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Abstract 

Background In standard Sequence Analysis, similar trajectories are clustered together to create a typology of trajec‑
tories, which is then often used to evaluate the association between sequence patterns and covariates inside regres‑
sion models. The sampling uncertainty, which affects both the derivation of the typology and the associated regres‑
sions, is typically ignored in this analysis, an oversight that may lead to wrong statistical conclusions. We propose 
utilising sampling variation to derive new estimates that further inform on the association of interest.

Methods We introduce a novel procedure to assess the robustness of regression results obtained from the standard 
analysis. Bootstrap samples are drawn from the data, and for each bootstrap, a new typology replicating the original 
one is constructed, followed by the estimation of the corresponding regression models. The bootstrap estimates are 
then combined using a multilevel modelling framework that mimics a meta‑analysis. The fitted values from this mul‑
tilevel model allow to account for the sampling uncertainty in the inferential analysis. We illustrate the methodology 
by applying it to the study of healthcare utilisation trajectories in a Swiss cohort of diabetic patients.

Results The procedure provides robust estimates for an association of interest, along with 95% prediction intervals, 
representing the range of expected values if the clustering and associated regressions were performed on a new 
sample from the same underlying distribution. It also identifies central and borderline trajectories within each 
cluster. Regarding the illustrative application, while there was evidence of an association between regular lipid test‑
ing and subsequent healthcare utilisation patterns in the original analysis, this is not supported in the robustness 
assessment.

Conclusions Investigating the relationship between trajectory patterns and covariates is of interest in many situa‑
tions. However, it is a challenging task with potential pitfalls. Our Robustness Assessment of Regression using Cluster 
Analysis Typologies (RAR CAT ) may assist in ensuring the robustness of such association studies. The method is appli‑
cable wherever clustering is combined with regression analysis, so its relevance goes beyond State Sequence Analysis.
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Background
Introduction
State Sequence Analysis, often referred to simply as 
Sequence Analysis (SA), is a set of statistical methods 
for studying longitudinal data [1]. It enables a holistic 
view of processes modelled as a succession of categorical 
states [2]. Over the past few years, SA has been increas-
ingly used in health research for the study of trajectories, 
or pathways [3–5]. In these studies, the standard analy-
sis identifies typical trajectories in two steps: by defining 
a dissimilarity measure to quantify the variation across 
trajectories [6] and by grouping similar trajectories with 
a cluster algorithm based on the pairwise dissimilarities 
[7]. Then, the relationships between covariates and the 
trajectories are studied by including the typology of tra-
jectories into regressions, either as a dependent or inde-
pendent variable [8]. This paper proposes to recognize 
the uncertainty involved in this standard framework and 
evaluate its impact on the analysis’ results.

Typologies are a popular tool as they summarize the 
information available by reducing the diversity of tra-
jectories into a few ideal types (see Herle et al. [9] for a 
review of modelling strategies, including SA, to identify 
typical trajectories). For instance, this enables to high-
light segments of the population that can be targeted 
for public health interventions [10]. While typologies 
are mainly descriptive by themselves, they also allow the 
inclusion of the complex concept of trajectories in sub-
sequent inferential analyses. Such analyses consist for 
instance in investigating why individuals follow certain 
trajectories instead of others, or how previous trajecto-
ries influence later outcomes [11–13].

Assuming an ideal situation with no missing informa-
tion, two major sources of uncertainty can impact the 
derivation and the subsequent use of a sequence typol-
ogy. The first is linked to data reduction and the poten-
tially imperfect assignment of sequences to clusters. The 
second is the sampling error, common to most statistical 
problems, as any sample is an inexact representation of 
the underlying population. The two issues are, however, 
closely interrelated, as we are less confident to make 
inference in a context with higher approximation risk.

These two sources of uncertainty might affect the anal-
ysis on two levels. First, the description of the processes 
observed in the data, which are generally inferred to the 
population. Second, it may lead to wrong conclusions 
when relating trajectories to covariates in subsequent 
regression models [7, 14–16].

As it will be established in the remaining of this sec-
tion, previous methodological developments in SA have 
mostly focused on issues related to the data simplification 
induced by cluster analysis, and the associated assign-
ment error. Issues related to the error in the estimation 

of the typology due to the sampling uncertainty have 
been on the other hand overlooked by the SA literature. 
However, this estimation error can have a serious impact 
on inference as it has been shown in the latent class lit-
erature [17–19]. In this article, we propose an innova-
tive method to take sampling variation into account in 
the analysis. Our contribution goes beyond SA and is 
relevant for any studies combining cluster analysis with 
regressions.

Data reduction risk
Before considering the impact of sampling error on 
sequence typology inference, we consider in more detail 
the uncertainty involved in building the typology. SA 
often aims to reduce the large diversity of sequences into 
a few ideal types, while losing as little information as pos-
sible. However, this data reduction might raise two kinds 
of issues that are again closely interrelated.

First, cluster analysis always produces a typology, and 
therefore imposes a structure on the data even if the 
data is not structured into subgroups [20, 21]. When 
there is a clear clustering structure in the data, i.e., when 
the observed sequences are grouped into clearly dis-
tinguished types, we expect the clustering procedure 
to recover, precisely enough, the underlying cluster-
ing structure. In this case, there should be little doubt 
about whether a given sequence belong to a given type 
or another. On the contrary, when the observed data is 
unstructured, i.e., when there is a lot of diversity across 
sequences with no homogeneity apparent anywhere, the 
grouping produced by the clustering, and the associated 
assignment of sequences to cluster, might be uncertain. 
In such context, small variations of the data could lead to 
very different typologies.

Second, once the typology has been created, one com-
monly assumes that all individuals in a given cluster are 
perfectly represented by their corresponding typical tra-
jectory. As a result, all the remaining within-cluster vari-
ation is ignored. However, while some sequences might 
be close to their cluster centre, and therefore well-repre-
sented by the centre, others may be far away and poorly 
represented [7, 15]. Such data reduction is a strength, as 
many real-world problems can be simplified by uncover-
ing fundamental structures, but it is also a risk. Indeed, 
one should not simplify the relevant variation of the tra-
jectories. In such case, an excessive simplification could 
lead to a wrong description of the trajectories. Further-
more, it raises additional risks when the typology is 
used in subsequent analysis, such as regression models. 
Indeed, cluster analysis might ignore exactly the relevant 
variation to understand the relationships between trajec-
tories and key covariates of interest. In such cases, the 
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use of the typology in subsequent regressions might lead 
to wrong conclusions [7, 14–16].

Several tools have been developed to handle these two 
methodological issues. First, cluster quality indices are 
commonly used tools to validate a SA typology. They 
measure the quality of a partition, usually by relating the 
within-cluster homogeneity and/or the between-cluster 
separation [7]. They are useful to evaluate the statistical 
quality of a partition and allow comparing results from 
different clustering algorithms. However, these cluster 
quality indices lack clear interpretation thresholds [22, 
23]. Furthermore, they only indirectly inform on the 
underlying clustering structure of the data, i.e., whether 
the data is organized in subgroups or not. Testing the 
obtained typology against clustering applied on non-
clustered data generated by a null model provides such 
interpretation thresholds and allows a better inference on 
the quality of the observed typology [17].

Second, several authors have advocated for the use of 
other clustering approaches, including fuzzy cluster-
ing [24] and the “representativeness” approach [14]. In 
these methods, sequences may belong to more than one 
cluster, with gradual membership strength. It allows a 
better description of sequences that can be understood 
as a mixture of several ideal types. Those sequences are 
necessarily assigned to a single type with “traditional” 
crisp clustering such as Ward’s method or Partitioning 
Around Medoids. In addition, it might better capture the 
within-cluster variation [24]. The “representativeness” 
approach further allows describing complete outliers, 
i.e., sequences that are far from any types. According to 
the simulations presented in Helske et al. [14], these two 
approaches provide better estimates of the relationships 
between sequence typologies and dependent or inde-
pendent variables, as they better account for the imper-
fect cluster assignment of individual sequences.

Finally, Unterlerchner et al. [16] proposed a procedure 
to measure the potential impact of the simplification con-
ducted by cluster analysis on subsequent analyses. More 
precisely, the method measures the share of a statistical 
relationship between sequences and covariates without 
prior clustering, which is accounted for by the cluster-
ing. When the relationship is poorly accounted for by the 
clustering, one should be careful about the interpretation 
of the subsequent results.

Previous research has therefore focused on the issues 
stemming from the simplification of the data induced by 
the clustering itself. The proposals allow either measur-
ing the extent of the simplification issue using cluster 
quality indices, or advocate for the use of other cluster-
ing approaches such as fuzzy clustering. However, none 
of these works aimed to address the issue of inference of 
the typology. The typology is ordinarily estimated using 

a sample of the population, and its generalization to the 
population is subject to error. In other words, the typol-
ogy might be sample-dependent, meaning that a different 
sample could lead to a different typology.

Sampling uncertainty
The proposals and developments introduced above 
emphasize that the typology should not be blindly relied 
upon, as the simplification may lead to wrong conclu-
sions. These risks should be understood at two levels. 
First, one might draw wrong conclusions on the descrip-
tive level by incorrectly summarizing the observed pro-
cesses, because of excessive simplification or imprecise 
cluster assignment. Second, it might affect subsequent 
analyses making use of the typology.

However, these developments do not consider the sam-
pling error. As in most statistical analysis, a given result 
may be specific to a given sample, and poorly represent 
the properties of the underlying population. One clear 
way to illustrate this—experienced by many research-
ers—is that if the sample is modified (by for instance 
removing corrupted data or adding new observations), 
chances are that the resulting typology will look some-
what different. Such changes in the typology may be 
explained by several reasons, which are closely related to 
the issues presented earlier. First, we can expect bigger 
changes in the typology when the data does not contain 
a clear clustering structure. Indeed, in such cases, sev-
eral clustering solutions might describe the underlying 
structure equally well and the best solution could differ 
between samples resulting in different typologies. Sec-
ond, when individual sequence assignment to clusters 
is dubious, this assignment is likely to change between 
samples. This is typically the case for sequences that can 
be seen as a mixture of ideal types. Third, and most obvi-
ously, a new sample will include new observations, which 
may lead to the estimation of a completely different 
typology. This is particularly expected when using small 
samples, as additional observations will have a stronger 
influence in this case.

This discussion highlights two points that are com-
mon to many statistical methods. The estimation process 
depends on the sample. In such context, we can expect 
more reliable estimation when the underlying structure 
is strong. Furthermore, we can also be more confident 
when using larger samples, as we have a more complete 
dataset. This is akin to the estimation of the population 
mean using the sample mean. In this case, the standard 
error depends on the variance (which can be linked to 
underlying clustering structure) and the sample size.

Sampling error raises further issues when the typol-
ogy is used in subsequent regressions. All the meth-
odological improvements previously mentioned still 



Page 4 of 20Roth et al. BMC Medical Research Methodology          (2024) 24:303 

handle typologies as measures, i.e., singular realization 
of the partition of interest (even if their validity is then 
investigated). However, one can argue that they should 
be handled as estimates, i.e., random realizations of the 
partition of interest that can be reproduced to derive the 
distribution of instructive quantities. This recognizes 
the fact that exhaustive information is never available to 
derive the typology. One should therefore consider the 
estimation error of the typology in subsequent analysis to 
draw correct inference.

While not common in SA, several tools were proposed 
in the data mining literature. These propositions gen-
erally rely on the use of different kinds of resampling 
schemes to account for sample variation of the results. 
Monti [25] proposed a clustering procedure aiming 
to avoid sample dependence of the resulting typology, 
called consensus clustering. The method starts by cre-
ating several typologies of the same underlying popula-
tion in many subsamples. Then, it looks for a consensus 
clustering between these typologies. While the method 
supports the creation of a robust typology, it does not 
allow considering the typology as estimate in subsequent 
regressions.

Other authors have proposed to measure the stability 
of the clustering across multiple subsamples of the data 
[26, 27]. Stability measures provide an estimate of the 
sample dependence of the results, and indirectly, of the 
underlying clustering strength of the data. For this rea-
son, they are also used for cluster validation, as a com-
plement to other validation techniques [28]. Generally 
speaking, these stability measures are estimated as fol-
lows [29]:

1. Cluster the original data to obtain the typology to be 
evaluated.

2. Resample or alter the original data.
3. Cluster the new sample using the same clustering 

method as in step 1.
4. Repeat steps 2 and 3 many times.
5. Measure the variations of the clusterings between the 

data resamples.

Several propositions were made, which differ accord-
ing to the resampling procedure (bootstrap, data jitter-
ing, etc.), and the measurement of the variation of the 
clustering (see Liu et  al. [30] for a review). In this arti-
cle, we rely on the method proposed by Hennig [26] 
called “Cluster-wise stability assessment”. This method 
primarily uses random sampling with replacement from 
the data, i.e., bootstrapping, to replicate the original 
sample as no true underlying distribution is known. The 
strength of the approach is to estimate the stability sepa-
rately for each type. Indeed, while some types might be 

very well-defined in the data, others may be more dubi-
ous. This is achieved by measuring the number of times 
a given type was recovered in the bootstraps using the 
Jaccard coefficient [31]. A type is considered as recovered 
when the same observations were regularly clustered 
together in the bootstrap clusterings.

The aim of this paper is to extend this approach to 
the use of the typology in the subsequent step of tradi-
tional SA, i.e., to assess the robustness of the relationship 
between sequence patterns and covariates. This assess-
ment delivers new model diagnostics and alternative 
estimates for an association of interest. We focus on the 
situation where the clustering is used as dependent vari-
able in a regression.

The content of the article is outlined as follows. We 
begin by presenting an illustrative application, which 
serves as case study throughout this paper. A classical 
SA framework used to construct a typology of trajecto-
ries on this illustration data and estimate its association 
with covariates is then described, implemented, and 
commented. In the Methods section, we lay out a novel 
approach to assess the robustness of typology-based 
inference studies in two steps. First, a bootstrap pro-
cedure to reproduce the typology over an ensemble of 
perturbed datasets. This step is common with previous 
works on the evaluation of cluster-wise stability. Second, 
a complementary multilevel model to pool estimates 
obtained from the typology replications. In the Results 
section, we show how implementing this methodology 
allows to revisit the illustrative application and to derive 
new quantities, which inform on the impact of sam-
pling uncertainty on the original results. We also con-
sider a range of possible relationships between clusters 
and covariates to further clarify the significance of the 
methods. Finally, we demonstrate how our contribution 
permits to gauge the analysis’ reproducibility and contex-
tualise it inside a general cluster validation framework.

Illustrative application
Problem setting
The presentation of the methodological developments 
is illustrated by applying them to the study of diabetic 
patients’ healthcare utilisation trajectories. Diabe-
tes is one of the most common chronic diseases of our 
times, with an estimated global prevalence of 10.5% 
among 20–79 years old persons in 2021 [32]. It is con-
sidered an ambulatory care sensitive condition (ACSC), 
meaning that adverse and costly events such as emer-
gencies and hospitalisations for diabetes complications 
can be avoided by high-quality primary care [33–35]. 
We are interested in studying how compliance with 
recommended screening processes is related to subse-
quent healthcare utilisation patterns. For illustration 
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purposes, we concentrate our investigation on regular 
lipid screening.

Studying healthcare utilisation patterns as longitudi-
nal processes provides a holistic perspective allowing to 
situate each healthcare event within the whole trajectory 
[13]. This is key as, for instance, a hospitalisation should 
be interpreted differently if it occurs repeatedly over 
time. Moreover, healthcare utilisation trajectories can 
in some cases be modelled as a succession of categorical 
states and hence, studied with SA methods. To the best of 
our knowledge, two previous studies have applied SA in 
the context of diabetes and health services research, with 
the aim of identifying typical care pathways and charac-
terizing the patients on each pathway [12, 36].

Study design, population and measurements
We used data from a prospective cohort study (CoDiab-
VD) of non-institutionalised adult patients with diabetes 
diagnosed for at least a year and residing in the canton 
of Vaud, Switzerland [37]. We considered the individuals 
recruited by community-based pharmacies in 2011–2012 
and followed-up yearly until 2017. This cohort included 
519 participants at baseline, out of which 428 partici-
pated to at least one follow-up. We focused on the 348 
participants with no more than two missing observations 
during the follow-up period. The data were collected by 
postal questionnaires encompassing different aspects of 
participants’ health status, diabetes care and daily life.

The trajectories of healthcare utilisation were measured 
between 2013 and 2017 by looking at self-reported emer-
gency visits, hospitalisations, and deaths (retrieved from 
registries), resulting in the following states: no utilisation, 
emergency visit, hospitalisation, emergency visit & hospi-
talisation, dead, and missing. As multiple occurrences of 
emergency visits and hospitalisations during a year were 
relatively rare (11% and 7% of those cases, respectively), 
we grouped them together with single events, thus limit-
ing the number of distinct states.

Quality of diabetes care was measured by looking at 
compliance with processes of care, which should be 
conducted yearly [38]. We looked at six processes: foot 
examination, microalbuminuria screening (from urine 
sample), lipid testing (from blood sample), influenza 
immunisation, eye examination (by an ophthalmologist), 
and glycated haemoglobin (HbA1c) measurement. For 
each of these processes individually, it was considered 
that the patient complied to the recommendations if the 
process was reported for two successive years, i.e., both 
at baseline in 2011 and in the first follow-up in 2012.

In our analysis, we controlled for a set of confound-
ing factors based on existing literature, the investiga-
tors’ domain-specific knowledge, preliminary analyses 
(not reported here) and statistical considerations [39]. 

The selected variables, detailed in Table  S1 in the Sup-
plementary Material, were all collected before the start of 
the trajectories: age category, household income, diabetes 
treatment, diabetes-related complications, and comor-
bidities. Covariates such as gender and education were 
discarded as they were associated neither with the out-
come nor with the exposure in this context.

The typology
Before presenting our methodological proposal, let us 
follow a standard SA framework to derive a typology of 
healthcare utilisation trajectories. Figure  1 presents the 
individual sequences that serve as basis for our illustra-
tive application, together with their state distribution, 
which shows the cumulative proportion of participants in 
each state at a given time point. The most frequent tra-
jectories correspond to patients reporting no emergency 
visits nor hospitalisations throughout follow-up and 
patients who died soon after inclusion in the cohort.

We used Optimal Matching as the dissimilarity meas-
ure, which focuses on duration in each state and their 
ordering [6]. As transitions from no utilisation to emer-
gency visit or hospitalisation were more common than 
to death directly, we used substitution costs based on the 
observed transition rates and set indel costs to half the 
maximum substitution costs [40]. Following Halpin [41], 
we used a maximal substitution cost between missing 
states and any other states, including other nonresponses, 
to avoid considering missing data as a factor of similarity 
between trajectories. Clustering was performed with Par-
titioning Around Medoids [42]. We selected the solution 
in three groups by looking at the best quality of parti-
tioning according to the average silhouette width and the 
Calinski-Harabasz index (CHI) [7].

Figure  2 presents the resulting typology using state 
distribution plots. The clusters identified correspond to 
individuals with “low” (n = 206; LHU cluster) and “inten-
sive” (n = 111; IHU cluster) healthcare utilisation, as well 
as those who died early in the study (n = 31; ED cluster). 
The largest cluster contains trajectories congruent with 
a diabetes under control, and the two others feature 
high levels of adverse healthcare events. Figure S2 in the 
Appendix shows the most representative sequences in 
each cluster.

Association study
Table 1 describes the variables from our illustrative appli-
cation, for the whole sample and by cluster. We picked as 
case study the association between compliance with lipid 
screening recommendations and subsequent healthcare 
utilisation patterns, controlling for known confound-
ers. However, the same reasoning and methods could be 
applied to any covariate.
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To investigate such relationship, one generally esti-
mates regression models specifying the typology 
(through cluster membership) as the dependent variable. 
This can be achieved either using multinomial regres-
sion or a set of logistic regressions. We rely on the second 
approach, where a separate logistic regression is used to 
estimate the probability of belonging to each cluster ver-
sus any other. By doing so, coefficients for a specific clus-
ter do not directly depend on the coefficients estimated 
for the other clusters, which will be key for assessing 
their robustness thereafter. Indeed, our proposed method 
focuses on characterising the data at the cluster level, and 
thus, emphasizing the attributes of individuals in that 
specific cluster compared to the rest of the sample.1

Figure 3 presents the average marginal effects (AMEs) 
of the multivariable logistic regressions, which measure 
the expected change in probability of belonging to the 

trajectory group for a change in the level of a variable. 
The numerical estimates are provided in Supplementary 
Table S3. There were less than 2% missing values (n = 6) 
in the regression models overall, so the corresponding 
individuals were ignored. We rely on AMEs here for two 
reasons. First, they can be interpreted on the probability 
scale, and are therefore easier to comprehend. Second, 
they can be compared across subsamples and studies, 
which is not the case for the logistic regressions’ coeffi-
cients or odds ratios [43].

To avoid overloading the illustration, we focus on the 
probability to be in the “low” healthcare utilisation trajec-
tory group against any other. Any other combination of 
clusters is possible, as demonstrated with further analy-
ses, and the procedure is alike. Thus, our main quantity 
of interest is 0.271 (95% CI 0.066 to 0.476), which rep-
resents the expected change in probability of reporting 
low healthcare utilisation during follow-up for diabetic 
patients who complied with lipid screening recommen-
dations, controlling for known confounders. These values 
indicate evidence towards a positive effect of regular lipid 
testing on subsequent healthcare utilisation patterns.

Fig. 1 Exploratory sequence analysis for the 348 trajectories of healthcare utilisation. X‑axis represents the five years of follow‑up (2013 – 2017). 
Top left is the state distribution over time. Top right are the 10 most frequent sequences and how often they occurred. Bottom left are all individual 
sequences ordered

1 For instance, rather than looking at the association between regular lipid 
testing and general cluster membership, we centre our analysis on a specific 
cluster and investigate how it is characterised by previous lipid testing com-
pliance.
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However, this inference does not account for the sam-
pling error, which could impact the results’ reliability. 
Indeed, as introduced earlier, the typology is estimated 
based on the available sample, and the uncertainty 
involved in the estimation has carry-over effects on the 
subsequent use of the typology in a regression model, 
especially if the sample is small as is the case here. Next, 
we detail how resampling from the data allows to assess 
the robustness of the regression results and to derive new 
quantities that more adequately account for the sampling 
variation and its impact on a standard SA framework.

Methods
Bootstrap replicates of the typology
Building on the framework introduced by Hennig [26], 
the proposed method relies on non-parametric boot-
strapping to account for the degree of uncertainty 
involved in the clustering procedure and the associated 
regression models. The bootstrap samples are used to 
derive new partitions that can be seen as independent 

and identically distributed random variables in the 
space of all partitions, with respect to the original sam-
ple and the cluster algorithm [44]. Then, new quantities 
are estimated based on these replications of the typol-
ogy, thus allowing to assess the robustness of the original 
regressions.

We call our proposed method the Robustness Assess-
ment of Regressions using Cluster Analysis Typologies 
(RAR CAT ). Specifically, this procedure works as follows:

1. A random sample with replacement is drawn from 
the data.

2. The bootstrap sample is clustered applying the exact 
same clustering procedure as the one used in the 
original analysis, which implies using the same dis-
tance measure, cluster algorithm, and method to 
determine the number of clusters.

3. A separate logistic regression predicting membership 
probability in each group is estimated.

Fig. 2 State distribution plots for the three clusters identified. X‑axis represents the five years of follow‑up (2013—2017). Top left is the low 
(intermittent) healthcare utilisation cluster (n = 206). Top right is the high (intensive) healthcare utilisation cluster (n = 111). Bottom left is the early 
death cluster (n = 31)
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4. The AME of each covariate on the probability to be 
assigned to a given type is retrieved for all sequences 
belonging to this type.

5. These steps are repeated N times, with N typically 
large.

6. The individual AMEs from step 4 are pooled using a 
multilevel modelling framework.

As is customary, the bootstrap samples drawn in step 1 
have the same size as the original sample. Individuals can 

Table 1 Demographic, socioeconomic, health characteristics and processes of care indicators of study participants, by cluster

Legend: Bivariate relationships are evaluated with chi-squared tests for categorical variables and ANOVA for numerical variables. LHU cluster is low healthcare 
utilisation, IHU is intensive healthcare utilisation, ED is early death. OAD stands for oral antidiabetic medication. A star (*) indicates that the variable is selected in the 
regression models

Whole sample LHU IHU ED p-value

Total N 348 206 111 31

% 100 59.2 31.9 8.9

Age* (years) <65 48.9% 55.3% 45.9% 16.1% <0.001

65–74 37.1% 35.4% 38.7% 41.9%

>=75 14.1% 9.2% 15.3% 41.9%

Sex Female 36.8% 38.3% 37.8% 22.6% 0.228

Male 63.2% 61.7% 62.2% 77.4%

Educational level Basic 14.9% 15% 16.2% 9.7% 0.963

Secondary 57.5% 56.8% 57.7% 61.3%

Higher 25.9% 26.7% 24.3% 25.8%

Other 1.7% 1.5% 1.8% 3.2%

Household income* Low 17.5% 15% 16.2% 38.7% 0.042

Lower‑middle 26.1% 26.7% 27.9% 16.1%

Upper‑middle 28.4% 30.1% 27% 22.6%

High 17% 19.4% 15.3% 6.5%

Unknown 10.9% 8.7% 13.5% 16.1%

Diabetes treatment* OAD 52% 56.3% 47.7% 38.7% 0.186

Insulin 20.4% 18.4% 20.7% 32.3%

Both 26.7% 24.3% 31.5% 25.8%

missing 0.9% 1% 0% 3.2%

Diabetes-related complications* (N) Mean 0.7 0.6 0.8 1 0.014

SD 0.9 0.9 1.1 0.8

Comorbidities* (N) Mean 1.9 1.7 2.1 2.3 0.003

SD 1.3 1.2 1.5 1.4

Foot examination Yes 56.9% 54.4% 61.3% 58.1% 0.493

No 43.1% 45.6% 38.7% 41.9%

Microalbuminuria screening Yes 62.9% 66% 60.4% 51.6% 0.571

No 29% 26.7% 30.6% 38.7%

Unknown 8% 7.3% 9% 9.7%

Lipid testing* Yes 92.5% 95.6% 88.2% 87.1% 0.022

No 6.6% 3.4% 10.8% 12.9%

missing 0.9% 1% 0.9% 0%

Influenza immunisation Yes 60.6% 58.3% 64% 64.5% 0.482

No 39.1% 41.7% 36% 32.3%

missing 0.3% 0% 0% 3.2%

Eye examination Yes 89.4% 87.4% 91.9% 93.5% 0.225

No 10.1% 12.1% 8.1% 3.3%

missing 0.6% 0.5% 0% 3.3%

HbA1c measurement Yes 82.2% 84% 80.2% 77.4% 0.542

No 4.3% 3.4% 4.5% 9.7%

Unknown 13.5% 12.6% 15.3% 12.9%
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appear more than once in a bootstrap sample, and the 
average number of distinct observations is approximately 
63.2% [45].

Hennig [26] proposed to use the new partitions derived 
in step 2 to evaluate cluster-wise stability by measuring 
the quality of preservation of clustering solutions across 
perturbed datasets through average Jaccard similarities. 
We go one step further and use the bootstrap partitions 
to estimate each time new regression models replicating 
the original ones. The form of the regression equations 
stays identical across bootstraps, with the same control-
ling factors (if applicable) and only the cluster member-
ship variable changing depending on the new partitions.

Figure  4 outlines the first steps of RAR CAT  with a 
toy example of six trajectories (S1 to S6, the x-axis rep-
resenting the time alike the years in Fig. 1 for instance). 
The upper part – above the dotted line – portrays the 
original analysis. The six sequences are clustered in three 
groups, which mirror the three trajectory groups from 
our illustrative application. The letters a, b and c denote 
the results from three logistic regressions to estimate the 
relationship between a covariate of interest (depicted as 
blood screening) and the typology. The lower part por-
trays two bootstrap replications of the analysis. In both 
bootstrap samples, one sequence is not drawn, and one 
sequence is drawn twice. This translates into two new 
typologies.

The typology in each bootstrap sample should be 
derived with the same procedure as the one originally 

applied. This implies using the same distance matrix, 
cluster algorithm, and the same method to determine 
the number of groups K [26]. The number of groups K 
deserves a special attention. If we consider that this is a 
fixed property, defined a priori or theoretically set, we 
can use the same K value in each bootstrap. However, 
if we consider that K is estimated from the data, for 
instance by maximizing a cluster quality index such as 
the CHI, then we should further consider the estimation 
error, and the associated sampling variation, stemming 
from the estimation of the number of groups. For sake 
of simplicity, we report here the results when fixing K to 
the value from the original analysis, i.e., K = 3. However, 
we also report the results when estimating the number of 
groups by maximizing the CHI in each bootstrap as an 
alternative specification of RAR CAT .

Crucially, while the first bootstrap typology in Fig.  4 
is very close to the original typology, the second one is 
rather dissimilar. Indeed, a trajectory with multiple hos-
pitalisations and emergency visits (S3) is now clustered 
together with the no utilisation trajectory. This illustrates 
a critical aspect of the method described in this section. 
The resamples can lead to new partitions that are not 
directly comparable across bootstraps. To circumvent 
this issue, the trick is to consider the regression results 
at the individual level in the bootstrap. This approach 
resembles the one used by Hennig [26], where points or 
sequences are compared in a pairwise manner between 
bootstrap replicates and the clustering to be evaluated. 

Fig. 3 Results (n = 342) from the three logistic regression models with membership to a specific cluster as the dependent variable. LHU stands 
for low healthcare utilisation, IHU for intensive healthcare utilisation and ED for early death
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We rely on the same strategy and assign the regression 
estimate—such as the AME from our illustrative appli-
cation—to every individual in a cluster. This is dem-
onstrated in Fig.  4, where each bootstrap regression is 
linked to one or two estimates, depending on the num-
ber of distinct trajectories in the corresponding cluster. 
While these estimates are the same inside a regression 
model, assigning them to individuals allows to examine 
the stability of the results across bootstraps at the indi-
vidual level. Thus, we can compare the original regres-
sion estimates to the bootstrap ones without worrying 
about cluster membership in the new samples, by cen-
tring the analysis on the original typology. This is called 
for because there is no trivial way to map clusterings 
across bootstraps.

To further illustrate this, let us consider the case of 
the two sequences S3 and S4 originally belonging to 
the middle cluster in Fig.  4. Their b, which represents 
the relevant regression estimate, will be assessed with 
the quantities b’ from the first bootstrap, which are 
unlikely to differ much due to the relative preservation 
of the clustering, and thus of the associated regression 
models, but also with the quantities a’’ and b’’ from the 

second bootstrap, which may well differ markedly. Sim-
ilarly, the robustness of a is assessed using the quanti-
ties a’ and a’’, with the former being likely closer to the 
original value than the latter. Finally, c will be assessed 
with the effects c’ and c’’, which should both stay close 
to the original value as the corresponding clusters are 
little impacted by the resampling.

In Fig.  4, five individual quantities are obtained for 
each bootstrap sample, as one sequence was missing 
from the sample each time. In practice, the regression 
results retrieved are the estimated AMEs and their 
standard errors (SEs). We focus on the AMEs and not 
the individual marginal effects to reflect the fact that 
the inference is done at the cluster level in the analysis. 
The AMEs can be interpreted here as the tendency for a 
sequence to be clustered with trajectories characterized 
by high (for positive AMEs) or low (for negative AMEs) 
rates of blood screening.

Thus, the output of this procedure for any associa-
tion with a covariate of interest is an AME matrix (and 
its SE equivalent) of dimension M x N, where M is the 
number of individuals in the original sample and N, the 
number of bootstrap replicates. If a given individual 
is sampled in a given bootstrap, the entry in the AME 

Fig. 4 Diagram illustrating the proposed bootstrap procedure
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matrix corresponds to the expected change in the prob-
ability of belonging to a certain cluster in this bootstrap 
for a change in the level of the covariate. Otherwise, if 
an individual is not sampled in a bootstrap, the corre-
sponding entry is empty.

When the values estimated in a bootstrap are close to 
the ones obtained from the original regression model, 
it implies that the corresponding clusters’ characteris-
tics are similar. This can for instance be expected for the 
first bootstrap replication in Fig.  4, but not for the sec-
ond. Furthermore, individuals who are in-between types 
are more likely to have their AMEs oscillate from one 
bootstrap to the other based on which cluster they are 
assigned to. Thus, the estimated AMEs might vary across 
bootstraps depending on the influence that the sampling 
variation has on the association of interest. In extreme 
cases, the estimated value can even be of opposite sign 
compared to the original cluster.

Next, we propose a complementary multilevel model to 
aggregate and summarize the information obtained from 
the bootstrap procedure.

Pooling effect sizes
One way to think about the bootstrap replications is as 
new studies that attempt to estimate the same effects 
each time. Thus, our objective is akin to a meta-analysis. 
In meta-analyses, quantitative information from related 
studies is synthetized by combining the study estimates 
of a particular effect of interest and producing a summary 
estimate of effect [46]. Statistical methods commonly 
used for meta-analysis are multilevel models [47, 48].

It is appropriate to apply these methods in our situa-
tion as there is an inherent nested structure in the results 
from the bootstrap procedure. Indeed, the estimated 
quantities are dependent on the bootstrap sample and 
on the individual. This can be related to a special case of 
meta-analysis, where primary studies are reporting mul-
tiple effect sizes—one per country for instance [49]. Here, 
multiple random effects are necessary to account for the 
dependency structure. Crucially, these random effects are 
not nested within one other, but rather crossed. Thus, a 
strict hierarchical model is not proper, and we implement 
instead a cross-classified random effects model [49]. In 
our setting, the crossed random factors signify that each 
effect size belongs to two dependency structures con-
jointly, the bootstrap and the individual, as is indicated in 
the model described hereafter.

This model is used to assess the robustness of an asso-
ciation between cluster membership and a covariate of 
interest. In our illustrative application, the cluster would 
be the low healthcare utilisation trajectory group and 
the covariate, regular lipid testing. Thus, we extract from 
the output of the bootstrap procedure an AME matrix of 

dimension m x N corresponding to a cluster with m < M 
individuals in the original typology.

Let Yij be the estimated AME for individual i є {1, …, 
m} in the reference cluster and bootstrap replicate j є 
{1, …, N} of the sample. The level 1 and level 2 equa-
tions are:

Level 1:

Level 2:

• aij is the intercept for individual i and bootstrap sam-
ple j.

• a00 is the overall intercept (the pooled AME).
• ui is the random effect representing the deviation 

from the overall intercept of individual i.
• vj is the random effect representing the deviation 

from the overall intercept of bootstrap sample j.
• eij is the residual error proportional to the standard 

error of Yij.

Additionally, we assume that:

• eij ~ N (0, σ2
e)

• ui ~ N (0, σ2
u)

• vj ~ N (0, σ2
v)

Lastly, all random terms are assumed to be independ-
ent. To derive the quantities of interest in these equa-
tions, a linear mixed-effects model using restricted 
maximum likelihood is fitted [50]. As it is common for 
meta-analysis, the effect sizes in this model are weighted 
depending on their SEs, which were saved during the 
bootstrap procedure [48]. These weights are specified 
as inverse-variance weights, such that the more uncer-
tainty in an effect size, the less weight it gets.

Different parameters are estimated with this model. 
First, the overall intercept fixed effect a00, which rep-
resents the pooled AME. This parameter is the mean 
change in cluster membership probability for a change 
in the level of the covariate of interest over all bootstraps 
and all individuals belonging to the reference cluster in 
the original typology. It is estimated together with its SE, 
which diminishes asymptotically as the number of boot-
strap samples N increases. Indeed, in this context, the 
SE measures the expected error of estimation related to 
the finite number of bootstraps. Previous studies have 
recommended up to 500 bootstrap replications to attain 
a satisfactory precision around the estimates (e.g., [51]). 
This also applies in our case, and we run RAR CAT  with 

(1)Yij = aij + eij

(2)aij = a00 + ui + vj



Page 12 of 20Roth et al. BMC Medical Research Methodology          (2024) 24:303 

N = 1′000 in this paper to be on the conservative side. 
Whether this number is large enough to ensure that a 
new procedure with the same settings will output similar 
values is checked in the results section.

Second, the variance components of the two random 
effects. The variance component of the bootstrap random 
effect vj is particularly important as it directly informs on 
the sampling variation and its impact on the regression 
results. It allows to construct a prediction interval (PI) for 
the value of the parameter of interest in a new sample [52]:

where:

• â00 is the estimated value of the pooled AME a00
• SE(â00) is the standard error of â00
• sv is the estimate of the between-bootstrap standard 

deviation σv.
• â00 is the estimated value of the pooled AME a00
• tN-2 is the 100(1—β

2
 ) percentile of the t distribution 

with N-2 degrees of freedom, where N is the number 
of bootstrap samples and β is usually chosen as 0.05, 
to give a 5% significance level and thus, a 95% PI.

This prediction interval informs on the variation 
across bootstraps of the estimates related to the clus-
tering and associated regression models, and thus, 
allows to assess the analysis’ results.

Concerning the individual-specific random effects ui, a 
large deviation from the overall intercept means that the 
AMEs estimated in the bootstrap procedure for a given 
individual were often divergent from AMEs for the other 
individuals assigned to the same cluster originally. It is a 
strong indication that this individual has an outlier tra-
jectory compared to the cluster central trajectories, i.e., 
either an atypical trajectory or a trajectory in-between 
types. Such individual sequences were not robustly 
assigned to a cluster, which perturbs the estimation of 
their AMEs across bootstraps. On the other hand, a 
small variance for the individual-specific random effects 
indicates a homogeneous cluster. Assuming individual-
specific random effects means that the true effect differs 
from individual to individual, with the pooled AME cor-
responding to an average individual in the cluster. Iden-
tifying individuals diverging from their cluster centre is 
typically of interest and can be achieved by looking at the 
estimated individual random effects. It allows to further 
investigate and understand the limits of the statistical 
analysis. We highlight this in our results section.

The proposed multilevel model relies on assumptions 
that are not necessarily met. Previous work indicated that 
the results are generally robust to moderate violations of 

(3)a00 ∓ tN−2 s2v + SE a00
2

these assumptions, as should be the case here [53]. We 
verify this by testing two alternative specifications of the 
model. First, the model assumes a normal distribution 
of the individual random effects. While modelling the 
variability across individuals as random around a popula-
tion average seems sensible in our situation [54], another 
option could be to avoid modelling it directly by using 
individual-specific fixed effects, which implies a com-
mon effect for each individual—with the variation in the 
estimates only due to chance [55]. Thus, the focus of the 
estimation becomes the specific individual parameters, 
whilst the variability across bootstraps remains random.

Second, in some extreme cases such as very strong 
associations, the assumption of normality of the level 
1 residuals might not be proper because the expected 
change in probability would be close to one or minus 
one. A solution is to transform the AMEs with an 
inverse hyperbolic tangent function in Eq.  (1), to make 
them unbounded [56]. The relevant quantities are then 
obtained with the inverse transform, and their SE approx-
imated with the Delta method. Such a model, identical to 
the main one apart from the transformation, is also tested 
as an alternative specification.

This whole assessment procedure was applied to our 
illustrative application. Besides the main association of 
interest, we also investigated the values obtained with 
different combinations of clusters and independent vari-
ables. This was done as further investigations to get a 
better sense of the magnitude of the multilevel model 
parameters. It also showed that RAR CAT  is easily repro-
ducible with different data applications.

The proposed method relies on bootstrap and might 
therefore suffer from the usual limitations of resampling 
methods, including in the situation of low sample size or in 
the presence of outliers. In these cases, standard bootstrap 
diagnostic tools can be used to document the potential 
impact on the results [57]. An example of such procedure 
for outlier detection is proposed as Supplementary Material.

Finally, RAR CAT ’s effectiveness may be evaluated 
through a training/testing approach. Indeed, the boot-
strap procedure simulates how the model would behave 
on new, unseen data, so the expectation is that the quan-
tities obtained from it are more robust than the origi-
nal ones in respect to out-of-sample validation. As this 
approach is treated as a potential confirmation of the one 
presented in this paper, the corresponding method and 
results are detailed as Supplementary Material.

All computational and statistical analyses were per-
formed using the software R v4.3.1, with the help of 
packages TraMineR, WeightedCluster, margins, boot, fpc 
and lme4 among others. RAR CAT  will be implemented 
and distributed into popular SA packages and publicly 
released once our work is published.
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Results
Starting from the typology identified in our illustrative 
application (Fig. 2), we used 1′000 bootstraps to evaluate 
the cluster-wise stability. Estimated Jaccard coefficients 
were 0.95 for the low utilisation cluster, 0.92 for the 
intensive utilisation cluster and 0.96 for the early deaths 
cluster. These values indicate high cluster-wise stability, 
meaning that most of the individuals belonging to any of 
the three clusters in the original partition tend to be clus-
tered together again in the bootstrap partitions.

The 1′000 bootstrap replicates of the typology were 
also used to estimate the relationships between health-
care utilisation patterns and covariates. For illustration 
purposes, we focus on the association between member-
ship to the low utilisation cluster and regular lipid test-
ing. The bootstrap procedure produces an AME matrix 
of dimension 206 × 1000, where the number of rows cor-
responds to the number of individuals assigned to the 
low healthcare utilisation cluster in the original analy-
sis. Values are missing in this matrix when a given indi-
vidual was not sampled in a given bootstrap. Figure  5 
presents the empirical distribution of these AMEs and 
Figure S4 shows their corresponding SEs.2 Considering 
the high estimated cluster-wise stability, we expect most 

individuals in the reference cluster to have the same esti-
mated AME in a bootstrap, although different values can 
occur when the original typology is not recaptured or 
when individuals are assigned to another type.

We applied the multilevel model presented in Eqs.  (1) 
and (2) to pool the results from the 1′000 bootstraps and 
produce the estimates shown in Table 2. The overall inter-
cept equals 0.233 and represents the expected change in 
cluster membership probability based on the typology 
replications for patients who complied with lipid screen-
ing recommendations, for an average bootstrap sample 
and an average patient in the original low healthcare 
utilisation cluster. It is also called the pooled AME for 
simplicity. The small SE value indicates as expected that 
there are enough bootstrap replications, and that despite 
the results’ randomness caused by the bootstrap sam-
pling, variation in the pooled AME is limited.

The standard deviation (SD) of the bootstrap random 
effect equals 0.127 (Table 2) and is of particular relevance 
for our analysis. If a new sample is drawn from the same 
underlying distribution, and a new partition constructed 
from this sample, the 95% PI for the expected change in 
cluster membership probability for regular lipid testing 
based on this new partition for individuals assigned to 
the low healthcare utilisation cluster originally is [−0.016, 
0.482] following Eq.  (3). This should be compared to 
the regression estimates in the original analysis: [0.066, 
0.476]. The pooled AME is based on a large variety of 
partitions, which implies different cluster membership 
variables, reflecting the impact that the sampling uncer-
tainty has on the regression results. Thus, the method 

Fig. 5 Density plot for 129′829 AMEs recovered from a 1′000 bootstrap procedure. The AMEs are for the association between regular lipid screening 
and cluster membership for patients belonging to the low healthcare utilisation trajectory group in the reference typology (n = 206). The dotted 
blue line corresponds to the estimated effect in the original analysis

2 Each bootstrap replication of the four analysis steps (resampling, cluster-
ing, regression modelling, retrieving the AMEs) takes just below two sec-
onds to run here, so that the whole 1′000 bootstrap procedure has a total 
computation time of about 30 min on a laptop and without parallelisation. 
Larger sample sizes will imply larger computation times, although different 
strategies can be employed to increase the efficiency of the clustering step 
(see e.g. [61]).
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uses sampling variation to evaluate the robustness of the 
original association. While it is expected that both values 
are not identical, and they are consistent with the inter-
vals here, failing to account for the sampling uncertainty 
meant that we overestimated the evidence behind the 
relationship between regular lipid testing and the low 
healthcare utilisation pattern. Indeed, unlike the original 
result, the interval obtained using RAR CAT  now includes 
the null effect. This finding is corroborated with a train-
ing/testing approach in the Supplementary Material.

In some cases, the pooled AME can be smaller in mag-
nitude than the original effect, as indicated when fitting 
the model on patients belonging to the early deaths clus-
ter in the original analysis (Table  3). Here, the pooled 
AME is larger than the original estimate, although not 
discernible from the null effect. Moreover, while there 
is a substantial amount of variation across bootstraps 
when considering the association with regular lipid test-
ing, this is reduced when considering an association that 
has a similar effect size, i.e., with being 75 years old or 
above (Table 3). In this case, the 95% PI does not contain 
the null effect, indicating evidence of an effect of age on 
the probability of belonging to the low healthcare utilisa-
tion trajectory group, even after accounting for sampling 
uncertainty.

All the pooled AMEs estimated from a 1′000 bootstrap 
procedure and their associated 95% PIs are presented in 
Table  S5. While intervals for the associations between 
low healthcare utilisation and regular lipid testing or age 
are larger compared to the intervals in Table  S3, this is 
not true for every relationship. For instance, the 95% PI 
for the association between high healthcare utilisation 
and diabetes complications at baseline (barely) excludes 
the null effect, which was not the case for its 95% con-
fidence interval (CI) counterpart from the original 
analysis. Thus, some relationships seem more immune 
to sampling uncertainty than others. The association 
between high healthcare utilisation and regular lipid 
testing is an example of an unstable association, as it is 
largely reduced in the robustness assessment.

In summary, while the RAR CAT  estimates are gener-
ally more conservative than the ones from the origi-
nal “naïve” analysis, the change ultimately depends on 
which observations are influential in estimating the 
association of interest, and if those observations are 
likely to move between clusters based on the sample at 
hand. In our illustrative application, the three regres-
sion results indicating strong evidence of an association 
(p < 0.01; Table  S3) all pass the robustness assessment 
(95% PI; Table  S5), but only the relationship between 
comorbidities and low healthcare utilisation stays virtu-
ally unchanged. Out of the five indicating weak evidence 
of an association (0.01 < p < 0.05), only two are lightly 
impacted and pass the robustness assessment.

Finally, the estimated SD of the individual/patient ran-
dom effects equals 0.03 (Table 2), which is smaller than 
the bootstrap random effects one. The fitted values for 
these random effects, which represent the deviations 
from the overall intercept, are shown in Fig.  6. Trajec-
tories with a large deviation from the central effect are 
highlighted in red and interpreted as outlier trajecto-
ries in the cluster. In our case, while trajectories corre-
sponding to fitted random effect values below 0.03 (or 
one SD away from the mean) are mostly characterized 
by no healthcare utilisation, the ones with fitted values 
above 0.03 seem to be a mixture of types and could have 
been assigned to another cluster (Fig. 7). Thus, RAR CAT  
furthermore enables the identification of borderline or 
atypical cases that may impact the robustness of the asso-
ciation between clusters and covariates. A complemen-
tary method using jackknife-after-bootstrap diagnostics 
to identify individuals exercising a particular influence on 
the estimated association is presented in the Supplemen-
tary Material.

Table 2 Results from the multilevel model fitted on the AMEs 
obtained from a 1′000 bootstrap procedure for the association 
between regular lipid screening and low healthcare utilisation, 
with the original analysis for comparison

Original analysis AME 0.271

SE 0.105

Overall intercept fixed effect Estimate 0.233

SE 0.005

Patient random effect SD 0.03

Bootstrap random effect SD 0.127

Table 3 Further results from the multilevel models based on a 
1’000 bootstrap procedure, with original values for comparison

Early deaths as reference cluster

Original analysis AME -0.049

SE 0.061

Overall intercept fixed effect Estimate ‑0.056

SE 0.002

Patient random effect SD 0.005

Bootstrap random effect SD 0.071

Association with being 75 years old or above

Original analysis AME -0.268

SE 0.079

Overall intercept fixed effect Estimate ‑0.24

SE 0.003

Patient random effect SD 0.022

Bootstrap random effect SD 0.089
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Alternative specifications
We revisit as alternative specifications of the method 
three assumptions made when assessing the robustness 
of the association of interest. First, the patient-specific 
deviations from the overall intercept were modelled as 
random effects to express that each individual can have 
a different underlying true effect. The estimated distri-
bution of these random effects shows many values close 

to the zero mean and a few diverging values (Fig. 6). As 
already discussed, another option is to model the indi-
vidual variations as fixed effects, where no assumption is 
made on their distribution. Table 4 presents the impact of 
this change on the multilevel regression, which was esti-
mated on the same set of AMEs as before. Compared to 
the results in Table 2, the main estimate, i.e., the pooled 

Fig. 6 Fitted random effect values from the multilevel model. On the left is the histogram for the 206 patient random effects and on the right, 
the histogram for the 1′000 bootstrap random effects. The coefficients highlighted in red correspond to “outlier trajectories” and the ones 
highlighted in green, to “central trajectories”

Fig. 7 Trajectories from the low healthcare utilisation cluster (n = 206). At the top are patients with fitted random effect values close to zero 
(ordered by magnitude). At the bottom are patients with fitted random effect values far from the average. They indeed appear to be in‑between 
this type and the high healthcare utilisation cluster
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AME, is slightly increased. However, the 95% PI for a new 
bootstrap sample still contains the null effect.

Second, the original analysis fitted a linear multilevel 
model on the AMEs from the bootstrap procedure. 
However, these are bounded so the model might not be 
proper in certain extreme cases. An inverse hyperbolic 
tangent transformation applied on the AMEs circumvent 
this issue. Table  4 shows the quantities estimated with 
such a model. As expected, they are close to the ones 
from Table 2.

Finally, as already mentioned, RAR CAT  also allows 
to vary the optimal number of clusters obtained in each 
bootstrap replication. By doing so, we account for the 
sampling uncertainty’s impact on the estimation of the 
number of groups K from the data. The corresponding 
results are shown in Table 4. Logically, it introduces more 
variability in the typologies across bootstraps. While the 
three clusters solution was selected for most bootstrap 
samples, the two and four clusters solution were also 
chosen in some bootstrap replications based on the CHI. 
The rest of the procedure stays identical.

Results from the first two alternative specifications 
(patient-specific fixed effects and inverse hyperbolic tan-
gent transformation) are very close to the main analysis 
ones, so apart from specific situations such as peculiar 
distributions of the AMEs in the bootstrap output or 
extreme associations, we recommend going with the sim-
pler and more natural version, i.e., the main one. How-
ever, while the number of clusters was for the most part 
assumed to be fixed here for the sake of simplicity, it is 
more suitable to estimate it in each bootstrap if it was 

part of the modelling process, so we recommend consid-
ering the corresponding specification as a generalisation 
of RAR CAT .

Discussion
In this article, we proposed a new set of methods labelled 
as RAR CAT  to assess the robustness of typology-based 
inference. The novel procedure was illustrated by inves-
tigating the relationship between healthcare utilisation 
patterns and covariates of interest for diabetic patients. 
For illustration purposes, we examined primarily the 
effect of regular lipid testing on membership to the low 
healthcare utilisation cluster, controlling for known 
confounders.

At the core of the proposal is an attempt to measure the 
impact of sampling error on a standard SA framework. 
To achieve this goal, a bootstrap procedure is imple-
mented, which allows to reconstruct the clustering on an 
ensemble of datasets resampled from the same approxi-
mating distribution. The new partitions are used to assess 
the original typology by evaluating cluster-wise stability 
through average Jaccard similarities, as it was done in 
previous works (e.g., [26, 58]).

We propose to go one step further by estimating 
regression models for the association between the clus-
tering and covariates of interest for each bootstrap 
sample. Then, based on the meta-analysis concepts, the 
regression results are pooled with multilevel modelling. 
Crucially, as the quantities estimated in the bootstrap 
procedure are not directly comparable across bootstraps, 
they are considered at the individual level. The appraisal 
is then operated with reference to the original typology. It 
is therefore cluster-wise by design.

The output of the multilevel model sheds light on the 
original analysis in two key ways. First and foremost, the 
average effects and their 95% PIs based on the bootstrap 
random effects constitute new estimates for an associa-
tion of interest, which account for the sampling uncer-
tainty. Second, the individual random effects inform on 
the central and outlier trajectories in a cluster. Identifying 
trajectories that are not properly assigned is valuable in 
many situations.

Case study assessment
The illustrative application led to various findings after 
applying RAR CAT . In the main analysis, while the clus-
ter-wise stability was generally high, the 95% PI for the 
association between regular lipid testing and low health-
care utilisation during follow-up contained the null 
effect, which is in opposition with the original estimates. 
By contrast, the 95% PI for the association between being 
75 years old or above and membership to the low health-
care utilisation cluster did not contain the null effect, 

Table 4 Results from three multilevel models based on two 
1′000 bootstrap procedures for alternative specifications of the 
method, with original values for comparison

Original analysis AME 0.271

SE 0.105

Patient‑specific fixed effects

 Overall intercept fixed effect Estimate 0.245

SE 0.005

 Bootstrap random effect SD 0.127

Inverse hyperbolic tangent transformation

 Overall intercept fixed effect Estimate 0.238

SE 0.004

 Patient random effect SD 0.031

 Bootstrap random effect SD 0.136

Varying number of clusters

 Overall intercept fixed effect Estimate 0.199

SE 0.005

 Patient random effect SD 0.023

 Bootstrap random effect SD 0.134
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although it was also larger than its 95% CI counterpart. 
Other associations such as the one between diabetes 
complications and healthcare utilisation patterns did not 
suffer from the same reduction in effect sizes. This is an 
indication that, besides the impact of sampling uncer-
tainty on the clustering itself, it also has a differential 
impact on subsequent inference depending on the associ-
ation of interest. Indeed, some relationships appear more 
robust to sampling variation than others.

Coming back to the case study, evidence of regular lipid 
testing’s positive effect on avoiding future adverse health-
care events did not withstand the robustness assessment. 
We conclude that the original effect was magnified due to 
inadequate handling of sampling error in the standard SA 
framework. This led to an overconfidence in the strength 
of the association. The quantities estimated thanks to 
RAR CAT  are consistent with a previous study on the 
topic, which found no association between lipid control 
and diabetes-related hospitalisations [59].

However, several limitations may influence the find-
ings from our illustrative application. First, the study 
period was narrow, so the recommended care processes 
were only considered for the first two years. Second, we 
did not possess precise information on the reasons for 
emergency visits, hospitalisations nor deaths. Third, all 
data were self-reported, which implies a risk of recall 
bias. Fourth, even if the cohort was nearly representative 
originally [37], attrition and repeated missing observa-
tions meant that some individuals were not included in 
the analysis. For all these reasons, the results should not 
be understood beyond their usefulness as a case study.

Methodological implications
Any study that identifies a typology and uses it for subse-
quent inference can be enhanced by our methodological 
proposal. Thus, it can be applied in many situations, as 
this framework is arguably the most prevalent and fun-
damental in SA. In particular, the methods are agnostic 
on the dissimilarity measure, clustering algorithm or 
cluster quality index, so any common SA procedure can 
be used. However, the results still depend on the choice 
of clustering, and as noted by Hennig [26], an inflexible 
clustering algorithm that would yield artificially stable 
results should be avoided. Moreover, it can sometimes 
make sense to study the relationship between trajecto-
ries and covariates without going through the clustering 
step (see for instance [16]). However, whenever a sensible 
typology is the starting point, the findings’ reliability can 
be assessed with RAR CAT . Handling fuzzy clustering or 
using the typology as explanatory variable would neces-
sitate extensions of the method, which calls for further 
research.

The methodological developments led to the deriva-
tion of new quantities that are more robust to sampling 
uncertainty. Sampling uncertainty can impact an analy-
sis at different levels. First, the sample size is important 
as larger samples will reduce the sampling error. Second, 
the macro-structure of the data matters as the clustering 
is more likely to be reproduced over new samples from 
the same underlying population if there are clear and 
distinct groups, i.e., homogeneous and well-separated. 
In the opposite case, the cluster centres may vary greatly 
between samples. At the micro-level too, individual 
sequences that do not belong to any homogeneous group 
or in-between several risk being classified differently in 
each sample. These considerations highlight the sample 
dependency of the clustering. Moreover, inside the same 
clustering, this dependency does not affect every cluster 
identically.

All the above influence subsequent inference and 
its stability. Furthermore, as we saw with our illustra-
tive application, certain relationships are more at risk of 
being impacted by sampling variation than others. This 
means that removing and/or adding a few observations 
in a cluster can change the regression results in different 
ways depending on the covariate of interest. Being able to 
detect associations that are more, or less, robust to sam-
pling uncertainty is a strength of our proposal.

The bootstrap procedure is justified because the true 
data generating process is unknown. Thus, the sample on 
hand is the best approximation of the underlying popu-
lation. This has implications on the interpretation of the 
PI constructed from the multilevel model. A bootstrap 
sample can be envisioned as a potential new sample to 
validate the analysis on. The PI gives our best estimate of 
the interval in which the association of interest will fall, 
considering that the typology may change in the new 
sample. Thus, it is of great significance for assessing the 
reproducibility of the analysis.

The distributional properties of the bootstrap proce-
dure output, i.e., the AMEs for each combination of boot-
strap and individual as presented in Fig. 5, are unclear at 
this point. It can potentially impact the adequacy of fit-
ting a linear mixed-effects model to these results. We 
have already seen in Fig. 6 that the assumption of normal-
ity of the individual-specific random effects is infringed, 
as evident from the left-skewness. This is a limitation of 
RAR CAT . However, as pointed out by Schielzeth et  al. 
[53], linear mixed-effects models are robust to violations 
of distributional assumptions in many cases akin to ours.

It is possible to situate our contribution inside a wider 
cluster analysis validation framework [28]. In this con-
text, the validation data are the bootstrap samples, 
the properties to be validated are associations of the 
clusters with external variables and the validation is 
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method-based, even though the terminology can seem a 
bit confusing. Studies of this sort typically validate results 
on a separate dataset containing new observations [28]. 
To the best of our knowledge, we are the first to use boot-
strap samples to assess external associations in the con-
text of clustering. Taking inspiration from meta-analysis 
was key to achieve this aim.

Judging validation success is non-trivial [28]. In our 
case, an association of interest is considered robust to 
sampling uncertainty if the effect estimated with RAR 
CAT  provides evidence for the claim about the effect in 
the original study. This occurs when the PI based on the 
bootstrap random effects is coherent with the original CI. 
Our approach is in line with recommendations from the 
research on replication studies [60].

While our proposed method is a direct answer to a 
clear shortcoming of classical SA, its efficacy under dif-
ferent parameters still needs to be evaluated, including 
different sample sizes, clustering structures or levels of 
association. This article focuses on the theoretical sup-
port for the approach taken but its practical merit could 
be further assessed. A complementary study based on 
out-of-sample predictions is presented in the Supple-
mentary Material. It confirms the instability of the asso-
ciation found with the methodological framework we 
introduced, although the information it provides is some-
what different. Nonetheless, future research involving 
RAR CAT  with simulations or various case studies would 
strengthen our methodological development and deepen 
our understanding of its capabilities.

Conclusion
While clustering is a statistical technique that has many 
applications and is still gaining in popularity, it is also a 
challenging task with several potential pitfalls. Adding 
an inferential element when investigating relationships 
between clusters and covariates brings further challenges 
to it. Common SA studies must navigate these different 
risks. In this article, we have reviewed previous works 
proposing innovative ways to handle the data reduction 
risk involved when building a typology and using it in 
subsequent inference. Acknowledging the dearth of lit-
erature on the impact of sampling error in standard SA, 
we propose a RAR CAT  method to assess the robustness 
of regression results based on SA typologies. It is comple-
mentary to other methods that have been introduced in 
recent years to improve the reliability of SA’ every steps. 
We hope that many SA researchers will find our method-
ology useful and recommend its adoption wherever it is 
applicable. We also hope that the procedure will find an 
echo beyond the world of SA and influence future works 
aiming to use the bootstrap to validate results in complex 
statistical settings.
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