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Abstract

Humans are genetically 99.9% identical. Can you believe it? However, despite this close
similarity, even the slightest variation in the remaining 0.1% can lead to significant
differences in phenotypic traits and disease susceptibility. Biobanks have greatly increased
our understanding of how genetic variations affect complex traits through Genome-Wide
Association Studies (GWAS) by collecting genetic and phenotypic data for hundreds of
thousands of individuals. However, efficient data processing methods are crucial to fully
exploit their potential. Despite the progress made, there is still a wealth of untapped
information in biobanks that could revolutionize our understanding of complex traits.
Haplotypes are a promising resource in this regard, as they can be inferred directly from
genotypes without requiring additional recruitment or data collection.

In this thesis, I explored the use of haplotypes to maximize the potential of existing biobanks
and enhance the characterization of the impact of genetic variants on complex traits. To
achieve this, I have developed innovative methods for estimating haplotypes from large
biobanks (Chapter I) and inferring the parental origin of the resulting haplotypes (Chapter II).

Chapter I presents a method to estimate haplotypes and describes the phasing of the UK
Biobank whole-genome and whole-exome sequencing data. It illustrates the importance of
the resulting haplotype estimates to discover rare genetic conditions called Compound
Heterozygotes (CH). These occur when an individual carries two non-identical copies of
loss-of-function mutations, one inherited from each parent, resulting in a double gene
knockout. In addition, this chapter shows how my haplotype estimates improve imputation
accuracy, especially at rare variants that are under-represented in smaller cohorts, enhancing
the ability to capture causal variants in downstream GWAS.

Chapter II presents an innovative approach to determine the parent-of-origin of haplotypes
that does not rely on prior knowledge of parental genomes. I first demonstrate how this
information can be used to discover phenotypic effects that depend on the parent-of-origin of
the genetic variant, referred to as parent-of-origin effects. In addition, I also illustrate the
importance of the parent-of-origin of haplotypes to identify genetic factors involved in human
fertility, by detecting genetic variants whose inheritance deviates from the expected
Mendelian inheritance pattern.
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Résumé
Les humains sont génétiquement identiques à 99,9 %. Pouvez-vous le croire? Cependant,
malgré cette similitude étroite, la moindre variation dans les 0,1 % restants peut entraîner des
différences significatives dans les traits phénotypiques et la susceptibilité aux maladies. Les
biobanques ont considérablement amélioré notre compréhension de la façon dont les
variations génétiques affectent les traits complexes grâce aux études d'association à l'échelle
du génome entier (GWAS) en collectant des données génétiques et phénotypiques pour des
centaines de milliers d'individus. Cependant, des méthodes efficaces de traitement des
données sont cruciales pour exploiter pleinement leur potentiel. Malgré les progrès réalisés, il
existe encore une mine d'informations inexploitées dans les biobanques qui pourraient
révolutionner notre compréhension des traits complexes. Les haplotypes sont une ressource
prometteuse à cet égard, car ils peuvent être déduits directement des génotypes sans
nécessiter de recrutement ou de collecte de données supplémentaires.

Dans cette thèse, j'ai exploré l'utilisation des haplotypes pour maximiser le potentiel des
biobanques existantes et améliorer la caractérisation de l'impact des variants génétiques sur
les traits complexes. Pour y parvenir, j’ai développé des méthodes innovantes d'estimation
d'haplotypes à partir de grandes biobanques (Chapitre I) et d'inférence de l'origine parentale
de ces haplotypes (Chapitre II).

Le chapitre I présente une méthode pour estimer les haplotypes et décrit le phasage des
données de séquençage du génome entier et de l'exome entier de UK Biobank. Il illustre
l'importance des estimations d'haplotypes pour découvrir des conditions génétiques rares
appelées hétérozygotes composés (CH). Ces conditions surviennent lorsqu'un individu porte
deux copies non-identiques de mutation perte de fonction, une héritée de chaque parent,
entraînant une double inactivation du gène. En outre, ce chapitre montre comment mes
estimations d'haplotype améliorent la précision de l'imputation, en particulier pour les
variantes rares qui sont sous-représentées dans les cohortes plus petites, améliorant ainsi la
capacité de capturer les variantes causales dans les GWAS.

Le chapitre II présente une approche innovante pour déterminer le l’origine parentale des
haplotypes qui ne repose pas sur une connaissance préalable des génomes parentaux. Je
démontre premièrement comment ces informations peuvent être utilisées pour découvrir des
effets phénotypiques qui dépendent de l’origine parentale de la variation génétique, appelés
effets d'origine parentale. En outre, j’illustre l'importance de l’origine parentale des
haplotypes pour identifier les facteurs génétiques impliqués dans la fertilité humaine, en
détectant les variations génétiques dont l'héritage s'écarte du modèle d'héritage mendélien
attendu.
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Introduction
The interplay between human genetic variations and external factors, such as environment

and behavior, is responsible for the wide range of phenotypic diversity found among

individuals and their varying levels of susceptibility to diseases. Over the past decade, there

has been significant research into the impact of single genetic variants on diseases and

complex traits. This research has been made possible by large biobanks containing tens of

thousands of individuals, enabling researchers to investigate the relationship between

genotype and phenotype. However, there is much more than genotype information to be

utilized from these biobanks, such as how multiple variants segregate together across

generations to form haplotypes, the units of inheritance of the human genome.

This introduction provides a brief overview of the current understanding of genetic variants,

from their identification, classification, and segregation into haplotypes, to the common

method to test their association with complex traits and diseases.

Genetic variations in the human genome

The divergence from the reference genome

Genetic variations, also known as polymorphisms, refer to differences in the DNA sequence

among individuals. These genetic differences contribute to the phenotypic diversity among

individuals and can influence disease susceptibility within and across populations1. The

genetic variations of an individual are usually identified by comparing its DNA sequence

with a reference genome2. The first ‘draft’ of the human genome was released by the

International Human Genome Sequencing Consortium in 20013–5, also known as the Human

Genome Project, which covered approximately 94% of the human genome6,7. This was a

pioneer approach in the establishment of a reference genome, which kept improving over the

years. The current reference genome was compiled by the Genome Reference Consortium in

20138. It is a representation of the average genetic information of the human population that

was assembled by combining the genome of multiple individuals to represent the best modern

human genome. This reference genome is regularly updated to fix errors, fill gaps or add

newly discovered variants. However, some individuals, such as those from isolated
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populations, may substantially deviate from the reference genome since it is constructed

based on a particular population and primarily consists of approximately 70% of the

sequences from a single individual9. This discrepancy with the reference genome adversely

affects the precision of genetic variant mapping. To address this, a novel initiative aims at

assembling a human pangenome reference to represent the genomic diversity across human

populations, which should improve genome mapping for diverse ancestries9–11. Furthermore,

the Telomere-to-Telomere (T2T) project12 is expected to enhance genome mapping accuracy

by generating the first comprehensive sequence of a human genome. This will particularly

improve mapping at repeated elements such as human satellite repeat arrays or on the short

arm of acrocentric chromosomes that are not well represented in the current reference

genome.

The size of genetic variations

Variations between an individual’s genome and the reference genome can take many

forms2,13. Single changes in the DNA sequence, known as Single Nucleotide Polymorphisms

(SNPs), are the smallest genetic variation in terms of size, although these can have dramatic

consequences on disease susceptibility. These are typically transitions, which is a change

between two purines or two pyrimidines, and transversion, which is a change between a

purine and a pyrimidine. Larger genetic variants can occur, referred to as structural variations.

The largest structural variations are copy number variations (CNVs) and chromosomal

rearrangements, such as inversions and translocations, that can involve kilobases to

megabases. There also exist smaller structural variations, such as insertions and deletions,

also known as indels, and tandem repeats. They typically involve one base pair to one

kilobase13. Importantly, the detection of structural variants that typically involve more than 50

base pairs is challenging using short-read sequencing and depends on the accuracy of

mapping the sequencing reads to the reference genome. Diverse approaches have already

been developed to address this concern14–16, but the most promising might be the upcoming

pangenome reference since several structural variants are population-specific17.

The origin of genetic variations

Genetic variations can result from multiple sources. Although the process of DNA replication

is highly accurate, the number of errors of the DNA polymerase is estimated at once every

104-106 nucleotides18, with the exact rate depending on multiple factors such as the cell type,

the stage of the cell cycle, the DNA damage or stress. Only a small fraction of these novel
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genetic variations are maintained in the human genome, as the DNA repair mechanisms

correct most of the replication errors. Around 10-10 mutations per base pair per cell division

persist and can contribute to the genetic variability of an individual19. This means that even

with billions of base pairs in the human genome, the number of errors per division is still

relatively small. However, these errors accumulate over time and can impact an individual's

health. In addition to spontaneous mutations resulting from replication errors, changes in the

DNA sequence can be induced by transposable elements20, and external factors, such as

radiation21 or viruses, which can incorporate their own DNA into the host genome.

Unexpectedly, approximately 8% of the modern human genome is attributed to human

endogenous retrovirus (HERVs), which likely indicate ancient retroviral infections of the

germ cells6.

The functional consequences of genetics variations

The influence of genetic variations is diverse, ranging from having no impact on phenotypic

traits, known as "silent" variations, to having a significant effect. Regulatory variants, located

in non-coding regions such as enhancers or promoter elements, impact the regulation of gene

expression and have the potential to either decrease or increase the expression of a given

gene, without modifying the protein structure22. The annotations of regulatory variants can be

achieved using several methods. For instance, ChIP-seq is a technique used to characterize

genetic variants that affect protein-DNA interactions23. ATAC-seq is used to identify open

chromatin regions and their associated regulatory elements, including transcription factor

binding sites24. In addition, regulatory variants can be identified by assessing their association

with molecular phenotypes through quantitative trait locus (QTL) analysis with molecular

traits (molQTL). For instance, the genetic variants can be associated with the expression of a

gene (eQTL), protein levels (pQTL), splicing patterns (sQTL), or methylation levels

(meQTL)25. Despite these techniques' effectiveness in annotating regulatory variants and

providing evidence on their functional consequences, the annotation can be challenging since

the impact of regulatory variants can vary depending on the cell type.

On the other hand, coding variants are found within gene sequences and can have different

effects depending on the change in the codons. Synonymous variants are variants that modify

the codon, but do not alter the encoded amino acid, resulting in an unmodified protein

sequence. While they were previously considered "silent", studies have shown that these

variants can affect the speed of protein translation because of the differences in tRNAs
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availability, and therefore can have significant impact on cellular processes26. On the other

hand, missense variants result in a different codon and alter the amino acid of the encoded

protein, potentially affecting its structure and efficacy. Lastly, nonsense variants change the

original codon into a stop codon, resulting in a truncated protein, which ultimately can result

in the loss-of-function of the protein. While a large number of computational methods have

been implemented to predict the impact of variants, which usually leverage protein sequence,

structures and gene annotations, the accurate prediction of variant effects remains

challenging27. Recently, a novel strategy28 combined the Variant Effect Predictor (VEP) of

Ensembl29 and a loss-of-function (LoF) effect estimator (LOFTEE)30 to distinguish annotation

artifacts usually found when investigating loss-of-function variants31. For example, nonsense

variants that truncate the protein sequence were initially classified as LoF. However, the

protein may actually still be functional if the variant is located close to the end of the gene

sequence (i.e terminal truncation variants)30.

The frequency of genetic variations

The frequency of genetic variants within a population is determined by a variety of factors,

including genetic drift, spontaneous mutation rates, recombination events, and migration

patterns. Natural selection also plays a crucial role in determining the frequency of genetic

variants by promoting those that offer a selective advantage and eliminating those that

provide a disadvantage. For example, LoF variants are on average deleterious since they

truncate the protein and likely alter its function. Hence, they are under strong negative

selection and typically maintained at very low frequency in the population30,31. As a result,

large-scale genetic cohorts are required to capture them, typically in the order of tens of

thousands of individuals. Investigating these deleterious variants has been a goal of the

Genome Aggregation Database (GnomAD), which aggregated and harmonized the genomes

of more than 140,000 individuals to discover over 400,000 genetic variants that completely

silence gene expression levels30. Although difficult to capture, the study of LoF variation is

crucial since they can provide valuable insights into the underlying biology of diseases and

inform the development of new diagnostic, treatment, and preventive approaches. For

example, LoF variants within the PCSK9 gene have been found to lower LDL-cholesterol

levels. This discovery provided evidence for the development of drugs to reduce the risk of

cardiovascular disease, due to its relation with LDL-cholesterol levels, by targeting PCSK932.
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Recent advancements in genetic research, notably with the decreased price of sequencing

technologies, have allowed for the sequencing of protein-coding polymorphisms in more than

450,000 individuals of the UK Biobank cohort, which provides unprecedented resolution for

evaluating the impact of rare coding variation on human diseases and complex traits33. This

cohort allowed for the identification of more than 12 million coding variants of which the

vast majority are rare (~99.6% of variants with Minor Allele Frequency (MAF) < 1%), with

notably ~46% of variants present in only one individual (i.e singleton)34. To better

characterize the occurrence of rare variants and to understand their impact on the protein

products, extensive annotation work has been conducted28.

Figure 1. Distribution of rare variants per annotation in the UK Biobank.

Distribution of rare variants (MAF<0.1%) counts (y-axis) across the 22 autosomes

(x-axis). Top: protein loss-of-function (pLoF); middle: missense; bottom: synonymous.

Changes between blue and gray colors indicate changes between chromosomes.
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Expectedly, LoF variants are the least frequent among the identified rare coding variants

(Figure 1). This is not surprising since these variants have a strong impact on gene function

and are therefore more likely to be quickly purified from the population. In contrast, missense

variants were found to be more frequent than synonymous variants, even though they have a

more deleterious effect on gene function. This discrepancy between the frequency of

missense and synonymous variants may be due to the fact that only modifications of the third

base of a codon can create synonymous variants, while modifications of the remaining codon

positions can create missense variants, except for the three stop codons. Overall, this

large-scale sequencing effort provides important insights into the distribution of rare coding

variants and their potential impact on human health and disease, and allowed for the first time

to characterize the impact of rare coding variants on more than 4,000 phenotypes28.

22
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Inheritance of genetic variations

Somatic and germline genetic variations

Variations in the DNA sequence can be classified into two general categories - germline and

somatic variations35. Somatic mutations are genetic alterations that occur in an individual's

body cells during lifetime. These mutations are only present in a specific subset of cells that

are derived from the same lineage as the original cell in which the mutation arose. On the

other hand, germline mutations are genetic variations that occur in the DNA sequence of the

germ cells, which means that they are transmitted to the next generation and present in every

cell of the offspring35. Somatic and germline mutations both have the potential to impact

human health in significant ways, including the development of various diseases. However,

only germline mutations have a unique role in causing inherited disorders, such as sickle cell

disease35,36 or Huntington's disease37. In addition, they can influence the evolution of a species

by altering the genetic makeup of the population over time38.

The random segregation of alleles during meiosis

In humans, the inheritance of genetic material from parents follows Mendelian rules, where

half of the genetic material comes from each parent. This involved that the alleles segregate

randomly such that each gamete receives only one allele from each parent with equal

probability. Meiosis is the biological process that leads to the production of gametes, such as

sperm and egg cells, from germline cells. This process enables the transfer of genetic

material, as well as germline genetic variations, to future generations. It is a two-stage

division process that gives rise to four haploid gametes, each containing a different

recombinant version of the parental genome39. This is achieved through crossing-over, a

process during which homologous chromosomes pair up and exchange sections of DNA,

which creates genetic diversity among the resulting haploid cells, as each cell receives a

unique combination of genetic information from the parents (Figure 2A). Crossing-over

occurs more frequently at specific regions of the genome called recombination hotspots40,

meaning that the genetic material is more likely to break and exchange during meiosis.

Conversely, other regions of the genome have very low or no recombination, meaning that

the genetic material in those regions is less likely to be recombined. As a result, alleles that

are located on chromosome segments that are not frequently broken by crossovers tend to be

inherited together as haplotype segments40.
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Haplotype, the unit of inheritance

A haplotype is defined by a specific combination of alleles located on the same chromosome

of an individual. These alleles tend to be co-inherited together because of their close physical

proximity on the chromosome, which means that they are less likely to be segregated during

meiosis because they span regions that have only little evidence of genetic recombination41–43.

The size of haplotypes can vary depending on the genetic context being examined. For

instance, at the smallest possible resolution (i.e at the individual level), an individual inherits

a complete paternal haplotype, which is a recombined version of the two paternal

homologous chromosomes, as well as a complete maternal haplotype. Similarly, by moving

up the family tree, one can observe the paternal homologous chromosomes as two haplotypes

inherited from the individual's parents. Consequently, the offspring haplotypes are a mosaic

of the four grandparental haplotypes (Figure 2B).

The size of haplotypes is informative for genetic studies. Short haplotypes have less

variability and provide less information about genetic relationships between individuals or

populations, while longer haplotypes may contain more genetic variations, but be more useful

for genetic association studies. Indeed, two individuals share haplotype segments whose

length depends on the number of generations separating them. The more generation, the more

meiosis and the more chance to break a haplotype segment by recombination event41. As a

result, the length of haplotype segments shared between individuals is inversely correlated

with their distance in terms of meiosis. The concept of haplotype segments is fundamental for

Identity-By-Descent (IBD) mapping, which involves identifying shared haplotypes that are

inherited from a common ancestor between two individuals without any recombination

event44 (Figure 2B).

Linkage disequilibrium

Genetic positions from two different haplotype segments and separated by high rate of

recombination are in linkage equilibrium, which means that the occurrence of the first allele

is independent of the occurrence of the second allele in the population. Conversely, genetic

positions located in the same haplotype segment are correlated across individuals as they are

frequently inherited together. This correlation is referred to as linkage disequilibrium

(LD)43,45,46.

Let us consider a pair of alleles A and B at two loci, occurring with frequencies fA and fB.

These two alleles can occur at the same time in the AB haplotype segment at a frequency fAB.
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The co-occurence of A and B can be random, and the frequency of the AB haplotype is given

by fAB=fAfb. However if A and B co-occur more frequently than expected by change, and are

therefore in LD, fAB differs from fAfB. Hence, the level of LD between A and B is quantify

by47,48:

Since this equation depends on allelic frequencies, it is usually normalized to allow the

comparison between different pairs of alleles across the genome49:

where Dmax is the maximum difference across the genome.

More commonly, LD is measured by the correlation between pairs of loci across a population,

expressed as48:

There is a tight relation between LD, recombination rate and haplotype segments. Regions

with low recombination have high LD and tend to have large haplotype segments, whereas

low LD associates with high recombination rate and smaller haplotype segments. For

example, Let us consider the AB haplotype, a haplotype containing the two loci A and B, with

a polymorphism at the A locus which now has two possible alleles, A and a. It means that the

only existing haplotypes in the population are the AB haplotype and the aB haplotype (Figure

2C). Let us then consider that a polymorphism occurs at the B locus in an individual carrying

the AB haplotype. This creates a third pool of haplotype: the Ab haplotype. These three pools

of haplotype are the only to persist in the population as long as there is no recombination

between the A and b alleles. It means that b always co-localizes with A, and that the allele b is

in complete LD with the allele A. As the number of generations increases, the chance for the

Ab haplotype to be broken by meiosis increases, which eventually gives rise to a fourth

haplotype, the ab haplotype45.
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Figure 2. The meiosis process structures the genome into haplotype segments through

crossing-over.

A) Meiosis stages of a schematic diploid cell containing a single pair of homologous

chromosomes. Each homologous chromosome is indicated by a different color. B)

Schematic representation of the propagation of haplotype segments across generations.

Each ancestral haplotype (i.e homologous chromosome) is represented by a different color.

IBD segments indicate haplotype segments that are inherited from a common ancestor. C)

Schematic representation of the impact of recombinations on LD. Each nuance of blue

indicates a different haplotype pool. Adapted from [45].
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Genotyping

Sequencing technologies

DNA genotyping is the process of determining the genetic variations, or variants, in the

genome of individuals. It can be used to identify genetic variations that are associated with

diseases, to determine the ancestry of individuals, or to study the evolution of species. The

development of DNA sequencing was pioneered by Frederic Sanger and colleagues in 1977

when sequencing the first virus’ genome50. It was the first widely used method for sequencing

DNA and is nowadays referred to as the traditional method of DNA sequencing. Notably, the

Human Genome Project was based on the Sanger sequencing method and took around

thirteen years to produce the first ‘draft’ of the human genome3,4.

In Sanger sequencing, the process starts with amplifying the DNA using polymerase chain

reaction (PCR) for then fragmenting this DNA. To sequence these DNA fragments, also

known as reads, the strategy is to add one nucleotide at a time to a growing chain of DNA by

using a combination of normal nucleotides and di-deoxynucleotides (ddNTPs), which lack a

3’-OH group and stop the extension of the DNA strand. Each of the four different ddNTPs

has a different fluorescent label that emits a signal when added to the growing chain of DNA.

As a result, the series of fluorescent signals correspond to the order of nucleotides in the

DNA fragment being sequenced. Although Sanger sequencing can still be used today, it has

largely been replaced by more efficient and high-throughput Next-Generation Sequencing

(NGS) technologies51.

NGS refers to high-throughput DNA sequencing technologies that can generate large

amounts of DNA sequence data in a short amount of time52. Illumina sequencing and PacBio

sequencing are probably the most common NGS technologies, but they differ in several key

ways. PacBio sequencing technology produces longer read lengths, ranging from several

kilobases to tens of kilobases, compared to Illumina that produces reads in the order of

100-300 base pairs. Next, PacBio sequencing has higher accuracy compared to Illumina. This

is particularly useful for applications such as de novo genome assembly or haplotyping. On

the other hand, Illumina sequencing has a higher throughput, which means that it can

generate more data in a single run, and can also generate a much larger amount of data in the

same amount of time. This makes it more efficient for large-scale projects in which large

amounts of data are required, such as for the assembly of large biobanks. Finally, Illumina

27

https://paperpile.com/c/MfTpoL/1upa
https://paperpile.com/c/MfTpoL/1vRq+phmM
https://paperpile.com/c/MfTpoL/m9Qw
https://paperpile.com/c/MfTpoL/eDpp


sequencing is generally more cost-effective compared to PacBio sequencing, with lower

upfront costs and lower cost per base of data generated53.

Over the past decade, a new method of DNA sequencing known as Nanopore sequencing has

emerged as a potential alternative to the conventional NGS technologies. This real-time

sequencing technology works by passing DNA molecules through a nanopore and measuring

the changes in electrical current54–56. It is capable of producing longer read lengths than NGS,

ranging from several kilobases to over 100 kilobases, exceeding the read length of PacBio53.

Its sequencing accuracy seems however to be intermediate between PacBio and Illumina

sequencing and the amount of data generated (i.e throughput) is reduced compared to the

NGS technologies. The major benefits of this technology are (i) the length of the reads, (ii)

the direct sequencing without requiring amplification, (iii) real-time sequencing, enabling

monitoring the sequences, and (iv) the small size of the nanopore sequencing devices53,56.

Regardless of the sequencing technology used, whether PacBio or Nanopore, there is a debate

between long reads and short reads in DNA sequencing. Although long reads have been

criticized for lower accuracy compared to short reads, proper correction and assessment can

make them equally accurate. Notably, they improve de novo assembly, mapping certainty and

transcript isoform identification, and are particularly effective in assembling complex

genomes and resolving complex genomic regions, such as structural variants. Importantly,

they are at the center of the telomere-to-telomere project, which uses ‘ultra-long-reads’

Nanopore sequencing to resolve missing genomic sequence from the current reference

genome (i.e GRCh38), such as centromeric regions and other repeat-rich sequences12,57,58. On

the other hand, short reads have a much higher throughput, which is often a better

cost-effective alternative when assembling large biobanks, and they are supported by a wide

range of quality control pipelines and by a large variety of analysis tools59.

Genotyping strategies

Beside the various sequencing technologies, there are multiple options for genotyping, which

include whole-genome sequencing and targeted sequencing. Whole-genome sequencing

(WGS) is a method that sequentially reads the entire DNA content of an organism's genome,

providing a complete picture of its genetic material. The sequencing pipeline includes DNA

extraction, amplification and fractionning in small segments called reads, which get

sequenced and reassembled together by being piled up against a reference sequence. Any

position that differs from the reference sequence is called a genetic variant, and the allele that
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differs is usually referred to as alternative allele, in contrast to reference allele. Genotype

calling methods determine the genotype of each individual along the genome, being encoded

as the number of alleles not matching the reference sequence at a given genomic position (i.e

number of alternative alleles). In WGS technologie, the genome is usually sequenced at a

coverage of 30x, which means that on average 30 reads cover the same genetic position

(Figure 3A). The more reads covering the same genetic position, the more confident are the

genotype calls. Although providing high accuracy genotype calls, high coverage WGS

methods limited the recruitments of large cohorts because of its expensive price. It is only

recently that the price of the NGS techniques dropped, with a cost of ~1,000 dollars to

sequence an entire human genome in high quality. This notably allowed researchers to

assemble large WGS cohorts, such as the UK Biobank that recently regrouped 150,119 WGS

genomes60.

On the other hand, if one is looking to analyze only specific regions of the genome, a targeted

approach such as whole-exome sequencing or microarray-based genotyping can be a

cost-effective alternative to WGS, as these techniques only genotype a portion of the genome.

Microarray-based genotyping , also referred to as DNA microarray or SNP array, is a

genotyping method that utilizes a solid surface with a large number of probe sequences to

detect specific genetic variants in a sample61,62. The fragmented target DNA sample is labeled

with fluorescent dye and, when hybridized to the complementary probes on the microarray,

produce a fluorescence signal. This signal is then quantified and analyzed to determine the

genotype of the sample. Although it only sequences genetic positions included as probe

sequences (Figure 3B), the microarrays can be customized to contain for example

population-specific SNPs. The main benefit of this method is its high-throughput capacity

and the ability to genotype multiple markers simultaneously. This cost-effective method has

notably been utilized in the creation of biobanks aimed at examining the impact of common

variants on complex traits63,64.

Whole-exome sequencing (WES) is a method that involves capturing, sequencing and

analyzing the exons. It is a cost-effective way to obtain a large amount of genomic

information, as it only sequences the approximately 1-2% of the genome that is encoding for

proteins, rather than the entire genome (Figure 3C). This method is commonly used in

medical genetics to identify the underlying genetic cause of a disease, especially in cases

where the disease is caused by mutations in a small number of genes65. In addition, it is also
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used to study protein-altering variants across large cohorts of individuals, which for example

allow to characterize the contribution of rare coding variations across a large variety of

complex traits and diseases28.

Finally, low-coverage whole genome sequencing (lcWGS) offers a cost-effective alternative

for researchers seeking to sequence the entire genome at reduced costs66. Unlike hcWGS

methods, which generate on average a sequencing depth of 30x, low-coverage sequencing

generates a limited amount of reads per genomic location (Figure 3D). As a result, the

accuracy of the sequence obtained through low-coverage sequencing can be lower than the

one obtained through other sequencing methods. Despite this limitation, lcWGS is

particularly well suited for population genetic studies, for example when the global

population characteristics are investigated rather than the individual’s genotype level.
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Figure 3. Sequencing technologies.

Schematic representation of the sequencing coverage of whole-genome sequencing 30x

(A), microarray hybridisation (B), whole-exome sequencing coverage (C) and

low-coverage whole-genome sequencing (D). Sequencing reads are indicated by blue

rectangles. In (B), the blue rectangles represent the microarray hybridization probes. Two

schematic genes are represented by gray rectangles (exons) in the bottom panel.
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Haplotype estimation

DNA sequencing, either WGS, WES, SNP-array or low-coverage sequencing, provides

punctual information for each variant site as a pair of alleles, or base pairs. At the genome

level, this takes the form of unordered combinations of alleles, as the sequencing only

quantifies the number of non-reference alleles at each variant site after comparison with a

reference genome. However, the sequencing does not specify whether alleles of consecutive

genomic positions co-localize on the same haplotype and are co-inherited from the same

parent as a haplotype segment. This information is important in genomic analysis notably to

identify haplotype segments shared from a common ancestor (i.e IBD), for admixture

mapping or imputation. Hence, the correct localization of allele, also referred to as the phase

of alleles, must be estimated from the genotype data to reconstruct the correct haplotypes.

This process is termed phasing67.

Hidden Markov Model in sequence data analysis

The general phasing method aims to decompose an individual’s genotype into two

haplotypes, with alleles correctly attributed to each one of the haplotypes. It relies on the use

of a Hidden Markov Model (HMM), which is revealed to be useful when modeling

phenomena of stochastic nature whose intermediate states are inaccessible (i.e hidden), and

only the final outcome can be observed.

The Li & Stephens model68, inspired by an HMM used in speech recognition69, is a landmark

in sequence analysis. Since it was published in 2003, it has been applied time and time again

to solve problems that have arisen with the age of NGS, such as imputation, phasing and IBD

mapping. It aims at modeling LD through the underlying recombination rate inherent to the

human population. The starting point of this model is the search for the recombination rate

parameters that maximize the likelihood of observing a set of haplotypes. Li & Stephens

approximated the expression of this likelihood with a “product of approximate conditionals”

probabilities. These approximate probabilities are defined in such a way that an observed

haplotype is seen as a mosaic of the known haplotypes that constitute the reference panel,

which corresponds to the possible states of the HMM. The reference haplotypes from

which the mosaic is built are selected at each position on the basis of a global probability,

which includes transition and emission probabilities. Transitions between states (i.e., jumps

between haplotypes) are equivalent to recombination events, and are represented by the
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transition probability. The emission probability models the fact that, for a particular locus and

considering the most likely reference haplotype at this locus, the observed allele can be either

a copy of the allele present in the reference, or a different allele (i.e., a mutation).

The following sections present first the basics of HMM within the framework of sequence

analysis, and then the application of this HMM to phasing. It is also important to note that a

very similar approach is used for imputation purposes, as well as for IBD mapping or

admixture mapping. These applications have been covered as part of an unpublished review

that has been written in collaboration with Barbara Mota and from which this section has

been adapted.

The core Hidden Markov Model

An HMM is described by (i) possible states, (ii) the number of observations obtained from

a single state, (iii) the probabilities of transition between states, (iv) the probabilities of an

observation given that the system is in a particular state, and (v) the probability of the initial

state69.

Let us consider a reference panel made of haplotypes, each one having markers.

From the reference panel we can estimate the probability of observing a target haplotype ,

. The observed haplotype can be built by assembling different parts from different

reference haplotypes, allowing for imperfect copies. We can define the possible sequences of

markers obtained in this fashion by the means of paths69. The value of can be

obtained as following by considering all possible paths :

(1)

To decompose this equation, let us consider a fixed path going through the

reference panel of haplotypes. This path corresponds to a sequence of unobserved copying

labels of length (i.e, a mosaic of reference haplotypes). The term is the

probability of the path given the set of haplotypes (eq.2), and it is defined as the product

of the probability of the first haplotype in the sequence (eq.3) and the product of the

probabilities of transition between states at positions and , . The term

, defined in eq.4, models the effect of recombination, that is, transition

probability between haplotypes, where and denote the copying labels at marker

and , respectively, and represents the probability of a transition.
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(2)

(3)

(4)

For a position of this path, the copied allele can differ from the allele in the haplotype

being copied from, which corresponds to a mutation. The effect of mutation is captured by

the term , probability of observing a haplotype given path and panel . If

and denote the alleles at marker of and , respectively, then can be

written as:

(5)

(6)

In other words, when marker in path differs from marker in the

target haplotype .

The figure 4 illustrates this HMM. Let us consider haplotypes in a reference panel ,

markers, and . We can compute for the path

(Figure 4, in black) as:

(7)

(8)

(9)

If we consider eq.9 with reordered terms according to the markers, we understand that

each independent marker of path is characterized by the joint probabilities of (i) having

the same allele as the marker in the target haplotype (emission probability) and (ii)
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having the same state (i.e., haplotype) compared to marker (transition probability),

except for marker that has its own transition probability independent of previous states.

Figure 4. Representation of the HMMmodel.

A set of haplotypes genotyped at markers compose the reference panel.

The most straightforward path for the target haplotype is shown in black. The

sequence of copying labels is colored according to the path .

In this description of the method, we used and to refer to the transition and to the

emission probabilities, respectively, in order to simplify the notation. The actual calculation

of these parameters in the Li & Stephens model is somewhat different. The recombination

probability (i.e., transition state probability) is defined as a function of the physical distance

between markers as well as of the recombination and crossover rates68, and can be written as:

(10)

where is a parameter estimating the recombination, with =

effective diploid population size and = average rate of crossover per unit physical

distance and per meiosis between and . These parameters incorporate the

assumption that, if and are physically close to each other, they are likely to come

from the same haplotype.
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In the same way, the mutation probability (i.e, emission probability) is defined as :

(11)

where is the population mutation rate based on the coalescent theory and estimated with

the Waterson coefficient .

Hidden Markov Model in haplotype estimations

The most efficient phasing algorithms are inspired from the Li & Stephens HMM68, such as

Beagle70 and SHAPEIT71. For each individual, these methods first consider all possible

haplotypes that can be inferred from the observed genotype. Then, for each of the putative

target haplotypes , one can compute the probability of observing given a panel of

reference haplotypes . The target haplotype with the maximum probability is the

most likely to be observed.

Figure 5A provides a visual explanation of the phasing method. It considers an individual

genotyped at markers, with 2 heterozygous and 11 homozygous sites, as well as 4

putative target haplotypes that can be inferred from the genotype (i.e., the number of target

haplotypes to consider is , where is the number of heterozygous sites. It takes into

account all pairs of complementary haplotypes). Target haplotypes are colored according to

their most straightforward path through the reference panel . In this example, we can

consider equal values for the emission probability of each target haplotype (i.e, none of them

differs in terms of allele content compared to its path, meaning that no de novo mutation

occurred). To simplify, let us also consider the transition probability constant. This implies

that the most likely target haplotype to infer is the one with the least transitions, as shown in

red. In this example, we considered only one path per target haplotype, whereas in a real

phasing algorithm all possible paths through are considered in order to compute .
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Figure 5. HMM applied to infer haplotypes from an individual's genotype.

A) haplotypes genotyped at markers constitute the reference panel $H$.

Four putative target haplotypes can be built from the sample genotype, which include two

heterozygous markers (bold). The target haplotype in red is the most likely to infer since it

maximizes . B) Phasing of haplotypes using SHAPEIT571 and Beagle5.472.

Each line represents a haplotype (y-axis) along the chromosome 20 (x-axis). Changes

between red and blue represent a phasing switch error.

The quality of the phasing largely depends on the size of the reference panel and the ancestry

of individuals. When the reference panel's ancestry and relatedness align more closely with

the target individual, the estimations become more accurate. The accuracy of estimations can

be assessed using pedigree information and parental genomes by comparing the phased

haplotypes of the offspring with paternal and maternal genomes. It allows identifying phasing

switch errors, which occur when paternal alleles are attributed to the maternal haplotype, and

vice versa (Figure 5B).
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The impact of genetic variants on complex traits

Mendelian disorders, also referred to as monogenic disorders, occur when a single genetic

variant is responsible for the disorders. The variant is likely located within the coding part of

the genome and has a strong effect, such as LoF variants, which usually results in severe

consequences on human health. Because of negative selection, such variants with large effect

sizes are typically maintained in low frequency within the population73.

On the other hand, complex traits are quantitative phenotypes that have a high variability

resulting from both genetic factors and environmental factors. The genetic mechanisms of

complex traits imply that many genetic variants are involved, usually involving multiple

genes. It results that the effect sizes of individual variants are small, and therefore that many

individuals are necessary to detect them74.

The concept of heritability

The genetic contribution to a phenotypic variability is called heritability75. It refers to the

proportion of the phenotypic variability that can be explained by genetic variants. It ranges

from 0, meaning that none of the variation is due to genetics, to 1 when the entire variance

can be attributed to genetic variations. It was initially estimated from twins or family-based

studies. The principle consists in comparing the phenotypic similarities of individuals within

the same family to unrelated individuals, or by comparing monozygotic twins to dizygotic

twins76,77. In recent years, scientists have used genome-wide association studies (GWAS) to

estimate the heritability of various phenotypes at the population level78. This method has the

advantage of combining genetic and phenotypic data from thousands of individuals,

providing a more accurate representation of the phenotypic variability within a population,

and allowing to evaluate the heritability of diverse phenotypes. One example of a phenotype

that has been extensively studied in this context is human height74,79. However, while twin

studies initially estimated the heritability of height to be close to 0.880,81, recent GWAS

studies have reported a lower heritability of ~0.4582,83.

The large discrepancy between the heritability estimated from related individuals and the

heritability estimated from genetic variants, such as in GWAS, is referred to as missing

heritability. Various factors have been proposed to explain this discrepancy84,85. One

explanation is that GWAS usually do not account for rare genetic variants, which can have a

significant impact on traits such as height86. Another reason could be that the genetic markers
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used in GWAS do not perfectly correlate with the causal variant, which means they do not

capture as much of the phenotypic variance and lead to an underestimation of heritability82.

Additionally, interactions between genes, the environment, and epigenetics also contribute to

the complex interplay that makes it challenging to fully understand the heritability of traits.

Lastly, structural variants, which are often not detected by short-read sequencing technology,

may also play a role in missing heritability.

Despite these limitations, GWAS has proven to be useful in identifying the independent

genetic variants contributing to variation in human height, as well as highlighting the

population-specific nature of these associations. Recently, a total of 12,111 SNPs have been

found to account for 40% of the variability in human height in the European population.

However, these SNPs could only explain ~15% of the height variation in non-European

populations82.

Genome-wide association study

Associations between genetic factors and phenotype, typically the complex trait or disease of

interest, are assessed using genome-wide association studies (GWAS)87. The underlying idea

is to scan each variable position across a large cohort of individuals and to assess whether its

occurrence is associated with the phenotype using a linear regression model. This is

represented by the equation y=X𝛽+Ɛ, where y is the phenotype vector, X is the genotype

vector, 𝛽 is the effect size, which corresponds to the effect of carrying one copy of the risk

allele, and Ɛ represents errors. To improve the accuracy of these estimates, this model is

commonly adjusted for confounding factors such as age, sex, and principal components

(PCs)88.

While the recent increasing size of biobanks, such as the UK Biobank, which regroups

~500,000 individuals63, or the Estonian Biobank64, which regroups ~200,000 individuals,

allowed to increase the power to discover small genetic effects such as those involved in

complex traits, they also revealed some limitations of the traditional linear regression model.

Assembling cohorts with a large number of individuals from the same population resulted in

the inclusion of related individuals, which can introduce bias in association testing and lead

to inaccurate results87. Hence, standard fixed-effect models, such as linear regression, were

restricted to the set of unrelated individuals. In the UK Biobank for example, this resulted in

using a subset of 344,397 individuals63. Therefore, it was crucial to implement advanced

statistical techniques that account for the familial correlation structure among biobanks to
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overcome this limitation and ensure accurate results. This has been addressed by the use of

linear mixed models (LMM)89, which explicitly account for relatedness by conditioning on a

genetic relatedness matrix (GRM). In the UK Biobank, this substantially increased the sample

size to 456,422 individuals90, providing a ~30% increase in sample size compared to when

using fixed-effect models. This approach is nowadays being implemented in the most

efficient GWAS softwares that are capable of handling association testing for hundreds of

thousands of individuals91,92.

Although modern biobanks collect phenotype and genotype data for hundreds of thousands of

individuals, recent research suggests that millions of individuals are necessary to saturate the

genome in association signals82. Therefore, it is crucial to continually increase the sample size

of cohorts to improve the precision and accuracy of GWAS findings. A larger sample size

permits more precise effect size estimation, increases statistical power, and enables the

detection of smaller genetic effects. Currently, the most significant sample sizes for GWAS

result from collaborative efforts among researchers who share data across multiple studies.

By conducting meta-analyses, these efforts can surmount these challenges and augment the

GWAS's effective sample size82.

Cost-effective GWAS

Increasing the sample size of GWAS studies can be challenging due to logistical and financial

constraints. In the case of large biobanks, financial constraints are often the primary limiting

factor. As a result, cost-effective alternatives to WGS have been employed, such as

microarray genotyping. However, since it genotypes only a subset of genomic positions, the

missing information must be predicted from a reference panel of haplotypes, a process

referred to as imputation93. While this improves the chances of pinpointing causal variants,

the accuracy of genotype imputation largely depends on a reference panel of phased

haplotype that is used to perform the genotype predictions. The more accurate the phasing,

the more informative the reference panel will be, and the better the imputation accuracy will

be. In addition to the accuracy of the phasing, the size of the reference panel is also an

important factor that affects the accuracy of imputation. A larger reference panel provides

more genetic diversity, which increases the chances of finding haplotypes that match the

missing genotypes in the study sample. This leads to better imputation accuracy, particularly

for rare variants that may not be well-represented in smaller reference panels. Therefore, it is
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essential to use a high-quality phasing algorithm and a reference panel that is large enough to

capture the diversity of genetic variation present in the target population.

Genetic effects

While efficient methods have been developed to associate genetic variants with complex

traits and diseases, they are mostly designed to account for additive effects, which means that

the effect of having two copies of the risk allele is assumed to be twice the effect of having a

single copy of the risk allele. In other terms, an additive effect measures the independent

contribution of each allele at the same locus. However, it is well known that there exists a

wide range of genetic effects that can not be fully captured by linear models. The most

common are probably the dominant and recessive effects, which measure the interaction of

the two alleles at the same locus. In the dominant effect, one risk allele is sufficient to cause

the phenotype, and there is no phenotypic difference between having one or two copies. In

the recessive effect, two risk alleles are necessary to provoke the phenotype, and there is no

phenotypic difference between having no or one copy (Figure 6).

Less common but not least, genetic effects can also be specific to haplotypes and depends on

the epigenetic genetic background. Parent-of-Origin effects are phenotypic effects that

depend on the parental origin of the risk allele. Therefore, the risk allele has an effect only

when it locates on a specific parental haplotype, for example on the maternally inherited

haplotype (Figure 6D). Such effects likely result from genomic imprinting, a mechanism of

DNA methylations (i.e imprints) that silence genes. Imprints are sex-specific and established

during the gametogenesis, meaning that the offspring inherit the paternal haplotype together

with male-specific imprints, as well as the maternal haplotype with female-specific imprints.

It results that some genes are always expressed from the same parental haplotype across

individuals, and that risk alleles have an effect only when locating on this particular

haplotype.
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Figure 6. Genetic effects on complex traits and diseases.

Schematic representations of Additive (A), Dominant (B), Recessive (C) and

Parent-of-Origin (D) effect. The phenotypic effects (y-axis) is stratified by the copy

number of the risk allele (x-axis). Red lines indicate simulated linear estimates (i.e what

can be captured using linear models). In (D), risk alleles are stratified by copy number and

parental origin.
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Chapter I
Haplotype estimation

The recent release of the whole-genome sequencing data for 150,199 individuals by the UK

Biobank represents a significant milestone in the field of genomics, as it provides an

unprecedented opportunity to assemble a large and diverse reference panel for genetic

analyses. However, despite the potential benefits of such a resource, there are also significant

challenges associated with processing and analyzing such a large amount of data. Current

phasing methods are not well-suited to handle such a large amount of sequencing data,

particularly when it comes to phase rare variants that are present in less than 1/1000

individuals. Phasing rare variants is particularly challenging and can lead to inaccurate

haplotype estimates which have major impacts on downstream analysis94.
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Part I. Haplotype estimation in sequenced biobanks

The first part of this chapter outlines my contribution and involvement in the phasing

software SHAPEIT5, which builds on previous versions of the software95. The manuscript is

presented in Appendix A. In this work, we introduce a new version of the SHAPEIT

software, which is specifically designed to effectively and accurately phase rare genetic

variants in large sequenced biobanks. The manuscript describes the phasing of the WGS and

WES data of the UK Biobank cohort, showcases the accuracy of this phasing compared to

concurrent methods and provides evidence for the utility of the phased haplotypes in

detecting compound heterozygotes events.

I am the co-first author of this manuscript. It consists in collaboration within the research

group, with three first authors that contributed equally to the work. My contributions were

focused on phasing the WGS and WES data, as well as writing the corresponding

manuscript sections. Furthermore, we created a dedicated website containing software and

documentation, in which I authored the phasing tutorial for the UK Biobank WGS, WES,

and SNP-array data.

This manuscript is currently in review in Nature Genetics. Alongside with the manuscript, I

am responsible for generating the haplotypes for the upcoming release of the UK

Biobank data in July 2023. The dataset comprises over 700 million variants across 200,031

individuals, with most being rare (~97% having MAF<0.1%). This call set will be the most

efficient reference panel for imputing individuals of European ancestry. Consequently, it will

likely be used in hundreds of GWAS.

45

https://paperpile.com/c/MfTpoL/XH2s


46



Part II. Haplotype estimates for genotype imputation

Phased haplotypes are commonly utilized as a reference panel for genotype imputation. In the

part I of this chapter, the construction of a phased reference panel from UK Biobank WGS

data is described, alongside with a brief summary of its effectiveness in CH event discovery

and genotype imputation. However, a more detailed explanation of the utility of this reference

panel for genotype imputation is presented in a separate manuscript.

The second part of this chapter outlines my involvement in a manuscript presenting a novel

implementation of the low-coverage imputation software Glimpse96, named Glimpse2. The

manuscript is presented in Appendix B. The purpose of this software is to handle the recent

improvement of reference panels for genotype imputation, since existing softwares do not

scale efficiently with hundreds of thousands of reference haplotypes. The manuscript explains

the method and demonstrates the effectiveness of using the UK Biobank phased haplotype as

a reference panel for imputation, in comparison to alternative reference panels and across

various populations. In addition, it also showcases the increased power of downstream

GWAS using sequencing coverages as low as 0.5x compared to SNP array. I am the second

author of this manuscript. My contribution to this manuscript includes conducting the

GWAS experiments, assessing the impact of sequencing coverages on GWAS accuracy,

writing the relevant section of the manuscript, and discussing the design of the experiments

and the rationale of the project. The manuscript is currently in review in Nature Genetics.
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Chapter II
The parental origin of haplotype estimates

Although phasing algorithms can be used to reconstruct haplotypes from genotype data, they

cannot determine whether a haplotype was inherited from the mother or the father. The

typical method to determine the parent-of-origin (PofO) of haplotypes compares the offspring

haplotypes with parental genomes. However, due to the limited availability of parental

genomes in modern biobanks, it can be challenging to assign the origin of haplotypes for a

large number of individuals. What sparked my interest is that, while increasing the sample

size in standard GWAS necessitates genotyping more individuals, there are numerous existing

haplotype for which the parent-of-origin information is not yet available. In the UK Biobank

for example, the PofO can be inferred from parental genomes for ~5,000 individuals,

representing only 1% of the available haplotypes. Therefore, increasing the number of

individuals with parent-of-origin assigned can be done by developing innovative methods to

analyze existing data.
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Part I. Inference of the Parent-of-Origin of haplotypes

The first part of this chapter describes the implementation of an approach to infer the

parent-of-origin of alleles using close relatives instead of parental genomes. The article is

presented in Appendix C. Compared to the traditional approach using parental genomes, this

allowed us to increase by 5 times the number of individuals with PofO assigned in the UK

Biobank. Briefly, this approach combines (i) kinship estimates to identify close relatives and

to group them into parental groups, (ii) IBD sharing and phasing to assign parental origin to

haplotypes, and (iii) haploid imputation to increase the SNPs density. Finally we tested the

parental origin of alleles for association with phenotypes to characterize parent-of-origin

effects in the human genome.

I am the main author of this article. I worked on the study design, the implementation of

the method, performed the GWAS experiments, wrote the manuscript and created an online

database to host the summary statistics97.
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Part II. Parental inheritance distortion

The second part of chapter II illustrates an alternative use of the parent-of-origin of alleles,

which consists in investigating genetic factors contributing to human fertility. The

fundamental concept behind this approach is that alleles inherited less frequently from one

parent may have a significant impact on reproductive functions or gametic competition. The

advantage of such an approach is that, while GWAS studying genetic effect on human

fertility usually use proxy phenotypes, such as the number of children ever born or the age at

first birth, our approach does not require any phenotype. It only assesses distortion from the

expected Mendelian inheritance pattern.

This is an ongoing project. I am the main researcher on this project. The Appendix D

presents the preliminary results under the form of a draft manuscript of the current state of the

project and is formatted into Abstract, Introduction, Results, Future analysis, and Methods

section.
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Discussion

The central theme of this thesis is the importance of haplotypes in genomic analysis.

Haplotypes are derived from genotype data and have various applications, including detecting

compound heterozygote events, studying parental origin and their effects on complex traits,

and investigating Mendelian inheritance patterns. The primary motivation for focusing on

haplotypes is their underutilization in biobanks, despite being obtainable at no extra cost,

beyond computations, from existing data. As a result, this thesis aims to showcase how

efficient method developments can leverage haplotypes from existing genotype data to

maximize the potential of current biobanks.

Two main approaches have been developed to achieve this goal. The first involves estimating

haplotypes from genotype data, which is notably essential for assembling large reference

panels of haplotypes used for genotype imputation. The second approach involves inferring

the parental origin of haplotypes using available close relatives, which is a significant

breakthrough in parent-of-origin effect mapping since it largely increases the sample size

compared to the traditional inference that uses parental genomes.

Although the two chapters in this thesis are distinct, they are closely linked. Accurately

estimating haplotypes is crucial for performing PofO inference of resulting haplotypes. The

final section of this thesis outlines potential future applications and improvements of both

chapters, culminating in a novel perspective on evaluating the phenotypic impact of rare

variants.
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Haplotype estimation

Chapter I of this thesis presents a novel implementation of the SHAPEIT phasing software

that has been specifically designed to cope with the large number of individuals and variants

contained in modern sequenced biobanks, with a particular focus on the phasing of rare

variants. In addition, the phasing of the UK Biobank's WGS and WES data is described,

along with the application of the resulting haplotypes to compound heterozygous calling and

array imputation, showcasing the utility of such phasing for genetic analysis.

This research article focuses on the phasing of the initial UK Biobank WGS release,

encompassing 150,119 individuals. However, subsequent releases have expanded the dataset

to 200,031 individuals, with plans to include approximately 500,000 individuals by

November 202398. As sample sizes increase, novel haplotype estimation becomes necessary

to improve phasing accuracy. This is particularly important for rare variants, where phasing

accuracy improves with a larger minor allele count71. Larger sample sizes provide more

accurate phasing for variants, increasing their value for downstream analysis. Therefore, it is

crucial to update the haplotype estimation method for each release to ensure the best possible

accuracy for genetic analysis. The method and pipeline developed in this study will be used

to process the upcoming release of the UK Biobank and provide the research community with

the most accurate haplotype estimates possible.

The limited knowledge about the phase of rare alleles in large cohorts of unrelated

individuals previously limited several research areas. However, accurate phasing of rare

variants in this study allows for their inclusion in downstream CH event detection, which is

crucial since rare LoF variants are often the primary contributors to disease99,100 and are

potential therapeutic targets32. Previously, CH investigations were limited to families, where

parental genomes were used to determine independent inheritance of two mutations within

the same gene. This approach helped to assess the contribution of rare and severe CH events

to diseases but did not provide insight into the prevalence of CH events in healthy

populations. By expanding the sample size used to detect CH events, a better understanding

of the genetic basis of diseases, especially regarding gene essentiality, can be achieved.

The contribution of phasing to CH event detection will become particularly important with

two key aspects. First, the upcoming release of the UK Biobank WGS data, scaling up to

~500,000 individuals, will increase the number of observed gene double knockout and
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contribute to a better characterization of CH events. Secondly, haplotype estimates serve as a

reference panel for imputation. Larger reference panel sizes result in more accurate

imputation, with a significant increase in accuracy for rare variants. This accurate imputation

of rare variants enables their use in the CH event detection process.

A second manuscript developed by the research group and introduced in Chapter II

demonstrated the use of a reference panel derived from UK Biobank WGS data for genotype

imputation, specifically for large biobanks that employ microarray genotyping technology to

reduce costs101. For instance, the OFH project aims to recruit 5 million UK participants and

will likely use microarray genotyping technology102. Since the ancestry of these individuals

will be similar to the UK Biobank cohort, the reference panel I generated will likely be

used to impute those 5 millions individuals. In addition this reference panel is the most

effective to impute any cohort of European ancestry and will likely be used in hundreds of

GWAS studies. The current reference panel constructed using 150,000 individuals from the

UK Biobank WGS data provides high accuracy imputation of variants found in 1/1,000

individuals. However, the upcoming release of the UK Biobank WGS is expected to

significantly improve imputation accuracy, enabling the imputation of variants present in

1/10,000 individuals with sufficient accuracy for downstream analyses. This improved

reference panel will be particularly advantageous for enhancing the imputation of rare

variants, including protein-modifying variants that are only present in a few copies in the UK

Biobank WES. Consequently, the ability to map CH events using imputed variants will be

strengthened, as LoF variants will be more common in the population with the larger sample

size.

Although the phasing performed on the UK Biobank WGS data set is highly accurate, there is

still room for improvement. The current call set provides a phasing probability per variant per

individual, enabling easy identification and exclusion of badly phased variants for

downstream analysis. However, given the frequency of singletons in the dataset (~46%)60,

and the low phase confidence reported for singletons (mean accuracy= ~65%), losing this

amount of information is undesirable. Thus, improving the phase at singleton and any other

low confidence phasing sites is crucial for efficient downstream analysis, such as detecting

CH events. To address this issue, our group is currently working on a follow-up which briefly

consists in identifying variants with low phasing probability for each individual, and

searching for nearby common variants with high phasing probability that co-localize on the
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same read as the low probability rare variant. This approach allows to deduce the phase of the

rare variants as being the same as the phase of the common variants. While computationally

demanding, this approach will allow to re-localize poorly phased alleles onto the correct

haplotype and to considerably increase the phasing accuracy, in particular at singletons.

Finally, the accurate phase of rare variants provided by my work opens novel perspectives in

large-scale association analysis of rare variants. Current methods for assessing the impact of

rare variants on complex traits involve burden tests, which aggregate deleterious variants

within a gene and test the resulting gene burden for association with a trait28. While these

tests typically focus on protein-modifying variants, alternative approaches are emerging, such

as testing rare intergenic variants within a gene cis-window that are likely located in

regulatory elements. However, no previous study has integrated haplotype information into

these analyses due to the lack of accurate phase at rare variants. Using our haplotype

estimation method in the UK Biobank WES and WGS, researchers can test the gene burden

at the haplotype level. In particular, this approach is interesting for investigating the burden

of rare variants at known imprinted genes, for which only the paternal or maternal copy of the

gene is expressed. Indeed, Appendix C shows that testing paternal and maternal alleles

separately leads to stronger significance compared to normal additive tests in case of

parent-of-origin effects. Therefore, it is reasonable to expect that burden testing at imprinted

genes will be more efficient when considering the parental haplotypes separately.

Considering that burden testing usually involves a small power due to the limited number of

individuals carrying rare variants, this approach has the potential to increase the

characterization of the effect of rare variants at imprinted loci.
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The parental origin of haplotype estimates

Chapter II presents an approach to infer the PofO of individuals without any prior knowledge

of genealogy or available parental genomes. This approach leads to a considerable expansion

in the number of individuals with PofO assignments, which enhances the statistical power to

discover PofO effects. Furthermore, it showcases the importance of the parent-of-origin

information in the identification of genetic factors associated with human fertility. Despite

caveats of this approach as discussed in the published article, it constitutes a promising

alternative to family-based studies since it benefits from the increasing sample size of

biobanks.

Indeed, as the number of individuals in a cohort increases, the number of individuals with

PofO inferred can be proportionally increased. Moreover, the number of individuals with at

least a third-degree relative in the cohort increases quadratically with the total number of

individuals (Figure 7). As a result, since the approach presented relies on the availability of

close relatives, it suggests that it has an exponential potential on very large datasets. The

upcoming Our Future Health (OFH) project102, which aims to recruit 5 million UK

participants, will be enriched in close relatives since individuals will be recruited from the

same population. This is anticipated to increase the PofO sample size to approximately 20%

of the total number of individuals, representing 1 million individuals with PofO inference.

First, this cohort will constitute the largest available with PofO inference and significantly

strengthen the benefit of this approach that exploits the inherent degree of relatedness of

modern biobanks. Second, considering that 5.4 million individuals have allowed to saturate

the association signal for standing height, I anticipate that one million individuals will

provide a saturated map of PofO effects across the human genome.

The PofO approach can identify genetic loci with PofO effects on phenotypes, but it only

provides candidate genes and does not specify the parental-specific expression nature of these

candidates. Although PofO loci discovered can be associated with imprinted genes, the PofO

associations can also underlie a more complex mechanism in which non-imprinted genes

interact with imprinted genes to generate PofO effects103, which requires further investigation.

To advance our understanding of PofO effects on phenotypes, omics data, specifically RNA

sequencing, needs to be integrated. First, by combining GWAS signals with RNA sequencing

data, novel candidate imprinted genes can be identified, and RNA sequencing can confirm
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the PofO specific expression patterns, improving classification accuracy. Second, by

analyzing gene co-expression and co-regulation via joint expression quantitative trait loci

(eQTL) analysis, this approach can identify networks of gene interactions consisting of

imprinted and non-imprinted genes that have the potential to cause PofO effects and

contribute to complex traits. This would be particularly interesting since current catalogs of

imprinting genes are thought to be incomplete because they imperfectly capture imprinting in

adults104.

Figure 7. Relatedness in the UK Biobank cohort.

Number of individuals with at least one third degree relative (y-axis) among an increasing

number of individuals randomly sampled from the UK Biobank cohort (x-axis).

The majority of knowledge about imprinted genes comes from animal breeding, where

initially, genomic regions likely to contain imprinted genes have been identified by

phenotypic screening of uniparental disomy mice105. In contrast, human studies have focused

on investigating the parental-specific allelic expression of candidate imprinted genes using

family data, which has confirmed some of the imprinted genes identified in animal

studies106,107. In addition, human imprinted genes involved in severe disorders have been

characterized, such as in the Prader-Willi and Angelman syndromes108,109. However, the
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current classification of imprinted genes in humans is considered incomplete and mainly

includes imprinted genes with complete imprinting patterns. Recent studies suggest that

subtle imprinting patterns may exist in humans, but these are challenging to detect due to the

small differences in parental allelic expression and require large-scale family transcriptome

data104,110. However, most existing large-scale expression data contain unrelated individuals,

making it difficult to study such patterns. In addition, the degree of parental-specific

monoallelic expression varies depending on the tissue and developmental stage111, which adds

another layer of complexity to the study of imprinted genes. To address this challenge, a

recent study aimed to identify novel candidate imprinted genes using allele-specific

expression data from different tissues104. Although unrelated individuals were used to identify

the candidate genes, they were validated notably using family transcriptome data to

distinguish the paternally and maternally inherited alleles, emphasizing the current need of

including family data in the study of imprinted genes.

In this context, the PofO inference method developed here can provide a significant advance

in the identification of candidate imprinted genes from gene expression data, since it allows

to determine the PofO of alleles across a set of unrelated individuals, and therefore does not

require family data to validate the findings. Notably, it would allow the study of imprinting at

two different layers. First, for examining the parent-of-origin specific allelic expression of

genes. Second, by scanning for PofO specific association between genetic variants and gene

expression level, namely PofO eQTLs. However, the caveat of such approaches is to require a

transcriptome cohort large enough to contain close relatives, typically in the order of tens of

thousands of individuals.

One potential solution to this challenge is to completely eliminate the need for family data

and to develop a method to infer the PofO of alleles at the gene expression level, by taking

advantage of the current classification of genes exhibiting a complete imprinting expression

pattern. This can be achieved by mapping RNA reads to haplotypes and utilizing genes with

complete imprinting as a reference for haplotype labeling: RNA reads corresponding to

maternally expressed genes will map to the maternally inherited haplotype, while RNA reads

corresponding to paternally expressed genes will map to the paternally inherited haplotype.

The utilization of this approach is expected to increase the number of individuals for which

the PofO can be inferred as it does not depend on the availability of close relatives, and

would be a promising approach if large biobanks start RNA sequencing. However, this
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approach is limited by the extent at which phasing can be achieved. Specifically, current

phasing methods can efficiently resolve the co-inheritance of alleles located on the same

chromosome (i.e intra-chromosomal phasing)71. Regrettably, these methods are incapable of

resolving inter-chromosomal phasing, meaning that the first haplotype of a given

chromosome may not necessarily be co-inherited with the first haplotype of the next

chromosome. As a result, the proposed solution necessitates the presence of at least one

imprinted gene per chromosome to label the haplotypes. In addition, it is also limited by the

tissue-specific nature of imprinting104,111, which might limit the use of the current set of

known imprinted genes. Therefore, the approach would be more effective if applied to

multiple tissues, which would enable for a better understanding of the tissue-specificity of

imprinting and improve the accuracy of haplotype labeling.
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Conclusion

Despite more than 15 years of GWAS research, the scientific community's interest in

association analysis has not waned. While GWAS has been successful in identifying genetic

variants associated with complex traits, there is still room for improvement in utilizing the

vast amount of existing data. To fully leverage the potential of existing biobanks data, there is

a need to enhance data processing, inference, and testing methodologies. In this thesis, I

developed efficient methods for inferring haplotypes and their parental origin from existing

biobanks, and I demonstrated the practical applications of my inferences. I am confident that

my work will have a significant impact on the community for various reasons.

The phased haplotypes generated as part of this thesis, which will be continuously updated

with the upcoming data releases, constitute a resource that will be employed in various

analyses. Firstly, these haplotypes enable the detection of compound heterozygote events in

large-scale population cohorts. Secondly, they enable integrating the phase of rare variants in

gene burden analysis and allow for these analyses to be conducted at the haplotype level.

Thirdly, they represent the best available reference panel for the European population.

Consequently, the reference panel that I generated will be utilized in numerous GWAS

studies.

The PofO inference method I developed is a significant advance that enables the study of

PofO effects in large-scale biobanks. This methodology is expected to be employed in

numerous large-scale cohorts, uncovering numerous novel signals that will improve our

current comprehension of PofO effects on complex traits and the underlying biology of the

imprinting mechanism. Within a few years, this methodology will likely enable the study of

PofO effects in one million individuals, providing a saturated map of PofO effects across the

entire human genome.

Although my work demonstrates two methods for maximizing the potential of current

biobanks, additional innovative strategies are necessary. To uncover novel associations that

traditional methods may have missed, future efforts should concentrate on creating and

combining diverse methodologies.
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Appendix A

Accurate rare variant phasing of
whole-genome and whole-exome sequencing
data in the UK Biobank

This manuscript is presented in Chapter I.

The online version and the supplementary material can be downloaded from

https://www.nature.com/articles/s41588-023-01415-w .

71

https://www.nature.com/articles/s41588-023-01415-w


72



73



74



75



76



77



78



79



80



81



82



83



84



Appendix B

Imputation of low-coverage sequencing data
from 150,119 UK Biobank genomes

This manuscript is presented in Chapter I.

The online version and the supplementary material can be downloaded from

https://www.nature.com/articles/s41588-023-01438-3 .
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Appendix C

Parent-of-Origin inference for biobanks

This article is presented in Chapter II.

The online version and the supplementary material can be downloaded from

https://www.nature.com/articles/s41467-022-34383-6 .
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Appendix D

A genome-wide scan for parental inheritance

distortion events to identify genetic effects on human

fertility

This manuscript is presented in Chapter II.

It contains unpublished preliminary results.
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A genome-wide scan for parental
inheritance distortion events to identify

genetic effects on human fertility

Robin J. Hofmeister, Olivier Delaneau

Abstract

Fertility measurement is challenging due to its complex nature, which is influenced by a

range of biological processes, such as hormonal regulation, gametogenesis, fertilization, and

implantation. Consequently, researchers often use proxies to assess genetic factors involved

in human fertility, such as the number of children a person has or their age at first birth, to

measure fertility indirectly. However, these proxies can be influenced by factors like ancestry,

socioeconomic status, or lifestyle choices, which can confound the results. Furthermore,

these methods may not be suitable for detecting genetic factors associated with fertility in

diverse populations. Recently, transmission distortion tests (TDTs) have been proposed as an

alternative to study genetic factors linked to human fertility, by assessing the frequency of

allele transmission from parents to offsprings. However, this method is limited to family

studies as it requires prior knowledge of parental genotypes, and the sample size is

therefore insufficient to detect moderate distortions of transmission, that are those to likely

persist in the population. Here, we propose an innovative approach that investigates genetic

contribution to human fertility by detecting variants whose parental inheritance deviates

from the expected Mendelian ratio that does not rely on the availability of parental

genomes. We identified a strong paternal distortion signal at 22q13.33 whose associated

genes RABL2 and ACR impact sperm function.
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Introduction

Mendel’s Law of segregation implies that the offspring of an heterozygous parent has an

equal probability of inheriting either allele. Deviations from the expected Mendelian

inheritance pattern, which occurs when one allele is preferentially transmitted, is termed

Transmission Ratio Distortion (TRD)1,2. TRD can arise due to various selective stages that

occur during different biological processes or developmental stages. Meiotic drive, for

example, refers to the phenomenon in which "driving alleles" influence the meiotic process

to increase their transmission, leading to a deviation from the expected inheritance pattern.

In the asymmetric female meiosis, only one of the four haploid products becomes an oocyte,

which leaves room for gamete competition and selection before the fertilization. On the

other hand, male gametogenesis produces many small gametes that have to compete for

fertilization and during which selection can occur. Finally, the viability of individuals can also

play a role in shaping TRD in the human genome. An allele that confers a survival advantage,

for example at the zygote stage, will be more frequently represented in the population,

leading to deviations from the typical Mendelian inheritance pattern1,2.

The most documented events of TRD are ‘gamete killers’. In mice, the t-haplotype confers a

fertilization advantage which results in increasing its transmission and hence its frequency in

the population3. In drosophila, segregation distorter (SD) locus prevents wild-type gametes

(i.e not carrying the distorter form) from developing normally, resulting in skewed

transmission in favor of the SD form4,5. Despite the presence of several documented

instances of TRD in other organisms, the extent and impact of TRD in humans remains

largely unknown. Yet, it is likely that distorter variants exist across the human genome.

According to speculative reports, between 50-75% of all human conceptions are lost before

the first missed menstrual period, and infertility affects one in every couple trying to

conceive6. These factors suggest that the influence of distorter variants on human

reproduction and the deviation from expected Mendelian inheritance patterns may be more

prevalent than previously thought.

Attempts have been made to understand the extent of TRD in human populations using

different strategies. First, studies investigated the excess of allele sharing across siblings and
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twins. In one study using 143 nuclear families of Hutterite ancestry, a genome-wide excess

of allele sharing among siblings was found, which could indicate a departure from the

expected Mendelian inheritance pattern at many loci7. However, this evidence was

contradicted by a study on dizygotic twins from Australia and the Netherlands that found no

excess of allele sharing, either across the entire genome or at the HLA locus, the human

ortholog of the mouse t-haplotype8. This is also in contrast to previous findings that showed

a higher degree of HLA haplotype sharing in dizygotic twins9. These conflicting results

highlight the need for further research and alternative strategies to better comprehend the

occurrence and impact of TRD in different populations.

Second, deviations from Mendel's pattern of inheritance have been identified using the

Transmission Disequilibrium Test (TDT), which measures the non-random transmission of an

allele from heterozygous parents to their affected offspring. It is a widely used approach in

family-based studies to examine the possible connection between a genetic marker and a

particular illness. This notably allows the discovery of distortion events associated with

diseases such as Crohn’s disease9,10 or the long-QT syndrome11. Finally, the TDT has been

expanded at the population level by considering each offspring as "affected"12–14. This

allowed the study of TRD without restricting analyses to disease cases and considerably

increased the study sample size by including any available family in the analysis. It is

important to note that by evaluating TRD without considering a specific phenotype, it allows

to identify genetic loci that affect the likelihood of survival. This is similar to selecting "alive"

as the phenotype, as it highlights genetic factors that impact the chances of survival.

Several studies have used this generalized TDT approach to investigate loci affecting

reproduction and survival. Hanchard et al. analyzed MHC regions across 380 newborns and

found modest evidence for TRD in the CLIC1 gene (p=0.025) after restricting the test to 13

SNPs based on LD6. Santos et al. focused on the human region syntenic with the mouse

t-haplotype, containing notably the human MHC region13. They adjusted for multiple testing

by using tag SNPs and permutations. They observed a significant deviation (p=2e-04) in the

allelic transmission among 30 CEU male parents with a strong ratio: 17 of the 18

transmission were for the same allele. Patterson et al. assessed TRD genome-wide by

combining both parents from the Framingham Heart Study (FHS) and found eight candidate
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distortion events, one of which reach genome-wide significance (p=7.4e-10). Meyer et al.

used human pedigree datasets and revealed two significant loci among 90 individuals of the

Autism Genetic Resource Exchange (AGRE) dataset: the first at 10q26.12 when combining

both paternal and maternal transmission (p=4.55e-08); the second at 6p21.1 that only

showed a significant signal for paternal transmission (p=1.77e-05)14. Although the signal at

6p21.1 confirms the previous observation in 30 CEU males13, these signals could not be

replicated in the FHS cohort, which likely suffers from genotyping error noise14,15. Finally, Liu

et al. searched for paternal- or maternal-specific TRD events in the FHS cohort, correcting for

genotyping errors15. They found two maternal-specific loci, at the LRP2 and ZNF133 genes

(p=4.2e-08 and 2.6e-08, respectively). Despite setting the basis on the extent of TRD

genome-wide, only one of these signals seemed to be replicated across two independent

cohorts (i.e at 6p21.1), the remaining still requiring further validation as suggested15.

Although the generalized TDT appears to be the most promising method for detecting TDR in

healthy populations, it also has several limitations and challenges that need to be

considered. These include issues with sample size, population stratification, and technical

factors such as genotyping errors. Indeed, the TDT method is limited to family studies as it

relies on prior knowledge of the parental genotypes. This restriction limits the sample size

and reduces the potential for discovery, resulting in an ability to detect only strong cases of

TDR. However, such strong TDR distortions are not stable in a population, as the dominant

allele becomes fixed more quickly as the distortion becomes stronger14,15. As a result, it is

unlikely that strong TRD will be observed in multiple populations simultaneously and the

replication of TRD signals becomes challenging15. On the other hand, moderate distortions

are more challenging to detect since they require extremely large sample sizes. For example,

considering an heterozygote frequency of 10%, approximately 20,000 parent-offspring trios

are necessary to achieve 80% power to detect distortion of 5% at ⍺=10-7 according to

simulations16. Finally, previous studies have highlighted the possibility of genotyping error to

introduce false positive TRD detection14,15,17. This is often indicated by an excess of

genome-wide low p-values and lack of consistency between variants in close proximity,

while a true TRD signal is expected to spread to neighboring variants due to linkage

disequilibrium14. Due to these limitations of the TDT, the detection of transmission distortion

events in healthy populations remains a significant challenge.
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To address this, we present an innovative method for analyzing distortion events that

modifies the conventional use of TDT. Our approach consists of two key components. First,

instead of examining the transmission of minor and major alleles from parents to offspring,

we propose investigating the frequency at which minor alleles are inherited by the offspring

from each parent. This automatically takes into account the differential impact of the variant

on the paternal and maternal reproductive processes or gametic competition and enables

the detection of parent-specific variants. Second, in order to enhance the sample size of our

study, we have utilized a recently developed method that infers the parent-of-origin of

alleles from close relatives, eliminating the need for parental genotypes18. This notably

allows us to increase the sample size compared to family-based studies, resulting in a more

robust and effective analysis of transmission distortion events in healthy populations.

In the UK Biobank whole-genome sequencing (WGS) dataset, we inferred the PofO for

10,150 samples and tested the resulting call set for Parental Inheritance Distortion (PID)

event. We identified a strong paternal distortion signal at 22q13.33 that could be technically

validated in the UK BIobank whole-exome sequencing (WES) data and whose associated

genes impact sperm function. Beside improving upon the traditional TDT method, our

results demonstrate a more reliable way to test for genetic factors involved in human fertility

compared to GWAS studies that use proxies phenotypes19.
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Results

Genome-wide Parental Inheritance Distortion scan

We identified 10,150 individuals from the UK Biobank WGS data who had surrogate parents

labeled as either paternal or maternal, representing 38% of the original sample size reported

using the UK Biobank axiom array data18. We inferred the parent-of-origin at common

variants (MAF>0.1%, see methods) for these individuals, resulting in a call set of 16,449,701

variant sites across the 22 autosomes.

To detect variants that deviated from the expected Mendelian inheritance pattern of 50%,

we performed a Parental Inheritance Distortion (PID) test (see methods) on the resulting call

set. Using a Bonferroni genome-wide significance threshold (p<5e-08), we identified 9

genome-wide significant loci (Figure 1A). Among them, 6 showed signals extending to

nearby variants due to linkage disequilibrium (chromosomes 3,11,12,14,19,22), similar to

what is observed in GWAS signals which suggests that they are true positives14, while the

other 3 were isolated variants that are likely to be false positives (chromosomes 4,5,6).

We conducted a comparison of allelic frequency between males and females in the UK

Biobank WGS cohort to eliminate the possibility of sex-specific variants causing the

distortions of inheritance. Indeed, genetic variants over-represented in one gender may lead

to unequal transmission between paternal and maternal alleles. The UK Biobank WGS

cohort consists of 67,290 and 82,651 genetically confirmed males and females, respectively.

We did not observe any significant discrepancies between the allelic frequencies of males

and females at loci exhibiting genome-wide significant distortions (Supplemental Figure 1).

This implies that the observed distortion signals are not driven by imbalance allele

frequencies between male and females. [However, no statistical measure of the difference

between men and women has yet been calculated.]*(remains to be investigated)

To validate the signals, we employed two different strategies. Firstly, since the UK Biobank

project includes multiple releases (WGS, WES, and SNP array) for the same set of individuals,

we tested the distortion events across different genotyping technologies for the same

cohort. This serves can be considered as technical replicates, and can provide insights into

the true nature of the signals, helping to distinguish between genuine distortion events and
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errors arising from sequencing, mapping, or genotype calling14,15,17. Secondly, we aim at

validating these signals in other cohorts, which can be considered as biological replicates.

This approach helps to confirm the robustness and generalizability of the findings beyond

the initial cohort. [However, no biological validation was yet successful]*(remains to be

investigated)

Technical replication

Using the UK Biobank WES data, we inferred the parent-of-origin (PofO) for 26,393

individuals for which we performed genotype imputation using the UK Biobank WGS as a

reference panel (see methods). We selected all variants exhibiting genome-wide significant

distortion (p<5e-08) in the WGS call set, which represents 144 non-independent variants. Out

of these, only 92 could be tested in the WES call set due to the filtering out of poorly

imputed variants. Interestingly, these 92 variants are located on chromosomes 3, 11, 14, and

22, which are the signals more likely to show true positive signals due to the spreading of

significant distortions to nearby variants (Figure 1A). This could already indicate that the

remaining poorly imputed variants are false positive signals. We tested these 92 candidate

variants for PID and found that only the locus on chromosome 22 also shows genome-wide

significance (p<5e-08) in the WES call set (Figure 1B).

The SNP leading the signal on chromosome 22 (rs2747986, pwgs=4.1e
-47) is ~1.5 times less

inherited from fathers (ratio=0.39, countpat=1829, countmat=2808). This variant is located in

an intron of RABL2 (Figure 1C), a gene that plays a role in sperm tail structure and has been

implicated in male fertility20,21. In addition, among the signal confirmed in the WES call set

(pwgs<5e
-08 and pwes<5e

-08), the lead SNP is rs199928666 (pwgs=1.6e
-39, pwes=3.3e

-10), a variant in

strong LD with rs2747986 (r2=0.42)22 and that exhibits a similar distortion ratio (ratio=0.43).

This variant is a splice-eQTL in testis for ACR23, a gene that encodes the acrosin protein, the

main protease of the acrosome, which plays a role in penetrating the zona pellucida. A

decrease in acrosin protein levels has been linked to delayed fertilization24,25. These findings

suggest that sperm cells carrying the risk allele are less efficient in the fertilization process

than wild-type sperm cells, making them less likely to be inherited. However, since these
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alterations are unlikely to completely impair sperm cells, fathers who are homozygous for

the risk allele likely exhibit reduced fertility rather than complete infertility.

The reason why we only observed the signal on chromosome 22 in the WES call set could be

attributed to the presence of genotyped variants that exhibit strong distortion at this locus,

leading to improved imputation accuracy of neighboring variants. As the PID test is sensitive

to genotyping error, it may also be sensitive to imputation error, which makes it challenging

to detect signals in imputed call sets. [However, this needs to be validated for other

significant regions identified in the WGS dataset.]*(remains to be investigated). Additionally,

it is possible that all the signals, except for the one on chromosome 22, are a result of

sequencing or genotype calling artifacts.

We finally evaluated the efficacy of traditional family-based studies in detecting signals at

this locus using a subset of individuals (N=518) with parental genome data available for PofO

inference in the UK Biobank WGS data. We did not observe any distortion for the locus on

chromosome 22, highlighting the advantage of our call set over the conventional TDT

approach that uses family data (Figure 2A).

Biological replication

Next, we aimed to validate the signals by replicating them in independent datasets. To

achieve this, we utilized the Estonian Biobank (EBB)26, in which we identified 29,650

parent-offspring duos and 10,502 parent-offspring trios. For these, we inferred the PofO

using available parental genomes. We tested the resulting call set for PID, and we could not

replicate the signal on chromosome 22 (Figure 2F) nor any of the other genome-wide

significant signals detected on the UK Biobank WGS call set.

We discovered that the genotyped variants in the EBB were not dense enough to impute the

locus accurately on chromosome 22 (Figure 2F). As a comparison, we were unable to

recover the signal on chromosome 22 using the UK Biobank SNP array data (Figure 2G),

which contains a similar density of variants as the EBB SNP array data. To explore further, we

evaluated whether the recovery of the signal on chromosome 22 was due to the genotyped

data or the reference panel. For this, we used different reference panels for both the UK

Biobank SNP array imputation (Figure 2G-I) and for the UK Biobank WES imputation (Figure
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2C-E). None of the SNP array imputed call sets allowed us to retrieve the signal. On the other

hand, all the UK Biobank WES imputed call sets retrieved the signal. This confirms the

limitation of SNP array based imputed call sets and highlights the benefit of using WGS and

WES data in this context.
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Future analysis

Since SNP array data seems to not allow recovering signals located close to telomeres, we

aimed to validate our findings using WGS cohorts. For this, we initiated a collaboration with

the Qatar Genome Project27. A first overview of the data allowed us to identify a total of

2359 parent-offspring duos and 691 parent-offspring trios across a total of 13,896

individuals. In addition, we also aim to use the publicly available 1000 Genome Project28,

which includes a total of 602 parent-offspring trios.

Furthermore, given that the signals identified are predominantly situated near telomeres,

we do not exclude the possibility that they result from phasing edge effect or

parent-of-origin inference edge effects. Nevertheless, we do not perceive any scenario in

which phasing errors are associated with the parental origin of variants, resulting in the

identification of these signals. In addition, we will also investigate the mappability of the

regions. Low mappability can result in poor phasing accuracy.
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Method

Parent-of-origin inference from close relatives

To infer the parent-of-origin from close relatives in the UK Biobank data set, we used a

method previously developed as part of our research group18. Briefly, it consists in (i) the

identification of close relatives using the kinship estimate, (ii) the grouping of close relatives

into parental groups, (iii) the labeling of parental groups as paternal or maternal using the

IBD sharing on the chromosome X for male individuals, and (iv) phasing to assign parental

origin to haplotypes.

Parent-of-origin inference from parental genomes

To infer the parent-of-origin from available parental genomes, we used the phasing software

SHAPEIT529, which includes an option --pedigree implementing a ‘Mendelian’ phasing. This

option uses parental genomes to solve the phase for heterozygous offspring. When parental

genomes can not be used, such as in the case where both parents are heterozygous, it solves

the phase from the reference panel using the typical phasing model.

Parental inheritance distortion test

To test the deviation from Mendelian inheritance pattern, we used the function

binom.test(P, P+M, 0.5) implemented in R, where:

P=number of heterozygous individuals with paternally inherited minor allele,

M=number of heterozygous individuals with maternally inherited minor allele,

0.5 = expected ratio based on Mendelian rules.

Additionally, we computed the ratio of paternally versus maternally inherited alleles

computed as r= P/(P+M). This ratio equals 0.5 when there is no distortion.

UK Biobank array data processing

In the UK Biobank SNP-array data, we inferred the parent-of-origin from close relatives as

described in Hofmeister et al18. We followed the same quality control procedure. It resulted

in 26,393 individuals with PofO inferred. For the SNP-array data, this method is followed by

haploid imputation to increase the variant density on each of the two parental haplotype

separately.
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UK Biobank sequencing data processing

We use the 150,119 individuals available WGS data and the 452,644 individuals with both

WES and SNP array data. As described in the SHAPEIT5 documentation29, we merged the

WES with the SNP array data to increase the variant density and improve the accuracy of the

phasing procedure. For both the WGS and the WES data, we followed the same quality

control procedure as in the SHAPEIT5 manuscript.

To infer the parent-of-origin in the WGS and WES data, we proceed in a multi-step process.

First we inferred the parent-of-origin from close relatives in the SNP-array data (see above).

Then, we used the resulting haplotypes as a scaffold to phase the sequencing data using the

option --scaffold of the SHAPEIT5_phase_common tool.

For the WES data, we additionally increased the variant density using haploid imputation.

Estonian Biobank data processing

We used the SNP array data of the Estonian Biobank (EBB)26 pre-QCeed as provided by the

official release. We use the software KING30 to compute the relatedness among individuals.

We identified parent-offspring duos and trios as relationships as having a kinship coefficient

lower than 0.3553 and greater than 0.1767 and an IBS0 lower than 0.001230,31. In addition,

we require that the difference in age between parents and offspring is greater than 15 years

and that the two parents have different sex for trios. This resulted in the identification of

10,502 trios and 29,650 duos. We inferred the PofO from parental genomes using SHAPEIT5

and the --pedigree option29. In addition, we performed haploid imputation using HRC as a

reference panel32.

1000GP data processing

We used the publicly available 1000 Genome Project 30x GRCh38 data28. We identified trios

and duos using the provided pedigree file. It consists of 602 trios and 6 duos. For these, we

inferred the PofO from parental genomes using SHAPEIT5 and the --pedigree option29.
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Haploid Imputation

Haploid imputation has been performed using the option -out-ap-field of IMPUTE533 such as

described in Hofmeister et al. For this procedure, we used different reference panels in order

to assess their impact on the signal of imputed call sets:

- Haplotype Reference Consortium (HRC)32 GRCh37

- 1000 Genome Project 30x GRCh38, publicly available

- UK Biobank WGS GRCh38, produced as part of the SHAPEIT5 manuscript29.

Each imputed call set has been filtered to remove variant sites with INFOscore below 0.8.

LiftOver

For imputation purposes, we lifted over the UK Biobank SNP array data and the HRC data

from GRCh37 to GRCh38 using a vcf liftover tool available as part of the SHAPEIT5 release29.

Qatar Genome Project data processing

We use the software KING30 to compute the relatedness among individuals. We identified

parent-offspring duos and trios as relationships as having a kinship coefficient lower than

0.3553 and greater than 0.1767 and an IBS0 lower than 0.001230,31. In addition, we require

that the difference in age between parents and offspring is greater than 15 years and that

the two parents have different sex for trios. It resulted in 691 trios and 2359 duos.
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Figures

Figure 1. Parental Inheritance Distortion scan. A) PID test significance (y-axis,

-log10(p-value)) across the 22 autosomes (x-axis). Even chromosomes are shown in black;

odd chromosomes are shown in gray. The red line indicates the Bonferroni genome-wide

significance threshold (5e-08). B) PID significance in the UK Biobank WES data (y-axis) versus

the UK Biobank WGS data for variants exhibiting PID genome-wide significance in the WGS

data. C) Locus zoom at 22q13.33 on the UK Biobank WGS PID scan.
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Figure 2. Locus zoom at 22q13.33. A-I) PID significance (y-axis) along chromosome 22

positions (x-axis) across different call sets (A-I). A) UK Biobank WGS using only duos and trios

for which the PofO was inferred from parental genomes (N=518). B) UK Biobank WGS using

N=10,150 individuals for which the PofO was inferred from close relatives. C-E) UK Biobank

WES using N=26,393 individuals for which the PofO was inferred from close relatives across

different reference panels for genotype imputation. F) Estonian Biobank SNP array imputed

with HRC as a reference panel, using only duos and trios for which the PofO was inferred

from parental genomes (N=40,152). G-I) UK Biobank SNP array using N=26,393 individuals

for which the PofO was inferred from close relatives across different reference panels for

genotype imputation. Black dots indicate genotyped variants. Gray dots indicate imputed

variants.
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Supplementary figures

Supplementary figure 1. Allelic frequency at PID genome-wide significant loci. Males allele

frequencies (x-axis) versus female allele frequencies (y-axis) in the UK Biobank WGS cohort.
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