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Abstract

We study the investment decision problem of a duopoly with price competition on a
market of finite size driven by stochastic taste shocks. Each player has the choice between
two technologies: a large unit and a small one. We prove that different equilibria may exist
depending on the parameters’ values: simultaneous investment equilibrium in the small unit
or two mixed strategy equilibria, one in which each firm invests in the large unit with a strictly
positive intensity and another one in which each firm invests with a strictly positive intensity
in the small unit and in the large unit. The inaction regions where both technologies provide
expected net payoffs that are too similar do not survive the introduction of preemption.
Moreover, we prove that for some values of the demand, the preemption equilibrium is more
efficient than the joint adoption equilibrium.

1 Introduction

When a firm contemplates the possibility to undertake an investment, it has to consider all the

technologies that are available on the market. More precisely, the capacity choice in a competitive

market of finite size is crucial. Indeed, even if an investor alone preferred to invest in a large

unit, the presence of competitors who generate positive profit could make him invest in his least

preferred technology, namely, the small unit. This question arises for each investment. Should

an airline company invest in a huge plane or in a medium one? When an electric investment is

needed, is it better to invest in a large unit with huge capacity or in a smaller one given that

many actors on the market face the same dilemma? In addition to all these strategic factors,

there is uncertainty on the future cash-flow generated by each investment. This paper proposes

to study the investment decision of a firm in a competitive framework when it has the choice

between different technologies to produce the same output. We consider a duopoly model with

price competition on a market of finite size driven by stochastic taste shocks. We prove that the

possibility of preemption makes investment earlier than what would be optimal. Moreover, the
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choice the investor faces is reduced since he may invest in the small unit whereas the large one

would be more profitable for him.

Without uncertainty on the future cash-flow, models of adoption of a new technology have

been developed by Reinganum [24] and Fudenberg and Tirole [8], for instance. Reinganum

studies the diffusion of a new technology in a duopoly when the players have precommitment

to adoption dates and she shows that the outcome is a “diffusion” equilibrium (firms adopt a

different dates). Fudenberg and Tirole model the adoption of a new technology as a timing game

and show that two equilibria could emerge: a preemption equilibrium in which the payoffs of

the two players are equalized and a joint adoption equilibrium. The introduction of an “option

value” by Arrow and Fisher [1] and Henry [13] has considerably influenced investment under

uncertainty. For the last decade, competition has been introduced in these models. In this

case, the classic result saying that investment has to be triggered at a higher threshold than the

one at which the expected net present value of the project is equal to zero is no longer valid.

The fear of preemption indeed accelerates investment. In such a strategic framework and under

income uncertainty, Lambrecht and Perraudin [19] show that under incomplete information on

the rivals’ costs, a preemption equilibrium may exist where the threshold at which the first

mover invests lies between the threshold at wich the expected net present value equals zero

and the non-strategic one. Another extension has been proposed by Pawlina and Kort [23] in

a duopoly model in which the investment costs of each firm are different and when demand is

uncertain. In their setting where the second mover’s payoff is lower than the leader’s one, three

equilibria might emerge as the cost difference increases: a preemption equilibrium, a sequential

equilibrium (when the firm with the highest cost has no incentive to become the leader) and

a simultaneous equilibrium (one of the firms adopts a payoff that does not optimize its payoff

unconditionally). Kulatilaka and Perotti [18] study the role of the cost advantage of the new

technology.

A large body of the literature extend these results to sequential investments by the same

firm. On the one hand, Besanko and Doraszelski [7] present a model of capacity accumulation

in an oligopolistic industry where the players have identical marginal costs. In their model,

the outcome of the investment and depreciation processes are uncertain. In the case of quan-

tity competition, the equilibrium converges to equal-sized firms, whereas in the case of price

competition, the equilibrium composition results in an asymmetric structure in which the more

irreversible the investment, the fiercer the preemption race. On the other hand, under uncertain

demand, Boyer et al. [4] study a model of Bertrand competition on a market of finite size in

which each firm can undertake sequential investments. They show that for some parameters’

values that are empirically relevant, the equilibrium timing consists in a joint investment (and

therefore preemption is not an equilibrium). Other aspects of sequential investments have been

studied by Grenadier [12] or Grenadier and Weiss [11], for instance.

On the contrary, the introduction of a choice between technologies is still quite limited.
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Décamps et al. [5] and Bobtcheff and Villeneuve [3] propose a model where a firm has the

choice between two technologies under output price uncertainty in Décamps et al. and under

both input price and output price uncertainty in Bobtcheff and Villeneuve. They prove that

when the expected payoffs generated by each technology are close to each other (even if they

are high), the investor prefers to wait in order to avoid investing in a technology that will

appear later to be the least profitable one. The presence of the two technologies creates a choice

value (in addition to the time value due to uncertainty) that results in the existence of inaction

regions. Huisman and Kort [15] also consider the possibility to invest in different technologies

but the time at which each technology will be available is uncertain. There are two sources

of uncertainty: a technological uncertainty modeled by a Poisson arrival for discoveries and an

economic uncertainty on the demand. Two firms can take the decision to invest in technology

1 or in technology 2 that is more profitable and whose arrival follows a Poisson process with

parameter λ. If the two technologies were available at the same time, firms would never invest in

technology 1. Three equilibria may arise as λ increases: a preemption equilibrium, an attrition

equilibrium and an equilibrium where both firms wait to invest until technology 2 arrives. Weeds

[29] consider a model of R&D competition. There is no technology choice but the two firms have

the opportunity to invest in competing research projects. Research is competitive as far as the

first firm to be successful in implementing the project eliminates all possible profit for the

other. Here also there are two uncertainty sources: a technological uncertainty and an economic

uncertainty on the patent. The resulting equilibrium is either sequential or simultaneous.

In this paper, we study the investment decision of a firm in a competitive framework when

it has the choice between two technologies: either a large unit or a small one to produce the

same output. Demand for the output depends on the consumers’ total willingness to pay that

is assumed to be stochastic. Moreover, firms compete in price meaning that no one has interest

to produce too many output units. Does the choice value survive such a competitive frame-

work? This paper gathers together two different features of the literature on investment under

uncertainty: first of all, the setting in which firms take their decision is a competitive one, and

then each firm is confronted with a choice at the moment it takes its decision. The competitive

framework is close to Boyer et al. [4]. However, we assume each firm only invests once in the

small or in the large unit unlike Boyer et al. who authorize sequential investment in the small

unit exclusively. With our setting, we highlight the capacity choice firms face. Moreover, we

allow for a broader ranking for the sunk costs. Unlike Huisman and Kort [15], no technology

strictly dominates the other when both are available at the same time. Whereas they focus on

the imminent arrival of a new technology, we prefer to study choice in a competitive setting.

We prove that when one of the firms is constrained to invest second, two equilibria exist

depending on the demand: a sequential investment equilibrium in the large unit for the first

mover and then in the small unit for the second mover or a simultaneous investment equilibrium

in the small unit for the two players. Depending on the parameters’ values, one or two inaction
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regions exist in which no one invests but rather observes the evolution of the demand to chose

the technology later. These inaction regions reflect the choice value introduced in Bobtcheff and

Villeneuve [3]. When there is no constraint on the investment’s order any more, the inaction

regions disappear. Indeed, the fear of being preempted makes players invest earlier. They

no longer take the time to ensure they invest in the technology that will turn out to be the

most profitable in the future. Moreover, it may happen that firms invest in their least preferred

technology, namely, in the technology that generates the lowest payoff in case of a first mover. In

fact, three equilibria may arise depending on the demand and on the sunk costs: a simultaneous

investment equilibrium in which each firm invests in the small unit, and two mixed strategy

equilibria, one in which each firm invests in the large unit with a strictly positive intensity and

another one in which each firm invests with a strictly positive intensity in the small and in the

large unit. When the large unit s not too expensive relative to the small one and when demand

is not too high neither, the preemption equilibrium is more efficient than the joint adoption

equilibrium. When the cost advantage of the small unit is very large, the optimal solution that

consists in investing jointly in the small unit is replicated under preemption.

The remainder of the paper is organized as follows. Section 2 describes the model. Section 3

examines the case of a natural leader and a natural follower. In section 4, we derive the optimal

solution and the cooperative allocation. Section 5 is devoted to the situation under preemption

and section 6 concludes.

2 The model

Time is continuous and indexed by t ≥ 0. At any date t, the demand side of the market is

described by a price inelastic unit demand:

Dt (P ) =





0 if P > Pt,
∈ [0, 1] if P = Pt,
1 if P < Pt,

where the total willingness to pay Pt for the commodity produced by the firms is subject to

aggregate demand shocks described by a geometric Brownian motion

dPt

Pt
= µdt + σdWt.

P0 = p, µ and σ are positive constants and {Wt}t≥0 is a standard Brownian motion.

We suppose there are two firms. Both firms are risk neutral and discount future revenues

and costs at a constant risk-free rate r > µ. Variable costs are normalized to zero. Investment

is irreversible and takes place in a lumpy way. The setting is thus close to the one described in

Boyer et al. [4] except that here, each firm has the choice between two technologies:

• technology 1 has a capacity of 1 and its sunk cost is equal to I1,
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• technology 2 has a capacity of 2 and its sunk cost is equal to I2, with I2 > I1.

Moreover, we allow for a broader ranking of the sunk costs. We assume each capacity unit allows

a firm to cover half of the market. Furthermore, we suppose that once the firm has invested in

one technology, it cannot make a second investment.

Concerning competition, within each instant [t, t + dt), the timing of the game is the follow-

ing: (i) first, each firm chooses how many units of capacity to invest in, given the realization of

Pt; (ii) next, each firm quotes a price given its new capacity level and that of its rival; (iii) last,

consumers choose from which firm to purchase. Production and transfers take place.

We denote π (ni, nj , p) the instantaneous expected profit flow of firm i when it holds ni unit

whereas its rival holds nj units and when demand is equal to p. As the market can be covered

with two units, π (ni, nj , p) is defined for (ni, nj) ∈ {0, 1, 2}2 and the values taken by π are given

in the following lemma. Note that to make the reading of this paper more flowing, all the proofs

are relegated to the Appendix.

Lemma 1 For each p ∈ [0,∞), the instantaneous expected profits are equal to:

• π (1, 0, p) = p/2 and π (2, 0, p) = p,

• π (1, 1, p) = p/2,

• π (2, 2, p) = 0,

• π (2, 1, p) = p/2 and π (1, 2, p) = p/4.

As Boyer et al. [4], we focus on Markov perfect equilibria (MPE) in which firms’ investment

and pricing decisions depend only on the current value of the consumers’ reserve price p and

the firms’ capital stock measured in units of capacity (ni, nj). At each period, firms play an

equilibrium of the static Bertrand-Edgeworth pricing game given their current capacities.

3 Benchmark

As a benchmark, we study the case where there are a natural leader (L) and a natural follower

(F ). The natural leader invests first and the natural follower may enter the market only once

investment occurred. Moreover, according to Lemma 1, once the leader has made his capacity

choice, the follower does not have the choice any more. He always invests in technology 1. In the

next subsections, we solve this problem by backward induction, focusing first on the behavior

of the follower.

3.1 Follower’s strategy

The follower’s strategy depends on the leader’s choice.
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3.1.1 The leader has invested in technology 1

We are here in the classic setting of optimal stopping time models. Let us first compute the

expected net discounted profit of the follower when he is going to invest in technology 1, given

that the leader has invested in technology 1 and that demand is equal to p

ΦF
11 (p) = E

[∫ +∞

0
e−rtπ (1, 1, Pt) dt|P0 = p

]
− I1 =

π (1, 1, p)
r − µ

− I1. (1)

The option value created by such a possible investment has the following expression

V F
11 (p) = sup

τ
E

[
e−rτΦF

11 (Pτ ) |P0 = p
]
. (2)

This problem can be easily solved1, and recalling that π (1, 1, p) = p/2, the solution is

V F
11 (p) =





(
p

pF∗
11

)β (
pF∗
11

2(r−µ) − I1

)
if p ≤ pF∗

11 ,
p

2(r−µ) − I1 if p > pF∗
11 ,

where

pF∗
11 =

β

β − 1
2 (r − µ) I1, (3)

and β is the positive root of the second order equation

1
2
σ2β (β − 1) + µβ − r = 0. (4)

The investment strategy of the follower is to invest in technology 1 as soon as p crosses the

threshold pF∗
11 . If p < pF∗

11 , he prefers to wait and see the evolution of demand. As β > 1,

pF∗
11 > 2 (r − µ) I1. Indeed the follower values the information he can collect on the demand and

prefers to delay investment: this is a classic result of the real option theory.

3.1.2 The leader has invested in technology 2

The problem is very similar in the case where the leader has invested in technology 2. The

expected net discounted profit of the follower when he is going to invest in technology 1, given

that the leader has invested in technology 2 and demand is equal to p is equal to

ΦF
12 (p) = E

[∫ +∞

0
e−rtπ (1, 2, Pt) dt|P0 = p

]
− I1 =

π (1, 2, p)
r − µ

− I1. (5)

The option value created by the follower’s investment is equal to

V F
12 (p) = sup

τ
E

[
e−rτΦF

12 (Pτ ) |P0 = p
]
. (6)

As for the previous case, this option value is easily computed

V F
12 (p) =





(
p

pF∗
12

)β (
pF∗
12

4(r−µ) − I1

)
if p ≤ pF∗

12 ,
p

4(r−µ) − I1 if p > pF∗
12 ,

1See for example Dixit and Pindyck, Chapter V [6].
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where

pF∗
12 =

β

β − 1
4 (r − µ) I1. (7)

Here, investment in technology 1 is triggered as soon as p reaches the threshold pF∗
12 . Note that

pF∗
12 = 2pF∗

11 . The follower invests earlier if the leader has invested in technology 1 than if he

has invested in technology 2. Indeed, when the leader invests in technology 2, the follower’s net

profit is twice less than if the leader had invested in technology 1. On Figure 1, we present the

two option values depending on the leader’s choice when µ = 0.01, r = 0.06, σ = 0.1 (β is thus

equal to 3), I1 = 50 and I2 = 96. These values will be taken in each illustration if nothing else

is mentioned.

Figure 1: Option values V F
11 (p) and V F

12 (p).

V F
11 (p) is greater than V F

12 (p) whatever the demand value p. The follower prefers that the

leader invests in technology 1. We now turn to the analysis of the leader’s strategy.

3.2 Leader’s investment decision: two auxiliary problems

The leader has the choice between the two technologies. In a first step, we consider two auxiliary

problems when the leader does not have this choice.

3.2.1 Leader’s investment decision in technology 1

The leader’s profit flow depends on whether or not the follower has already invested. However, in

the case of an investment in technology 1, we have seen in Lemma 1 that π (1, 0, p) = π (1, 1, p) =

p/2. Therefore, the leader’s instantaneous profit flow is not modified by the follower’s investment.
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The expected net discounted profit of the leader is thus straightforward to compute and equals

ΦL
1 (p) = E

[∫ +∞

0
e−rt Pt

2
dt|P0 = p

]
− I1 =

p

2 (r − µ)
− I1. (8)

The option value of the leader is as usual equal to

V L
1 (p) = sup

τ
E

[
e−rτΦL

1 (Pτ ) |P0 = p
]
. (9)

Computation leads to

V L
1 (p) =





(
p

pL∗
1

)β (
pL∗
1

2(r−µ) − I1

)
if p ≤ pL∗

1 ,
p

2(r−µ) − I1 if p > pL∗
1 ,

where

pL∗
1 =

β

β − 1
2 (r − µ) I1. (10)

Note that pL∗
1 = pF∗

11 . If technology 1 were the unique available technology to the leader, the

leader and the follower would invest at the same time, when demand reaches the threshold

pL∗
1 = pF∗

11 . We now turn to the investment decision in technology 2.

3.2.2 Leader’s investment decision in technology 2

In this case, the leader’s instantaneous profit flow is modified by the follower’s investment.

Indeed, before the follower’s entry the leader was able to cover the whole market. From the

follower’s entry, the leader only serves half of the market. Therefore, the expected net discounted

profit of the leader if p < pF∗
12 , that is if the follower has not entered yet, is equal to

ΦL
2 (p) = E

[∫ τF∗
12

0
e−rtPtdt +

∫ +∞

τF∗
12

e−rtPt

2
dt|P p

0 = p

]
− I2, (11)

where τF∗
12 = inf

{
t|Pt = pF∗

12

}
. If p ≥ pF∗

12 , there is a simultaneous investment by the two players

and the expected net discounted profit of the leader is equal to

ΦL
2 (p) = E

[∫ +∞

0

e−rtPt

2
dt|P0 = p

]
− I2. (12)

We obtain that (see the Appendix)

ΦL
2 (p) =





p
r−µ −

pF∗
12

2(r−µ)

(
p

pF∗
12

)β
− I2 if p ≤ pF∗

12 ,
p

2(r−µ) − I2 if p > pF∗
12 .

If p ≤ pF∗
12 , when the leader invests, he is alone on the market, meaning that he serves the

whole market. The term − pF∗
12

2(r−µ)

(
p

pF∗
12

)β
represents the loss in the leader’s profit induced by

the potential entry of the follower. On the contrary, if p ≥ pF∗
12 , both the leader and the follower

enter at the same time.
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As usual, the option value of the investment in the second technology has the following

expression

V L
2 (p) = sup

τ
E

[
e−rτΦL

2 (Pτ ) |P0 = p
]
, (13)

and is analytically equal to

V L
2 (p) =

{ (
p

pL∗
2

)β
ΦL

2

(
pL∗
2

)
if p ≤ pL∗

2 ,

ΦL
2 (p) if p > pL∗

2 ,

where

pL∗
2 =

β

β − 1
(r − µ) I2. (14)

Depending on the ranking of I2 relative to 2I1 and 4I1, pL∗
2 may be greater or smaller than pL∗

1

and pF∗
12 . The leader’s strategy to invest in each technology is well characterized. What happens

in the case where the leader has indeed the choice between the two technologies?

3.3 Leader’s investment decision when he has the choice

If the leader has the choice between the two technologies, the stopping time problem he faces is:

V L (p) = sup
τ
E

[
e−rτ max

(
ΦL

1 (Pτ ) ,ΦL
2 (Pτ )

) |P0 = p
]
. (15)

Indeed, while the investment has not been undertaken, the leader still has the choice between

the two technologies. This kind of problems has been deeply studied by Décamps et al. [5] and

we remind their main results. First of all, as we do not want one technology to dominate strictly

the other, we put some restrictions on the parameters’ values.

Lemma 2 Under the assumption

A1 : I2 <

(
1 + 2

(
1
β

) 1
β−1

)
I1, (16)

there exist two thresholds p̃ and ˜̃p, such that

• ∀p ∈ [0, p̃[, ΦL
1 (p) > ΦL

2 (p),

• ∀p ∈
]
p̃, ˜̃p

[
, ΦL

1 (p) < ΦL
2 (p),

• ∀p ∈
]˜̃p, +∞

[
, ΦL

1 (p) > ΦL
2 (p).

On Figure 2, we represent the net profit functions in both cases, ΦL
1 (p) and ΦL

2 (p).

If Assumption A1 did not hold, the leader would have no choice, since technology 1 would

be the preferred one and both the leader and the follower would invest simultaneously at pL∗
1 .

Therefore, from now on, we suppose that Assumption A1 holds. Technology 1 is thus preferred

when demand is low or high enough. In between, there exists a range of demand values such that

technology 2 is preferred. As β > 1, Assumption A1 implies that I2 ≤ 3I1. With Assumption A1,

a preliminary ranking of different investment thresholds holds: pF∗
12 > pL∗

2 and pF∗
12 > pF∗

11 = pL∗
1 .

The ranking of pL∗
2 relative to pF∗

11 and pL∗
1 depends on the ranking of I2 relative to 2I1.
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Figure 2: Net profits ΦL
1 (p) and ΦL

2 (p).

Lemma 3 Under Assumption A1, if I2 ≥ 2I1 then β > 2.

β > 2 is equivalent to r > 2µ + σ2. This implies that either the volatility of the consumers’

willingness to pay σ2 or the growth rate µ is low or that the discount rate r is high.

Simplifying function ΦL
1 (p)−ΦL

2 (p) implies that p̃ (respectively ˜̃p) is the lowest (respectively

the highest) root of
2βI1

β − 1

((
p

pF∗
12

)β

− p

pF∗
12

)
+ I2 − I1 = 0. (17)

This expression is strictly positive for p < p̃ and p > ˜̃p and is strictly negative for p ∈
]
p̃, ˜̃p

[
.

We impose a second assumption, namely,

A2 : ΦL
1 (p̃) = ΦL

2 (p̃) > 0. (18)

Assumption A2 means that once technology 2 is preferred, its expected net profit is strictly

positive. If it is satisfied, then p̃ > 2 (r − µ) I1. Using Equation (17), this leads to

I2

I1
> 2−

(
β − 1
2β

)β−1

. (19)

Let us introduce the three sets

EL =
{
p ≥ 0|V L (p) = max

(
ΦL

1 (p) ,ΦL
2 (p)

)}
,

EL
1 =

{
p ≥ 0|V L (p) = ΦL

1 (p)
}

, and EL
2 =

{
p ≥ 0|V L (p) = ΦL

2 (p)
}

.
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EL is the “exercise region” (also called “investment region”) of the leader when he can choose

between the two technologies, EL
1 is the exercise region of the leader when technology 1 is the

preferred one and EL
2 is the exercise region of the leader when technology 2 is the preferred

one. According to Décamps et al. [5], we know EL is the disjoint union of the two exercise sets

EL
1 and EL

2 . They show the following theorem2 that we apply to our setting: The indifference

points p̃ and ˜̃p do not belong to the exercise region EL. Therefore, the leader’s investment region

in technology 1, EL
1 , can also be decomposed into two disjoint sets depending on the ranking of

the current demand value p relative to the two indifference thresholds p̃ and ˜̃p:

EL
1 = EL

1 ∪ E
L
1 ,

where EL
1 =

{
0 ≤ p < p̃|V L (p) = ΦL

1 (p)
}

and E
L
1 =

{
p > ˜̃p|V L (p) = ΦL

1 (p)
}

. Concerning the

leader’s exercise region in technology 2, we have that EL
2 ⊂

]
p̃, ˜̃p

[
. We will see in the next

subsections that depending on the values taken by the parameters of the model, the exercise

region for investment in technology 1, EL
1 , does not always exist (is empty). Lemma 4 gives a

first result on the exercise region E
L
1 .

Lemma 4 The exercise region E
L
1 is never empty.

When demand is high enough, whatever the parameters’ values, the leader is going to invest

in technology 1 and E
L
1 is never empty. Let us now focus on the other exercise region in

technology 1, EL
1 .

3.3.1 The case of two exercise regions: EL
1 is empty

In this part, we study the case where EL
1 is empty. Let us consider

A3 : ΦL
1

(
pL∗
1

)
< V L

2

(
pL∗
1

)
. (20)

Assumption A3 implies that, at the threshold pL∗
1 , the option value of investing in technology

2 is strictly greater than the expected discounted net profit of investing in technology 1. The

leader prefers not to invest immediately in technology 1 and to keep alive the option to invest

in technology 2.

Lemma 5 Under Assumption A3, EL
1 = ∅ and EL

2 6= ∅.

Under Assumption A3, there are two exercise regions, EL
2 and E

L
1 . Lemma 6 specifies

Assumption A3 for different parameters’ values.

Lemma 6 The existence of EL
1 depends on I1, I2 and β as it is summarized in Table 1.

It is interesting to note that EL
1 may be empty when I2 ≥ 2I1 or I2 < 2I1. Note that when

I2 < 2I1 and β > 2, EL
1 is always empty (Assumption A3 is always satisfied).

2See proposition 2.2 p.431 [5].
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I2 ≥ 2I1 I2 < 2I1

β ≤ 2 not possible EL
1 is empty iff I2

I1
< 1

β−1

(
2β − 1− β

(
1
2

)β−1
)

β > 2 EL
1 is empty iff 1

2 + β
(

1
2

)β
<

(
2I1
I2

)β−1

EL
1 is empty

Table 1: Conditions under which EL
1 is empty (Lemma 6).

1. When technology 2 is quite expensive relative to technology 1 (I2 ≥ 2I1) and since As-

sumption A1 holds, we know that β > 2 (or, equivalently r > 2µ + σ2), implying that the

volatility of the consumers’ willingness to pay or the growth rate µ is low. Therefore, the

time period during which the leader serves the whole market in case of an investment in

technology 2 is long and he is better off waiting to invest in technology 2. However, it is

only the case if I2 is low enough (Assumption A3). Indeed, if I2 were really high, investing

in technology 2 would not be so profitable relative to technology 1 and thus the leader

would want to invest soon in technology 1, implying that EL
1 would not be empty.

2. When I2 < 2I1 and β ≥ 2 (or equivalently r ≥ 2µ + σ2), the leader is better off not

investing in technology 1 when p is low. Indeed, not only is technology 2 very favorable

relative to technology 1, but β ≥ 2 implying that the time period during which he will

serve all the market will be long. Therefore, EL
1 is empty. But when β < 2, this time

period may be shorter and an additional assumption (Assumption A3) is required in order

I2 not to be too high.

Under Assumption A3 and according to Décamps et al. [5], we know that the leader’s option

value is equal to:

V L (p) =





B2p
β if p ≤ pL∗

2 ,
ΦL

2 (p) if pL∗
2 < p ≤ p3,

Apα + Bpβ if p3 < p ≤ p4,
ΦL

1 (p) if p > p4,

where

B2 =
(

1
pL∗
2

)β

ΦL
2

(
pL∗
2

)
,

and p3, p4, A and B can be numerically obtained thanks to the value matching and smooth

pasting conditions at p3 and p4. It is represented on Figure 3.

The leader invests in technology 2 if p ∈ [
pL∗
2 , p3

]
, he invests in technology 1 if p ≥ p4. The

indifference point ˜̃p does not belong to any exercise region as we already mentioned: ˜̃p ∈ [p3, p4].

Between these two exercise regions
[
pL∗
2 , p3

]
and [p4, +∞[, the leader faces an inaction region in
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Figure 3: Option value V L (p).

which he prefers to wait rather than to invest in one of the two technologies as we see on Figure

4.

Figure 4: Leader’s strategy with two exercise regions.

The simultaneous presence of the two technologies creates a choice value for the leader that

results in an inaction region. On ]p3, p4[, the leader prefers to keep this choice value alive than

to get an immediate profit flow. Therefore, in the case of a unique inaction region, two equilibria

may arise: a sequential equilibrium (the leader invests in technology 2 and the follower invests

in technology 1 at pF∗
12 ) when p ∈ [

pL∗
2 , p3

]
and a simultaneous investment equilibrium ∀p ≥ p4.

3.3.2 The case of three exercise regions: EL
1 is not empty

To ensure the existence of EL
1 , we need to assume that

A4 : ΦL
1

(
pL∗
1

) ≥ V L
2

(
pL∗
1

)
and pL∗

1 < p̃. (21)

Lemma 7 Under Assumption A4, EL
1 and EL

2 are not empty.
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This implies that at pL∗
1 , the leader prefers to invest immediately in technology 1 rather than

to wait to invest in technology 2. This is a sufficient condition for EL
1 not to be empty. Lemma

8 specifies Assumption A4.

Lemma 8 EL
1 is not empty if and only if 1

2 + β
(

1
2

)β ≥
(

2I1
I2

)β−1
and β > 2.

First, this lemma implies that EL
1 is not empty only if I2 > 2I1. Moreover, it is optimal for

the leader to invest in technology 1 for low values of the demand p, if and only if Assumption

A4 is satisfied. Indeed, in this case, although the leader only covers half of the market with

an investment in this technology, the low sunk cost imposed by Assumption A4 induces him

to invest early, when technology 1 is the preferred one. Under Assumption A4, we are able to

characterize the shape of the solution. This is a succession of three disjoint exercise regions:

EL
1 , EL

2 and E
L
1 .

V L (p) =





B1p
β if p ≤ pL∗

1 ,
ΦL

1 (p) if pL∗
1 ≤ p ≤ p̂2,

Apα + Bpβ if p̂2 ≤ p ≤ p̂3,
ΦL

2 (p) if p̂3 ≤ p ≤ p̂4,

Apα + Bpβ if p̂4 ≤ p ≤ p̂5,
ΦL

1 (p) if p ≥ p̂5,

where

B1 =
(

1
pL∗
1

)β

ΦL
1

(
pL∗
1

)
,

and p̂2, p̂3, p̂4, p̂5, A, B, A and B can be numerically obtained thanks to the value matching

and smooth pasting conditions at p̂2, p̂3, p̂4 and p̂5 as we see on Figure 5.

Figure 5: Leader’s strategy with three exercise regions.

Figure 6 represents the option value V L (p) when µ = 0.01, σ = 0.015, r = 0.07, I1 = 50 and

I2 = 115.

In this case with three exercise regions, when p ∈ [
pL∗
1 , p̂2

]⋃
[p̂5, +∞[, the equilibrium is a

simultaneous investment in technology 1 and when p ∈ [p̂3, p̂4, ], the equilibrium is a sequential

investment.

We have carefully described the benchmark case when there are a natural leader and a natural

follower. The leader’s optimal strategy is characterized by a succession of exercise regions and
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Figure 6: Option value V L (p).

inaction regions as demand increases. Once more, the two inaction regions characterize the

leader’s choice value. When one technology becomes the preferred one (around p̃ and ˜̃p), an

inaction region appears that illustrates the choice value the leader wants to keep alive instead

of getting an immediate profit flow. Let us have a look at the socially optimal solution of this

problem in the next section.

4 Optimal solution and cooperative allocation

4.1 Optimal solution

In this section, we first look at the optimal solution. This comes down to studying the total

payoff

S (p) = ΦL (p) + ΦF (p) + CS (p) ,

where CS (p) denotes the consumer surplus and to maximizing it. In the case of a simultaneous

investment, the payoffs of the leader and of the follower are the same. Using the results of

Lemma 1, the instantaneous consumer surplus is equal to:

• 0 if the total number of capacity units equals 1 or 2,

• p/4 if the total capacity equals 3,

• p if the total capacity equals 4.

Three strategies have to be taken into account:

1. simultaneous investment in technology 1 by each player,
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2. sequential investment (technology 2 then technology 1),

3. only one firm invests in technology 2 and the other abstains from investing.

In the case of a sequential investment, the instantaneous total surplus, p, is not modified by

the entry of the second player. But an additional sunk cost equal to I1 is added. Therefore, it

is more efficient for the second player not to invest. In the case of a simultaneous investment,

the instantaneous total surplus is also equal to p. Let us denote S11 (p) (respectively S20 (p))

the total surplus in the case of a simultaneous investment (respectively in the case of a unique

investment in technology 2):

S11 (p) =
p

r − µ
− 2I1 and S20 (p) =

p

r − µ
− I2.

The optimal solution satisfies:

Vopt (p) = sup
τ
E

[
e−rτ max {S11 (Pτ ) , S20 (Pτ )} |P0 = p

]
, or equivalently (22)

Vopt (p) =
{

supτ E [e−rτS11 (Pτ ) |P0 = p] if 2I1 ≤ I2,
supτ E [e−rτS20 (Pτ ) |P0 = p] if 2I1 > I2.

Such an option value is straightforward to compute. In the case where 2I1 ≤ I2, then

Vopt (p) =





(
p

pL∗
1

)β (
pL∗
1

r−µ − 2I1

)
if p ≤ pL∗

1 ,
p

r−µ − 2I1 if p > pL∗
1 .

On the contrary, in the case where 2I1 > I2,

Vopt (p) =





(
p

pL∗
2

)β (
pL∗
2

r−µ − I2

)
if p ≤ pL∗

2 ,
p

r−µ − I2 if p > pL∗
2 .

Proposition 1 At the optimum, two cases may happen:

1. If 2I1 ≤ I2, the two players simultaneously invest in technology 1 as soon as demand

reaches the trigger pL∗
1 ;

2. If I2 < 2I1, one player invests in technology 2 as soon as demand is greater than or equal

to pL∗
2 . The other player refrains from investing.

If technology 1 is quite favorable relative to technology 2 (2I1 ≤ I2), then the optimal invest-

ment that consists in a simultaneous investment in technology 1 is triggered at the threshold

pL∗
1 . In the other case where I2 < 2I1, it is optimal that only one player moves and invests

in technology 2. Note that the threshold at which the unique investment is triggered, pL∗
2 , is

the same than the one that triggers the sequential investment of the leader in technology 2 and

of the follower in technology 1. This result is classic and replicates the conclusions of Leahy

[20]. An investor does not take into account the potential investments of competitors to trigger

his investment. The result holds in this setting where the demand function is very simple: the
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consumer surplus is equal to zero since two capacity units have been built. In this analysis of

the optimal solution, firms’ preferences do not matter any more. Indeed, a joint investment in

technology 1 is optimal even in a region where technology 2 is the preferred one and similarly in

the case of a unique investment in technology 2. Let us now turn to the case of the cooperative

equilibrium.

4.2 Cooperative allocation

The outcome of the cooperative allocation is obtained by maximizing the sum of the two expected

profits (the one of the leader and the one of the follower):

ΦL+F (p) = ΦL (p) + ΦF (p) .

Three cases have also to be taken into account: simultaneous investment, sequential investment

and unique investment in technology 2. In the case of a sequential investment, as soon as the

two players are active on the market, the instantaneous total profit flow is equal to 3p/4. When

the first mover is still alone on the market, the instantaneous profit flow is equal to p. Therefore,

not only does the entry of the second mover induces a sunk cost equal to I1, but it also decreases

the total instantaneous profit flow. His entry is thus not profitable. The cooperative allocation

consists either in a simultaneous investment or in a unique investment in technology 2. In

these two cases, the sum of the two expected profits is equal to the total surplus S (p) since

the consumer surplus is equal to zero. The cooperative allocation is thus equal to the optimal

solution and consists in a simultaneous investment if 2I1 ≤ I2 and in a unique investment in

technology 2 if I2 < 2I1.

Proposition 2 The cooperative allocation replicates the optimal solution.

In the two cases (simultaneous investment and unique investment), the number of installed

capacity units equals the market size and the consumer surplus is null. Therefore the two

allocations (optimal and cooperative) turn out to be the same. What happens when preemption

is at play?

5 Choice under preemption

Before going deeply into the model, we list all possible equilibria that are likely to emerge.

We first focus on pure strategy equilibria. Since the instantaneous expected profit is equal to

zero in case of a simultaneous investment in technology 2, this case will never happen. But

an equilibrium involving a simultaneous investment in technology 1 may exist: in this case,

the two firms equally share the demand. Concerning the mixed strategy equilibria, the unique

possibility for a firm to preempt its rival is to invest in technology 23. By doing so, the first mover
3Note that no player has interest to preempt its rival with one unit. Indeed, once a player has invested in

technology 1, it does not change the strategy of the other player relative to an investment in technology 1, since
in this case, they equally share the market.
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delays the other player’s entry and serves the whole market while he is alone. This preemption

equilibrium may happen only if there is a gain by being the first to invest, i.e. if ΦL
2 (p) ≥ V F

12(p)

(and ΦL
2 (p) ≥ ΦL

1 (p) since an investment in technology 2 should be preferred). Therefore the

threshold at which each player is indifferent between between investing first and second plays

a key role. This threshold p is defined by ΦL
2 (p) = V F

12(p). In this mixed strategy equilibrium,

the intensity with which each player invests in technology 2 is determined so that each player

is indifferent between being the leader and being the follower4 given that at least one player

is going to undertake an investment. Furthermore, this equilibrium only arises if the follower’s

payoff is greater than the payoff generated by a simultaneous investment in technology 1. If this

is not the case, a mixed strategy equilibrium involving investment in strategies 1 and 2 has to

be determined. Therefore, the threshold p such that ΦL
1

(
p
)

= V F
12

(
p
)

is also very crucial.

To sum up three cases may happen:

1. “Simultaneous investment equilibrium”: a simultaneous investment in technology 1 when

p ≥ p∗1,

2. “Mixed strategy equilibrium {2, 0} (MSE20)”: both firms invest in technology 2 with

a strictly positive intensity. In this case, there exist two outcomes. Either one player

immediately invest in technology 2 and the other waits and invest in technology 1 when

p = pF∗
12 , or the two players simultaneously invest in technology 2,

3. “Mixed strategy equilibrium {2, 1, 0} (MSE210)”: both firms invest in technology 1 with a

strictly positive intensity and in technology 2 with a strictly positive intensity. In this case

there exist four outcomes: one player immediately invest in technology 2 and the other

waits and invest in technology 1 when p = pF∗
12 , or the two players simultaneously invest in

technology 2, or the two players simultaneously invest in technology 1, or lastly one player

immediately invest in technology 1 and the other immediately invest in technology 2.

According to the previous discussion, the ranking of the different thresholds p̃, p, p, p∗1, ˜̃p
and pF∗

12 is highly determinant to find the players’ strategies. We prove in the following lemma

that four possible cases are possible.

Lemma 9 There are four possible rankings for the thresholds:

1. p̃ < p < p < p∗1 < ˜̃p < pF∗
12 ,

2. p < p < p̃ < p∗1 < ˜̃p < pF∗
12 ,

3. p < p < p∗1 < p̃ < ˜̃p < pF∗
12 ,

4. p < p∗1 < p < p̃ < ˜̃p < pF∗
12 .

4See Fudenberg and Tirole [8] and Boyer et al. [4] for the definition of an intensity and the precise description
of Markov strategies and payoffs (see Appendix A p.323 [4]).
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When EL
1 is empty, the first three rankings are possible, whereas when EL

1 is not empty, the

last two rankings are possible.

Note first that the last two cases lead to the same equilibrium, therefore we merge them

into a case called Case C characterized by p < p∗1 < p̃ < ˜̃p < pF∗
12 . Before describing the

outcomes in the different cases, we propose to summarize the conditions under which each case

may happen on Table 2. Furthermore, on Figure 7, we propose a phase diagram where each

case is characterized by a set in the space {β, I2/I1}5

I2 ≥ 2I1 (and thus β > 2) I2 < 2I1 and β ≤ 2 I2 < 2I1 and β > 2

Case A not possible p̃ < 2(r−µ)
2β−1 [(2β + 1) I1 − I2] p̃ < 2(r−µ)

2β−1 [(2β + 1) I1 − I2]

p̃ ≥ 2(r−µ)
2β−1 [(2β + 1) I1 − I2] p̃ ≥ 2(r−µ)

2β−1 [(2β + 1) I1 − I2] p̃ ≥ 2(r−µ)
2β−1 [(2β + 1) I1 − I2]

Case B
I2
I1

< 1 + β
β−1

(
1− (

1
2

)β−1
)

Assumption A3

Case C I2
I1
≥ 1 + β

β−1

(
1− (

1
2

)β−1
)

not possible not possible

Table 2: Conditions under which each case may occur.

As we see on Figure 7, when β is high (or the volatility is low), the boundaries of the different

regions only depend on the cost advantage I2/I1: for a low cost advantage of technology 1, this

is Case A that will emerge, whereas Case C will emerge when technology 2 is very expensive

relative to technology 1. However, when β is low, the boundaries are highly dependent on the

volatility. Indeed, recall that when β is low, this means that σ2 is high (if µ and r are given).

In this case, this is only Case A or B that emerge. We are going to describe carefully Case A

and then give rapidly the outcome for Cases B and C.

1. if p ∈ [
0,p

]
:

Nothing happens since it is in the interest of nobody to preempt its rival and any of the

thresholds p∗1 or pL∗
12 is crossed,

2. if p ∈ [
p,p∗1

[
:

In this case, ΦL
2 (p) ≥ V F

12 (p) and ΦL
2 (p) ≥ ΦL

1 (p). Therefore, each player has an incentive

to preempt its rival with two units. Moreover, as p < p∗1, an investment in technology 1

is not optimal. MPE210 is thus the unique possible equilibrium. Let us determine the
5Cases A and B happen only when EL

1 is empty. Concerning Case C, when Assumption A3 is satisfied this
means that EL

1 is empty, whereas when Assumption A4 is satisfied, then EL
1 is not empty.
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Figure 7: Description of the different cases in function of the parameters.

intensity s with which each player invests in technology 2 such that players are indifferent

between investing as a leader or being the follower. Denoting u2 and u∅ the net payoffs

generated by an investment in technology 2 and the best response to this investment, s is

determined such that u2 = u∅, where

u∅ = V F
12 (p) =

(
p

pF∗
12

)β (
pF∗
12

4 (r − µ)
− I1

)
, (23)

and

u2 = (1− s)ΦL
2 (p)− sI2. (24)

Therefore

s (p) =
ΦL

2 (p)−
(

p
pF∗
12

)β (
pF∗
12

4(r−µ) − I1

)

ΦL
2 (p) + I2

. (25)

In MSE20, each player invests in technology 2 with the strictly positive intensity s (p) that

is represented on Figure 8.

The equilibrium payoff is u∅ = u2 = V F
12 (p). At p = p, s (p) = 0 and there is no mistake:

one player invests in technology 2 and the other invests in technology 1 when p = pF∗
12 . But,

as soon as p > p, the intensity with which each player invests in technology 2 is increasing

with demand meaning that competition becomes fiercer. The mistake probability (the

probability that the two players invest in technology 2), s2(p)

1−(1−s(p))2
, also increases. Indeed,
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Figure 8: s(p) when p ∈ [
p, p∗1

[
in Case A.

as p increases, the difference between the leader’s and the follower’s payoff increases and

each player has more reason to preempt its rival.

3. if p ∈
[
p∗1, ˜̃p

[
:

The description of the possible MPE outcomes is a bit more involved, since an investment

in technology 1 may be optimal. Indeed, on this interval, u2 = u∅ = V F
12 (p) < ΦL

1 (p) (since

p < p∗1) and MSE20 is not an equilibrium anymore since an investment in technology 1

is preferred. In addition to a simultaneous investment equilibrium in technology 1, we

thus have to consider a mixed strategy equilibrium involving the three strategies: {∅, 1, 2}
(this equilibrium will be denoted “mixed strategy equilibrium {0, 1, 2}”, MSE210). The

intensities t1 and t2 with which each player invests in technology 1 and technology 2 are

defined such that u2 = u1 = u∅ where

u∅ = V F
12 (p) , (26)

u1 =
t1

(
p

2(r−µ) − I1

)
+ t2

(
p

4(r−µ) − I1

)

t1 + t2
, (27)

u2 = (1− t1 − t2)ΦL
2 (p) + t1

(
p

2 (r − µ)
− I2

)
− t2I2. (28)

The resolution of this system gives the values of t1 (p) and t2 (p).

t1 (p) =

(
ΦL

2 (p)− V F
12 (p)

) (
p

4(r−µ) − I1 − V F
12 (p)

)
(
V F

12 (p)− p
4(r−µ) + I1

)(
p

2(r−µ) − I2

)
− ΦL

2 (p) p
4(r−µ) −

(
p

2(r−µ) − I1 − V F
12 (p)

)
I2

,

(29)

21



t2 (p) =
p

2(r−µ) − I1 − V F
12 (p)

V F
12 (p)− p

4(r−µ) + I1
t1 (p) (30)

Figure 9: t1(p) and t2(p) when p ∈
[
p∗1, ˜̃p

[
in Case A.

Function t1 decreases with p and function t2 first increases and then decreases with p. As

demand increases, each player invests with a higher intensity in technology 2 and with

a lower intensity in technology 1. The difference between the leader’s and the follower’s

payoff indeed increases as demand increases, each player invests thus with a higher intensity

in technology 2 in order to preempt its rival. However, at the same time, the mistake

probability, that is equal to t22
(2−t2)t2+t21

, also increases. Therefore, when p begins to be very

high, the increases in t2 decreases and t2 even begins to decrease: players are afraid of any

mistake. Note that the probability with which each player invests in technology 1 and in

technology 2 (q1 and q2) are easily computed from the intensities:

q1 (p) =
t1 (p) (t1 (p) + t2 (p))

(2− t2 (p)) t2 (p) + t21 (p)
, and (31)

q2 (p) =
t2 (p)

(2− t2 (p)) t2 (p) + t21 (p)
. (32)

To sum-up, on interval
[
p∗1, ˜̃p

[
, two equilibria coexist: the simultaneous investment equi-

librium and MSE210.

4. if p ∈
[˜̃p, +∞

[
:

Once p ≥ ˜̃p, there is no equilibrium involving an investment in technology 2 any more,

and the only equilibrium is the simultaneous investment one.
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Before summarizing the results into a proposition, let us explain why the inaction region

does not exist any more contrary to the case without preemption. Suppose such a region]˜̃p− ε1, ˜̃p + ε2

[
exists around ˜̃p. On

]˜̃p− ε1, ˜̃p
[
, MSE20 exists because no firm wants to take the

risk of being inactive and thus preempted. Thus, nobody remains inactive. At p = ˜̃p, this is the

simultaneous investment in technology 1 that occurs since the payoff generated by an investment

in technology 1, ΦL
1

(˜̃p
)
, is greater than any other payoff (ΦL

2

(˜̃p
)
, V F

12

(˜̃p
)
,

˜̃p
4(r−µ) − I2,−I2).

At p = ˜̃p + ε2, the simultaneous investment exists by assumption. As ˜̃p > p∗1, the simultaneous

investment is a trigger strategy in this region where technology 1 is the preferred one, and

∀p ≥ ˜̃p, a simultaneous investment in technology 1 is optimal. Therefore, the inaction region

does not exist.

We are thus able to state the following proposition.

Proposition 3 There exist two MPE outcomes:

• In the first one, nobody invests when p < p. When p ∈ [
p, p∗1

[
, each firm invests in

technology 2 with an intensity s (p). When p ∈
[
p∗1, ˜̃p

[
, each firm invests in technology 1

with an intensity t1 (p) and in technology 2 with an intensity t2 (p). When p ≥ ˜̃p, each

firm simultaneously invests in technology 1.

• In the second one, nobody invests when p < p either. When p ∈ [
p, p∗1

[
, each firm invests

in technology 2 with an intensity s (p). When p ≥ p∗1, each firm simultaneously invests in

technology 1.

On Figure 10, we describe the two equilibria.

Figure 10: The two equilibria in Case A.

Let us briefly comment Proposition 3. The first point is to compare p with pL∗
2 in order to
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know if investment is triggered earlier than without preemption. To do so, we compute f
(
pL∗
2

)
6

and we determine its sign.

f
(
pL∗
2

)
= ΦL

2

(
pL∗
2

)−
(

pL∗
2

pF∗
12

)β (
pF∗
12

4 (r − µ)
− I1

)
,

>

(
pL∗
2

p∗1

)β (
p∗1

2 (r − µ)
− I1

)
−

(
pL∗
2

pF∗
12

)β (
pF∗
12

4 (r − µ)
− I1

)
(Assumption A3),

=
(

I2

2I1

)β I1

β − 1

(
1−

(
1
2

)β
)

,

≥ 0.

Therefore, p < pL∗
2 and investment is triggered earlier than in the benchmark case without

preemption. This is the classic “rent dissipation result” already obtained by Fudenberg and

Tirole [8]. The fear of being preempted makes investment occur earlier. The rents of both

players are lower than in the case of a natural leader. Moreover, we have proved that the

inaction region does not survive to the introduction of preemption. Indeed, investors do not

take the time any more to be sure of their decisions. The fear of losing a market share is too

high relative to the gain of waiting to invest in the technology that will turn out to be the most

profitable.

Note that these two equilibria happen when EL
1 is empty and when I2 < 2I1 associated with

Assumption A5. In this case, technology 2 is quite cheap relative to technology 1. Therefore,

technology 2 is relatively favorable and players want to take advantage of it. There is thus a range[
p, p∗1

[
of fierce competition where each player wants to preempt his rival with two capacity units.

However, as soon as demand is high enough, two cases emerge: either a simultaneous investment

in technology 1 or MSE210 that involves the three strategies (investing in technology 1, investing

in technology 2 and waiting). MSE210 is more competitive than the simultaneous investment

equilibrium since, in expected value, the number of capacity units invested by each player is

higher in the case of MSE210. Indeed, ∀p ∈
[
p∗1, ˜̃p

[
, q1 (p)+ q2 (p) 2 = t2(p)(2+t1(p))+t21(p)

(2−t2(p))t2(p)+t21(p)
> 1 (see

Figure 11).

When demand is higher (p ≥ ˜̃p), the simultaneous investment in technology 1 is the unique

equilibrium. In the case of a simultaneous investment equilibrium, for demand values belonging

to
[
p∗1, ˜̃p

[
, players invest in technology 1 whereas technology 2 is the preferred one. So, not only

is the choice value equal to zero since nobody is willing to wait to invest in the technology that

will turn out to be the most profitable, but players even invest in the technology that is the

least profitable (if they were the first mover) at the time they take their decision. Let us now

turn to the case where p < p̃.

We now compare the two equilibria from a social point of view. They only differ when p ∈[
p∗1, ˜̃p

[
. Therefore, we compute the difference in surplus between the joint adoption equilibrium,

6Function f is defined in the Appendix: f (p) = ΦL
2 (p) −

(
p

pF∗
12

)β

ΦF∗
12 (p). f (p) < 0 ∀p < p and f (p) > 0

∀p > p
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Figure 11: Expected capacity in the case of MSE210.

S11(p), and the mixed strategy equilibrium MSE210, S210(p)7:

S11 − S210 =
p

r − µ
− 2I1 −

[
p

r − µ
− 2t2 (1− t1 − t2)

(2− t2) t2 + t21

((
p

pF∗
12

)β

I1 + I2

)

− t21
(2− t2) t2 + t21

2I1 − t22
(2− t2) t2 + t21

2I2 − 2t1t2
(2− t2) t2 + t21

(I1 + I2)
]

=
2t2

(2− t2) t2 + t21

[((
p

pF∗
12

)β

(1− t1 − t2)− (2− t1 − t2)

)
I1 + I2

]
.

Note first that Case A never occurs when I2 > 2I1, therefore the sign of S11(p) − S210(p)

is not straightforward to compute. But the analysis of the difference allows us to state the

following proposition:

Proposition 4 If I2
I1

< 2−β+22+β−β−5
32β−β−3

, then as p increases from p∗1 to ˜̃p, the mixed strategy

equilibrium is first more efficient than the joint adoption equilibrium and then this is the joint

adoption equilibrium that is more efficient than the mixed strategy equilibrium.

On the contrary, if I2
I1
≥ 2−β+22+β−β−5

32β−β−3
, then ∀p ∈

[
p∗1, ˜̃p

[
the joint adoption equilibrium is

more efficient than the mixed strategy equilibrium.

This proposition is interesting since for some parameters’ values, the mixed strategy equilib-

rium is more efficient than the joint adoption one, and this is result is new. Indeed, Fudenberg

and Tirole [8] find that the joint adoption equilibrium is always more efficient than the diffu-

sion adoption equilibrium and this is not the case here. How to explain this? The preemption

equilibrium is more efficient than the simultaneous equilibrium when p is quite low and when
7In this expression, in order to be clear we omit to specify the argument in p of the different functions.
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I2
I1

< 2−β+22+β−β−5
32β−β−3

, meaning that technology 2 is not too expensive relative to technology 1.

Therefore, when one player preempts the other, the total sunk cost equals I2 to which is added

the discounted sunk cost of investing later in technology 1 by the follower. It is thus quite

advantageous compared to the sunk cost in case of a simultaneous investment in technology 1.

Moreover, as it holds when p is close to p∗1, the probability that the two players simultaneously

invest in technology 2 is small.

In fact this happens when technology 2 is quite cheap relative to technology 1, therefore when

there is a mistake, the loss is not too high. On Figure 12, we have represented the boundary
I2
I1

< 2−β+22+β−β−5
32β−β−3

.

Figure 12: Description of the boundary of Proposition 4.

Once more, the parameter that plays the most important role is the cost advantage I2/I1

and not the volatility (that plays through β when r and µ are constant). Moreover, in the

case of preemption the cost paid by the second mover comes later and that is why in this case

preemption is favorable from a social view point since it allows to delay the cost.

We present rapidly the results in Case C (Case B is very similar to Case A and is therefore

relegated to the Appendix).

Proposition 5 There exist two MPE outcomes:

• In the first one, nobody invests when p < p∗1. When p ∈ [p∗1, p̃[, each firm simultaneously

invests in technology 1. When p ∈
]
p̃, ˜̃p

[
, each firm invests in technology 1 with an intensity

t1 (p) and in technology 2 with an intensity t2 (p). When p ≥ ˜̃p, each firm simultaneously

invests in technology 1.

• In the second one, nobody invests when p < p∗1 either. But as soon as p ≥ p∗1, each firm
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simultaneously invests in technology 1.

The second equilibrium replicates the socially optimal outcome.

Both equilibria are represented on Figure 13.

Figure 13: The two equilibria in Case C.

This case is different from Case A. In the first equilibrium, there is a succession of simultane-

ous investment equilibrium and MSE210 as the values taken by the demand increases. As soon

as technology 2 is the preferred one (in case of a leader), this is MSE210 that occurs. In fact, in

this case, as technology 2 is expensive relative to technology 1 (I2 ≥ 2I1), players are reluctant

to invest in it, although β > 2 implies that the time period during which the one who has

preempted is alone is long. However, players dread any mistakes. Therefore, MSE20 does not

exist any more. Indeed, as soon as technology 2 is the preferred one, this is MSE210 that arises,

taken into account the possibility of investing in technology 1 and 2. On the contrary, in the

second result, as soon as the threshold p∗1 is crossed, the equilibrium is to invest in technology 1

even if technology 2 is preferred. There is no investment in technology 2 any more. We retrieve

the optimal result. Any choice is eliminated: as technology 2 is quite expensive, firms do not

want to take the risk of making any mistake and they behave as if they did not have the choice

any more.

6 Concluding remarks

This paper analyzes the investment strategy of a duopoly with price competition on a market of

finite size driven by stochastic taste shocks. Each firm has the choice between two technologies:

a large unit and a small unit.

We first study the case where one player is constrained to invest second. We find that,

depending on the parameters’ values, there are one or two inaction region(s). In these regions, the

first mover does not invest in any technology whereas without choice, he would have immediately

invested in one of the two. The leader prefers to wait and see which technology turns out to

be the most profitable to invest later in it. The inaction regions reveal the existence of a choice
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value for the leader. In this case, two types of equilibria may exist: a sequential investment (large

unit for the first mover and then the small unit for the follower) or a simultaneous investment

in the small unit.

When no constraint on the investment’s order holds any more, the inaction regions disappear.

The fear of being preempted indeed makes firms invest earlier. Depending on the parameters’

values, three types of equilibria exist: a simultaneous investment equilibrium in which both

firms invest in the small unit and two mixed strategy equilibria, one in which each firm invests

in the small unit with a strictly positive intensity and in the large unit with a strictly positive

intensity, and another one in which each firm invests in the large unit with a strictly positive

intensity. In this case, when technology 2 is quite cheap, the mixed strategy equilibrium is more

efficient than the joint adoption equilibrium when p is not too high. This is quite new and is

due to the fact that the cost paid by the second mover is delayed. When the cost advantage

of the small unit increases, the second mixed strategy equilibrium becomes less likely and then

disappears totally. In fact, in the mixed strategy equilibrium, there is always a probability that

players simultaneously invest in the large unit. Thus, when the cost of the large unit is very

high, firms prefer to invest simultaneously in the small unit even if the expected net discounted

profit generated by an investment as first mover in the large unit is greater. In this case, not

only is the choice value equal to zero (since the inaction regions disappear), but the choice firms

face is also reduced. In this case, the simultaneous investment equilibrium replicates the socially

optimal outcome.
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Table of notations

Pt Total willingness to pay for the commodity

I1 Sunk cost of technology 1

I2 Sunk cost of technology 2

σ2 Volatility

r Discount rate

µ Drift

β Positive root of 1/2σ2β (β − 1) + µβ − r = 0

pF∗
11 Threshold of the demand at which the follower invests in technology 1 given that the leader has

invested in technology 1

pF∗
12 Threshold of the demand at which the follower invests in technology 1 given that the leader has

invested in technology 2

pL∗
1 Threshold of the demand at which the leader invests in technology 1 given that the follower will

invest in technology 1 when p = pF∗
12

pL∗
2 Threshold of the demand at which the leader invests in technology 2 given that the follower will

invest in technology 1 when p = pF∗
12

p̃ Demand value such that ΦL
1 (p̃) = ΦL

2 (p̃)

˜̃p Demand value such that ΦL
1

(˜̃p
)

= ΦL
2

(˜̃p
)

with p̃ < ˜̃p

p3 Upper threshold of the demand of EL
2 for the leader when EL

1 is empty

p4 Lower threshold of the demand of E
L

1 for the leader when EL
1 is empty

p̂2 Upper threshold of the demand of EL
1 for the leader when EL

1 is not empty

p̂3 Lower threshold of the demand of EL
2 for the leader when EL

1 is not empty

p̂4 Upper threshold of the demand of EL
2 for the leader when EL

1 is not empty

p̂5 Lower threshold of the demand of E
L

1 for the leader when EL
1 is not empty

p Threshold of the demand such that each player is indifferent between an immediate investment
in technology 2 and an investment, as a follower, in technology 1 at pF∗

12 : ΦL
2

(
p
)

= V F
12

(
p
)

p Threshold of the demand such that each player is indifferent between an immediate investment
in technology 1 and an investment, as a follower, in technology 1 at pF∗

12 : ΦL
1

(
p
)

= V F
12

(
p
)

EL Exercise region

EL
1 Exercise region when technology 1 is the preferred one

EL
2 Exercise region when technology 2 is the preferred one
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EL
1 Exercise region when technology 1 is the preferred one and when the demand value is

less than p̃

E
L

1 Exercise region when technology 1 is the preferred one and when the demand value is
greater than ˜̃p

MSE20 Mixed strategy equilibrium involving the two strategies: {∅, 2}

MSE210 Mixed strategy equilibrium involving the three strategies: {∅, 1, 2}

π (ni, nj , p) Instantaneous profit flow of firm i when it holds ni units whereas its leader holds nj

units and when demand equals p

CS (p) Consumer surplus

S (p) Total surplus

S11 (p) Total surplus in case of a simultaneous investment in technology 1

S20 (p) Total surplus in case of a unique investment in technology 2

s (p) Intensity with which each player invests in technology 2 in MSE20

t1 (p) Intensity with which each player invests in technology 1 in MSE210

t2 (p) Intensity with which each player invests in technology 2 in MSE210

ΦF
11 (p) Expected discounted profit of the follower when he invests in technology 1 given that

the leader has invested in technology 1 and that demand is equal to p

ΦF
12 (p) Expected discounted profit of the follower when he invests in technology 1 given that

the leader has invested in technology 2 and that demand is equal to p

ΦL
1 (p) Expected discounted profit of the leader when he invests in technology 1 given that the

follower will invest in technology 1 when p = pF∗
11 and that demand is equal to p

ΦL
2 (p) Expected discounted profit of the leader when he invests in technology 2 given that the

follower will invest in technology 1 when p = pF∗
12 and that demand is equal to p

ΦL+F (p) Join profit of the leader and of the follower

V F
11 (p) Option value of an investment of the follower in technology 1 given that the leader has

invested in technology 1 and that demand is equal to p

V F
12 (p) Option value of an investment of the follower in technology 1 given that the leader has

invested in technology 2 and that demand is equal to p

V L
1 (p) Option value of an investment of the leader in technology 1 given that the follower will

invest in technology 1 when p = pF∗
11 and that demand is equal to p

V L
2 (p) Option value of an investment of the leader in technology 2 given that the follower will

invest in technology 1 when p = pF∗
11 and that demand is equal to p

V L (p) Option value of an investment of the leader in one of the two technologies given that the
follower will invest later and that demand is equal to p
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A Proof of Lemma 1

The proof of the shape of the instantaneous profit flows has been done in Boyer et al. [4]. We

recall their result.

The first three expressions for the instantaneous expected profit flows are immediate.

When one firm has one capacity unit, for instance firm i, and the other, firm j, two capacity

units, it is necessary to find a mixed strategy equilibrium since no pure strategy equilibrium

exists. Indeed, in this case, a strategy profile is a vector of prices
(
pi, pj

) ∈ [0, p] × [0, p]. For

any strategy profile
(
pi, pj

)
, firms’ payoff are equal to

πi
(
pi, pj

)
=

{
pi if pi < pj ,
pi

2 if pi ≥ pj ,

and

πj
(
pj , pi

)
=

{
pj

2 if pj ≤ pi,
0 if pj > pi.

As the game of these two equations do not have any pure strategy equilibrium, we look for

a mixed strategy equilibrium described by a pair of cumulative distribution functions
(
F i, F j

)

over [0, p]. Note first that any pi < p/2 is a strictly dominated strategy for i because i can secure

a payoff of p/2 by charging pi = p. Hence, necessarily supp
(
F i

) ⊂ [p/2, p], so that one must

have supp
(
F j

) ⊂ [p/2, p] as well. Define

F i
(
pi

)
=





0 if pi ∈ [0, p/2],
1− 1

2pi if pi ∈ [p/2, p[,
1 if pi = p

and

F j
(
pj

)
=

{
0 if pj ∈ [0, p/2],
2− 1

pj if pj ∈ ]p/2, p].

It follows that π
(
pj , F i

)
= pj

(
1− F i

(
pj

)) p
2 = p

4 for all pj ∈ [p/2, p). Moreover for pj = p, we

have πj
(
p, F i

)
= PF i (

pi = p
) p

2 = p
4 . Hence, given the strategy F i of firm i, firm j is indifferent

between all possible prices in supp
(
F j

)
= [p/2, p]. Similarly, for all pi ∈ [p/2, p], we have

πi
(
pi, F j

)
= pi

(
1− F j

(
pi

))
p + piF j

(
pi

)
p/2 = p/2. Hence, given the strategy F j of firm j,

firm i is indifferent between all possible prices in supp
(
F i

)
= [p/2, p]. It follows that

(
F i, F j

)

is a mixed strategy equilibrium of the static pricing game with corresponding profits (p/2, p/4).

The proof that this equilibrium is unique is standard and therefore omitted.

Regardless the leader’s choice, it is never optimal for the follower to invest in technology 2

since π (1, nj , p) ≥ π (2, nj , p) , ∀nj ∈ {1, 2} and I2 ≥ I1. 2

B Computation of the leader’s payoff

Suppose the leader has to invest in technology 1. His net discounted payoff is equal to:

ΦL
2 (p) = E

[∫ τF∗
12

0
e−rtpp

t dt +
∫ +∞

τF∗
12

e−rtpp
t

2
dt|pp

0 = p

]
− I2,
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where τF∗
12 = inf

{
t|pt = pF∗

12

}
.

ΦL
2 (p) = E

[∫ τF∗
12

0
e−rtpp

t dt +
∫ +∞

τF∗
12

e−rtpp
t

2
dt|pp

0 = p

]
− I2,

= E

[∫ +∞

0
e−rtpp

t dt−
∫ +∞

τF∗
12

e−rtpp
t

2
dt|pp

0 = p

]
− I2,

=
p

r − µ
− E

[∫ +∞

τF∗
12

e−rtpp
t

2
dt|pp

0 = p

]
− I2,

=
p

r − µ
− E




e−rτF∗
12 pp

τF∗
12

2 (r − µ)
dt|pp

0 = p


− I2,

=
p

r − µ
− pF∗

12

2 (r − µ)

(
p

pF∗
12

)β

− I2.

The last equality holds because E
[
e−rτF∗

12 pp

τF∗
12

dt|pp
0 = p

]
=

(
p/pF∗

12

)β
pF∗
12 .

C Proof of Lemma 2

Let us study function h (p) = ΦL
1 (p) − ΦL

2 (p). First of all, note that if p > pF∗
12 , then h (p) =

I2 − I1 > 0 and the leader always prefers technology 1. Therefore, we assume p < pF∗
12 .

In this case, h (p) = 1
2(r−µ)

[
pF∗
12

(
p

pF∗
12

)β
− p

]
+ I2− I1 and h′ (p) = 1

2(r−µ)

[
β

(
p

pF∗
12

)β−1
− 1

]
.

Therefore, h is an increasing function as soon as p ≥ pF∗
12

(
1
β

) 1
β−1 . h (0) and h

(
pF∗
12

)
are strictly

positive. Moreover, as β > 1, pF∗
12

(
1
β

) 1
β−1

< pF∗
12 . Therefore, there are two indifference points if

and only if h

(
pF∗
12

(
1
β

) 1
β−1

)
< 0, or I2 <

(
1 + 2

(
1
β

) 1
β−1

)
I1. 2

D Proof of Lemma 3

Under Assumption A1, if I2 ≥ 2I1 then β < 2β−1. Let us study function x 7→ k (x) = x− 2x−1.

k
′
(x) > 0 if x < x∗ = ln 2−ln(ln 2)

ln 2 = 1.52. Moreover k (x∗) > 0 and k (2) = 0. Therefore,

k(β) < 0 ⇒ β > 2. 2

E Proof of Lemma 4

Suppose that E
L
1 = ∅. Then, ∀p > ˜̃p, V (p) > ΦL

1 (p) > ΦL
2 (p). at the same time, ∀p ≥

pL∗
1 , V L

1 (p) = ΦL
1 (p). But, when p → +∞, V L (p) = V L

1 (p). This leads to limp→+∞ΦL
1 (p) >

limp→+∞ΦL
1 (p), a contradiction. 2
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F Proof of Lemma 5

We first prove that Assumption A3 implies that EL
1 = ∅. Suppose that Assumption A3 is

satisfied and that EL
1 6= ∅. According to Décamps et al. [5], EL

1 is of the form
[
pL∗
1 , p2

[
.

Therefore, V L
(
pL∗
1

)
= ΦL

1

(
pL∗
1

)
= V L

1

(
pL∗
1

) ≥ V L
2

(
pL∗
1

)
, and this is in contradiction with

Assumption A3.

Now, we focus on EL
2 . First note that without assuming that Assumption A3 is satisfied,

we have that if p̃ < pL∗
1 < ˜̃p, then EL

2 6= ∅. Suppose indeed this is not the case. According

to Villeneuve [?], we know that in this case, V L (p) = V L
1 (p). In particular, V L

(
pL∗
1

)
=

ΦL
1

(
pL∗
1

)
< ΦL

2

(
pL∗
1

)
. But at the same time, V L

(
pL∗
1

) ≥ V L
2

(
pL∗
1

) ≥ ΦL
2

(
pl∗
1

)
and this leads to

a contradiction.

We moreover assume that Assumption A3 is satisfied. Suppose that EL
2 = ∅. Then, V L (p) =

V L
1 (p) and in particular, Assumption A3 implies that ΦL

1

(
pL∗
1

)
= V L

(
pL∗
1

)
< V L∗

2

(
pL∗
1

)
what

is not possible. Therefore, we have a contradiction and EL
2 6= ∅. 2

G Proof of Lemma 6

Suppose first that I2 ≥ 2I1. According to Lemma 3, this implies that pF∗
11 = pL∗

1 ≤ pL∗
2 <

pF∗
12 . Therefore, ΦL

1

(
pL∗
1

)
= 1

β−1I1 and V L
2

(
pL∗
1

)
= I2

β−1

[(
2I1
I2

)β
− β

(
1
2

)β 2I1
I2

]
. Assumption A3

reduces to 1
2 + β

(
1
2

)β
<

(
2I1
I2

)β−1
.

Similarly, ΦL
2

(
pL∗
2

)
= I2

β−1 − 2βI1
β−1

(
I2
4I1

)β
and V L

1

(
pL∗
2

)
= β

2(β−1)I2 − I1. Assumption A4

reduces to β
β−1

(
1
2

)β
(

I2
2I1

)β
+ β−2

2(β−1)
I2
2I1

− 1
2 ≤ 0. As I2 ≥ 2I1, β > 2 and therefore β−2

2(β−1) < 0.

Thus,

β

β − 1

(
1
2

)β (
I2

2I1

)β

+
β − 2

2 (β − 1)
I2

2I1
− 1

2
<

β

β − 1

(
1
2

)β (
I2

2I1

)β

+
β − 2

2 (β − 1)
− 1

2
,

=
β

β − 1

(
1
2

)β (
I2

2I1

)β

− 1
2 (β − 1)

,

<
β

β − 1

(
1
2

)β I2

2I1

1

1/2 + β (1/2)β
− 1

2 (β − 1)
,

=
β I1

I2
− 2β−1 − β

2 (β − 1) (2β−1 + β)
,

where the last but one inequality holds since Assumption A3 is satisfied. As Assumption A1 is

also satisfied, I2
I1

< 1 + 2
(

1
β

) 1
β−1

< 1 + 2β−1

β . Therefore, β I1
I2
− 2β−1 − β < 0 and Assumption

A4 is satisfied as soon as Assumptions A1 and A3 are satisfied.

Suppose now that I2 < 2I1. In this case, Assumption A3 implies that I2
I1

< 1
β−1

(
2β − 1− β

(
1
2

)β−1
)
.

At the same time, not only do we have I2
I1

< 2, but Assumption A1, I2
I1

< 1+2
(

1
β

) 1
β−1 , has also
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to be satisfied. Which of the two constraints is the most difficult to satisfy depending on the

values taken by β?

We first prove that 1 + 2
(

1
β

) 1
β−1

< 2 ⇔ β < 2. Indeed, F (x) = 1 + 2
(

1
β

) 1
β−1 − 2 and

F ′ (x) = 2(x ln x−(x−1))

(x−1)2

(
1
x

) 2−x
1−x is positive for x ≥ 1. As F (1) < 0 and limx→+∞ F (x) = 1, there

exists a unique x such that F (x) = 0 and this happens when x = 2.

Therefore, we have to distinguish the two cases:

First case β ≥ 2: EL
1 is not empty if and only if I2

I1
< 1

β−1

(
2β − 1− β

(
1
2

)β−1
)

and I2
I1

< 2.

If 2 ≤ 1
β−1

(
2β − 1− β

(
1
2

)β−1
)
, or 1 − β

(
1
2

)β−1 ≥ 0, this is always satisfied. ∀β > 2,

1 − β
(

1
2

)β−1
> 0. Therefore both equalities are satisfied and EL

1 is empty. In the case

where I2 < 2I1, Assumption A4 reduces to
(
1 + β

2β−1

)(
I2
2I1

)β−1
≤ 2. As I2 < 2I1,(

1 + β
2β−1

)(
I2
2I1

)β−1
< 1 + β

2β−1 ≤ 2 since β ≥ 2. Therefore, in this case, Assumption A4

is satisfied.

Second case β < 2: EL
1 is empty if and only if I2

I1
< 1

β−1

(
2β − 1− β

(
1
2

)β−1
)

and I2
I1

<

1 + 2
(

1
β

) 1
β−1 . As this is not always the case that 1

β−1

(
2β − 1− β

(
1
2

)β−1
)

< 1 +

2
(

1
β

) 1
β−1 , EL

1 may be not empty. As in the previous case, Assumption A4 reduces to
(
1 + β

2β−1

)(
I2
2I1

)β−1
≤ 2. As 2β

β+2β−1 ≥
[

1
2(β−1)

(
2β − 1− β

(
1
2

)β−1
)]β−1

, for β ∈ [1, 2[,

as soon as Assumption A3 is satisfied, Assumption A4 is also satisfied. 2

H Proof of Lemma 7

Suppose first that Assumption A4 is satisfied and that EL
2 = ∅. According to Villeneuve [?],

V L (p) = V L
1 (p). Therefore, ∀p ∈

]
p̃, ˜̃p

[
, V L (p) = ΦL

1 (p) < ΦL
2 (p) ≤ V L (p). There is a

contradiction and EL
2 6= ∅.

We suppose now that Assumption A4 is satisfied and that EL
1 = ∅. Thus, ∀p < p̃, V L (p) >

Φ1
L (p). In particular, V L

(
pL∗
1

)
> Φ1

L

(
pL∗
1

) ≥ V L
2

(
pL∗
1

)
(because of Assumption A4). According

to Øksendal [22],

V L
(
pL∗
1

)
= E

[
e−rτE max

(
ΦL

1 (PτE ) , ΦL
2 (PτE ) |P0 = pL∗

1

)]

= E
[
e−rτEΦL

2 (PτE ) |P0 = pL∗
1

]
since pL∗

1 < p̃,EL
1 = ∅ and EL

2 6= ∅,
≤ V L

2

(
pL∗
1

)
,

where τE = inf
{
t > 0|Pt ∈ EL

}
. Therefore, there is a contradiction and EL

1 6= ∅. 2

I Proof of Lemma 8

First of all, the condition that pL∗
1 < p̃ is equivalent to ΦL

1

(
pL∗
1

)−ΦL
2

(
pL∗
1

)
> 0 and ΦL′

1

(
pL∗
1

)−
ΦL′

2

(
pL∗
1

)
< 0. The last inequality is equivalent to β > 2. The first condition reduces to
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I2
I1

> 1 + β
β−1

(
1− (

1
2

)β−1
)
. Associated to β > 2, this leads to I2 > 2I1. When I2 > 2I1,

ΦL
1

(
pL∗
1

) ≥ V L
2

(
pL∗
1

)
becomes 1

2 + β
(

1
2

)β ≥
(

2I1
I2

)β−1
, or I2

I1
≥ 2

(
1
2 + β

(
1
2

)β
)− 1

β−1 . As ∀β > 2,

1 + β
β−1

(
1− (

1
2

)β−1
)

< 2
(

1
2 + β

(
1
2

)β
)− 1

β−1 , if ΦL
1

(
pL∗
1

) ≥ V L
2

(
pL∗
1

)
, then pL∗

1 < p̃. 2

J Proof of Lemma 9

To prove this result, we consider two cases: when EL
1 is empty and when EL

1 is not empty.

First case: EL
1 is empty.

Recall that in section 3, we proved that EL
1 is empty if I2 ≥ 2I1 and if Assumption A3 is

satisfied, or if I2 < 2I1 and β < 2 if Assumption A3 is satisfied, or lastly if I2 < 2I1 and β ≥ 2.

From the previous discussion, six thresholds are of particular interest: p̃, p, p, p∗1, ˜̃p and pF∗
12 .

Lemma 10 When EL
1 is empty, three different rankings are possible

1. p̃ < p < p < p∗1 < ˜̃p < pF∗
12

2. p < p < p̃ < p∗1 < ˜̃p < pF∗
12

3. p < p < p∗1 < p̃ < ˜̃p < pF∗
12

Proof:

Before comparing the thresholds, let us briefly focus on p and p.

Definition of p: Recall that p is such that the two players are indifferent between investing

immediately in technology 2 and waiting to invest optimally in technology 1 at pF∗
12 :

ΦL
2

(
p
)

= V F∗
12

(
p
)
.

Lemma 11 The threshold for which each player is indifferent between being the leader and the

follower, p, is lower than pF∗
12 .

Proof : Suppose by contradiction that p ≥ pF∗
12 and ΦL

2

(
p
)

= V F∗
12

(
p
)
. This implies that

p
2(r−µ) − I2 = p

4(r−µ) − I1 and p = 4 (r − µ) (I2 − I1). As p ≥ pF∗
12 , it implies that I2

I1
≥ 2β−1

β−1 .

Two cases may then occur:

• either I2 < 2I1. In this case, the inequality I2
I1
≥ 2β−1

β−1 cannot hold since 2β−1
β−1 > 2, and we

have a contradiction,

• or I2 ≥ 2I1. In this case, as EL is empty and depending on Lemma 6,

I2

I1
<

1
β − 1

(
2β − 1− β (1/2)β−1

)
.

Therefore, the inequality I2
I1
≥ 2β−1

β−1 cannot hold and we have a contradiction. 2
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Therefore, we necessary have that p < pF∗
12 and p is defined by:

ΦL
2

(
p
)

=
(

p

pF∗
12

)β

ΦF
12

(
pF∗
12

)
.

Let us define function f by:

f (p) = ΦL
2 (p)−

(
p

pF∗
12

)β

ΦF
12

(
pF∗
12

)
.

For p ≤ pF∗
12

(
4

2β+1

) 1
β−1 , f is an increasing function. Moreover, f (0) = −I2 and f

(
pF∗
12

)
=

2β−1
β−1 I1 − I2 > 0, according to the proof of Lemma 11. Therefore, if p < p, then ΦL

2 (p) <(
p

pF∗
12

)β (
pF∗
12

4(r−µ) − I1

)
and if p > p, then ΦL

2 (p) >
(

p
pF∗
12

)β (
pF∗
12

4(r−µ) − I1

)
. Rearranging the terms

when f
(
p
)

= 0 implies that p is the solution of

4p

pF∗
12

− β − 1
β

I2

I1
− 2β + 1

β

(
p

pF∗
12

)β

= 0.

This expression is strictly negative for p < p and strictly negative for p > p.

Definition of p: p is such that the payoff of the second mover in the preemption equilibrium

is equal to the payoff in the case of a simultaneous investment in technology 1. Let us therefore

function g:

g (p) = ΦL
1 (p)−

(
p

pF∗
12

)β

ΦF
12

(
pF∗
12

)
.

For p ≤ pF∗
12 , g is an increasing function. g (0) = −I1 and g

(
pF∗
12

)
= pF∗

12
4(r−µ) > 0. Therefore there

exists a unique p such that ΦL
1

(
p
)

=
(

p
pF∗
12

)β

ΦF
12

(
pF∗
12

)
. Moreover, if p < p, then ΦL

1 (p) <

(
p

pF∗
12

)β
ΦF

12

(
pF∗
12

)
, and if p > p, then ΦL

1 (p) >
(

p
pF∗
12

)β
ΦF

12

(
pF∗
12

)
.

*Ranking of p relative to p:

Lemma 12 We have the following results concerning the ranking of the thresholds:

• p > p̃ ⇒ p > p > p̃,

• p < p̃ ⇒ p < p < p̃.

Proof : Suppose it does not hold: p < p and p > p̃. There exists p0 ∈
]
p, p

[
such

that p0 > p̃. Therefore, ΦL
2 (p0) > ΦL

1 (p0) and ΦL
2 (p0) −

(
p0

pF∗
12

)β (
pF∗
12

4(r−µ) − I1

)
> ΦL

1 (p0) −

38



(
p0

pF∗
12

)β (
pF∗
12

4(r−µ) − I1

)
. The left hand side is strictly negative since p0 < p and the right hand

side is strictly positive since p0 > p. This leads to a contradiction. Therefore, if p > p̃, then

p > p. A symmetric proof can be obtained if p < p̃. 2

According to this lemma, the point now is to compare p and p̃.

*Ranking of p relative to p̃: Recall that p̃ and ˜̃p are solutions of

2βI1

β − 1

((
p

pF∗
12

)β

− p

pF∗
12

)
+ I2 − I1 = 0.

Similarly, p is solution of
4p

pF∗
12

− β − 1
β

I2

I1
=

2β + 1
β

(
p

pF∗
12

)β

.

Therefore, p > p̃ if and only if

A6 : p̃ <
2 (r − µ)
2β − 1

[(2β + 1) I1− I2] . (33)

Moreover we have the following result:

Lemma 13 If I2 ≥ 2I1, then p < p̃ and p < p. On the contrary, if I2 < 2I1, we can have p < p̃

and p < p or p > p̃ and p > p.

Proof : Suppose that I2 ≥ 2I1 and p̃ < 2(r−µ)
2β−1 [(2β + 1) I1− I2]. It follows that

p̃ <
2 (r − µ)
2β − 1

[(2β + 1) I1− I2] ,

≤ 2 (r − µ)
2β − 1

[(2β + 1) I1− 2I1] (because I2 ≥ 2I1),

= 2 (r − µ) I1.

But this is in contradiction with Assumption A2 according to which p̃ > 2 (r − µ) I1. Therefore,

we have a contradiction and when I2 ≥ 2I1, p̃ > 2(r−µ)
2β−1 [(2β + 1) I1− I2] and p < p̃. 2

*Ranking of ˜̃p relative to pF∗
12 : In order to compare pF∗

12 with ˜̃p, we compute:

ΦL
1

(
pF∗
12

)− ΦL
2

(
pF∗
12

)
=

pF∗
12

2 (r − µ)
− I1 −

(
pF∗
12

2 (r − µ)
− I2

)
,

= I2 − I1,

> 0.

Therefore, pF∗
12 > ˜̃p.
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*Ranking of p∗1 relative to p̃: This comparison is necessary in the case where p̃ > p (what

can happen whenever I2 ≥ 2I1 or I2 < 2I1).

If I2 < 2I1, then pL∗
2 < p∗1 < pF∗

12 . Therefore, Assumption A3, ΦL
1 (p∗1) < V L

2 (p∗1) reduces to

ΦL
1 (p∗1) < ΦL

2 (p∗1). And this last inequality is equivalent to p∗1 > p̃.

If I2 ≥ 2I1, then β > 2 and ΦL
1 (p∗1) − ΦL

2 (p∗1) = I1

(
− β

β−1

(
1− (

1
2

)β−1
)

+ I2
I1
− 1

)
. This is

negative if and only if

A7 :
I2

I1
< 1 +

β

β − 1

(
1−

(
1
2

)β−1
)

. (34)

This inequality is not always satisfied under Assumptions A1 and A3, therefore, when I2 ≥ 2I1,

both cases may happen: p∗1 > p̃ or p∗1 < p̃.

*Ranking of p∗1 relative to p: Let us compute:

g
(
pL∗
1

)
=

p∗1
2 (r − µ)

− I1 −
(

p∗1
pF∗
12

)β (
pF∗
12

4 (r − µ)
− I1

)
,

=
I1

β − 1

(
1−

(
1
2

)β
)

,

> 0.

Therefore, p∗1 > p.

*Ranking of p∗1 relative to p: This comparison is meaningful only when p > p̃ (what can

only be the case if I2 < 2I1). Let us compute:

4p∗1
pF∗
12

− β − 1
β

I2

I1
− 2β + 1

β

(
p∗1
pF∗
12

)β

=
1
β

[
2β − (β − 1)

I2

I1
− (2β + 1)

(
1
2

)β
]

,

≥ 1
β

[
1−

(
1
2

)β
]

(Assumption A2 and I2 < 2I1),

> 0 (because β ≥ 1).

Therefore, p < p∗1.

We have proven that three rankings were possible when EL is empty:

1. p̃ < p < p < p∗1 < ˜̃p < pF∗
12 ,

2. p < p < p̃ < p∗1 < ˜̃p < pF∗
12 ,

3. p < p < p∗1 < p̃ < ˜̃p < pF∗
12 . 2
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The proof of this Lemma highlights the importance of two assumptions

A5 : p̃ <
2 (r − µ)
2β − 1

[(2β + 1) I1 − I2] , (35)

that ensures that p > p̃ and

A6 :
I2

I1
< 1 +

β

β − 1

(
1−

(
1
2

)β−1
)

, (36)

that ensures that p∗1 > p̃. The following lemma allows to give another expression for Assumption

A5.

Lemma 14 Assumption A5 is equivalent to

1
2β − 1

(
2β + 1− I2

I1

)
>

1
β − 1

[
β − 1

2β (2β − 1)

(
2β + 1− I2

I1

)]β

+ 1 (37)

Proof :

Suppose first that p̃ < 2(r−µ)
2β−1 [(2β + 1) I1 − I2] < ˜̃p. This implies that ΦL

2

(
2(r−µ)
2β−1 [(2β + 1) I1 − I2]

)
>

ΦL
1

(
2(r−µ)
2β−1 [(2β + 1) I1 − I2]

)
. Straightforward computations lead to

1
2β − 1

(
2β + 1− I2

I1

)
>

1
β − 1

[
β − 1

2β (2β − 1)

(
2β + 1− I2

I1

)]β

+ 1.

Suppose now that ˜̃p < 2(r−µ)
2β−1 [(2β + 1) I1 − I2]. This implies that ΦL

1

(
2(r−µ)
2β−1 [(2β + 1) I1 − I2]

)
>

ΦL
2

(
2(r−µ)
2β−1 [(2β + 1) I1 − I2]

)
and Φ

′L
1

(
2(r−µ)
2β−1 [(2β + 1) I1 − I2]

)
> Φ

′L
2

(
2(r−µ)
2β−1 [(2β + 1) I1 − I2]

)
.

The first condition leads to

1
2β − 1

(
2β + 1− I2

I1

)
>

1
β − 1

[
β − 1

2β (2β − 1)

(
2β + 1− I2

I1

)]β

+ 1,

and the second one to
I2

I1
< 2β + 1− 2β (2β − 1)

β − 1

(
1
β

) 1
β−1

The second condition on the first order derivatives implies that I2
I1

< 2β + 1− 2β(2β−1)
β−1

(
1
β

) 1
β−1

that is not satisfied since the right hand side is negative for the values of β that we consider.

Therefore this case cannot happen. 2

Moreover, in the case where I2 < 2I1, Assumption A6 is equivalent to Assumption A3.

Second case: EL
1 is not empty.

In this case, if there is a natural leader, he waits until p∗1 to invest in technology 1. We prove

in the Appendix that two rankings are possible.

Lemma 15 When EL
1 is not empty, two rankings are possible
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1. if f (p∗1) > 0, then p < p < p∗1 < p̃ < ˜̃p < pF∗
12 ,

2. if f (p∗1) < 0, then p < p∗1 < p < p̃ < ˜̃p < pF∗
12 .

Proof :

First of all, the proofs of ˜̃p < pF∗
12 and of p < p∗1 does not take into account the emptiness (or

not) of EL
1 . Moreover, as EL

1 is not empty and because of the shape of the option value V L, it

is immediate that p∗1 < p̃. Therefore, p < p∗1 < p̃ < ˜̃p < pF∗
12 . The point is to rank p.

*Ranking of p∗1 relative to p: It is given by the sign of f (p∗1):

f (p∗1) = ΦL
2 (p∗1)−

(
p∗1
pF∗
12

)β (
pF∗
12

4 (r − µ)
− I1

)
,

=
2β − (1/2)β (2β + 1)

β − 1
I1 − I2,

>
2β

β − 1
I1 − I2, .

The sign of f (p∗1) is not clear since I2 ≥ 2I1. All may happen. However, we know that p < p̃

(thanks to the result of the previous section). Therefore two rankings are possible when EL
1 is

not empty (when Assumption A4 holds):

• if f (p∗1) > 0, then p < p < p∗1 < p̃ < ˜̃p < pF∗
12 ,

• if f (p∗1) < 0, then p < p∗1 < p < p̃ < ˜̃p < pF∗
12 . 2

All these steps complete the proof of Lemma 9. 2

K Analysis of the equilibria in Case B

This may be the case when I2 ≥ 2I1 or I2 < 2I1 if and only if Assumptions A3 and A6 are satisfied

and Assumption A5 is not satisfied. If I2 ≥ 2I1, then Assumption A6 implies Assumption A3.

If I2 < 2I1, Assumptions A3 and A6 are equivalent. If, in addition, β > 2, Assumption A3 is

automatically satisfied (EL
1 is never empty) and the unique condition is that Assumption A5 is

not satisfied. This implies that technology 2 is still quite cheap relative to technology 1. In this

case, p < p < p̃ < p∗1 < ˜̃p < pF∗
12 . A very similar analysis than in Case A allows to state the

following proposition.

Proposition 6 There exist two MPE outcomes:

• In the first one, nobody invests when p < p̃. When p ∈ [p̃, p∗1[, each firm invests in

technology 2 with an intensity s (p). When p ∈
[
p∗1, ˜̃p

[
, each firm invests in technology 1

with an intensity t1 (p) and in technology 2 with an intensity t2 (p). When p ≥ ˜̃p, each

firm simultaneously invests in technology 1.

42



• In the second one, nobody invests when p < p̃ either. When p ∈ [p̃, p∗1[, each firm invests

in technology 2 with an intensity s (p). When p ≥ p∗1, each firm simultaneously invests in

technology 1.

On Figure 14, we describe the two types of equilibria.

Figure 14: The two equilibria in Case B.

This situation is very close to Case A. The only difference arises from the first investment

threshold that is equal to p̃ instead of p. At p = p, technology 1 is still preferred and therefore

investing in technology 2 is not an equilibrium any more. Moreover, nobody will invest in

technology 1 at this state of demand since it is less than the investment threshold p∗1. In fact,

when p < p̃ < p∗1, technology 2 is more expensive than in the previous situation. Therefore, the

region
[
p̃, ˜̃p

]
tends to be smaller than in the previous case and preemption is feared as soon as

technology 2 becomes profitable (i.e., p crosses p̃).

L Proof of Proposition 4

We are going to prove this proposition in three steps. We first compute the difference in surplus

at p = p∗1, then we evaluate it at p = ˜̃p and finally, in between we evaluate the first derivative.

1. Computation of S11 − S210 at p = p∗1:

S11 − S210 =
2t2

(2− t2) t2 + t21

[((
p

pF∗
12

)β

(1− t1 − t2)− (2− t1 − t2)

)
I1 + I2

]

= 2t2

[
I2 − I1 −

(
1−

(
p

p12F∗
)β

)
(1− t1 − t2) I1

]
.

As t2 is a probability, it is positive, it is therefore sufficient to study the sign of I2 −
I1 −

(
1−

(
p

p12F∗
)β

)
(1− t1 − t2) I1. And at p = p∗1, it is positive if and only if I2

I1
<

2−β+22+β−β−5
32β−β−3

.
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2. Computation of S11 − S210 at p = ˜̃p:

Once more, it is sufficient to evaluate I2 − I1 −
(

1−
(

p
p12F∗

)β
)

(1− t1 − t2) I1 at p = ˜̃p.

The difficulty here relies on the fact that we do not have an analytical expression for ˜̃p,

therefore we use numerical simulations. On Figure 15, we see that the surplus is positive

for every value of I2
I1

and of β.

Figure 15: Difference in surplus evaluated et p = ˜̃p.

3. Analysis of the sign of the first derivative:

The last step is to evaluate the first derivative of the function. Once more, it is very

difficult to sign expression, therefore we have simulated this derivative for different values

of β on Figure 16.

The maximum between 0 and the derivative of function S11−S210 is represented on Figure

3 for different values of β. We see that for a given I2/I1 and a given β, S11−S210 is either

decreasing and then increasing or increasing and then decreasing as p increases. As at ˜̃p,

the difference in surplus is always positive, we just have to check that S11−S210 decreases

only when it is already negative at p = p∗1. The two boundaries are represented on Figure

17 and we see that this is indeed the case. Thus, we have proves that S11 − S210 is either

negative and then positive or positive as p increases.
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Figure 16: Analysis of the derivative of the difference in surplus for different values of β.

Figure 17: Analysis of the derivative of the difference in surplus for different values of β.
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