the number of
conditioning states*’ and is multithreaded so that several samples are
phased in parallel; (2) second, the sampling is based ona parsimonious
and highly informative set of haplotypes, identified in constant time
using the PBWT data structure.

However, one computational limitation of SHAPEIT4 residesinits
inability to parallelize the constructionof the PBWT, which canbecome
relatively long in very large datasets. In SHAPEITS, the mainimprove-
ment we introduced for common variant phasing is a parallelization
scheme for the PBWT construction: several PBWT passes are runin
parallel on several central processing unit cores, each one running for
adifferent chunk of 4 cM by default, achieving a notable reduction of
the wallclock running time of the method.

Rare variant phasing

To accurately phase rare variants (MAF<0.1%), SHAPEITS uses the
haplotypes derived at common variants as haplotype scaffolds onto
which heterozygous genotypes are phased one rare variant at a time.
Forasingle heterozygous genotype, we aim to determine which of the
two target chromosomes carries the minor allele (as opposed to the
major allele). To do so, our method uses the Liand Stephens model to
compute the probabilities of the two possible phases. The probabilistic
inference is based on a set of haplotypes carried by other samples in
the dataset, that we call conditioning haplotypes. Similarly, we call a
conditioning sample, any sample carrying at least one conditioning
haplotype and conditioning set, the collection of conditioning haplo-
typesused forinference. The outcome of the estimationis a posterior
probability of the most likely phase for each of the rare heterozygotes.
Specifically, our model comprises five main features:

Sparse representation. We use a sparse matrix representation of
the genotypes at rare variants to efficiently store large amounts of
genotype data in memory and speed up computations. Only geno-
types carrying at least one copy of therare allele are stored inmemory
together withthe necessary indexes to determine the sample and vari-
anttowhichthe genotype corresponds. As most of therare variantsare
homozygous for the major allele, this representation allows foralarge
reduction in memory usage and a fast identification of heterozygous
genotypes at a given rare variant. To quickly retrieve rare genotypes
at both the sample and variant levels, we store this sparse genotype
matrix in memory together with its transpose.

Haplotype selection. To get the most informative haplotypes in the
conditioning set, werequire that they (1) share long haplotype matches
withthe target and (2) are not monomorphic at the rare variant of inter-
est. The first condition ensures that the haplotypes in the condition-
ing set are informative for the copying model. The second condition
ensuresthat the conditioning set contains carriers of the two possible
allelesat the rare variant ofinterest. The latter isrequired toaccurately
contrast the two possible phasing possibilities of therare heterozygous

variant. To efficiently retrieve haplotypes complying with these prop-
erties, we use the PBWT data structure of the haplotype data derived
at common variants. We perform both forward and backward PBWT
sweeps so that we can identify long matches between haplotypes cen-
tered in the position of the rare variant by interrogating the flanking
prefix arrays. This gives a first set of haplotypes that complies with
condition (1), but not necessarily with condition (2). Therefore, we
do asecond identification of matches in the PBWT, this time restrict-
ing the search to the subset of samples carrying the minor allele. We
achieve this second pass efficiently by taking advantage of the sparse
genotype representation: we interrogate only the PBWT prefix arrays
atthe sparse indexes.

Forcing homozygosity. The conditioning set defined before contains
asetofhaplotypesthat share large segments with the target haplotype
at common variants, but they have not been phased yet at the rare
variant of interest. When the conditioning sample (that is, the sample
carrying the haplotype) is homozygous, this is not an issue as its two
haplotypes carry the same allele. However, when the conditioning
sampleis heterozygous, we do not knowthe allele carried by each one
ofits two haplotypes. We solve this by simply assigning the minor allele
toboth haplotypes”. As a consequence of the two previous steps, the
conditioning set of haplotypesis guaranteed to contain carriers of the
two possible alleles at therare variant of interest.

Copying model. We can now perform phasing of rare heterozygous
genotypes based on the conditioning set of haplotypes that have been
constructed as part of all the previous steps. SHAPEITS computes the
probability that each target haplotype carries theminorallele by using
a haploid version of the Li and Stephens model* as implemented in
Impute5 (ref. 21) (for a definition of the HMM parameters and a formal
description of the imputation model used, see Rubinacci et al.” and
Howie et al.”). Specifically, it runs a forward-backward pass as done in
the context of genotype imputation (see Marchini* for details) toget the
probabilities that each target haplotype carries the minor allele at the
rarevariant. In practice, the vector of copying probabilities is obtained
ateach rare variant by averaging the copying probabilities computed at
the two closest flanking common variants. Here, the conditioning set of
haplotypes serves as alocal reference panel forimputing the alleles at
therare variantin the target sample. Of note, accurate inference is made
possiblesince the conditioning set we chose is guaranteed to comprise
carriers of both the major and minor alleles at the rare variant of inter-
est. Having only carriers of asingle allele would not be informative for
making inference here. Finally, we use these imputation probabilities
to derive phasing probabilities (Supplementary Fig. 1), which we can
useto get the most probable phase or as phasing confidence scores to
propagate phasing uncertainty in downstream analyses.

Singleton phasing. In the case of singletons, only the target sample
carries a copy of the minor allele at the rare variant. Therefore, none
of the conditioning haplotypes carries the minor allele and the whole
copying model described above is unable to make inference. This is
awell-known limitation of all statistical phasing methods. SHAPEITS
can provide inference at these sites by using the Viterbi algorithm for
the Li and Stephens model™, to obtain the longest shared IBD segment
between each one of the two target haplotypes and the conditioning
haplotypes. The minor allele of singletons is then assigned to the tar-
get haplotype with the shortest shared segment. The ideabehind this
model presumes that the shorter the IBD sharing between two haplo-
types, the older their most recent common ancestor is, and therefore,
the chance for new mutations to occur in that lineage is increased.

Validation of haplotype estimates
To validate haplotype estimates, we use trios (two parents, one off-
spring) for WES data and both duos (parent-offspring pairs) and trios
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for WGS data. To identify parent-offspring relationships, we use the
kinship estimate and the IBSO as provided as part of the UKBSNP array
release. We select parent-offspring relationships as having a kinship
coefficient lower than 0.3553 and greater than 0.1767 and an IBSO lower
than 0.0012 (refs. 1,45). Inaddition, we require that the differenceinage
between parents and offspringis greater than 15 yearsand thatthe two
parents have different sex for trios. We finally keep only self-declared
white British individuals for which ancestry was confirmed by princi-
pal component analysis (PCA, UKB field 22006). The number of trios
used in the validation for all three datasets (Array, WES or WGS) is
showninSupplementary Tablel. Validation of haplotypesis atwo-step
procedure. First, we statistically phase a given dataset including only
the offspring samples. Second, we use the parents to measure the
SER—a metric commonly used to assess how close estimated and true
haplotypes are. The SER is defined as the fraction of successive pairs
of heterozygous genotypes being correctly phased. In the context of
this work, we measured SER stratified by bins of MAC. We assigned each
heterozygous genotype to agiven MAC bin and counted thefraction of
heterozygous genotypesbeing correctly phased per MACbin, relative
to the previous heterozygous genotypes (this one can belong to any
MAC bin). This definition of SER has the advantage of showing how
well statistical phasing performs depending on the frequency of the
variants it phases (either common or rare).

UKB SNP array dataset

We used the UKB Axiom array in PLINK format and converted itinto VCF
format using plink2 (v.2.00a3.1LM). This resulted in 784,256 variant
sites across autosomes for 488,377 individuals. We then applied qual-
ity control on the data using the UKB SNPs and samples QC file (UKB
Resource 531) to only retain SNPs and individuals that have been used
for the official phasing of the Axiom array data', resulting in 670,741
variant sites across 486,442 individuals. This includes 897 white British
parent-offspring triosand 4,373 white British parent-offspring duos
(Supplementary Table1).

UKB WGS dataset

We use the whole-genome GraphTyper joint call pVCFs from the UKB
RAP. We first decomposed multiallelic variants into biallelic variants
usingbcftools (v.1.15.1) norm-m*. We then performed quality control of
the variant sites and filtered out SNPs and indels for (1) Hardy-Weinberg
Pvalue <107, (2) more than 10% of the individuals having no data
(GQ score = 0; missing data), (3) heterozygous excess less than 0.5or
greater than 1.5 and (4) alternative alleles with AAscore <0.5. Addition-
ally, wekept only variantsites withthe tag ‘FILTER = PASS’, as suggested
by the data providers"”. This resulted in a total of 603,925,301 variant
sites, including 20,662,402 common variant sites (MAF = 0.1%) and
583,262,899 rare variant sites (MAF < 0.1%), across a total of 150,119
individuals. This WGS dataset includes 31 trios and 432 duos (Sup-
plementary Table 1). To assess the accuracy of the phasing, we use
chromosome 20 only. For this analysis, we used only samples being also
genotyped with the UKB Axiom array, resulting in 147,754 individuals
(Supplementary Table 1). We phased chromosome 20 using chunks of,
onaverage, 4.5 Mb with overlapping buffers of 250 kb. We used Beagle
v.5.4 (refs.16,17) with default parameters on the entirechromosome 20.

UKB WES dataset

Weused the WESfilesin pVCF format as released on UKB RAP. The qual-
ity control pipeline has been described in Szustakowski et al.”. To phase
WES data, we first merged it with the unphased SNP array data. The aim
ofthiswastoincrease the number of common variants that are phased
inthe first step of SHAPEITS (that is, common variants phasing), which
improvesthe quality of the haplotype scaffold onto which rare variants
arephased, in particular atintergenicregions. We kept only individuals
with both the SNP array and the WES data, resulting in 452,644 total
individuals, including 719 white British parent-offspring trios and

3,014 white British parent-offspring duos. When a variant is listed in
boththe WESand the SNP array, we keep the SNP array copy as the SNP
arrayis expected to be more robust to SNP calling errors*®, This resulted
in retaining a total of 26,199,614 variants, including 977,517 common
variants (MAF = 0.1%) and 25,222,097 rare variants (MAF < 0.1%) (Sup-
plementary Table 1). Phasing the 452,644 individuals with both WES
and Axiom array available data is performed for each chromosome
independentlyinasingle chunk. We also used Beagle v.5.4 (refs. 16,17)
with default parameters.

Genotype imputation

To perform genotype imputation from the phased WGS and WES data-
sets, we extracted 1,000 samples with British ancestry that are unre-
lated to any other sample in the dataset, and for which we had Axiom
SNParray dataavailable. We therefore used areference panel composed
of the remaining 146,754 WGS samples and 446,470 WES samples for
both SHAPEIT5 and Beagle v.5.4. For the HRC reference panel, we used
the PICARD toolkit (http://broadinstitute.github.io/picard/) toliftover
the data to the Human genome assembly GRCh38, retaining 99.8% of
the original variants.

We used Beagle v.5.4 for genotype imputation of SNP array data,
allowing prephasing from the reference panel. We accessed imputa-
tionaccuracy by measuring the squared Pearson correlation between
imputed and high-coverage genotypes using the GLIMPSE_concord-
ance tool* (-gt-val option) at customallele countbins (--ac-bins 1510
20501002005001000 2000 500010000 20000 50000100000
146754 for WGS, --ac-bins 1510 20 50100 200 500 1000 2000 5000
100002000050000100000 446470 for WES). Adrop of correlation
quantifies the reductionin effective sample size in association testing
due toimperfectimputation. For instance, a difference of 0.05 involves
apower loss equivalent tolosing 5% of the data.

We also evaluated the nonreference discordance rate using the
GLIMPSE_concordance* tool. The nonreference discordance™ is cal-
culatedasNRD = (e, + e, +¢e,)/ (e, + e, +e, +m_+m,) wheree e_and
e,, are the counts of the mismatches for the homozygous reference,
heterozygous and homozygous alternative genotypes, respectively,
and m_ and m_, are the counts of the matches at the heterozygousand
homozygous alternative genotypes. NRD is an error rate that excludes
the homozygous reference matches, which are the most frequent at
rarevariants, giving more weight to the other matches. We computed
the nonreference discordance rate within frequency bins in the refer-
ence panel.

Compound heterozygosity detection
We restricted the analysis to the cohort of self-declared white British
individuals for which the ancestry is confirmed by PCA (UKB field
22006) with both SNP array and exome-seq data, excluding parental
individuals (n =374,826). Only WES variants with MAF < 0.1% before
sample filtering were considered. Variant annotations (LoF, Synony-
mous and Missense|LC) were obtained from the Genebass database™
through Hail (gene-level results, results.mt). Briefly, these variants
had been annotated by Ensembl VEP v.95 (ref. 51) and LoF variants
(stop-gain, frameshift and splice donor/acceptor sites) were further
processed by LOFTEE*, separating high-confidence (used as ‘LoF’)
fromlow-confidence (used in the ‘Missense|LC’ category). Only unique
canonical transcripts for protein-coding genes were considered. LoF,
synonymous and missense variants were gathered in the UKB cohort
using beftools (v.1.15.1) isec function, with the ‘-c none’ parameter to
match variants by chromosome, position, reference and alternative
alleles. Singleton variants were excluded from this analysis.
Identification of compound heterozygous events was performed
with custom Python (v.3.7) scripts. Briefly, for each variant type (LoF,
synonymous, missense) and for each gene, individuals with atleast two
mutations were assessed for compound heterozygosity by having at
least one variant in each of the two haplotypes. In addition, for each
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gene, we calculated the expected number of individuals with compound
heterozygosityas y* 1 % “™" where vindicates the number of variants
in individual i in the gene. To compare the number of LoF compound
heterozygous genes and events without phasing, werandomized phas-
ing at all variants by attributing 0.5 probability for each variant to fall
ineither of the two haplotypes, independently for each variant.

Essential and nonessential gene lists

We obtained lists of essential and nonessential genes from several
sources (described below). For each of these genelists, we performed
Fisher’s exact tests (two-sided) for several categories of compound
heterozygous genes versus noncompound heterozygous genes, con-
sidering abackground of 2,150 genes with at least one individual with
two LoF mutations. For synonymous and missense variants, the back-
ground included 10,119 and 14,914 genes, respectively. The following
lists of genes were obtained: (1) essential inmice (n = 2,454) from Georgi
etal.*?includes genes where homozygous knockout in mice results in
pre-, peri- or postnatal lethality and was extracted with ortholog human
gene symbols from McArthur’s laboratory™; (2) essential in culture
(n=1360) core essential genes from genomic perturbation screens
were obtained from Hart et al.**: (3) nonessential in culture (n =927)
putatively nonessential genes (shRNA screening) were obtained from
Hart et al.”*; (4) essential CRISPR (n = 684) genes essential in culture
from CRISPR screening were obtained from Hart et al.™; (5) essential
ADaM (n=1,075) genes annotated by the ADaM analysis of a large col-
lection of gene dependency profiles (CRISPR-Cas9 screens) across
855 human cancer cell lines (Project Score and Project Achilles 20Q2)
were obtained from Vinceti et al.”; (6) essential gnomAD (n =1,920)
genes at the bottom LOEUF decile from gnomAD v.2.1.1 (that is, most
constrained genes) were obtained from https://gnomad.broadinstitute.
org/(ref. 4); (7) nonessential gnomAD (n=1,919) genes at the top LOEUF
decile from gnomad AD v.2.1.1(that is, least constrained genes) were
obtained from https://gnomad.broadinstitute.org/ (ref. 4); and (8)
homozygous LoF tolerant (n = 1,815) genes with homozygous LoF vari-
ants observed in the gnomAD cohort were obtained from Karczewski
etal.' (Supplementary Data 7).

Statistics and reproducibility

This study was based on the UKB SNP array, WES and WGS datasets.
Variants and samples were selected based on quality controls and
ancestry as described in the SNP array, WES and WGS data processing
methods. In certain analyses, only individuals including both WGS/
WES and SNP array data were included. Statistical analyses, including
Fisher’s exact tests, binomial and Wilcoxon tests were performed with
Rv.4.2. All code to reproduce analyses is publicly available.

Reporting summary
Further information onresearch design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Thelists of compound heterozygous events and genes are available in
Supplementary Data 1. The phased WGS reference panel can be accessed
viathe UKB RAP: https://ukbiobank.dnanexus.com/landing. RAPis open
toresearcherswhoarelisted as collaborators on UKB-approved access
applications. Liftover was performed using a chain file provided by
UCSC (https://hgdownload.cse.ucsc.edu/goldenpath/hgl9/liftOver/).
The publicly available subset of the Haplotype Reference Consortium
dataset is available from the European Genome-Phenome Archive at
the European Bioinformatics Institute, accession EGAS00001001710.
Source data are provided with this paper.

Code availability
SHAPEITS is available under MIT license at https://github.com/odela-
neau/shapeit5. Thisincludes code to the phase common, phase rare,

ligate and switch tools and the scripts used to phase WES and WGS data
onthe UKB RAP. The documentationisavailable at https://odelaneau.
github.io/shapeit5. Code and source data to reproduce analysis and
plots have been deposited in the linked Zenodo repository: https://
doi.org/10.5281/zenodo0.7828479 (ref. 56).
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Therelease 0f 150,119 UK Biobank sequences represents an unprecedented
opportunity as areference panel toimpute low-coverage whole-genome

sequencing data with high accuracy but current methods cannot cope

with the size of the data. Here we introduce GLIMPSE2, alow-coverage
whole-genome sequencing imputation method that scales sublinearly in
both the number of samples and markers, achieving efficient whole-genome
imputation from the UK Biobank reference panel while retaining high
accuracy for ancient and modern genomes, particularly at rare variants and
for very low-coverage samples.

Recent work and method advances'™* highlight the advantages of
low-coverage whole-genome sequencing (IcWGS), followed by geno-
typeimputation fromalargereference panel, as a cost-effective geno-
typing technology for statisticaland population genetics. Large-scale
whole-genome sequencing projects, such as the recent release of
150,119 samples from the UK Biobank® (UKB), offer new opportuni-
ties to improve [cWGS imputation, potentially improving accuracy at
rare variants (minor allele frequency (MAF) < 0.1%). However, current
methods struggle to scale to the size of this new generation of refer-
ence panels resulting in prohibitive computational costs. To address
thisissue, we propose GLIMPSE v.2 (GLIMPSE2), amajor improvement
of GLIMPSE', that scales to a reference panel containing millions of
reference haplotypes, with high imputation accuracy at rare variants
(MAF < 0.1%) and for very low-coverage samples (0.1x to 0.5x).

To demonstrate the benefits of using sequenced biobanks for
IcWGS imputation, we phased the recent release of the UKB WGS
data’* using SHAPEITS (ref. 7) and created a UKB reference panel of
280,238 haplotypes and 582,534,516 markers (Supplementary Note
1). We used the UKB panel to impute [cWGS samples with GLIMPSE2
and other recently released imputation methods: GLIMPSEI (ref. 1)
and QUILT v1.0.4 (ref. 2). Compared to other reference panels, the
UKB leads to considerable accuracy improvements for British sam-
ples across all tested depths of coverage. Furthermore, GLIMPSE2
outperforms GLIMPSEL, particularly at rare variants (MAF < 0.1%)
and for very low-coverage (for 0.1% and 1.0x data at 0.01% MAF,
GLIMPSEL and GLIMPSE2 obtain an r* of 0.561 and 0.892 compared
to 0.725 and 0.927, respectively) and matches QUILT v.1.0.4 accu-
racy, designed to condition on the full set of reference haplotypes

(for 0.1x and 1.0x data at 0.01% MAF, QUILT v.1.0.4 obtained an r* of
0.728 and 0.925, respectively; Fig. 1a, Supplementary Note 2, Sup-
plementary Figs. 1-3 and Supplementary Tables 2-4). We also find
thattheaccuracy of GLIMPSE2 and QUILT v.1.0.4 methods is similar
when imputing 42 non-European samples from 1,000 Genomes
Project using the UKB reference panel (Supplementary Note 2, Sup-
plementary Fig. 4 and Supplementary Table 5).

We further investigate the effect of the reference panel by imputing
individuals 0of129 human populations from the Simons Genome Diver-
sity Project and we show that the UKB panel drastically improves impu-
tationaccuracy of European samples compared to the 1,000 Genomes
Project reference panel, in particular of Northern Europe origin, for
which the UKB reference panel obtains a reduction of non-reference
discordance rate >67% (Supplementary Note 3, Extended Data Fig. 2
and Supplementary Fig. 8). Additionally, we imputed three ancient
Europeans and a Yamnaya sample for which high-coverage data (>18x)
are available and find similar improvements (Supplementary Note 4
and Supplementary Fig. 9), showing that some ancient populations,
such as Viking, Western Hunter-Gatherer and Yamnaya could be well
imputed from the UKB reference panel.

The imputation of a single IcWGS genome using the UKB refer-
ence panelis expensive or prohibitive using existing methods. On the
UKBresearchanalysis platform (RAP), the costis£1.11and £242.80 for
GLIMPSE1 and QUILT v.1.0.4, respectively. In contrast, the same task
performed with GLIMPSE2 only costs £0.08, due to major algorithmic
improvements that drastically reduce the imputation time for rare
variants (Fig. 1b, Supplementary Note 2 and Supplementary Figs. 5
and 6). We confirm this trend for up to 2 million reference haplotypes,
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r?, yaxis), ofimputation methods and reference panels: KGP (dotted line),

HRC (dashed line) and UKB (full line). Accuracy is plotted against MAF of the
appropriatereference panel (xaxis, logscale). b, Cost per sample on the RAP for
whole-genome imputation (y axis, log scale) across different reference panels
(xaxis). ¢,d, Performance of imputed data using the UKB reference panel across
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coverages (0.1-4.0x, different shades of blue, GLIMPSE2 imputation) and Axiom
array data (red). ¢, Accuracy on chromosome 1 of 10,000 UKB British samples
(Pearson r°, y axis) against MAF of the appropriate reference panel (x axis, log
scale).d, Power in association testing of 10,000 UKB British samples compared
to high-coverage data. Correlation of betas and Pvalues (Pearson r, y axis) of
differentimputed datasets (x axis) across 22 UKB phenotypes. Lower and upper
limits of the box plots represent the first and third quartiles (Qland Q3); the
median is marked at the center of the box. Lower and upper whiskers are defined
asQ1-1.5(Q3-Q1) and Q3 + 1.5(Q3-Q1), respectively.

using simulated data (Supplementary Note 2 and Supplementary
Fig. 7). These improvements in imputation running time and mem-
ory requirements are crucial to keep lcWGS close to single nucleo-
tide polymorphism (SNP) arrays in terms of computational costs®®
(Supplementary Note 5) while maintaining the major advantage of
providing better genotype calls. Indeed, we find that imputation of
0.5x datayields similar or more accurate results compared to the UKB
Axiom array, with a notable difference at rare variants (for 0.5% cover-
age, accuracy improvement of * > 0.1 for variants with a MAF < 0.01%,
Fig. 1c). Using simulated SNP arrays, we further confirmthat 0.5x yields
atleast the sameimputationaccuracy as the densest SNP array model
tested (Omni 2.5array; Extended Data Fig. 3).

To assess the impact of these improvements on genome-wide
association studies (GWAS), we imputed 10,000 UKB samples that
we used to test 22 quantitative traits for association, comparing the
respective abilities of IcWGSand SNP array datato recover the signals
found with high-coverage sequencing data (Supplementary Note 6).
Wefind that 0.5x leads to Pvaluesand effect size estimates as accurate
as those obtained from Axiom array data (Fig. 1d and Supplementary
Figs. 10-12) while delimiting regions of association with matching
sensitivity and specificity (Supplementary Note 6 and Extended Data
Fig.4). We also look at rare loss-of-function, missense and synonymous
variants'’ and show that 1.0x outperforms the Axiom array for all cate-
gories of variants, animprovement that will be reflected in downstream
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burden-test analysis (Supplementary Note 7 and Extended Data Fig. 5).
Altogether, this shows thatlcWGS constitutes a powerful alternative to
SNP array for downstream GWAS and rare-variant analysis.

In this work, we introduce several improvements to the GLIMPSE
method that solve the computational problem of imputing [cWGS
data from the 150,119 WGS samples in the UKB. We demonstrate that
this reference panel leads to striking accuracy improvements across
several sample ancestries, allele frequencies and depths of coverages.
Our study further confirms the advantage of IcWGS over SNP arrays for
GWAS, by showing that using imputed datawith coverage aslowas 0.5x
are enoughto outperform SNP array data, particularly at rare variants.
Our work can be applied to other sequenced and diverse biobanks,
such as Trans-Omics for Precision Medicine", gnomAD" or AllofUs",
thereby facilitating lcWGS imputation of non-European individuals. We
believe that the difference between low-coverage and high-coverage
WGS will become increasingly smaller as large reference panels will
keep collecting more human haplotype diversity.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41588-023-01438-3.
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Methods

Thisstudy reliesonanalyses of genetic datafromthe UKB cohort, which
was collected with informed consent obtained from all participants.
Data for this study were obtained under the UKB applications licence
number 66995 and are available to registered researchers through
the UKB data-access protocol. Additional data used in this study are
all publicly available.

GLIMPSE2

To perform imputation of low-coverage WGS data, GLIMPSE2 uses
a Gibbs sampler algorithm that alternates between haploid imputa-
tion and phasing, using a modified version of the Li and Stephens
hidden Markov model (HMM)"'. The method necessitates a genotype
likelihoods matrix for the target samples and a reference panel of
haplotypes as input. The initialization step begins with the selec-
tion of a set of haplotypes from the reference panel via rare-variant
callsderived from the low-coverage genotype likelihoods. Following
that, two consecutive steps of haploid imputation are executed, one
for each of the two target haplotypes. At the end of the initialization
step, adiplotypeis assigned to each target sample. GLIMPSE2 subse-
quently runs a series of burn-in and main Gibbs iterations to refine
the genotype calls and phasing of each target sample. The algorithm
determines haploid likelihoods for one of the two target haplotypes,
based on the original genotype likelihoods and conditional on the
current estimate of the other haplotype. To integrate over phasing
uncertainty, the approachaverages imputation posteriors across all
main iterations.

Conversely from the GLIMPSE1 method, GLIMPSE2 approach is
primarily focused on imputation only from the reference panel and
it optimizes this task by incorporating new features. First, the refer-
ence panel is represented sparsely in memory, allowing for efficient
storage of dense cohorts. The sparse representation of the reference
panel facilitates the introduction of a new data structure to hasten
haplotype matching and an efficient implementation of the HMM,
which calculates posterior probabilities by leveraging the sparsity of
the panel. Additional features of GLIMPSE2 include a genotype caller
that integrates genotype likelihood computations directly into the
GLIMPSE software and imputation of smallinsertions and deletions and
low-quality variants separately from SNPs, by performing imputation
into a haplotype scaffold obtained from high-quality SNPs.

Thesubsequent sections will provide amore comprehensive expla-
nationofthree of the previously referenced features, which are critical
for the ability of the model to scalewhen applied to deeply sequenced
reference panels. Further details regarding the method can be found
in Supplementary Note 1.2.2.

Sparsereference panel representation

GLIMPSE2 represents thereference panel as a sparse matrix, encoding
haplotypes with one bit per allele if the variant is defined as common
(MAF = 0.001 by default) and storing the indices of the haplotypes that
carry the minor allele, otherwise. This data representation allows for
small memory usage butalso for afastidentification of the haplotypes
carrying a rare variant. Additionally, the transpose of the data struc-
tures gives efficientaccess tothe rare variants of each haplotype. More
details canbe found in Supplementary Note 1.2.2.1.

We encoded the sparse reference panel representationinabinary
file format to be efficiently stored on the disk. The file format trans-
lates directly into the memory data structures used by GLIMPSE2
and does not require any general-purpose compression algorithm.
Together with the reference file format, we store the run-length
encoded sparse positional Burrows-Wheeler transform (PBWT) data
structure in the same file file, together with the recombination map.
As aresult, all the data related to the reference panel can be quickly
loaded in memory, in much faster running times than standard file
formats, suchas VCF and BCF.

Sparse positional Burrows-Wheeler transform matching

One of the key components of the GLIMPSEl model is toreduce the
state space using PBWT", adatastructure that allows efficient query
searches in haplotype cohorts, linear in the number of samples
and markers. Similarly, GLIMPSE2 extends the PBWT and proposes
an algorithm designed for large sequencing cohorts, here called
sparse PBWT.

By using the sparse representation of the reference panel, rare
variants are treated differently than common variants, allowing the
computation of smaller PBWTs whichspeedsup the algorithm. Thisis
based on the idea that between two adjacent common variants most
of the haplotypes do not contain the minor allele in the region and
therefore most of the haplotypes would formasingle invariable block
of major alleles that preserves their relative haplotype order. Therefore,
asmaller PBWTis constructed only on haplotypesthat have atleastone
minor allele between two adjacent common variants. The positional
prefixarray of the small PBWT at the end of therare-variantintervalis
simply concatenated with the positional prefix array of other haplo-
types that are not changing inthe interval. A schematicillustration of
the sparse PBWTisshownin Extended Data Fig.1and more details are
provided in Supplementary Note1.2.2.2.

Haplotype selection is performed by querying target samples in
thesparse PBWT, looking at neighboring haplotypes at common vari-
ants (at 0.1 cM intervals by default). The selection is complemented
with variant sharing at rare variants, as rare-variantsharingislikely to
arise from arecent common ancestor.

Sparse HMM computations

Imputation and phasing are performed using the forward-backward
algorithmon the Liand Stephens HMM", where reference haplotypes
represent the states of the HMM. The computation of posterior prob-
abilities is a computationally intensive task, linear in the number of
haplotypes and markers.

The sparse matrix representation of the reference haplotypesin
GLIMPSE2 implementation allows to remove the linear component at
the marker level during the HMM calculations. GLIMPSE2 selects only
K (default K = 2,000) haplotypes with the sparse PBWT selection to
assemble a custom reference panel in which most of the rare variants
present in the original reference panel are monomorphic. In the for-
ward-backward algorithm these monomorphic variants do not con-
tribute to the overall state probability. Therefore, in GLIMPSE2 the
forward-backward probabilities are computed only at sites that are
polymorphic in the custom reference panel, adjusting the transition
probability to consider the physical distance between two consecutive
polymorphic sites. Posterior probabilities of variants that are mono-
morphicin the customreference panel can be quickly computed using
the appropriate emission probability.

Our method takes advantage of low-level programming language
(AVX2intrinsics) to optimize the HMM forward-backward computa-
tions at the hardware level, working on blocks of eight floats. This
allows the method to be efficient in the core part of the algorithm
and therefore use twice the number of states and larger imputation
windows compared to the previous version of GLIMPSE. More details
are provided in Supplementary Note 1.2.2.3.

Evaluation ofimputation accuracy

We measured imputation performance as the squared Pearson cor-
relation between high-coverage genomes and imputed dosages. We
pooled all validation and imputed dosages belonging to the same
frequency bin and computed a single squared Pearson correlation
value per bin. Statististics summarizing the number of variants falling
ineachallele count binare provided in Supplementary Tables 2-4. We
used the GLIMPSE2_concordance tooltomeasure the squared Pearson
correlation by streaming theimputed and validation data to maintain
low memory requirements.
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We also evaluated the non-reference discordance rate (NRD),
defined as the rate between mismatches at the three possible geno-
types, divided by the same mismatches plus heterozygous and homozy-
gous alternative matches. We define the non-reference concordance
rateas NRC =1 - NRD. We provide more information about the bench-
mark and measurement of imputation accuracy in Supplementary
Notes1.3and 1.3.1, respectively.

Evaluation of association tests

We used chromosome 1 data for a subset of 10,000 unrelated UKB
individuals of white British ancestry randomly sampled and a total of
99 phenotypes, selected as phenotypes with <10% of missing data in
our call set across anthropomorphic traits and blood measurements.
We performed association tests using plink2 (ref. 16) with default
parameters and the first ten principal components plus sex and age as
covariates to test phenotypes for associations with the seven call sets
we generated: high-coverage WGS, fivelow-coverage WGS (0.1%, 0.25x%,
0.5%,1.0% and 4.0x) and the UKB Axiom array. We selected associa-
tions that are genome-wide significant (P < 5 x 107*) and independent
(being at least 500 kilobases apart). Out of the phenotypes analyzed,
atotal of 22 showed significant associations on chromosome 1l in the
high-coverage dataset. These 22 phenotypes were chosen for compari-
sonacross the six imputed call sets.

To assess the accuracy of GWAS performed using imputed call
sets, we compared association strength and effect sizes by computing
the Pearson correlation between imputed and high-coverage GWAS
experiments. We additionally assess the ability of GWAS experiments
todistinguish significant from non-significant signals, considering the
high-coverage GWAS to be the ground truth. For this, we computed
the sensitivity, the proportion of genome-wide significant associa-
tions that can be retrieved, and the specificity, the proportion of
genome-wide non-significant associations that can beretrieved using
imputed call sets.

Statistics and reproducibility

This study was based onthe UKB SNP array and WGS datasets, Simons
Genome Diversity Project, 1,000 Genomes Project and the Haplotype
Reference Consortium (HRC). Variants and samples selected are based
onquality controls and ancestry as described by the respective dataset.
For certain analysis samples were extracted randomly from the UKB
cohort, according to their ancestry. Statistical analyses, including
Wilcoxon tests were performed with R v.4.0. All code to reproduce
analysesis publicly available (Code availability section).

Reporting summary
Furtherinformation onresearchdesignisavailable in the Nature Port-
folio Reporting Summary linked to this article.

Data availability

The 1,000 Genomes Project phase 3 dataset sequenced at high cov-
erage by the New York Genome Center is available on the European
Nucleotide Archive under accession no. PRJEB31736, the Interna-
tional Genome Sample Resource (IGSR) data portal and the Uni-
versity of Michigan school of public health ftp site (ftp://share.sph.
umich.edu/1000g-high-coverage/freeze9/phased/). The publicly
available subset of the HRC dataset is available from the European
Genome-phenome Archive at the European Bioinformatics Institute
underaccessionno. EGAS00001001710. The publicly available Simons
Genome Diversity projectisavailable onthe IGSR data portaland Can-
cer Genomics Cloud, powered by Seven Bridges. The UKB WGS data
and phenotypes canbe accessed viaRAP: https://ukbiobank.dnanexus.
com/landing. The phased WGS reference panel canbe accessed viaRAP:
https://ukbiobank.dnanexus.com/landing. Source data are provided
with this paper.

Code availability

GLIMPSE2 source code isavailable with MIT licence from https://github.
com/odelaneau/GLIMPSE and https://odelaneau.github.io/GLIMPSE/.
This includes code to the chunk, split_reference, phase, ligate and
concordance. The documentation is available at https://odelaneau.
github.io/GLIMPSE/. Code and source data to reproduce analysis and
figures have been deposited ina Zenodo repository".
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Identical genetic variations can have different phenotypic effects depending
on their parent of origin. Yet, studies focusing on parent-of-origin effects have
been limited in terms of sample size due to the lack of parental genomes or
known genealogies. We propose a probabilistic approach to infer the parent-
of-origin of individual alleles that does not require parental genomes nor prior
knowledge of genealogy. Our model uses Identity-By-Descent sharing with
second- and third-degree relatives to assign alleles to parental groups and
leverages chromosome X data in males to distinguish maternal from paternal
groups. We combine this with robust haplotype inference and haploid impu-
tation to infer the parent-of-origin for 26,393 UK Biobank individuals. We
screen 99 phenotypes for parent-of-origin effects and replicate the discoveries
of 6 GWAS studies, confirming signals on body mass index, type 2 diabetes,
standing height and multiple blood biomarkers, including the known maternal
effect at the MEG3/DLK1 locus on platelet phenotypes. We also report a novel
maternal effect at the TERT gene on telomere length, thereby providing new
insights on the heritability of this phenotype. All our summary statistics are
publicly available to help the community to better characterize the molecular

mechanisms leading to parent-of-origin effects and their implications for

human health.

Parent-of-Origin (PofO) effects refer to genetic variations having an
effect on a phenotype that depends on the parent from which alleles
are inherited'”. PofO effects are thought to mainly result from genomic
imprinting, a mechanism relying on parent-specific DNA methylation,
named imprints, that silence one of the parental copies of a gene. Such
parent-specific imprints are established during spermatogenesis and
oogenesis and are maintained in all somatic cells of the offspring’. This
leads to some genes, called imprinted genes, to exhibit an allele-
specific expression pattern that depends on the PofO of the underlying
genetic sequence. This allele-specific expression can be maintained
throughout life or specific to some development states*. One of most
studied imprinted lociin the human genome is probably the H19 loci at
11pl5.5 that is involved in growth and development disorders such as
the Beckwith-Wiedemann or Silver-Russel syndromes’. Multiple stu-
dies have investigated PofO effects on complex traits, notably for the

KCNQI and KLF14 genes whose associations with type 2 diabetes risk
depends only on the maternal copies®, as well as for the MEG3/DLK1
imprinted locus associated with age at menarche’ and platelet count®.

Searching for PofO effects on a genome-wide scale requires
knowing the PofO of each individual allele. The most direct approach
to obtain this information relies on the availability of parental gen-
omes, which allows using the Mendelian principles of inheritance to
determine the parent from which a specific allele is inherited. Study
cohorts usually include a small number of genotyped parent-offspring
duos and trios, resulting in a low discovery power and a challenging
detection of PofO effects. To alleviate this problem, multiple approa-
ches have been explored so far. First, by deploying large efforts in data
collection, such as the study performed on the DiscovEHR cohort’,
representing one of the largest PofO study done to date, with hun-
dreds of phenotypes assessed for more than 22,000 samples with at
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least one genotyped parent. Alternatively, this can also be achieved by
meta-analysis across multiple cohorts regrouping duos and trios, with
the caveat of restricting the analysis to the subset of phenotypes in
common across datasets™'’. Second, statistical approaches have been
proposed to test for PofO effects in large collections of unrelated
samples by exploiting the differences in phenotypic variance between
heterozygous and homozygous individuals, with the caveat of also
detecting effects unrelated to PofO such as gene-environment
interactions”. Third, it has been shown that the PofO of an indivi-
dual’s alleles can also be determined by the use of cousins as surrogate
parents when parental genomes are not available®. This latter approach
is particularly well suited for datasets comprising many samples from
the same generation but also requires the genealogy of most indivi-
duals in the study cohort, which is not the case in large datasets such as
the UK Biobank".

In this work, we present a probabilistic method to infer the PofO
of alleles in biobank scale datasets from second- and third-degree
relatives without requiring any parental genomes nor explicit geneal-
ogy to be known. To do so, our approach combines multiple estima-
tion steps, involving surrogate parent groups formation, parental
status assignment based on chromosome X, haplotype inference,
Identity-By-Descent (IBD) detection, and haploid imputation. When
applied to the UK Biobank dataset, this allows us to infer the PofO for
21,484 samples with high confidence in addition to the 4909 duos/
trios for which we perform direct inference from parental genomes,
resulting in a dataset comprising a total of 26,393 samples and 7.6
million variants. Considering duos/trios as the ground truth, we show
that our PofO estimations from second- and third-degree relatives
have a high call rate (-75%) and low error rate (<1%) at heterozygous
genotypes. Taking advantage of the vast phenotypic diversity of the
UK Biobank, we carrie out genome-wide association scans for PofO
effects for a total of 99 phenotypes, replicating well-known imprinted
loci as well as discovering novel putative PofO associations, thereby
demonstrating that our method has the potential to further reveal the
contribution of PofO effects to complex traits. All the summary sta-
tistics for the conducted association scans are publicly available
(http://poedb.desr.unil.ch/) and allow the exploration of the PofO
effects for variants of interest across phenotypes.

Results

PofO inference from genotype data

To infer the PofO of all alleles carried by a given target sample, we
proceed in two consecutive steps as detailed below:

1. [Identification of surrogate parents (Fig. 1a). For each target sample
(white British individual of the UK Biobank), we identify close
relatives, and we determine which of the two parents (mother or
father) conveys the relatedness. For this, we first look at pairwise
kinship estimates given by KING" to identify second- or third-
degree relatives and group them into the two parental groups
based on their relatedness: they cluster in the same group if they
are related and in different groups otherwise. Then, we assign
parental status (maternal or paternal) to parental groups for male
targets only by exploiting the fact that their single chromosome X
copy is maternally inherited. Therefore, we search for relatives
sharing portions of their chromosome X ldentical-By-Descent
(IBD) with the target sample and we label them as surrogate
mothers. We also propagate the information to other relatives:
those from the same parental group are also labeled as surrogate
mothers and those from the other parental group as surrogate
fathers. In case no IBD is found, we cannot annotate parental
groups as maternal or paternal and we exclude the target sample
from the dataset. Hereafter, we call surrogate parents the close
relatives we identified using this approach.

2. Assignment of PofO to alleles (Fig. 1b). After the identification of
surrogate parents, we assign PofO to the target’s alleles. First, we

search for autosomal shared IBD segments between the target
and the surrogate parents using IBD mapping robust to both
phasing and genotyping errors (see Methods, Supplementary
Fig. 1). Then, we classify the resulting IBD segments as being
maternally or paternally inherited depending on the surrogate
parent they map to. This delimits a subset of alleles that are co-
inherited from the same parent within and across chromosomes
(i.e., that co-localize on the transmitted set of homologous
chromosomes). This leaves another subset of alleles for which we
do not know the PofO (i.e., those not shared IBD with any of the
surrogate parents). For those, we extrapolate the PofO using
statistical phasing: we model alleles for which we know the PofO
status as a haplotype scaffold" onto which all remaining alleles are
probabilistically phased using SHAPEIT4" (Supplementary Fig. 1).
The PofO assignment of these remaining alleles is then given by
their frequency of co-localization onto each haplotype scaffold,
which also reflects how reliable the phasing is (i.e., phasing
certainty, Supplementary Fig. 1). Finally, we extrapolate the PofO
for untyped variants by performing haploid imputation of each
parental haplotype in turn using IMPUTES™ and the HRC as
reference panel".

Validation of the PofO inference on duos and trios

To assess the accuracy of our approach, we used 443,993 genotyped
UK Biobank samples of British or Irish ancestry, together with their
pairwise kinship estimates, to identify a subset of samples with parents
and second-to-third degree relatives. For these samples, we inferred
the PofO using two approaches: directly from the parents or using
second-to-third degree relatives as surrogate parents. We compared
the quality of the PofO inference given by surrogate parents to the
direct approach based on parental genomes, considered to be the
ground truth. We found a total of 3872 parent-offspring duos and 1037
trios, of which 1090 duos and 309 trios also have groups of surrogate
parents. We used this subset of 1399 samples to assess optimal para-
meters and the accuracy of the method. We focused on two metrics: (i)
the error rate, which is the percentage of heterozygous genotypes with
incorrect PofO assignment and (ii) the call rate, which is the percentage
of heterozygous genotypes for which a PofO call could be made (see
Methods). We explored a range of different parameter settings for the
IBD detection and PofO confidence score (i.e., phasing certainty onto
the haplotype scaffold) and found that using haplotype segments
longer than 3 cM as scaffold and a phasing certainty above 0.7 lead to a
good trade-off between call rate and error rate (Fig. 2a). This resulted
in a whole genome error rate of 0.51% and a call rate of 74.5%. As
expected, the error and call rate depend on the number of available
surrogate parents per target, with the call rate increasing and the error
rate decreasing as the number of surrogate parents increases (Fig. 2b).
The majority of our targets only have a single surrogate parent (75.95%
of the target samples, Fig. 2c) and even in this case, a call rate of 70.9%
and an error rate of 0.6% is achieved (Fig. 2b). We then considered the
genomic localization of variants: we found a lower call rate and a
slightly higher error rate as we approach telomeres, which results from
phasing edge effects (Fig. 2d). Overall, we found small error rates for
the majority of the variants: 79% have an error rate <1% and 56%
inferred perfectly (Fig. 2e). This low error rate mostly results from the
high phasing accuracy that can be achieved in the UK Biobank using
SHAPEIT4". Overall, we obtained a whole genome switch error rate of
0.0845% between consecutive heterozygous genotypes when com-
paring to parental genomes, with only small variations across chro-
mosomes (Supplementary Fig. 2A). When looking at the distribution of
these switch errors along the genome, we found that they mostly occur
within small segments and that long range errors are almost entirely
corrected by the use of haplotype scaffolds (Supplementary Fig. 2B).
As a result, we obtained haplotypes that are resolved across entire
chromosomes with only a few sporadic errors that, given their
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Fig. 1| Rationale of PofQ inference. a Identification of surrogate parents in 3 steps:
(1) identification of close relatives for a target sample of interest using the pairwise
kinship estimates, (2) clustering of close relatives by maximizing and minimizing
the inter- and intra-groups relatedness, respectively, (3) assignment of parental
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identification of autosomal IBD segments shared between the target and the sur-
rogate parents, (2) scaffold construction with co-inherited alleles localized on the
same homologous chromosome across all autosomes, (3) statistical phasing of all
remaining alleles against the scaffold and (4) whole genome deduction of the
maternal and paternal origins of alleles from phasing probabilities.

frequency (<0.1% error rate), we believe to result mostly from geno-
typing errors.

PofO inference in 26,393 individuals

For all genotyped British and Irish individuals in the UK Biobank
without any genotyped parent (NV=438,993), we inferred the PofO
using the method based on surrogate parents, as described above. In
total, we found 105,826 samples with second-to-third degree relatives
forming groups of surrogate parents. Amongst those, we could assign
parental status to surrogate parent groups to a subset of 21,484 sam-
ples using IBD matching on chromosome X. Comparing the distribu-
tion of surrogate parents per target sample, we found a remarkable
match between the full (V=21,484) and the validation (N=1399)
datasets (Fig. 2c), suggesting that we can expect similar error rates
between datasets. As our method requires IBD sharing between the
targets and the surrogate parents, no inference can be made for
chromosomes where no IBD sharing is found. The number of samples
with PofO inference thus varies across chromosomes depending on
their length, ranging from 15,645 samples (72.8%) for chromosome 21
to 20,381 samples (94.8%) for chromosome 1 (Fig. 2f). It follows that
the call rate also varies across chromosomes, ranging from 66% for
chromosome 21 to 77.9% for chromosome 2 (Fig. 2f). From the sample

point-of-view, we found that 31.3% of the samples have inference for
the 22 autosomes and 96.1% have inference for more than 15 chro-
mosomes (Supplementary Fig. 3). Finally, we merged the 21,484 sam-
ples with PofO inferred from surrogate parents together with the
4909 samples with PofQ inferred from genotyped parents (3872 duos
and 1037 trios) to get a final set comprising a total of 26,393 individuals
with PofO inference (22,652 males and 3741 females) across 7.6 million
variants genome-wide (Supplementary Table 1). Together with deep
phenotyping provided by the UK Biobank, this represents a unique
dataset to study PofO effects on complex traits.

Discovery of Pof0 associations

Distinguishing paternally from maternally inherited alleles allows us to
design different association scans to test the PofO specificity of asso-
ciations: (i) maternal, to test only the maternally inherited alleles, (ii)
paternal, to test only the paternally inherited alleles, (iii) differential, to
compare paternally and maternally inherited alleles at heterozygous
genotypes only and (iv) additive, as a control to test minor alleles
regardless of PofO. Using these models we scanned for association 99
quantitative phenotypes of the UK biobank using BOLT-LMM" (Sup-
plementary Data 1), for which we provide all summary statistics online
(http://poedb.dcsr.unil.ch/).
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In a first pass, we focused on variants being Bonferroni significant
in both the differential and additive scans (p <5 x 107 and used the
paternal and maternal scans to determine the parental origin and the
direction of the effect. We found two signals fulfilling these criteria.
The first is a PofO association with platelet phenotypes at the MEG3/
DILK1 imprinted locus” (Table 1 and Fig. 3a, b). The lead SNP
rs59228823 is an eQTL for MEG3 in blood samples™ and is associated
with platelet count and platelet crit under the additive, maternal and
differential scans but not under the paternal scan (Table 1). The minor
allele C at this SNP significantly decreases the platelet count and crit
when maternally inherited (Table 1 and Fig. 3c). A similar maternal
effect has been previously reported on platelet count for another SNP
in the same locus®: rs1555405, which is in linkage disequilibrium with
rs59228823 (R* = 0.59). We also replicated the association at rs1555405
(maternal, paternal, differential p-values=2x107, 0.13, 1.4 x10™,
Supplementary Fig. 4A), suggesting that these two associations cap-
ture the same effect. The second PofO association we found is at SNP
rs2735940 for the leukocyte Telomere Length (TL) phenotype, with
the minor allele G decreasing TL only when maternally inherited
(Table 1 and Fig. 4a-c). This SNP is located -1.5kb upstream of the

promoter of TERT (Fig. 4b), a gene encoding for the catalytic subunit of
the telomerase, an enzyme involved in TL maintenance™. This SNPis in
high linkage disequilibrium with the SNP rs2853677 (r’=0.6), pre-
viously reported in different GWAS for multiple cancers™*, blood cell
counts®, aging” and telomere length®. When directly testing
152853677 in our data, we find a strong maternal effect similarly to the
lead SNP (maternal, paternal, differential pfvalue5=4.6><10'”, 0.8,
7.9x10™", Supplementary Fig. 4B). This suggests that a parent-of-
origin effect underlies this pleiotropic locus.

In a second pass, we focused on associations that are Bonferroni
significant in the differential scans but not supported by the additive
scans. In total, we found 14 of these associations that we classified as
putative PofO effects (Supplementary Table 2). This includes three
maternal associations, four paternal associations, and seven associa-
tions with opposite effect between the paternally and maternally
inherited alleles which are consistent with a pattern of bipolar
dominance’. To confirm these results, we used a method developed by
Hoggart et al." designed to capture PofO effects by detecting an
increased variance across heterozygous compared to homozygous.
Using this method on the full set of British samples (N=443,993), all
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Genes were mapped using either eQTLs or ensembl Variant Effect Predictor (VEP). P-values are computed using BOLT-LMM™, expect Hoggart et al.” p-values that are computed using the increased variance method (see Methods). Add Additive, Pat. Paternal, Mat.

prvalues; B =betas; Chr=Chromosome.

Maternal, Diff. Differential, P

associations have p-values <0.007 (Supplementary Table 2). The
strongest opposite PofO effect involves the variant rs77403171 at
2q22.3, intronic to ARHGAP15 and decreasing the eosinophil percen-
tage when maternally inherited while increasing the trait when pater-
nally inherited. ARHGAPIS is a Rho GTPase-activating protein that has
already been associated with multiple blood cell phenotypes, notably
neutrophils, leukocytes, and eosinophils” **, These are examples of
genetic effects missed by the additive model as paternal and maternal
contribution at heterozygous sites cancel out when considered
together.

Finally, we used the PofO associations at the MEG3/DLKI locus and
at the TERT locus to illustrate the benefit of using our PofO inference
on the discovery power of PofO effects. To do so, we used 4909 UK
Biobank duos/trios as baseline and gradually added random subsets of
5000 samples for which PofO inference could be made from surrogate
parents, ending up with the full set of 26,393 samples. Doing so led to a
clear boost in association strength for the additive, maternal and dif-
ferential signals, with maternal scans ranging from non-significant on
the duos/trios for both platelet crit and TL (n=4909; p-value =
6.28 x 10" and 8.36 x 107%, respectively) to strongly significant on the
full sample size (n=26,393; p-value = 6.6%10" and 2.1x107",
respectively; Fig. 5a, b), while the paternal signal remained non-
significant. Similarly, we also looked at the effects of errors in the PofO
inference on the discovery power by randomizing the PofO assign-
ment for an increasing number of samples. This progressively diluted
the maternal signal onto the two parental origins while leaving the
additive signal unchanged (Fig. 5c, d). Interestingly, the association
with TL remains significant with up to 10% of errors in the PofO
inference, suggesting that PofO testing could tolerate relatively high
error rates with our sample size.

Replication of PofO associations

The PofO callset for the UK Biobank generated with our method pro-
vides a powerful resource to replicate independent PofO associations
or to annotate other types of associations as PofO effects. To show this,
we assessed the ability of our method to replicate the results of seven
GWAS studies across multiple phenotypes often studied in the context
of PofO effects. These studies belong to three different categories: (i)
PofQ studies using trios or known genealogies, (ii) PofO studies across
unrelated individuals using an increased-variance method, and (iii)
studies investigating genotype-environment (GxE) interactions.

Standing height. We focused on the 11 PofO associations reported in
three studies making use of genealogy-based PofO inference™ ™, 9 of
which could be assessed in our data (identical SNP-phenotype pair in
the UK Biobank). Seven of these associations are located in two well-
known imprinted regions, 11p15.5 and 14g32, and the remaining two
are located in the HLA region. Only one association has been replicated
across the two of the three studies at rs143840904. In contrast, we
replicated 8 associations out of the 9 we could test, with the same
parent and direction of effects (Table 2A-C), thereby reinforcing the
role of these two well-known imprinted regions on height and pro-
viding further evidence on the PofO effect at the HLA region.

Blood biomarkers. A recent study’ examined multiple blood bio-
markers and reported a total of 10 PofO associations within imprinted
loci using trios-based PofQ inference. In our dataset we were able to
assess 7 of these associations and replicated 5 of them, with the same
parent and direction of effects (Table 2D). This included the PofO
effect on platelet phenotypes at the MEG3/DLKI locus we reported
earlier.

Type 2 diabetes. Kong et al.” reported a total of 4 PofO associations on
type 2 diabetes (T2D) using genealogy-based PofO inference. They fall
within two distinct regions that harbor well-documented imprinted
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Fig. 3 | Association scans for PofO effects on platelet crit. a Manhattan plots of
four association scans with platelet crit. From top to bottom plots are shown results
for additive (black), maternal (red), paternal (blue) and differential (green) scans.

The lead variant mentioned in this study (rs59228823) is shown with a diamond. Red
horizontal lines indicate genome-wide significance threshold at -logl0(5 = 10™"),

b Locus zoom at rs59228823 on the differential scan. ¢ Box plot of the normalized
platelet crit (y-axis) stratified by risk alleles and origin at SNP rs59228823; paternal in

SNORDT13-1=

blue and maternal in red (x-axis). The horizontal dotted lines represent the pheno-
typic median of the major allele G. Boxes bound the 25th, 50th (median), and the
75th quantiles. Whiskers range from minima (lower) to maxima (upper). Sample sizes
are MparemallG/C) =16,285/4,769 and Nmaermai{G/C) = 16,368/4686 individuals. N.S
non-significant (p-value = 0.66); **=significant (p-value = 6.6 % 10°") (computed with
BOLT-LMM™). Source data for (a) and (b) are provided as a Source Data file.
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represent the phenotypic median of the major allele A. Boxes bound the 25th, 50th
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(upper). Sample sizes are e (A/G) =10,627/10,337 and 1, erma(A/G) = 10,635/
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2.1x10") (computed with BOLT-LMM'). Source data for (a) and (b) are provided
as a Source Data file.
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Fig. 5 | Robustness of the PofO testing. a, b Association strength as -logl0(p-
value) for rs59228823 and rs2735940 (y-axis) on platelet crit and TL, respectively, as
a function of the number of randomly chosen samples included in the analysis
under the additive (black), paternal (blue), maternal (red) and differential

(green) scans. Each point for N=[10,000;15,000; 20,000] represents the median p-
value obtained after 10 randomizations with vertical bars representing the standard
error. Points for N=4909 and N = 26,393 represent the p-values obtained using
only the samples with genotyped parents and using our full sample size,

% of PofO errors

respectively. ¢, d Association strength as —logl0O(p-value) for rs59228823 and
rs2735940 (y-axis) on platelet crit and TL, respectively, as a function of the fraction
of samples for which PofO has been randomly drawn (x-axis, 100% = 26,393).
Samples included are those for which the PofO has been inferred from the surro-
gate parents. Each point represents the median p-value obtained after 10 rando-
mizations with vertical bars representing the standard errors. P-values are
computed with BOLT-LMM™. Source data are provided as a Source Data file.

gene clusters, 11p15.5" and 7q327*". As we could not directly test T2D
status due to the small number of cases in our dataset, we tested the
biomarker most correlated with T2D: glycated hemoglobin
(HbAlc,https://ukbb-rg.hail.is/). By doing so, we replicated the three
strongest associations with the same parental effect (Table 2E). In
addition, we phenome-wide analyzed these four variants in our dataset
and found 22 associations with differential p-value <0.01 (Supple-
mentary Data 2) for 20 distinct phenotypes, many of them closely
related to T2D. This illustrates how the deep phenotyping of UK Bio-
bank can help to provide new mechanistic insights for these four T2D
risk alleles at the biomarker level.

BMI by increased variance. Hoggart et al." reported a total of 6 PofO
associations with BMI using an increased-variance method designed
to capture PofO effects, two of which were replicated using inde-
pendent family datasets. These include variants associated with
known imprinted genes, SLC2A10 at 20q13.12 and KCNK9 at 8q24.3.
We could replicate the strongest association in our dataset at the
KCNK9 locus, with the T allele of rs2471083 increasing BMI when
maternally inherited (Table 2F). Here, our replication offers addi-
tional support for the KCNK? locus and confirmation of the maternal
origin of this effect, an information that the increased-variance
approach can not provide.
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BMI by GxE. We hypothesized that some GxE signals detected for BMI
could be due to PofO effects. Using the UK Biobank, Kerin et al.*
reported two GxE associations at rs2153960 and rs539515, mapping to
FOXO03 and SECI68B, respectively, with the latter replicated by another
study”. In our study, we found a paternal effect of rs539515 on BMI
(Table 2G, maternal, paternal, differential p-values =0.047, 7.3 x 107,
0.0069). Interestingly, when performing a phenome-wide scan of the
1g25.2 locus harboring rs539515, we found paternal associations
between four SNPs in high LD (rs527065, rs539515, rs8030 and
rs531385; 2 > 0.5) with weight, waist circumference, hip circumference,
basal metabolic rate and arm/leg mass (maternal p-values > 0.05,
paternal p-values <5x 107, differential p-values <0.005; Supplemen-
tary Table 3). All these SNPs also map to SECI6B (either intronic or
splicing QTLs) and have already been associated with weight- or
obesity-related phenotypes under the additive model™ . Altogether,
this suggests that the GxE effect of SECI68 on BMI is likely due to a
paternal effect.

Birth weight. We investigated the 22 PofO associations reported with
birth weight phenotype*' and were not able to replicate any of these
associations in our data, nor any of the additive ones (Supplementary
Data 3). This is most likely due to some phenotype misspecification of
birth weight in the UK Biobank as this phenotype is self-reported by
individuals between 39 and 73 years old, which is likely less reliable
than newborn birth weight reported by the mother. Additionally, the
individuals with available birth weight specification represent only half
of our samples (Supplementary Data 1) which considerably decreases
the discovery power.

Discussion

Studying PofO effects requires parental genomes or genealogies to
determine the set of alleles transmitted to the offspring by each of
the two parents. As a consequence, this prevents the study of PofO
effects in biobanks, usually comprising a large and diverse panel of
phenotypes. In this work, we propose an approach that leverages the
high degree of relatedness between individuals inherent to biobank-
scale datasets in order to infer the PofO of alleles for many indivi-
duals and variant sites without any parental genomes or genealogy
being available. When applied on the UK Biobank, this approach
could predict the PofO of alleles for around 5% of the total number of
samples, resulting in a dataset comprising the PofO inference for
more than 26,000 samples at 7.6 million variants. Together with
deep phenotyping, this dataset allows studying PofO effects on a
large scale with improved discovery power, as demonstrated by our
ability to replicate many known PofO associations as well as discover
new ones.

We looked at PofO associations at three different levels. First, we
reported two clear PofO associations supported by additive signals: a
maternal effect on platelet phenotypes located in the MEG3/DLK1
imprinted locus that has already been described®™ and another
maternal effect on TL at the TERT locus, a gene repeatedly associated
with TL under an additive model. This new PofO signal at the TERT
locus is particularly interesting, not only for its implication in
cancer”, but also because TL has been found to be highly heritable
and proposed to be under imprinting mechanisms***, which has not
yet been confirmed. In this work, we highlight a strong maternal
genetic effect at the TERT locus, thereby providing additional evi-
dence of the parent-of-origin component in TL heritability and
hypothesis on the imprinting status of TERT. In addition to this, we
also reported 14 new putative PofO associations across multiple
complex traits and confirmed them by replicating the signals in a
larger UK Biobank sample set using an increased variance method.
These new associations represent interesting candidates of PofO
effects in the human genome and would deserve further investiga-
tion and replication in independent datasets. Interestingly, none of

them fall in imprinting regions, suggesting that the current annota-
tion of imprinted genes is still incomplete or that the molecular
mechanisms underlying PofO effects are not necessarily directly
linked to genomic imprinting*®. Finally, we replicated the results of 6
GWAS on PofO out of the 7 we investigated, confirming PofO effects
on BMI, T2D, standing height and multiple blood biomarkers. We also
showed that the summary statistics we provide can be used to
annotate additive signals (e.g., TERT) or variance QTL (GxE, e.g.,
SEC16B) as PofO. We believe that an increase of power is still neces-
sary to detect additional PofO effects with strong confidence but that
the current approach already provides a useful resource that can
reveal many other associations by meta-analysis. Besides, we also
believe that our dataset can be used for more targeted GWAS scans
and reveal new putative PofQO effects by focusing only on known
imprinted loci, only on additive associations or on both criteria
together®®, thereby decreasing the cost of multiple testing
corrections.

One of the strengths of our PofO inference method resides in its
ability to make PofO calls with a low error rate. Regardless, the pre-
sence of errors in the inference is unlikely to produce false positive
PofQ associations, but only decrease the statistical power of the study,
since inference errors are expected to be drawn independently from
the phenotypes. Instead, errors are expected to lead to false negatives
as PofO signals get diluted onto the two parental origins and thus
decrease association power. In this work, we controlled for this by
focusing exclusively on high-confidence PofO calls, which corresponds
to a call for 74.5% of heterozygous genotypes with an estimated error
rate below 1%. The overall high accuracy in our estimates could be
achieved thanks to recent progress in the statistical estimation of
haplotypes for very large sample sizes™*’ so that the PofO status
inferred within IBD tracks could be confidently propagated to entire
chromosomes. Further improvements in phasing algorithms could be
made by explicitly modeling IBD sharing between close relatives,
eventually through inter- and intra-chromosomal scaffolding as we
performed in this work.

Our ability to infer PofO depends on the availability of close
relatives. Surprisingly, even when only a single third-degree relative
is available for IBD mapping, we achieve a high call rate and a low
error rate. We believe this could be further improved by using more
distant relatives, even if they will contribute less to the inference
than second- and third-degree relatives. In addition, our PofO
inference depends on the ability to assign parental status to relatives
based on IBD sharing on chromosome X, which comes with some
flaws. First, our current inference is only possible for males as it
leverages chromosome X haploidy, which means that only non-sex
specific and male specific PofO effects can be investigated. As a
results, female specific PofO effects, which could be of great interest
given the recent findings on sexual dimorphisms™, notably for
anthropomorphic traits, are likely missed by this approach. Potential
improvements should come with whole genome sequencing (WGS)
data: parental status assignment based on rare variant matching on
chromosome Y and mitochondrial DNA would likely become possi-
ble. In the UK Biobank, this has the potential to substantially increase
the sample size above the -26,000 samples we have so far to a the-
oretical upper bound of 105,826 samples, which corresponds to the
number of samples for which we found groups of close relatives in
the dataset. This could further boost the discovery power of down-
stream PofO association scans. Second, this approach can be con-
founded by high levels of inbreeding which could lead a sample to
share portions of the chromosome X IBD with close relatives on both
sides of the family, therefore greatly complexifying sex assignment.
However, we consider this issue to be almost negligible in this study
as the UK biobank mostly comprises outbred individuals. Con-
versely, admixture affects kinship estimation and therefore our
ability to find surrogate parents, although this can be compensated
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by using a robust method for kinship estimation in admixed
populations’.

Overall, this study is a valuable resource to further characterize
PofQ effects and investigate the impact of imprinting genes on com-
plex traits. Although the multiple successive steps of this approach
(IBD mapping, phasing, imputation) are difficult to fully automatize,
we expect it to be applicable to other biobanks, such as those collected
by the FinnGen research project (https:;//finngen.gitbook.io/
documentation/), the Million Veteran Program’:" or The Estonian
Biobank™. Collective efforts would allow the detection of PofO effects
with an unprecedented sample size by meta-analyzing PofO effects
across multiple biobanks and therefore greatly help future research on
the molecular mechanisms leading to PofO effects and their implica-
tion for human health.

Methods

Duos/Trios identification

To identify trios and duos we used pairwise kinship and IBSO estimates
up to third degree relative computed using KING" and provided as
part of the UK biobank study. Following Manichaikul et al.” and Bycroft
et al.”, we defined offspring-parent pairs as having a kinship coefficient
between 0.1767 and 0.3535 and an IBSO below 0.0012 (Supplementary
Fig. 5). We also added the condition of age difference greater than 15
years between parent-offspring pairs. We used the age and sex of the
individuals to distinguish parents and offspring. For the trios, we also
ensured that the two parents have different sex. Starting from 147,731
UKB individuals with at least one third degree relative, we found a total
of (i) 1064 samples with both mother and father (i.e., trios) and (ii)
4123 samples with mother or father (i.e., duos). We used the reported
ancestry of individuals to keep only genotyped individuals of British
and lIrish ancestry (N=443,993), which resulted in 1037 trios and
3872 duos.

IBD based group inference

We used pairwise kinship and 1BSO estimates up to the third degree
relative to identify sibling pairs (kinship between 0.1767 and 0.3535
and IBSO above 0.0012), and second- and third-degree relatives’ pairs
(kinship below 0.1767) for all genotyped individuals of British and Irish
ancestry (N =443,993) (Supplementary Fig. 5). For the following steps,
we used only second- and third-degree relatives to form surrogate
parent groups. We excluded siblings as they share the same two par-
ental genomes and therefore are not informative to distinguish the
paternal from the maternal genome. We found 106,414 individuals
with at least one second or third degree relative and 21,255 sibling
pairs. For individuals with two or more second- and third-degree
relatives, we separated those relatives into groups, representing the
groups of relatives on each side of the family (i.e., mother-side relatives
and father-side relatives). To do so, we used the relatedness in-
between these relatives: those related to each other are expected to
be on the same side of the family, while those unrelated to each other
are expected to be on different sides of the family. We built for each
individual a kinship symmetric matrix of size NxN, where N is the
number of second-to-third relatives of the target individual con-
sidered, filled with the kinship values in-between each relative. We
then used the ‘igraph’ R package to cluster these relatives into groups
based on their relatedness similarly to what has been done by Bycroft
et al.”. As we wanted a maximum of two distinct groups (i.e., one
paternal and one maternal), we excluded samples with more than two
clusters of relatives from the analysis as it indicates ambiguous cases.
Similarly, if a second-to-third degree relative is related to the two
clusters, we also excluded the sample to avoid ambiguous cases.
Importantly, this is often a symmetric assignment: when A is part of
the group of relatives of B, this usually involves B is part of the
relatives of A. We identified a total of 105,826 individuals with groups
of relatives, ranging from one group of one relative to two groups of

more than two relatives. This includes 309 individuals having also
both parents genotyped (i.e., trios) and 1090 having a single parent
genotyped in the data (i.e., duos). These 1399 individuals with at least
one genotyped parent and groups of close relatives constitute our
validation data set on which we applied our PofO inference method
using the close relatives as surrogate parents, ignoring the parental
genomes. We then used parental genomes to compute the accuracy
of our inference.

Group assignment

We assigned parental status (i.e., mother or father) to groups of close
relatives by examining shared IBD segments on chromosome X using
XIBD™, a software specifically designed to map IBD on chromosome
X (Fig. 1c). This assignment was only possible for males as they inherit
their only chromosome X copy from their mother: a close relative,
male or female, sharing IBD on chromosome X with the target is
expected to be from the maternal side of the family. To empirically
determine the IBD threshold above which only mother-side relatives
are found, we used the 1399 samples of our validation set (i.e., with
close relatives’ groups and genotyped parents). We computed the
IBD sharing on chromosome X for each target-relative pair, knowing
the correct parental side of the relatives from the kinship in between
the relatives and the available parents. We found that only mother-
side relatives share more than 0.1 of IBD1 on chromosome X (Sup-
plementary Fig. 6), a value that we used as a threshold to assign
maternal status. Across the 107,038 individuals having groups of
close relatives, 48,814 individuals are males, and we assigned the
group of close relatives to the maternal side of the family for 20,620
of them. By extension, we propagated the maternal status to the
relatives from the same parental group, and we labeled as paternal
the relatives from the other group. We then used the underlying idea
that siblings share the same set of cousins, uncle, and aunt to enrich
our set of samples. We searched for siblings of these 20,620 indivi-
duals having the exact same close relatives’ groups. We found
864 such siblings, resulting in a total of 21,484 individuals with close
relatives’ groups assigned to parental status (i.e., surrogate parents).
Notably, this strategy allowed us to assign parental status for a small
additional subset of female individuals (V=775, Supplementary
Table 1).

Genotype processing

We used the UK biobank SNP array data in PLINK format. We con-
verted the UK biobank PLINK files into VCF format using PLINK
v1.90b5", which resulted in 784,256 variant sites across the auto-
somes for 488,377 individuals. We then used the UK biobank SNPs QC
file (UK biobank resource 1955) to keep only variants used for the
phasing of the original UK biobank release, resulting in 670,741
variant sites.

Validation and production datasets

We assembled two distinct datasets comprising different collections
of samples of British or Irish ancestries by subsampling the original
dataset with BCFtools v1.8. The first one includes all UK Biobank
samples excluding the parental genomes for the N=1399 validation
samples for which we have both parental genomes and surrogate
parents. We ran our inference on N=1399 validation samples and we
assessed its performance by comparing our estimates to the truth
given by parental genomes. It is important to note that parental
genomes have been used only at the validation stage and not during
any phasing runs nor PofQ inference. The second dataset includes
this time all available UK Biobank samples and has been used to
produce the final set of individuals with PofQ inference that has been
used for association testing. This includes N=21,484 samples for
which PofO could be inferred from surrogate parents and
N= 4909 samples for which PofO could be directly inferred from the
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trios/duos. The final dataset includes 22,652 males (85.8%) and 3741
females (14.2%).

PofO inference stepl: IBD mapping

In this first stage, we inferred PofO for alleles shared IBD with sur-
rogate parents. To do so, we started by an initial phasing run of the
data using SHAPEIT v4.2.1° with default parameters so that all data
consists of haplotypes. Then, we designed a Hidden Markov Model
(HMM)™ to identify IBD sharing between the target haplotypes and a
reference panel mixing haplotypes from two different sources: from
the surrogate parents of the target (labeled as mother or father) and
from unrelated samples. We aimed for such a probabilistic model for
its robustness to phasing and genotyping errors compared to
approaches based on exact matching such as the positional
Burrows-Wheeler transform (PBWT). The model then uses a forward-
backward procedure to compute, for each allele of a target haplo-
type, the probability of copying the allele from (i) the surrogate
mother haplotypes, (ii) the surrogate father haplotypes or (iii)
unrelated haplotypes. Here, we used 100 unrelated haplotypes as
decoys so that the model is not forced to systematically copy from
surrogate parents. When the model copies the target haplotype from
a specific surrogate parent at a given locus with high probability, we
can therefore infer the PofO at this locus from the parental group the
surrogate parent belongs to. When the model copies from unrelated
haplotypes, no inference can be made at the locus (Supplementary
Figs. 1, 7 panels 1, 2). We implemented this approach in an open-
source tool available on GitHub*’.As a result of this procedure, we
obtained PofO calls within haplotypes segments shared IBD with
surrogate parents.

PofO inference step2: extrapolation by phasing

In this second stage, we inferred PofO for all remaining genotyped
alleles. First, we built a haplotype scaffold comprising all alleles for
which we know PofO from IBD sharing with surrogate parents”. In
other words, we forced all alleles that we knew to be co-inherited
from the same ancestor to locate on the same homologous chro-
mosome (Supplementary Figs. 1, 2B). In the scaffolds, we only
included IBD tracks longer than 3 cM. We empirically determined this
length on the validation set of samples by maximizing and minimiz-
ing the call rate and the error rate, respectively (see “Methods” sec-
tion ‘Accuracy and parameters optimization’). In addition, we
considered in the haplotype scaffold only alleles having a PofO
probability greater or equal to 95%. As a result, we could build
paternal and maternal haplotype scaffolds that we used in a second
step to rephase the entire dataset using SHAPEIT4 v4.2.1". The goal of
this second round of phasing is three-folds: (i) to ensure that the pool
of alleles coming from the same parent land onto the same haplo-
type, (ii) to propagate the PofO assignment from IBD tracks to all
alleles along the chromosomes and (ii) to correct long range switch
errors. Point (ii) is made possible as all alleles with PofO unknown
(i.e., not in IBD tracks) are phased relatively to the haplotype scaffold
so that we can extrapolate their PofO from the scaffold they co-
localize with (paternal/maternal). In practice, we ran SHAPEIT4 with
two main options: -scaffold to specify the scaffolds of haplotypes to
be used in the estimation and -bingraph to output the haplotype
reconstructions together with phasing uncertainties. The latter pro-
vides the haplotype reconstructions as parsimonious graphs encap-
sulating phasing uncertainty so that likely haplotype pairs can be
rapidly sampled without being forced to rerun the complete phasing
run. As a consequence, we sampled for each target sample a 1000
haplotype pairs using different seeds and computed the probability
for a given allele to be paternal or maternal from its frequency of co-
localization across the 1000 pairs onto the paternal and maternal
haplotype scaffolds, respectively (Supplementary Figs. 1 and 7A-H
panels 3). This frequency indicates the certainty we have in phasing

and therefore is a probabilistic measurement of the confidence in the
PofO assignment. For instance, a specific allele being phased with a
certainty of 0.8 onto the paternal haplotype scaffold has an 80%
chance to be of paternal origin. In all downstream analysis, we con-
sidered only heterozygous genotypes with a phasing probability
above 0.7; a threshold that we empirically determined from the
validation set of samples by maximizing and minimizing the call rate
and the error rate (see “Methods” section on ‘Accuracy and para-
meters aptimization’).

PofO inference step3: extrapolation by imputation

In this third stage, we inferred PofO for untyped alleles, i.e., not
included on the SNP array. To do so, we imputed the data using
IMPUTES v1.1.4' with the Haplotype Reference Consortium" as a
reference panel. As our data is phased with each haplotype assigned to
a specific parent, we used the parameter -out-ap-field to run a haploid
imputation of the data and separately imputed the paternal haplotype
and the maternal haplotype. Of note, we filtered out all heterozygous
genotypes with a phasing certainty below 0.7 prior to imputation (see
previous section). As a result of haploid imputation, the PofO of
imputed alleles can be probabilistically deduced from the imputation
dosages: an allele imputed with a dosage of 0.85 on the paternal
haplotype has 85% probability of being inherited from the father (i.e.,
PofQ probability = 85%). Finally, we filtered out variants with an INFO
score below 0.8 and obtained a dataset comprising 22,156,064
variants.

Accuracy and parameters optimization

We used samples with both genotyped parents and groups of surro-
gate parents (i.e., validation set of samples N=1399) to compute the
errors in the PofO inference and to optimize the parameters of our
inference method. For the trios (N=309) and the duos (N=1090), we
determined the correct parental origin of offspring heterozygous
genotypes at sites where a parent is homozygous, excluding sites with
Mendel inconsistencies. We assessed the impact of two parameters on
the call rate (percentage of heterozygous genotypes with PofO
assignment) and the error rate (percentage of heterozygous genotypes
with incorrect PofO assignment) of the PofQ inference: (i) the length in
centimorgan (cM) of the haplotype segments that we included in the
scaffold for the second phasing run and (ii) the phasing certainty
threshold we used to assume PofO to be known at heterozygous
genotypes. To do so, we compute the call rate and the error rate for all
combinations of the following parameters (Fig. 2a): haplotype seg-
ments of 2, 3, 5, 8, and 10 cM and threshold on the phasing certainty
between 0.5 and 1.0 by steps of 0.05. Overall, we found that a phasing
certainty above 0.7 and haplotype segments above 3 cM to be a good
trade-off between call rate and error rate and used these values in all
downstream analyses.

Association testing for PofO

We tested 99 quantitative phenotypes of the UK biobank data set
(Supplementary Data 1) from 4 phenotypic categories to allow
phenome-wide association analysis of variants of interest: body size
measurements, body composition by impedance, blood biochemistry
and blood count. We additionally tested telomere length and birth
weight which are not included in one of these categories. For telomere
length, we removed individuals with reported blood cancer or malig-
nancies. We considered only phenotypes with less than 50% of missing
data. We rank-transformed each phenotype using the ‘rntransform’
function from the GenABEL v1.8-OR package™. We used the sex, age
and the method used to infer the PofO of alleles as covariates (i.e.,
surrogate parents or direct parents). We used BOLT-LMM v2.3.4" to
run all association tests. As recommended by the authors, we per-
formed the model fitting only on the genotyped variants. For the
additive GWAS scans, we used the -dosageFile parameter to test
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imputed alleles dosages, as recommended in the documentation. For
the PofO GWAS scans (i.e., maternal scan and paternal scan), we used
the -dosagefile parameter to test the PofO dosages of alleles. In prac-
tice, we only used imputed allele dosages (i) of the paternal haplotype
for the paternal-specific GWAS and (ii) of the maternal haplotype for
the maternal-specific GWAS, so that PofO assignment uncertainty is
propagated to association testing. We conducted a third PofO GWAS
scan that compares the effect of maternally and paternally inherited
minor alleles at heterozygous genotypes (i.e., differential scan). For
this, we used only heterozygous genotypes with imputed minor allele
dosages greater or equal to 0.95 to keep only genotypes with high
confidence in the PofO. We encoded such alleles as O when inherited
from the father and 1 when inherited from the mother. We again used
the -dosageFile parameter to test whether the paternal and maternal
alleles have differential effect at heterozygous sites with all homo-
Zygous genotypes set to missing. Prior to running association testing,
we coded all variants so that we systematically tested the effects of
minor alleles. We filtered out all variants with a minor allele frequency
(MAF) below 1% which resulted in 7,645,537 variants for association
testing.

GWAS hits identification

We identify independent hits as having Linkage Disequilibrium (LD, R?,
computed with PLINK v1.90b5) < 0.05 and being located at least
500 kb apart. If two hits are not independent, we select the one with
the lowest p-value. We identify PofO associations as being Bonferroni
significant (p<5x107) in the differential scan and in the additive
scan. We inferred the parent and direction of the effect using the
paternal and maternal scans.

Replication of PofO hits using the increased-variance method
We used the QUICKTEST software", designed to capture PofO effects
as described by Hoggart et al. Software and documentation were
accessed on 12.22.2021 (https://wp.unil.ch/sgg/program/quicktest/).
We restricted the analysis to the subset of 443,993 genotyped samples
of British or Irish ancestry. We used as covariates age, sex and the first
ten PCs.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The summary statistics for the four GWAS models across the 99 phe-
notypes are available here for download: http://poedb.dcsr.unil.ch/.
The UK Biobank genetic data are available under restricted access for
privacy policy reason, access can be obtained by application via the UK
Biobank Access Management System (https://www.ukbiobank.ac.uk/
enable-your-research/apply-for-access). Source data are provided with
this paper.

Code availability

Repository https://github.com/RJHFMSTR/PofO _inference hosts the
source code of the IBD mapper used as part of this study, a full doc-
umentation of the pipeline”, as well as the custom code used for the
analysis and for the data visualization.
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A genome-wide scan for parental inheritance
distortion events to identify genetic effects on human

fertility

This manuscript is presented in Chapter II.

It contains unpublished preliminary results.
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A genome-wide scan for parental
inheritance distortion events to identify

genetic effects on human fertility

Robin J. Hofmeister, Olivier Delaneau

Abstract

Fertility measurement is challenging due to its complex nature, which is influenced by a
range of biological processes, such as hormonal regulation, gametogenesis, fertilization, and
implantation. Consequently, researchers often use proxies to assess genetic factors involved
in human fertility, such as the number of children a person has or their age at first birth, to
measure fertility indirectly. However, these proxies can be influenced by factors like ancestry,
socioeconomic status, or lifestyle choices, which can confound the results. Furthermore,
these methods may not be suitable for detecting genetic factors associated with fertility in
diverse populations. Recently, transmission distortion tests (TDTs) have been proposed as an
alternative to study genetic factors linked to human fertility, by assessing the frequency of
allele transmission from parents to offsprings. However, this method is limited to family
studies as it requires prior knowledge of parental genotypes, and the sample size is
therefore insufficient to detect moderate distortions of transmission, that are those to likely
persist in the population. Here, we propose an innovative approach that investigates genetic
contribution to human fertility by detecting variants whose parental inheritance deviates
from the expected Mendelian ratio that does not rely on the availability of parental
genomes. We identified a strong paternal distortion signal at 22q13.33 whose associated

genes RABL2 and ACR impact sperm function.
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Introduction

Mendel’s Law of segregation implies that the offspring of an heterozygous parent has an
equal probability of inheriting either allele. Deviations from the expected Mendelian
inheritance pattern, which occurs when one allele is preferentially transmitted, is termed
Transmission Ratio Distortion (TRD)>2. TRD can arise due to various selective stages that
occur during different biological processes or developmental stages. Meiotic drive, for
example, refers to the phenomenon in which "driving alleles" influence the meiotic process
to increase their transmission, leading to a deviation from the expected inheritance pattern.
In the asymmetric female meiosis, only one of the four haploid products becomes an oocyte,
which leaves room for gamete competition and selection before the fertilization. On the
other hand, male gametogenesis produces many small gametes that have to compete for
fertilization and during which selection can occur. Finally, the viability of individuals can also
play a role in shaping TRD in the human genome. An allele that confers a survival advantage,
for example at the zygote stage, will be more frequently represented in the population,

leading to deviations from the typical Mendelian inheritance pattern®2.

The most documented events of TRD are ‘gamete killers’. In mice, the t-haplotype confers a
fertilization advantage which results in increasing its transmission and hence its frequency in
the population®. In drosophila, segregation distorter (SD) locus prevents wild-type gametes
(i.,e not carrying the distorter form) from developing normally, resulting in skewed
transmission in favor of the SD form*’. Despite the presence of several documented
instances of TRD in other organisms, the extent and impact of TRD in humans remains
largely unknown. Yet, it is likely that distorter variants exist across the human genome.
According to speculative reports, between 50-75% of all human conceptions are lost before
the first missed menstrual period, and infertility affects one in every couple trying to
conceive®. These factors suggest that the influence of distorter variants on human
reproduction and the deviation from expected Mendelian inheritance patterns may be more

prevalent than previously thought.

Attempts have been made to understand the extent of TRD in human populations using
different strategies. First, studies investigated the excess of allele sharing across siblings and

114


https://paperpile.com/c/TMrO70/BvaZ+zznP
https://paperpile.com/c/TMrO70/zznP+BvaZ
https://paperpile.com/c/TMrO70/fZQz
https://paperpile.com/c/TMrO70/fnD5+iMfL
https://paperpile.com/c/TMrO70/AZlz

twins. In one study using 143 nuclear families of Hutterite ancestry, a genome-wide excess
of allele sharing among siblings was found, which could indicate a departure from the
expected Mendelian inheritance pattern at many loci’. However, this evidence was
contradicted by a study on dizygotic twins from Australia and the Netherlands that found no
excess of allele sharing, either across the entire genome or at the HLA locus, the human
ortholog of the mouse t-haplotype®. This is also in contrast to previous findings that showed
a higher degree of HLA haplotype sharing in dizygotic twins®’. These conflicting results
highlight the need for further research and alternative strategies to better comprehend the

occurrence and impact of TRD in different populations.

Second, deviations from Mendel's pattern of inheritance have been identified using the
Transmission Disequilibrium Test (TDT), which measures the non-random transmission of an
allele from heterozygous parents to their affected offspring. It is a widely used approach in
family-based studies to examine the possible connection between a genetic marker and a
particular illness. This notably allows the discovery of distortion events associated with
diseases such as Crohn’s disease®™ or the long-QT syndrome®. Finally, the TDT has been
expanded at the population level by considering each offspring as "affected"**™**. This
allowed the study of TRD without restricting analyses to disease cases and considerably
increased the study sample size by including any available family in the analysis. It is
important to note that by evaluating TRD without considering a specific phenotype, it allows
to identify genetic loci that affect the likelihood of survival. This is similar to selecting "alive"

as the phenotype, as it highlights genetic factors that impact the chances of survival.

Several studies have used this generalized TDT approach to investigate loci affecting
reproduction and survival. Hanchard et al. analyzed MHC regions across 380 newborns and
found modest evidence for TRD in the CLIC1 gene (p=0.025) after restricting the test to 13
SNPs based on LD°®. Santos et al. focused on the human region syntenic with the mouse
t-haplotype, containing notably the human MHC region®. They adjusted for multiple testing
by using tag SNPs and permutations. They observed a significant deviation (p=2e®) in the
allelic transmission among 30 CEU male parents with a strong ratio: 17 of the 18
transmission were for the same allele. Patterson et al. assessed TRD genome-wide by

combining both parents from the Framingham Heart Study (FHS) and found eight candidate
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distortion events, one of which reach genome-wide significance (p=7.4e™°). Meyer et al.
used human pedigree datasets and revealed two significant loci among 90 individuals of the
Autism Genetic Resource Exchange (AGRE) dataset: the first at 10926.12 when combining
both paternal and maternal transmission (p=4.55e); the second at 6p21.1 that only

showed a significant signal for paternal transmission (p=1.77e%)"

. Although the signal at
6p21.1 confirms the previous observation in 30 CEU males®, these signals could not be
replicated in the FHS cohort, which likely suffers from genotyping error noise'**. Finally, Liu
et al. searched for paternal- or maternal-specific TRD events in the FHS cohort, correcting for
genotyping errors™. They found two maternal-specific loci, at the LRP2 and ZNF133 genes
(p=4.2e® and 2.6e, respectively). Despite setting the basis on the extent of TRD

genome-wide, only one of these signals seemed to be replicated across two independent

cohorts (i.e at 6p21.1), the remaining still requiring further validation as suggested™.

Although the generalized TDT appears to be the most promising method for detecting TDR in
healthy populations, it also has several limitations and challenges that need to be
considered. These include issues with sample size, population stratification, and technical
factors such as genotyping errors. Indeed, the TDT method is limited to family studies as it
relies on prior knowledge of the parental genotypes. This restriction limits the sample size
and reduces the potential for discovery, resulting in an ability to detect only strong cases of
TDR. However, such strong TDR distortions are not stable in a population, as the dominant
allele becomes fixed more quickly as the distortion becomes stronger***. As a result, it is
unlikely that strong TRD will be observed in multiple populations simultaneously and the
replication of TRD signals becomes challenging®. On the other hand, moderate distortions
are more challenging to detect since they require extremely large sample sizes. For example,
considering an heterozygote frequency of 10%, approximately 20,000 parent-offspring trios
are necessary to achieve 80% power to detect distortion of 5% at a=10" according to
simulations®®. Finally, previous studies have highlighted the possibility of genotyping error to

141317 " This is often indicated by an excess of

introduce false positive TRD detection
genome-wide low p-values and lack of consistency between variants in close proximity,
while a true TRD signal is expected to spread to neighboring variants due to linkage
disequilibrium®. Due to these limitations of the TDT, the detection of transmission distortion

events in healthy populations remains a significant challenge.
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To address this, we present an innovative method for analyzing distortion events that
modifies the conventional use of TDT. Our approach consists of two key components. First,
instead of examining the transmission of minor and major alleles from parents to offspring,
we propose investigating the frequency at which minor alleles are inherited by the offspring
from each parent. This automatically takes into account the differential impact of the variant
on the paternal and maternal reproductive processes or gametic competition and enables
the detection of parent-specific variants. Second, in order to enhance the sample size of our
study, we have utilized a recently developed method that infers the parent-of-origin of
alleles from close relatives, eliminating the need for parental genotypes'®. This notably
allows us to increase the sample size compared to family-based studies, resulting in a more

robust and effective analysis of transmission distortion events in healthy populations.

In the UK Biobank whole-genome sequencing (WGS) dataset, we inferred the PofO for
10,150 samples and tested the resulting call set for Parental Inheritance Distortion (PID)
event. We identified a strong paternal distortion signal at 22q13.33 that could be technically
validated in the UK Blobank whole-exome sequencing (WES) data and whose associated
genes impact sperm function. Beside improving upon the traditional TDT method, our
results demonstrate a more reliable way to test for genetic factors involved in human fertility

compared to GWAS studies that use proxies phenotypes®™.

117


https://paperpile.com/c/TMrO70/7xwV
https://paperpile.com/c/TMrO70/QMH7

Results

Genome-wide Parental Inheritance Distortion scan

We identified 10,150 individuals from the UK Biobank WGS data who had surrogate parents
labeled as either paternal or maternal, representing 38% of the original sample size reported
using the UK Biobank axiom array data'®. We inferred the parent-of-origin at common
variants (MAF>0.1%, see methods) for these individuals, resulting in a call set of 16,449,701

variant sites across the 22 autosomes.

To detect variants that deviated from the expected Mendelian inheritance pattern of 50%,
we performed a Parental Inheritance Distortion (PID) test (see methods) on the resulting call
set. Using a Bonferroni genome-wide significance threshold (p<5e™®), we identified 9
genome-wide significant loci (Figure 1A). Among them, 6 showed signals extending to
nearby variants due to linkage disequilibrium (chromosomes 3,11,12,14,19,22), similar to
what is observed in GWAS signals which suggests that they are true positives', while the

other 3 were isolated variants that are likely to be false positives (chromosomes 4,5,6).

We conducted a comparison of allelic frequency between males and females in the UK
Biobank WGS cohort to eliminate the possibility of sex-specific variants causing the
distortions of inheritance. Indeed, genetic variants over-represented in one gender may lead
to unequal transmission between paternal and maternal alleles. The UK Biobank WGS
cohort consists of 67,290 and 82,651 genetically confirmed males and females, respectively.
We did not observe any significant discrepancies between the allelic frequencies of males
and females at loci exhibiting genome-wide significant distortions (Supplemental Figure 1).
This implies that the observed distortion signals are not driven by imbalance allele
frequencies between male and females. [However, no statistical measure of the difference

between men and women has yet been calculated.]*(remains to be investigated)

To validate the signals, we employed two different strategies. Firstly, since the UK Biobank
project includes multiple releases (WGS, WES, and SNP array) for the same set of individuals,
we tested the distortion events across different genotyping technologies for the same
cohort. This serves can be considered as technical replicates, and can provide insights into

the true nature of the signals, helping to distinguish between genuine distortion events and

118


https://paperpile.com/c/TMrO70/7xwV
https://paperpile.com/c/TMrO70/pKve

errors arising from sequencing, mapping, or genotype calling’**>"’. Secondly, we aim at
validating these signals in other cohorts, which can be considered as biological replicates.
This approach helps to confirm the robustness and generalizability of the findings beyond
the initial cohort. [However, no biological validation was yet successful]*(remains to be

investigated)

Technical replication

Using the UK Biobank WES data, we inferred the parent-of-origin (PofO) for 26,393
individuals for which we performed genotype imputation using the UK Biobank WGS as a
reference panel (see methods). We selected all variants exhibiting genome-wide significant
distortion (p<5e™®) in the WGS call set, which represents 144 non-independent variants. Out
of these, only 92 could be tested in the WES call set due to the filtering out of poorly
imputed variants. Interestingly, these 92 variants are located on chromosomes 3, 11, 14, and
22, which are the signals more likely to show true positive signals due to the spreading of
significant distortions to nearby variants (Figure 1A). This could already indicate that the
remaining poorly imputed variants are false positive signals. We tested these 92 candidate
variants for PID and found that only the locus on chromosome 22 also shows genome-wide

significance (p<5e™) in the WES call set (Figure 1B).

The SNP leading the signal on chromosome 22 (rs2747986, p,.=4.1e") is ~1.5 times less
inherited from fathers (ratio=0.39, count,,=1829, count,,,=2808). This variant is located in
an intron of RABL2 (Figure 1C), a gene that plays a role in sperm tail structure and has been
implicated in male fertility?®*. In addition, among the signal confirmed in the WES call set
(Puwgs<5€® and p,.,<5e*), the lead SNP is rs199928666 (p,,.=1.66°, p,e=3.3e7%), a variant in
strong LD with rs2747986 (r’=0.42)** and that exhibits a similar distortion ratio (ratio=0.43).
This variant is a splice-eQTL in testis for ACR?, a gene that encodes the acrosin protein, the
main protease of the acrosome, which plays a role in penetrating the zona pellucida. A
decrease in acrosin protein levels has been linked to delayed fertilization?**. These findings
suggest that sperm cells carrying the risk allele are less efficient in the fertilization process

than wild-type sperm cells, making them less likely to be inherited. However, since these
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alterations are unlikely to completely impair sperm cells, fathers who are homozygous for

the risk allele likely exhibit reduced fertility rather than complete infertility.

The reason why we only observed the signal on chromosome 22 in the WES call set could be
attributed to the presence of genotyped variants that exhibit strong distortion at this locus,
leading to improved imputation accuracy of neighboring variants. As the PID test is sensitive
to genotyping error, it may also be sensitive to imputation error, which makes it challenging
to detect signals in imputed call sets. [However, this needs to be validated for other
significant regions identified in the WGS dataset.]*(remains to be investigated). Additionally,
it is possible that all the signals, except for the one on chromosome 22, are a result of

sequencing or genotype calling artifacts.

We finally evaluated the efficacy of traditional family-based studies in detecting signals at
this locus using a subset of individuals (N=518) with parental genome data available for PofO
inference in the UK Biobank WGS data. We did not observe any distortion for the locus on
chromosome 22, highlighting the advantage of our call set over the conventional TDT

approach that uses family data (Figure 2A).

Biological replication

Next, we aimed to validate the signals by replicating them in independent datasets. To
achieve this, we utilized the Estonian Biobank (EBB)®*, in which we identified 29,650
parent-offspring duos and 10,502 parent-offspring trios. For these, we inferred the PofO
using available parental genomes. We tested the resulting call set for PID, and we could not
replicate the signal on chromosome 22 (Figure 2F) nor any of the other genome-wide

significant signals detected on the UK Biobank WGS call set.

We discovered that the genotyped variants in the EBB were not dense enough to impute the
locus accurately on chromosome 22 (Figure 2F). As a comparison, we were unable to
recover the signal on chromosome 22 using the UK Biobank SNP array data (Figure 2G),
which contains a similar density of variants as the EBB SNP array data. To explore further, we
evaluated whether the recovery of the signal on chromosome 22 was due to the genotyped
data or the reference panel. For this, we used different reference panels for both the UK

Biobank SNP array imputation (Figure 2G-I) and for the UK Biobank WES imputation (Figure
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2C-E). None of the SNP array imputed call sets allowed us to retrieve the signal. On the other
hand, all the UK Biobank WES imputed call sets retrieved the signal. This confirms the

limitation of SNP array based imputed call sets and highlights the benefit of using WGS and
WES data in this context.
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Future analysis

Since SNP array data seems to not allow recovering signals located close to telomeres, we
aimed to validate our findings using WGS cohorts. For this, we initiated a collaboration with
the Qatar Genome Project”. A first overview of the data allowed us to identify a total of
2359 parent-offspring duos and 691 parent-offspring trios across a total of 13,896
individuals. In addition, we also aim to use the publicly available 1000 Genome Project®,

which includes a total of 602 parent-offspring trios.

Furthermore, given that the signals identified are predominantly situated near telomeres,
we do not exclude the possibility that they result from phasing edge effect or
parent-of-origin inference edge effects. Nevertheless, we do not perceive any scenario in
which phasing errors are associated with the parental origin of variants, resulting in the
identification of these signals. In addition, we will also investigate the mappability of the

regions. Low mappability can result in poor phasing accuracy.
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Method

Parent-of-origin inference from close relatives
To infer the parent-of-origin from close relatives in the UK Biobank data set, we used a

method previously developed as part of our research group®. Briefly, it consists in (i) the
identification of close relatives using the kinship estimate, (ii) the grouping of close relatives
into parental groups, (iii) the labeling of parental groups as paternal or maternal using the
IBD sharing on the chromosome X for male individuals, and (iv) phasing to assign parental

origin to haplotypes.

Parent-of-origin inference from parental genomes

To infer the parent-of-origin from available parental genomes, we used the phasing software
SHAPEIT5?, which includes an option --pedigree implementing a ‘Mendelian’ phasing. This
option uses parental genomes to solve the phase for heterozygous offspring. When parental
genomes can not be used, such as in the case where both parents are heterozygous, it solves

the phase from the reference panel using the typical phasing model.

P Linheri listorti :

To test the deviation from Mendelian inheritance pattern, we used the function
binom.test(P, P+M, 0.5) implemented in R, where:
P=number of heterozygous individuals with paternally inherited minor allele,
M=number of heterozygous individuals with maternally inherited minor allele,
0.5 = expected ratio based on Mendelian rules.
Additionally, we computed the ratio of paternally versus maternally inherited alleles

computed as r= P/(P+M). This ratio equals 0.5 when there is no distortion.

UK Biobank array data processing

In the UK Biobank SNP-array data, we inferred the parent-of-origin from close relatives as
described in Hofmeister et al*®. We followed the same quality control procedure. It resulted
in 26,393 individuals with PofO inferred. For the SNP-array data, this method is followed by
haploid imputation to increase the variant density on each of the two parental haplotype

separately.
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UK Biobank sequencing data processing
We use the 150,119 individuals available WGS data and the 452,644 individuals with both

WES and SNP array data. As described in the SHAPEIT5 documentation®, we merged the
WES with the SNP array data to increase the variant density and improve the accuracy of the
phasing procedure. For both the WGS and the WES data, we followed the same quality
control procedure as in the SHAPEIT5 manuscript.

To infer the parent-of-origin in the WGS and WES data, we proceed in a multi-step process.
First we inferred the parent-of-origin from close relatives in the SNP-array data (see above).
Then, we used the resulting haplotypes as a scaffold to phase the sequencing data using the
option --scaffold of the SHAPEIT5_phase_common tool.

For the WES data, we additionally increased the variant density using haploid imputation.

Estonian Biobank data processing

We used the SNP array data of the Estonian Biobank (EBB)*® pre-QCeed as provided by the
official release. We use the software KING*® to compute the relatedness among individuals.
We identified parent-offspring duos and trios as relationships as having a kinship coefficient
lower than 0.3553 and greater than 0.1767 and an IBSO lower than 0.00123°%', |n addition,
we require that the difference in age between parents and offspring is greater than 15 years
and that the two parents have different sex for trios. This resulted in the identification of
10,502 trios and 29,650 duos. We inferred the PofO from parental genomes using SHAPEIT5
and the --pedigree option®. In addition, we performed haploid imputation using HRC as a

reference panel®.

1 P I in
We used the publicly available 1000 Genome Project 30x GRCh38 data®®. We identified trios

and duos using the provided pedigree file. It consists of 602 trios and 6 duos. For these, we

inferred the PofO from parental genomes using SHAPEITS and the --pedigree option®.
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Haploid Imputation
Haploid imputation has been performed using the option -out-ap-field of IMPUTES?® such as

described in Hofmeister et al. For this procedure, we used different reference panels in order
to assess their impact on the signal of imputed call sets:

- Haplotype Reference Consortium (HRC)** GRCh37

- 1000 Genome Project 30x GRCh38, publicly available

- UK Biobank WGS GRCh38, produced as part of the SHAPEIT5 manuscript®.

Each imputed call set has been filtered to remove variant sites with INFOscore below 0.8.
LiftOver
For imputation purposes, we lifted over the UK Biobank SNP array data and the HRC data

from GRCh37 to GRCh38 using a vcf liftover tool available as part of the SHAPEIT5 release®.

Qatar Genome Project data processing

We use the software KING* to compute the relatedness among individuals. We identified
parent-offspring duos and trios as relationships as having a kinship coefficient lower than
0.3553 and greater than 0.1767 and an IBSO lower than 0.00123%%'. In addition, we require
that the difference in age between parents and offspring is greater than 15 years and that

the two parents have different sex for trios. It resulted in 691 trios and 2359 duos.
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Figure 1. Parental Inheritance Distortion scan. A) PID test significance (y-axis,
-log10(p-value)) across the 22 autosomes (x-axis). Even chromosomes are shown in black;
odd chromosomes are shown in gray. The red line indicates the Bonferroni genome-wide
significance threshold (5e®). B) PID significance in the UK Biobank WES data (y-axis) versus
the UK Biobank WGS data for variants exhibiting PID genome-wide significance in the WGS
data. C) Locus zoom at 22g13.33 on the UK Biobank WGS PID scan.
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Figure 2. Locus zoom at 22g13.33. A-l) PID significance (y-axis) along chromosome 22
positions (x-axis) across different call sets (A-l). A) UK Biobank WGS using only duos and trios
for which the PofO was inferred from parental genomes (N=518). B) UK Biobank WGS using
N=10,150 individuals for which the PofO was inferred from close relatives. C-E) UK Biobank
WES using N=26,393 individuals for which the PofO was inferred from close relatives across
different reference panels for genotype imputation. F) Estonian Biobank SNP array imputed
with HRC as a reference panel, using only duos and trios for which the PofO was inferred
from parental genomes (N=40,152). G-I) UK Biobank SNP array using N=26,393 individuals
for which the PofO was inferred from close relatives across different reference panels for
genotype imputation. Black dots indicate genotyped variants. Gray dots indicate imputed

variants.
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Supplementary figures

Sex specific allele frequency at
genome-wide significant distortion loci
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Supplementary figure 1. Allelic frequency at PID genome-wide significant loci. Males allele

frequencies (x-axis) versus female allele frequencies (y-axis) in the UK Biobank WGS cohort.
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