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Abstract The paper proposes and investigates a new index of flow autocorre-
lation, based upon a generalization of Moran’s I, and made of two ingredients.
The first one consists of a family of spatial weights matrix, the exchange ma-
trix, possessing a freely adjustable parameter interpretable as the age of the
network, and controlling for the distance decay range. The second one is a
matrix of chi-square dissimilarities between outgoing or incoming flows. Flows
have to be adjusted, that is their diagonal part must first be calibrated from
their off-diagonal part, thanks to a new iterative procedure procedure aimed at
making flows as independent as possible. Commuter flows in Western Switzer-
land as well as migration flows in Western US illustrate the statistical testing
of flow autocorrelation, as well as the computation, mapping and interpreta-
tion of local indicators of flow autocorrelation. We prove the present dyadic
formalism to be equivalent to the “origin-based” tetradic formalism found in
alternative studies of flow autocorrelation.

JEL classification codes: C21, C23, R12

Keywods: diffusive spatial weights, exchange matrix, flow autocor-
relation, movers-stayers, weighted network

1 Introduction

Flows nik count the number of units (people, goods, information, money etc.)
at origin i and destination k after some time t. Flows are autocorrelated if
the (suitably normalized) counts of a pair of spatially close flows tend to be
more similar than the counts of a pair of flows chosen at random. Assessing
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the spatial proximity between two flows requires in general the construction
of tetradic neighborhood operators (adjacencies, spatial weights or exchange
matrices), involving two origins and two destinations (section 4).

By contrast, most studies on spatial autocorrelation compare the features
of a region to the features of a spatially close region, and involve only dyadic
neighborhood operators. Spatial autocorrelation is most often measured by
Moran’s I. A generalization of the latter, particularly useful for multivariate
features and weighted networks, is provided by the relative autocorrelation δ

δ :=
∆−∆loc

∆
∆ :=

1

2

n∑
i,j=1

fifjDij ∆loc :=
1

2

n∑
i,j=1

eijDij (1)

where ∆ and ∆loc respectively constitute the (weighted) global and local in-
ertia. Here Dij is a squared Euclidean dissimilarity between the attributes or
features of regions i and j, and E = (eij), the exchange matrix, is the sym-
metric, normalized spatial weights matrix (e.g. Bavaud 2013), whose margin
fi yields the relative weight of region i (section 2.1).

This paper proposes an original procedure aimed to measure and test flow
autocorrelation, based upon dyadic formalism (1). The latter is demonstrated
to be equivalent to the “origin-based” tetradic formalism, that is based upon
spatial and attributes comparison operators eij,kl and Dij,kl, discussed in pre-
vailing studies of flow autocorrelation (section 4). Technical as it might appear,
the procedure however relies upon two n×n data sets only, namely a proximity
or generalized adjacency matrix, and a flow matrix, whose diagonal parts are
irrelevant in both cases (section 2).

The approach is illustrated on a commuting flow dataset for Western
Switzerland, as well as a migration dataset for Western US (section 3). Both
examples exhibit highly significative autocorrelation. Local indicators of flow
autocorrelation (Anselin 1995) can also be defined (section 2.3), mapped and
interpreted in terms of properties of origins and destinations. For commuters
flow, they highlight in particular the role of residential zones versus job centers,
within a given, freely adjustable spatial resolution.

1.1 A descriptive perspective

Measuring flow autocorrelation is not that trivial, and arguably justifies con-
tributions such as the present one, exclusively devoted to the formal definition
and measure of the relative flow autocorrelation, free of socio-economic vari-
ables aimed at explaining this state of affairs: specifying measurement should
logically improve model selection - hence the current emphasis on the compu-
tational procedure. Section 4 contains references adopting a more econometric
perspective, and section 3 resorts to geographical interpretation of the local
index of flow autocorrelation defined in section 2.3.
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In a nutshell, the proposed measure of flow autocorrelation is constructed as
follows: Dij in (1) is chosen as the chi-square dissimilarity between out-going
(normalized) flows with origins i and j, or alternatively between in-coming
flows. Also, eij in (1) measures the spatial proximity between regions i and
j. Two auxiliary problems, interesting in themselves, have yet to be further
solved at this stage:

• diagonal flows nii, counting stayers, are not always recorded, and their
contribution to flow autocorrelation is debatable anyway. Section (6) pro-
poses an original iterative calibration procedure of diagonal flows from
off-diagonal flows, counting movers, aimed at computing sensible flow dis-
similarities between origins (or destinations).

• the spatial structure is generally given in terms of proximities or adjacen-
cies, and the exchange matrix (eij), whose margins must coincide with the
given regional weights (fi), has still to be constructed accordingly. Section
(2.1) gives a general recipe, producing diffusive exchange matrices gener-
ated by jump processes characterized by “generalized adjacency matrices”
(Bavaud 2014), specifying which weighted regions are immediately attain-
able from which ones. Iterating the process permits to attain any region in
the long run, and to assess the probability to do so.

In summary, measuring and testing flow autocorrelation implies the fol-
lowing steps:

1) after adjusting for the diagonal flows (sections 2.4 and 6), compute the
origin weights f , the destination weights ρ, and the chi2 flow dissimilarity
D between pairs of origins – or destinations (section 2.2)

2) compute the weight-compatible exchange matrix E(f,G, t) from a proxim-
ity matrix G, such as the adjacency matrix (section 2.1). Here t is a freely
adjustable diffusion time, ranging from t = 0 (absence of exchange, com-
plete autarchy) to t =∞ (absence of spatial friction, complete mobility)

3) compute and test relative autocorrelation δ(E,D), using normal approxi-
mation or a permutation approach (section 2.3)

4) compute and map local indices of flow autocorrelation δi(E,D) (section 3).

2 Notations and formalism

Recall that eij in (1) expresses spatial neighborhoodness between a pair of
origin regions i and j, and Dij expresses their dissimilarities, comparing their
normalized, off-diagonal destination flow profiles.

2.1 The exchange matrix E and its generation from a proximity matrix G

As already stated, a weighted, unoriented network of n regions is defined by an
n × n symmetric, normalized, weight-compatible exchange or spatial weights
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matrix E = (eij), inducing compatible regional weights fi as

eij = eji ≥ 0

n∑
j=1

eij = ei• = fi e•• =

n∑
i=1

fi = 1

(here and in the sequel, “•” denotes the summation over the values of the
replaced index). The exchange matrix E = (eij) is a normalized measure of
spatial interaction, interpretable as the probability to select the pair of regions
(i, j) (Berger and Snell 1957). E defines an unoriented weighted network, whose
(compatible) node weights fi obtain as the sum of the incident edge weights.

Let Π = diag(f) denote the diagonal matrix of regional weights, and consider
a proximity n× n symmetric matrix G, essentially non-negative (that is with
gij ≥ 0 for i 6= j) expressing spatial proximity between regions. In both case
studies (section 3), G is simply taken as the binary adjacency matrix between
regions.

As a continuous-time generator, G defines a diffusive, weight-compatible
exchange matrix E by means of the matrix exponential

E(G, f, t) := Π1/2 exp(−t Ψ)Π1/2 with Ψ := Π−1/2
LG

trace(LG)
Π−1/2 (2)

where LG is the Laplacian of G (e.g. Chung 1997 p.12), with components
(LG)ij := δijgi• − gij (Kronecker’s delta δij denotes the components of the
identity matrix). By construction, the resulting exchange matrix, whose com-
putation can be achieved by spectral decomposition, is non-negative and weight-
compatible (Bavaud 2014). It turns out to be positive semi-definite as well.
The free parameter t > 0 interprets as the age of the network, and controls the
importance of diagonal weights: indeed, trace(E(G, f, t)) = 1− t+O(t2). One
gets limt→0 eij(G, f, t) = fiδij (“frozen network” made of n non-interacting
regions) and limt→∞ eij(G, f, t) = fifj (“complete network”, free of distance-
deterrence effects). Construction (2) constitutes a weight-compatible extension
of the so-called diffusion kernel of machine learning (Kondor and Lafferty 2002)
from general proximity matrices.

2.2 Specifying regional differences by squared Euclidean dissimilarities

Consider also a n × n matrix of squared Euclidean dissimilarities D = (Dij)
between the regional characteristics, features or attributes, that is of the form

Dij = ‖xi − xj‖2 .

As a simple example, contemplate Dij = (xi − xj)
2 where x is a density

variable, that is transforming as a weighted average under regional aggregation
i, j → [i ∪ j], as with x = “average life span”, “proportion of retired

people” or “average housing surface per individual”.
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Taking simultaneously into account many numerical variables yields to multi-
variate dissimilarities of the form Dij =

∑
k(xik − xjk)2 = ‖xi − xj‖2, where

xik is a standardized density score of region i on feature k.

In the presence of a categorical variable with p modalities indexed by k, the
matrix N = (nik), counting the number of units of region i possessing the
modality k, can generate various kinds of squared Euclidean dissimilarities,
most notably the normalized chi-square dissimilarity

Dχ
ij =

p∑
k=1

n••
n•k

(
nik
ni•
− njk
nj•

)2 obeying
1

2

∑
ij

ni•
n••

nj•
n••

Dχ
ij =

chi2

n••
= ∆ . (3)

Commuter flows T = (tik) could seemingly be directly plugged into (3) in place
of N = (nik), in order to obtain chi-square dissimilarities between origins i
and j. However, the particular nature of diagonal flows tii (section 1.1) calls
for a prior, somewhat stable recalibration of diagonal counts in T (stayers)
from the off-diagonal counts (movers) only (section 2.4 and appendix 6).

2.3 Measuring and testing spatial autocorrelation

The relative autocorrelation δ in (1) constitutes a weighted, multivariate gen-
eralization of Moran’s I. The global inertia ∆ and the local inertia ∆loc obey
0 ≤ ∆loc ≤ 2∆, thus making −1 ≤ δ ≤ 1. Also, the relative autocorrelation
can also be expressed as the average of a local indicator of spatial association
δi (Anselin 1995). In the present formalism1:

δi :=
1

2∆

∑
j

(fj − wij)Dij wij :=
eij
fi

= P (j|i) δ =
∑
i

fiδi (4)

where W = (wij) is the transition matrix of a reversible Markov chain, the row-
standardized spatial weights (e.g. Bavaud 1998; Bivand et al. 2008) appearing
in spatial econometrical models such as y = ρWy + βX + ε. By construction,
δi > 0 iff spatial transitions from i preferentially reach neighboring regions j
whose attributes are more similar to i than are regions chosen at random.

Under the null hypothesis H0 of absence of spatial autocorrelation, the ex-
pected value of the autocorrelation index, together with its variance (under
normal approximation) are (e.g. Cliff and Ord 1981; Bavaud 2013)

E0(δ) =
trace(W )− 1

n− 1
Var0(δ) =

2

n2 − 1

[
trace(W 2)−1− (trace(W )−1)2

n−1

]
(5)

1 other possible choices such as δi = (WB)ii/∆, where B is the matrix of scalar products
associated to D, will be discussed in a forthcoming publication.
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where W is the above Markov transition matrix. Hence the relative autocor-
relation is significant at level α (two-tailed test) if

|z| ≥ u1−α/2 where z :=
δ − E0(δ)√

Var0(δ)
, (6)

and uα denotes the α-th quantile of the standard normal distribution. Decision
rule (6) is well adapted for a large number of weighted regions (Bavaud 2013).
A meticulous assessment of the validity of normal approximation for multivari-
ate dissimilarities is beyond the scope of the present study, and should here in
particular address the issues of integer counts (in particular zero counts), as
well as the impact of their (in-)dependence on the distribution of chi2 dissim-
ilarities. Yet, the sheer size of the z values encountered in both cases studies
(section 3) demonstrate a posteriori the presence of massive, very significant
flow autocorrelation.

2.4 Diagonal flow calibration: estimating stayers from movers

In any case, the proposed procedure consists in considering mover flows only,
defined by mij = tij for i 6= j, and mii = 0, and in estimating the stayer flows
tii by requiring the complete flow tij to be as origin-destination independent
as possible. Specifically, define the normalised empirical distribution of movers
as

aij :=
mij

m••
=

tij(1− δij)
sum(T )− trace(T )

(proportion of movers from i to j 6= i)

Assume the relative complete flow P = (pij), normalised to p•• = 1, to be of
the form

pij :=
tij
t••

= σi δij + µ aij where µ ≥ 0, σi ≥ 0 and µ = 1− σ• . (7)

In particular, trace(T )/sum(T ) = σ• = 1− µ = 1− t− 0(t2), which makes µ,
when small, comparable to the age t of a “diffusive” network (Bavaud 2104):
µ = t = 0 generates pure stayer “flows” (absence of true commuters, “frozen”
network). By contrast, µ = 1 characterizes complete bimodal segregation of
regions into “exclusive origins” and “exclusive destinations” (migrations), or
into “pure homeplaces” and “pure workplaces” (commuters), arising whenever
ai• a•i = 0 for all regions i = 1, . . . , n (see the appendix in section 6).

2.4.1 Adjusted flows: regional weights and uncertainties

The appendix presents a presumably original method of stayers calibration,
determining the normalised adjusted relative flows pik = σi δik + µ aik by
iteration. Once obtained, pik can be plugged into (3) in place of the nik, finally
enabling the computation of chi-square dissimilarities Dχ

ij between origins i
and j.
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Working with transposed flows T ′ instead yields the construction of chi-square
dissimilarities between destinations. Origin weights obtain as fi := pi•, des-
tination weights as ρk := p•k. Uncertainties on origins O, on destinations D,
and on origin-destination trips are measured (in nats) by the entropies

H(O) = −
∑
i

fi ln fi H(D) = −
∑
k

ρk ln ρk H(O,D) = −
∑
ik

pik ln pik

Mutual information I(O : D) := H(O)+H(D)−H(O,D) constitutes another
measure of origin-destination dependence, approximatively equal to ∆/2 for
flows close to independence (e.g. Cover and Thomas 1991). Also, the “uncer-
tainty unbalance”

∆H := H(O)−H(D) = H(O|D)−H(D|O) (8)

is positive iff the origin of people are more difficult to guess than their desti-
nation, i.e. iff origins are less concentrated than destinations.

3 Case studies

Commuters (Western Switzerland, section 3.1) and migrants (US Westcoast,
section 3.2) turn out to be contrasted, in that ∆H > 0 for commuters flow,
while ∆H < 0 for migratory flow. Commuters destinations happen to be more
concentrated than commuters origins – an intuitively expected result. The
opposite holds for migratory flow, where the question “where are you going”
appears to be more challenging than “where are you from”. Further studies
could examine to which extent ∆H < 0 may characterize other migratory
flows.
In both cases, recall that the exchange matrix E(G, f, t) (2) between origins
(that is for out-flows) has been constructed from the binary adjacency matrix
G between regions, where f are the origin weights and the free parameter t
represents the “age of the network”, determining the importance of the dis-
tance deterrence effect. Computations have been performed with t = 0.05 and
t = 1, the latter representing a network where spatial weights become nearly
independent on geographical distance. Time-reversal T → T ′ similarly yields
the exchange matrix Ė(ρ,G, t) between destinations, weight compatible in the
sense ėj• = ρj .
Spatial autocorrelation is extremely significant for both flows, in either direc-
tion, that is for out- and in-flows. Local indicators δi of spatial autocorrelation
appear fairly spatially continuous (especially for migratory flows), i.e. spatially
autocorrelated in turn. Their two versions (out- and in-flows) exhibit similar
patterns, high values of δi seemingly underlying regions important as origins,
respectively as destinations.



8 F. Bavaud et al.

0 20 km

Geometries: Swiss Federal Statistics O�ce, ThemaKart, 2010

N

Sierre

Sion

Martigny

Vevey
Morges

Lausanne

Neuchâtel

La Chaux-de-Fonds

Delémont

Fribourg

Nyon

Geneva

Sierre

Sion

Martigny

Vevey
Morges

Lausanne

Neuchâtel

La Chaux-de-Fonds

Delémont

Fribourg

Nyon

Geneva

Local �ow autocorrelation for outgoing 
commuting �ows in Western Switzerland, 2000

0

0.5
Max: 0.965

out�ows, t = 0.05

0.2

–0.2

–0.5

Min: –0.564

0 20 km

Geometries: Swiss Federal Statistics O�ce, ThemaKart, 2010

N

Sierre

Sion

Martigny

Vevey
Morges

Lausanne

Neuchâtel

La Chaux-de-Fonds

Delémont

Fribourg

Nyon

Geneva

Geneva

Fribourg

Neuchâtel

Jura

Vaud

Valais
Geneva

Fribourg

Neuchâtel

Jura

Vaud

Valais

Sierre

Sion

Martigny

Vevey
Morges

Lausanne

Neuchâtel

La Chaux-de-Fonds

Delémont

Fribourg

Nyon

Geneva

FranceGeneva

Fribourg

Berne
Neuchâtel

Jura

Vaud

Valais
Geneva

Fribourg

Berne
Neuchâtel

Jura

Vaud

Valais
France

Local �ow autocorrelation for incoming 
commuting �ows in Western Switzerland, 2000

0

0.5

Max: 0.920

in�ows, t = 0.05

0.2

–0.2

–0.5

Min: –0.597

Fig. 1 Local indicator of flow autocorrelation δi (4) for commuting flows in Western Switzer-
land (n = 895), for t = 0.05, outflows (left) and inflows (right).

t=0.05 t=1.0

outflows δ = 0.207 δ = 0.024
z = 80.93 z = 80.20

inflows δ = 0.177 δ = 0.025
z = 69.07 z = 73.60

Table 1 Relative flow autocorrelation (commuting flows in Western Switzerland) for out-
flow and inflow studies, and standardised normal decision variable z for testing H0 : “flows
are not spatially autocorrelated”, with two different values for parameter t

3.1 Commuting flows in Western Switzerland

Journey-to-work flows for Western Switzerland (for the year 2000) are provided
by the Swiss Federal Statistical Office (SFSO)2. The dataset contains more
than 38’000 non-zero flows between the n = 895 French-speaking communes
of Western Switzerland, communes being the smallest administrative division
corresponding mostly to a town or a city. Removing the stayer flows yields a
total of 37’378 non-zero mover flows, representing 733’164 people.

We have computed the relative flow autocorrelation δ on both outgoing
and incoming flows, for two different values of t used in deriving the exchange
matrix E based on the adjacency matrix G (section 2.1).

2 Data available at http://www.pendlerstatistik.admin.ch
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Fig. 2 Local indicator of flow autocorrelation δi for commuting flows in Western Switzer-
land, for t = 1.0, outflows (left) and inflows (right).

Table 1 exhibits the relative flow autocorrelation δ for the different con-
figurations; in all cases, the significance of (positive) flow autocorrelation is
overwhelming (p ' 0). Figure 1 depicts the local indicator of flow autocorrela-
tion or outflows (left) and inflows (right) for a value of t = 0.05, while figure 2
displays the same information but for a value of t = 1.

Figure 1 shows well the economic centres of the region, mainly Geneva
and Lausanne, and some local centres like Fribourg or Sion. Recall that, in
the present setup, a large value of δi for outflows indicates that the profile of
outflows emanating from neighbours j of i is similar to the profile of outflows
from i itself – a circumstance favorable to car-sharing. This is typically the
case of the metropolitan area of Geneva. Remote areas exhibit a negative flow
autocorrelation, typically remote Alpine valleys south of Sion or Sierre.

The same comments apply to inflows, modulo a reversal of origins and des-
tinations. Outflow local autocorrelation primarily highlights residential zones
where people are living, while inflow local autocorrelation δi is high for econom-
ically strong communes (job centres) and low for economically weak places.
Hence, our local indicator for flow autocorrelation is clearly able to highlight
the spatial hierarchical structure underlying the journey-to-work flows.

Figure 2 shows a much more equal spatial distribution for the local in-
dicator of flow autocorrelation than figure 1: a large value of t corresponds
to moderate distance deterrence effect and large neighborhoods, filtering out
local details of smaller size. Only the Alpine canton of Valais (with Martigny,
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Sion and Sierre) is well separated, as well as Geneva for the outflows. Both
the case of Geneva and Valais are a bit special for transportation because they
have only a single access route from outside, due to topography (Valais) or
administrative boundaries (Geneva) with France being close.

As shown by table 1, spatial autocorrelation of inflows is huge, and spatial
autocorrelation of outflows is even larger. This difference could be explained
by the relatively larger difficulty to guess the origin of a commuter of Western
Switzerland, compared to the guess of its destination, as measured by their
entropies H(O) = 6.61 nats, versus H(D) = 6.35 nats. Equivalently, guess-
ing the residential place of a commuter at its job place is more difficult than
the other way round: H(O|D) = 5.98 > H(D|O) = 5.72, thus making out-
flows somewhat more focused than inflows. The spatial distribution of jobs
respectively residential zones might be at the source of this difference. Jobs
are typically more concentrated in urban centres and in some limited subur-
ban areas, while residential zones are distributed over a wider region, hence
the bigger difficulty to guess an origin than a destination.

3.2 County-to-county migration flows in Western United States
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Fig. 3 Local indicator of flow autocorrelation δi for migration flows for the Western United
States (n = 237), for t = 0.05, outflows (left) and inflows (right).
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Fig. 4 Local indicator of flow autocorrelation δi for migration flows for the Western United
States, for t = 1.0, outflows (left) and inflows (right).

t=0.05 t=1.0

outflows δ = 0.080 δ = 1.3 · 10−5

z = 13.27 z = 9.18
inflows δ = 0.076 δ = 1.1 · 10−5

z = 13.29 z = 9.03

Table 2 Relative flow autocorrelation (US counties migration flow westcoast) for outflow
and inflow studies, and standardised normal decision variable z, with two different values
for parameter t

County-to-county migration flow estimates are provided by the U.S. Cen-
sus Bureau based on the 2006-2010 American Community Survey program3.
While the original dataset contains flow estimates for all U.S. counties and
Puerto Rico, in this case study, we use a subset covering the Western states of
Washington, Oregon, Idaho, California, Nevada, Utah and Arizona. A total of
n = 237 counties are considered, resulting in nearly 10’000 non-zero flows and
more than 2.2 million of migrants for a total population of a bit more than 61
million residents.

As stated above, origins are more concentrated than destinations for the
Western US migration flows: H(O) = 4.23 and H(D) = 4.36. Also, H(O|D) =
3.11 and H(D|O) = 3.24. This might betray dominating push-effects over

3 Data available at http://www.census.gov/hhes/migration/data/acs/county_to_

county_mig_2006_to_2010.html
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pull-effects: typically, the key factor for migration may be the lack of job
possibilities or educational infrastructure rather than the presence of it, in
which case people primarily choose “just to leave a given origin” rather than
“going to a specific destination”. It also shows that the destination is more
difficult to “guess”, which might be related to the presence of many possible
job centres attracting migrants. For journey-to-work flows, (time) distance
between home and work is a key factor, while this does not necessarily hold
for county-to-county migration flows. It is more likely that economic differences
and possibly personal preferences or opportunities are the key drivers behind
migration.

Except for this notable difference, most comments on Swiss commuters still
hold for the present case. In particular, the spatial autocorrelation of both out-
and in-flows is strongly significant (table 2), although to a lesser extent than for
commuter flows. The local autocorrelation is spatially continuous, and follows
a systematic North-South gradient, highest for the more populated regions of
South and especially for the South-West around Los Angeles. For the Northern
parts of the study zone the local spatial autocorrelation is negative, more for
outflows than inflows. Especially for inflows, local spatial autocorrelation is
slightly less negative for the areas around Seattle and Portland. Densely pop-
ulated areas tend to present a higher spatial autocorrelation than surrounding
zones (figure 5). Some state boundaries are remarkably well respected, pos-
sibly due to administrative artifacts or to true inter-state migration barriers
– a much debated issue in spatial econometrics (e.g. Hillberry and Hummels
(2008); Llano-Verduras et al. (2011)).

Seattle
Great Falls

Vancouver

Portland

Reno

San Francisco

San Jose

Los Angeles

San Diego

Salt Lake City

Las Vegas

Phoenix

California

Nevada

Arizona

Utah

Oregon

Washington

Idaho

Montana

Data: United States Census Bureau
Geometries: TIGER, Unites States Census Bureau / Natural Earth

Population density in Western US, 2010

8 persons / km2

70 persons / km2

Max: 6584 persons / km2

Population density in number of residents
per square kilometer, per county

20 persons / km2

3 persons / km2

1 person / km2

Min: 0.08 persons / km2

0 200 km N

Fig. 5 Population density in 2010 for the counties of Western US. Population density
can explain parts of the spatial autocorrelation, especially for inflows, due to the economic
attractiveness of urban areas and their importance for migration.
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4 Equivalence between the dyadic and tetradic approaches

Spatial autocorrelation δ(x) of, say, x = “proportion of retired people”,
essentially measures the extent to which the values xi and xj of two regions
i and j tend to be closer whenever i and j are neighbours – neighbours in
the sense defined by a general spatial weights or spatial link matrix V , be
it specified by the row-standardised spatial weights matrix W , the proximity
matrix G or the exchange matrix E. Here x is a monadic tensor (vector) and
V is a dyadic tensor (matrix).

Flows T = (tij) are themselves dyadic. The study of their spatial autocorrela-
tion, investigating to which extent tij and tkl are closer if ij and kl are “neigh-
bours”, seems to require a tetradic spatial link (spatial weights) V = (vij,kl).
For instance, one can set vij,kl = F (dik, djl) where F is a decreasing function
of each of its two arguments, namely the distances dik between distinct origins,
and the distances djl between distinct destinations (e.g. Black 1992 ; Bolduc
et. al. 1995). For a given fixed origin i = k, one gets a functional relation
of the form vij,il = F (djl) (common-origin link). Similarly, vij,kj = F (dik)
(common-destination link).

Tetradic spatial links seem formally necessary and intuitively appealing as far
as the spatial autocorrelation of dyadic tensors (here the flows) is investigated:
as a matter of fact, most contributions to flow autocorrelation refer in some
way or another to the tetradic paradigm, as e.g. in Brandsma and Ketellapper
(1979), Black and Thomas (1998), Berglund and Karlström (1999), Tiefelsdorf
and Braun (1999), Fischer and Griffith (2008), LeSage and Pace (2008), LeSage
and Polasek (2008), Polasek and Sellner (2010), or Behrens at al. (2012).

Tetradic tensors describe n4 components, dyadic tensors (matrices) only n2.
Kronecker products of dyadic tensors yield tetradic block tensors of lower
complexity. Such are the “origin-based”, “destination-based” and “origin-to-
destination” row-standardized spatial weights oW = I

⊗
W , dW = W

⊗
I

and odW = W
⊗
W (e.g. LeSage and Pace 2008; Fischer and Griffith 2008;

and references therein). Allowing for distinct origin and destination weights
f 6= ρ, the corresponding tetradic exchange matrices read as

oεij,kl = eikρjδjl
dεij,kl = fiδikėjl

odεij,kl = eikėjl (9)

where Ė(ρ,G, t) is the exchange matrix between destinations, weight compat-
ible with ėj• = ρj . All proposals (9) have margins πij := εij,•• = fiρj , making

global tetradic inertia ∆̂ identical to dyadic inertia ∆ (see theorem below). To
prove the assertion, consider n origins indexed by i, k, . . . and p destinations
indexed by j, l, . . .. The adjusted flow matrix T = (tij) induces origin weights
fi, destination weights ρj and independence quotients qij as

fi :=
ti•
t••

ρj :=
t•j
t••

qij :=
tij
ttheoij

=
tij t••
ti• t•j

(10)
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The non-negative, symmetric and normalized np × np tetradic exchange ma-
trix ε = (εij,kl) defines a marginal dyadic weight πij = εij,••, as well as an

autocorrelation index δ̂(y) for a dyadic quantity y = (yij) as (cf. equation
(1)):

δ̂(y) =
∆̂− ∆̂loc

∆̂
∆̂ =

1

2

∑
ijkl

πijπkl(yij−ykl)2 ∆̂loc =
1

2

∑
ijkl

εij,kl(yij−ykl)2.

Recall that y must be a density, that is transforming under regional aggrega-
tion as an average. Quotients yij = qij in (10) precisely behave in such a way,
hence the following:

Theorem (on the dyadic approach as a particular case of the tetradic one):
Define the np×np tetradic destination-based exchange matrix as ε = E

⊗
R,

where E = (eik) is the n × n exchange matrix with margin f in (10), and
R = diag(ρ) is the p×p diagonal matrix with diagonal (and margin) ρ in (10).

Then relative autocorrelations coincide: δ̂(q) = δ.

Proof: by definition of the Kronecker product
⊗

and the above, εij,kl =
eikρjδjl = εkl,ij , with marginal dyadic weight πij = εij,•• = fiρj . Then

∆̂loc =
1

2

∑
ij,kl

εij,kl(qij − qkl)2 =
1

2

∑
ij,kl

eikρjδjl(qij − qkl)2 =

=
1

2

∑
ijk

eikρj(qij − qkj)2 =
1

2

∑
ij

eij
∑
k

ρk(qik − qjk)2 =
1

2

∑
ij

eijD
χ
ij = ∆loc

∆̂ =
1

2

∑
ij,kl

fiρjfkρl(qij − qkl)2 =
1

2

∑
ik

fifk
∑
j

ρj(qij − qkj)2 = ∆ �

5 Discussion and conclusions

The exposed method constitutes a broadly applicable method for investigating
flow autocorrelation, following the standard framework of spatial autocorrela-
tion of regional features, in the weighted, multivariate case. Its implementation
relies upon two matrices only, namely (i) the flow matrix itself T of T ′, after
diagonal adjustment, with relative margins f and ρ, together with (ii) a prox-
imity matrix G (such as an adjacency matrix, weighted or not, or specifying
the length of the boundary shared by regional pairs, etc.) roughly defining the
inter-regional spatial structure. Interestingly enough, the procedure depends
upon off-diagonal components of T and G only. In addition, the scheme con-
tains a freely adjustable parameter t, controlling the decay of the distance
deterrence and the resolution scale.
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Initially motivated by the wish to cover the question of flow autocorrelation
in the usual framework, namely the dyadic formalism expressing Moran’s I or
its multivariate generalization δ, this investigation has first identified the chi2
dissimilarity between outflows or inflows as the natural dyadic measure of flow
variability. The necessity to deal properly with the potentially troublesome
status of stayer flows has led to a general algorithm of diagonal adjustment,
of interest in itself and potentially meaningful in related issues, such as the
MDS reconstruction of weighted oriented networks or the gravity modelling
and fitting of flows. Decomposing the relative inertia δ as a weighted aver-
age of local indicators of spatial autocorrelation δi enables to map and to
interpret the local patterns in terms of housing and job centres, with possi-
ble applications to regional clustering, or transportation planning. Finally, the
demonstrated equivalence, under suitable conditions, between the tetradic and
dyadic approaches, permits to embed the latter into the mainstream spatial
autocorrelation paradigm, and should directly help guiding the construction
and testing of autoregressive spatial econometrical models for flows.

Flow autocorrelation turns out to be highly significant for both case studies.
Yet, local indicators of spatial autocorrelation are smaller for migration flows
in Western US than for journey-to-work flows in Western Switzerland – an
expected effect, considering that journey-to-work flows are spatially limited by
the time budget available for commuting, while constraints related to economic
environment or education are more important for migration.

Spatial distribution of residence and job locations, either attained daily
(commuters) or following a further residence move (migrants), are arguably
close. This could provide a rationale for the observed proximity between out-
and in-flows local autocorrelation exhibited in figures 1, 2, 3 and 4, as well as
their particular relation to important places, either from a residential or job
perspective, precisely.
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6 Appendix: computational details of diagonal flow adjustment

Define a family of independent flows by the model distribution ptheo
ij = βiγj

where β and γ are unknown distributions. The free parameters are estimated
so as the relative complete flows p, of the form (7) pij = σi δij + µ aij , is
close as possible from independent relative flows ptheo, in the sense that the
Kullback-Leibler divergence or relative entropy

K(p||ptheo) =
∑
ij

pij ln
pij
βiγj

=
∑
i

σi ln
σi
βiγi

+
∑
ij

µ aij ln
µ aij
βiγj

must be minimum, under the constraints

µ = 1− σ• ≥ 0 σi, βi, γj ≥ 0
∑
i

βi =
∑
j

γj = 1 .
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Setting to 0 the derivative by σi yields with µ = 1− σ• :

ln
σi
βiγi

+ 1−
∑
ij

aij ln
µ aij
βiγj

−
∑
ij

aij = ln
σi
βiγi

− lnµ−K(a||βγ) = 0

where K(a||βγ) :=
∑
ij aij ln

aij
βiγj

is the “movers” relative entropy, which, inci-

dentally, also appears in the likelihood ratio of the so-called quasi-independence
models (e.g. Bishop et al. 1975). Derivating w.r.t. βi under the constraint∑
i βi = 1 (and multiplier λ) yields

−σi
βi
− µai•

βi
= −λ βiλ = σi + µai• ⇒ λ = 1

in view of σ•+µ = 1. Hence βi = σi+µai•. Similarily, γj = σj +µa•j . Finally,

σi = µβiγi expK(a||βγ) µ = 1− σ• ∈ (0, 1) βi = σi + µai• γj = σj + µa•j

(11)
where aij = mij/m•• is the known proportion of movers from i to j (section
2.4), from which the unknown σ, µ, β, γ are to be estimated.

Equations (11) can be iteratively solved from some initial solution such as
β0
i = ai•, γ

0
j = a•j and σ0

i = ai•a•i until convergence, which occurs provided
ai• > 0 and a•j > 0 for all origins i and destinations j. If needed, the latter
conditions can be insured by considering augmented flows tij+1 instead of tij ,
a choice adopted for convenience in the case studies of section 3, and justifiable
in a Bayesian framework (Laplace rule of succession).

More generally, ai• + a•i = 0 makes i irrelevant (a “non-region”). ai• = 0
and a•i > 0 makes βi = σi = 0 (absorbing destination). Similarly, ai• > 0
and a•i = 0 makes γi = σi = 0 (transient origin). Finally, ai• + a•i > 0
and ai•a•i = 0 for all i splits the regions between two non-intersecting sets,
namely transient origins and absorbing destinations, with σ• = 0 and µ = 1,
characterizing incommensurate, “rectangular” flows.


