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1 Study overview and phenotype definitions 

1.1 Study motivation 

Risk tolerance, or the willingness to take risks to obtain rewards, is a fundamental parameter in 
economics, finance, and behavioral decision theory. Different measures of risk preferences have 
previously been linked to real-world behaviors such as portfolio allocation and occupational 
choice, as well as health behaviors and addiction phenotypes such as smoking, exercising, and 
alcohol and drug use1–5 Further, recent work has demonstrated the existence of a reliable general 
factor of risk preference that is generalizable both to specific and real-world risky behaviors6. 

Elucidating the determinants of individual differences in general risk tolerance is an active field of 
research3,4. General risk tolerance has been found to be moderately heritable in twin studies 
(ℎ"~30%), although heritability estimates in the literature vary, ranging from 20% to 60%2,7–9; an 
earlier study based on molecular genetic data had confirmed the heritability of the trait10. Some 
previous studies have attempted to identify specific genetic variants that are associated with 
general risk tolerance. However, most of these attempts have been conducted in relatively small 
samples with a few hundred to at most a few thousand individuals11–14; see Supplementary Table 
1. Given that the effect of any specific single nucleotide polymorphism (SNP) on a genetically 
complex trait like general risk tolerance is likely to be extremely small10,15–18, these earlier studies 
were most likely underpowered. Low statistical power not only implies a low probability to detect 
true effects, but also a high chance of finding false positives, a strong tendency to overestimate the 
effects of statistically significant variables, and a high likelihood that significant findings will have 
the wrong sign19. Accordingly, the replication record of these underpowered studies has been 
disappointing20,21. 
The purpose of this study is to investigate the molecular genetic architecture of general risk 
tolerance, adventurousness, and of a number of risky behaviors and to identify specific genetic 
variants associated with the phenotypes in well-powered genome-wide association studies 
(GWAS). Our findings could help elucidate the genetic and biological mechanisms that underlie 
individual variation in the willingness to avoid or engage in risky behavior. 

1.2 Phenotype definitions  

1.2.1 General risk tolerance 

Our main phenotype is self-reported “general risk tolerance,” defined as one’s tendency or 
willingness to take risks in general. For our discovery stage, we combine data from the UK 
Biobank and from the 23andMe cohort.  

We use the following survey question from the UK Biobank (n = 431,126): 
“Would you describe yourself as someone who takes risks? Yes / No.” 

Throughout the study all risk-related phenotypes are coded so that a higher risk tolerance is 
associated with a higher phenotype value.  For example, in the UKB “yes” is coded as 1 and “no” 
as 0. The majority of the 431,126 respondents in the UKB were only assessed once, while a subset 
of 18,102 individuals answered the survey question a second time. 15,618 of these re-assessed 
individuals gave consistent answers in both waves, while 2,484 changed their responses. When the 
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answer between the two assessments changed, we took the average response (i.e., 0.5) as the 
individual’s measure of risk tolerance. Consistent with prior research22,23, a much higher fraction 
of males (34%) than females (19%) in the UKB cohort described themselves as risk tolerant on 
the general-risk-tolerance measure (P < 1×10)*++, t-test; Supplementary Fig. 4). 

In the 23andMe cohort, our main phenotype is again self-reported “general risk tolerance.” We use 
the survey question (n = 508,782): 

“In general, people often face risks when making financial, career, or other life decisions. Overall, 
do you feel comfortable or uncomfortable taking risks? [1] Very comfortable / [2] Somewhat 
comfortable / [3] Neither comfortable nor uncomfortable / [4] Somewhat uncomfortable / [5] Very 
uncomfortable.”  
We reverse this coding for our GWAS, so that “1” is coded as the least risk-related response 
category and “5” as the most risk-related response category.  

In total, then, our full general-risk-tolerance discovery meta-analysis includes 939,908 people from 
the UK Biobank and from the 23andMe cohort. 

For our replication stage (n = 35,445), we combined 10 independent cohorts from seven studies 
with survey questions on general risk tolerance, all of which included a question similar to the one 
asked in the UKB or in Dohmen et al.4: 
“How do you see yourself: are you generally a person who is fully prepared to take risks or do 
you try to avoid taking risks? Please tick a box on the scale, where the value 0 means: ‘not at all 
willing to take risks’ and the value 10 means: ‘very willing to take risks’.” 

In Supplementary Table 5 we report an overview of the cohorts included in our study. 
Supplementary Table 4 lists the detailed general-risk-tolerance survey questions available in each 
cohort. The UKB is the only cohort that asks the general-risk-tolerance question in a binary 
fashion; the 23andMe cohort asked this question on a 5-point Likert scale, and all seven replication 
cohorts asked their participants this question on a 10- or 11-point Likert scale. All of the replication 
cohorts are cross-sectional, and only the UKB includes more than one measurement over time for 
some individuals. 
As we further describe in Supplementary Note sections 3.3 and 7.4, we used bivariate LD Score 
Regression24 to estimate the genetic correlation between: (1) the UK Biobank risk-tolerance 
GWAS and the 23andMe risk-tolerance GWAS; (2) the UK Biobank risk-tolerance GWAS and 
the replication GWAS; (3) the 23andMe risk-tolerance GWAS and the replication GWAS; and (4) 
the full discovery GWAS of general risk tolerance (UK Biobank + 23andMe) and the replication 
GWAS. For the last three correlations, we see significant, moderately high, and positive genetic 
correlations between 0.75 and 0.83 that are indistinguishable from unity. However, for (1), we find 
a genetic correlation that is distinguishable from unity (,-= 0.767, SE = 0.021). Though this genetic 
correlation is lower than expected, it is high enough to justify the meta-analysis of the UK Biobank 
and 23andMe summary statistics for general risk tolerance that we perform as our discovery 
GWAS18. However, the imperfect correlation points to some degree of heterogeneity across the 
cohorts, which may attenuate the genetic signals we can observe in our study. 
We note that there are various alternative ways to measure risk tolerance, including behavioral 
experiments with real stakes25, hypothetical choices1, and survey questions25. The phenotypic 
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correlation between these measures is typically moderate2,4,26, although correcting for 
measurement error substantially increases these correlations2,26. 

Our approach of using survey measures of general risk tolerance has several advantages. First, 
these measures have been shown to correlate with a wide range of risky behaviors such as 
investments in stocks, active sports, self-employment, and smoking, even after controlling for age, 
sex, education, wealth, and income1,2,4,26. Thus, these survey measures capture an important 
dimension of individual differences. There is evidence that measures of general risk tolerance are 
good all-around predictors of risky behavior and perform better in this respect than more specific 
survey measures of risk tolerance4. Second, survey questions of general risk tolerance are cheap 
and easy to collect and have been added to numerous questionnaires, including the UKB, thus 
allowing us to reach a large enough sample size to conduct a well-powered GWAS.  
Although general risk tolerance may be closely related to some psychological measures of 
personality such as extraversion, novelty seeking, or sensation seeking, these constructs are not 
identical. For this reason, personality measures were not included in our main GWAS of general 
risk tolerance, but below we study the predictive power of a polygenic score of general risk 
tolerance for several of these psychological measures of personality, as well as the genetic 
correlation between general risk tolerance and some of these measures.  
We also performed supplementary GWAS for adventurousness, four risky behaviors in the UK 
Biobank (automobile speeding propensity, drinks per week, ever smoker, and number of sexual 
partners), and the first principal component of these four risky behaviors. Moving forward, we 
refer to the main GWAS of general risk tolerance as our “primary GWAS” and the GWAS of these 
additional six phenotypes as our “supplementary GWAS.”  

1.2.2 Adventurousness  

We also performed a GWAS of adventurousness, since this phenotype is known to be related to 
risk-taking behavior27. For this GWAS, we use only summary statistics from the 23andMe cohort, 
and we use the following survey question (n = 557,923): 

“If forced to choose, would you consider yourself to be more cautious or more adventurous? [1] 
Very cautious / [2] Somewhat cautious / [3] Neither / [4] Somewhat adventurous / [5] Very 
adventurous.” 
We maintain this coding, where “1” is coded as the least risk-related response category and “5” as 
the most risk-related response category.  

1.2.3 Other supplementary UKB Risky Behaviors 

We also conducted GWAS of four self-reported risky behaviors in the UKB. Our selection strategy 
for these phenotypes was twofold. As a first step, we chose a set of potential GWAS phenotypes 
by searching the UKB database for risky behaviors across various domains. The risky behaviors 
we originally considered included automobile speeding propensity, use of sun protection, age of 
first sexual intercourse, number of lifetime sexual partners, teenage conception (females only), as 
well as whether an individual was ever a tobacco smoker, whether an individual is a former tobacco 
smoker, age of tobacco smoking onset, number of cigarettes per day. We also considered whether 
an individual was ever an alcohol drinker, whether an individual is a current alcohol drinker, 
whether an individual is an excessive alcohol drinker, and number of drinks per day. (Ultimately, 
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we decided not to retain the use of sun protection in our main analyses, because there was no 
significant genetic correlation between this phenotype and the preliminary results from our GWAS 
of general risk tolerance using the first release of UKB data (,- 	= 	0.025, P value = 0.701, as 
estimated using bivariate LD Score regression).)  
Our decision to consider these phenotypes for inclusion in our study builds on previous studies 
from various disciplines showing that measures of risk tolerance correlate with a range of risky 
behaviors across various domains. For example, economists tend to think of risky behaviors such 
as drinking, smoking, or fast driving as choices associated with uncertain schedules of benefits 
and costs, and that should thus correlate with risk tolerance. Consistent with this perspective, 
empirical studies have documented that risk tolerance correlates positively with such risky 
behaviors1–5,28. However, we highlight that epidemiologists, psychologists and public health 
researchers typically view smoking and drinking as addiction phenotypes and correlates of mental 
health29,30. Addictive behaviors such as heavy drinking have been shown to co-occur with a 
disinhibited personality style (i.e., a personality style associated with behavioral disinhibition, 
antisocial behavior, and sexual promiscuity), conduct disorder (e.g., rule breaking, criminality, and 
reckless driving), and attention deficit hyperactivity disorder (ADHD). The co-occurrence of these 
traits seems to be partly due to a highly heritable latent factor that psychologists call 
“externalizing”31–34. Thus, the drinking and smoking phenotypes we considered are likely to 
capture both normal-range variation in risk tolerance among people and addictive or externalizing 
behaviors. Because we are primarily interested in drinking and smoking due to their close 
relationship to risk tolerance, we refer to these phenotypes as “risky behaviors” in most instances 
in the main text and in the rest of this Supplementary Notea. Nonetheless, when interpreting our 
results it should be kept in mind that both drinking and smoking are also addiction or externalizing 
phenotypes (for example, the positive genetic correlation we find between risk tolerance and drinks 
per week could conceivably reflect a correlation between risk tolerance and the addiction or 
externalizing component, rather than the risk tolerance component, of drinks per week). 
As a second step in our phenotype selection process, we selected just one phenotype in each 
domain of risky behavior (i.e., driving behavior, drinking behavior, smoking behavior, and sexual 
behavior). To do so, we prioritized: 1) phenotypes available in the entire UKB sample, since our 
general-risk-tolerance phenotype is defined for everyone in the UKB sample; 2) phenotypes that 
had been previously explored in other published GWAS; and 3) phenotypes which showed a high 
phenotypic correlation with our main general-risk-tolerance phenotype in the first release of the 
UKB data (this is the data we had access to when deciding which phenotypes to select). If not 
reported in the text below, these correlations from the first release of the UKB are available upon 
request, although the differences in the correlations between the first and full release are small. For 
a list of the phenotypic correlations between the selected phenotypes in the full release of the UKB, 
see Supplementary Table 8. Below we highlight how the phenotypes in each domain of risky 
behavior were selected and are defined. 

Automobile speeding propensity: Automobile speeding propensity is the only phenotype available 
that measures risky driving behavior in the UKB; its phenotypic correlation with general risk 
tolerance in the first release of the UKB is 0.164. Respondents were asked, “How often do you 
drive faster than the speed limit on the motorway?” Response options include: 1) Never/rarely; 2) 
Sometimes; 3) Often; 4) Most of the time; and 5) Do not drive on the motorway. We first dropped 
                                                             
a In the case of smoking, as we discuss below, the ever smoker measure we analyze captures smoking initiation (rather 
than smoking intensity), which may be particularly closely related to risk tolerance given the associated health risks. 
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all participants who reported not driving on the motorway, and then we normalizeda our categorical 
variable for males and females separately. In total, this GWAS includes 404,291 individuals in the 
UK Biobank. 
Drinks per week: There are several phenotype options that measure drinking behavior in the UKB. 
After considering only phenotypes that cover the entire UKB sample, we were left with two: drinks 
per week and excessive alcohol drinking. Our drinks per week measure is constructed from 
responses to a sequence of questions. First, respondents were asked how often they drink alcohol, 
and response options include 1) daily or almost daily; 2) three or four times per week; 3) once or 
twice per week; 4) one to three times per month; 5) special occasions only; and 6) never. 
Respondents who reported drinking once per week or more were asked how many glasses of 
various types of alcoholic beverages they consume per week. We used the sum of all alcoholic 
drinks per week as our drinks per week phenotype for these respondents. Respondents who 
reported drinking less than once per week (one to three times per month or on special occasions 
only) were asked how many glasses of various types of alcoholic beverages they consume per 
month.  For these respondents, we added the total number of drinks per month and divided by 4 to 
arrive at an approximated number of drinks per week. Respondents who reported never drinking 
were coded as 0.  
For the excessive alcohol drinking phenotype, we use current UK Chief Medical Officer drinking 
guidelinesb to code respondents who drink 14 or fewer drinks per week as 0 and more than 14 
drinks per week as 1. Our drinks per week phenotype had a higher phenotypic correlation with 
general risk tolerance in the first release of the UKB (0.139) than did our excessive alcohol 
drinking phenotype (0.074); further, drinks per week is a consistent phenotype studied in the 
alcohol GWAS literature. We therefore use this drinks per week phenotype as our final drinking 
behavior GWAS phenotype. In total, this GWAS includes 414,343 individuals in the UK Biobank. 

Ever smoker: There are several potential measures of smoking behavior in the UKB.  These 
include: 1) ever-tobacco smoker status; 2) former tobacco smoker status (among ever-tobacco 
smokers); 3) age of tobacco smoking onset (among ever-tobacco smokers); and 4) number of 
cigarettes per day. Because former tobacco smoker status and age of tobacco smoking onset were 
measured only for individuals who had ever been tobacco smokers, they are not defined for the 
entire UKB sample, and we thus did not select these phenotypes.   

For our remaining possibilities, we coded ever-tobacco smoker status as 1 if a respondent reported 
that they were a current or previous smoker and 0 if they reported never smoking or only smoking 
once or twice. We coded cigarettes per day as 0 if ever-smoking status was also 0; otherwise, we 
used the maximum number of reported past or current cigarettes (or pipes/cigars) consumed per 
day, normalized separately for males and females. Our cigarettes per day phenotype had a slightly 
higher phenotypic correlation with general risk tolerance in the first release of the UKB (0.098) 
than ever-smoker status (0.092). However, we concluded that the consistency of the ever smoker 
phenotype with previous GWAS literature overrides this slightly higher phenotypic correlation, 
and we therefore use this ever smoker phenotype as our final smoking behavior GWAS phenotype.   
For our GWAS of ever smoker, we meta-analyzed the summary statistics from the UKB GWAS 
with those from the Tobacco, Alcohol and Genetics (TAG) Consortium35  (the TAG consortium 
                                                             
a The normalized variable is the inverse normal cumulative distribution function (CDF) of the observations’ percentile 
ranks. 
b https://www.drinkaware.co.uk/alcohol-facts/alcoholic-drinks-units/latest-uk-alcohol-unit-guidance/. 
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refers to the ever smoker phenotype as “smoking initiation”). In total, this meta-analysis includes 
518,633 people from the meta-analyzed UK Biobank (444,598) and TAG (74,035) summary 
statistics. 
Number of sexual partners: The potential phenotypes for assessing risky sexual behavior in the 
UKB include teenage conception (which we coded ourselves from available phenotypes related to 
age and pregnancy), age of first sexual intercourse, and lifetime number of sexual partners. 
Because we only defined teenage conception for females, we did not pursue this phenotype. 
Lifetime number of sexual partners has a much higher phenotypic correlation with general risk 
tolerance in the first release of the UKB (0.207) than does age of first sexual intercourse.  We 
therefore use lifetime number of sexual partners (hereafter referred to as simply “number of sexual 
partners”) as our final risky sexual behavior GWAS phenotype. For this phenotype, respondents 
were asked, “About how many sexual partners have you had in your lifetime?” If respondents 
reported more than 99 lifetime sexual partners, they were asked to confirm their responses. We 
assigned a value of 0 to participants who reported having never had sex, and we again normalized 
this measure separately for males and females. In total, this GWAS includes 370,711 individuals 
in the UK Biobank. 

First PC of risky behaviors: We performed a principal component analysis (PCA) with our four 
selected risky behaviors above and obtained the first principal component (PC) (see 
Supplementary Table 23). The first PC is the linear combination of the four risky behaviors that 
has the largest possible variance (among all possible linear combinations where the squares of the 
weights on the four risky behaviors sum to one). It can be interpreted as a general factor of risky 
behavior. As we describe below, we performed a GWAS of this first PC of risky behaviors, and 
we also examined the genetic correlation between this PC and general risk tolerance (see 
Supplementary Table 9). In total, this GWAS includes 315, 894 people in the UK Biobank. 
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2 GWAS, quality control, and meta-analysis 

2.1 Overview of main GWAS 

All analyses were performed at the cohort level according to a pre-specified and publicly archived 
analysis plan36. The original analysis plan was archived on February 4, 2016. For self-reported 
general risk tolerance, the analysis plan specified that the discovery GWAS would be conducted 
in the UKB and that the replication would be carried out in a meta-analysis of all other cohorts.  

We updated the analysis plan on November 9, 2016 to include the analysis of the four risky 
behaviors and their first PC. For these phenotypes, the analysis plan specified that the GWAS 
would be conducted in the UKB. We did not attempt replication for these phenotypes. We updated 
the analysis plan a second time on July 10, 2017 to add the 23andMe cohort to the discovery 
GWAS of self-reported general risk tolerance. Two minor updates were made on August 7 and 
September 14, 2017 to specify that follow-up analyses (such as polygenic prediction) would be 
performed, whenever possible, on a meta-analysis combining the discovery and replication GWAS 
of general risk tolerance, and that we would add a GWAS of adventurousness alongside the 
primary GWAS of general risk tolerance and the other supplementary GWAS. 
Cohorts other than the UKB could join this study by first supplying descriptive statistics and 
thereafter GWAS summary statistics from GWAS of self-reported general risk tolerance in 
November 2015 and December 2015, respectively. Two additional cohorts, Army STARRS and 
VHSS, joined the study later and provided descriptive and GWAS summary statistics in late 2016. 
Summary statistics were uploaded to a central, secure server and subsequently meta-analyzed. The 
lead PI of each cohort affirmed that the results contributed to the study were based on analyses 
approved by the local Research Ethics Committee and/or Institutional Review Board responsible 
for overseeing research. All participants provided written informed consent. We also obtained the 
descriptive and GWAS summary statistics from GWAS of self-reported general risk tolerance and 
adventurousness from 23andMe in late July 2017. An overview of the participating cohorts is 
reported in Supplementary Table 5. 

The analysis plan instructed all cohorts to limit the analysis to individuals of European ancestry, 
to exclude individuals with missing covariates, to remove samples that displayed a SNP call rate 
of less than 95%, and to apply cohort-specific standard quality control filters before imputation. 
The cohort-specific standard quality control filters are reported in Supplementary Table 24. 
GWAS were limited to the 22 autosomes. The cohorts were required to provide unfiltered GWAS 
summary statistics including the following information for each SNP: chromosome and base-pair 
position, rsID, effect-coded allele, other allele, sample size per SNP, coefficient estimate (beta), 
standard error of the coefficient estimate, P value of the association uncorrected for genomic 
control, effect-coded allele frequency (EAF), imputation status, imputation quality, and Hardy-
Weinberg equilibrium exact test P value for directly genotyped markers.  

The analysis plan included power calculations assuming that 100,000 individuals in the UKB 
answered “Yes” (“cases”) to the general-risk-tolerance question, and 270,000 individuals 
answered “No” (“controls”). Under this assumption, our study would have 73% power to detect 
single nucleotide polymorphisms (SNPs) with a minor allele frequency (MAF) of 0.3 and an odds 
ratio of 1.05 with a genome-wide significance threshold of P = 5×10–8

.  
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For general risk tolerance, the final sample size for the “discovery GWAS” meta-analysis of the 
UKB and 23andMe cohorts was 939,908 individuals. Replication was performed in a meta-
analysis of 10 independent cohorts from seven studies totaling 35,445 individuals. We will 
henceforth refer to this meta-analysis of the 10 replication cohorts as the “replication GWAS.” The 
follow-up analyses we describe in the following Supplementary Note sections were performed 
with GWAS summary statistics from a meta-analysis combining the discovery and replication 
GWAS (n = 975,353), except where otherwise noted. 
For adventurousness, GWAS summary statistics from 23andMe were analyzed (n = 557,923). 

For three of the four risky behaviors, namely automobile speeding propensity (n = 404,291), drinks 
per week (n = 414,343), and number of sexual partners (n = 370,711), and for the first PC of the 
four risky behaviors (n = 315,894), GWAS were conducted in the UKB only, as specified in the 
updated analysis plan. For the remaining risky behavior, ever smoker, we meta-analyzed the 
summary statistics from the UKB GWAS (n = 444,598) with those from the Tobacco, Alcohol 
and Genetics (TAG) Consortium35 (n = 74,035), leading to a total sample size of 518,633 (the 
TAG consortium refers to the ever smoker phenotype as "smoking initiation"). 

2.2 Genotyping and imputation 

Genotypingb was performed using a range of common, commercially available genotyping arrays. 
An overview of the genotyping and imputation procedure is provided in Supplementary Table 
24. The participating cohorts were encouraged to use their standard quality-control protocols 
before imputation, as long as the applied filters satisfied the minimum requirements specified in 
the analysis plan (SNP call rate > 95%, HWE exact test P value > 10–6, MAF > 1%). For the UKB, 
different filters were used, following ref.37.  
The cohorts, except for 23andMe, Army STARRS, BASE-II, UKB, and VHSS imputed markers 
using the 1000 Genomes phase 1 reference panel (March 2012 release version 3). 23andMe used 
the 1000 Genomes phase 1 (September 2013 haplotype release). Army STARSS used the 1000 
Genomes phase 1 (August 2012 haplotype release). BASE-II used the more recent reference panel 
1000 Genomes phase 3 (October 2014 haplotype release version 5). UKB used a customized 
reference panel based on the Haplotype Reference Consortium release 1.1 combined with the 
UK10K haplotype reference panel38. VHSS used the Haplotype Reference Consortium release 
1.139. 
All genetic positions reported in this study are denoted with those of the Genome Reference 
Consortium’s human assembly 37 (GRCh37, sometimes referred to as the National Center for 
Biotechnology Information hg19). 

2.3 Association analyses 

Cohorts were encouraged to exclude individuals with SNP call rates less than 95%, with excessive 
autosomal heterozygosity, and with sex mismatch. Family-based cohorts were informed to control 
for family structure either with mixed linear modeling or with a procedure selecting only one 
individual in each pair that displayed relatedness greater than 5% in a genetic relatedness matrix. 

                                                             
b The UKB genotype data was handled with QCtool, available at http://www.well.ox.ac.uk/~gav/qctool/#overview 
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The genome-wide association analysis performed in each cohort estimated the following 
regression for each SNP, as in Okbay et al. 201616: 

(1) 34 = 5+ + 5*7894 + :;<= + ><? + ;<@ + A4, 

where 34 is the phenotype for individual C, 7894 is the number of effect-coded alleles of the SNPc, 
:;< is a vector of principal components of the genetic relatedness matrix after application of the 
pre-imputation filters described above, and >< is a vector of control variables. In all cohorts, > 
included controls for sex and birth year. In most cohorts (including the 23andMe cohort), these 
included sex, birth year, birth year squared, birth year cubed, and the interactions between sex and 
the three birth-year variables; in the UKB, these included sex-specific birth year fixed effects. ;< 
is a vector containing cohort-specific controls and technical covariates (such as dummy variables 
for genotyping array and genotyping batches) that are recommended in the analysis plan. All 
associations were performed with males and females pooled. A summary of the GWAS association 
models and control variables for each cohort is reported in Supplementary Table 2. 
In practice, the phenotype was often residualized by first regressing the phenotype on the control 
variables, and the residualized phenotype was then regressed on the genotypes. This approach 
leads to almost identical results as estimating the full regression model directly while drastically 
reducing the computation time needed for the GWAS.  

2.3.1 Linear mixed models in the UKB 

The association analyses in the UKB were performed with linear mixed models (LMM) with the 
BOLT-LMM v2.2 software40. The benefit of LMM is that the method accounts for cryptic 
relatedness and population structure, which allows the inclusion of related individuals in the 
sample, thereby yielding a larger sample size and greater statistical power. Using LMM is 
computationally intensive, and the BOLT algorithm is a new method that makes LMM analysis of 
hundreds of thousands of individuals computationally feasible. The method requires a set of SNPs 
to be included in the genetic variance component, and we included 483,680 directly genotyped bi-
allelic autosomal SNPs with MAF > 0.005 and HWE P value > 10–6. We included individuals 
based on self-reported ancestry, specifically those who self-reported to be of “white” ancestry (i.e., 
self-reported white, British, Irish, or any other white background). In addition, we limited the 
GWAS to individuals for whom the value of the first principal component of the genetic 
relatedness matrix was less than “0,” which identifies the cluster of individuals of European 
ancestry. We dropped individuals whose reported sex did not match their genetic sex, individuals 
with putative sex chromosome aneuploidy, individuals that did not pass the UKB internal genotype 
quality control, and individuals with missing values. 

2.4 Main reference panel 

The full release of the UK Biobank genetic data was imputed with haplotypes from the Haplotype 
Reference Consortium v1.1 (HRC) and the UK10K haplotype reference panel38. A 
recommendation was communicated soon after the release of the genotype data in July 2017. It 
was recommended that only SNPs available in the HRC be used for analysis, because a subset of 
                                                             
c For imputed SNPs we used best-guess data for samples that were imputed with IMPUTE266, and dosage data for 
samples that were imputed with MaCH/Minimac267. 
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variants imputed from the UK10K reference panel have wrongfully imputed genomic positions, 
while none of the HRC SNPs are affected. We therefore used the HRC v.1.1 as the reference panel 
for quality control of the GWAS summary statistics, and to determine the independence of 
significant SNPs. The following section describes our quality control of the HRC whole-genome 
sequence data (WGS) when constructing the reference panel. We will hereafter refer to the 
resulting reference panel as the “main reference panel.” 

2.4.1 Quality-control of the main reference panel 

The HRC haplotypes were downloaded from the European Genome-phenome Archive (EGA) on 
August 1, 2017. Strict internal quality control had already been applied to the WGS data, as 
described in-depth elsewhere39, and we restricted the main reference panel to variants that passed 
all pre-applied genotype call filters (i.e., variants whose VCF FILTER status is “PASS”; these pre-
applied filters included, among other filters, a filter to remove variants with minor allele count 
(MAC) ≤ 5.) Before our internal QC the WGS data contained 40,405,506 autosomal and X-
chromosome SNPs. The following protocol was restricted to the 39,131,579 autosomal SNPs 
because the pre-registered analysis plan restricts our analyses to the autosomes. The HRC 
reference panel does not include any structural variants, such as INDELs39. 

We performed a series of best-practice alignments of the WGS data for consistent and unique 
identification of variants41 with the open-source software BCFtoolsd created by the Wellcome 
Trust Sanger Institute. Because PLINK cannot properly handle truly multi-allelic variants, we split 
multi-allelic variants into multiple bi-allelic variants. We then confirmed that all reference alleles 
and genomic positions matched the Genome Reference Consortium Human genome build 37 
(GRCh37)42. To avoid issues with chromosomal positions mapping to multiple NCBI marker IDs 
(rsIDs), all rsIDs were removed, and all variants were given a unique identifier (henceforth referred 
to the as the “unique ID”) in the form of chromosome, base-pair position, reference allele, and 
alternative allele, separated by colons (e.g., 1:123456:C:T). Using this format for variant IDs, 
together with the alignment to the reference genome GRCh37, ensures a unique representation of 
all SNPs and a lack of duplicate variants with switched reference alleles (e.g., 1:123456:C:T and 
1:123456:T:C). 

To avoid possible issues with inconsistencies with the UK10K haplotype reference in future work 
that may use that reference, we investigated possible strand and allele issues across the reference 
panels. By comparing the reference alleles and allele frequencies we found 24,394 variants with 
inconsistent alleles, and we decided to drop these from the main reference panel so that they would 
be removed during QC of the GWAS summary statistics. 
We converted the VCF data to PLINK binary format with PLINK v.1.9b3.4643, and we removed 
all multi-allelic variants (without retaining any of the multi-allelic variants coded as bi-allelic 
SNPs). Monomorphic SNPs (i.e., SNPs with MAF = 0) were kept in the reference panel as 
recommended39. We thereafter excluded one member of each pair of individuals with genomic 
relatedness greater than 0.025 from the sample, which removed 4,917 individuals of the 22,691 
individuals for whom data were available for all autosomes in the VCF data. 
In summary, the main reference panel consists of 17,774 individuals and includes 38,889,224 bi-
allelic autosomal SNPs that passed QC.  

                                                             
d BCFtools can be downloaded here: http://samtools.github.io/bcftools/bcftools.html. 
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2.4.2 rsID mapping 

Since rsIDs were removed from the SNPs to ensure unique identification, we created a map file so 
that each SNP could be assigned an rsID after meta-analysis, which is performed on the unique ID 
format described above (e.g., 1:123456:C:T). The map file contains the rsIDs from the HRC v1.1 
sites list, and because we removed all multi-allelic variants there are no duplicate rsIDs. 

2.5 UK Biobank genotyping arrays 

2.5.1 Combining data from the UK BiLEVE and the UK Biobank Axiom arrays 

The participants of the UKB were genotyped with two different but similar genotyping arrays38,44–

46. UKB participants who were enrolled in the UK BiLEVE study (a study of smoking behavior, 
lung function, and chronic obstructive pulmonary disease44) were genotyped with the UK BiLEVE 
array (n ~ 50,000), and the remaining participants were genotyped with the UK Biobank Axiom 
array (n ~ 400,000). Henceforth, we will refer to these two sets of UK Biobank participants as the 
UK BiLEVE and the UKB Axiom cohorts.  
While the UK Biobank (UKB) is a population-based study45 collected during 2006–2010, the 
sample selection for the UK BiLEVE study began at a later stage, in 2012. The UK BiLEVE 
participants were selected from among the European-ancestry individuals in the UK Biobank44, 
based on being in the “middles and extremes of the forced expiratory volume in 1 s (FEV1) 
distribution among heavy smokers (mean 35 pack-years) and never smokers.”44 Because the UKB 
Axiom cohort is the complement of the UK BiLEVE cohort, the UK Axiom cohort is also non-
random, being under-sampled on heavy smokers and never smokers. It is thus only the complete 
UKB that is a population-based study without any particular sampling scheme based on lung 
function and smoking, while the UK BiLEVE and UKB Axiom cohorts are selected subsamples 
of the UKB.  

We decided to analyze the UKB as a single cohort, rather than treating the UK BiLEVE and the 
UKB Axiom cohorts as two separate cohorts to be analyzed separately and then included in the 
meta-analysis as separate cohorts. (As indicated in Supplementary Note section 2.3, we included 
fixed effects to control for the genotyping arrays in the GWAS analyses.) Several factors led us to 
analyze the UKB as a single cohort. First, this allowed us to control for cryptic relatedness across 
the BiLEVE and Axiom samples with linear mixed models (LMM) with the BOLT-LMM v2.2 
software40. Analyzing the two cohorts separately would have necessitated dropping individuals 
who have relatives in the other cohort. Second, to our knowledge no published studies have 
analyzed the two cohorts separately. The pre-print of the UKB flagship paper38, as well as many 
other recent large-scale GWAS47–49, also analyzed the UKB as a single cohort.  

During the revision stage, a Referee raised the point that our GWAS results could be sensitive to 
our decision of analyzing the UKB as a single cohort. Though we believe it is preferable to treat 
the UKB as a single cohort, it would be worrying if our results were sensitive to that decision. To 
verify that, we repeated our discovery GWAS of general risk tolerance and our GWAS of ever 
smoker, this time treating the UK BiLEVE and the UKB Axiom cohorts as two separate cohorts 
(and meta-analyzing the results). As we report in Supplementary Note section 3.5, the results 
barely changed.  
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2.5.1 Quality control of allele-frequency differences between the UK Biobank 
genotyping arrays 

It was communicated that the first release of UKB data contained a small set of 65 autosomal SNPs 
that appeared to have flipped reference alleles contingent on the array. A subset of these had 
unfortunately been used during the imputation procedure. We already control for genotype array 
and batch during GWAS analyses, but as an additional QC step beyond excluding the 65 previously 
reported flipped SNPs, we investigated the allele frequencies across the arrays to be sure that our 
results were unaffected by artifacts from the genotyping procedure. It should be noted that the 
participants genotyped with the UK BiLEVE array were chosen based on lung function and 
smoking behavior44, but the sample is in all other respects comparable to the rest of the UK 
Biobank50. 
We restricted the imputed genotype data to unrelated individuals of British ancestry to ensure that 
allele-frequency differences across the genotyping arrays would not be caused by differences in 
the proportion of ancestries or be affected by dependent observations. With PLINK43, we 
calculated the allele frequencies contingent on the genotyping array for both the directly genotyped 
and imputed SNPs. Because our quality-control protocol, described in the next section, restricts 
the GWAS to SNPs with MAF ≥ 0.001, we chose not to investigate SNPs with MAF < 0.001 (in 
the imputed genotype data) for allele-frequency differences between the UKB genotyping arrays. 
SNPs available on only one of the genotyping arrays and SNPs that were not available in our main 
reference panel were not considered in this investigation of allele-frequency differences. 
For each SNP included in the investigation, three quantities measuring differences in allele 
frequencies were examined: the absolute value of the difference between the two arrays and the 
absolute value of the difference between the main reference panel and each of the arrays. We 
flagged a SNP as problematic if it fulfilled the following two conditions: (1) if the absolute value 
of the difference between the two arrays was greater than 0.25; and (2) if the absolute value of the 
difference between the main reference panel and at least one of the genotyping arrays was greater 
than 0.25. The comparison resulted in 600 flagged autosomal SNPs (including the 65 SNPs that 
were already reported as problematic) that were removed from the UKB summary statistics during 
QC in Supplementary Note section 2.6.2. 

2.6 Description of major steps in quality-control (QC) analyses 

For each cohort, we applied a stringent quality-control protocol based on the EasyQC software 
(version 9.2) developed by the GIANT consortium51, as well as additional steps developed by the 
Social Science Genetic Association Consortium16,18. All issues raised during implementation of 
the protocol described below were resolved through iterations between the meta-analyst and the 
cohort analysts before any GWAS summary statistics were forwarded for meta-analysis. 

2.6.1 Pre-QC verification and harmonization of GWAS summary statistics 

All cohorts were asked to supply descriptive statistics and phenotype definitions according to the 
pre-specified analysis plan36. The completeness of these documents was assessed as the first step 
of the quality control, together with examination of the uploaded GWAS summary statistics. All 
GWAS summary statistics were harmonized to ensure that the SNP identifier was in an admissible 
format (i.e. either an rsID, or in a format containing the chromosome, base pair (bp), and the two 
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alleles of the SNP), that the missing string operator was set to “NA,” and that all files had the same 
column delimiter.  

2.6.2 Filters applied before EasyQC protocol 

Following recommendations provided by the UK Biobank, we removed the 65 autosomal SNPs 
from the UKB that had been flagged as having incorrect annotation, together with the additional 
535 SNPs that we flagged in section 1.5, before applying the EasyQC protocol described below.  

Also, for cohorts imputed with the September or December 2013 haplotype release of the 1000 
Genomes imputation reference panel, we removed 737 SNPs with incorrect strand alignmente. 

2.6.3 EasyQC protocol 

The filters applied in the EasyQC software are explained below in chronological order of 
implementation. Note that the order of the filters does not influence the outcome of the cleaned 
GWAS summary statistics (although it affects at which specific filter a SNP is removed). The 
number of SNPs filtered at each step of the EasyQC protocol is reported in Panel A of 
Supplementary Table 25. 

Step 1 in the EasyQC protocol filtered out SNPs for which either the effect-coded allele or the 
other allele has values different from “A,” “C,” “G,” or “T.” This step removed all structural 
variants such as INDELs.  
Step 2 filtered out SNPs with missing values for one or more of the following variables: P value, 
an estimated effect size (beta) or its standard error, frequency of the reference allele, imputation 
status, and imputation accuracy (conditional on the SNP being imputed). This filter also removed 
SNPs with nonsense values outside of permissible ranges such as negative or infinite standard 
errors, nonsensical P values, allele frequencies greater than 1 or below 0, as well as imputation 
status not equal to 1 or 0.  
The thresholds chosen for the filters applied in steps 3 to 5 are summarized in Supplementary 
Table 26. Step 3 filtered out SNPs with a MAF below 0.1% for the UKB and 23andMe cohorts 
and below 1% for all other cohorts; this effectively removed any SNPs that were monomorphic in 
the summary statistics. Step 4 excluded SNPs based on imputation accuracy with a threshold 
contingent on the cohort-specific imputation software (0.6 for MACH, 0.7 for IMPUTE, and 0.8 
for PLINK). Step 5 filtered out directly genotyped SNPs with a Hardy-Weinberg equilibrium exact 
test P value below a threshold contingent on the cohort sample size. The applied thresholds were 
10–3 if E < 1,000, 10–4 if 1,000 ≤ E < 2,000, and 10–5 if 2,000 ≤ E < 10,000. 
Two additional filters were applied to ensure that only high-quality SNPs were being forwarded 
to the meta-analysis; step 6 removed SNP j if 

                                                             
e The announcements are available on the webpage of IMPUTE2 
https://mathgen.stats.ox.ac.uk/impute/data_download_1000G_1_integrated_SHAPEIT2_16-06-14.html and 
https://mathgen.stats.ox.ac.uk/impute/data_download_1000G_phase1_integrated_SHAPEIT2_9-12-13.html.  
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(2) 7HI > 1.4

LM

2 ∙ EI ∙ OPQI ∙ 1 − OPQI
, 

where LM is the standard deviation of the phenotype, EI is the sample size,	7HI is the standard error 
of the coefficient estimate for SNP j, and OPQI is the minor allele frequency of SNP j.  This filter 
eliminates SNPs whose coefficient estimates have standard errors that are more than ~40% larger 
than what would be expected given the sample size, the MAF of the SNP, and the standard 
deviation of the phenotype. The second additional filter, step 7, removes SNPs with coefficient 
estimates larger than what would correspond to an R2 greater than 5%. We adapted the filter from 
Okbay et al.16 using an approximation to the R2: SNP j is dropped if 

 
(3) 5I >

0.05 ∙ LM

2 ∙ OPQI ∙ 1 − OPQI
. 

Step 8 filtered out duplicate SNPs (SNPs with identical NCBI build 37 (UCSC hg19) chromosome 
and base-pair positions). This was implemented after the chromosome and base-pair positions of 
the SNPs had been harmonized with the main reference panel described above. 
Step 9 aligned the SNPs to the main reference panel to ensure that the effect-coded allele was the 
same for all SNPs across the cohorts. This step removed SNPs that were not available in the main 
reference panel as well as SNPs that displayed an allele mismatch when compared to the reference 
(e.g., a SNP with the alleles A and T in the GWAS summary statistics would be removed if the 
alleles according to the reference panel were A and G). 

Step 10 removed SNPs that deviated from the main reference panel in terms of allele frequency. 
A SNP was removed if the absolute difference between its allele frequencies in the cohort’s data 
and in the main reference panel was greater than 0.2. Step 10 was applied to all cohorts including 
the UKB (for the UKB, this filter was thus applied in addition to the filter described in 
Supplementary Note section 2.5 and Supplementary Note section 2.6.2, the purpose of which 
was to avoid potential strand issues caused by the two different UKB genotyping arrays).  

The output from the quality control was examined to see if any filters removed an unusual or 
unexpected number of SNPs. Some cohorts required iterations with the analysts to ensure that all 
possible errors were resolved. The number of SNPs filtered at each step of the final quality control 
iteration is reported in Panel A of Supplementary Table 25 together with the estimated genomic 
inflation factor (STU).  

2.6.4 Visual inspection of diagnostic plots 

Once low-quality SNPs were filtered out, the remaining SNPs were used to produce several 
diagnostic plots for each cohort, most of which are the standard output of the EasyQC software. 
Visual inspection of these plots enabled the identification of possible issues or errors in the GWAS 
summary statistics of each cohort; for a more thorough discussion we refer the interested reader to 
Winkler et al.51. For any potential issues observed in these plots, we contacted the cohort-specific 
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analyst and ensured that the observed issues were completely resolved. The following plots were 
examined: 

Allele Frequency Plots (AF Plots): The AF plot contrasts the observed allele frequencies with the 
expected allele frequencies calculated according to the main reference panel, and the plot was 
created before step 10 of the EasyQC protocol. If the sample closely resembles the reference panel 
in terms of allele frequencies, then the SNPs should align in a diagonal with positive slope. This 
plot enables the analyst to detect deviations in ancestry from the reference as well as issues related 
to the alignment of the effect-coded allele. If the wrong effect-coded allele has been specified, then 
the AF plot shows a diagonal with negative slope. 
P-Z Plots: Inspection of this plot shows if the reported P values are consistent with the reported 
coefficient estimates and their standard errors. One common problem observable with the P-Z plot 
is an erroneous column header in the GWAS summary statistics, such that the wrong column is 
used for either the beta estimates, standard errors or P values in the analysis. 
Q-Q Plots: Inspection of Q-Q plots enables visualization of unaccounted-for stratification in the 
cohorts. No cohort displayed premature lift-off in the Q-Q plot associated with unaccounted-for 
stratification. The genomic inflation factors STU  are displayed in Panel A of Supplementary Table 
25.  

SE Plots: We plotted the observed standard errors (7HI) of the coefficient estimates versus the 
standard errors expected given the OPQI and the sample size EI of a given SNP j, and the standard 
deviation of the phenotype LM (which is equal to 1 if the phenotype has been standardized). This 
enables visual inspection to identify groups of outlier SNPs with regard to the observed standard 
error. The expected standard error was calculated according to the following formula: 

 
(4) 7HI ≈

LM

2 ∙ EI ∙ OPQI ∙ 1 − OPQI
	 

All cohorts had to pass visual inspection as well as inspection of the number of excluded SNPs at 
each of the exclusion filters described in the previous subsection before being passed on for the 
meta-analysis. 

2.7 Meta-analysis, adjustment of the standard errors, and test of 
heterogeneity of effect sizes across cohorts 

2.7.1 Meta-analysis 

Sample-size weighted meta-analysis of the cleaned cohort-level GWAS summary statistics were 
carried out using the METAL software52. We conducted four main meta-analyses: (1) we meta-
analyzed the discovery GWAS combining the UKB and 23andMe cohorts; (2) we meta-analyzed 
the results of the 10 replication cohorts without the UKB and 23andMe discovery cohorts, to obtain 
our replication GWAS; (3) we meta-analyzed the results of the 10 replication cohorts together with 
those of the UKB and 23andMe discovery cohorts for the follow-up analyses that use GWAS 
summary statistics; and (4) we meta-analyzed the results from our UKB GWAS of ever smoker 
with those from the TAG Consortium35. No meta-analyses were conducted for the five other 
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supplementary GWAS, because data for these GWAS each came from only one cohort (either the 
UKB or the 23andMe cohort). 

All meta-analyses were performed with the unique ID format as the identifier of each SNP (e.g., 
1:123456:C:T)18. All meta-analyses were restricted to SNPs with a sample size greater than half 
of the maximum sample size across all the SNPs in the GWAS. Thus, because the discovery 
GWAS of general risk tolerance consists only of the 23andMe and UKB cohorts and because the 
23andMe cohort is slightly larger than the UKB, all 9,284,738 SNPs available in the 23andMe 
cohort (and no other SNPs) were analyzed in the discovery GWAS of general risk tolerance. Of 
these 9,284,738 SNPs, 8,989,321 are available in both the UKB and the 23andMe cohorts and have 
a sample size of 931,651 or 939,908f, and 295,417 are available only in the 23andMe cohort and 
have a sample size of 500,525 or 508,782g. Of the 124 general-risk-tolerance lead SNPs we report 
below in Supplementary Note section 3.3, all but one (rs13251864) are present in both the 
23andMe and UKB cohorts. For the replication GWAS of general risk tolerance, 6,986,015 SNPs 
were analyzed; 9,339,358 SNPs were analyzed in the GWAS of adventurousness; and ~11,515,000 
SNPS were analyzed in the GWAS of the four risky behaviors and their first PC. Panel B of 
Supplementary Table 25 reports the number of SNPs for all the main GWAS. 

2.7.2 Adjustment of the standard errors 

Instead of applying genomic control with the over-conservative STU , we inflated the standard errors 
by the square root of the estimated intercept from an LD Score regression. This procedure allows 
us to correct only for inflation of test statistics caused by population stratification and other 
confounding factors rather than polygenicity53.  

For the discovery and replication GWAS of general risk tolerance and for the GWAS of ever 
smoker—all of which involved meta-analyses of cohort-level data—we only inflated the meta-
level standard errors (i.e., we did not inflate the cohort-level standard errors before the meta-
analysis). Likewise, for the meta-analysis of the discovery and replication GWAS for the follow-
up analyses, we only inflated the meta-level standard errors. We also inflated the standard errors 
of the other supplementary GWAS. 
In practice, for a given meta-analysis, the METAL software52 outputs the SNPs’ meta-analyzed z-
statistics, deflated by the square root of the estimated intercept from an LD Score regression. We 
use SNP j’s GWAS sample size EI and minor allele frequency OPQI, as well as the phenotype’s 
standard deviation LW, to approximate the inflated standard error of our estimate of SNP j’s effect 
size: 

7HI ≈ XEYZ,[Z\Y ∙
LW

2 ∙ EI ∙ OPQI 1 − OPQI
	, 

where XEYZ,[Z\Y is the square-root of the LD Score intercept used to deflate the z-statistic in the 
meta-analysis.  

                                                             
f 8,949,622 SNPs have a sample size of 939,908 and 39,699 SNPs have a sample size of 931,651. 
g 290,259 SNPs have a sample size of 508,782 and 5,158 SNPs have a sample size of 500,525. 
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We then used SNP j’s deflated z-statistics ]I to approximate SNP j’s effect size as 5I ≈ ]I ∙ 7Ĥ  h. 
Since the general-risk-tolerance phenotype is not measured in natural units, and since its standard 
deviation differs across cohorts, we normalize it to have a standard deviation of one when we 
estimate the SNPs’ effect sizes and standard errors. For consistency, we make the same assumption 
when approximating the SNPs’ effect sizes and standard errors for the risky behaviors and their 
first PC. Hence, our estimated effect sizes (the 5I’s) are expressed in standard-deviation units of 
the phenotype per effect-coded allele; we hereafter refer to this as a “standardized beta,” although 
it is only standardized in terms of standard deviation units of the phenotype (and not with respect 
to the genotype). The standard deviations of the phenotypes, as originally measured, are reported 
in Supplementary Table 4. 
The coefficient of determination of SNP j is approximated as54: 

(5) 

_I" ≈
2 ∙ OPQI 1 − OPQI ∙ 5I"

LW"
. 

2.7.3 Evaluation of effect-size heterogeneity across cohorts for general risk tolerance 

Following a Referee’s suggestion, we computed Cochran’s Q statistic for the lead SNPs of our 
discovery GWAS of general risk tolerance, to evaluate the heterogeneity of our estimates across 
the 23andMe and UKB cohorts. (We note, however, that the power of Cochran’s Q test is limited 
in our setting55,56, because the discovery meta-analysis consists of only two cohort.) In addition to 
examining the P values of Cochran’s Q test for each lead SNP (after Bonferroni correction for the 
number of lead SNPs), we generated an omnibus test statistic for heterogeneity by summing the 
Cochran Q statistics across all lead SNPs57. Because there are two cohorts, the Q statistic for each 
lead SNP has a `" distribution with one degree of freedom. The sum of these Q statistics is 
therefore (approximately) `"-distributed with the number of degrees of freedom being equal to the 
number of lead SNPs. We report the results in Supplementary Note section 3.3.2. 

2.8 Approximately independent lead SNPs, loci, and conditional analysis 

2.8.1 Approximately independent lead SNPs  

To identify approximately independent genome-wide significant “lead SNPs”, we used PLINK43 
to apply a “clumping algorithm” to the GWAS results. (We define a SNP as “genome-wide 
significant” if its GWAS P value is less than 5×10–8.) Our clumping algorithm uses four 
parameters: a primary P value threshold (5×10–8), a secondary P value threshold (1×10–4), an r2 
threshold (0.1), and a SNP window defined in kilobases (1,000,000 kb). First, the SNP with the 
lowest P value (less than the primary P value threshold) is taken as the “lead SNP” in the first 
clump, and the first clump is formed by all SNPs with a P value smaller than the secondary P value 
thresholdi, with an r2 greater than 0.1 with the clump’s lead SNP, and within a distance less than 
the SNP window from the lead SNP. (We used a very wide SNP window of 1,000,000 kb, which 
                                                             
h Since ]I is deflated and 7H is inflated by the square root of the intercept from the LD score regression, 5I is neither 
deflated nor inflated. 
i The secondary P value threshold lowers the computational effort by allowing the algorithm to ignore SNPs with large 
P values. 
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effectively makes the r2 and P value thresholds the only binding parameters for the PLINK 
clumping algorithm.) Next, the SNP with the second lowest P value (less than the primary P value 
threshold) outside the first clump becomes the lead SNP of the second clump, and the second 
clump is created analogously but using only the SNPs outside of the first clump. This process 
continues until every SNP with a P value less than the primary P value threshold is either defined 
as the lead SNP of a clump or clumped with another lead SNP. The r2 was calculated with the main 
reference panel. Thus, a “lead SNP” is the most significant genome-wide significant SNP in an 
approximately independent clump, and a lead SNP cannot be in the clump of another lead SNP for 
the same phenotype.  

2.8.2 Definition of non-overlapping, continuous genomic loci 

For the purpose of defining non-overlapping, continuous genomic loci, we followed Ripke et al.58. 
Ripke et al. defined a locus as “the physical region containing all SNPs correlated at r2 > 0.6 with 
[one of the lead] SNPs”, and merged associated loci within 250kb of each other into a single locus. 
For each of the seven GWAS, we followed this definition and created a set of loci. We report the 
identified loci in Supplementary Note section 3, and the loci are listed Supplementary Table 3 
and 3.2. In that section, we also report the loci we obtained after pooling all the loci from across 
the seven GWAS and merging loci within 250kb of each other; those loci are listed in 
Supplementary Table 7. 

2.8.3 Conditional and joint multiple-SNP (COJO) analysis with GCTA  

Because we consider approximately independent (pairwise r2 < 0.1) lead SNPs and loci (rather 
than fully independent lead SNPs and loci), some of our lead SNPs could in principle be secondary 
associations that are driven by their LD with extremely strong primary associations. We thus 
performed conditional and joint multiple-SNP (COJO) analysis59 with GCTA. For each of the 
seven GWAS, we restricted the analysis to the set of SNPs that (1) pass all GWAS quality control 
filters, and (2) are located within the loci of the phenotype (which includes all the lead SNPs). We 
analyzed the summary statistics using the stepwise model-selection algorithm detailed in the 
original COJO publication59. The analysis requires two input parameters: (1) the distance in kb at 
which perfect linkage equilibrium (r2 = 0) is assumed, and (2) an r2 threshold that prevents the 
stepwise model selection from adding SNPs that are highly correlated with a previously selected 
SNP. We used the default parameters, which assume perfect linkage equilibrium for SNPs 
separated by 10 Mb and which do not add SNPs in strong LD (r2 > 0.9) with an already selected 
SNP. The COJO analysis was performed with LD estimated in our main reference panel (described 
in Supplementary Note section 2.4). We report the results of the COJO analysis in 
Supplementary Note section 3. 

As we discuss in Supplementary Note section 3.6, we also conducted a multiple regression 
analysis with individual-level data from the UKB. In that analysis, for each phenotype (except 
adventurousness, for which there is no UKB data), for each chromosome we regressed the 
phenotype on all the phenotype’s lead SNPs located on the chromosome (and on control variables). 
The results were consistent with those of the COJO conditional analysis. 
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2.9 Check for long-range LD regions, candidate inversions, and 1000 
Genomes structural variants 

2.9.1 Check for long-range LD regions 

We investigated if the lead SNPs were located in larger structural variation in the form of long-
range LD regions, by using a set of long-range LD regions from Price et al.60. Price et al. identified 
24 long-range LD regions from 327 European-ancestry individuals, which replicated in two 
independent samples comprising 1593 European-ancestry Americans and 3004 British individuals. 
We lifted the genomic positions of the long-range LD regions to build 37 (GRCh37) with the 
UCSC genome-annotation lift-over toolj, and there were nine long-range LD regions that could 
not be lifted due to non-overlapping genome sequences or ambiguous mapping across the builds. 
Hence, the combined map contains 15 long-range LD regions that have non-ambiguous genomic 
positions available in build 37. These range from ~2.5 to ~8 Mb in genomic size.  
We checked if each lead SNP from the GWAS was within a long-range LD region, or within 250 
bp from the breakpoints of such a region. The results are reported in Supplementary Table 3 and 
Supplementary Table 6.  

2.9.2 Check for candidate inversions 

We also investigated if the lead SNPs were located in larger structural variation in the form of 
candidate inversions, by using a list of genomic segments highly prone to inversion 
polymorphisms from an unpublished resource by Gonzalez, J.R. & Esko, T., (2017, unpublished). 
The genomic segments highly prone to inversion polymorphisms were identified based on the 
knowledge that submicroscopic human inversions are typically flanked by highly homologous 
flanking repeats61, which predisposes their occurrence by non-allelic homologous recombination. 
Therefore, a set of segments was selected that may be prone to submicroscopic inversions, 
consisting of all single copy segments in the Genome Reference Consortium’s human reference 
sequence build 36 (GRCh36) between 0.1 and 8 Mb in length, and flanked by segmental 
duplications with 90% identity (across the flanking duplications). In total, there were 173 segments 
that met these criteria and that were thus considered as genomic segments highly prone to 
inversions. As detectable traces of inversions in SNPs depend on many factors—such as being 
frequent, ancient and nonrecurring—we tested whether the segments showed inversion patterns in 
any of two different SNP datasets. First, 69 (40%) of the segments overlapped with the inversions 
that Caceres et al.62 obtained in the phased genotypes of CEU individuals from the HapMap III 
project. Second, inversion-like haplotypes63 were inferred in a subsample of 882 Estonians for 
which gene expression data was available in peripheral blood. In this case 65 (38%) of the 173 
segments were significantly associated with the expression of single copy genes within the 
segment. In total 104 (60%) of the 173 segments showed an inversion signal, indicating their 
predisposition for inversion occurrence.  

We lifted the genomic positions of the genomic segments highly prone to inversion polymorphisms 
to build 37 (GRCh37) with the UCSC genome-annotation lift-over toolk, and there were 19 
genomic segments that could not be lifted due to non-overlapping genome sequences or ambiguous 

                                                             
j The lift-over tool is available here: https://genome.ucsc.edu/cgi-bin/hgLiftOver 
k The lift-over tool is available here: https://genome.ucsc.edu/cgi-bin/hgLiftOver 
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mapping across the builds. Hence, the combined map contains 154 segments prone to inversion 
polymorphisms (hereafter referred to as “the 154 candidate inversions”), that have non-ambiguous 
genomic positions available in build 37. These range from ~500 kb to ~8 Mb in genomic size.  
We checked if each lead SNP from the GWAS was within such a candidate inversion, or within 
250 bp from the breakpoints of such a candidate inversion. The results are reported in 
Supplementary Table 3 and Supplementary Table 6.  

2.9.3 Check for 1000 Genomes structural variants 

Sudmant et al. (2015)64 called and classified a large number of structural variants (SVs) with the 
final version of the 1000 Genomes Project phase 3 reference panel. They have released an 
integrated map of 37,250 smaller structural variants, together with enhanced resolution of the size 
and breakpoint compared to previous publications, and we hereafter refer to these as the “1000G 
structural variants.” The structural variants range from 1 bp to ~445 kb in genomic size. The 
smallest variants are generally insertions of 1 bp (~6,900 variants), and the larger variants are 
generally deletions larger than 50 bp. The majority of these structural variants are in LD with 
proximate SNPs, and we therefore checked if any of the lead SNPs from our main GWAS, and 
SNPs in strong LD with those lead SNPs, were located within the start and end positions of any of 
the 37,250 structural variants. We defined strong LD as an r2 greater than 0.8, which is the 
definition used by the 1000 Genomes Project Consortium64. The SNPs in LD were extracted using 
PLINK43 and the main reference panel. We report the results in Supplementary Table 3 and 
Supplementary Table 6. 

2.10 Investigation of the novelty of our GWAS associations 

To investigate the novelty of our GWAS associations, we performed lookups of our lead SNPs 
(and the SNPs in LD with the lead SNPs, r2 > 0.1) in the NHGRI-EBI GWAS Catalog database 
(revision 2017-08-15)65 of genome-wide significant associations from previous GWAS. We also 
looked up our lead SNPs (and the SNPs in LD, r2 > 0.1) in some recent GWAS articles that have 
not been catalogued in the NHGRI-EBI GWAS Catalog database. The NHGRI-EBI GWAS 
Catalog is a resource that aims to catalogue all associations reported in published GWAS. 

For general risk tolerance, we performed a search with the term “risk” in the index of phenotypes, 
and we did not find any previous studies on general risk tolerance in the Catalog. We know of one 
previous study that identified one independent genome-wide significant association with general 
risk tolerance, and of one concurrent study that identified a second genome-wide significant 
association, both using the first UKB data release66,67; the authors of ref.66 referred to the phenotype 
as “risk-taking propensity,” and the authors of ref.67 referred to it as “risk-taking behavior.” The 
first genome-wide significant association is replicated in an online publication published in 
advance68. We added the first of these two studies (i.e., Day et al.66) to our investigation of the 
novelty of our general-risk-tolerance lead SNPs, and the second we consider concurrent.  We also 
note that, in Supplementary Note section 11.1, we report the results of a literature search of 
association studies of risk tolerance; that literature search identified no previously reported 
genome-wide significant associations.  

The phenotypes drinks per week, ever smoker, and number of sexual partners (or related 
phenotypes such as alcoholism and age at first sex), were available in the NHGRI-EBI GWAS 
Catalog database (revision 2017-08-15). Since the GWAS Catalog is not always up-to-date, we 
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additionally performed a literature search for genome-wide significant findings that might not yet 
have been included in the Catalog. We searched the Pubmed literature database on March 6 2017 
and September 13 2017, for the term “genome-wide association study” together with each of the 
terms “alcohol,” “sexual,” and “smoking” individually. We screened the abstracts and compared 
the resulting articles with the article list of the GWAS catalog. In addition to what was already 
reported in the GWAS Catalog (revision 2017-08-15), we found three additional studies with 
genome-wide significant findings on alcohol consumption, two additional studies on smoking, and 
no additional studies on sexual behaviors.  

To our knowledge, this is the first GWAS of adventurousness, automobile speeding propensity, 
and of the first PC of the four risky behaviors; unsurprisingly, we could not find previous GWAS 
on any of these phenotypes in the NHGRI-EBI GWAS Catalog database (revision 2017-08-15). 

2.11 GWAS catalog lookup  

We investigated whether the lead SNPs from our discovery GWAS of general risk tolerance and 
from our supplementary GWAS have previously been associated at genome-wide significance 
with any phenotypes in the NHGRI-EBI GWAS Catalog database65 (revision 2017-08-15). We 
query the GWAS Catalog with our list of lead SNPs, and the SNPs in LD with a lead SNP (r2 > 
0.6). 
Since the NGRI-EBI GWAS Catalog is not always up-to-date with results from the most recent 
publications (especially in non-peer reviewed outlets such as BioRxiv), we also queried the 
summary statistics of the most recently published GWAS on attention deficit hyperactivity 
disorder69, autism spectrum disorder70, and anorexia nervosal. We also queried the genome-wide 
significant findings from the additional GWAS on alcohol intake and smoking, which we found in 
addition to the GWAS Catalog, as detailed in the previous section. We queried the additional 
GWAS on alcohol intake and smoking because they contained at least one genome-wide 
significant result; because their results were publicly available; and because the meta-analysis that 
produced them did not include the UK Biobank (that comprise our discovery sample together with 
23andMe).  

We perform these lookups because the existence of SNPs and genes associated with both one of 
our studied phenotypes and another phenotype can point to a common genetic etiology. However, 
it is important to note that two phenotypes that share a genetic locus do not necessarily have to 
share the same causal variant at that locus due to the widespread LD that characterizes the human 
genome. Moreover, even if two phenotypes do share a single causal variant, they do not have to 
share general underlying genetic etiologies. For instance, recent work24 has shown that two types 
of autoimmune diseases (rheumatoid arthritis and ulcerative colitis/Crohn’s disease) that are 
known to share risk loci are not genetically correlated at a genome-wide level. Here, the reason 
was the lack of an overall directional trend: some risk alleles for one disease were also risk alleles 
for the other disease, but some alleles that were protective for the one disease were risk alleles for 
the other. This resulted in a near-zero correlation at the genome-wide level. Thus, we emphasize 
that the current lookup does not make it possible to determine etiological overlap, but only hints 

                                                             
l The Psychiatric Genomics Consortium’s GWAS summary statistics for attention deficit hyperactivity disorder, 
autism spectrum disorder, and anorexia nervosa (referred to as “ED,” i.e. eating disorder) are publicly available and 
can be downloaded here: https://www.med.unc.edu/pgc/results-and-downloads. 
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at overlapping loci, between general risk tolerance or the supplementary GWAS phenotypes, and 
the phenotypes reported in the GWAS Catalog.  

2.12 Cross-lookup of GWAS results 

We performed cross-lookups of the lead SNPs across our discovery GWAS of our primary and 
supplementary phenotypes. Specifically, for each lead SNP in each of the GWAS, we checked if 
the SNP is in LD (with an r2 greater than 0.1) with lead SNPs in the other GWAS. LD was 
calculated using PLINK43 and the main reference panel. The results of the cross-lookups are 
reported in Supplementary Table 3 and Supplementary Table 6. As we describe above, we also 
investigated if there were any long-range LD regions or candidate inversions that contained lead 
SNPs for multiple GWAS. 

2.13 Gene annotation 

We annotated the lead SNPs with gene information using the National Institute of Health (NIH) 
National Center for Biotechnology Information (NCBI) gene ontology database (version 2016-05-
25)m. As the general rule, a SNP was annotated to its most proximate gene. If a SNP was located 
between two genes, then we compared the distance to the end coordinate of the gene upstream 
with the distance to the start coordinate of the gene downstream to find the most proximate gene. 
If a SNP was located within multiple overlapping genes, then the SNP was annotated to the gene 
with the most proximate start coordinate. This means that all lead SNPs were annotated to a single 
gene. The approach roughly partitions the SNPs throughout the genome into separate genomic 
segments. The annotations are displayed in Supplementary Table 3 and Supplementary Table 
6, where we also indicate if a lead SNP is located within or outside the gene’s start and end 
coordinates. We also checked if there were genes to which lead SNPs from multiple GWAS were 
annotated (the results are reported in Supplementary Note section 3.2). 

 
 
  

                                                             
m The NCBI gene ontology database is available here: 
ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/GENE_INFO/Mammalia/. 
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3 GWAS results 

In this section, we report, compare, and discuss the results of our seven main GWAS (of our 
primary phenotype—self-reported general risk tolerance—and of our six supplementary 
phenotypes—adventurousness, the four risky behaviors, and their first PC). In Supplementary 
Note sections 3.1 and 3.2, we present a summary of our results, and we also describe several 
notable genomic regions that contain lead SNPs for all or most of our main GWAS. 
Supplementary Note sections 3.3 and 3.4 contain a more detailed description of the results of our 
discovery GWAS of general risk tolerance and the results of our six other main GWAS, 
respectively. Throughout, we place particular emphasis on long-range LD regions and candidate 
inversions (defined in Supplementary Note section 2.9) that contain lead SNPs for all or most of 
our GWAS. (We focus on these because, as we explain below, very few genomic blocks outside 
of these regions or candidate inversions contain lead SNPs shared across most of our GWAS.) 

3.1 Summary of the GWAS results 

We identified a total of 864 “lead associations” across our seven main GWAS, where we define a 
lead association as a lead SNP in one of the GWAS: 124 lead SNPs associated with general risk 
tolerance, 167 with adventurousness, 42 with automobile speeding propensity, 85 with drinks per 
week, 223 with ever smoker, 117 with number of sexual partnersn, and 106 with the first PC of the 
four risky behaviors. Supplementary Note section 5 reports the results of our successful attempt 
to replicate the associations of our 124 lead SNPs with general risk tolerance. We did not attempt 
replication of the results of our six supplementary GWAS in independent data, because we did not 
have access to such data for the six supplementary phenotypes. However, as we report in 
Supplementary Note section 5, we calculated the “maxFDR”71, an upper bound on the false 
discovery rate (FDR), for each GWAS. The maxFDR estimates were low across all GWAS (the 
highest estimate was 1.22×10−3, for automobile speeding propensity), thus providing reassurance 
about the robustness of the lead associations. Supplementary Tables 3 and 6 report the detailed 
association results, and regional association plots are provided with the online supplementary 
materials 
To the best of our knowledge, 852 of the 864 lead associations are novel. We were able to replicate 
the only previously published66 genome-wide significant association with general risk tolerance, 
located within CADM2 on chromosome 3, that was also replicated in ref.68 and in a concurrent 
study67. We replicated another genome-wide significant association with general risk tolerance 
from the concurrent study67, located in proximity to the HLA-complex on chromosome 6. We also 
replicated the TAG Consortium’s previous association with ever smoker in the gene NCAM135. 
The detailed results of the cross-lookup of our GWAS results (the investigation of whether the 
lead SNPs of each of our GWAS are in LD, defined as a r2 greater than 0.1, with the lead SNPs of 
our other GWAS; Supplementary Note section 2.12) are reported in Supplementary Tables 3 
and 6. In total, we identified 864 lead SNPs across the GWAS of our primary and supplementary 
phenotypes. Of these 864 lead SNPs, 34 exact lead SNPs are counted twice by being shared by 
two phenotypes (there are no exact lead SNPs shared across more than two phenotypes; thus, in 

                                                             
n Our baseline GWAS protocol (described in Supplementary Note section 2) identified 118 number-of-sexual-
partners lead SNPs, but we excluded one of these from the count because we suspected it may not have been properly 
genotyped (see Supplementary Note section 3.4.5 for details). 
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total there are 830 unique lead SNPs identified across the phenotypes). 441 of the 864 lead SNPs 
are in weak LD (pairwise r2 > 0.1) with a lead SNP for at least one of the other GWAS. 

Applying our locus definition, we identified 99 loci associated with general risk tolerance, 137 loci 
associated with adventurousness, 36 loci associated with automobile speeding propensity, 62 loci 
associated with drinks per week, 183 loci associated with ever smoker, 97 loci associated with 
number of sexual partnerso, and 89 loci associated with the first PC of the four risky behaviors. 
We will refer to these loci as the 703 “locus associations”, where a locus association is defined as 
a locus in one of our seven GWAS (see Supplementary Note section 2.8 for our locus definition). 
Supplementary Data 1 shows LocusZoom plots for the 703 locus associations72. Pooling the loci 
corresponding to the 703 locus associations from across the seven GWAS and merging loci within 
250kb of each other yielded 444 distinct loci; those loci are listed in Supplementary Table 7. 
We supplemented those analyses with a conditional and joint multiple-SNP (COJO) analysis59 
with GCTA (Supplementary Note section 2.8.3). The COJO analysis identified a total of 655 
conditional associations across all seven GWAS. 

The 864 lead associations and 444 loci across the seven GWAS were obtained by using the 
standard genome-wide significance P value threshold of 5´10–8 to identify the lead SNPs for each 
phenotype. If we instead consider the seven GWAS jointly and use a Bonferroni-corrected P value 
threshold of 7.1×10−9 (= 5×10−8/7), across the seven GWAS we obtain 566 lead SNPs (instead of 
864), and 464 locus associations (instead of 703). Pooling and merging the 464 locus associations 
yielded 304 distinct loci (instead of 444), and 505 conditional associations (instead of 655).  

In sum, across our seven GWAS we identified 864 lead SNPs, 703 locus associations, and 655 
conditional associations, and the loci corresponding to the 703 locus associations span 444 distinct 
loci. 
The NHGRI-EBI GWAS Catalog database65 lookup of general-risk-tolerance lead SNPs resulted 
in 61 overlapping associations distributed across 27 lead SNPs, and the lookup of our six other 
main GWAS resulted in 939 overlaps distributed across 130 lead SNPs. Notably, for all our main 
phenotypes we find overlaps with schizophrenia, cognitive performance, and information 
processing speed. We report the results of this lookup in Supplementary Table 27. 

3.2 Summary of genetic overlap across our main GWAS 

3.2.1 Summary and discussion of notable genomic regions  

Five genomic regions stand out because they contain lead SNPs for all or most of our seven 
phenotypes. (Several of these regions contain multiple lead SNPs associated with one of the seven 
phenotypes. Most of the multiple lead SNPs within these regions are not conditional associations, 
but typically at least one and sometimes two of the lead SNPs within each region are conditional 
associations. Therefore, the exact numbers of lead SNPs within these regions should be interpreted 
with caution.) Two of these regions are among the 15 long-range LD regions identified by Price 
et al.60, and the other three are among the 154 genomic segments deemed highly prone to inversion 
polymorphisms (i.e., the 154 “candidate inversions”; both the 15 long-range LD regions and the 

                                                             
o Our baseline GWAS protocol (described in Supplementary Note section 2) identified 98 number-of-sexual-partners 
loci, but we excluded one of these from the count because we suspected one of the lead SNP may not have been 
properly genotyped (see Supplementary Note section 3.4.5 for details). 
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154 candidate inversions are described in Supplementary Note section 2.9). One long-range LD 
region (chromosome 3, ~83.4 to 86.9 Mb, Supplementary Fig. 6) and one candidate inversion 
(chromosome 18, ~49.1 to 55.5 Mb, Supplementary Fig. 6) each contain lead SNPs and 
conditional associations for all of our seven GWAS phenotypes; the other three regions each 
contain lead SNPs and conditional associations for general risk tolerance and for four or five of 
our six supplementary GWAS.  

The first notable region is the long-range LD region on chromosome 3 (~83.4 to 86.9 Mb, 
Supplementary Fig. 6), which contains lead SNPs and conditional associations for all our GWAS. 
The only gene within the long-range LD region is CADM2, and there are few other genes in 
proximity (only VGLL3 is within 250 kb of the breakpoints, ~69.8 kb downstream). The relatively 
large CADM2 gene (~85.0 to 86.2 Mb) covers ~1.2 Mb of the ~3.5 Mb long-range LD region and 
contains our strongest association with general risk tolerance (rs993137, P = 2.14×10–40). The 
Bonferroni-corrected P-value of CADM2 in the MAGMA gene analysis is P = 1.09×10–50 
(Supplementary Table 17), consistent with the GWAS results. A recent study68 reports that 
CADM2 contains a replicated association with general risk tolerance, and that study also reports 
suggestive associations between SNPs in CADM2 and different measures of personality. As we 
discuss in Supplementary Note section 12, CADM2 “encodes a member of the synaptic cell 
adhesion molecule 1 (SynCAM) family which belongs to the immunoglobulin (Ig) superfamily”73, 
and it is related to synapse formation74 and brain plasticity75. CADM2 is overexpressed in the brain, 
and in particular in the frontal cortex, according to GTEx76. The GWAS Catalog database65 reports 
genome-wide significant associations in the long-range LD region with many phenotypes, 
including age at menarche, BMI, educational attainment, and information processing speed. Most 
of the GWAS Catalog database65 associations within the long-range LD region (~83.4 to 86.9 Mb 
on chromosome 3) are annotated to the gene CADM2.  

The second notable region is a candidate inversion located on chromosome 18 (~49.1 to 55.5 Mb, 
Supplementary Fig. 6). The candidate inversion contains lead SNPs and conditional associations 
for all phenotypes. Within the candidate inversion there are previous genome-wide associations in 
the GWAS Catalog database65 with traits such as autism spectrum disorder, ADHD, depression, 
educational attainment, schizophrenia, and subcortical brain region volumes. The candidate 
inversion contains ~20 genes, and the MAGMA gene analysis resulted in one significant gene after 
Bonferroni correction—TCF4 (Bonferroni-corrected P = 5.51×10–9, Supplementary Table 17). 
TCF4 is interesting because it is known to play an important role in nervous system development73. 
De novo mutations in TCF477 are known to cause the rare Pitt-Hopkins syndrome78, with few 
described cases in the medical literature79. The syndrome is characterized by distinct facial 
features, intellectual disability, delayed motor skills, and epilepsy, among many other symptoms77–

79. The GWAS Catalog database65 reports genome-wide significant associations mapped to TCF4 
with schizophrenia, and TCF4 has been hypothesized to be involved in more neuropsychiatric 
phenotypes80. This observation is consistent with the non-zero genetic correlations that we 
estimated with bivariate LD Score regression between general risk tolerance and many 
neuropsychiatric disorders (Fig. 2, Supplementary Note section 7). As we describe below, all 
phenotypes have lead SNPs annotated to TCF4 except ever smoker, for which there are three lead 
SNPs (of which two are conditional associations) within the candidate inversion annotated to the 
proximate genes DCC and TXNL1.  
The third notable genomic region is the long-range LD region located on chromosome 6 (~25.3 to 
33.4 Mb, Supplementary Fig. 6). The region covers the HLA-complex73 (~29.6 to 33.1 Mb on 
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chromosome 681), and contains lead SNPs and conditional associations for all phenotypes except 
drinks per week (for which we identified a suggestive association, with a P = 3.83×10–7). There 
are at least 250 genes in the region, and the MAGMA gene analysis resulted in ~30 significant 
genes after Bonferroni-correction (however, none of the actual HLA genes were significant; 
Supplementary Table 17). The GWAS Catalog database65 reports more than a thousand genome-
wide significant associations in the region. The associations relate to hundreds of traits, including 
alcohol consumption, Alzheimer’s disease, autism spectrum disorder, educational attainment, and 
schizophrenia. The HLA-complex contains thousands of SNP associations in the GWAS Catalog 
database65, and those relate to hundreds of traits, including alcohol consumption, Alzheimer’s 
disease, autism spectrum disorder, and educational attainment. The HLA genes encode the major 
histocompatibility complex (MHC) proteins, whose main function is to alert cells of the immune 
system about infection from pathogens82. The region is known to be highly polygenic, and its high 
rates of recombination lead to a large number of possible haplotypes in the population. For certain 
classes of MHC proteins there are more than 1,000 alleles in the human population, and most 
individuals are therefore heterozygous. However, there is also a small subset of proteins encoded 
for which the coding alleles are practically monomorphic, and this is probably caused by certain 
constraints on the viability of the variability for these specific protein chains. The HLA genes have 
been found to be under strong selectionp. The constant struggle to counter pathogens results in 
selection pressures that favor polymorphisms that are able to provide protection. 
The fourth notable genomic region is the candidate inversion on chromosome 7 (~124.6 to 132.7 
Mb; Supplementary Fig. 6), which contains lead SNPs and conditional associations from all our 
GWAS except automobile speeding propensity (for which it contains a suggestive association: 
rs141450, P = 7.88×10–8). The candidate inversion contains ~50 genes, and 5 of those were 
significant after Bonferroni correction in the MAGMA gene analysis (Supplementary Table 17). 
Among them are SND1 (Bonferroni-corrected P = 5.08×10–10) and PAX4 (Bonferroni-corrected P 
= 1.43×10–5). SND1 is implicated as an important factor for normal cell growth73, and PAX4 is 
critical to normal fetal development73. The candidate inversion contains genome-wide significant 
associations in the GWAS Catalog database65 with alcohol dependence, educational attainment, 
and schizophrenia, among other phenotypes. 
The fifth notable genomic region is the candidate inversion on chromosome 8 (~7.89 to 11.8 Mb), 
which contains lead SNPs and conditional associations for all of our GWAS except those of drinks 
per week and of the first PC of the risky behaviors (Supplementary Fig. 6). (The strongest 
associations with drinks per week and the first PC of the risky behaviors have P values of 5.64×10–

4 and 1.27×10–7, respectively.) There are ~20 genes within the candidate inversion, and 
interestingly, practically all are significant in the MAGMA gene analysis after Bonferroni-
correction (Supplementary Table 17). Two notable examples are MSRA and CTSB (with 
Bonferroni-corrected P values of 2.94×10–24 and 4.37×10–5, respectively). MSRA is known to be 
highly expressed in human nervous tissue73, and CTSB has a known effect on the processing of an 
amyloid precursor protein (APP)73. Incomplete processing of APP has been suggested as one of 
the causes of Alzheimer’s disease83. However, the GWAS Catalog database65 does not report any 
previous associations with Alzheimer’s disease within the candidate inversion, or within 500kb of 
its breakpoints. The GWAS Catalog database65 reports genome-wide associations within the 

                                                             
p A good example of the strong selection is the differences in allele frequencies across populations for alleles that 
affect resistance to a lethal form of malaria (see, e.g., ref.268). The protective alleles are very common in areas where 
the disease is endemic compared to areas where the risk of infection is low or absent. 
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breakpoints of the candidate inversion with many other phenotypes, including extraversion, 
schizophrenia, and chronotype, and the candidate inversion has been analyzed in-depth in a study 
of neuroticism and depressive symptoms18. 

3.2.2 Overlap within approximately independent LD blocks  

The observation that several genomic regions contain at least one lead SNP from all or most of our 
GWAS prompted further investigation. To begin with, we divided the genome into 1703 
approximately independent LD blocks identified by Pickrell et al.84. We then counted the number 
of blocks that contain lead SNPs from exactly one, two, three, four, five, six, and seven of our 
main GWAS. Of the 1703 LD blocks, 234 contain at least one lead SNP from exactly one of our 
seven main GWAS; 93 contain at least one lead SNP from exactly two GWAS; 40 contain at least 
one lead SNP from exactly three GWAS; 20 contain at least one lead SNP from exactly four 
GWAS; 7 contain at least one lead SNP from exactly five GWAS; one block (~84.4 Mb to 85.6 
Mb on chromosome 3) contains at least one lead SNP from exactly six GWAS; and one block 
(~51.6 Mb to 55.2 Mb on chromosome 18) contains at least one lead SNP from all seven of our 
main GWAS. These last two blocks on chromosomes 3 and 18 are respectively located within the 
first and the second notable genomic region highlighted above and displayed in Supplementary 
Fig. 6.  
The nine blocks that contain at least one lead SNP from exactly five, six, or seven GWAS each 
contain at least one general-risk-tolerance lead SNP. Five of these nine blocks overlap with four 
of the five notable regions described above and are depicted as striped regions in Supplementary 
Fig. 6q. The five blocks include the two blocks that contain lead SNPs from six and from all seven 
of our GWAS. The other four blocks that do not overlap with the notable genomic regions are 
located on chromosome 2 (~44.3 to 46.5 Mb), chromosome 3 (~70.5 to 72.5 Mb), chromosome 6 
(~97.8 to 100.6 Mb), and chromosome 7 (113.7 ~ 116.8 Mb). Thus, nine genomic regions contain 
lead SNPs for at least five of our seven GWAS: the five notable regions described in the previous 
subsection and the four LD blocks located on chromosomes 2, 3, 6, and 7.  

We ran a simulation to benchmark those results and to assess the likelihood of observing such a 
high level of within-block overlap across the GWAS results, under the null hypothesis that the LD 
blocks containing the lead SNPs of each GWAS are distributed randomly across the genome and 
independently from those of the other GWAS. (This null hypothesis is not perfectly realistic: in 
practice, the phenotypes are phenotypically correlated and their GWAS samples overlap 
substantially, and some LD blocks are located within regions of the genome that are more likely 
to contain causal variants. Thus, although informative, this simulation exercise has limitations.) 
We conducted this analysis with only the general risk tolerance, automobile speeding propensity, 
drinks per week, ever smoker, and number of sexual partners phenotypes. We excluded 
adventurousness and the first PC of risky behaviors, because adventurousness is strongly 
genetically correlated with general risk tolerance, and because the first PC of risky behaviors is 
                                                             
q There are 27 LD blocks that overlap with the five notable genomic regions, and these are shown, separated by the 
dotted vertical gray lines, in Supplementary Fig. 6. Of these 27 blocks, four blocks contain at least one lead SNP 
from exactly one GWAS; two contain at least one lead SNP from exactly two GWAS; four contain at least one lead 
SNP from exactly three GWAS; three contain at least one lead SNP from exactly four GWAS; three contain at least 
one lead SNP from exactly five GWAS; one contains at least one lead SNP from exactly six GWAS; and one contains 
at least one lead SNP from all seven GWAS (these last two blocks are the ones on chromosomes 3 and 18, located 
within the first and the second notable genomic regions). 
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constructed from the four risky behaviors. The simulation proceeded in the following way: Since 
larger LD blocks are more likely to contain lead SNPs for any of our phenotypes, we classified 
each LD block by length and randomly permuted the LD blocks within each length class 
independently for each phenotyper. We then counted the number of LD blocks that contain hits 
from exactly one, two, three, four, and five GWAS, and we averaged these numbers over 10,000 
simulations.  

Our results indicate that, under the null hypothesis, we would expect 357.064 LD blocks to contain 
at least one lead SNP from exactly one GWAS; 43.212 to contain at least one lead SNP from 
exactly two GWAS; 2.734 to contain at least one lead SNP from exactly three GWAS; 0.077 to 
contain at least one SNP from exactly four GWAS; and 0.001 to contain at least one lead SNP 
from all five GWAS. By contrast, the actual number of blocks that contain at least one lead SNP 
from exactly one, two, three, four, and five of these GWAS are 253, 61, 20, 3, and 1. The expected 
overlap from our simulation thus differs markedly from the overlap that we actually observe. To 
investigate this more formally, we conducted a non-parametric Mann-Whitney test85 to compare 
the actual and simulated distributions of within-block overlaps across GWAS. Our results strongly 
suggest that the distribution of overlap in the simulation is different from the distribution of overlap 
that we actually observe (P = 0.0023).  
The simulation exercise thus clearly suggests that the high level of within-block overlap across the 
results of our seven GWAS are highly unlikely to be due to chance. However, we emphasize again 
that our null hypothesis is not perfectly realistic and that the simulation exercise has limitations, 
and that these results should therefore be interpreted with caution. 

3.2.3 Concordance of SNP effects across the nine regions associated with five or more 
of our phenotypes 

Above, we identified nine genomic regions that contain lead SNPs for at least five of our seven 
GWAS: the five notable regions on chromosomes 3, 6, 7, 8, and 18, and the four LD blocks located 
on chromosomes 2, 3, 6, and 7. We investigated whether the signs of the lead SNPs located in 
these regions tend to be concordant across our primary and supplementary GWAS (in the sense 
that general-risk-tolerance-increasing alleles are also associated with higher risk taking in the 
supplementary GWAS, and vice-versa). To do so, we first took the general-risk-tolerance lead 
SNPs in these nine regions and checked for sign concordance across the six supplementary GWAS. 
Then, we took the lead SNPs from the six supplementary GWAS in these nine regions and 
compared their signs to the corresponding signs in the GWAS of general risk tolerance.  

These nine regions harbor a total of 37 general-risk-tolerance lead SNPss. 217 coefficients of these 
37 lead SNPs are available in the results of the six supplementary GWAS (one of the 37 SNPs is 
only available in the adventurousness GWAS). 205 of these coefficients have concordant signs, 
147 are significant at the 5% level in the supplementary GWAS, and 26 are genome-wide 

                                                             
r We sorted the LD blocks into 9 classes based on the following lengths: 0 to 0.5 Mb (36 blocks), 0.5 to 1 Mb (263 
blocks), 1 to 1.5 Mb (526 blocks), 1.5 to 2 Mb (478 blocks), 2 to 2.5 Mb (256 blocks), 2.5 to 3 Mb (82 blocks), 3 to 
3.5 Mb (29 blocks), 3.5 to 7.5 Mb (25 blocks), and greater than 7.5 Mb (8 blocks).  
s There are 141 unique lead SNPs across our seven main GWAS in these nine regions. Note that these lead SNPs were 
obtained using a clumping algorithm with an r2 threshold of 0.1. See Supplementary Note sections 2.8 for more 
details. 
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significant. Under the null hypothesis that the coefficients are independent across SNPst and have 
an equal probability of being concordant or discordant across the general risk tolerance and 
supplementary GWAS, the probability of observing 205 or greater concordant coefficients is very 
small (9	 ≤ 	9×10)bc). We only found 12 discordant coefficients (9 of which are for drinks per 
week), and the total number of discordant coefficients is reduced to 4 if for each of the nine regions 
we exclude coefficients of GWAS that do not contain any lead SNP in the region. None of the 
discordant coefficients are genome-wide significant, and only 1 is significant at the 5% level (for 
drinks per week).  
The nine regions also harbor 108 SNPs that are lead SNPs for at least one of the six supplementary 
GWAS. Of these 108 SNPs, some are lead SNPs for more than one of the supplementary GWAS 
and two are missing in the general-risk-tolerance GWAS, resulting in 111 coefficients that are 
available for a sign test. 109 of these 111 coefficients are concordant in our GWAS of general risk 
tolerance. Under the null hypothesis that the coefficients are independent across SNPs have an 
equal probability of being concordant or discordant across the general risk tolerance and 
supplementary GWAS, the probability of observing 109 or greater concordant SNPs is very small 
(9	 ≤ 	3×10)d+). 98 of the concordant coefficients are significant at the 5% level for general risk 
tolerance, and 31 of these are genome-wide significant; the two discordant coefficients are not 
significant at the 5% level for general risk tolerance.  

Thus, the signs of the lead SNPs located in these regions tend to be highly concordant across our 
primary and supplementary GWAS, which suggests that these regions represent shared genetic 
influences on our seven phenotypes (rather than colocalization of causal SNPs). 

3.2.4 Gene overlap across our seven GWAS 

We annotated each lead SNP from our seven GWAS with its most proximate gene, as described 
in Supplementary Note section 2.13. This approach roughly partitions the SNPs throughout the 
genome into different genomic segments—each associated with a single gene—that can be 
compared across our main GWAS. When we compared the gene-associated segments identified 
across our seven GWAS, we found that the only gene segment that is identified in all of them is 
the one associated with CADM2 on chromosome 3 (that is located within the long-range LD region 
on chromosome 3, ~83.4 to 86.9 Mb, that is shared across all our GWAS; Supplementary Fig. 
6).  

The second most shared gene segment is the one associated with TCF4 (discussed in more detail 
above). TCF4 is located within the candidate inversion on chromosome 18 (~49.1 to 55.5 Mb) that 
is shared across all our GWAS (Supplementary Fig. 6). Lead SNPs from six of our GWAS, but 
not ever smoker, are annotated to TCF4. Three lead SNPs for ever smoker are located within the 
candidate inversion (of which two are conditional associations) but are instead annotated to the 
genes DCC and TXNL1. DCC ends ~1.5 Mb before TCF4, and TXNL1 starts ~967 kb after TCF4. 
Four segments, which were associated with the genes FOXP1, MDFIC, SIX3, and VGLL3 (which 
is located ~69.8 kb downstream of the notable long-range LD region spanning ~83.4 to 86.9 Mb 
on chromosome 3), were each identified in five GWAS. 

                                                             
t The lead SNPs in any of the nine regions are only approximately independent (r2 < 0.1) from one another, so assuming 
that the coefficients are independent is an approximation.  
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We searched the GWAS Catalog database65 for previous associations with the genes associated 
with these shared segments, and we found some notable associations: FOXP1 has been associated 
with ADHD, autism spectrum disorder, chronotype, and schizophrenia; MDFIC with BMI and 
obesity; SIX3 with fasting plasma glucose, metabolite levels, and myopia; and VGLL3 with age at 
menarche and pubertal anthropometrics.  

3.3 Results of the discovery GWAS of general risk tolerance 

The discovery GWAS of general risk tolerance identified 124 independent genome-wide 
significant SNPs (i.e., lead SNPs), distributed across chromosomes 1 to 19. The strongest 
associations were found in the gene CADM2 on chromosome 3 (rs993137, P = 2.14×10–40), on 
chromosome 7 in the gene FOXP2 (rs7783012, P = 7.57×10–25) and in proximity to the gene 
MDFIC (rs9641536, P = 5.01×10–23), and in the gene MFHAS1 (rs2409095, P = 1.01×10–20) on 
chromosome 8. We report the association results for the 124 lead SNPs in Supplementary Table 
3, together with estimated effect sizes (the 5I’s) expressed in phenotype standard-deviation units 
per effect-coded allele. Supplementary Note section 5 reports the results of our successful 
attempt to replicate these results in our replication GWAS, as well as the results of the “maxFDR” 
calculation.  
As described in Supplementary Note section 2.8, in addition to our baseline definition of a lead 
SNP, we followed Ripke et al.58 and defined non-overlapping, continuous genomic loci. We 
identified 99 such loci for general risk tolerance. Supplementary Table 3 lists these loci. We also 
performed a conditional analysis with GCTA (COJO)59 (Supplementary Note section 2.8) with 
the 58,219 SNPs that passed all GWAS quality control filters and that are located within the 99 
loci. There were 91 genome-wide significant conditional associations, of which 90 are among the 
124 lead SNPs. The single new conditional association, rs163505 (COJO P = 2.70×10–9), is 
genome-wide significant in the discovery GWAS (P = 1.16×10–8), but it is in the clump of the lead 
SNP rs163503. Of the 34 lead SNPs that are not significant in the conditional analysis, 14 are in 
the notable candidate inversion on chromosome 8 (~7.89 to 11.8 Mb), five are in the notable long-
range LD region on chromosome 3 (~83.4 to 86.9 Mb), two are in the notable candidate inversion 
on chromosome 18 (~49.1 to 55.5 Mb), two are in the notable long-range LD region on 
chromosome 6 (~25.3 to 33.4 Mb), and two are in other candidate inversion or long-range LD 
regions. Only 9 of the 34 lead SNPs that are not significant in the conditional analysis are outside 
long-range LD regions and candidate inversions. Therefore, the exact numbers of lead SNPs within 
the long-range LD regions and candidate inversions should be interpreted with caution. 
Supplementary Table 3 reports the results of the conditional analysis.  

We display the Manhattan plot of the discovery GWAS in Fig. 1a and the quantile-quantile (Q-Q) 
plot in Supplementary Fig. 1a. The genomic inflation factor (STU) was 1.405 before, and 1.378 
after inflation of the standard errors with the square root of the estimated intercept from an LD 
Score regression (XEYZ,[Z\Y = 1.040, 7H = 0.011). As we discuss in Supplementary Note 
section 4, an observed genomic inflation factor larger than 1 is consistent with the expectation that 
complex traits are polygenic86, and an estimated LD Score regression intercept close to unity 
suggests that the inflation is mainly due to polygenicity rather than to confounding factors53.  
All 124 general-risk-tolerance lead SNPs have MAF larger than 1%; only two of the lead SNPs 
have MAF lower than 5%; four have MAF between 5% and 10%; 33 have MAF between 10% and 
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25%; and 85 have MAF between 25% and 50%. Thus, the vast majority of our lead SNPs are very 
common SNPs. 

To evaluate the magnitude of the effect-size estimates of the 124 lead SNPs, we compared them 
with the 124 top associations reported in recent GWAS of height and body mass index (BMI), with 
the 74 top associations reported in a recent GWAS of educational attainment, and with the 48 top 
associations reported in a recent GWAS of waist-to-hip ratio adjusted for BMI (WHR)u. We 
display the comparison in Supplementary Fig. 2. The effect-size estimates of the 124 lead SNPs 
are consistently smaller than the top effect-size estimates of height, BMI, educational attainment, 
and WHR, both in terms of standard deviation units of the phenotype per effect-increasing allele, 
as well as in terms of variance explained (_"). The general-risk-tolerance effect sizes range from 
0.008 to 0.026 in phenotype standard-deviation units per effect-increasing allele, compared to a 
range of 0.038 to 0.191 for height, 0.019 to 0.082 for BMI, 0.014 to 0.048 for educational 
attainment, and 0.012 to 0.043 for WHR. The variance explained (_") by the general-risk-tolerance 
lead SNPs ranges from 0.003% to 0.019%, compared to 0.036% to 0.283% for height, 0.013% to 
0.325% for BMI, 0.010% to 0.036% for educational attainment, and 0.004% to 0.072% for WHR.  

We then paired the top SNPs of general risk tolerance with the top SNPs of height, BMI, 
educational attainment, and WHR (after ranking the SNPs by _" for each phenotype), and we 
calculated the median of the ratio of the _" across the paired SNPs. The median ratio was 13.64 
between general risk tolerance and height (i.e., for the median ratio, the variance explained was 
13.64 times larger for height compared to general risk tolerance), 4.58 between general risk 
tolerance and BMI, 3.85 between general risk tolerance and WHR, and 2.73 between general risk 
tolerance and educational attainment. Thus, effect sizes and _" of the general-risk-tolerance lead 
SNPs are substantially lower than those for the comparison phenotypes. 

3.3.1 Genetic correlation between females and males 

We used bivariate LD Score regression53 to calculate the genetic correlation between GWAS 
performed separately in the sample of females and in the sample of males in the UKB. Our estimate 
of the genetic correlation (,- = 0.822, SE = 0.033) is significantly smaller than unity, pointing to 
some heterogeneity across females and males, but high enough to justify our approach of pooling 
males and females in our other analyses to maximize statistical power. For further details, see 
Supplementary Note section 7.4.  

3.3.2 Genetic correlations between and heterogeneity of effect sizes across the UKB, 
23andMe, and the replication GWAS 

Using bivariate LD Score regression53 we estimated the genetic correlation between the cohort-
level GWAS summary statistics from the general-risk-tolerance GWAS in the 23andMe and UKB 
cohorts, as well as between these GWAS and our replication GWAS (which includes 10 cohorts). 
Our estimates of the genetic correlations between the 23andMe and UKB GWAS (,- =	0.767, SE 
= 0.021), between the 23andMe and the replication GWAS (,- =	0.759, SE = 0.126), and between 
the UKB and the replication GWAS (,- = 0.828, SE = 0.135) are all smaller than unity (though 

                                                             
u The data for height, BMI, and WHR are from the publicly available GWAS results of the GIANT consortium, with 
males and females pooled and restricted to European-ancestry individuals, and the data for educational attainment are 
from the largest previously published GWAS of educational attainment by Okbay et al.16. 
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only the first of these estimates is significantly different from unity at the 5% level), pointing to 
substantial cross-cohort heterogeneity. (For further details, see Supplementary Note section 7.4.) 

We also used bivariate LD Score regression53 to estimate the genetic correlation between the 
summary statistics from the discovery GWAS and those from the replication GWAS. We could 
not reject the null hypothesis of a genetic correlation equal to 1 (,-= 0.834, SE = 0.129). (For 
further details, see Supplementary Note section 7.4) 
Following a suggestion by a Referee and using the methodology described in Supplementary 
Note section 2.7, we evaluated the heterogeneity across the 23andMe and UKB cohorts of the 
effect-size estimates for the 124 general-risk-tolerance lead SNPs. Supplementary Table 3 
reports the P values of Cochran’s Q statistic for all 124 lead SNPs, along with the effect-size 
estimates separately for the 23andMe and UKB cohorts, and Supplementary Fig. 12 plots the 
effect-size estimates in the 23andMe and UKB cohorts and in the replication GWAS. Cochran’s 
Q statistic is not significant for any of the lead SNPs after Bonferroni-correction for 124 tests (i.e., 
P > 0.05/124 for all 124 lead SNPs). (We note, however, that the power of Cochran’s Q test is 
limited in our setting, because the discovery meta-analysis consists of only two cohorts55,56.) We 
also generated an omnibus test statistic for heterogeneity by summing the Cochran Q statistics 
across all lead SNPs57. As mentioned in Supplementary Note section 2.7, the sum of the Q 
statistics of the 124 lead SNPs is (approximately) `"-distributed with 124 degrees of freedom. We 
obtained a sum of 195.64, with a corresponding P value of 4.32×10–5 (under the null hypothesis 
of homogeneity, the expected value of that sum is equal to the number of degrees of freedom, 
which here is 124). Consistent with our genetic correlation estimate of less than unity between the 
23andMe and UKB cohorts, this points to the presence of some heterogeneity across the 23andMe 
and UKB cohorts.  

3.3.3 Results of the cross-lookup of the general-risk-tolerance lead SNPs and loci in 
the supplementary GWAS 

The results of the cross-lookup (described in Supplementary Note section 2.12) suggest 
substantial genetic overlap between the lead SNPs of our primary GWAS and those of our 
supplementary GWAS. 72 of the 124 general-risk-tolerance lead SNPs are also lead SNPs, or in 
LD (r2 > 0.1) with a lead SNP, for at least one of the other main phenotypes, and 46 of the 99 
general-risk-tolerance loci contain a lead SNP for at least one of the other main phenotypes. The 
overlap is particularly large between general risk tolerance and adventurousness: 45 of the 124 
general-risk-tolerance lead SNPs are also lead SNPs, or in LD with a lead SNP (r2 > 0.1), for 
adventurousness. We also found that 49 of the 124 general-risk-tolerance lead SNPs are also lead 
SNPs, or in LD with a lead SNP (r2 > 0.1), of one of the four risky behaviors or their first PC. 

To benchmark the likelihood of observing such substantial genetic overlap between the lead SNPs 
and loci of our primary and supplementary GWAS, we conducted a resampling exercise under the 
null hypothesis that the lead SNPs of our supplementary GWAS are distributed randomly across 
the genome and independently from the general-risk-tolerance lead SNPs and loci and from the 
lead SNPs of the other GWAS. The resampling exercise involved 10,000 runs. In each run, for 
each lead SNP of the supplementary GWAS we randomly selected an autosomal SNP matched on 
MAF (with five-percentage-point MAF windows). We then counted how many of the 124 general-
risk-tolerance lead SNPs were in weak LD (r2 > 0.1) with at least one of the resampled lead SNPs, 
as well as how many of the 99 general-risk-tolerance loci contained at least one of the resampled 
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lead SNPs, and took the average count across the 10,000 runs. Our results imply that, under the 
null hypothesis, we would expect 10.3 of the 124 general-risk-tolerance lead SNPs to be in weak 
LD with a lead SNP for at least one of the supplementary phenotypes; 2.2 to also be in weak LD 
with a lead SNP for adventurousness; and 8.1 to also be in weak LD with a lead SNP for at least 
one of the four risky behaviors or their first PC. Similarly, under the null hypothesis, we would 
expect 3.5 of the 99 general-risk-tolerance loci to contain a lead SNP for at least one of the 
supplementary phenotypes. In all four cases, we strongly reject the null hypothesis (P < 0.0001 in 
all four cases). The overlap we observe between the 124 general-risk-tolerance lead SNPs and the 
lead SNPs from the other GWAS is thus much greater than what could be expected by chance. 

3.3.4 Novelty of the lead SNPs of the discovery GWAS of general risk tolerance 

We assessed the novelty of the lead SNPs by performing a lookup in the NHGRI-EBI GWAS 
Catalog database65 for each of the 124 general-risk-tolerance lead SNPs (and the SNPs in LD, r2 
> 0.1), searching specifically for previous associations with general risk tolerance (and similar 
phenotypes) (see Supplementary Note section 2.10 for details). We found that the GWAS 
Catalog database contained no previous associations with general risk tolerance (or similar 
phenotypes).  

However, we know of one previous study by Day et al.66 that analyzed the same general-risk-
tolerance phenotype measure (which they refer to as “risk-taking propensity”) as the one we study, 
in the first release of the UKB data. Day et. al report one independent lead SNP (rs4856591) 
associated with general risk tolerance in the gene CADM2. This association was replicated by 
Boutwell et al.68 using a proxy SNP available in an independent sample (rs1865251) located ~125 
kb from the original lead SNP (i.e., rs4856591). 

The original lead SNP from ref.66 is not available in our main reference panel (and therefore not 
available in the summary statistics from our discovery GWAS), but the proxy SNP from ref.68 is 
available. Our discovery GWAS also contains a proximate SNP (rs4856590) only 22 bp away from 
the original lead SNP from ref.66. Both rs1865251 and rs4856590 are genome-wide significant in 
our discovery GWAS. They are “clumped” with our top lead SNP rs993137 (P = 2.14×10–40), and 
the LD (r2) between our lead SNP rs993137 and rs1865251 and rs4856590 is 0.996 and 0.949, 
respectively. Because its locus is associated with general risk tolerance in a previous peer-reviewed 
publication, we do not consider our lead SNP rs993137 to be a novel association. 

We also know of one concurrent GWAS by Strawbridge et al.67 on general risk tolerance (which 
Strawbridge et al. refers to as “risk-taking behavior”). Strawbridge et al. also analyzed the same 
phenotype measure as the one we and Day et al.66 study, but used a somewhat different set of 
individuals than Day et al. in the first release of the UKB data. They identified one independent 
lead SNP on chromosome 6 (i.e., rs9379971) in addition to the previous association in CADM2 
from ref.66 and ref.68. The SNP rs9379971 is genome-wide significant in our discovery GWAS, 
and it is “clumped” with a lead SNP of the discovery GWAS (rs1417998, P = 2.92×10–10).  
Thus, to the best of our knowledge, all of the loci we identified through our GWAS of general risk 
tolerance are novel associations with general risk tolerance, except for our top lead SNP rs993137v. 
We therefore consider 123 of the 124 lead SNPs to be newly identified associations with general 

                                                             
v Since we consider the GWAS by Strawbridge et al.67 to be concurrent, we consider our lead SNP rs1417998 to be 
a novel association with general risk tolerance. 
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risk tolerance (and similar phenotypes). We report the novelty of our 124 lead SNPs in the column 
“New association” in Supplementary Table 3.  

3.3.5 Results of the GWAS Catalog lookup of the lead SNPs of the primary GWAS of 
general risk tolerance  

To investigate the potential overlap between general risk tolerance and other phenotypes, we 
performed a lookup for each of our 124 lead SNPs (and the SNPs in LD, r2 > 0.6) in the NHGRI-
EBI GWAS Catalog database65 (see Supplementary Note section 2.11 for details). The results 
are reported in Supplementary Table 27. In total, we found 61 overlaps between our lead SNPs 
(and the SNPs in LD, r2 > 0.6) and the previous associations reported in the GWAS Catalog 
database. Some of our lead SNPs overlap with multiple previous associations: the 61 overlaps 
involve only 27 of our 124 lead SNPs. 
Notably, we found overlaps at five schizophrenia loci, one bipolar disorder locus, four educational 
attainment loci, and two loci associated with cognitive function and information processing speed. 
The multiple overlaps with schizophrenia are consistent with the 16 second-stage hits we obtained 
for schizophrenia in the proxy-phenotype analysis (Supplementary Table 31), as well as with our 
finding of strong joint enrichment for association with schizophrenia (P = 3.0×10–9) among our 
general-risk-tolerance lead SNPs on a non-parametric Mann-Whitney test (Supplementary Note 
section 8). Further, 70% of the 122 general-risk-tolerance lead SNPs available in the schizophrenia 
summary statistics have concordant signs for the two phenotypes (P = 8.3×10–6). (We also note 
that general risk tolerance and schizophrenia are moderately and positively genetically correlated 
(,-= 0.173, SE = 0.021; Supplementary Note section 7)). However, we caution that it is possible 
that this overlap with the schizophrenia results is primarily attributable to the fact that the 
schizophrenia GWAS58 was relatively well-powered, rather than to shared genetic etiology 
between risk tolerance and schizophrenia.  
In addition, we found overlaps at one ADHD locus, one extraversion locus, and one brain volume 
(superior frontal gyrus grey matter volume) locus. Other potentially interesting overlaps were 
found at a resting heart rate locus and a motion sickness locus. Several traits associated with 
autoimmune disease also overlap with our lead SNPs: two loci associated with cholangitis, one 
locus associated with ulcerative colitis/atopic dermatitis, and one locus associated with type 1 
diabetes (that locus is also associated with height, age at menarche, and male pattern baldness). 
We also found overlaps at one locus associated with age at menarche, at two loci associated with 
carcinoma, and at one locus associated with breast cancer. 
The remaining overlaps are with seemingly unrelated traits, for example at loci associated with 
tooth development (one locus), gut microbiota diversity (one locus), blood protein levels (one 
locus), blood pressure and type 2 diabetes (one locus), and ear infection (one locus). The genetic 
overlap of general risk tolerance with a large number of traits underlines the possibility of 
widespread pleiotropy in the human genome.  
We note that both the existence and absence of overlaps between any two phenotypes should be 
interpreted with care. The existence of overlaps is not necessarily evidence of a shared genetic 
architecture. For example, a shared tagging variant could be in LD with two different causal 
variants that each only cause one of the traits87. Further, the absence of overlaps may be the result 
of inadequate statistical power in the currently available GWAS for either phenotype.  
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3.3.6 General-risk-tolerance lead SNPs in long-range LD regions 

8 of the 15 long-range LD regions identified by Price et al.60 (Supplementary Note section 2.9) 
contain lead SNPs for at least one of our primary or supplementary GWAS (of general risk 
tolerance, adventurousness, the four risky behaviors, and their first PC). We focus this section on 
the two long-range LD regions that contain general-risk-tolerance lead SNPs and that are notable 
because they also contain lead SNPs for all or most of our other six main GWAS phenotypes: the 
long-range LD regions ~83.4 to 86.9 Mb on chromosome 3 (Supplementary Fig. 6) and ~25.3 to 
33.4 Mb on chromosome 6 (Supplementary Fig. 6). These two regions are both among the five 
notable genomic regions we highlighted in Supplementary Note section 3.2. Those two regions 
contain 10 of the 124 general-risk-tolerance lead SNPs. We also report a third long-range LD 
region (~135.5 to 138.8 Mb on chromosome 5) that contains two general-risk-tolerance lead SNPs 
(but no lead SNPs for the other phenotypes), and below in Supplementary Note section 3.4 we 
present the five remaining long-range LD regions that we identified in our other six main GWAS. 
Only one long-range LD region (i.e., chromosome 3, ~83.4 to 86.9 Mb, Supplementary Fig. 6) 
contains lead SNPs for all seven of our phenotypes. We note again that the exact numbers of lead 
SNPs within the long-range LD regions should be interpreted with caution because many of the 
lead SNPs within these regions are not conditional associations. 
The first notable long-range LD region, spanning ~83.4 to 86.9 Mb on chromosome 3, is displayed 
in a local Manhattan plot in Supplementary Fig. 6 and was discussed in Supplementary Note 
section 3.2. The region is noteworthy because it contains more than one lead SNP for all of our 
GWAS, and it contains six lead SNPs for general risk tolerance, of which three are located within 
the CADM2 gene (~85.0 to 86.2 Mb), two are located ~76 kb and ~115 kb upstream of CADM2, 
and one is located ~547 kb downstream of CADM2, closer to the gene VGLL3. (The gene VGLL3, 
~86.9 to 87.0 Mb on chromosome 3, is ~69.8 kb downstream of the long-range LD region.) As we 
discussed in Supplementary Note section 3.2, the long-range LD region contains only one gene—
CADM2, which covers ~1.2 Mb of the ~3.5 Mb long-range LD region. CADM2 was the most 
significantly associated gene in the MAGMA gene analysis (Bonferroni-corrected P = 1.09×10–

50, Supplementary Table 17), and it contains our strongest association with general risk tolerance 
(rs993137, P = 2.14×10–40). The GWAS Catalog database65 reports many genome-wide significant 
associations within the long-range LD region, including age at menarche, BMI, educational 
attainment, and information processing speed. Most of the previous associations within the long-
range LD region are annotated to CADM2, which encodes a synaptic cell adhesion molecule73, and 
is related to synapse formation74 and brain plasticity75. 
The second long-range LD region (~25.3 to 33.4 Mb on chromosome 6) covers all the Human 
Leukocyte Antigen (HLA) genes73. It was also discussed in Supplementary Note section 3.2, and 
it is displayed in a local Manhattan plot in Supplementary Fig. 6. It contains four lead SNPs 
located in (or in close proximity to) four different genes: HIST1H2AC, HIST1H2BD, TRIM27, and 
C4B, of which the first three are significant in the MAGMA gene analysis after Bonferroni-
correction (Supplementary Table 17). The region is notable because it contains lead SNPs for all 
our other main GWAS, except drinks per week for which we identified a suggestively associated 
SNP (rs6937318, P = 3.83×10–7). As we discussed in Supplementary Note section 3.2, the region 
contains ~250 genes, and the MAGMA gene analysis found ~30 significant genes in the region 
after Bonferroni-correction (however, none of the actual HLA genes are significant, 
Supplementary Table 17). The GWAS Catalog database65 reports more than a thousand genome-
wide significant associations across hundreds of traits within the long-range LD region (~25.3 to 
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33.4 Mb on chromosome 6), including Alzheimer’s disease, autism spectrum disorder, educational 
attainment, and schizophrenia. 

We also identified a third long-range LD region (~135.5 to 138.8 Mb on chromosome 5) that 
contains two lead SNPs associated with general risk tolerance within the genes CTNNA1 and 
ETF1, but the region does not contain lead SNPs for any of our other main GWAS.  

3.3.7 General-risk-tolerance lead SNPs in candidate inversions  

Of the 154 genomic segments deemed highly prone to inversion polymorphisms (i.e., the 154 
“candidate inversions,” described in Supplementary Note section 2.9), we identified 44 that 
contain lead SNPs for at least one of our GWAS. 13 of these 44 candidate inversions contain a 
total of 30 general-risk-tolerance lead SNPs. We note again that the exact numbers of lead SNPs 
within the candidate inversions should be interpreted with caution because many lead SNPs within 
those regions are not conditional associations.  

This section focuses on four of the 13 candidate inversions that we find noteworthy because they 
contain lead SNPs for general risk tolerance as well as for most of our other main GWAS. Three 
of these four candidate inversions are among the five notable genomic regions we highlighted in 
Supplementary Note section 3.2. (Below, in Supplementary Note section 3.4, we discuss three 
other of the 44 candidate inversions of the 44, which are notable because they are shared across 
four of our GWAS, excluding general risk tolerance.) The four candidate inversions that we 
discuss in this section span ~124.6 to 132.7 Mb on chromosome 7 (Supplementary Fig. 6), ~7.89 
to 11.8 Mb on chromosome 8 (Supplementary Fig. 6), ~70.1 to 74.4 Mb on chromosome 16, and 
~49.1 to 55.5 Mb on chromosome 18 (Supplementary Fig. 6). Only one of these candidate 
inversions (i.e., ~49.1 to 55.5 Mb on chromosome 18, Supplementary Fig. 6) contains lead SNPs 
and conditional associations for all our GWAS.  
The first candidate inversion is on chromosome 7 (~124.6 to 132.7 Mb). We discussed it in 
Supplementary Note section 3.2 and we display it in a local Manhattan plot in Supplementary 
Fig. 6. This candidate inversion is notable because it contains lead SNPs and conditional 
associations for all our GWAS, except automobile speeding propensity (for which the strongest 
association is almost genome-wide significant (rs141450, P = 7.88×10–8)). The candidate inversion 
contains one lead SNP for general risk tolerance, two lead SNPs for adventurousness, one for 
drinks per week, one for ever smoker, one for number of sexual partners, and one for the first PC 
of the risky behaviors. As we discussed in Supplementary Note section 3.2, the candidate 
inversion contains ~50 genes, and five of those were significant after Bonferroni correction in the 
MAGMA gene analysis (Supplementary Table 17). The GWAS Catalog database65 reports 
previous associations with traits such as alcohol dependence, educational attainment, and 
schizophrenia. 
The second candidate inversion spans ~7.89 to 11.79 Mb on chromosome 8. We discussed it in 
Supplementary Note section 3.2 and we display it in a local Manhattan plot in Supplementary 
Fig. 6. This candidate inversion is notable, because it contains lead SNPs and conditional 
associations for all our GWAS, except drinks per week and the first PC of the risky behaviors. 
(The strongest association with drinks per week within the candidate inversion is rs574968044, P 
= 5.64×10–4, and the strongest association with the first PC of the risky behaviors is rs2898249, P 
= 1.27×10–7.) The candidate inversion contains 15 lead SNPs for general risk tolerance, five for 
adventurousness, one for automobile speeding propensity, two for ever smoker, and four for 
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number of sexual partners. As we discussed in Supplementary Note section 3.2, the candidate 
inversion contains ~20 genes, of which practically all were significant after Bonferroni correction 
in the MAGMA gene analysis (Supplementary Table 17). The GWAS Catalog database65 reports 
genome-wide associations in the candidate inversion with many behavioral phenotypes, including 
extraversion, neuroticism, schizophrenia, and chronotype. 
The third candidate inversion is on chromosome 18 (~49.1 to 55.5 Mb) and was also discussed in 
Supplementary Note section 3.2. It contains lead SNPs and conditional associations for all our 
GWAS, and it contains more than one lead SNP for all our GWAS except drinks per week, for 
which it contains only one. We display the region in a local Manhattan plot in Supplementary 
Fig. 6. The candidate inversion contains three lead SNPs for general risk tolerance, two for 
adventurousness, two for automobile speeding propensity, one for drinks per week, three for ever 
smoker, eight for number of sexual partners, and four for the first PC of the risky behaviors. As 
we discussed in Supplementary Note section 3.2, among the ~20 genes within the candidate 
inversion, we find only one gene—TCF4 (Bonferroni-corrected P = 5.51×10–9)—significant after 
Bonferroni correction in the MAGMA gene analysis (Supplementary Table 17). TCF4 plays an 
important role in nervous system development, and mutations in the gene are known to cause the 
rare Pitt-Hopkins syndrome73. The syndrome is characterized by distinct facial features, 
intellectual disability, delayed motor skills, and epilepsy, among many other symptoms77–79. The 
GWAS Catalog database65 reports genome-wide significant associations mapped to TCF4 with 
schizophrenia and reports previous genome-wide associations within the candidate inversion with 
traits such as autism spectrum disorder, ADHD, depression, educational attainment, schizophrenia,  
and subcortical brain region volumes. 

A fourth candidate inversion is on chromosome 16 (~70.1 to 74.4 Mb) and contains lead SNPs and 
conditional associations for the GWAS of general risk tolerance, ever smoker, number of sexual 
partners, and the first PC of the risky behaviors. (The strongest association with adventurousness 
within the candidate inversion is rs9929242 (P = 2.21×10–6), the strongest association with 
automobile speeding propensity is rs2158268 (P = 3.35×10–6), and the strongest association with 
drinks per week is rs11648570 (P = 1.50×10–7).) The candidate inversion contains ~35 genes, of 
which 2 are significant after Bonferroni correction in the MAGMA gene analysis (Supplementary 
Table 17): CHST4 (Bonferroni-corrected P = 4.69×10–3) and CMTR2 (Bonferroni-corrected P = 
0.024). CHST4 is involved in normal cell function via carbohydrate sulfotransferase73, and CMTR2 
is involved in methyltransferase73. There is also one additional gene ~458 kb upstream of the 
candidate inversion—NFAT5—that is significant after Bonferroni correction in the MAGMA gene 
analysis (Bonferroni-corrected P = 4.66×10–3). It is notable because it plays a central role in gene 
transcription during immune response73, consistent with the significant estimate of the category 
“Immune/Hematopoietic” in the partitioning of the SNP heritability into functional categories with 
LD Score regression (Supplementary Note section 12). The candidate inversion contains 
genome-wide significant associations in the GWAS Catalog database65 with total cholesterol, 
prostate cancer, and stroke, among other phenotypes. 
The remaining nine of the 13 candidate inversions that contain general-risk-tolerance lead SNPs 
each contain only one general-risk-tolerance lead SNP, and the overlap with the other GWAS is 
low.  
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3.3.8 General-risk-tolerance lead SNPs in LD with 1000 Genomes structural variants 

In addition, 24 of the 124 lead SNPs are located within, or in strong LD with another variant within, 
23 different 1000G structural variants. All candidate inversions that contain general-risk-tolerance 
lead SNPs, as well as these 1000G structural variants, are reported in Supplementary Table 3. 

3.3.9 Interaction of age and sex with general-risk-tolerance lead SNPs 
Following a suggestion by a Referee, we investigated whether there is evidence of interaction 
effects between each of the 124 general-risk-tolerance lead SNPs and either age or sex. We began 
by assessing the statistical power to detect such interaction effects, with a series of power 
calculations. We assumed that the interaction effects could have R2’s that are 5%, 10%, 25%, 50%, 
or 100% as large as the largest and smallest R2’s of the 124 general-risk-tolerance lead SNPs. The 
power to find an interaction effect at the 5% level of significance was estimated to be 53.8%, 
82.8%, 99.6%, 100%, and 100%, respectively, for the largest effect size (R2 ~ 0.02%), and 13.2%, 
22.1%, 47.0%, 76.0%, 96.5%, respectively, for the smallest effect size (R2 ~ 0.003%). If we 
account for multiple hypothesis testing and instead use a significance level of 5%/124, the power 
ranges from 6.9% to 100% for the largest effect size, and from 0.4% to 59% for the smallest. The 
statistical power to detect an interaction effect is thus not very high, but may still be sufficient, 
depending on the size of the interaction effect.  
For each of the 124 lead SNPs, we performed two regressions: (1) one regression of general risk 
tolerance on the SNP and the interaction between the SNP and sex; and (2) one regression of 
general risk tolerance on the SNP and the interactions with two of three age bins (to test for 
nonlinear age effects, we used three age bins: £50, 51–60, and ³61). Both regressions also included 
our standard set of covariates (described in Supplementary Table 2). For none of the 124 lead 
SNPs was the interaction with sex statistically significant after Bonferroni correction for 124 tests. 
Similarly, for none of the lead SNPs were the interactions with the two age bins nominally 
significant after correction for 124×2 = 248 tests. 

3.4 Results of the supplementary GWAS 

Our six supplementary GWAS—of adventurousness, the four risky behaviors, and of the first PC 
of the four risky behaviors—identified a total of 740 lead SNPsw. We consider 729 of these 740 
lead SNPs to be novel associations for these phenotypes. The association results are reported in 
Supplementary Table 6. We identified 167 lead SNPs for adventurousness, 42 for automobile 
speeding propensity, 85 for drinks per week, 223 for ever smoker, 117 for number of sexual 
partnersx, and 106 for the first PC of the risky behaviors.  
The results are displayed in Manhattan plots in Supplementary Fig. 5 and in Q-Q plots in 
Supplementary Fig. 1. The genomic inflation factors (STU) across the phenotypes ranges from 
1.254 to 1.470, and the estimated LD Score regression intercepts were in the range of 1.026 to 

                                                             
w As mentioned above, we did not attempt replication of the results of our six supplementary GWAS in independent 
data, because we did not have access to such data for the six supplementary phenotypes. However, as we report in 
Supplementary Note section 5, we calculated the “maxFDR”71, an upper bound on the false discovery rate (FDR), 
for each GWAS. The maxFDR estimates were low across all GWAS, thus providing reassurance about the robustness 
of the lead associations. 
x As mentioned in a previous footnote, we excluded one of the 118 number-of-sexual-partners lead SNPs we initially 
identified (see Supplementary Note section 3.4.5 for details). 
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1.051, consistent with polygenicity and low levels of confounding from population 
stratification53,86. The estimated effect sizes (the 5I’s) reported in Supplementary Table 6 are 
expressed in phenotype standard deviation units per effect-coded allele. (The phenotype standard 
deviations are reported in Supplementary Table 4).  

3.4.1 GWAS of adventurousness 

We identified 167 lead SNPs associated with adventurousness. The strongest associations were 
found within, or in close proximity to, the genes CADM2 (rs10433500, P = 9.31×10–84), SATB1 
(rs13090941, P = 3.26×10–21), and FOXP2 (rs10228494, P = 1.23×10–19). 47 of the 167 lead SNPs 
are also lead SNPs, or in LD with a lead SNP (r2 > 0.1), for general risk tolerance. 52 of the 167 
lead SNPs are also lead SNPs, or in LD with a lead SNP (r2 > 0.1), for the four risky behaviors, 
and their first PC. 
To the best of our knowledge, there are no previous studies with genome-wide significant 
associations for adventurousness, and we consider all of our lead SNPs to be novel associations. 
We report the novelty of our adventurousness lead SNPs (and of the lead SNPs of the other 
supplementary GWAS) in the column “New locus” in Supplementary Table 6. 
We identified 137 loci (Supplementary Note section 2.8) for adventurousness. We also 
performed a conditional analysis with GCTA (COJO)59 (Supplementary Note section 2.8) with 
the 69,804 SNPs that passed all GWAS quality control filters and that are located within the 137 
loci. There were 126 genome-wide significant conditional associations, of which 120 are among 
the 167 lead SNPs. The six new conditional associations (COJO P = 8.69×10–10–3.36×10–8), are 
all genome-wide significant in the GWAS (P = 1.73×10–12–3.26×10–8), but they are in the clumps 
of other lead SNPs. Supplementary Table 6 lists the loci and reports the results of the conditional 
analysis. 
We now discuss long-range LD and candidate inversion regions that contain adventurousness lead 
SNPs. We emphasize, however, that the exact numbers of lead SNPs within the long-range LD 
and candidate inversion regions should be interpreted with caution because many of the lead SNPs 
in those regions are not conditional associations. 18 of the 167 lead SNPs are distributed across 
three of the 15 long-range LD regions identified by Price et al.60, of which two are the long-range 
LD regions that we describe above in Supplementary Note section 3.2 on chromosome 3 (~83.4 
to 86.9 Mb) and chromosome 6 (~25.3 to 33.4 Mb). Remarkably, 16 of these 18 lead SNPs are 
located within the long-range LD region on chromosome 3. Most of these 16 SNPs are located 
within, or in proximity to, the CADM2 gene, but three of them are closer to the gene VGLL3 (which 
is located ~69.8 kb downstream of the long-range LD region). The third long-range LD region, on 
chromosome 8 (~111.9 to 114.9 Mb), does not contain lead SNPs for any of our other six main 
GWAS. There is also a total of 24 lead SNPs located within 16 candidate inversions. Furthermore, 
there are 29 lead SNPs located within, or in strong LD with another variant within, 29 different 
1000G structural variants. All candidate inversions that contain adventurousness lead SNPs, as 
well as these 1000G structural variants, are reported in Supplementary Table 6. 

3.4.2 GWAS of automobile speeding propensity 

We identified 42 lead SNPs associated with automobile speeding propensity. The strongest 
association was found within the gene CADM2 (rs17516256, P = 9.9×10–21). Seven of the 42 lead 
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SNPs are also lead SNPs, or in LD with a lead SNP (r2 > 0.1), for general risk tolerance. 17 of the 
42 lead SNPs are also lead SNPs, or in LD with a lead SNP (r2 > 0.1), for at least one of the other 
main phenotypes we analyze, excluding the first PC of the risky behaviors. 
To the best of our knowledge, there are no previous studies with genome-wide significant 
associations for automobile speeding propensity, so we consider all of our lead SNPs to be novel 
associations (Supplementary Table 6). 

We identified 36 loci (Supplementary Note section 2.8) for automobile speeding propensity. We 
also performed a conditional analysis with GCTA (COJO)59 (Supplementary Note section 2.8) 
with the 38,156 SNPs that passed all GWAS quality control filters and that are located within the 
36 loci. There were 33 genome-wide significant conditional associations, of which 30 are among 
the 42 lead SNPs. The three new conditional associations (COJO P = 3.32×10–10–2.48×10–8), are 
all genome-wide significant in the GWAS (P = 3.30×10–12–3.55×10–8), but they are in the clumps 
of other lead SNPs. Supplementary Table 6 lists the loci and reports the results of the conditional 
analysis. 

We now discuss long-range LD and candidate inversion regions that contain automobile-speeding-
propensity lead SNPs. We emphasize again, however, that the exact numbers of lead SNPs within 
the long-range LD and candidate inversion regions should be interpreted with caution because 
many of the lead SNPs in those regions are not conditional associations. Eight of the 42 lead SNPs 
are distributed across two of the long-range LD regions identified by Price et al.60. Those two 
regions are the two long-range LD regions we described above in Supplementary Note section 
3.2 and that are shared across general risk tolerance and all or most of our GWAS. Three of the 
eight lead SNPs are in the region on chromosomes 3 (~83.4 to 86.9 Mb), and the other five are in 
the region on chromosome 6 (~25.3 to 33.4 Mb). The three lead SNPs located in the long-range 
LD region on chromosome 3 (~83.4 to 86.9 Mb) are all within the CADM2 gene. There is also a 
total of 24 lead SNPs located within 16 candidate inversions. Furthermore, seven lead SNPs are 
located within, or in strong LD with another variant within, seven different 1000G structural 
variants. All candidate inversions that contain automobile speeding propensity lead SNPs, as well 
as these 1000G structural variants, are reported in Supplementary Table 6. 

3.4.3 GWAS of drinks per week 

We identified 85 lead SNPs associated with drinks per week. The strongest and most notable of 
these associations is located within the alcohol dehydrogenase 1B gene on chromosome 4 
(ADH1B, rs1229984, P = 7.8×10–202). Multiple genome-wide significant associations were also 
found within, or in close proximity to, other alcohol dehydrogenase genes—ADH1A (rs62307263, 
P = 3.42×10–11), ADH1C (rs113659074, P = 9.93×10–23), and ADH7 (rs114112910, P = 1.08×10–

8). Four of the 85 lead SNPs are also lead SNPs, or in LD with a lead SNP (r2 > 0.1), for general 
risk tolerance. 21 of the 85 lead SNPs are also lead SNPs, or in LD with a lead SNP (r2 > 0.1), for 
at least one of the other main phenotypes we analyze, excluding the first PC of the risky behaviors. 
Following the procedure described in Supplementary Note section 2.10, we found that the lead 
SNPs located within, or in close proximity to, the genes ADH1A, ADH1B, ADH1C, ADH7, GCKR, 
and KLB, have previously been associated with alcohol consumption (or similar phenotypes), and 
we therefore do not consider associations annotated to these genes to be novel associations with 
drinks per week (Supplementary Table 6).  
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We identified 62 loci (Supplementary Note section 2.8) for drinks per week. We also performed 
a conditional analysis with GCTA (COJO)59 (Supplementary Note section 2.8) with the 111,146 
SNPs that passed all GWAS quality control filters and that are located within the 62 loci. There 
were 61 genome-wide significant conditional associations, of which 56 are among the 85 lead 
SNPs. The five new conditional associations (COJO P = 5.19×10–28–2.09×10–8), are all genome-
wide significant in the GWAS (P = 7.42×10–24–2.07×10–8), but they are in the clumps of other lead 
SNPs. Supplementary Table 6 lists the loci and reports the results of the conditional analysis. 
We now discuss long-range LD and candidate inversion regions that contain drinks-per-week lead 
SNPs. We emphasize again, however, that the exact numbers of lead SNPs within the long-range 
LD and candidate inversion regions should be interpreted with caution because many of the lead 
SNPs in those regions are not conditional associations. Two of the 85 lead SNPs are located within 
the same long-range LD region on chromosome 3 (~83.4 to 86.9 Mb) that contains lead SNPs for 
all our GWAS phenotypes (Supplementary Note section 3.2), and both lead SNPs are located 
within CADM2. Unlike for the six other main phenotypes we analyze, there are no lead SNPs for 
drinks per week in the long-range LD region spanning ~25.3 to 33.4 Mb on chromosome 6, but 
the region contains a suggestive association at rs6937318 (P value = 3.83×10–7). However, as can 
be seen in Supplementary Fig. 6, the general level of association is much lower for drinks per 
week in that long-range LD region in comparison with the other main phenotypes we analyze.  

15 lead SNPs are located across 15 candidate inversions. Of these, none is located within the 
candidate inversion spanning ~7.89 to 11.8 Mb on chromosome 8, unlike for general risk tolerance, 
adventurousness, ever smoker, and number of sexual partners. (The strongest association with 
drinks per week within that candidate inversion is rs574968044, (P = 5.64×10–4).) Just as for the 
long-range LD region on chromosome 6 (~25.3 to 33.4 Mb), the general level of association is 
much lower for drinks per week in the candidate inversion on chromosome 8 in comparison with 
the other main phenotypes, as can be seen in Supplementary Fig. 6. 
15 lead SNPs are located within, or in strong LD with another variant within, 20 different 1000G 
structural variants (some lead SNPs are in strong LD with SNPs in multiple structural variants). 
All candidate inversions that contain drinks per week lead SNPs, as well as these 1000G structural 
variants, are reported in Supplementary Table 6. 

3.4.4 GWAS of ever smoker 

We identified 223 lead SNPs associated with ever smoker. The strongest associations are located 
within, or in close proximity to, the genes NCAM1 (rs7938812, P = 7.1×10–48), ZEB2 (rs961414, 
P = 6.99×10–28), REV3L (rs240955, P = 3.84×10–23), NT5C2 (rs7092200, P = 7.44×10–22), CLU 
(rs11783093, P = 7.44×10–22), TMEM182 (rs1368550, P = 1.08×10–21), and CADM2 (rs34495106, 
P = 2.23×10–20). There are three additional lead SNPs located within, or in close proximity to, 
CADM2. 22 of the 223 lead SNPs are also lead SNPs, or in LD with a lead SNP (r2 > 0.1), for 
general risk tolerance. 59 of the 223 lead SNPs are also lead SNPs, or in LD with a lead SNP (r2 
> 0.1), for at least one of the other main phenotypes we analyze, excluding the first PC of the risky 
behaviors. 
Following the procedure described in Supplementary Note section 2.10, we found that the two 
lead SNPs located within the genes NCAM1 and BDNF have previously been associated with 
smoking behavior. We therefore do not consider those two loci to be novel associations with ever 
smoker (Supplementary Table 6).  
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Previous GWAS on nicotine dependence88 and number of cigarettes per day (CPD)35,88 report 
genes in the nicotine receptor gene family (i.e., the CHRN family35) as some of their strongest 
associations. In our results, none of the nicotine receptor genes (CHRN) contained any lead SNPs, 
consistent with the theory that the ever smoker phenotype is more strongly mediated by risk 
tolerance and social influences than by vulnerability to nicotine addiction89.  
We identified 183 loci (Supplementary Note section 2.8) for ever smoker. We also performed a 
conditional analysis with GCTA (COJO)59 (Supplementary Note section 2.8) with the 133,268 
SNPs that passed all GWAS quality control filters and that are located within the 183 loci. There 
were 172 genome-wide significant conditional associations, of which 162 are among the 223 lead 
SNPs. The ten new conditional associations (COJO P = 5.19×10–28–2.09×10–8), are all genome-
wide significant in the GWAS (3.50×10–14–4.21×10–8), but they are in the clumps of other lead 
SNPs. Supplementary Table 6 lists the loci and reports the results of the conditional analysis. 

We now discuss long-range LD and candidate inversion regions that contain ever-smoker lead 
SNPs. We emphasize again, however, that the exact numbers of lead SNPs within the long-range 
LD and candidate inversion regions should be interpreted with caution because many of the lead 
SNPs in those regions are not conditional associations. 14 lead SNPs are located in six of the long-
range LD regions identified by Price et al.60. These include the long-range LD regions ~83.4 to 
86.9 Mb on chromosome 3 and ~25.3 to 33.4 Mb on chromosome 6, which were also found to 
contain lead SNPs for general risk tolerance and most of our other GWAS phenotypes 
(Supplementary Note section 3.2). The four remaining long-range LD regions are on 
chromosome 1 (~48.2 to 52.2 Mb), chromosome 2 (~134.7 to 138.2 Mb), chromosome 12 (~111.0 
to 113.5 Mb), and chromosome 20 (~32.5 to 35.0 Mb). 24 lead SNPs are located within 16 
candidate inversions. There are also 56 lead SNPs located within, or in strong LD with another 
variant within, 69 different 1000G structural variants (some lead SNPs are in strong LD with SNPs 
in multiple structural variants). All candidate inversions that contain ever smoker lead SNPs, as 
well as these 1000G structural variants, are reported in Supplementary Table 6. 

We also performed a replication of the eight genome-wide significant SNPs from the GWAS of 
ever smoker by the TAG consortium35 in our GWAS in the UKB only (and not in our meta-
analyses of our UKB GWAS with the TAG summary statistics, as our replication sample must be 
independent of the TAG sample). All eight SNPs have concordant signs, and all are highly 
significant. Specifically, six of the eight SNPs are genome-wide significant (P value < 5×10–8) in 
our GWAS of ever smoker in the UKB (rs6265, P = 1.1×10–14; rs4923457, P = 2.3×10–11; 
rs4923460, P = 1.8×10–11; rs4074134, P = 2.6×10–11; rs6484320, P = 2.1×10–11; rs879048, P = 
1.2×10–11), and the two remaining SNPs are suggestively significant (rs1013442, P = 1.5×10–7; 
rs1304100, P = 1.2×10–7). It should be noted that the eight SNPs reported in the TAG consortium 
results are not independent, and if we apply our definition of lead SNPs from Supplementary 
Note section 2.8, then the SNP rs6265 would be the only lead SNP, and the other seven SNPs 
would be clumped to that SNP. rs6265 is one of the lead SNPs in our GWAS of ever smoker 
(which combines the UKB GWAS with the TAG GWAS; n = 518,633), and its P value in that 
GWAS is 3.92×10–18. 

3.4.5 GWAS of number of sexual partners 
Our baseline GWAS protocol (described in Supplementary Note section 2) identified 118 lead 
SNPs associated with number of sexual partners. For reasons we explain below in this section, we 
exclude one of the 118 initially identified lead SNPs from our lead-SNP count for number of sexual 



 48 

partners, which leaves 117 number-of-sexual-partners lead SNPs. The strongest associations are 
located within, or in close proximity to, the genes C14orf177 (P = 4.61×10–19) and FURIN (P = 
5.76×10–17). Two lead SNPs are within, or in close proximity to, CADM2 (rs2163971, P = 4.6×10–

14; rs9856718, P = 2.68×10–8). 28 of the 117 lead SNPs are also lead SNPs, or in LD with a lead 
SNP (r2 > 0.1), for general risk tolerance. 63 of the 117 lead SNPs are also lead SNPs, or in LD 
with a lead SNP (r2 > 0.1), for at least one of the other main phenotypes we analyze, excluding the 
first PC of the risky behaviors. 
Following the procedure described in Supplementary Note section 2.10, we determined that none 
of the lead SNPs we found (and the SNPs in LD with the lead SNPs, r2 > 0.1) to be associated with 
number of sexual partners have been previously associated with any similar phenotype, and we 
therefore consider all of our associations with number of sexual partners to be novel 
(Supplementary Table 6). 

Our baseline GWAS protocol identified 98 loci for number of sexual partners. However, for 
reasons we explain below in this section, we excluded one of these loci from the locus count, thus 
leaving 97 number-of-sexual-partners loci. We also performed a conditional analysis with GCTA 
(COJO)59 (Supplementary Note section 2.8) with the 158,435 SNPs that passed all GWAS 
quality control filters and that are located within the 98 loci. There were 88 genome-wide 
significant conditional associations, of which 82 are among the 118 lead SNPs. The six new 
conditional associations (COJO P = 1.67×10–12–2.55×10–8), are all genome-wide significant in the 
GWAS (2.84×10–12–2.94×10–8), but they are in the clumps of other lead SNPs. Supplementary 
Table 6 lists the loci and reports the results of the conditional analysis. 
We now discuss long-range LD and candidate inversion regions that contain number-of-sexual-
partners lead SNPs. We emphasize again, however, that the exact numbers of lead SNPs within 
the long-range LD and candidate inversion regions should be interpreted with caution because 
many of the lead SNPs in those regions are not conditional associations. Five lead SNPs are located 
within the two long-range LD regions on chromosome 3 (~83.4 to 86.9 Mb) and chromosome 6 
(~25.3 to 33.4 Mb) that are shared across general risk tolerance and all or almost all other GWAS 
(see Supplementary Note section 3.2). 25 lead SNPs are located within 14 candidate inversions. 
Furthermore, 23 lead SNPs are located within, or in strong LD with another variant within, 33 
different 1000G structural variants (some lead SNPs are in strong LD with SNPs in multiple 
structural variants). All candidate inversions that contain lead SNPs for number of sexual partners, 
as well as these 1000G structural variants, are reported in Supplementary Table 6. 

During the revision stage of this manuscript, some comments by a Referee prompted us to perform 
closer inspection of one of the 118 number-of-sexual-partners lead SNPs our baseline GWAS 
protocol had identified. The lead SNP in question, rs138394556 in locus no. 43 on chromosome 6 
(at bp 30,652,782), is not in LD (r2 > 0.1) with other SNPs in the main reference panel, and its 
very low MAF in our main reference panel (~0.0005) differs substantially from its MAF in the 
UKB (~0.148). rs138394556 was not directly sequenced (or did not pass QC filters) in the British-
ancestry individuals in the 1000 Genomes phase 1 version 3 reference panel, and its MAF in the 
British-ancestry individuals in the 1000 Genomes phase 3 version 590,91 (n ~ 91) is 0, similar to 
that in our main reference panel, and thus also very different from the MAF in the UKB.  
In response to the Referee’s comments, we first investigated the overall association support of all 
865 initially identified lead SNPs from our seven GWAS that have no LD partners at a threshold 
of r2 > 0.6. Out of 22 such lead SNPs, 10 are not in LD with any SNPs at r2 > 0.5, three are not in 
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LD with any SNPs at r2 > 0.4, two are not in LD with any SNPs at r2 > 0.3, and only a single lead 
SNP is not in LD with any SNPs at r2 > 0.1 (rs138394556). Hence, for all the lead SNPs except 
rs138394556, there is LD support at lower r2 thresholds.  
There are two main possible causes of the observed MAF difference between our main reference 
panel and the UKB for rs138394556: (1) a genotyping or imputation error in the UKB data, or (2) 
a difference in MAF between British and European populations, combined with either a 
genotyping error in the 1000 Genomes data or non-representative sampling of the 1000 Genomes 
British individuals in a way that failed to capture the true MAF of rs138394556 in the entire British 
population.  
To assess (1), we first investigated rs138394556 closely in the UKB. Although our GWAS analysis 
uses the imputed data, the SNP is directly genotyped with call rate of ~0.99, and it passed all the 
internal QC filters of the UKB, described elsewhere38. The genotyped MAF is ~0.14, which 
matches the imputed data. Next, we investigated whether rs138394556’s MAF varies across the 
UKB genotyping arrays and batches, as well as in the updated imputed data (referred to as version 
3), released in March, 2018. Again, the MAF is highly similar across the arrays and batches, as 
well as in the updated imputed data (ranging from 0.128 to 0.151). These results, combined with 
the fact that our association analysis controls for batches and arrays, lead us to conclude that the 
association is not driven by array or batch differences. Furthermore, in the phenome-wide UKB 
analyses performed by the Neale lab (http://www.nealelab.is/uk-biobank/, accessed August 15, 
2018), rs138394556 is suggestively associated with lifetime number of sexual partners in a smaller 
set of individuals (P = 7.92×10–6; n = 296,609); rs138394556 passed the Neale lab’s QC filters 
(although they acknowledge their checks were rather rudimentary). Overall, we found no direct 
evidence of a genotyping or imputation error, and it is reassuring that the Neale lab also estimated 
an elevated level of association with number of sexual partners.  

To investigate (2), we first checked rs138394556’s MAF in the two study cohorts that provided 
the vast majority of the samples of British ancestry in our main reference panel, namely the UK 
IBD Genetics Consortium and the UK10K. We found that rs138394556 had not been directly 
sequenced in either cohort. We then reached out and heard back from investigators who work with 
cohorts with individuals of British ancestry (including ALSPAC, ELSA, the Fenland study, and 
UKHLS) to inquire whether rs138394556 had been genotyped in these cohorts and, if so, what its 
MAF was. The Fenland study (n ~ 8,500) is the only one of these cohorts in which rs138394556 
has been directly genotyped. In the Fenland study, the genotyped MAF is ~0.13 and is thus very 
similar to that of the UKB. However, the Fenland study genotyped their participants with the UK 
Biobank Axiom genotyping array, the main array that was employed in the UKB. Thus, we cannot 
exclude the possibility that the genotyping arrays employed by the UKB fail to correctly genotype 
rs138394556. 

Because of the strong overall association in the vicinity of rs138394556, which is clearly visible 
in the LocusZoom plot of locus no. 43, we have no reason to believe that the overall association 
in the region implicated by the SNP is the result of genotyping or imputation error. Therefore, we 
have decided to keep rs138394556 in the overall reported findings (e.g., in the Manhattan plot for 
number of sexual partners and in Table 6). However, because we cannot exclude the possibility 
that rs138394556 has been incorrectly genotyped, we conservatively decided to exclude 
rs138394556 from our count of the number-of-sexual-partners lead SNPs and loci. We added notes 
to highlight that rs138394556 was excluded from the lead-SNP counts when appropriate, to avoid 
confusion. 
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3.4.6 GWAS of the first PC of the four risky behaviors 

We identified 106 lead SNPs associated with the first PC of the four risky behaviors. The strongest 
association is located in the gene MAPT on chromosome 17 (rs62062288, P = 1.02×10–29), and 
that gene contains lead SNPs for the GWAS of automobile speeding propensity, drinks per week, 
and number of sexual partners (but not for general risk tolerance, adventurousness, or ever 
smoker). The second strongest association is in CADM2 (rs6790699, P = 5.99×10–27), our top gene 
associated with general risk tolerance, which also contains lead SNPs for all our main GWAS. The 
three next strongest associations are in NCAM1 (rs2155290, P = 4.11×10–24, top locus for ever 
smoker), ADH1B (rs1229984, P = 3.70×10–22, top locus for drinks per week), and FOXP1 
(rs4676964, P = 7.80×10–18). This latter gene (FOXP1) is also strongly associated with the 
phenotypes automobile speeding propensity and number of sexual partners.  
18 of the 106 lead SNPs are also lead SNPs, or in LD with a lead SNP (r2 > 0.1), for general risk 
tolerance. 89 of the 106 lead SNPs are also lead SNPs, or in LD with a lead SNP (r2 > 0.1), for at 
least one of the other main phenotypes we analyze. We note that a high level of overlap with the 
results of the GWAS of the four risky behaviors was to be expected, given that the first PC of the 
risky behaviors was obtained from a principal component analysis of the four risky behaviors. 

We know of no previous GWAS of the first PC of the risky behaviors (or of similar phenotypes), 
and we consider all of our lead SNPs to be novel associations (Supplementary Table 6). 

We identified 89 loci (Supplementary Note section 2.8) for the first PC of the risky behaviors. 
We also performed a conditional analysis with GCTA (COJO)59 (Supplementary Note section 
2.8) with the 120,227 SNPs that passed all GWAS quality control filters and that are located within 
the 89 loci. There were 84 genome-wide significant conditional associations, of which 79 are 
among the 106 lead SNPs. The five new conditional associations (COJO P = 6.42×10–12–3.76×10–

9), are all genome-wide significant in the GWAS (1.83×10–11–3.22×10–9), but they are in the 
clumps of other lead SNPs. Supplementary Table 6 lists the loci and reports the results of the 
conditional analysis. 

We now discuss long-range LD and candidate inversion regions that contain first-PC lead SNPs. 
We emphasize again, however, that the exact numbers of lead SNPs within the long-range LD and 
candidate inversion regions should be interpreted with caution because many of the lead SNPs in 
those regions are not conditional associations. Seven of the 106 lead SNPs are located within the 
long-range LD region on chromosome 3 (~83.4 to 86.9 Mb), and three lead SNPs are located 
within the long-range LD region on chromosome 6 (~25.3 to 33.4 Mb), both shared with the 
general-risk-tolerance GWAS and all or most of our other main GWAS (see Supplementary Note 
section 3.2). One additional lead SNP is located within a long-range LD region on chromosome 2 
(~134.7 to 138.2 Mb). 20 lead SNPs are located within 14 candidate inversions. Of these, none is 
located within the chromosome 8 candidate inversion spanning ~7.89 to 11.8 Mb. The strongest 
association with the first PC of the risky behaviors within that candidate inversion is rs2898249 (P 
= 1.27×10–7), which we consider suggestive. Also, as can be seen from Supplementary Fig. 6, 
the general level of association within the candidate inversion on chromosome 8 (~7.89 to 11.8 
Mb) is more similar to the phenotypes for which there are lead SNPs in the candidate inversion 
than to drinks per week (for which the candidate inversion does not contain any lead SNPs). 
Furthermore, 20 lead SNPs are located within, or in strong LD with another variant within, 24 
different 1000G structural variants (some lead SNPs are in strong LD with SNPs in multiple 
structural variants). 
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3.4.7 Long-range LD regions and candidate inversions that contain lead SNPs for the 
supplementary GWAS phenotypes 

Our seven main GWAS identified lead SNPs located in eight long-range LD regions and 44 
candidate inversions (defined in Supplementary Note section 2.9). In Supplementary Note 
section 3.2, we focused on the two long-range LD regions and on the three candidate inversions 
that contain lead SNPs for general risk tolerance and for all or most of our six other GWAS 
phenotypes, and above in this subsection (Supplementary Note section 3.4) we have briefly 
presented the long-range LD regions and candidate inversions that contain lead SNPs for each of 
the six supplementary phenotypes. We now focus on three candidate inversions that are notable 
because they contain lead SNPs for four of the six other GWAS (but not for general risk tolerance). 
The remaining 37 identified candidate inversions and the remaining six long-range LD regions 
have little overlap across the GWAS and are reported in Supplementary Tables 3 and 6. We 
emphasize again, however, that the exact numbers of lead SNPs within the long-range LD and 
candidate inversion regions should be interpreted with caution because many of the lead SNPs in 
those regions are not conditional associations. 
The first of the three additional candidate inversions that are notable because they are shared across 
four supplementary GWAS is located on chromosome 11 (~112.5 to 113.5 Mb). It contains one 
lead SNP for drinks per week, four for ever smoker, one for number of sexual partners, and one 
for the first PC of the risky behaviors. The strongest association with general risk tolerance within 
the candidate inversion is rs78168664 (P = 1.47×10–4). The GWAS Catalog database 65 reports a 
few previous phenotypes with associations in the region, which include bone ultrasound 
measurement, cardiac muscle measurement, and gut microbiota. 

The second additional candidate inversion is on chromosome 16 (~12.0 to 14.8 Mb) and contains 
one lead SNP for drinks per week, one lead SNP for ever smoker, one lead SNP for number of 
sexual partners, and one lead SNP for the first PC of the four risky behaviors. The strongest 
association with general risk tolerance within the candidate inversion is rs2866323 (P = 1.36×10–

5). The GWAS Catalog database65 reports notable previous associations with traits such as age at 
menarche, human standing height, and schizophrenia.  

The third candidate inversion is on chromosome 17 (~43.6 to 44.3 Mb) and contains one lead SNP 
for automobile speeding propensity, one for drinks per week, one for number of sexual partners, 
and two lead SNPs for the first PC of the risky behaviors. The strongest association with general 
risk tolerance within the candidate inversion is rs2866323 (P = 1.86×10–4). The candidate inversion 
covers only four genes, including the gene MAPT (~43.9 to 44.1 Mb on chromosome 17). SNPs 
in and around MAPT have previously been associated with many neurodegenerative disorders, 
including Alzheimer’s disease, Parkinson’s disease and frontotemporal dementia73. However, 
most of those previous associations are located outside the candidate inversion on chromosome 17 
(~43.6 to 44.3 Mb), and MAPT is not significant after Bonferroni correction in the MAGMA gene 
analysis (Supplementary Table 17). 

3.4.8 GWAS Catalog lookup of the lead SNPs from the supplementary GWAS 

To investigate the overlap of our six supplementary GWAS phenotypes with previous GWAS of 
other phenotypes, we performed a lookup for each of the lead SNPs (and the SNPs in LD, r2 > 0.6) 
in the NHGRI-EBI GWAS Catalog database65, as described in Supplementary Note section 2.11. 
We report the results in Supplementary Table 27. For the six GWAS, we find in total 939 
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overlaps distributed across 130 lead SNPs. Since the six phenotypes are genetically correlated, 
they tend to share lead SNPs (or the lead SNPs for each phenotype are in LD, r2 > 0.1), and as 
expected we find similar overlaps with other traits across the six phenotypes. Each of the six 
phenotypes have at least one overlap with all of the following phenotypes or phenotype categories: 
schizophrenia; educational attainment or cognitive performance (e.g. intelligence, information 
processing speed, cognitive function); BMI (body mass index) (or related anthropometric traits); 
circulating lipids (e.g. triglycerides, cholesterol, lipids); blood pressure or coronary artery disease 
(including arterial stiffness); and lung disease (e.g. interstitial lung disease, COPD, asthma).  

Most of the six GWAS also have lead SNPs that overlap with the following phenotypes or 
phenotype categories: autoimmune diseases (e.g. Crohn’s, rheumatoid arthritis, psoriasis, vitiligo); 
various cancers (e.g. breast cancer, lung cancer) or tumor formation; brain volume; bipolar 
disorder; age at menarche; Alzheimer’s disease (driven by the MAPT-locus located in a candidate 
inversion on chromosome 17, ~43.6 to 44.3 Mb); height; Parkinson’s disease; and attention 
hyperactivity deficit disorder.  

The amount of overlap with schizophrenia seems particularly striking: in total, 19 distinct lead 
SNPs from our six additional GWAS overlap with loci associated with schizophrenia. We also 
observed many overlaps between general risk tolerance and schizophrenia (Supplementary Note 
section 3.1). 

As discussed in Supplementary Note section 3.3, we note that both the existence and the absence 
of overlaps between any two phenotypes should be interpreted with care, and that the existence of 
overlaps is not necessarily evidence of shared genetic architecture87.  

3.5 Sensitivity analyses of the BiLEVE and Axiom samples 

During the revision stage, a Referee raised the important point that the GWAS results could be 
sensitive to the sampling scheme of the UK BiLEVE study, whose participants were selected on 
the basis of their lung function and smoking behavior and were genotyped with a different 
genotyping array than the other UKB participants (Supplementary Note section 2.5). As we 
explain in Supplementary Note section 2.5, we believe it is preferable to analyze the complete 
UKB as a single cohort. Nonetheless, to gauge the sensitivity of our results to that decision, we 
repeated our discovery GWAS of general risk tolerance and our GWAS of ever smoker, following 
the same protocol as for our main GWAS (Supplementary Note section 2) but treating the UK 
BiLEVE and the UKB Axiom cohorts as two separate cohortsy.  

We compared the results of the two new GWAS with the corresponding baseline GWAS along 
two dimensions. First, with bivariate LD Score regression24, we estimated the genetic correlations 
across the new and the baseline GWAS. For both general risk tolerance and ever smoker, we 
estimated genetic correlations of exactly unity (,- = 1, SE = 7.381×10–6 for general risk tolerance; 
,- = 1, SE = 5.643×10–7 for ever smoker), thus indicating that the results are virtually the same at 
the aggregate level across the genome. 
Second, we compared the lead SNPs across the new and the baseline GWAS. For general risk 
tolerance, the new discovery GWAS identified 120 genome-wide significant lead SNPs. Of the 
124 lead SNPs of the baseline discovery GWAS, 113 are exactly the same; seven change to a SNP 
                                                             
y Because of participant withdrawal, the new GWAS contain seven fewer participants than the initial GWAS; this 
should have a negligible effect on this sensitivity analysis. 
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in the same locus and in high LD (r2 = 0.95–0.99); and four are no longer lead SNPs in the new 
discovery GWAS, with their P values increasing from P = 3.90–4.86×10–8 to P = 5.11–5.79×10–

8, just above the genome-wide significance threshold. The new discovery GWAS did not result in 
any new lead SNPs that were not genome-wide significant in the baseline discovery GWAS.  

For ever smoker, the new GWAS resulted in 214 genome-wide significant lead SNPs. Of the 223 
lead SNPs of the baseline GWAS, 190 are exactly the same; 16 change to a SNP in the same locus 
and in high LD (r2 = 0.29–0.99); two are instead tagged by a single lead SNP in the new GWAS 
(r2 = 0.13 and 0.70); and 15 are no longer lead SNPs in the new GWAS, with their P values 
increasing from P = 3.49–4.99×10–8 to P = 5.65–1.16×10–7, just above the genome-wide 
significance threshold. In addition, there are seven new genome-wide significant lead SNPs, all of 
which were just above genome-wide significance threshold in the baseline GWAS (baseline P = 
5.15–8.42×10–8).  

In summary, for both general risk tolerance and ever smoker the results are not particularly 
sensitive to the decision of treating the UKB as a single cohort, rather than treating the UK BiLEVE 
and the UKB Axiom cohorts as two separate cohorts. 

3.6 Multiple regression with individual-level genotype dosages 

In response to a comment by a Referee, we conducted a multiple regression analysis with 
individual-level genotype-dosage data from the UKB, to verify that the results of the conditional 
analysis we conducted with GCTA (COJO) are robust. In that analysis, for each phenotype (except 
adventurousness, for which there is no UKB data), for each chromosome we regressed the 
phenotype on all the phenotype’s lead SNPs located on the chromosome (all jointly included in 
the same regression) and the control variables from our baseline association analyses (i.e., the top 
20 principal components of the genetic relatedness matrix, sex-specific birth-year fixed effects, 
and fixed effects for genotyping batches; Supplementary Note section 2.3 and Supplementary 
Table 2). Because BOLT-LMM does not offer the option to jointly fit multiple SNPs (and because 
we are unaware of other linear mixed models software that account for the relatedness of 
individuals while still being computationally efficient in a large sample like the UKB), we 
estimated linear regressions with SNPtest v2.5.4beta3 92; and because we estimated linear 
regressions instead of linear mixed models, we excluded one individual from each pair of 
individuals whose genetic relatedness exceeds 0.044. We report the results in Supplementary 
Table 3 and Supplementary Table 6. 

For general risk tolerance, 90 lead SNPs were significant in the COJO analysis we conducted using 
the summary statistics of our discovery GWAS (n = 939,908) and our main reference panel (n = 
17,774; Supplementary Note section 2.4.1). Despite the considerably smaller sample of unrelated 
individuals in the UKB which we used for the multiple regression analysis (n = 355,727), 89 of 
the 90 SNPs have consistent signs and are significant at the 5% level in the multiple regression 
analysis. The remaining SNP (rs17573719) also has a consistent sign and is marginally non-
significant, with a P value of 0.064. 
For automobile speeding propensity, 30 lead SNPs were significant in the COJO analysis we 
conducted using the summary statistics of our GWAS (n = 404,291). Despite the smaller sample 
(n = 334,176) used in the multiple regression analysis, all 30 SNPs have consistent signs and are 
significant at the 5% level in the multiple regression analysis; 28 are significant at P < 1×10–4, and 
15 at P < 5×10–8. 
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For drinks per week, 56 lead SNPs were significant in the COJO analysis we conducted using the 
summary statistics of our GWAS (n = 414,343). Despite the smaller sample (n = 342,239) used in 
the multiple regression analysis, all 56 SNPs have consistent signs and are significant at the 5% 
level in the multiple regression analysis; all 56 are significant at P < 1×10–4 and 28 are significant 
at P < 5×10–8.  
For ever smoker, 162 lead SNPs were significant in the COJO analysis we conducted using the 
summary statistics of our GWAS (n = 518,633). Despite the considerably smaller sample (n = 
366,921) used in the multiple regression analysis, all 162 SNPs have consistent signs and are 
significant at the 5% level in the multiple regression analysis. 
For number of sexual partners, 82 lead SNPs were significant in the COJO analysis we conducted 
using the summary statistics of our GWAS (n = 370,711). Despite the smaller sample (n = 306,161) 
used in the multiple regression analysis, all 82 SNPs have consistent signs and are significant at 
the 5% level in the multiple regression analysis; 77 are significant at P < 1×10–4, and 41 at P < 
5×10–8. 

For the first PC of the four risky behaviors, 79 lead SNPs were significant in the COJO analysis 
we conducted using the summary statistics of our GWAS (n = 315,894). Despite the smaller 
sample (n = 261,485) used in the multiple regression analysis, all 79 SNPs have consistent signs 
and are significant at the 5% level in the multiple regression analysis; 77 are significant at P < 
1×10–4, and 36 at P < 5×10–8. 
Overall, the results of our COJO analysis are consistent with those of our multiple regression 
analysis with individual-level genotype-dosage data in the UKB. 
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4 Testing for population stratification 

Population stratification can be an important source of bias in GWAS. As per our analysis plan36, 
every cohort in our GWAS included the ten (or more) top principal components (PCs) of the 
genetic-relatedness matrix (GRM) in their analyses, and some also used mixed-linear models. 
These procedures should help control for population stratification, but some population 
stratification and confounding bias could still remain after these controls93.  
In this section, we report the results of three tests of population stratification that are based on 
different sets of assumptions. The first test is the LD Score intercept test53, which allows us to 
quantify the amount of stratification that is present in our estimates. The second is a sign test that 
compares the signs of GWAS estimates to the signs of the estimates of a within-family (WF) 
GWAS in an independent replication cohort. Third, we conduct a regression test that compares 
both the signs and the magnitudes of the GWAS estimates to those of the WF GWAS.  
We applied the first test to the summary statistics of the discovery and replication GWAS of self-
reported general risk tolerance and to the summary statistics of the supplementary GWAS; we 
applied the second and third tests to the summary statistics of the discovery GWAS of self-reported 
general risk tolerance. 

4.1 LD Score intercept test 

The LD Score intercept test uses GWAS summary statistics for all measured SNPs. Unlike the 
Genomic Control (GC) method, which assumes that confounding bias (e.g., due to population 
stratification and cryptic relatedness) is responsible for inflation in the GWAS `" statistics, the 
LD Score regression method can disentangle inflation that is due to true polygenic signal 
throughout the genome (which affects the slope of the LD Score regression) from inflation that is 
due to confounding biases such as cryptic relatedness and population stratification (which affects 
the intercept of the regression). 
We used the LDSC software 53 to estimate the intercepts in LD Score regressions with the summary 
statistics of our discovery and replication GWAS of general risk tolerance. We also estimated LD 
Score regressions with the summary statistics from the supplementary GWAS.  

For each phenotype, we used the “eur_w_ld_chr/” files of LD scores computed by Finucane et 
al.94 and made available on https://github.com/bulik/ldsc/wiki/Genetic-Correlation, accessed on 
March 14, 2016. These LD scores were computed with genotypes from the European-ancestry 
samples in the 1000 Genomes Project; only HapMap3 SNPs with MAF > 0.01 were included in 
the LD Score regressions. Because GC will tend to bias the intercept of the LD Score regression 
downward, we did not apply GC to the summary statistics prior to estimating the LD Score 
regressions. 
Supplementary Fig. 13 shows LD Score regression plots for our discovery and replication GWAS 
and for the supplementary GWAS.  
For our discovery GWAS, we estimated a LD Score intercept of 1.040 (SE = 0.012); for the 
replication GWAS, we estimated a LD Score intercept of 1.002 (SE = 0.069). The mean `" 
statistics for all the SNPs in the two LD Score regressions are 1.848 and 1.031, respectively. The 
mean `" statistics reflect the average strength of the GWAS associations between the SNPs and 
each phenotype. Under the null hypothesis that there is no confounding bias and that the SNPs 
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have no causal effects on the phenotypes, the mean `" statistics would be 1. Thus, mean `" 
statistics greater than 1 indicate that some SNPs are associated with the phenotypes, either because 
they are in LD with causal SNPs or because of confounding bias. 

One measure of stratification bias is given by the ratio ghijkljmi)*
no)*

, which describes the share of the 
inflation in the mean `" statistic (p") that is due to stratification. This ratio is 0.048 (SE = 0.014) 
for the discovery GWAS and 0.071 (SE = 0.221) for the replication GWAS. These estimates imply 
that only a small part of the observed inflation in the mean `" statistics from our discovery and 
replication GWAS is accounted for by confounding bias (due to population stratification, cryptic 
relatedness, or other confounds) rather than polygenic signal. This suggests that the bulk of the 
inflation in the `" statistics from the discovery and replication GWAS is attributable to true 
polygenic signal throughout the genome, and that population stratification is unlikely to be a major 
concern for the analyses we present in this paper.  

Supplementary Table 28 contains the full set of LD Score regression results for the discovery 
GWAS, the replication GWAS, the meta-analysis of the discovery and replication GWAS, and the 
supplementary GWAS. Although the LD Score intercepts from these regressions are often 
significantly larger than 1, the share of inflation in p" that is due to stratification remains small 
(ranging from 0.047 to 0.071), which allows us to conclude that confounding bias is likely to 
account for no more than a small part of the inflation in these GWAS’s mean `" statistics. 
As mentioned in Supplementary Note section 2.7, rather than applying the usual GC correction, 
we followed the increasingly common practice of adjusting the standard errors of our GWAS 
estimates for the possible effects of population stratification by inflating them by the square root 
of our estimates of the intercepts from the LD Score regressions53. For the discovery and the 
replication GWAS of general risk tolerance, the meta-analysis of the discovery and replication 
GWAS of general risk tolerance, and the GWAS of ever smoker, each of which combines several 
cohorts, we inflated the standard errors at the meta-analysis level only. 

4.2 GWAS/WF GWAS sign test for the general-risk-tolerance GWAS 

As a simple test of whether the results of our general-risk-tolerance GWAS are driven entirely by 
stratification or whether they capture some genetic signal, we performed a sign test that compares 
the signs of the estimates from our discovery GWAS of general risk tolerance (excluding all full 
siblings from the UKB cohort, as described below) to the signs of the estimates from within-family 
(WF) GWAS of general risk tolerance in the independent STR1, STR2, and UKB-siblings cohorts. 
The UKB-siblings cohort was defined in the same way as the full UKB cohort, but only includes 
individuals with at least one full sibling in the UKB. To avoid overfitting (i.e., to ensure that the 
two sets of signs originate from GWAS that were conducted using independent cohorts)95, we 
reran our discovery GWAS after excluding all individuals with at least one full sibling in the UKB.  

If the discovery GWAS estimates are driven by stratification, then they should be independent of 
the signs of the WF GWAS estimates (which are immune to stratification) and therefore the two 
sets of signs should only have a concordance of roughly 50%. A significantly higher degree of 
sign concordance would suggest that at least some of the signal from the GWAS comes from true 
genetic effects. 
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4.2.1 Background 

We followed the method outlined in Okbay et al. (2016)18. Here, we summarize the main 
assumptions and procedures that are described in more detail in that paper. 

We first let 5I denote the estimate corresponding to SNP q from the discovery GWAS excluding 
the full siblings from the UKB, and let 5rs,I denote the WF GWAS estimate corresponding to 
SNP q. The WF GWAS estimate is obtained in a sample of sibling pairs, from a regression of 
sibling differences in general risk tolerance on sibling differences in genotypes and in controls. 
Since WF regressions are not biased due to stratification, and under the assumption that the WF 
effect size of each SNP is equal to the true population effect size, we can decompose the GWAS 
and WF GWAS estimates as: 

5I = 5I + tI + uI	
5rs,I = 5rs,I + vI, 

where 5I and 5rs,I are the true underlying GWAS and WF GWAS parameters for SNP q, tI is the 
bias due to stratification (defined to be orthogonal to 5I and uI), and uI and vI are the error terms 
in the estimates due to sampling variation, with E(uI) = E(vI) = 0. Note that if 5I and 5rs,I are 
estimated in independent samples, then uI and vI will be independent. 

Under the null hypothesis that the GWAS contains no genetic signal (i.e., 5I = 5rs,I = 0 for all 
q) the sign of 5rs,I will be random with equal odds of being positive or negative and will be 
independent of the sign of 5I. This means that among a set of O independent SNPs, the number 
of SNPs that have concordant signs, denoted C, follows a binomial distribution: 

w~Binomial O, 0.5 . 
We can thus measure the observed sign concordance and use this known distribution to formally 
test the null hypothesis. We tested this against the one-sided alternative hypothesis that 5rs,I and 
5I are not equal to zero and that their estimates thus have concordant signs. We conducted one-
sided tests, because there is no reason to suspect that the signs would be discordant. 

4.2.2 The GWAS and WF GWAS data 

For this analysis, WF GWAS estimates were obtained in the STR1 (STR-Twingene), STR2 (STR-
SALTY), and UKB-siblings cohorts. These estimates were then combined using a sample-size 
weighted meta-analysis. The STR1, STR2, and UKB-siblings cohorts include 674, 680, and 16,330 
sibling pairs with general-risk-tolerance data, respectively. This gave us a total WF sample size of 
17,684 sibling pairs (35,368 individuals).  

The GWAS estimates are those from the discovery GWAS excluding all full siblings from the 
UKB, with a total sample size of 901,908. 

Not every SNP from the GWAS results was available in the WF samples. To maximize power, we 
restricted our SNPs for each sign test to those that were available in both the GWAS results and in 
the three WF cohorts. Additionally, to ensure the quality of the WF GWAS estimates, we restricted 
our SNPs to those with MAF ≥ 0.05 in every WF cohort and with imputation quality (INFO) above 
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95% in every WF cohort and above 99% in the discovery GWAS. Applying these filters left 
2,005,496 SNPs in the intersection of the discovery and WF GWAS.  

Then, we used PLINK43 to apply a clumping algorithm to the GWAS results with the 1000 
Genomes phase 3 EUR reference panelz to obtain a subset containing approximately independent 
SNPs selected based on their GWAS P values. The clumping algorithm was similar to the main 
clumping algorithm we used to identify the GWAS’s lead SNPs (Supplementary Note section 
2.8.1) but used primary and secondary P value thresholds of P = 1 (instead of P = 5×10–8 and 
1×10–4). (The secondary P value threshold of P = 1 implies that at each iteration, all unclumped 
SNPs correlated (r2 > 0.1) with the selected SNP are assigned to that SNP’s clump, and the primary 
P value threshold of P = 1 implies that the clumping procedure keeps clumping until all SNPs have 
been clumped.) This procedure selected 48,979 approximately independent SNPs with results 
available for both the GWAS and the WF GWAS. Importantly, the procedure did not choose an 
arbitrary set of SNPs but instead selected the most significant SNP among the remaining 
(unclumped) SNPs at each iteration, such that each of the 48,979 SNPs is the most significant SNP 
in its clump. 

4.2.3 Bayesian estimation of the posterior distribution of the SNPs’ true effect sizes 

Following Okbay et al. (2016)18, we conducted simulations to benchmark the results of our sign 
tests. To do so, we first obtained estimates of the distribution of the SNPs’ true effect sizes (the 
5I’s).  

We define 5I,std as the coefficient from the regression where both the phenotype and the genotype 
have been standardized to have mean zero and unit variance. We further assume that the effect 
sizes are drawn from a mixture distribution of a Gaussian and a point mass at zero: 

5I,std	~	
8 0, �" with	probability	á
0 otherwise,

 

where �" is the variance of non-null SNPs and á is the fraction of non-null SNPs in our data. This 
distributional assumption implies that the variance of effect sizes is inversely proportional to the 
variance of the unstandardized genotypesaa. By the Central Limit Theorem, we note that the 
estimation error of the GWAS estimate of 5I,std is approximately normally distributed. We use LI" 
to denote the variance of this error and note that our assumptions imply that LI" ≈ 1/E. This means 
the distribution of 5I,std is: 

5I,std	~	
8 0, σI" + �" with	probability	á
8(0, σI") otherwise.

 

Because we have a closed-form distribution, we can use the discovery GWAS summary statistics 
to estimate its parameters: the probability of a SNP being null á and the variance of the non-null 
effect sizes �" (as mentioned above, σI" ≈ 1/E). 

                                                             
z This smaller reference panel (compared to main reference panel) suffices for this analysis because we only used 
SNPs with MAF ≥ 0.05 in every WF cohort. 
aa To see this, note that 5I,std	=	5I ∙ Var(789I) (where 789I is the unstandardized genotype at SNP j and can take 
values 0, 1, or 2). Because we assume that the distribution of 5I,std is the same for all SNPs, it follows that Var(5I) 
will be larger for SNPs whose unstandardized genotypes have lower variance.  
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As shown in Okbay et al. (2016)18, given these parameters, the posterior probability that SNP q 
with estimated effect size 5I,std is non-null is: 

\è,I =

á

σI" + �"
ê

5I

σI" + �"

1 − á
LI

ê
5I
LI

+ á

σI" + �"
ê

5I

σI" + �"

. 

And the posterior distribution of non-null SNPs is: 

5I|5I, 5I ≠ 0 ~8
�"

σI" + �"
5̂ ,

σI"�"

σI" + �"
. 

Following Okbay et al., we estimated the parameters á, �", and \è,I using the summary statistics 
from the discovery GWAS (excluding the full siblings in the UKB cohort), restricting to the subset 
of 2,005,496 SNPs in the intersection of the discovery and WF GWAS (and with MAF ≥ 0.05 in 
every WF cohort and imputation quality (INFO) above 95% in every WF cohort and above 99% 
in the discovery GWAS). Our estimates of π and τ2 were 0.52 and 2.38 × 10-6, respectively, with 
\è,I computed at the SNP level from the above equation and ranging from 0.38 to 1 (with a mean 
of 0.57 and standard deviation of 0.18)bb. This generated a posterior distribution of the true effect 
size of each SNP given its estimated effect size. 

4.2.4 Simulations 

We used a simulation procedure whereby we drew, for each of the O approximately independent 
SNPs, “true” effect sizes from the resulting posterior distributions as well as estimation errors, and 
we repeated the simulation 1,000 times.  

We let H w  denote the expected number of concordant signs under the alternative hypothesis that 
the SNPs have effect sizes given by the true 5I’s. The quantity H w  provides a benchmark for the 
sign test. If the actual fraction of concordant SNPs matches the expected fraction H w /O and is 
significantly larger than 50%, then we can be reasonably confident that most of the GWAS 
estimates are not driven by stratification. 

We estimated H(w) using the following method. For each of the 1,000 simulations, we generated 
discovery and WF GWAS estimates for each SNP j by adding Gaussian noise to the “true” effect 
size 5I drawn from the posterior distribution. We obtained the following quantities: 

5Trìî,I = 	5I +	ïI	LTrìî,I 

5rs,I = 	5I +	ñILrs,I, 

                                                             
bb We also estimated \è,I for our 124 lead SNPs, and obtained a range of 0.9996 to 1 (compared to the 0.998 to 1 range 
reported in Supplementary Note section 5.2.1). These ranges differ slightly because our estimates of π and τ2 were 
obtained using different sets of SNPs. In both cases, all lead SNPs have posterior probabilities of being causal near 1. 
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where ïI and ñI	are independent draws from a standard normal distribution and LTrìî,I	and Lrs,I 
are the standard errors of the coefficients for SNP j from the discovery and WF GWAS, 
respectively.  

Let wó	be the number of SNPs with matching discovery and WF GWAS signs in simulation k. We 
obtained our estimate of H w  by averaging wó across the 1,000 simulations: 

H(w) =
1

1000
wó.

*+++

óò*

 

In addition, we estimated the standard deviation of w by using the formula for the sample standard 
deviationcc: 

SD w =
1
999

wó − H w
"

*+++

óò*

. 

 

4.2.5 Results of the sign test 

Supplementary Table 29 reports the results of a range of sign tests we conducted. We conducted 
four sign tests, all of which compared the signs of the estimates from the discovery GWAS of risk 
tolerance (excluding all full siblings from the UKB) to the signs of the estimates from the meta-
analysis of the WF GWAS in the UKB-siblings, STR1, and STR2 cohorts. Before each sign test, 
we pruned the list of independent clumped SNPs based on the P values obtained in the discovery 
GWAS.  Each sign tests corresponds to one of the following four P value cutoffs: 1 (all SNPs 
included), 0.05, 0.005, and 0.0005.  
As can be seen from Supplementary Table 29, we strongly reject the null hypothesis of no sign 
concordance for all of the sign tests. All four sign tests are significant at the 5×10–*+ level.  

Note that all of the sign tests we conducted are well powered to reject the null hypothesis of no 
sign concordance. Based on these sign tests, we can be reasonably confident that at least some of 
the GWAS estimates are not driven by population stratification. 
Supplementary Table 29 also reports the expected number of concordant signs for each of the 
four sign tests that were conducted. For each test, the observed number of concordant signs is 
similar to, but nonetheless significantly smaller than, the expected number of concordant signs 
predicted by the simulation.  
This discrepancy between the observed and expected number of concordant signs could be 
attributable to several factors. First, of course, there could be population stratification (although 
the LD Score regression results suggest that there is unlikely to be much stratification); because 
the simulation assumes no population stratification, the presence of population stratification would 

                                                             
cc This procedure should yield unbiased estimates of the expected value and the standard deviation of w, conditional 
on the estimated posterior distribution of the true effect sizes. Because we used an independent set of SNPs, both the 
expected value and the standard deviation of w are additive functions of the SNP-level probabilities of sign 
concordance, and this holds even though the simulation does not take the LD between the SNPs into account. 
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lead to fewer observed concordant signs than expected. Second, the discrepancy could be the result 
of our assumption, under the null hypothesis and in the simulation, that the SNPs’ true effect sizes 
are the same in the discovery and WF GWAS (i.e., that βj = βWF,j). This assumption could fail for 
several reasons. For example, under positive assortative mating, the magnitude of the true GWAS 
effects would be larger than that of the true WF GWAS effects. The true discovery and WF GWAS 
effects would also be different if, for instance, parents were successful in partly counteracting 
differences in genetic propensity for risk tolerance and in making their children more similar to 
each other in terms of their risk tolerance; they would also be different if parental risk tolerance 
had sizeable effects on their children’s risk tolerance via the rearing environment (as recently 
documented in the case of educational attainment96).  

4.3 Within-family regression test for the general-risk-tolerance GWAS 

The above sign test compares the signs of the estimates of the discovery and WF GWAS of general 
risk tolerance. In this section, we introduce and conduct a third test, the within-family regression 
test, which allows us to compare both the signs and the estimates of the discovery and WF GWAS 
of general risk tolerance. This in turn allows us to draw some insights about some of the reasons 
why there is a discrepancy between the observed and the expected number of concordant signs in 
the sign test. 

4.3.1 Background 
Lee et al. (2017)97 (in Supplementary Note section 2.8) provides an in-depth description of the 
within-family regression test. Following the notation in Supplementary Note section 4.2.1, we 
define the parameter  

úl ≡
Cov 5I, 5rs,I

Var 5I + Var tI
, 

where βj is the true effect size for SNP j in the discovery GWAS of general risk tolerance, βWF,j is 
the true effect size for SNP j in the WF GWAS of general risk tolerance, and sj is the stratification 
bias for SNP j.  

This úl parameter can be interpreted in light of a few special cases. First, if the true discovery and 
WF GWAS effects are identical (i.e., if βj = βWF,j; this implies that the genetic correlation between 
the discovery and WF GWAS is unity and the effects are of equal magnitudes), then úl reduces 

to 
†°¢ è£

†°¢ è£ §†°¢(•£)
, which is the share of variance in the discovery GWAS estimates that is due to 

true signal. This quantity converges to one if there is no stratification and to zero if the discovery 
GWAS estimates are entirely driven by stratification.  

The second special case occurs if there is no population stratification (i.e., if Var(tI) 	= 	0). Then, 

the parameter reduces to 
¶ß® è£,è©™,£

†°¢ è£
, which is the slope of the regression of the WF GWAS 

estimates on the discovery GWAS estimates.  
4.3.2 Methods 

We used the same consistent estimator of mc as Lee et al. (2017)97: 



 62 

úl ≡
Cov 5Trìî,I, 5rs,I

Var 5Trìî,I − LTrìî
"

. 

Our estimator for LTrìî
"  is LTrìî

" ≡ *
´

LTrìî,^
"´

Iò* , where ¨ is the number of SNPs in the full 
discovery GWAS. 

To compute Cov 5Trìî,I, 5rs,I  and Var 5Trìî,I , we applied a pruning procedure to select a 
set of approximately independent SNPs that are not prioritized by P value. To do this, we used 
PLINK’s --indep-pairwise option with the following parameters: a window size of 50 SNPs, a 
window shift of 5 SNPs, and a pairwise r2 threshold of 0.1. This yielded 51,473 approximately 
independent SNPs (unlike the 48,979 SNPs we obtained from the clumping procedure in 
Supplementary Note section 4.2.2, these 51,473 SNPs were not selected based on their P values.) 
To compute Cov 5Trìî,I, 5rs,I , we used the same WF GWAS as in the sign test 
(Supplementary Note section 4.2.2).  

We obtained the 95% confidence interval for úl by bootstrapping the 51,473 approximately 
independent SNPs. We used the 25th and 975th smallest estimates of úl out of 999 bootstrap draws 
as the lower and upper bounds of the confidence interval. We also calculated the bootstrap standard 
error by taking the standard deviation of the 999 bootstrap draws.  

4.3.3 Results 

We estimated Cov 5Trìî,^, 5rs,^ = 1.05×10)≠, Var 5Trìî,^ = 2.16×10)≠, and LTrìî
" =

1.11×10)≠. Thus, our estimate of úl was 1.00, with a bootstrap confidence interval of 0.87 to 
1.11. (Following Lee et al. (2017), we also obtained standard errors using the block-jackknife 
procedure introduced by Bulik-Sullivan et al53. In our case, each block consists of a set of 
approximately 50 adjacent SNPs. We obtained a jackknife standard error of 0.10, which is larger 
than the bootstrapped standard errors of 0.06; thus, the bootstrap confidence interval may be 
slightly too tight, likely due to the fact that the 51,473 approximately independent SNPs are not 
fully independent of one another.) 

In the first special case where βj = βWF,j, this estimate of úl suggests, with roughly 95% 
confidence, that at most 13% of the variation in the GWAS estimates is due to stratification. This 
is consistent with the results from LD Score regression, which imply that about 5% of the variation 
in the GWAS estimates is due to stratification.  

However, given the sign test results, it is likely that the assumption βj = βWF,j does not hold exactly. 
The confidence interval for úl is consistent with moderate differences in the magnitude of the 
GWAS estimates and/or with imperfect genetic correlation between the discovery and WF GWAS. 
If we assume, as implied by the results from LD Score regression, that 5% of the variance in the 
discovery GWAS estimates is due to stratification, then the 95% CI of 0.87 to 1.11 is consistent 
with an effect-size ratio (βWF,j /βj) of as low as 0.92 (= 0.87/0.95) and as high as 1.17 (= 1.11/0.95).  

Small differences between βj and βWF,j suggest that general risk tolerance is unlikely to be subject 
to much assortative mating; that parents are unlikely to actively enforce similarity in risk 
preferences among their children (or to be successful in doing so); and that parental risk tolerance 
is unlikely to have large effects on children’s risk tolerance via the rearing environment (unlike 
what was recently documented in the case of educational attainment96).  
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4.4 Discussion 

We have presented the results of three tests of population stratification that rely on different sets 
of assumptions. The LD Score intercept test relies on stronger assumptions and allows us to 
quantify how much population stratification is present in our estimates. Our results from this test 
—for our discovery and replication GWAS of general risk tolerance and for our supplementary 
GWAS—imply that only a small part of the observed inflation in the mean `" statistics is likely 
to be accounted for by confounding bias rather than polygenic signal.  

Our results from the second test, the sign test, allow us to strongly reject the null hypothesis that 
the coefficients from our discovery GWAS of general risk tolerance are driven by stratification. 
All four sign tests are significant at the 5×10)*+ level.  
Lastly, the within-family regression test takes both the signs and the magnitudes of the GWAS 
estimates into account, and allows us to establish bounds on the amount of stratification and on 
the differences between the WF and discovery GWAS effects. From this test, we conclude that 
SNP effects are likely similar between and within families, and that population stratification is 
unlikely to be a major source of bias.  
In sum, all three tests allow us to conclude that our results are unlikely to be driven by population 
stratification. We can be reasonably confident that the bulk of the variation in the GWAS estimates 
is attributable to true polygenic signal.  

  



 64 

5 Replication of the general-risk-tolerance lead SNPs and 
maxFDR calculation  

To assess the credibility of the results of our discovery GWAS of self-reported general risk 
tolerance, we attempted to replicate the associations of the lead SNPs from that GWAS in an 
independent replication GWAS of self-reported general risk tolerance. 

As described in Supplementary Note section 2.1, the replication GWAS included 10 cohorts, 
with a combined sample size of 35,445. To assess the replicability of the lead SNPs from our 
discovery GWAS, we followed the procedure outlined in Supplementary Note section 1.8 of 
Okbay et al. (2016)16 and conducted binomial tests to assess whether the associations of the lead 
SNPs from our discovery GWAS replicate in an independent replication GWAS. We conducted 
two binomial tests. First, we conducted a binomial sign test to assess whether the directions (i.e., 
the signs) of the effects of the lead SNPs are concordant across the discovery and the replication 
GWAS. Second, we conducted a binomial test to assess whether a larger fraction of the lead SNPs 
are significant at the 5% level in one-sided tests (i.e., with concordant signs and significant at the 
10% level on two-sided tests) in the replication GWAS, relative to what can be expected by chance.  

We benchmarked these results against a plausible alternative hypothesis, where we predicted the 
number of concordant signs and significant SNPs in the replication GWAS given a posterior 
estimate of the true distribution of effect sizes. This allowed us to determine whether the results of 
the two aforementioned binomial tests match what we would expect if the lead SNPs were all true 
positives. Lastly, to ensure that our replication results are not biased due to overfitting, we assessed 
the extent of sample overlap across our discovery and replication GWAS, and tested the robustness 
of our results to excluding the UKHLS cohort from the replication GWAS.  
In addition, to provide some reassurance about the reliability of the results of our seven main 
GWAS, we calculated the “maxFDR”, an upper bound on the false discovery rate (FDR), for each 
GWAS. 

5.1 Methods 

5.1.1 Constructing the set of lead and proxy-lead SNPs 
We used the 124 independent lead SNPs from our discovery GWAS of general risk tolerance to 
construct a set of lead and proxy-lead SNPs that are available in the replication GWAS summary 
statistics. We first identified the subset of the 124 lead SNPs that were directly available in the 
replication GWAS summary statistics and had a sample size of at least one-half the maximum 
sample size in that GWAS. We identified 122 such SNPs. Next, for each of the remaining two 
SNPs, we determined whether there exists a suitable “proxy-lead SNP” that satisfies three 
conditions: (1) the SNP is in high LD (r2 > 0.8) with the original SNP (we used PLINK43 and our 
main reference panel to compute LD); (2) the SNP is available in the summary statistics of both 
the discovery GWAS and replication GWAS; and (3) the SNP has a sample size of at least one-
half the maximum sample size in the replication GWAS. If more than one proxy-lead SNP satisfied 
these three condition for one original SNP, we selected the one in highest LD with the original 
SNP as the proxy-lead SNP for the analyses. We identified one such proxy-lead SNP. We 
combined that proxy-lead SNP with those that were directly available in the replication GWAS to 
create the set of 123 lead and proxy-lead SNPs.   
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5.1.2 Binomial replication tests 

We conducted two binomial tests of the null hypothesis that none of the lead SNPs are associated 
with risk tolerance. Rejecting this null provides evidence that our lead SNPs contain at least some 
truly associated SNPs. Under the null, we would expect that 50% of the lead SNPs have concordant 
signs and 5% are significant at the 5% level on the one-sided tests (i.e., significant at the 10% 
level, with concordant signs) in the replication GWAS. For both binomial tests, we used one-sided 
tests of the null hypothesis because we are specifically interested in testing for a larger share of 
concordant or significant SNPs relative to the null share.  

Because the lead SNPs are approximately independent (pairwise r2 < 0.1), the number of lead 
SNPs that have concordant signs or that are significant in the replication GWAS under the null can 
be modeled as a series of coin flips, where the probability of a “success” is 0.5 for sign concordance 
and 0.05 for the one-sided tests at the 5% level of significance. It follows that under the null 
hypothesis, k (which we define as the total number of concordant or significant SNPs) is distributed 
Ø	~	Binomial(O, á), where M is the total number of lead SNPs and π is the probability of 
encountering a concordant or significant SNP (i.e., 0.5 for sign concordance or 0.05 for the one-
sided tests at the 5% level of significance). Knowing the distribution of k allows us to perform 
tests of the null hypothesis. The results of these tests are presented below.  

5.1.3 Expected replication record 
In addition to the test of the null hypothesis described above, we also benchmarked our replication 
record against an estimate of a plausible replication record.  

As for the sign test in Supplementary Note section 4.2, we followed the procedure outlined in 
Okbay et al. (2016)16 and conducted a Bayesian analysis to obtain estimates of the posterior 
distribution of the SNPs’ true effect sizes (the 5I’s), given their GWAS estimates. That procedure 
is described in more detail in Supplementary Note section 4.2 and in Okbay et al. (2016)16. 
To compute the expected sign concordance and its variance under the posterior distribution of the 
SNPs’ true effect sizes, we proceeded as in Supplementary Note section 4.2, except that we used 
the set of lead and proxy-lead SNPs (instead of the ~50,000 approximately independent SNPs) and 
replaced the within-family GWAS by the replication GWAS. Our estimates of π and τ2 were 0.29 
and 2.02×10-6, respectively (they differ from those reported in Supplementary Note section 4.2 
because they were estimated using all SNPs in the discovery GWAS and summary statistics that 
were inflated by the square root of the LD Score regression intercept).  

To compute the expected replication record and its variance at the 5% level under the posterior 
distribution of the SNPs’ true effect sizes, we proceeded as in Supplementary Note section 4.2, 
except that we replaced wó with _ó, where _ó is defined as the number of SNPs in simulation k 
where the simulated replication effect is a significant replication of the simulated discovery effect.  
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5.2 Replication results 

5.2.1 Baseline replication results 

Out of the 123 lead or proxy-lead SNPs, 94 have concordant signs in the replication GWAS. Under 
the null hypothesis that the lead SNPs from our discovery GWAS are all null, we would expect 
50% of the SNPs (i.e., 61.5 SNPs) to have concordant signs in the replication GWAS. Based on 
the results from our binomial test of sign concordance, we strongly reject the null hypothesis of 
50% concordance (P = 1.7×10-9). Our expected replication record is that 95.9 (SD = 4.6) of the 
123 SNPs would have matching signs, which matches our actual replication record very closely. 

Out of the 123 lead or proxy-lead SNPs, 23 are significant at the 5% level on one-sided tests (i.e., 
significant at the 10%, with concordant signs) in the replication GWAS. Under the null hypothesis 
that the lead SNPs from our discovery GWAS are all null, we would expect 5% of the SNPs (i.e. 
6.15 SNPs) to reach significance at the 5% level on the one-sided tests in the replication GWAS. 
We strongly reject this null hypothesis (P = 4.5×10-8). Consistent with this, our expected 
replication record is that 24.8 (SD = 4.4) SNPs would be significant at the 5% level, which again 
matches our actual replication record very closely.  
The replication record of our lead and proxy-lead SNPs is shown in Supplementary Fig. 3, and 
the summary statistics for the 123 lead or proxy-lead SNPs are reported in Supplementary Table 
3.  
In sum, our actual replication record matches our expected replication record for both the sign and 
significance binomial tests. Moreover, both binomial tests strongly reject the null hypothesis that 
none of our lead SNPs are true associations. We also note that under our Bayesian model of true 
effect sizes, the posterior probability that a SNP is causal is above 99.8% for all of our 124 lead 
SNPs. Coupled with our empirical replication results, this suggests that most if not all of the lead 
SNPs we identified are true positives. 

5.2.2 Robustness to potential sample overlap between the discovery and replication 
GWAS 

Potential overlap between our discovery and replication samples is a concern for the validity of 
our replication results. Following a comment by a Referee, we conducted additional analyses to 
assess the extent of sample overlap across our discovery and replication GWAS and between the 
UKB and the UKHLS, and to assess the robustness of our replication results to excluding the 
UKHLS cohort from the replication GWAS. 

First, to assess the extent of effective overlap between our discovery and replication GWAS 
samples, we estimated the intercept in a bivariate LD Score regression24 using the summary 
statistics of our discovery and replication GWAS of general risk tolerance. According to theory, 
the intercept is equal to ∞8î 8*8", where ∞ is the phenotypic correlation among the 8î 
individuals included in both samples (we assumed ∞ = 1), and 8* and 8" are the sizes of the 
discovery and replication samples (so here 8* = 939,908 and 8" = 	35,445). From this, we 
obtained an estimate of 8î: 8î = 602 (7H	 = 1,314). This estimate is not significantly different 
from zero. 
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Second, following the Referee’s suggestion, we assessed the extent of sample overlap between the 
UKB and the UKHLS cohort. The UKB comprises a large fraction of our discovery sample, and 
the UKHLS cohort was included in our replication GWAS. Because both cohorts are comprised 
of individuals living in the UK, sample overlap could be a concern. Using bivariate LD Score 
regression, we obtained an estimate 8î = 615	 7H = 328 . The estimate is almost significant at 
the 5% level (P = 0.07) and is relatively large relative to the size of the UKHLS cohort (n = 5,898), 
thus suggesting there may be some effective sample overlap between the UKB and the UKHLS 
cohorts.  
To verify that this effective sample overlap between the UKB and the UKHLS cohort does not 
bias our replication results, we reran the replication analyses after excluding the UKHLS cohort 
from our replication GWAS. We obtained a new expected sign concordance of 93.7 SNPs (SD = 
4.7) and an expected 22.6 significant SNPs (SD = 4.3) at the 5% level. Our actual replication record 
matches this closely, with 91 SNPs with concordant signs and 21 SNPs replicating at the 5% level.  

In summary, there appears to be no more than minimal sample overlap between our discovery and 
replication GWAS, and our replication results do not appear to be sensitive to overlap between the 
UKB and UKHLS. 

5.3 maxFDR calculation 

To provide additional reassurance about the reliability of our general-risk-tolerance lead SNPs, 
and some reassurance about the reliability of the lead SNPs from our six supplementary GWAS, 
we followed the methodology in Turley et al. (2018)71 and calculated the “maxFDR” for each 
GWAS. maxFDR is an upper bound on the false discovery rate (FDR) for the results of a GWAS. 
The key assumption of the maxFDR calculation is that the effect sizes for the phenotype of interest 
follow a spike-and-slab distribution. Under this assumption, the FDR is a function of the fraction 
of null SNPs (áh±≤≤), the variance of the effect sizes for non-null SNPs (Lh≥hh±≤≤" ), and the sample 
size (N) (see Section 1.4.3 of Turley et al.’s Supplementary Note). For any given value of áh±≤≤, 
the value Lh≥hh±≤≤"  is determined by N and the mean χ2-statistic of the GWAS. Using the observed 
values of N and mean χ2-statistic across all the SNPs analyzed in the GWAS, we can therefore 
calculate the FDR for any value of áh±≤≤. The maxFDR is defined as the maximum theoretical FDR 
over a range of values for áh±≤≤. We searched over the range áh±≤≤	ϵ [0.02, 0.98] and evaluated the 
FDR at every point in the interval at 0.02 unit increments. To calculate maxFDR for the results of 
one of our seven GWAS, we used the MTAG software71 and passed into the software only our 
results for that GWAS (and not the results of other GWAS). 

For general risk tolerance, we estimated that the maxFDR is 2.02×10−4, which is achieved when 
áh±≤≤ = 0.26. (Our maximum-likelihood estimate of áh±≤≤ for risk tolerance, estimated with the 
procedure described in Supplementary Note section 4.2.3 but using the summary statistics of all 
SNPs in the GWAS and substituting 1 − áEµ∂∂ for á (since áh±≤≤ = 1 − á), is actually 0.71. Using 
this value for áh±≤≤ yields a lower FDR of 4.10×10−5.) The strong replication record of our risk 
tolerance lead SNPs (see Supplementary Note section 5) gives us additional confidence that the 
false positive rate among our risk tolerance results is likely to be very low.  
For the six supplementary GWAS, given the very large sample sizes we used in our study, we 
anticipate that the rate of false positives is likely to be extremely low at the genome-wide 
significance threshold of 5×10−8. Consistent with this, we calculated maxFDR’s of 1.23×10−4, 
1.22×10−3, 7.08×10−4, 1.50×10−4, 3.00×10−4, 3.06×10−4 for adventurousness, automobile speeding 



 68 

propensity, drinks per week, ever smoker, number of sexual partners, and the first PC, respectively. 
These low maxFDR estimates give us additional confidence that the results of our six 
supplementary GWAS are robust. 
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6 Estimation of genome-wide SNP heritability 

Risk tolerance (both self-reported and experimentally elicited) has been found to be moderately 
heritable in twin studies, with heritability estimates ranging from 20% to 60%2,7,8. In this section, 
we employ three different methods to obtain estimates of the SNP heritability of our primary and 
supplementary GWAS phenotypes. A phenotype’s SNP heritability is the fraction of the 
phenotype’s variance that is accounted for by the additive genetic effects of a set of SNPs.  

6.1 Methods to estimate genome-wide SNP heritability 

We used three methods, GCTA98, LD Score regression53, and Heritability Estimator from 
Summary Statistics (HESS)99, to estimate the genome-wide SNP heritability (ℎT"). The GCTA 
method estimates the heritability of a phenotype directly from the individuals’ genotypic data, 
while the LD Score and HESS methods use GWAS summary statistics as inputs.  

For comparability across phenotypes and methods, for the LD Score and HESS methods, we used 
summary statistics from the UKB GWAS only for all phenotypes except adventurousness. For the 
adventurousness phenotype, we only report estimates that were obtained using the LD Score 
regression and HESS methods using the 23andMe summary statistics, because this phenotype is 
not available in the UKB and we did not have access to the individual-level genotypic data from 
the 23andMe cohort (and so could not obtain estimates with the GCTA method). 

We also computed HESS SNP heritability estimates using summary statistics from our seven main 
GWAS (and not only from GWAS conducted in the UKB or in the 23andMe cohort).  

6.1.1 The GCTA method 

The GCTA method is based on restricted maximum-likelihood estimation and uses the genetic 
relationship matrix (GRM) to estimate the SNP heritability. Under the  assumptions discussed in 
Yang et al. (2011)98, the method leads to unbiased estimates of the genome-wide SNP heritability. 
However, it is computationally intensive, and it is thus necessary to limit the number of SNPs and 
individuals included in the analysis in order to be computationally feasible. Therefore, we 
restricted the GCTA analysis to a random subset of 30,000 individuals out of the full sample from 
the discovery GWAS. We thereafter dropped one individual in each pair of individuals with a 
cryptic relatedness exceeding 0.025, to obtain a set of unrelated individuals. For comparability we 
used the same initial subset of 30,000 individuals for the GCTA estimation for all phenotypes, 
though the sample size varies slightly across phenotypes because of missing phenotypic 
observations. The final sample sizes for each phenotype are presented in Supplementary Table 
30. In total 646,855 directly genotyped SNPs with MAF > 0.01 were included in the GCTA 
heritability estimation. 

6.1.2 The LD Score regression method 

Under the assumptions discussed in Bulik-Sullivan et al. (2015)53, a SNP’s GWAS `" statistic is 
linearly related to its LD score, defined as the sum of the squared correlation coefficients between 
any single SNP and all the other SNPs. The slope of the LD Score regression (of the SNPs GWAS 
`" statistics on their LD scores and an intercept) can be rescaled to obtain an estimate of the 
heritability explained by the SNPs included in the LD Score analysis by dividing the slope by the 
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sample size divided by the number of SNPs, i.e., by n/M. We used the “eur_w_ld_chr/” files of 
LD scores computed by Finucane et al.94 and made available on 
https://github.com/bulik/ldsc/wiki/Genetic-Correlation, accessed on March 14, 2016. These LD 
scores were computed with genotypes from the European-ancestry samples in the 1000 Genomes 
Project. Only HapMap3 SNPs with MAF > 0.01 were included in the LD Score regression; for 
every phenotype, ~1.3 million SNPs were used for the LD Score heritability estimation. Since 
Genomic Control (GC) will tend to bias the intercept of the LD Score regression downward, we 
did not apply GC to the summary statistics prior to estimating the LD Score regressions. 

6.1.3 The HESS method 

The HESS estimator can be described in brief as an analytical variance decomposition method 
that, unlike the GCTA and LD Score regression methods, assumes that the SNP effect sizes are 
fixed effects rather than random effects. The method assumes that the SNPs are randomly 
distributed in the population and requires a pre-specified SNP covariance matrix as input. The SNP 
covariance matrix can be estimated in the sample of interest if individual genotypic data is 
available, or with an external reference panel such as the 1000 Genomes. As Shi et al.99 show using 
simulations, heritability estimates from LD Score regression are sensitive to the true proportion of 
causal SNPs, and the HESS estimator yields more accurate heritability estimates than LD Score 
regression under a wider range of proportions of truly causal SNPs. We used the reference panel 
distributed with the HESS software for the calculation of the covariance matrix. That panel is the 
European subsample of the 1000 Genomes phase 3 version 5 reference panel, restricted to common 
variants (MAF > 0.05), which is the same as the reference panel used for the construction of the 
LD Scoresdd. For every phenotype, a total of ~4.9 million SNPs were used in the HESS heritability 
estimation. As with the LD Score regressions, we did not apply GC prior to estimating heritability 
with HESS. 

6.2 Results  

6.2.1 Results of genome-wide SNP heritability estimation 
The results of the genome-wide SNP heritability estimations are reported in Supplementary 
Table 30 and displayed in Supplementary Fig. 14. The estimated heritabilities of our primary 
and supplementary GWAS phenotypes range from 0.055 to 0.173.  

For self-reported general risk tolerance, we obtained a GCTA heritability estimate of ℎTU∑ì"  = 
0.085 (SE = 0.018), a LD Score heritability estimate of ℎ∏π	îl≥kj"  = 0.055 (SE = 0.002), and a HESS 
heritability estimate of ℎ∫ªîî"  = 0.063 (SE = 0.003). Of all estimated phenotype, the highest 
estimated heritability was for the first PC of the risky behaviors: ℎTU∑ì"  = 0.173 (SE = 0.025), 
ℎ∏π	îl≥kj"  = 0.114 (SE = 0.004), and ℎ∫ªîî"  = 0.156 (SE = 0.004). 
The methods yield broadly consistent results. For all phenotypes, the heritability estimates are 
similar across the three methods, although the GCTA heritability estimates are generally the 
highest and the LD Score regression estimates are generally the lowest. 

                                                             
dd While the same reference panel was used for the construction of the LD scores, as indicated above HapMap3 SNPs 
with MAF > 0.01 were included in the LD score regression. 
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We emphasize that, for general risk tolerance and ever smoker, our main GWAS also analyzed 
data from cohorts other than the UKB, so the heritability estimates we report in Supplementary 
Table 30 and display in Supplementary Fig. 14 are different from those that would have been 
obtained using the summary statistics from our main GWAS. Table 1 reports HESS SNP 
heritability estimates obtained by using summary statistics from our main GWAS of the seven 
phenotypes. 

6.2.2 Relationship between genome-wide SNP heritability and number of lead SNPs 
across the seven main GWAS 

Following a suggestion by a Referee, we conducted an exploratory analysis of the relationship 
between the SNP heritability of our seven main phenotypes and the number of lead SNPs identified 
in the GWAS of each phenotype. We regressed the number of lead SNPs identified in each GWAS 
on the phenotype’s SNP heritability, while controlling for the square root of the GWAS sample 
size. We note that because this regression includes only seven observations and includes a constant 
and two covariates, there are only four degrees of freedom, so statistical power is very limited. We 
used the HESS SNP heritability estimates from Table 1 because these were estimated using the 
summary statistics from the full GWAS of each phenotype. We only included lead SNPs with a 
minor allele frequency (MAF) above 0.05, because the HESS heritability estimates were produced 
using only SNPs with MAF above 0.05. We estimated that a one-percentage-point increase in the 
SNP heritability is associated with 16.4 (SE = 9.3) additional discovered SNPs. However, this 
estimate is imprecise and not statistically significant (P = 0.15). 
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7 Genetic correlations 

To assess whether the genetic variants that influence general risk tolerance tend to be the same and 
to have similar effect sizes as those that influence plausibly related phenotypes, we used bivariate 
LD Score regression24 to estimate pairwise genetic correlations for autosomal SNPs between self-
reported general risk tolerance and a number of pre-selected phenotypes. We also estimated the 
genetic correlation for general risk tolerance between males and females, between the discovery 
and replication GWAS, and between the 23andMe and UKB cohorts, and we compared the genetic 
and phenotypic correlations between general risk tolerance and our four main risky behaviors. 

7.1 Methodology 

Under some assumptions, bivariate LD Score regression24 produces unbiased estimates of genetic 
correlation, even in the presence of sample overlap. Under these assumptions the method merely 
requires GWAS summary statistics and an “LD score” (the amount of genetic variation tagged by 
a SNP) reference panel.  
Bivariate LD Score regression utilizes the following moment condition:   

(6) 
H ]*I]"I = XEYZ,[Z\Y +

8*8"
O

wºΩ-ℓI, 

where ]óI is the z-statistic of SNP j from the GWAS of trait k (k = 1, 2), Intercept is the regression 
intercept, Nk is the sample size of the GWAS of trait k, M is the number of SNPs included in the 
GWAS, wºΩ- is the genetic covariance between traits 1 and 2, and ℓI is the LD score of SNP j. 
The slope parameter from a regression of ]*ø]"ø on 8*8"ℓø can therefore be used to estimate the 
genetic covariance between the two traits. From separate, univariate LD Score regressions of traits 
1 and 2, we can also back out estimates of the respective heritabilities of the two traits, ℎ-*" 	and	ℎ-"" , 
and obtain an estimate of the genetic correlation as follows: 

(7) ,- =
	wºΩ-

ℎ-*" ℎ-""
. 

We used the scores computed by Finucane et al.94, which use genotypic data from the European-
ancestry samples in the 1000 Genomes Project and only HapMap3 SNPs (eur_w_ld_chr, see 
https://github.com/bulik/ldsc/wiki/Genetic-Correlation, accessed on March 14, 2016). As is 
common in the literature, we restrict our analyses to SNPs with MAF > 0.01; this guarantees all 
analyses are performed using a set of SNPs that are imputed with reasonable accuracy across all 
contributing cohorts. The standard errors are estimated by the LDSC software using a block 
jackknife over the SNPs.  

7.2 Pre-selected phenotypes 

For our bivariate LD Score analyses, we considered a wide range of phenotypes. First, we 
considered our supplementary GWAS phenotypes. These include adventurousness, our four main 
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risky behaviors (automobile speeding propensity, drinks per week, ever smoker, and number of 
sexual partners) and their first PC (see Panel A1 of Supplementary Table 9). We also analyzed 
additional risky behavior phenotypes for which we ran additional GWAS with only the first release 
of UKB data (for details regarding the methodology and phenotype definitions, see the Appendix 
at the end of this section); these include age first had sexual intercourse, teenage conception 
(females only), and use of sun protection (see Panel A2 of Supplementary Table 9). Further, we 
analyzed additional risky behaviors for which we were able to obtain summary statistics from 
previously published well-powered GWAS. We include the risky behaviors age tobacco smoking 
onset (among ever-smokers)35 cigarettes per day (among ever-smokers)35, former tobacco smoker 
(among ever-smokers)35 lifetime cannabis use100, and self-employed101 (Panel A3 of 
Supplementary Table 9).  
Second, we include the cognition phenotypes cognitive performance102, educational attainment16, 
and intracranial volume103  (Panel B of Supplementary Table 9). Third, we selected the 
anthropometric phenotypes BMI104 and height105 (Panel C of Supplementary Table 9). Fourth, 
we analyzed the neuropsychiatric phenotypes ADHD69, Alzheimer’s disease106, anxiety 
disorders107, autism spectrum disorder108, bipolar disorder109, depressive symptoms18, and 
schizophrenia58 (Panel D of Supplementary Table 9). 
Fifth, we analyzed the five personality phenotypes that make up the five-factor personality model 
(agreeableness, conscientiousness, extraversion, neuroticism, and openness to experience) using 
GWAS summary statistics provided by 23andMe and previously analyzed by Lo et al. (2016)110 
(Panel E of Supplementary Table 9). Also known as the Big Five, these traits constitute the most 
widely used taxonomy of personality traits in psychology. The Big Five have roots in Allport & 
Odbert’s lexical hypothesis111, which states that individual differences are encoded in language112. 
This is in contrast to economic preferences such as risk aversion and delay discounting, which are 
measures of individual heterogeneity that arise in a utility maximization framework. As our sixth 
personality phenotype, we analyzed delay discounting, a measure of impatience, or of the extent 
to which an individual devalues rewards that are delayed113.  
Recent work in economics has highlighted the importance of personality for economic outcomes, 
particularly in education, crime, health, and the labor market114. However, little is known about 
the relationship between the Big Five and economic preferences. In the most comprehensive study 
of its kind to date, Becker et al. (2012)3 find highly significant positive correlations for self-
reported risk aversion with openness (0.28) and extraversion (0.26), and negative correlations with 
conscientiousness (-0.04), agreeableness (-0.14), and neuroticism (-0.09)3.    
We also ran GWAS using the first release of UKB data for the socioeconomic phenotypes 
household income and Townsend deprivation index (see Panel E of Supplementary Table 9; for 
details regarding the methodology and phenotype definitions, see again the Appendix at the end 
of this section). Finally, we evaluated the genetic correlation between risk and longevity115. 

7.3 Results: Genetic correlation between general risk tolerance and pre-
selected phenotypes 

To estimate the genetic correlations between general risk tolerance and each of the above 
phenotypes, we used the summary statistics from the meta-analysis of the discovery and replication 
GWAS. The estimates of the genetic correlations are shown in Supplementary Table 9 and in 
Fig. 2.  
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7.3.1 Adventurousness and risky behaviors 

First, we examine the genetic correlation between adventurousness and general risk tolerance. 
Then, we return to our other supplementary GWAS phenotypes and their genetic correlations with 
general risk tolerance. These results are reported in Panel A1 of Supplementary Table 9. As 
expected, the estimated genetic correlation with adventurousness is high and statistically 
significant (,-= 0.834, SE = 0.011). The correlation with automobile speeding propensity is 
moderately high  and highly statistically significant (,-= 0.448, SE = 0.021), consistent with 
individuals with more risk-tolerance increasing alleles being more likely to exceed the automobile 
speed limit. For drinks per week the genetic correlation is positive and highly statistically 
significant (,-= 0.254, SE = 0.021), and the genetic correlation is comparable for ever smoker (,-= 
0.246, SE = 0.022), implying that higher risk tolerance is genetically associated with more risky 
health behaviors. The genetic correlation estimates are highly significant for number of sexual 
partners (,-= 0.520, SE = 0.019). Finally, the genetic correlation for the first PC of these four risky 
behaviors, which can be interpreted as a general factor of risky behavior, is interestingly both 
moderately high in absolute value and highly statistically significant (,-= 0.500, SE = 0.018). 
Thus, all of our supplementary GWAS phentoypes are significantly genetically correlated in the 
expected direction with the primary general-risk-tolerance phenotype. 
Next, let us turn to the three additional UKB risky behaviors (for which we ran GWAS using only 
the first release of UKB data) and their genetic correlations with general risk tolerance. The results 
are reported in Panel A2 of Supplementary Table 9. The genetic correlation estimates are highly 
significant for age first had sexual intercourse (,-= -0.332, SE = 0.032) and teenage conception 
(,-= 0.246, SE = 0.049). Together with our results of number of sexual partners, this implies that 
that higher risk tolerance is genetically associated with more risky sexual behavior; this is also 
consistent with a finding from a recent GWAS of age at first sexual intercourse66. Use of sun 
protection has an insignificant genetic correlation with general risk tolerance, and we suspect that 
this phenotype may be more highly correlated with skin pigmentation and predisposition to skin 
cancer than to general risk tolerance.  

All seven of our statistically significant genetic correlation estimates for the aforementioned risky 
behaviors have signs that are in the direction that would be expected based on the corresponding 
phenotypic correlations, and the absolute values of the estimates are higher than those of these 
phenotypic correlations. 

Lastly, Panel A3 of Supplementary Table 9 reports the estimates for the risky behaviors for which 
we were able to obtain summary statistics from previously published, well-powered GWAS. One 
of the three cigarette-related phenotypes is moderately and significantly genetically correlated with 
general risk tolerance: former tobacco smoker (among ever-smokers) (,-= -0.131, SE = 0.055). 
However, age of tobacco smoking onset (among ever-smokers) and cigarettes per day (among 
ever-smokers) are not significantly genetically correlated with general risk tolerance. These results 
suggest that, while higher risk tolerance may be genetically associated with some risk-related 
smoking behaviors such as smoking initiation (as suggested by the significant genetic correlation 
with ever smoker) and cessation, risk tolerance may not necessarily be genetically correlated with 
smoking addiction (as captured by cigarettes per day).  

For lifetime cannabis use, the genetic correlation is positive and highly statistically significant (,-= 
0.313, SE = 0.057), implying that risk tolerance is genetically associated with risk-seeking 
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cannabis use behavior. The genetic correlation estimate for self-employed is significant and large 
in magnitude (,-= 0.672, SE = 0.259), implying that higher risk tolerance is genetically associated 
with a common proxy for entrepreneurship. The point estimate for this phenotype is the highest 
among any of the phenotypes tested. However, in interpreting this correlation it is important to 
note that the LD Score regression heritability of the self-employment phenotype is low and not 
significantly different from zero: 0.0126 (SE = 0.0106). Indeed, the standard errors on the estimate 
are quite large (SE = 0.259). This might be due to the fairly small sample size of the self-
employment GWAS (n = 50,627).  
All 11 of our statistically significant genetic correlation estimates for the risky behaviors have 
signs that imply higher risk tolerance is associated with riskier behaviors.  

7.3.2 Cognition phenotypes 

Two of the three cognition phenotypes are significantly, though weakly, genetically correlated 
with general risk tolerance: educational attainment (,-= 0.099, SE = 0.022) and intracranial volume 
(,-= 0.144, SE = 0.059). These results are consistent with the well-established positive correlation 
between risk preferences and educational attainment in the literature2. The absence of genetic 
correlation between risk tolerance and cognitive performance (,-= 0.012, SE = 0.063) is surprising, 
given that risk tolerance and cognitive performance have been shown to be positively correlated 
at the phenotypic level116,117. A possible explanation is that cognitive performance tends to 
correlate positively with avoidance of harmful risky situations but negatively with avoidance of 
beneficial risky situations118, and that our measure of risk tolerance captures behavior in both types 
of situations in such a way that the effects cancel out when estimating the genetic correlation.      

7.3.3 Anthropometric phenotypes  

Height is not significantly genetically correlated with general risk tolerance. BMI, on the other 
hand, is significantly, albeit weakly, positively correlated (,-= 0.053, SE = 0.021).  

7.3.4 Neuropsychiatric phenotypes 

Among the neuropsychiatric traits, we find moderate (and highly significant) genetic correlations 
with ADHD (,-= 0.247, SE = 0.033), anxiety disorders, (,-= 0.214, SE = 0.089), autism spectrum 
disorder (,-= -0.105, SE = 0.050), bipolar disorder (,-= 0.214, SE = 0.035) and schizophrenia (,-= 
0.173, SE = 0.021). The positive and significant genetic correlation with ADHD is consistent with 
the significant effect of our polygenic score of general risk tolerance on ADHD in an independent 
sample (Supplementary Note section 10). We do not, however, find significant genetic 
correlations with either Alzheimer’s disease or depressive symptoms.  

7.3.5 Personality phenotypes  

Agreeableness and conscientiousness are not significantly correlated with general risk tolerance. 
However, the genetic correlations between general risk tolerance and extraversion (,-= 0.505, SE 
= 0.027), neuroticism (,-= -0.420, SE = 0.038), and openness (,-= 0.332, SE = 0.031), are 
moderately high in absolute value and highly significant. The direction of the genetic correlation 
between general risk tolerance and all five personality traits is in line with the literature on the 
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phenotypic correlations of these traits outlined above3. Our results for extraversion, neuroticism, 
and openness are also in line with the signs of the significant coefficients on the polygenic score 
for general risk tolerance in regressions of each of these personality phenotypes on the score, as 
highlighted in Supplementary Note section 10 (although our predictive power for these traits is 
quite low).  
Interestingly, we find a significant and moderate positive genetic correlation between general risk 
tolerance and delay discounting (,-= 0.210, SE = 0.101), indicating that higher risk tolerance is 
associated with higher impatience. Our estimate of this genetic correlation is similar to our estimate 
of the genetic correlation between general risk tolerance and ADHD; Sanchez-Roige et al.113 note 
that delay discounting may act as an endophenotype for ADHD, and the similarity in the two 
genetic correlation estimates support this conclusion. 

7.3.6 Socioeconomic phenotypes and longevity  

The genetic correlation estimates for both household income (,-= 0.215, SE = 0.033) and for 
Townsend score (,-= 0.185, SE = 0.047) are positive and significant, implying that higher risk 
tolerance is genetically associated with higher earnings and social deprivation. The genetic 
correlation with Townsend score is higher than even the phenotypic correlation. We do not find a 
significant genetic correlation with longevity.  

7.3.7 Summary of Findings 

In sum, general risk tolerance tends to be genetically correlated with adventurousness and with the 
risky behaviors involving automobile speeding propensity, substance use, sexual activity, and self-
employment. Importantly, our estimates have signs that are consistent with higher self-reported 
risk tolerance being associated with riskier behavior. General risk tolerance is also genetically 
correlated with the neuropsychiatric phenotypes ADHD, anxiety disorders, autism spectrum 
disorder, bipolar disorder, and schizophrenia, but not with Alzheimer’s disease or depressive 
symptoms. General risk tolerance is also correlated with the Big Five personality phenotypes 
extraversion, neuroticism, and openness, but not with agreeableness or conscientiousness, and is 
correlated with delay discounting. 

Our results also point toward distinctions in the genetic correlation between general risk tolerance 
and externalizing and internalizing behaviors and disorders. Externalizing behaviors and disorders 
are those in which individuals tend to express maladaptive thoughts and feelings toward others or 
their environment, while internalizing behaviors and disorders are those in which individuals tend 
to express thoughts and feelings inward. Overall, we find significant genetic correlations with 
behaviors and disorders typically classified as externalizing119, such as addiction (smoking 
cigarettes, cannabis use, and drinking) and ADHD as well as thought disorders related to 
externalizing disorders such as bipolar disorder and schizophrenia. Conversely, we find little 
evidence of significant genetic correlation with internalizing behaviors or disorders, such as 
depression. We also find evidence confirming the well-documented phenotypic correlation 
between risk taking and cognitive performance and educational attainment (e.g., in the domain of 
financial risk taking2,4,116). 
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7.4 Other results 

7.4.1 Genetic correlation between males and females 

Phenotypically, more than 34% of males in the UKB are categorized as risk tolerant (based on 
their answers to the general-risk-tolerance question), whereas only approximately 19% of females 
are categorized as risk tolerant. To test the extent to which the genetics of general risk tolerance 
differs between males and females, we conducted GWAS of general risk tolerance separately for 
males and females. We followed the same methodology and QC protocol for these two sex-specific 
GWAS as for our other GWAS in the full release of UKB data. Supplementary Table 31 reports 
the SNP-based heritabilities and other relevant summary statistics from the LD Score regressions. 
General risk tolerance is slightly more heritable for males (h2 = 0.064, SE = 0.004) than for females 
(h2 = 0.055, SE = 0.003). We then used bivariate LD Score regression to calculate the genetic 
correlation between these two samples, and obtained an estimate of ,- = 0.822 (SE = 0.033). The 
genetic correlation is smaller than unity, pointing to some heterogeneity across females and males, 
but high enough to justify our approach of pooling males and females in our other analyses to 
maximize statistical power (see section 2 of the Supplementary Note of Okbay et al. (2016) for 
derivations the demonstrate this).  

7.4.2 Genetic correlation between the discovery and replication GWAS and between 
the 23andMe and UKB cohorts 

We estimated the genetic correlation between our discovery and our replication GWAS of general 
risk tolerance. We find a high genetic correlation that cannot be statistically distinguished from 
unity (,-= 0.8344, SE = 0.1289), suggesting the genetic underpinnings of general risk tolerance do 
not vary much between our discovery and replication samples. 

As discussed in Supplementary Note sections 1 and 3.3, we also estimated the genetic correlation 
between: (1) the UK Biobank general-risk-tolerance GWAS and the 23andMe general-risk-
tolerance GWAS; (2) the UK Biobank general-risk-tolerance GWAS and the replication GWAS; 
(3) the 23andMe general-risk-tolerance GWAS and the replication GWAS; and (4) the discovery 
and replication GWAS of general risk tolerance. For (1) we find a moderately high, positive 
genetic correlation (,-= 0.767, SE = 0.021) that is distinguishable from unity. For (2) we find a 
moderately high, positive genetic correlation (,-= 0.828, SE = 0.135); for (3) we find (,-= 0.759, 
SE = 0.126). Finally, for the final correlation (4), we find (,-= 0.834, SE = 0.129). The last three 
correlations are all indistinguishable from unity.  

7.4.3 Relationship between the genetic correlation and the fraction of overlapping lead 
loci across pairs of phenotypes 

Following a suggestion by a Referee, we conducted an exploratory analysis of the relationship 
between the genetic correlation between a pair of phenotypes and a measure of the fraction of lead 
SNPs (and SNPs in weak LD, r2 > 0.1) that overlap across the phenotypes’ GWAS. We examined 
this relationship across six pairs of phenotypes, each comprising general risk tolerance and one of 
the six supplementary phenotypes. Our measure of the fraction of lead SNPs that overlap across 
phenotypes 1 and 2 is ¿¡o

¿¡¿o
, where ¬*" is the number of overlapping lead SNPs and qi is the number 

of lead SNPs for phenotype i (i = 1, 2). The number of overlapping lead SNPs is defined as the 
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number of lead SNPs of the supplementary phenotype that are in weak LD (r2 > 0.1) with a general-
risk-tolerance lead SNP. We estimated a positive correlation of 0.34 between our measure of the 
fraction of overlapping lead SNPs and the genetic correlation, consistent with the intuition that 
pairs of phenotypes with higher genetic correlations will tend to have more overlapping lead SNPs. 
However, this estimate is not statistically significant (P = 0.51), which is not surprising given how 
few data points were used in the analysis, which limited statistical power. 

 

7.5 Comparison of the genetic and phenotypic correlations 

In Supplementary Table 8 we show phenotypic correlations for our primary GWAS phenotype, 
general risk tolerance, and for our five supplementary phenotypes whose GWAS included data 
from the UKB: automobile speeding propensity, drinks per week, ever smoker, number of sexual 
partners, and the first PC of these four risky behaviors (the GWAS of our other supplementary 
phenotype, adventurousness, used 23andMe data only). Panel A shows values calculated naively 
assuming Pearson correlation coefficients for all of our variables using the “pwcorr” command in 
Stata. In the first column, we show test-retest correlations between the first and the second 
measurements if each phenotype in the UKB, to give a sense of the test-retest reliability of each 
phenotype. In the subsequent correlation matrix, coefficients below the diagonal are uncorrected 
Pearson coefficients. Above the diagonal, we adjust the correlation estimate for each pair of 
variables for measurement error by dividing it by the square root of the product of the two test-
retest correlations for the two variablesee. 
In Panel B, we recalculate Panel A, but this time we use the polychoric package in Stata to allow 
the correct estimation of tetrachoric (between two ordinal variables) or polyserial correlations 
(between an ordinal and a continuous variable). Again, uncorrected correlation coefficients are 
below the diagonal, while correlations corrected for measurement error are above the diagonal.  
In summary, both correcting for measurement error (Panel A and B, above the diagonals) and 
specifying the correct type of correlation coefficient (Panel B) raises the value of the correlation 
estimates, so that our highest estimates are in Panel B, above the diagonal. While some correlations 
are quite high (especially between the first PC phenotype and the other phenotypes), the others 
remain relatively low, including for the correlations between general risk tolerance and the five 
supplementary phenotypes. 
In Panel A1 of Supplementary Table 9  we compare the genetic correlations with general risk 
tolerance to the phenotypic correlations with general risk tolerance. Even after specifying the 
correct type of correlation (Pearson or polyserial) and adjusting for measurement error, most 
genetic correlations remain considerably higher than the phenotypic correlations.  
These results are relevant to the ongoing debate about the extent to which risk tolerance is a 
“domain-general” versus “domain-specific” trait. Low phenotypic correlations among measures 
of risky behaviors in various domains have led some researchers to conclude that risk tolerance is 
highly domain-specific120,121. The comparatively large genetic correlations we estimate support the 
view that a general factor of risk tolerance partly accounts for cross-domain variation in risky 
behavior6,122 and imply that this factor is genetically influenced, while the lower phenotypic 
                                                             
ee This is a standard method to correct for measurement error attenuation in the correlation estimates (see, e.g., 
https://en.wikipedia.org/wiki/Correction_for_attenuation). 
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correlations suggest that environmental factors are more important contributors to domain-specific 
behavior.   
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7.6 Appendix: GWAS of other risky behaviors and of socioeconomic 
phenotypes using the first release of UKB data 

While we used existing published GWAS results for most phenotypes, we conducted our own 
GWAS using the full release of UKB data for our four main risky behaviors and their first PC. We 
describe the coding of our four main risky behaviors and their first PC in Supplementary Note 
section 1.2 (for phenotypic correlations of these five behaviors see Supplementary Table 8). We 
also conducted our own GWAS using only the first release of UKB data for five phenotypes: age 
first had sexual intercourseff (n = 98,956), teenage conception among females (n = 40,077), use of 
sun protection, household income (n = 97,059), and Townsend deprivation indexgg score (n = 
112,192). Throughout these analyses we dropped participants who answered “Do not know” or 
“Prefer not to answer” and averaged data across two assessment visits when possible.   

The five remaining UKB phenotypes for which we ran GWAS in only the first release of UKB 
data were coded as follows: 

• Age first had sexual intercourse: UKB respondents were asked “What was your age when 
you first had sexual intercourse? (Sexual intercourse includes vaginal, oral or anal 
intercourse)?” We dropped anyone reporting “Never had sex” or an age of first sexual 
encounter at less than 12 (given the high likelihood of associated abuse or misreporting). 
We then normalized the measure separately for males and females.  

• Teenage conception among females: UKB females who bore at least one child were asked 
“How old were you when you had your FIRST child?” We recoded this variable into a 
case-control binary variable. Females reporting age of first live birth between 13 and 20 
(inclusive) were coded as cases (n = 6,285), while females reporting higher ages of first 
live birth were coded as controls (n = 33,792). Childless females were dropped. 

• Use of sun protection: UKB respondents were asked “Do you wear sun protection (e.g. 
sunscreen lotion, hat) when you spend time outdoors in the summer?”; eligible responses 
ranged from “1. Never/rarely” to “4. Always,” and also included “5. Do not go out in 
sunshine.” We dropped all participants who answered “5. Do not go out in sunshine” and 
normalized the resulting categorical variable separately for males and females.  

• Household income: UKB respondents were asked “What is the average total income before 
tax received by your HOUSEHOLD?”; eligible responses were “1. Less than £18,000,” “2. 
£18,000 to £30,999,” “3. £52,000 to £100,000,” “5. Greater than £100,000.” We 
normalized the resulting categorical variable.  

• Townsend deprivation index score: This score measures local social deprivation based on 
the preceding national census output areas; a higher score implies more social deprivation. 
Each participant was assigned a score corresponding to the output area in which their 
postcode is located. The score is calculated by the UKB immediately prior to each 
participant joining the dataset. We normalized the scores for our analysis.  

                                                             
ff Day et al.66 report results from a GWAS of age of first sexual encounter. We conduct similar analyses ourselves 
here. We treat the phenotype slightly differently by separately normalizing phenotypes among males and females, and 
then conducting our GWAS on the combined sample. 
gg Hill et al.269 report results from GWAS for household income and the Townsend deprivation index in the UKB. We 
ran our own analyses because we could not find the summary statistics from their GWAS in the public domain. 



 81 

We followed the same methodology and QC protocol for these five additional GWAS as for our 
discovery GWAS of general risk tolerance and our GWAS of the four main risky behaviors and 
their first PC in the full release of UKB data (see Supplementary Note section 2), except that (1) 
we only used unrelated individuals in the first release of UKB data; (2) we conducted the 
association analyses with SNPtest v.2.4.192 (instead of BOLT-LMM40); (3) the summary statistics 
were quality controlled using the 1000 Genomes phase 3 reference panel; and (4) we only used 
SNPs with MAF > 0.005 instead of MAF > 0.001 (the latter does not affect the analyses reported 
in this section, as we restrict these analyses to SNPs with MAF > 0.01). Panel B of Supplementary 
Table 31 reports the various statistics outputted by LD Score regressions for each of these five 
additional GWAS. The third column shows estimates of the SNP-based heritabilities. All five 
phenotypes have a higher SNP-based heritability than general risk tolerance, except Townsend 
score. The sexual activity phenotypes exhibit particularly high heritabilities. Age first had sexual 
intercourse has the highest SNP-based heritability: 0.167 (SE = 0.009). The only estimate of the 
LD Score regression intercept that is significantly different from one is for household income, for 
which the intercept is 1.035 (SE = 0.008). By comparison, the mean `" statistics for the SNPs in 
the LD Score regressions are larger than 1.10 for three of the five GWAS, including household 
income for which the mean `" statistic is 1.198 (the exceptions are teenage conception and 
Townsend score, for which the mean `" statistics are 1.074 and 1.094, respectively). These 
estimates imply that only a small part of the observed inflation in the mean `" statistics of the 
GWAS is likely to be accounted for by confounding bias (due to population stratification, cryptic 
relatedness, or other confounds), rather than by polygenic signals. Additional details for these five 
additional GWAS are available upon request. 
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8 Proxy-phenotype analyses 
8.1 Introduction  
We conducted proxy-phenotype analyses102 to search for additional SNPs that affect phenotypes 
that are plausibly related to general risk tolerance. These analyses allow us to test whether SNPs 
that are strongly associated with a “first-stage” phenotype are enriched for association with a 
related “second-stage” phenotype, and potentially to identify new SNPs associated with the 
second-stage phenotype. Proxy-phenotype analyses leverage the fact that, if the first- and second-
stage phenotypes are genetically correlated, SNPs associated with the first-stage phenotype should 
have a higher probability of being associated with the second-stage phenotype, compared to what 
we would expect by chance. 

In our study, the first-stage phenotype is always general risk tolerance, and the first-stage analysis 
was conducted in our discovery GWAS. We consider eight primary second-stage phenotypes: age 
of smoking onset, cigarettes per day (CPD), smoking cessation (which compares former smokers 
to current smokers), lifetime cannabis use, self-employment status (an indicator of whether an 
individual is self-employed or not), ADHD, bipolar disorder, and schizophrenia. We chose these 
second-stage phenotypes for the following two reasons. First, summary statistics from GWAS of 
these phenotypes that did not include the UKB are publicly available or could be obtained. Second, 
these phenotypes are plausibly related to general risk tolerance: the first five phenotypes are risky 
behaviors and all eight are at least moderately genetically correlated with general risk tolerance 
(Supplementary Note section 7.3). We also used height as a negative control. 

8.2 Methodology  
8.2.1 Data and Setup 

We used our discovery GWAS of general risk tolerance as our first-stage analysis. The second-
stage lookups were all performed using summary statistics from previous GWAS. We obtained 
the summary statistics from the following sources: The Tobacco and Genetics Consortium (2010)35 
for the three tobacco smoking phenotypes, the International Cannabis Consortium lifetime for 
cannabis use (Stringer et al. 2016)100, the Gentrepreneur Consortium for self-employment (van der 
Loos et al. 2013)101, the Psychiatric Genomics Consortium for ADHD, bipolar disorder, and 
schizophrenia (Demontis et al. 2017, Sklar et al. 2011, and Ripke et al. 2014, respectively)58,69,109, 
and the GIANT consortium for height (Wood et al. 2014)105. Our methodology follows Okbay et 
al. (2016)18 and involves two main stages.  

8.2.2 Stage 1: Constructing the set of lead and proxy-lead SNPs 
The first stage involves constructing the set of lead SNPs from the first-stage analysis. Unlike 
Okbay et al., we only used the lead SNPs (i.e., the approximately independent SNPs with P values 
< 5×10)√) from our discovery GWAS of general risk tolerance as candidate SNPs for the second 
stagehh. 

For brevity, we illustrate the steps involved for cigarettes per day (CPD), but analogous procedures 
apply for each of the other second-stage phenotypes. Our discovery GWAS of general risk 
tolerance identified 124 lead SNPs. Of these, 52 SNPs were directly available in the CPD summary 
statistics, whereas 72 were either not available or their GWAS sample sizes were too small to meet 

                                                             
hh Okbay et al. used all SNPs with a P value less than 1×10)b, rather than just the lead SNPs. 
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our inclusion criterion: to ensure the quality of the estimates for the second-stage SNPs, we limit 
our lookup procedure to second-stage SNPs with GWAS sample sizes of at least one-half of the 
maximum sample size for that GWAS. For each of these 72 SNPs, we determined whether there 
exists a suitable “proxy-lead SNP” that satisfies three conditions: (1) the SNP is in high LD (r2 > 
0.8) with the risk-tolerance associated SNP; (2) the SNP is available in the summary statistics of 
both the discovery GWAS of general risk tolerance and the GWAS of CPD; and (3) the SNP has 
a CPD sample size of at least one-half the maximum sample size in the CPD GWAS. To determine 
the set of SNPs in high LD with the risk-associated SNP, we employ PLINK43 with our main 
reference panelii. A proxy-lead SNP was available for an additional 44 of the 72 SNPs (with r2’s 
ranging from 0.80 to 1.00, with a mean r2 = 0.94). Whenever more than one proxy was available 
for a SNP, we chose the proxy with the largest r2. Ties were broken by choosing the closest SNP 
to the original lead SNP in base pair distance. Our final list of lead and proxy-lead SNPs for CPD 
therefore contained 52 + 44 = 96 SNPs. 

8.2.3 Stage 2, part 1: SNP lookup and search for previously identified significant loci  
We individually tested each of the k lead and proxy-lead SNPs for experiment-wide significance 
by examining whether each is significantly associated with the second-stage phenotype, using a 
Bonferroni-corrected significance level of 0.05/k (for CPD, k = 96). We refer to the lead and proxy-
lead SNPs that reached Bonferroni-corrected significance in the second stage as “second-stage 
hits.”  
For each second-stage hit, we then identified the set of SNPs in weak LD with the second-stage 
hits by identifying the SNPs in a 1,000 kb window around the corresponding first-stage lead SNP 
and with r2

 > 0.1 with that corresponding first-stage lead SNP (we used PLINK43 and our main 
reference panel to compute LD). We then checked if any of these SNPs are genome-wide 
significant in the second-stage summary statistics. This allowed us to determine whether the 
second-stage hits tag genomic regions that were previously found to be genome-wide significant 
in the GWAS of the second-stage phenotype.   

8.2.4 Stage 2, part 2: Testing the set of lead and proxy-lead SNPs for enrichment and 
sign concordance 

For each second-stage phenotype, we performed a non-parametric Mann-Whitney test85 of joint 
enrichment to test whether the set of lead and proxy-lead SNPs have a P value distribution that is 
significantly different from the P value distribution of a randomly-chosen, matched set of 
“comparison SNPs” in the second-stage summary statistics. Because we expect the second-stage 
phenotypes to be highly polygenic, with many SNPs having weak but true associations, it would 
have been inappropriate to test the null hypothesis that the P value distribution of the lead and 
proxy-lead SNPs is uniform. For each lead and proxy-lead SNP, the comparison SNPs are 
randomly selected from among the set of SNPs that have a minor allele frequency within one 
percentage point of the lead or proxy-lead SNPjj. As in Okbay et al. (2016)18, we generated 1,000 
comparison SNPs for each of the k lead or proxy-lead SNPs, and compared the P value distribution 
for this group of k × 1000 SNPs with that of the k lead or proxy-lead SNPs.  
We also conducted a sign test to assess whether the lead and proxy-lead SNPs have effects in the 
predicted (or concordant) direction in the second stage. For cigarettes per day (CPD), lifetime 
                                                             
ii Throughout this section, we employ our main reference panel to compute the LD between SNPs. 
jj The matched SNPs are drawn with replacement from the set of SNPs in the second-stage summary statistics that 
excludes the Y lead or proxy-lead SNPs. 
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cannabis use, self-employment status, ADHD, bipolar disorder, and schizophrenia (for which a 
higher phenotype value corresponds to more risk taking, and which we estimated to be positively 
genetically correlated with general risk tolerance) we classified a SNP as having an effect “in the 
predicted direction” if the sign of its effect is concordant with that for general risk tolerance. For 
age of smoking onset and smoking cessation (for which a higher phenotype value corresponds to 
less risk taking, and which we estimated to be negatively genetically correlated with general risk 
tolerance) we classified a SNP as having an effect “in the predicted direction” if the sign of its 
effect is discordant with that for general risk tolerance. For example, a SNP that increases general 
risk tolerance and decreases the age of smoking onset has an effect in the predicted direction. For 
ADHD, bipolar disorder, schizophrenia, and height, we did not predict the direction of the SNPs’ 
effects; we simply conducted a sign test to establish whether SNPs’ effects are more likely to be 
sign concordant with those for general risk tolerance than expected by chance. 

8.3 Results from proxy-phenotype enrichment analyses 
Q-Q plots for the lead and proxy-lead SNPs in each second-stage phenotype are shown in 
Supplementary Fig. 15. These plots show results from the sign test mentioned above and 
highlight any second-stage hits. Further details on each of the lead and proxy-lead SNPs are 
reported in Supplementary Table 31, which reports summary statistics from the first and second 
stages for the lead SNPs associated with general risk tolerance and their proxies.   

8.3.1 Do risk-tolerance-associated SNPs predict smoking behaviors? 
For CPD, 52 lead SNPs are directly available in the second-stage summary statistics, and we 
identified 44 proxy-lead SNPs. Out of 96 lead or proxy-lead SNPs, 51 (53.1%) have signs in the 
predicted direction (P = 0.31). There are no second-stage hits. Moreover, the Mann-Whitney test 
of joint enrichment fails to reject the null hypothesis that the P values of the lead and proxy-lead 
SNPs are drawn from the same P value distribution as a set of randomly-selected SNPs (P = 0.88).  
For age of smoking onset, 52 lead SNPs are directly available in the second-stage summary 
statistics, and we identified 45 proxy-lead SNPs. Of a total of 97 lead or proxy-lead SNPs, 54 
(55.7%) have signs in the predicted direction (P = 0.15). There were again no second-stage hits, 
and the Mann-Whitney test of joint enrichment fails to reject the null (P = 0.48).  
For smoking cessation, 53 lead SNPs are directly available in the second-stage data, and we 
identified 44 proxy-lead SNPs. Of a total of 97 lead or proxy-lead SNPs, 61 (62.9%) have signs in 
the predicted direction (P = 0.007). There were no second-stage hits. The Mann-Whitney test of 
joint enrichment fails to reject the null (P = 0.11).   

8.3.2 Do risk-tolerance-associated SNPs predict lifetime cannabis use? 
For lifetime cannabis use, 117 lead SNPs are directly available in the second-stage data, with no 
additional proxy-lead SNPs. Of these lead SNPs, 76 out of 117 (65.0%) have signs in the predicted 
direction (P = 8×10)b). One SNP, rs993137, reaches Bonferroni-corrected significance (P = 
1.7×10)b, before Bonferroni correction) and is thus a second-stage hit, and the sign of the effect 
of this SNP is in the predicted direction. This SNP does not tag any previously identified genome-
wide hit for lifetime cannabis use, and is thus a novel association. The Mann-Whitney test of joint 
enrichment fails to reject the null hypothesis (P = 0.13).  
Interestingly, rs993137 falls within the CADM2 gene, which was found to be significantly 
associated with lifetime cannabis use in a gene-based test by Stringer et al. (2016)100. Stringer et 
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al. also note that CADM2 has previously been associated with body mass index (BMI), processing 
speed, and autism disorders; these phenotypes themselves have been previously associated with 
cannabis use123–125. It is noteworthy that CADM2 contains lead SNPs for all our primary and 
supplementary GWAS. The NHGRI-EBI GWAS Catalog database65 reports previous associations 
with age at menarche, cognitive function, and educational attainment, among other phenotypes, as 
well as those mentioned by Stringer et al. (2016). 

8.3.3 Do risk-tolerance-associated SNPs predict self-employment? 
For self-employment, 56 lead SNPs are directly available in the second-stage data, along with 43 
proxy-lead SNPs. Of a total of 99 lead or proxy-lead SNPs, 64 (64.6%) have signs in the predicted 
direction (P = 0.002). There is one second-stage hit, SNP rs7387531 (P = 1.1×10)b, before 
Bonferroni correction), and the sign of its effect is in the predicted direction.kk,ll To our knowledge, 
no robust association has previously been reported between a genetic variant and self-employment; 
thus, if the association with rs7387531 is robust, this would be the first genetic variant to be found 
to be significantly associated with self-employment.  
Lastly, the Mann-Whitney test of joint enrichment fails to reject the null hypothesis (P = 0.49). 
The significant SNP rs7387531 is located within a candidate inversion on chromosome 8 (~7.89 
to 11.79 Mb), and that candidate inversion contains lead SNPs for our GWAS of general risk 
tolerance, adventurousness, automobile speeding propensity, ever smoker, and number of sexual 
partners. The NHGRI-EBI GWAS Catalog database65 reports SNP associations within the 
breakpoints of the candidate inversion with many other phenotypes, among them are neuroticism, 
extraversion, schizophrenia, and chronotype. 

8.3.4 Do risk-tolerance-associated SNPs predict ADHD? 
For ADHD, 116 lead SNPs are directly available in the second-stage data, with one additional 
proxy-lead SNP. Of a total of 117 lead or proxy-lead SNPs, 74 (63.2%) SNPs have concordant 
signs (P = 0.003). There are four second-stage hits (rs10905461, P = 5.0×10)≈ before Bonferroni 
correction; rs3764002, P = 2.4×10)b; rs7783012, P = 4.4×10)≠; and rs786250, P = 2.6×10)≈) 
and all of these have concordant signs. These SNPs are all in new loci: none of them tag any 
previously identified genome-wide associations for ADHD. The Mann-Whitney test of joint 
enrichment rejects the null hypothesis of no-enrichment (P = 0.008). 

None of the four Bonferroni-significant SNPs are located within any of the long-range LD regions 
and candidate inversions in which we found lead SNPs for all or most of our primary and 
supplementary GWAS (Supplementary Note section 3.2). 
We also note that ADHD is significantly associated with our polygenic score of general risk 
tolerance (Supplementary Note section 10) and, as with all second-stage traits we analyze here 
(except height), it is also significantly genetically correlated with general risk tolerance.  

                                                             
kk In an ex post analysis, we looked up rs7387531 in the summary statistics of the replication GWAS of self-
employment from van der Loos et al. (2013)101. rs7387531’s association with self-employment did not replicate (P = 
0.061 on a two-sided test, but with the wrong sign). However, this replication attempt was severely underpowered: 
the replication sample was small, comprising only the STR cohort (n  =  3,271). Further, rs7387531 had an R2 of 
~0.004% in the discovery GWAS of general risk tolerance; due to the winner’s curse, the true R2 is likely to be smaller 
than that, and the R2 of rs7387531 on self-employment could be even smaller. 
ll We assume that higher general risk tolerance leads to a higher probability of being self-employed. For the opposite 
view, see ref.270. 
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8.3.5 Do risk-tolerance-associated SNPs predict bipolar disorder? 
For bipolar disorder, 47 lead SNPs are directly available in the second-stage data, with 49 
additional proxy-lead SNPs. Of a total of 96 lead or proxy-lead SNPs, 64 (66.7%) SNPs have 
concordant signs (P = 7.1×10)b). There are no second-stage hits. The Mann-Whitney test of joint 
enrichment fails to reject the null hypothesis of no-enrichment (P = 0.87).  

8.3.6 Do risk-tolerance-associated SNPs predict schizophrenia? 
For schizophrenia, 122 lead SNPs are directly available in the second-stage data, with no additional 
proxy-lead SNPs. Of a total of 122 lead or proxy-lead SNPs, 85 (70.0%) SNPs have concordant 
signs (P = 8.3×10)≠). There are sixteen second-stage hits, and 13 of these have concordant signs. 
Four of these SNPs do not tag any loci that were previously identified in published GWAS on 
schizophrenia (rs13327339, P = 4.8×10)≈ before Bonferroni correction; rs1374197, P = 
4.8×10)≈; rs2357023, P = 4.0×10)b; and rs3764002, P = 3.8×10)b); two of these four SNPs 
(rs1374197 and rs2357023) have concordant signs. rs3764002 was also a second-stage hit for 
ADHD.  

Four of the 16 Bonferroni-significant SNPs are located within long-range LD regions or a 
candidate inversion in which we found lead SNPs in all or most of our primary and supplementary 
GWAS (Supplementary Note section 3.2). The SNP rs3849046 is located within a long-range 
LD region on chromosome 5 (~135.4 to 138.4 Mb) in which we found two lead SNPs for general 
risk tolerance, but no lead SNPs for any other main GWAS.  The SNP rs1417998 is located in the 
long-range LD region on chromosome 6 (~25.3 to 33.4 Mb) that covers the HLA-complex, and 
that region contains lead SNPs for all our GWAS except drinks per week (for which it contains a 
suggestive association). The SNPs rs624244 and rs1531518 are both located within a candidate 
inversion on chromosome 18 (~49.1 to 55.5 Mb), and that region is noteworthy because it contains 
lead SNPs for all our main GWAS. 

The Mann-Whitney test of joint enrichment rejects the null hypothesis of no-enrichment (P = 
3.0×10)∆) relative to randomly selected SNPs. Although schizophrenia has been shown to be very 
polygenic126, the Mann-Whitney test rejects the hypothesis that the observed enrichment is due to 
polygenic inflation of test statistics over the entire genome. However, it is possible that the overlap 
between risk tolerance and schizophrenia is explained by enrichment of broad classes of SNPs 
(e.g., functionally important or conserved regions), rather than specific shared pathways. This is 
because the Mann-Whitney null distribution is only matched on minor allele frequency; however, 
the null sample could be further matched based on other attributes (e.g., LD score, functional 
annotations) to examine whether the joint enrichment is accounted for by these attributes.  

These 16 second-stage hits for schizophrenia, together with the strong enrichment of the general-
risk-tolerance lead SNPs in the schizophrenia GWAS as well as the high sign concordance of their 
effects on schizophrenia, suggest that part of the genetic signal for schizophrenia and general risk 
tolerance may be concentrated in the same genomic regions. We also note that five of our general-
risk-tolerance lead SNPs are located in loci that had been found by previous GWAS to be 
associated with schizophrenia (as we detail in Supplementary Note section 3.3). 

8.3.7 Do risk-tolerance-associated SNPs predict height? 
For height, 57 lead SNPs are available in the data, along with 42 proxy-lead SNPs. Out of these 
99 lead or proxy-lead SNPs, 53 (53.5%) have concordant signs (P = 0.27), and eight are second-
stage hits. Four of these eight SNPs have concordant sign, and all tag loci with previously identified 
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genome-wide associations. The Mann-Whitney test of joint enrichment rejects the null hypothesis 
that the second-stage P values are drawn from a null distribution (P = 1.4×10)≈) and reveals 
much enrichment (as can be seen from Supplementary Fig. 15).  

These result for height partially contradicting our initial framing of height as a negative control. 
Such enrichment in the absence of genetic correlation between two traits could be due to a number 
of reasons127, including an enrichment of all polygenic traits for certain regions in the genome 
(e.g., functional or evolutionary conserved regions). As discussed above, the Mann-Whitney null 
distribution does not account for this form of regional polygenic enrichment. We do not further 
explore this here, but we note that this may be an interesting question for future research. 
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9 Multi-trait Analysis of GWAS (MTAG) 

9.1 Introduction 
Because many phenotypes are genetically correlated24,87, information contained in the GWAS of 
different but related phenotypes can be used to increase detection and the predictive power of our 
analysis. We used Multi-trait Analysis of GWAS (MTAG)71 to increase the precision of the 
estimates of our GWAS of self-reported general risk tolerance and to improve our ability to detect 
lead SNPs associated with general risk tolerance. MTAG offers several advantages over lookup-
based methods, such as the proxy-phenotype method (Supplementary Note section 8); MTAG 
allows for more than two phenotypes, it increases detection power for all included phenotypes, 
and it works even in the presence of sample overlap across the various GWAS. 

With MTAG, we leveraged the additional information contained in the GWAS summary statistics 
of six phenotypes related to risk tolerance or risky behavior. The six phenotypes are the five 
supplementary GWAS phenotypes adventurousness, automobile speeding propensity, drinks per 
week, ever smoker, and number of sexual partners, as well as lifetime cannabis use100,mm,nn. We 
selected these six phenotypes because they each plausibly capture a different dimension of risk-
taking behavior, and they all are significantly genetically correlated with general risk tolerance 
(Panels A1 and A3 of Supplementary Table 9). Additionally, we conducted an additional MTAG 
analysis that also included self-employment101 among those phenotypes, but ultimately decided 
not to include self-employment in our baseline analysis, as we explain below. 
We also used the summary statistics of this MTAG analysis to construct polygenic scores of 
general risk tolerance and evaluate their power in predicting a suite of phenotypes available in 
three validation cohorts (Supplementary Note section 10). 

9.2 Methods 
We used the summary statistics from the meta-analysis of the discovery and replication GWAS of 
general risk tolerance and of the six aforementioned phenotypesoo as input for our MTAG analysis. 

MTAG builds on the assumption that the correlation in the effect size of a SNP across phenotypes 
is the same for all SNPs. This assumption is strong and often violated; however, Turley et al. 
(2017)71 analytically show that, as long as the SNPs have a non-null association with all 
phenotypes, MTAG is still a consistent estimator with a lower mean squared error than a 
corresponding GWAS. A problem might arise in MTAG for SNPs that have no effect on one 
phenotype but a sizeable effect on another. This might be the case for SNPs in the proximity of 

                                                             
mm The summary statistics for most of these phenotypes come from GWAS that were conducted in samples that 
included the UKB and 23andMe cohorts. This should not bias the results because, as mentioned above, MTAG works 
well in the presence of sample overlap across the various GWAS. 
nn We do not use the summary statistics from our sixth supplementary GWAS phenotype, the first PC of the risky 
behaviors, because that would have been redundant given that we already use the summary statistics of the four risky 
behaviors. 
oo As usual, we applied genomic control using the intercepts of LD Score regressions to adjust the summary statistics 
used as input for our MTAG analysis. As the MTAG summary statistics are invariant to any scaling performed on the 
summary statistics used as inputs for the analysis, whether genomic control has been applied to the input summary 
statistics should not affect the results. We did not apply genomic control using the intercepts of LD Score regressions 
to adjust the summary statistics outputted by the MTAG analysis, because the adjustment is already built into the 
MTAG estimates. 
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genes implicated in a biological process that is specific to one of the phenotypes, but unlikely to 
be implicated for general risk tolerance. Such examples might include nicotine or cannabis 
receptors, or alcohol metabolism. We therefore excluded from this analysis all SNPs within 1Mb 
of the genes CHRNA5 and CHRNB3 (nicotinic receptors), CNR1 and CNR2 (cannabinoid 
receptors), and ADH1B (Alcohol Dehydrogenase)pp. 

We imposed a MAF filter of 0.01 and a sample size filter	8 ≥ "
d
×9∆+(8) to the SNPs for all 

datasets, where 9∆+(8) denotes the ninth decile of the sample size of a dataset. MTAG 
automatically limits the analysis to the 5,869,552 SNPs present in all data sets.  
We also considered adding self-employment101 to the seven phenotypes in the MTAG analysis, 
but doing so would have limited the number of shared SNPs to 2,232,479. Below, we also report 
(in parentheses) the results of the MTAG analysis that also included self-employment (and that 
therefore included a total of eight phenotypes). 
We ran MTAG (July 13, 2017 release) and then clumped the resulting MTAG summary statistics 
for the general-risk-tolerance phenotype using our main reference panel39 and PLINK 1.9, with the 
same thresholds we used for the main GWAS analysis (Supplementary Note section 2.8). These 
thresholds included a primary P value threshold (5×10–8), a secondary P value threshold (1×10–4), 
an r2 threshold (0.1), and a SNP window defined in kilobases (1,000,000 kb)qq.  

To assess whether the lead SNPs from the MTAG analysis of general risk tolerance are in loci that 
have not been identified by previous GWAS of risk tolerance, we repeated the steps we had 
followed to assess the novelty of the lead SNPs from our discovery GWAS of general risk tolerance 
(described in Supplementary Note section 2.10). 

9.3 Results 
9.3.1 MTAG summary statistics  

Leveraging the information present in the seven (eight with self-employment) selected phenotypes, 
MTAG increases the number of independent SNPs reaching genome-wide significance for general 
risk tolerance from 124 to 312 (225 with self-employment). Supplementary Table 10 reports the 
312 lead SNPs. 127 of these are in weak LD (pairwise r2 > 0.1) with the 124 lead SNPs already 
identified in our discovery GWAS of general risk tolerance. The top SNP is located in the region 
in the CADM2 gene on chromosome 3 that has previously been identified by Day et al.66 and that 
has also been associated in a concurrent study on general risk tolerance by Strawbridge et al.67. A 
total of 185 of the 312 lead SNPs are novel genome-wide significant associations with general risk 
tolerance that have not been identified by our discovery GWAS, by Day et al., or by Strawbridge 
et al.  

                                                             
pp It is worth noting that SNPs close to the ADH1B gene were top-hits in recent GWAS of alcohol consumption (Clark 
et al. (2017)271 and Supplementary Table 6). By contrast, SNPs in the proximity of the cannabis receptor genes were 
not associated with life-time cannabis use at the genome-wide significant level in the GWAS of lifetime cannabis use 
whose summary statistics we obtained100. SNPs close to the nicotine receptors genes have been found to be 
significantly associated with daily cigarettes smoked but not with ever smoker (TAG et al. (2010)35 and 
Supplementary Table 6), although this could be due to the limited statistical power of those GWAS. For 
precautionary reasons, we still drop those SNPs from the MTAG analysis. None of these regions contain top-hits for 
the single-trait GWAS of general risk tolerance, and therefore their exclusion should have little bearing on our analysis. 
qq As noted before, we used a very wide SNP window of 1,000,000 kb, which effectively makes the r2 and P value 
thresholds the only binding parameters for the PLINK clumping algorithm. 
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MTAG increases the mean χ" for general risk tolerance from 1.81 to 2.21 (1.89 to 2.23 with self-
employment). To achieve a similar increase in χ", the sample size for the GWAS would have to 
be increased from 975,353 to 1,452,014 (975,353 to 1,346,482 with self-employment). This 
increase in signal can be seen by comparing the Q-Q plots for the MTAG analysis with the seven 
phenotypes and for the meta-analysis of the discovery and replication GWAS of general risk 
tolerance (Supplementary Fig. 7a). 
Supplementary Fig. 7b displays the Manhattan plots for the MTAG analysis of general risk 
tolerance (top panel) and for the discovery GWAS of general risk tolerance (bottom panel), 
revealing strong similarities. Indeed, the genetic correlation between the summary statistics from 
the MTAG analysis and from the meta-analysis of the discovery and replication GWAS of general 
risk tolerance is very close to unity (,-= 0.959, SE = 0.0025 without self-employment; ,-= 0.975, 
SE = 0.0016 with self-employment). 

9.3.2 Robustness tests 
MTAG can lead to inflated results if the summary statistics for some of the phenotypes come from 
highly-powered GWAS but have relatively low genetic correlations with the phenotype of interest. 
Here, this might be the case for the ever smoker phenotype, since the summary statistics of that 
phenotype have a mean χ" statistics of 2.006 but a genetic correlation of only 0.28 with general 
risk tolerance. However, we repeated the above MTAG analysis without the ever smoker 
phenotype (and without self-employment), and we still found 299 independent SNPs that reach 
genome-wide significance, 296 of which are either the exact same SNPs or within loci of the 
original MTAG analysis. The remaining three SNPs have P values close to our P value threshold 
of 5×10–8. 

9.3.3 Predictive power of general-risk-tolerance polygenic score constructed with the 
MTAG summary statistics 

We constructed a polygenic score using the summary statistics from the MTAG analysis that used 
the seven selected phenotypes. This score allows us to measure how the increase in signal translates 
into increased out-of-sample predictive power for several measures of risk tolerance, personality 
traits, and risky behaviors in the Add Health and the HRS cohorts. The construction of the 
polygenic score with the LDpred method128 (with the Gaussian mixture weight 0.3), the definition 
of the predicted phenotypes, and the results of these analyses are described in detail in 
Supplementary Note section 10. Comparison of the predictive power of the polygenic scores 
constructed using the MTAG and GWAS summary statistics are reported in Supplementary Figs. 
8-9 and in Supplementary Tables 11-14. As expected, the predictive power of the polygenic 
scores constructed using the MTAG summary statistics is on average slightly higher than that of 
the scores constructed using only the GWAS summary statistics. 
 
  



 91 

10 Polygenic prediction  

To assess the out-of-sample predictive power of the genetic variants associated with self-reported 
general risk tolerance, and to gauge the potential for leveraging these associations in empirical 
research in the behavioral sciences, we constructed various polygenic scores (PGS) and used them 
to predict several risk-related phenotypes, personality traits, and real-world measures of risky 
behaviors.  
In this section, we first describe in detail the phenotypes we predicted, which fall in three main 
domains: measures of risk tolerance (including general risk tolerance), personality traits, and risky 
behaviors. To be able to analyze several phenotypes in all of these domains, we used six different 
datasets which contain rich phenotypic information: the Add Health, HRS, NTR, STRrr, UKB-
siblingsss, and Zurich cohorts. 

Next, we delineate and motivate the methodology that we followed to construct the polygenic 
scores used for prediction. We constructed three polygenic scores in total. Our first two polygenic 
scores were constructed with the LDpred128 method, which accounts for the linkage disequilibrium 
(LD) between SNPs. The first was constructed using the summary statistics from the meta-analysis 
of the discovery and replication GWAS of general risk tolerance; the second was constructed using 
the MTAG summary statistics (for details, see Supplementary Note section 9). Our third 
polygenic score was constructed with the classical method, which simply weights SNPs by their 
GWAS effect size129,130. Due to data access limitations, the 23andMe cohort could not be included 
in the meta-analysis whose summary statistics we used to construct the polygenic scores in the 
NTR, STR, and Zurich cohorts. The polygenic score using the MTAG summary statistics was only 
constructed for the Add Health, HRS, and UKB-siblings cohorts. 
Across our analyses, we find that the polygenic scores’ predictive power is within the range 
expected according to theory131,132, when we take into account the SNP heritability of general risk 
tolerance and cross-cohort heterogeneity. In addition, our polygenic scores are predictive of both 
general risk tolerance and alternative measures of risk tolerance, such as financial and income 
gamble risk tolerance. Furthermore, the scores are predictive of a wide variety of other phenotypes: 
from personality traits such as openness to experience and behavioral inhibition, to real-world 
economic behaviors such as being an entrepreneur or owning a business, to risky health behaviors 
such as drinking, smoking, or drug use, to precautionary behaviors such as having life and health 
insurance. These results are robust to controlling for educational attainment, cognitive 
performance, and personality traits. Finally, for some of the predicted phenotypes, the predictive 
power of our polygenic scores is comparable to, or even exceeds, the predictive power of cognitive 
performance or educational attainment.  

                                                             
rr The STR1 and STR2 cohorts were merged for the prediction analysis. See the Appendix at the end of this section 
for details. 
ss As mentioned in Supplementary Note section 4, the UKB-siblings cohort was defined in the same way as the full 
UKB cohort, but only includes individuals with at least one full sibling in the UKB. 
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10.1 Phenotype definition 

10.1.1 Risk-tolerance phenotypes 

We predict both general-risk-tolerance measures and several alternative measures of risk tolerance. 
These alternative measures have been developed to elicit risk tolerance in specific domains, such 
as financial investment decisions or career choices. Three such alternative measures are available 
in the cohorts we analyze: “financial risk tolerance,” “income gamble risk tolerance,” and “lottery-
elicited risk tolerance.” These alternative measures have been shown to correlate with non-
hypothetical risky behaviors such as smoking and drinking, being self-employed, or holding a 
risky investment portfolio1–5. As a negative control, we also predicted height in the STR cohort.  

(1) General risk tolerance 

The general-risk-tolerance phenotypes we used are comparable to the measures used in the 
discovery and replication GWAS of general risk tolerance (these measures are described in 
Supplementary Note section 1.2).  
In the STR cohort, the following question adapted from the German Socioeconomic Panel4 was 
asked to the respondents: “How do you see yourself: Are you generally a person who is fully 
prepared to take risks or do you try to avoid taking risks? Please tick a box on the scale, where 
the value 1 means ‘unwilling to take risks’ and the value 10 means ‘fully prepared to take risks’.” 
The sample size for general risk tolerance in the STR cohort is 8,012, and the mean response is 4.5 
(Supplementary Table 11).  

In the Add Health cohort, the latest wave asks respondents who were 24-34 years old the following 
question: “How much do you agree with each statement about you as you generally are now, not 
as you wish to be in the future?: I like to take risks.” Likert-scale response options include: [1] 
strongly agree; [2] agree; [3] neither agree nor disagree; [4] disagree; [5] strongly disagree. We 
reverse coded this variable, so that individuals more likely to take risks were coded with a “5” 
rather than a “1,” and vice versa. In total, we have data available for 4,749 European respondents 
for this variable, and the mean response is 3.0 (Supplementary Table 11).  
In the UKB-siblings cohort we have information on self-reported general risk tolerance. All of the 
phenotypes predicted in the UKB-siblings cohort are the same as the UKB measures used in our 
primary and supplementary GWAS. For a detailed description of these phenotypes, see 
Supplementary Note section 1.2. 

(2) Financial risk tolerance 

Financial risk tolerance was measured with the following survey question in the STR cohort10: 
“Are you a person that is fully prepared to take financial risk or do you try to avoid taking financial 
risk? Please tick a box on the scale, where the value 1 means: ‘not at all willing to take risks’ and 
the value 10 means: ‘very willing to take risks’.” 
The sample size for financial risk tolerance in the STR cohort is 8,038, with a mean response of 
3.5 (Supplementary Table 11). 
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(3) Income gamble risk tolerance 

The income gamble risk tolerance phenotype is available in the STR and HRS cohorts. In the STR 
cohort the income gamble risk question is133: 
“Imagine the following hypothetical situation. You are the sole provider for your household, and 
you have the choice between two equally good jobs: 
Job A will with certainty give you SEK 25,000 per month after taxes for the rest of your life. 
Job B will give you a 50-50 chance of SEK 50,000 per month after taxes for the rest of your life, 
and a 50-50 chance of SEK X per month after taxes for the rest of your life. 
Which job do you choose?” 
The question was asked three times, and the amount X consecutively takes the values 20,000, 
22,000 and 17,000. At the time, one US dollar was worth approximately seven SEK. A respondent 
receives one point for each time the risky Job B is chosen, so that a value of 0 indicates the lowest 
risk tolerance, and a value of 3 indicates the highest risk tolerance.  
The sample size for income gamble risk tolerance in the STR cohort is 7,577, with a mean response 
of 2.0 (Supplementary Table 11). 
In the HRS cohort, the income gamble risk question was asked in several waves. Here, we 
summarize how we created the income gamble risk tolerance variable in the HRS cohort. We 
provide further details in the Appendix at the end of this section.  

In the first wave the income gamble risk question is phrased as follows: 
“Suppose that you are the only income earner in the family, and you have a good job guaranteed 
to give you your current (family) income every year for life. You are given the opportunity to take 
a new and equally good job, with a 50-50 chance it will double your (family) income and a 50-50 
chance that it will cut your (family) income by a third. Would you take the new job?” 
If the answer is “yes” to the first question, then the respondent is asked this follow-up question: 

“Suppose the chances were 50-50 that it would double your (family) income, and 50-50 that it 
would cut it in half. Would you still take the new job?” 
If the answer is “no” to the first question, then the respondent is asked this follow-up question: 
“Suppose the chances were 50-50 that it would double your (family) income and 50-50 that it 
would cut it by 20 percent. Would you then take the new job?” 
In the following waves, the question wording is slightly modified, albeit keeping the same overall 
structure (see the Appendix at the end of this section for more details). In order to merge the 
information from different waves, we first coded each variable so that higher values imply higher 
risk tolerance, and then we took the average of the residuals from a separate OLS regression of 
each wave’s phenotype on an intercept and birth year, birth year squared, birth year cubed, sex, as 
well as three interaction terms between sex and the three birth year variables.  
The sample size for income gamble risk tolerance is 7,302 in the HRS cohort, with a mean answer 
of 1.8 (Supplementary Table 11). 
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(4) Lottery-elicited risk tolerance 

The lottery-elicited risk tolerance phenotype is only available in the Zurich cohort. It was elicited 
using a method called Multiple Price List (MPL)4,25,134, which is commonly used in studies on risk 
tolerance based on incentivized gambles or lotteries. This phenotype was measured in an 
incentivized computerized experiment, in which respondents were asked lottery questions 
presented in three separate screens, corresponding to three tables. Each screen shows a table with 
20 rows, on which respondents are required to make 20 binary decisions between a fixed lottery 
(option A) and a certain outcome (option B), which changes from row to row.  

In each table, option A offers the possibility to “Win X CHF with a probability of 50% and win Y 
CHF with a probability of 50%.” The following values for X and Y are used for the three tables: 
Table 1: (20, 10) CHF; Table 2: (20, 0) CHF; and Table 3: (50, 20) CHF. (The expected values for 
option A are thus 15, 10, and 35 for the three tables). Option B displays the guaranteed win as the 
interval [X, Y] divided into 20 equal steps presented in descending order on each screen. (Between 
10 and 19.5 CHF on table 1, between 0 and 20 CHF on table 2, and between 20 and 48.5 CHF on 
table 3.) Respondents chose between either option A or B for each of the 20 rows and the software 
enforced consistency so that respondents could only switch once from option B to option A on 
each screen. We calculated a screen’s certainty equivalent as the average of the two option B wins 
just above and below the respondents’ switching point. Individual i’s lottery-elicited risk tolerance 
measure was then calculated as the median of the calculated relative risk premia (rrp) of the three 
lottery questions: 

(8) 
úZ»tµ,Z4 = úZ…C»E(,,\4,I) = úZ…C»E

( 4,I − H[PI])
|H[PI]|

,	 

where H[PI] is the expected value of option A on screen j and  4,I is the certainty equivalent for 
individual i on screen j. (For the subsamples from Munich and Innsbruck, currencies were 
converted to EURO according to purchasing power.) 
The sample size of the lottery-elicited risk tolerance is 2,610 in the Zurich cohort. 

10.1.2 Personality traits 

Personality traits have been defined as “the relatively enduring patterns of thoughts, feelings, and 
behaviors that reflect the tendency to respond in certain ways under certain circumstances”135. 
Therefore general risk tolerance can be viewed as one of the many traits characterizing an 
individual’s personality, and is certainly very much related to established personality measures 
such as behavioral inhibition (the tendency to have a restrained or fearful response to unfamiliar 
events), openness to experience (the degree of intellectual curiosity, creativity, and preference for 
novelty and variety), or sensation-seeking (the tendency to search for experiences and feelings that 
are varied, novel, complex, and intense). Indeed several studies at the intersection of economics 
and personality psychology document the phenotypic correlation between measures of personality 
traits and general risk tolerance2–4,136–141. Motivated by these findings, we investigate the predictive 
power of our genetic measure of risk tolerance for various phenotypic measures of personality 
traits. 
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A large range of measurements of personality traits is available in our datasets, from the widely 
used five-factor model of personality (the Big Five), to more specific measures like behavioral 
inhibition and locus of control. Below we provide a detailed description of our personality 
phenotypes, and we present the summary statistics in Supplementary Table 12. 

(1) Behavioral inhibition 

Behavioral inhibition is defined as a behavioral style characterized by a restrained or fearful 
response to unfamiliar events, both social and non-social, and has been shown to be moderately 
stable over time142. The 16-item Adult Measure of Behavioral Inhibition (AMBI) battery is 
available in the STR cohort (n = 7,608) cohort. An example question is: “Do you feel awkward 
when you are approached by someone new?” Each question is answered on a three-point scale. 
Summing the responses leads to a variable taking values in the interval [0, 32]. We reverse coded 
the variable so that a higher score implies a higher behavioral disinhibition, since we expect 
behavioral disinhibition to be positively correlated with general risk tolerance, as has been found 
in previous studies2.  

(2) Locus of control 

Locus of control is a personality trait defined on a spectrum ranging from internal control, where 
an individual feels that the outcomes of events are contingent on his or her own behavior and 
attributes, to external control, where an individual believes that external forces outside of personal 
control determines the outcome of events. The 12-item locus of control scale is available in the 
STR cohort for 6,777 individuals. It is coded such that higher numbers indicate an internal locus 
of control. An example question is: “Becoming a success is a matter of hard work; luck has little 
or nothing to do with it”143. We expect internal locus of control to be positively correlated with 
general risk tolerance, and this is what has been found in previous studies2. 

(3) Big Five personality traits 

Several decades of research in personality psychology beginning in the 1970s have led to a widely 
shared taxonomy of personality traits, known as the Big Five144–146. Identified via factor analysis 
of common language descriptors of personality, these five distinct and independent personality 
characteristics are openness to experience, conscientiousness, extraversion, agreeableness, and 
neuroticism. Such traits have been measured both in the HRS and in the NTR cohorts. 
In the HRS cohort, the Big Five personality traits were measured in four waves between 2006 and 
2012, with 26 items in 2006-2008 and 31 in 2010-2012. The original 26 items in 2006 and 2008 
were obtained from the MIDUS survey147. Extraversion, agreeableness, and conscientiousness 
were measured with five items, openness to experience with seven, and neuroticism with four. In 
2010 and 2012, five items from the International Personality Item Pool148 were added for 
conscientiousness. As is common in the literature, the responses to each item were elicited on a 
four-point scale145. For each trait, scores were constructed by taking the mean of all items in the 
respective category after recoding items to make their direction consistent, and then averaged 
across waves and standardized to have zero mean and unit variance. A score was set to missing if 
more than half of the items in that category had missing values. The resulting sample sizes are 
8,253 for openness, 8,268 for conscientiousness, 8,271 for extraversion, 8,271 for agreeableness, 
and 8,264 for neuroticism. Given the limited evidence on the sign of the phenotypic correlation 
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between general risk tolerance and the Big Five traits, we do not have an ex ante expectation about 
the signs of their associations with our polygenic score of general risk tolerance. 

In the NTR cohort, the NEO Five-Factor Inventory (NEO-FFI) was sent to adult participants in 
three waves in 2003, 2009 and 2013. Each of the five personality traits is measured with 12 items, 
and the responses to each of these were given on a five-point Likert scale. Scores were standardized 
to have zero mean and unit variance in each wave and then averaged across waves, yielding a 
sample size of 8,526. 

(4) Sensation seeking 

Sensation seeking is defined by the search for experiences and feelings that are “varied, novel, 
complex and intense,” and by the readiness to “take physical, social, legal, and financial risks for 
the sake of such experiences”149.  
In the NTR cohort, sensation seeking was assessed using a short version of the Zuckerman 
sensation seeking scale (SSS)150–152. The scale consists of 12 items that measure four subdomains 
of sensation seeking. Thrill and adventure seeking (n = 8,649), defined as the desire to engage in 
extreme sports and risky activities; experience seeking (n = 8,185), defined as the desire for 
experiences that engage the mind and senses such as art, travel, food or dress; disinhibition (n = 
8,618), defined as the desire to find release through interactions with other disinhibited people, 
wild parties and sexual disinhibition; and boredom susceptibility (n = 8,621), defined as the 
intolerance to boredom. A combined total score is then constructed as the total sum of all subscales. 
The SSS was measured at six time points between 1991 and 2007. Scores were standardized to 
have zero mean and unit variance in each wave and then averaged across waves.  

(5) Attention-deficit hyperactivity disorder 

We also examined the predictive power of our score for attention-deficit hyperactivity disorder 
(ADHD). ADHD is not a personality trait, but it is nonetheless of interest because it has been 
shown to be phenotypically correlated with risk-taking behaviors, such as starting one’s own 
business153–155. ADHD is a chronic condition of persistent behavioral problems that often begins 
in childhood and persists into adulthood. The fourth edition of the Diagnostic and Statistical 
Manual of Mental Disorders (DSM-IV) defines ADHD as “a persistent pattern of inattention 
and/or hyperactivity-impulsivity that is more frequently displayed and more severe than is 
typically observed in individuals at a comparable level of development.” 

In the NTR cohort, symptoms of ADHD were assessed by the Conners ADHD index156,157 and 
were measured at three occasions in 2004, 2007 and 2013. The scores were standardized to have 
zero mean and unit variance in each wave and averaged across waves, yielding a total of 8,457 
respondents. 

10.1.3 Risky behaviors 

Building on previous studies that demonstrate the predictive power of risk tolerance for various 
behaviors1–5,28, we consider a wide range of phenotypes associated with lifestyle risks. We are 
interested in two categories of real-world behaviors: risky and precautionary. The first category 
focuses on behaviors that increase an individual’s exposure to unpredictable outcomes and 
includes smoking, drinking, unhealthy food consumption, financial investment, and career 
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choices. The second category focuses on behaviors that aim to prevent or curtail potential future 
negative outcomes, and includes investing in health or life insurance as well as preventative health 
care measures such as taking medications and getting regular medical screenings. 
Below we provide a detailed description of our real-world phenotypes. Supplementary Table 13 
presents summary statistics. For a more detailed description of measures drawn from the STR 
cohort, see Beauchamp et al. (2015)2. 

(1) Smoking 

Smoking is associated with increased risks of heart disease, stroke, lung cancer (and other types 
of cancers), and other chronic lung diseases158. Smoking has also been shown to be phenotypically 
correlated with risk tolerance1–5.  

In the HRS cohort, we constructed a binary variable for “ever smoker” that equals “1” if an 
individual respondent reported ever having been a tobacco smoker in at least one wave. 57% of 
the 8,617 HRS respondents are coded as ever smokers. 
In the STR cohort, respondents are coded as “ever smokers” if they indicated they currently smoke 
regularly, used to smoke regularly, currently smoke on and off, or used to smoke on and off. 53% 
of the 13,921 respondents in the STR cohort are coded as smokers. 

In the Add Health cohort, respondents are coded as “ever smokers” if they reported having ever 
smoked regularly (i.e., at least one cigarette every day for 30 days) in Wave 4, the latest wave of 
the Add Health data. 52.6% of 4,775 European ancestry respondents were coded as smokers. We 
also constructed a continuous variable for age of smoking initiation among those who were coded 
as smokers, again in Wave 4. The mean age of smoking initiation in the Add Health cohort is 16.9, 
and the variable is defined for 2,493 European respondents. 

In the UKB-siblings cohort we have information on whether the respondent has ever been a 
smoker. For a detailed description of the phenotype used, see Supplementary Note section 1.2. 

(2) Drinking 

Similar to smoking, drinking is a risky behavior known to have negative health consequences159 
and has also been correlated phenotypically with risk tolerance1,2. The Add Health, HRS, and STR 
datasets include a rich set of questions on drinking habits. 

In the HRS cohort, we calculated the number of alcoholic drinks per week reported by each 
respondent in each wave, took the average across waves, and normalized the resulting measure in 
a variable with a mean of approximately zero and a variance of approximately onett. Importantly, 
in waves 1 and 2, respondents were only able to choose among 5 categories: 0 drinks per week, 1 
or fewer drinks per week, 1-2 drinks per week, 3-4 drinks per week, or 5 or more drinks per week. 
We coded these as 0, 1, 1.5, 3.5, and 5 drinks per week for each wave, respectively. From wave 3 
onward, respondents were first asked how many days per week they had any alcoholic drinks, and 
then were asked how many drinks they had on average on each of those days. For these waves, we 

                                                             
tt The normalized variable is the inverse normal cumulative distribution function (CDF) of the respondents’ percentile 
ranks. Given the discrete nature of the underlying drinking reports, the inverse normal CDF has some mass points and 
does not have a mean of exactly zero and a variance of exactly one. This is true of all the other phenotypes that have 
been normalized. 
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simply multiplied each of these two responses to calculate drinks per week. This information was 
available for 8,652 respondents. 

Similarly, in Add Health we calculated the number of drinks per week for 3,712 European 
respondents in Wave 4. Respondents were asked both how many days they consumed alcohol in 
the last 12 months and how many alcoholic drinks they consumed each time they drank in the last 
12 months. We multiplied these responses together and divided by 52 to arrive at our final drinks 
per week variable. The average number of drinks per week in Add Health was 5.6.  
In the UKB-siblings cohort we have information on the number of drinks per week. For a detailed 
description of the phenotype used see Supplementary Note section 1.2. Notice that drinks per 
week was normalized in the HRS but not in the Add Health and UKB-siblings cohorts, where it is 
simply reported as a count. 
In the STR cohort, we constructed a binary variable equal to “1” if respondents reported having 
alcoholic drinks more than twice in the past month. Specifically, a first question asks respondents 
if they drank strong beer, wine, or liquor more than twice in the past month. If respondents answer 
in the negative, a follow-up question asks about their frequency of drinking for each type alcohol 
separately, and “twice per month” was one of eight response categories. Overall, we classified 
individuals as alcohol consumers if they answered the first question in the affirmative or if their 
answers to the follow-up questions indicated that they usually drink beer, wine, or liquor at least 
twice a month. 82% of the 12,551 respondents in the STR cohort were coded as such. 
The STR dataset contains additional information regarding excessive drinking over the life course, 
which might better capture risky drinking behavior. We constructed a dummy variable equal to 
“1” for respondents who reported any of the following: 1) ever having a period in their life when 
they drank too much; 2) ever having a period in their life when someone else objected to their 
drinking; or 3) ever having a period in their life when they chose drinking instead of working, 
spending time on hobbies, or spending time with family or friends. 8% of the 13,269 STR 
respondents were coded as excessive drinkers. 

(3) Cannabis consumption 

Similar to cigarettes and alcohol, cannabis abuse can lead to negative health160 and social 
consequences161, especially during adolescence and early adulthood. Furthermore in 2008, at the 
time of reporting, recreational use of marijuana was illegal in the United States, and therefore its 
consumption carried the additional risk of breaking the law.uu  
Using data from Wave 4 of Add Health, we constructed a binary variable for “ever cannabis” that 
equals “1” if an individual respondent reported having ever used cannabis. 60.0% of the 4,742 
European respondents had a value of “1” for this variable. 

                                                             
uu Starting with Oregon in 1973, the possession of marijuana was decriminalized by some states, but remained illegal 
across the United States. Starting with California in 1996, some states legalized the use of marijuana for medical 
purposes. Recreational use was legalized only starting with Colorado in 2012. While the negative health and social 
consequences were still prevalent through the sample, the legal consequences of cannabis consumption varied 
depending on the residence of the respondents, which is unknown to us.  
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(4) Unhealthy food consumption 

Consumption of fried food is a common risky health behavior that has been linked to 
cardiovascular disease and other negative health consequences162. Questions about fried food 
consumption were asked to a subset of 3,078 respondents in the HRS cohort who participated in 
the 2013 Healthcare and Nutrition Mailout. We looked at propensity to eat fried food either at 
home or as takeout. In reporting how much fried food they consumed, respondents could answer 
“Never,” “Less than once per week,” “1-3 times a week,” “4-6 times a week,” or “Daily.” We 
normalized the measures separately for home and for takeout, resulting in two measures with 
means of approximately zero and variances of approximately one. Our measure of overall 
propensity to eat fried food is the sum of these two normalized measures.  

(5) Number of sexual partners 

As a final measure of risky health behavior, we consider the total number of sexual partners, which 
is a risk factor for contracting sexually transmitted infections (STIs)163,164. In Wave 4 of Add 
Health, respondents were asked with how many female and male partners they had ever engaged 
in any type of sexual activity. We summed the values for female and male partners. The mean 
number of sexual partners for the 4,603 European respondents was 13.5.   

In the UKB-siblings cohort we have information on the number of sexual partners. For a detailed 
description of the phenotype used, see Supplementary Note section 1.2. Notice that number of 
sexual partners was normalized in the UKB-siblings cohort but not in the Add Health cohort, where 
it is simply reported as a count. 

(6) Automobile speeding propensity 

In the UKB-siblings cohort we have information on automobile speeding propensity. For a detailed 
description of the phenotype used, see Supplementary Note section 1.2. 

(7) First PC of risky behaviors 

Following the approach laid out in Supplementary Note section 1.2, we computed the first 
principal component (PC) of our four supplementary risky behaviors (automobile speeding 
propensity, drinks per week, ever smoker, and number of sexual partners) in the full UKB sample, 
and then extracted the individuals comprising the UKB-siblings cohort.  

(8) Financial market participation 

We consider two measures of exposure to financial risk, both of which have been correlated to 
phenotypic measures of risk tolerance1,2,4,28. The first is financial market participation. This 
phenotype captures what economists refer to as the “extensive margin” of financial risk-taking 
behavior (i.e., does one participate in the financial market or not). 
In the HRS cohort, we coded a dummy variable that equals “1” if a respondent ever reports a 
strictly positive “net value of stocks, mutual funds, and investment trusts” across all available 
waves. Using this measure, 68% of 8,652 HRS respondents participated in financial markets.  
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Similarly, in the STR cohort we constructed a variable coded “1” if respondents reported a positive 
value of either stock or bond holdings, using information from the single wave in this cohort when 
assets were reported. Overall, 30% of the 3,285 STR respondents were coded as participating in 
the financial market. 

(9) Equity share and share of financial assets 

Our second measure of exposure to financial risk considers the risk profile of respondents’ total 
wealth. We use the share of respondents’ total wealth held in equity (i.e., stocks) and similar risky 
financial assets. This phenotype captures what economists refer to as the “intensive margin” of 
financial risk-taking behavior (i.e., how much of a person’s wealth is exposed to financial market 
fluctuations). 

In the HRS cohort, we calculated for each wave the ratio of “net value of stocks, mutual funds, 
and investment trusts” over “total wealth including secondary residence.” For each respondent, we 
then averaged this measure across all available waves. This measure roughly reflects the amount 
of total wealth an individual holds in risky financial assets. We note that mutual funds and 
investment trusts might include equities, as well as other risky assets such as bonds and derivatives. 
We refer to this resulting variable as the “share of financial assets.” In total, we dropped 50 
observations reporting negative equity holdings and two observations for which the share of 
financial asset in a wave exceeds unity. The mean value of the share of financial assets variable 
across the 8,599 respondents is approximately 8%. 
In the STR cohort, we instead calculate equity share as the ratio of the value of assets held in stocks 
to the sum of the value of assets held in property, stocks, bonds, bank, boat, and other assets such 
as jewelry, antiquities, and art. These data are only available for a subset of the respondents 
because the associated questions were removed from the survey in the later waves (in an effort to 
reduce survey length). The 3,170 respondents in STR cohort held on average 3.5% of their total 
wealth in stocks.  

(10) Career choices 

While some careers are relatively secure and provide a steady stream of income, others are riskier 
and have greater income fluctuations. Prominent examples of the latter are owning a business or 
becoming an entrepreneur. 
In order to capture this domain of risk taking, which has been correlated to phenotypic measures 
of risk preferences2,4,5,28, we considered two separate measures in the STR cohort. First, we 
constructed a binary variable equal to “1” if respondents reported ever running their own business. 
25% of the 7,979 individuals in STR cohort were coded as having ever run their own business. 
As a second measure, we consider a self-report of being an entrepreneur, defined as someone who 
“commercializes a new innovation or idea … [and who] has, or plans to have, a number of 
employees and strives to expand the business,” as opposed to a “self-employed person [who] owns 
and runs his/her own company, for instance a restaurant or a law firm, where he/she works [and] 
… normally does not strive to expand over a certain limit and has 0 or a few employees.” This 
question was asked only of respondents who had reported ever running their own business. We 
constructed a binary variable equal to “1” if respondents reported being entrepreneurs, and “0” if 
the respondents reported being self-employed persons or if they reported never having run their 
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own businesses. Based on this measure, 5% of the 7,981 individuals in STR cohort were coded as 
entrepreneurs. 

(11) Preventative healthcare and healthcare utilization 

Focusing now on precautionary behaviors, we first consider choices regarding preventive 
healthcare.   
We constructed an index of preventative health care and health care utilization by combining 
several available measures for 8,648 respondents in the HRS cohort. Specifically, we considered 
whether respondents had visited a doctor in the last two years, whether respondents had visited a 
dentist in the last two years, and whether respondents had recently undergone a number of specific 
procedures or screenings. These included cholesterol screening, flu shot, breast exam (for 
females), mammogram (for females), pap smear (for females), and prostate exam (for males). We 
took the simple sum of dummy indicators for having undergone or participated in any of these 
eight healthcare measures. Since not all of these items apply to both sexes, we normalized these 
sums separately for men and women, and then combined the measures, obtaining an index with a 
mean of approximately zero and a variance of approximately one. 

(12) Health insurance 

In order to limit the risk associated with an unexpected negative health event, individuals can enroll 
in health insurance. Prior to the implementation of The Patient Protection and Affordable Care Act 
(popularly known as “Obamacare” or “Healthcare reform”) in the US, this form of risk prevention 
was an individual choice (rather than required by law) for most individuals. In the HRS cohort, we 
measure whether individuals choose to have health insurance. As is the case for our other 
phenotypes, risk tolerance has been shown to predict whether a person has health insurance1.  

According to national and state eligibility criteria, some HRS respondents in certain waves were 
automatically granted health insurance (i.e., Medicaid or Medicare recipients and CHAMPUS/VA 
healthcare recipients), and therefore these observations are not used in the construction of this 
measure for these respondents. For the remaining observations, we calculated whether each 
respondent-wave observation responded affirmatively to questions about having each of several 
forms of health insurance (e.g., non-Medicare and non-CHAMPUS/VA federal health insurance, 
health insurance from current or previous employers, health insurance from spouse’s current or 
previous employers, other health insurance). For each respondent, we then took the average of 
non-missing observations across all waves until (and including) the 2011 wavevv. Our resulting 
measure indicates the percentage of waves during which a respondent had healthcare, among 
waves during which it was an optional choice. On average, the 8,454 respondents in the HRS 
cohort were covered by health insurance 95% of the time. 

                                                             
vv The individual mandate of the Affordable Care Act of 2010 was not yet in effect during 2011, the final wave from 
which we draw these data. 
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(13) Life insurance 

Finally, individuals purchase life insurance to mitigate the negative consequence of their deaths 
for their families and loved ones. Phenotypic risk tolerance has been shown to predict whether a 
person has life insurance1.  

We measured whether respondents are consistently covered by life insurance by calculating the 
percentage of waves during which HRS respondents reported having life insurance. On average, 
the 8,652 respondents in the HRS cohort report being covered by life insurance more than two-
thirds (71%) of the time. 

10.2 Methods 

10.2.1 Polygenic scores 

We constructed three polygenic scores. We constructed our first polygenic score with the 
LDpred128 method, using summary statistics from our GWAS of general risk tolerance; we also 
constructed our second score with the LDpred method, but using the summary statistics of general 
risk tolerance outputted by the MTAG analysis (Supplementary Note section 9); and we 
constructed our third score with the classical method, using summary statistics from our GWAS 
of general risk tolerance. We will refer to these scores as LDpred-GWAS, LDpred-MTAG, and 
Classical-GWAS scores respectively. 
Due to data access limitations and to avoid overfitting, different cohorts were included in the 
GWAS whose summary statistics were used to construct the scores. In the Add Health and HRS 
cohorts, the summary statistics from the meta-analysis of the discovery and replication GWAS of 
general risk tolerance were used to construct the scores, with no cohort excluded (n = 975,353). 
For the analyses in the NTR and Zurich cohorts, the scores were constructed with the summary 
statistics from a meta-analysis that excluded the 23andMe cohort (due to data access limitations, 
the sample size of the resulting meta-analysis was n = 466,571). For the analysis in the STR cohort, 
we excluded the 23andMe cohort (due to data access limitations) as well as the STR cohort itself 
(to avoid overfitting95) from the meta-analysis whose summary statistics we used to construct the 
scores (the sample size of the resulting meta-analysis is n = 458,558)ww. And for the analysis in 
the UKB-siblings cohort, to avoid overfitting95 we reran our discovery GWAS after excluding all 
individuals in the UKB-siblings cohort from the UKB cohort (the sample size of the resulting 
meta-analysis was n = 937,353)xx. 
The prediction analyses with our LDpred-MTAG score was only conducted in the Add Health, 
HRS, and UKB-siblings cohorts, since these were the only three cohorts for which 23andMe data 
could be used, due to data access limitations.  

Both the LDpred and the classical polygenic scores are calculated as the weighted sum of the M 
individual genotypes: 

                                                             
ww We also note that, since the HRS, NTR, and Zurich cohorts do not contain data on general risk tolerance, none of 
these cohorts was included in any meta-analysis of general risk tolerance. 
xx No single individual is present in both the UKB-siblings cohort and in the “UKB-nonsibs” cohort (which we define 
as the subset of individuals we used for the discovery GWAS we reran for the prediction analysis in the UKB-siblings 
cohort). However, some individuals in the UKB-siblings cohort have relatives in the UKB-nonsibs cohort, and that 
this could lead to overfitting95. We further discuss this in Supplementary Note section 10.3.5. 
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(9) 74 = 5I

Õ

Iò*

Œ4I	, 

where 74 denotes the polygenic score of individual i, 5I is the estimated additive effect size of the 
effect-coded allele at SNP q, and Œ4I	is the genotype of individual C	at SNP j (coded as having 0, 
1, or 2 instances of the effect-coded allele)129.  

For the LDpred scores, the estimated additive effect sizes (the 5I’s) are the estimates from the 
summary statistics adjusted for LD between the SNPs. To calculate LDpred scores, an LD 
reference file and a validation reference file must be provided. For HRS, STR, UKB-siblings, and 
the Zurich cohorts we used the 1000 Genomes-imputed data (Phase 1, Version 3) of the HRSyy 
cohort as the reference sample. For the Add Health cohort, we used the HRC (Haplotype Reference 
Consortium) Genomes-imputed data (Version 1.1) of Add Health (n=4,775) as the reference 
sample. For the NTR cohort, the reference sample used for the construction of the LDpred scores 
consists of all five European populations from the 1000 Genomes dataset: Utah Residents (CEPH) 
with Northern and Western European Ancestry, Finnish, British, Iberian, and Toscani individuals 
(n = 381).  

The LDpred method relies on a Gaussian mixture weight that corresponds to the assumed fraction 
of SNPs that are causal. We used the software called LDpred128 to generate a score for each of the 
following mixture weights: 1, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001, 0.0003, and 0.0001, using the 
individuals’ best guess data and using only SNPs in the HapMap consortium phase 3 release165,166 
with a MAF > 0.01 and an imputation quality of more than 0.7. We report only the analyses with 
the LDpred scores constructed with the Gaussian mixture weight 0.3, as these scores tended to 
perform better both across cohorts and predicted phenotypes. Incidentally, a fraction of causal 
SNPs of 0.3 also happens to match closely our estimate of the fraction of non-null SNPs (π) of 
0.29 in our estimation of the posterior distribution of the SNPs’ true effect sizes in Supplementary 
Note section 5.1.3. 

For the classical polygenic scores, the estimated additive effect size 5I for SNP j is the GWAS 
estimate for SNP j. We used the software PLINK43 to produce the classical scores, using the 
individuals’ best guess data; as with the LDpred method, we only use SNPs in the HapMap 
consortium phase 3 release165 with a MAF > 0.01 and an imputation quality of more than 0.7 (the 
prediction results are thus comparable across the two methods)zz.  

                                                             
yy The HRS genotype data used as a reference sample for the STR and the Zurich cohorts was restricted according to 
the following quality control criteria. We removed 13,973 SNPs that have been flagged as having incorrect annotations 
from the HRS cohort272; we restricted the reference file to SNPs with imputation quality greater than 0.7, MAF greater 
than 0.01, SNP call rate greater than 95%; and we removed individuals with a call rate less than 95%, as well as related 
individuals and individuals not of North-Western European ancestry. The resulting sample contained 7,302 
individuals.  
For the HRS and UKB-siblings cohort, we restricted the reference file to HapMap3 SNPs with MAF greater than 0.01 
and SNP call rates greater than 98%; we also removed individuals with a call rate less than 98%, related individuals, 
and individuals not of European ancestry. The resulting sample contained 8,353 individuals. 
zz The classical score is often calculated with an LD-pruning and P value thresholding procedure. The LD-pruning is 
meant to achieve independence between the predictive set of SNPs, and the P value threshold excludes SNPs that are 
not estimated to be significantly associated with the phenotype. This procedure often discards information that could 
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We expect our LDpred-GWAS score to have greater predictive power than our Classical-GWAS 
score, since the LDpred method takes into account the non-independence between SNPs. Further, 
since the MTAG summary statistics leverage the additional information contained in the GWAS 
of genetically correlated phenotypes, we expect our LDpred-MTAG score to have the greatest 
predictive power. 

10.2.2 Main prediction exercise 

We ran two separate Ordinary Least Squares (OLS) regressions for each phenotype, cohort, and 
score. The first regression includes only our baseline controls: sex, birth year, birth-year squared, 
birth-year cubed, as well as the interactions between sex and the three birth-year variables, and the 
first ten principal components (PCs) of the cohort-specific genetic relatedness matrix; in the NTR 
and STR cohorts, dummy variables that indicate the different genotype platforms were also 
included. The second regression is identical to the first one, except that it also includes the 
polygenic score. Since the scores have mean zero and unit variance, the estimated coefficients on 
the score represent the change in real-word outcomes associated with a one-standard-deviation 
increase in the polygenic score of general risk tolerance. Our measures of interest are the regression 
coefficients on the scores and the incremental R2 (or pseudo-R2) of the scores, defined as the 
difference between the R2 (or pseudo-R2) of the two regressions. The 95% confidence intervals for 
the incremental R2 estimates are calculated with the bootstrap percentile method, with 1,000 
bootstrap samples167,168. 

10.2.3 Robustness to inclusion of additional control variables 

Are these polygenic scores of general risk tolerance potentially useful for the empirical researcher 
in the behavioral sciences? Since many social-science datasets contain rich information about the 
individual characteristics of the participants, it is important to understand whether the polygenic 
scores for general risk tolerance are still predictive of risky behaviors even after controlling for 
relevant variables that capture important individual characteristics. For this reason, when analyzing 
real-world risky behaviors, we also estimate the incremental R2 (or pseudo-R2) of the scores while 
controlling for cognitive performance, personality traits, and educational attainment in the baseline 
regression. 

These traits were selected as additional controls because they could plausibly be important 
determinants of risky and precautionary behaviors, and because many of these traits are 
phenotypically correlated with risk tolerance2. This robustness exercise also makes it easier to 
compare our prediction results with the existing literature, which usually controls for some of these 
personal characteristics6,134,169,170.  
Furthermore, we also calculated the incremental R2 for cognitive performance, for personality 
traits, and for educational attainment, defined as the difference between the R2 of a regression 
including only our baseline controls, and another regression including the baseline control and the 
traits of interest. These three incremental R2 values provide the applied researcher with interesting 
benchmark comparisons, and enable us to understand whether the predictive power of our 
polygenic score is comparable to the predictive power of other important individual characteristics. 

                                                             
increase the predictive power if it were properly accounted for128. Here, we do not use an LD-pruning and P value 
thresholding procedure to drop SNPs prior to constructing the scores. 
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For the Add Health cohort, we control only for educational attainment and a measure of verbal 
cognition, since information on personality traits is available only for a small subsample of 
individuals. The measure of verbal cognition is a modified version of the Peabody Picture 
Vocabulary Test which was collected in the first wave of Add Health, when participants were 12 
to 20 years old. In this test, respondents have to select the illustration that best fits the meaning of 
the word that an interviewer has just read aloud. This computer-adapted test consisted of eighty-
seven items, and scores were age-standardized. 
For the HRS cohort, the cognitive performance measure is the average of measures from waves 2-
10. In each of these waves, the cognitive performance measure is the sum of a total word recall 
summary score (based on immediate and delayed word recall tasks) and a mental status summary 
score (based on counting, naming, and vocabulary tasks)aaa. The Big Five factors (defined above) 
were used as measures of personality traitsbbb, and years of education as a measure of educational 
attainment. 
For the STR cohort, the standardized score on a military conscription test was used as a measure 
of cognitive performance, behavioral inhibition and locus of control were used as measures of 
personality traits, and years of education was used as a measure of educational attainment. The 
cognitive performance measure was merged using conscription data provided by the Military 
Archives of Sweden. Men were required by law to participate in military conscription around the 
age of 18. We use the stanine scores of four subtests of logical, verbal, spatial, and technical ability. 
Following Rietveld et al. (2014)102, we use the first principal component of these four stanine 
scores as the measure of cognitive performance. No measure of cognitive performance is available 
for females. 

Finally, for the UKB-siblings cohort we control for educational attainment, neuroticism, and 
cognition. Our measure of neuroticism follows Okbay et al. (2016)18: it is constructed as a 
respondent’s score on a 12-item version of the Eysenck Personality Inventory Neuroticism scale. 
Individuals must answer at least 10 out of 12 binary-response questions to be included, and 
questions that remain missing will be coded as 0. To obtain a measure of cognition, we used a test 
designed to measure fluid intelligence. The test consists of thirteen logic and reasoning questions 
and has a two-minute time limit. Each respondent took the test up to four times. We used the mean 
of the standardized score across the occasions on which the respondent took the test as our measure 
of cognition. 

10.2.4 Methodology for binary and censored phenotypes 

For the analysis of some real-world risky behaviors, we used specific statistical methods to model 
more accurately the distribution of the dependent variable. For binary outcomes, such as engaging 
in smoking, drinking, or participating in financial markets, we estimated Probit models. Instead of 
the estimated coefficient, which has no clear interpretation in a Probit model, we report the average 
marginal effect of the polygenic score. We report this as –—¢	(Wò*|“Tî,”)

–“Tî
= 5“Tî ∙ H ê(9‘7 ∙

5“Tî + ’5) , where 5“Tî is the estimated coefficient on the polygenic score, ê is the Gaussian 
probability density function, H ∙  takes the sample average, PGS is the polygenic score, and X 
contains the control variables. In the absence of a meaningful R2 measure for the Probit model, we 

                                                             
aaa In Wave 2, these measures are present only for a subset of respondents (the AHEAD cohort). 
bbb See above for a detailed description of the personality variables in the HRS cohort. 
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used the McFadden pseudo-R2, ≤÷)≤◊
≤÷

, where ∂+ is the log-likelihood of a model with only a 
constant, and ∂Õ is the log-likelihood of the full model. Our measure of the incremental pseudo-R2 
is thus ≤ÿ)≤ÿ,Ÿ⁄¤

≤÷
, which indicates the difference between the log-likelihood of the model controlling 

for baseline controls and the score  (∂”,“Tî) and the log-likelihood of the model controlling only 
for the baseline controls  (∂”), scaled by the log-likelihood of a model with only a constant  (∂+). 
For equity share and share of financial assets phenotypes, we estimate tobit models instead of OLS 
regressions, to account for the point mass at zero (due to many respondents in our dataset not 
holding any stocks)ccc. The same measure of incremental pseudo-R2, ≤ÿ)≤ÿ,Ÿ⁄¤

≤÷
, is reportedddd.  

The 95% confidence intervals for all of these estimates are calculated with the bootstrap percentile 
method, with 1,000 bootstrap samples167,168. 

10.3 Results 

Results are presented in Supplementary Figs. 8-9 and Supplementary Tables 11-14. For each 
predicted phenotype, cohort, and score, these tables report summary statistics for the regression 
sample, the estimated incremental R2 of the score, and the sign and P value of the estimated 
regression coefficient on the polygenic score. 

Overall, we find that our preferred polygenic score explains 1.01% to 1.78% of the variation in 
general risk tolerance, up to 1.4% of the variation in several personality traits, and up to 1.94% of 
variation in real-world behaviors. As we discuss in Supplementary Note section 10.4, our 
incremental R2 estimates from the prediction of general risk tolerance fall within the range we 
expect based on theory131,132. 
Below, we focus our discussion on the results for the LDpred-GWAS score. As mentioned above, 
the results displayed for the LDpred scores are based on a Gaussian mixture weight of 0.3. We 
chose this weight because the corresponding scores consistently performed well across cohorts 
and phenotypes in our analyses. The results for the LDpred-MTAG and Classical-GWAS scores 
are generally similar, although the predictive power of the LDpred-MTAG score tends to be 
slightly higher and that of the Classical-GWAS score tends to be slightly lower. 

10.3.1 Risk tolerance 

In the UKB, the incremental R2 of the LDpred-GWAS score is 1.62% (CI: 1.37% - 1.90%). In the 
Add Health cohort we estimate a much smaller predictive power, with incremental R2 of 1.01% 

                                                             
ccc The tobit model is a maximum likelihood estimator proposed by James Tobin273 that assumes a linear relationship 
between regressors ’, a normally distributed error term  ï, and a continuous latent variable ‹∗. The observed dependent 
variable is ‹ = ‹∗ whenever ‹∗ > 0 but is ‹ = 0 otherwise. This model is used to account for censoring and a point 
mass at zero, as is observed for our measures of equity share and of share of financial assets.  
ddd Because the tobit model has a continuous likelihood, the McFadden pseudo-R2 can sometimes be smaller than zero 
or greater than 1, which is nonsensical for an R2 measure. Whenever that happened, such as in the case of share of 
financial assets in the HRS cohort when cognitive performance or educational attainment are controlled for, we 
reported “N.A”. in the table of results.  
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(CI: 0.57% - 1.62%). In the STReee cohort we estimate an incremental R2 of 1.05% (CI: 0.64% - 
1.50%). Using the summary statistics from the MTAG analysis improves our predictive power: 
the incremental R2 of the LDpred-MTAG score is 1.78% in the UKB-siblings cohort and 1.07% in 
the Add Health cohort. 

The estimated regression coefficients for all scores have the expected sign and are all highly 
statistically significant (with P values < 0.0005), indicating that the scores significantly predict 
general risk tolerance out of sample.  

(1) Alternative measures of risk tolerance 

The predictive power of our polygenic score for alternative measures of risk tolerance is also 
significant, but limited in magnitude. 

For the financial risk tolerance phenotype, the incremental R2 of the LDpred-GWAS score in the 
STR cohort is 0.44%. For the income gamble risk tolerance phenotype, the incremental R2 is 0.24% 
in the HRS cohort, and 0.34% in the STR cohort. When predicting either financial risk tolerance 
or income gamble risk tolerance, the coefficients on the LDpred-GWAS scores are always highly 
statistically significant. 
By contrast, we find that our polygenic scores of general risk tolerance do not predict the lottery-
based measure of risk tolerance in the Zurich cohort. For this measure, the incremental R2 is 0.09% 
and the coefficient on the score is not distinguishable from zero (P = 0.12).  

The lack of predictive power of our polygenic score for lottery-based risk tolerance is surprising, 
as this phenotype is considered the workhorse of risk preference measurement in economic 
theory134. It is important to note, however, that this null result does not necessarily mean that our 
polygenic score fails to capture variation in economically relevant risk preferences, given its 
predictive power for risky economic behaviors such as entrepreneurship and financial risk taking. 
Indeed, the predictive power of lab-based measures for real world behavior has itself come under 
scrutiny171,172, and lottery-based measures of risk preferences usually have lower predictive power 
than self-reported measures4,6,169,170. Further, recent research in both economics and psychometrics 
has found modest levels of correlations between lottery-elicited measures of risk tolerance and the 
general-risk-tolerance phenotype used in our discovery and replication GWAS4,6. Our results thus 
add to the small but growing body of evidence that lottery-based and self-reported measures of 
risk tolerance may indeed capture different aspects of decision-making over uncertainty.  

10.3.2 Personality traits 

Our results provide interesting evidence regarding the complex and interlacing structure of 
personality traits and their relationship to general risk tolerance. Genetic predisposition for risk 
tolerance is predictive of openness to experience, sensation seeking, extraversion, behavioral 
inhibition, and to a lower extent ADHD. Not surprisingly, these domains are the ones that have 
been theoretically and phenotypically connected to an individual’s behavior in new, unexpected, 
and uncertain circumstances. Furthermore, these results corroborate our findings of positive 

                                                             
eee As mentioned above, due to data access limitations, the summary statistics used to construct the score in the STR 
cohort were based on a meta-analysis that excluded the 23andMe cohort, and therefore had a much smaller GWAS 
sample size (nGWAS of 466,571). 
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genetic correlations between general risk tolerance and openness, extraversion, and ADHD 
(Supplementary Note section 7.3). 

Looking at the Big Five personality traits, our LDpred-GWAS score is predictive of openness to 
experience (with incremental R2 estimates of 1.45% and 0.42% in the HRS and NTRfff cohorts, 
respectively), extraversion (0.94% in HRS and 0.17% in NTR), and to a lower extent agreeableness 
(0.09% and 0.11%). The estimated coefficients on the LDpred-GWAS scores for these three 
phenotypes always have a P value ≤ 0.4%. In contrast, conscientiousness was never predicted by 
our polygenic score, and neuroticism was significantly predicted in the HRS cohort (incremental 
R2 of 0.31%), but not in the NTR cohort. 
The results described above are broadly consistent with the estimated sign and magnitude of the 
genetic correlations between general risk tolerance and extraversion, openness, and neuroticism 
(Supplementary Note section 7.3).  

Finally, our LDpred-GWAS score was predictive of sensation seeking (with incremental R2 
estimates of 1.13% for the composite sensation seeking phenotype, and ranging from 0.33% to 
0.75% for the four sensation seeking subscales), behavioral inhibition (0.50%), and ADHD 
(0.50%). Furthermore, the estimates of the coefficients on the scores are all highly significant and 
positive, as expected. No score is predictive of locus of control. Using the summary statistics from 
the MTAG analysis does not improve our predictive power substantially. 

10.3.3 Risky behaviors 

(1) Main prediction results 

Panel A of Supplementary Table 13 reports the predictive power of the scores for risky behaviors, 
while Panel B of Supplementary Table 13 reports the predictive power of the scores for 
precautionary behaviors. 
Overall across all our validation cohorts, the predictive power of the LDpred-GWAS scores is low 
but positive across a wide range of risky and precautionary behaviors, with incremental R2 
estimates ranging from 0.02% to 1.36%. Although most incremental R2 estimates are low, the 
estimated coefficients on the LDpred-GWAS score have the expected sign for 22 of the 25 
regressions we ran (P = 8×10)≈), and are always in the expected direction whenever the estimated 
coefficient is significant at the 5% level (16 of the 25 measures, P = 2×10)*≈)ggg. 

Our LDpred-GWAS score are predictive of economic behaviors such as being an entrepreneur 
(1.36%) or owning a business (0.57%), as well as health behaviors such as number of sexual 
partners (0.65% and 0.79% in Add Health and UKB-siblings), automobile speeding propensity 
(0.59%), ever using cannabis (0.37%), smoking (incremental R2 ranging from 0.10% to 0.25% 
depending on cohort and phenotype), drinking (incremental R2 ranging from 0.02% to 0.19%, 
depending on cohort and phenotype), and the first PC of risky behaviors (0.96%). For 
precautionary behaviors, both life and health insurance coverage are significantly predicted by our 
LDpred-GWAS scores, with an incremental R2 of 0.17% and 0.10%, respectively. In contrast, our 
                                                             
fff As mentioned above, the scores in the NTR cohort were also based on a meta-analysis that excluded the 23andMe 
cohort. 
ggg These P values refer to the probability of finding this many concordant signs or significant coefficients; they are 
derived from one-tailed binomial tests (the first coming from 25 coin flips with probability of 0.5; the second from 25 
coin flips with probability of 0.05). 
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scores are not significantly predictive of financial market participation, equity share or share of 
financial asset, age of smoking initiation, fried food consumption, and preventative health care 
utilization.  
Several results stand out. The estimated coefficient imply that a one-standard-deviation increase 
in the polygenic score is associated with a 1.6 percentage points higher probability of being an 
entrepreneur, 3.4 percentage points higher probability of having owned a business, 2.2 additional 
lifetime sexual partners, 3.5 percentage points higher probability of ever having smoked marijuana, 
and a 2 to 3 percentage points higher probability of ever being a smoker. 

Using the MTAG summary statistics to construct the LDpred scores in the Add Health, HRS, and 
UKB-siblings cohorts generally increases our predictive power. For example, the incremental R2 
estimates for the first PC of risky behaviors and for number of sexual partners double, to 1.96% 
and 1.53% respectively. In the case of ever using cannabis, the incremental R2 increases by ~0.40% 
relative to using the LDpred-GWAS and Classical-GWAS scores.  

(2) Robustness to inclusion of additional control variables 

To further assess the potential for using polygenic scores in empirical research, we investigated 
whether the predictive power of our polygenic scores is robust to including in the regressions 
additional control variables for cognitive performance, personality traits, and educational 
attainment. We obtained very similar point estimates but larger confidence intervals than in the 
regressions that do not include these additional variables. Supplementary Table 14 displays these 
results. Note that, due to missing observations in the additional control variables, the sample sizes 
decrease (in particular, the samples for the STR cohort includes males only, as the cognitive 
performance measure is only available for males). The pattern of results is nonetheless very 
similar, though the confidence interval of the estimated coefficients and incremental R2 values 
generally increase, reducing our ability to distinguish them from zero. Above and beyond the 
measures of personal characteristics, our polygenic scores of risk tolerance are still significantly 
predictive of being an entrepreneur, owning a business, the first PC of risky behaviors, the number 
of sexual partners, automobile speeding propensity, ever using marijuana, ever being a smoker, 
being an excessive drinker and drinks per week (in the STR and UKB-siblings cohorts only), and 
having health or life insurance. Just as for the results displayed in Supplementary Table 13, 
LDpred scores constructed using either the GWAS or the MTAG summary statistics are usually 
more predictive than Classical-GWAS scores. 
Furthermore, the predictive power of our polygenic scores for many risky behaviors is comparable 
in magnitude to that of cognitive performance, personality, and educational attainment. The 
estimated 95% confidence intervals of the incremental R2 of our polygenic scores almost always 
contain the estimated incremental R2 of cognitive performance, educational attainment, or 
personality traits. 

10.3.4 Height as a negative control 

Neither the LDpred-GWAS nor the Classical-GWAS scores significantly predict height in the STR 
cohort (Supplementary Table 11). In the UKB-siblings cohort, the incremental R2 are 
indistinguishable from zero but, given the large sample size, the coefficients of the LDpred-GWAS 
and LDpred-MTAG scores are statistically different from zero. These observations, combined with 
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the above results, suggest that our scores capture some true polygenic signal for general risk 
tolerance and that our above results are not artifacts of our estimation procedure or of chance. 

10.3.5 Concerns about overfitting in the prediction analysis in the UKB-siblings cohort 

As indicated above in Supplementary Note section 10.2, polygenic scores for the prediction 
analysis in the UKB-siblings cohort were constructed using summary statistics from a meta-
analysis of the 23andMe cohort and a subset of the UKB that excluded all individuals in the UKB-
siblings cohort. We will henceforth refer to that subset as the “UKB-nonsibs” cohort.  
Although no single individual is present in both the UKB-siblings cohort and in the data used for 
the meta-analysis, some individuals in the UKB-siblings cohort have relatives in the UKB-nonsibs 
cohort, and this could lead to overfitting 95. We determined that the UKB-siblings cohort includes 
798 individuals who are ~50% related to an individual in our UKB-nonsibs sample (these likely 
are parent-child pairs); 1,836 individuals who are ~25% related to an individual in our UKB-
nonsibs sample (e.g., half-siblings, or aunt-nephew pairs); and 8,738 individuals who are ~12.5% 
related to an individual in our UKB-nonsibs sample (e.g., third-degree relatives such as first 
cousins).  
To assess the degree of effective sample overlap across the UKB-siblings and the UKB-nonsibs 
cohorts, we estimated the intercept in a bivariate LD Score regression 24 using the summary 
statistics of GWAS of general risk tolerance in the UKB-siblings and in the UKB-nonsibs cohorts. 
According to theory, the intercept is equal to ∞8î 8*8", where ∞ is the phenotypic correlation 
among the 8î individuals included in both samples (so here, ∞ = 1), and 8* and 8" are the sample 
sizes of the UKB-siblings and the UKB-nonsibs cohorts. From this, we obtained an estimate of 
8î: 8î = 837 (7H	 = 	654). This estimate is not significantly different from zero.hhh 
Next, to verify that sample overlap does not substantially bias the results of our UKB-siblings 
prediction analysis, we reran that analysis for general risk tolerance after excluding all individuals 
in the UKB-siblings cohort with any third-degree or higher relative in the UKB-nonsibs cohort. 
The results were very similar to those of our baseline analysis: we estimated an incremental R2 of 
1.55% (CI: 1.26% - 1.87%). By comparison, our baseline estimate of the incremental R2 is 1.62% 
(CI: 1.37% - 1.90%). We thus conclude that overfitting is unlikely to be a concern for our UKB-
siblings prediction analysis. 

10.4 Expected predictive power of general-risk-tolerance polygenic score 

As mentioned before, the predictive power of our polygenic scores is within the range expected 
according to theory, when cross-cohort heterogeneity of the GWAS and predicted phenotypes’ 
SNP heritabilities are taken into account. Daetwyler et al.131 have developed a theoretical formula 
for the expected predictive power of a polygenic score, when predicting the phenotype whose 
                                                             
hhh At first glance, this value of 8î seems low relative to the 13,448 UKB-siblings individuals who are related to 
someone in the UKB-nonsibs cohort. However, we note that the effective sample overlap induced by individuals with 
relatives depends on both (1) the individuals’ genetic relatedness, weighted by the heritability of risk tolerance, and 
(2) the correlation between the non-genetic components of their risk tolerance, weighted by one minus the heritability 
of risk tolerance. The correlation between the non-genetic components is likely much lower than the genetic 
relatedness, especially for second-degree relatives who are unlikely to cohabitate and to be exposed to highly 
correlated environmental influences. This depresses the effective sample overlap, relative to what one would expect 
naively based on a weighted sum of the degrees of genetic relatedness. 
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GWAS summary statistics were used to construct the score in an independent cohort. The formula 
assumes independent SNPs, equal heritability of the phenotype in the discovery and validation 
cohorts, and perfect genetic correlation of the phenotype across cohorts. Daetwyler et al.131 show 
that, under those assumptions, the expected predictive power of a polygenic score is equal to: 

H _" = ℎ"
1

1 + 1/Sℎ"
 

where ℎ" is the SNP heritability of the phenotype (which is assumed to be the same in the 
validation cohort and in the GWAS whose summary statistics are used to construct the score), and 
S = ETrìî/O is the ratio of the sample size in the discovery GWAS (ETrìî) and the effective 
number of SNPs evaluated in the validation cohort (M). For the discovery meta-analysis we use in 
our Add Health (nGWAS = 975,353) and UKB-siblings (nGWAS = 937,353) analyses, h2 is 0.041 when 
estimated by LD Score regression (Supplementary Table 28) and 0.045 when estimated using 
HESS (Table 1); in the STR cohort (nGWAS = 458,558), h2 is 0.055 when estimated by LD Score 
regression and 0.063 when estimated by HESS (Supplementary Table 30)iii; and a reasonable 
value for M is 60,000, which is the midrange of 50,000 to 70,000 suggested by Wray et al. 201395. 
Given a range of h2 values between 0.041 and 0.045 (0.055 and 0.063 for the STR cohort), this 
formula suggests an expected predictive power between 1.60% to 1.86% in the UKB-siblings 
cohort, 1.64% to 1.90% in the Add Health cohort, and between 1.63% and 2.05% in the STR 
cohort. Our estimated incremental R2’s for general risk tolerance are 1.62% (CI: 1.37% – 1.90%) 
in the UKB-siblings cohort and ~1.0% in both the Add Health and STR cohorts—slightly less than 
what we would expect given the Daetwyler formula. 
One explanation for the relative underperformance of our polygenic scores is cross-cohort 
heterogeneity. To account for this, De Vlaming et al.132 generalize the Daetwyler formula by 
allowing for unequal heritability between the prediction (ℎm") and discovery cohorts (ℎπ" ) and 
imperfect genetic correlation (rg < 1), while still assuming independent SNPs. With these 
generalizations, the expected predictive power of a polygenic score becomes:  

H _" = ,-"ℎm"
1

1 + 1/Sℎπ"
. 

As before, we let ℎm" and  ℎπ"  range between 0.041 and 0.045 (0.055 and 0.063 for the STR cohort). 
For the UKB-siblings cohort, we estimate a genetic correlation of 0.93 between the discovery and 
validation cohorts (using the full UKB GWAS instead of a GWAS of the UKB-siblings subset to 
increase precision of this estimate). For the Add Health and STR cohorts, where sample sizes are 
too low to permit direct estimation of the genetic correlation, we consider rg values between 0.7 
and 0.9. 
The expected incremental R2 now ranges between 1.51% and 1.61% for the UKB-siblings cohort, 
0.80% to 1.54% for the Add Health cohort, and between 0.80% and 1.66% for the STR cohort. 
The observed predictive power of our score is now consistent with what we would expect in theory. 

                                                             
iii These heritability estimates for the STR cohort are those for the UKB cohort only (and not those for the meta-
analysis of the UKB and replication cohorts whose summary statistics were used to construct the scores in the STR 
cohort). These estimates are higher because they are not attenuated by cross-cohort heterogeneity, unlike the 
heritability estimates for the GWAS whose summary statistics were used in the Add Health and UKB-siblings 
analyses. 
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This demonstrates the importance of considering cross-cohort heterogeneity when forming 
expectations of the performance of polygenic scores.  

De Vlaming et al.132 additionally allows for imperfect genetic correlations between individual 
cohorts within the discovery sample. When we account for this within-discovery sample 
heterogeneity (using the estimated genetic correlations reported in Supplementary Note section 
7.4.2, which range from 0.76 to 0.83), our expected R2 ranges become 1.44%% – 1.67% for the 
UKB-siblings cohort, 0.84% – 1.62% for the Add Health cohort, and 0.80% – 1.67% for the STR 
cohort. These ranges remain consistent with our observed R2 estimates.jjj  

Lastly, our polygenic score performs consistently better in the UKB-siblings validation cohort than 
in the Add Health and STR validation cohorts, given our expected R2 values. This discrepancy 
could be explained by cross-cohort heterogeneity that we were unable to account for. For example, 
we have assumed throughout that ℎm" = ℎπ" ; however, the heritability of risk tolerance may be 
systematically lower in the Add Health and STR cohorts, where direct heritability estimation was 
not possible. 
Thus, while polygenic scores constructed from our GWAS results can already aid the study of 
some related phenotypes, future research would benefit from the collection of measures of risk 
tolerance that are more similar across cohorts.   

                                                             
jjj We do not account for imperfect genetic correlations between cohorts within our replication meta-analysis; these 
cohorts only account for 3.5% of the individuals in our discovery meta-analysis and are unlikely to affect our results. 
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10.5 Appendix: definition of the income risk gamble variable in the HRS 
cohort and merger of the STR1 and STR2 cohorts 

10.5.1 Income gamble risk tolerance in the HRS cohort 

In the HRS cohort the income gamble risk question was slightly modified after the first wave133. 
In the first wave, respondents were first asked the following question: 

“Suppose that you are the only income earner in the family, and you have a good job guaranteed 
to give you your current (family) income every year for life. You are given the opportunity to take 
a new and equally good job, with a 50-50 chance it will double your (family) income and a 50-50 
chance that it will cut your (family) income by a third. Would you take the new job?” 
Respondents who answered “yes” to the first question were asked this follow-up question: 
“Suppose the chances were 50-50 that it would double your (family) income, and 50-50 that it 
would cut it in half. Would you still take the new job?” 
Respondents who answered “no” to the first question were asked this follow-up question: 

“Suppose the chances were 50-50 that it would double your (family) income and 50-50 that it 
would cut it by 20 percent. Would you then take the new job?” 
In the original variable coding, the variable was coded as 1 if the respondent accepted the new job 
with the risk of cutting income by half, and a value of 4 if the respondent always chose to stay with 
the job with a guaranteed income. We reverse coded the original phenotype so that a higher value 
implies higher risk tolerance.  

The income gamble risk tolerance question was not asked in waves 2 and 3. In wave 4 and all 
subsequent waves, the initial question was: 

“Suppose that you are the only income earner in the family. Your doctor recommends that you 
move because of allergies, and you have to choose between two possible jobs. The first would 
guarantee your current total family income for life. The second is possibly better paying, but the 
income is also less certain. There is a 50-50 chance the second job would double your total lifetime 
income and a 50-50 chance that it would cut it by a third. Which job would you take -- the first job 
or the second job?” 
If the first job was chosen as the answer to the initial question, then this follow-up question was 
asked: 

“Suppose the chances were 50-50 that the second job would double your lifetime income and 50-
50 that it would cut it by twenty percent. Would you take the first job or the second job?” 
If the first job was chosen as the answer to the follow-up question, then a second follow-up 
question was asked: 

“Suppose the chances were 50-50 that the second job would double your lifetime income and 50-
50 that it would cut it by 10 percent. Would you take the first job or the second job?” 
If instead the second job was chosen as the answer to the initial question, then a different follow-
up question was asked:   
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“Suppose the chances were 50-50 that the second job would double your lifetime income, and 50-
50 that it would cut it in half. Would you take the first job or the second job?” 
If the first job was chosen as the answer to the follow-up question, then a second follow-up 
question was asked: 

“Suppose the chances were 50-50 that the second job would double your lifetime income and 50-
50 that it would cut it by seventy-five percent. Would you take the first job or the second job?” 
In the original variable coding, the respondent is given a value of 1 if the respondent accepts the 
second job with the risk of cutting the income by seventy-five percent, and a value of 6 if the 
respondent always chooses to stay with the job with a guaranteed income. Again, we reverse coded 
the responses so that a higher value corresponds to a higher risk tolerance. Further, since this 
survey measure has two additional response categories relative to the measure used in the first 
wave, we converted this survey measure’s responses to the 4-point scale that disregards the second 
follow-up questions; a value of 5 or 6 corresponds to 4, a value of 4 corresponds to 3, a value of 3 
corresponds to 2, and value 1 or 2 corresponds to 1.  

We constructed the income gamble risk tolerance phenotype as the average response across waves, 
as follows. We first computed the residuals for wave w as 

(10) 

‹fi,4 = ><fl‡ + Afi,4, 

Afi,4 = ‹fi,4 − ><fl‡ 

where ‹fi,4 is income gamble risk tolerance in wave · for individual C and >< contains the intercept 
and the control variables (birth year, birth year squared, birth year cubed, sex, as well as three 
interaction terms between sex and the three birth year variables). We then calculated the average 
residual across waves as A4 = Afi,‚. To ensure this averaged residual is not associated with any of 
the control variables in >< either, we computed residual \4 as 

(11) 

A4 = ><fl + „4, 

\4 = A4 − ><fl, 

and used this residual \4 is used as the phenotype for the prediction in the HRS cohort. The sample 
size for income gamble risk tolerance is 7,302 in the HRS cohort (Supplementary Table 11). 

10.5.2 Merging the STR1 and STR2 cohorts 

Since the STR1 and STR2 cohorts have been genotyped with different genotyping arrays (for 
details, see Supplementary Table 24), we kept them separate for the GWAS of general risk 
tolerance (Supplementary Note section 2). However, we merged the cohorts for the prediction 
analyses. First, we constructed and standardized the polygenic scores and calculated the 10 genetic 
principal components (PCs) separately in the STR1 and STR2 cohorts. We then merged the 
individual-level data by pooling the polygenic scores into a single variable. Two separate sets of 
PCs were used, imputing the value 0 for the 10 PCs of STR2 for the individuals in the STR1 cohort, 
and vice versa. In all the prediction analyses in the merged STR cohort, we included a dummy 
variable indicating whether the individual belonged to the STR1 or STR2 cohort. 
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11 Biological annotation: testing hypotheses about specific genes 
and gene sets 

Earlier studies have shown that risk tolerance and related individual characteristics are moderately 
heritable7,173, thus providing a motivation to investigate the biological and molecular bases of this 
heritability. Indeed, there is a voluminous literature that links specific biological pathways (i.e. 
brain regions, neuronal populations, hormones, receptors, and neurotransmitters) to decision 
making and behavior. Different research designs and proxies for biological pathways have been 
used, all with specific advantages and disadvantages (see, for example, Nave et al. (2015)174 for a 
review of studies on the role of oxytocin on trust).  

One part of this literature is candidate gene studies that have attempted to leverage insights from 
psychology and biology to derive hypotheses that could be tested using specific genes as proxies 
for biological pathways. Although the hypothesis-based approach seems intuitively reasonable, it 
is now widely accepted that findings from candidate gene studies on human behavior often fail to 
replicate. The reasons for this include very small effects of common genetic variants on human 
behavior, small sample sizes in candidate gene studies that led to underpowered statistical tests, 
publication bias, and insufficient controls for correlations between genotypes and relevant 
environmental conditions15,16,18,20,175–178. 

We systematically reviewed the prior literature on biological pathways that have been 
hypothesized to be linked to risk tolerance. Then, we used MAGMA179 on the summary statistics 
from the meta-analysis of the discovery and replication GWAS of general risk tolerance (n = 
975,353; as usual, we applied genomic control using the intercept of the LD Score regression to 
these summary statistics prior to the analyses) to re-evaluate the findings of this literature.  
In addition, since risk tolerance has been hypothesized to be under recent evolutionary pressure180–

182, we tested whether a set of genes previously identified as having been under evolutionary 
pressure in Europeans is associated with general risk tolerance. 

11.1 Literature review 

11.1.1 Search algorithm 

We conducted a comprehensive literature review on biological pathways that may influence risk 
tolerance. Consistent with our GWAS, we restricted our review to research involving healthy 
individuals. Thus, we excluded studies that focused on neuropathologies, addictions, or other 
disorders. However, we included articles using animal models to study risk tolerance because the 
investigated biological mechanisms may have similar effects on human behavior. Our search 
algorithm employed a relatively broad definition of risk tolerance and included psychometric as 
well as behavioral measures (e.g. self-reported risk tolerance, choices between monetary lotteries, 
or gambling tasks). Risk tolerance among animals was typically measured by observing choices 
between probabilistic food options or by quantifying risk-assessment behavior during exploration. 
Following the analysis plan for our GWAS of general risk tolerance, we considered impulsivity 
and novelty-seeking as conceptually different traits and excluded them from this literature review. 
We included all proxies of biological pathways that are tested in the literature, including candidate 
genes, molecules represented by specific receptors, pharmacological interventions that are used to 
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manipulate specific pathways (e.g., nasal oxytocin spray, neurotransmitter receptor blockers, 
agonists, antagonists), as well as very distal proxies like the 2D:4D digit ratio. 

We employed two parallel approaches to translate these criteria into search algorithms: first, we 
used a “bottom-up” approach and searched for studies investigating the relationship between risk 
taking and any biological pathway. The “bottom-up” search criterion we used was:  
 

(“risky behavior” OR “risk-aversion” OR “risk preference” OR “risk-taking” OR 
“risk-seeking”) AND (“GWAS” OR “gene” OR “SNP” OR “allele” OR “genetic” OR 
“candidate” OR “hormones” OR “neurotransmitter” OR “neuropeptide” OR 
“biology” OR “biological pathway”).  
 

We also conducted a “top-down” search which specifically cued our search criterion with 
biological pathways that were mentioned in the prior literature on risk tolerance. This “top-down” 
search criterion was:  
 

(“risky behavior” OR “risk-aversion” OR “risk preference” OR “risk-taking” OR 
“risk-seeking”) AND (“catecholamines” OR “monoamines” OR “dopamine” OR 
“adrenaline” OR “noradrenaline” OR “norepinephrine” OR “glutamate” OR 
“serotonin” OR “GABA” OR “BDNF” OR “testosterone” OR “acetylcholine” OR 
“NMDA” OR “AMPA” OR “testosterone” OR “estradiol” OR “progesterone” OR 
“cortisol” OR “glucocorticoid” OR “vasopressin” OR “oxytocin” OR “ghrelin” OR 
“leptin”). 
 

We used both of these algorithms in two different search engines; the ISI Web of Knowledge and 
Google Scholar. Both search engines yielded highly overlapping results. 
We screened approximately 1,000 articles and found 132 which matched our criteria, spanning 
different scientific fields (from management to neuroscience), different models (e.g. human or 
rodent), different risk measures (from psychometric to behavioral measures), different biological 
pathways (e.g. monoamines, sex hormones), and different approaches (from genotyping to 
pharmacological manipulations). We included articles regardless of whether the reported results 
were statistically significant or not.  

11.1.2 Results of the literature review 

The results of our literature review are compiled in Supplementary Table 1. Overall, the literature 
on biological mechanisms for risk tolerance is relatively recent: most studies were published after 
2003. However, earlier work on related concepts that were excluded by our selection criteria (such 
as novelty seeking) exists.  

Three main biological mechanisms comprising five biological pathways have been tested by this 
literature. The first of these is the relationship between risk tolerance and sex hormones, especially 
testosterone and estrogens.  Testosterone and estrogens are the two primary steroid sex hormones 
in humans. They are principally (but not exclusively) synthesized in the ovaries (estrogen) and 
testicles (testosterone), and are responsible for the development and regulation of the male 
(testosterone) and female (estrogen) reproductive system and secondary sex characteristics. The 
link between those hormones and risk taking is generally motivated by (and discussed as 
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corroborating of) the observed behavioral and attitudinal differences between males and females. 
A large part of the literature testing the relationship between risk tolerance and sex hormones uses 
the distal 2D:4D digit ratio to approximate prenatal testosterone levels. Some studies use measures 
of sex hormones that are derived from saliva or blood samples.  

The second frequently examined biological mechanism is the relationship with the 
neurotransmitters dopamine and serotonin. Those two monoamines have been repeatedly 
implicated in behavior and decision-making: dopamine plays a major role in reward-motivated 
behavior and in addiction, whereas serotonin is implicated in mood. Studies testing the associations 
between these monoamine pathways and risk tolerance typically test genetic variants implicated 
in the synthesis or the signaling pathways of these neurotransmitters (e.g., DRD4, SERT or 5-
HTTLPR). Alternatively, pharmacological manipulations are used including blockers, agonists, or 
antagonists of specific dopamine or serotonin receptors.  

The third main biological pathway tested by the literature involves cortisol. Cortisol is another 
steroid hormone belonging to the glucocorticoid class, and is notably produced in response to 
stress. Cortisol triggers gluconeogenesis (the formation of glucose), and activates anti-stress and 
anti-inflammatory pathways. Studies testing the associations between the cortisol pathways and 
risk tolerance typically use a biochemical quantification of cortisol level in salivary or blood 
samples as an independent measure.  

In sum, our literature review highlighted five main biological mechanisms potentially 
underpinning the risk-tolerance phenotype: the testosterone, estrogen, dopamine, serotonin and 
cortisol pathways.  

11.2 Gene analysis and competitive gene-set analyses with MAGMA 

We used MAGMA179 together with the summary statistics from the meta-analysis of the discovery 
and replication GWAS of self-reported general risk tolerance to re-evaluate the findings of this 
literature.  

We conducted several types of analyses based on these results. First, for all five mechanisms we 
constructed gene sets, based on external databases of biological function, and tested these gene 
sets for association with risk tolerance. Second, for two of those pathways (dopamine and 
serotonin), there are a significant number of candidate gene studies in humans. These candidate 
gene studies most commonly test a specific subset of genes and genetic variants (SNPs or structural 
variants) within the dopamine and serotonin pathways. We therefore built a gene set from 15 of 
the 17 most commonly tested genes of those two pathways (Supplementary Table 16) in order to 
re-evaluate the associations of those candidate genes with risk tolerance. Third, we tested specific 
SNPs in these 15 genes that have been tested in the prior candidate gene literature. Lastly, we 
tested whether a set of genes that has been identified as having been under selection among 
Europeans was enriched for association with general risk tolerance.  
MAGMA can perform two types of analyses: a gene analysis and a competitive gene-set analysis. 
For a given gene, a MAGMA gene analysis tests the joint association of all the SNPs in the gene 
with the phenotype. This aggregation of the SNPs reduces the number of tests compared to a SNP-
based analysis, which results in an increase in statistical power and may lead to the detection of 
joint effects of multiple weaker SNP associations that would otherwise be missed. A disadvantage 
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of gene analysis is that it is uninformative about the direction of the effect, as it simultaneously 
tests multiple SNPs that can have opposite effects within a gene. 

For a given gene set, a MAGMA competitive gene-set analysis tests whether the genes in the gene 
set are more strongly associated with general risk tolerance than the other genes in the genome. 
Gene sets are groups of genes that share certain characteristics (e.g., biological or functional 
characteristics). Like a gene analysis, a competitive gene-set analysis has increased statistical 
power relative to a SNP-based analysis, as it involves fewer tests. Moreover, a gene-set analysis 
allows tests of specific biological hypotheses by defining appropriate gene-sets, and may provide 
direct insights into the underlying biological pathways or cellular functions of the phenotype. 
MAGMA uses a regression framework that compares the mean association of the genes in the gene 
set with the mean association of all other genes in the genome (equivalent to a one-sided two-
sample t-test). To account for possible LD between genes, MAGMA uses a gene correlation 
matrix, which was based on the European ancestry samples from the 1000 Genomes project phase 
191. Additional covariates are included in the regression to correct for any confounding effects of 
gene size and gene density (gene size, log gene size, gene density, log gene density).  

11.2.1 Competitive gene-set analysis with MAGMA: Testing gene sets related to 
dopamine, serotonin, testosterone, estrogen, and glucocorticoids 

As mentioned above, not all of the biological pathways that were studied in the previous literature 
on risk tolerance were studied using candidate genes as proxies for these pathways. Furthermore, 
the candidate genes (e.g. DRD4) that were studied are not the only genes that are involved in the 
respective biological pathways (e.g. dopamine). Thus, to begin with, we constructed and tested 
gene sets that represent the five major biological pathways that were previously studied in the 
context of risk tolerance. (We note that we also performed ex post MAGMA gene set analyses for 
GABA and glutamate neurotransmitters. We describe these analyses in Supplementary Note 
section 12.5.) 
We selected all gene sets related to the five major biological pathways (dopamine, serotonin, 
testosterone, estrogen and cortisol) from the Molecular Signature Database (MSigDB, v5.1)183, 
and from the gene sets compiled by Hawrylycz et al. (Nature Neuroscience 2015)184. There were 
38 gene sets related to the five pathways, from which we removed four duplicate gene sets. The 
remaining 34 gene sets had much overlap within each biological pathway, and we therefore merged 
all the gene sets belonging to a given pathway, resulting in five gene sets corresponding to each of 
the five pathways (dopamine, serotonin, testosterone, estrogen and glucocorticoids (cortisol)). We 
report both the initial and the merged gene sets in Supplementary Table 33. 
We conducted a competitive gene-set analysis with MAGMA to test each of these five gene sets 
for association with risk tolerance. We applied a resampling-based P value adjustment185 using 
10,000 permutations to correct for multiple testing (as we conducted a test for each of the five gene 
sets). 
None of these five gene sets showed a significant association with general risk tolerance after 
correction for multiple testing (the lowest corrected P value was 0.27, Supplementary Table 15).  
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11.2.2 Gene analysis and competitive gene-set analysis with MAGMA: Testing 
candidate genes from the prior literature 

We used MAGMA to conduct a gene analysis to test the candidate genes identified in our literature 
review for association with general risk tolerance, employing all of the SNPs in our GWAS 
summary statistics within the physical location of the genes being tested. 15 of the 17 candidate 
genes that we identified in the literature review were autosomal and were thus eligible for testing 
(since our GWAS of general risk tolerance was restricted to autosomal SNPs). In addition to the 
gene analysis, we conducted a competitive gene-set analysis with MAGMA to test whether the 
genes in the gene set comprising these 15 genes are more strongly associated with general risk 
tolerance than the other genes in the genome.  

From the gene analysis, none of the genes showed a significant association with general risk 
tolerance after Bonferroni correction to correct for multiple testing (the 15 genes are not in LD; 
Supplementary Table 16). From the competitive gene-set analysis, the set of 15 candidate genes 
was also not significantly associated with risk tolerance (P = 0.55, Supplementary Table 16). 

Our MAGMA competitive gene-set analysis of the cortisol, dopamine, serotonin, estrogen, and 
testosterone gene sets has some likely limitations. First, the statistical power of MAGMA 
competitive gene-set analyses barely increases with increasing sample sizes186. Second, important 
effects of numerous single SNPs in a gene or gene set may be overshadowed by the high average 
P values of other SNPs in the gene or gene set. Third, only specific pathways within the tested 
gene sets might be relevant, and merging many pathways into major cortisol, dopamine, serotonin, 
estrogen, and testosterone gene sets decreased our statistical power to discover specific pathways. 
In Supplementary Note section 12.7.4, we further discuss these limitations in the context of our 
ex post MAGMA competitive gene-set analysis of four glutamate and GABA gene sets; that 
analysis also returned null results, despite the fact that our Gene Network and DEPICT analyses 
both point to a role for glutamate and GABA neurotransmitters.  
Importantly, however—and unlike for glutamate and GABA—none of the bioinformatics analyses 
we report in Supplementary Note section 12 point to the cortisol, dopamine, serotonin, estrogen, 
and testosterone pathways or related genes either. Further, as reported above none of the 15 
commonly-tested candidate genes were significant in our MAGMA gene analysis after Bonferroni 
correction for 15 tests; by contrast, our MAGMA gene analysis of ~18,000 genes identified several 
glutamate and GABA genes that were significant after Bonferroni correction for ~18,000 tests 
(Supplementary Note section 12.2). Moreover, as we discuss in Supplementary Note section 
11.2.3 just below, none of the SNPs tagging the 15 most commonly-tested autosomal candidate 
genes within the dopamine and serotonin pathways have non-negligible effects on general risk 
tolerance. Therefore, while our MAGMA competitive gene-set analysis may suffer from some 
limitations, other analyses we conducted also fail to point to a role for the cortisol, dopamine, 
serotonin, estrogen, and testosterone pathways, and instead point to a role for glutamate and GABA 
neurotransmitters.  

11.2.3 Replication of specific SNPs tested in the prior candidate gene literature 

As a complement to the MAGMA gene-based tests, we also tested the individual SNPs that have 
been tested for association with risk tolerance in the previous literature and that are located within 
the 15 autosomal genes tested with MAGMA. We used the summary statistics from the meta-
analysis of the discovery and replication GWAS of general risk tolerance for these tests. Out of 
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the 15 autosomal genes, three have been tested in the previous literature for association with alleles 
of an underlying structural variant, and we treat these separately below, where we looked up a total 
of 18 SNPs available in our GWAS summary statistics for these three genes. The remaining 12 
autosomal genes contained 75 SNPs that were individually tested in the previous literature, of 
which 74 were available in our meta-analysis of the discovery and replication GWAS of general 
risk tolerance. Thus, our GWAS summary statistics contain the majority of candidate SNPs within 
these genes that were tested in the previous literature, and we performed Bonferroni-correction for 
testing 92 candidate SNPs.  

Out of the 74 previously tested SNPs within the 12 autosomal genes, two replicated with 
Bonferroni-corrected P values less than 0.05. The SNPs were rs36339 (in the gene SLC1802; 
Bonferroni-corrected P = 0.004), and rs174699 (in the gene COMT; Bonferroni-corrected P = 
0.034). The R2’s of rs36339 and rs174699 in the summary statistics of our discovery GWAS of 
general risk tolerance are 0.00185% and 0.00141%, respectively. By comparison, the smallest R2 
among the lead SNPs from our discovery GWAS of general risk tolerance is almost twice as large, 
at 0.0032% (rs1935571). The effects of rs36339 and rs174699 are considerably smaller than what 
could be found at the genome-wide significance level with our current discovery sample of 
939,908 individuals, and they are several orders of magnitude smaller than what candidate gene 
studies in the existing literature—with typical sample sizes rarely exceeding a few hundred to a 
few thousand individuals—could have found. The sample sizes required to have 80% statistical 
power to detect the effects of rs36339 and rs174699 at the 5% level of significance (without 
Bonferroni correction) would be 424,260 and 556,654, respectively; the corresponding sample 
sizes at the genome-wide significance level (5×10)√) would be 2,140,573 and 2,808,560, 
respectively. We therefore found that 10 of the 12 hypothesized autosomal candidate genes harbor 
no candidate SNPs that replicate, while two (SLC1802 and COMT) each contain a SNP that is 
suggestively associated with general risk tolerance (with a P value less than 0.05 after Bonferroni 
correction for 92 tests) but whose effect is very small.  

In the previous literature, three of the 15 autosomal candidate genes (DRD4, DRD5 and SLC6A4 
(the latter is also commonly referred to as SERT or 5-HTT)) have mainly been tested for association 
with behavioral traits using alleles of structural variants located within these genes. For example, 
risk tolerance has previously been tested for association with a variable number tandem repeat in 
the DRD4 gene referred to as the 7R polymorphism11. Our GWAS summary statistics include nine 
SNPs within the DRD4 gene. Although we do not know the exact LD between these nine SNPs 
and the 7R polymorphism, it is very likely that at least some of them tag the 7R polymorphism 
very well because the DRD4 gene spans only 3,401 base pairs on chromosome 11, and variants in 
such close physical proximity tend to be in high LD. The lowest Bonferroni-corrected P value of 
a SNP in the DRD4 gene is 0.47 (rs201554946). The gene DRD5 has mainly been tested for 
association with a microsatellite that can take many different alleles187, and no SNPs within DRD5 
were found in our literature review to have been tested directly for association with risk tolerance. 
DRD5 spans 2,375 base pairs on chromosome 4, in which we have seven SNPs in our GWAS 
summary statistics, and none of the SNPs have a Bonferroni-corrected P value less than 1. The 
gene SLC6A4 has mainly been tested for association with risk tolerance via a degenerate repeat 
polymorphism in a region of the gene called 5-HTTPLR188, and alleles of this repeat polymorphism 
are tagged by the SNPs rs2129785, rs11867581, and rs25531189. The SNPs rs2129785 and 
rs11867581 are available in our GWAS results and their Bonferroni-corrected P values are both 1. 
Based on these results we cannot reject the null hypothesis that none of these three genes is 
associated with risk tolerance.  



 121 

Supplementary Fig. 6b and Fig. 1c display local Manhattan plots of the areas around the 15 most 
commonly tested candidate genes in the prior literature on the genetics of risk tolerance. Each local 
plot shows all SNPs within 500 kb of the gene’s borders that are in LD	(," > 0.1) with a SNP in 
the gene. As can be seen in Supplementary Fig. 6b, only one of the 15 areas (around the gene 
DRD2) contains lead SNPs for any of our seven GWAS, and these SNPs are only genome-wide 
significant in our GWAS of drinks per week. One SNP in the SLC6A4 (SERT) locus is genome-
wide significant in our GWAS of adventurousness. However, this SNP (rs112739039) is not a lead 
SNP in our GWAS of adventurousness because it is located in the locus of another SNP 
(rs6505239; see Supplementary Table 6). The nearest gene to rs112739039, RAB11FIP4, is 
located ~1Mb upstream of SLC6A4. In our meta-analysis of general risk tolerance, this SLC6A4 
SNP is not genome-wide significant and is included in the clump around rs11080149 with nearest 
gene OMG, which is also located ~1Mb upstream of SLC6A4 (see Supplementary Table 3).  

The local Manhattan plots of the areas around the 15 candidate genes (Supplementary Fig. 6b 
and Fig. 1c) can be compared to those of the five main long-range LD regions and candidate 
inversions described in Supplementary Note section 3.2 (Supplementary Fig. 6, a and c, and 
Fig. 1, a and b). These five regions contain numerous lead SNPs for most or all of our seven main 
GWAS. 
In summary, no candidate genes that have been tested with SNPs in the previous literature, nor the 
candidate genes tested with alleles of structural variation, contain genome-wide significant SNPs 
in our discovery GWAS, while two candidate genes each contain a SNP with a suggestive 
association (i.e., with a Bonferroni-corrected P value smaller than 0.05, after Bonferroni correction 
for 92 tests). However, a sample size of more than 2 million individuals would be required to have 
80% power to replicate these two SNPs at the genome-wide significance level, and a sample size 
of more than 400,000 would be required to replicate these SNPs at the 5% level of significance. 
We therefore conclude that these two SNPs are relatively unimportant in terms of their effects on 
general risk tolerance, and that previous candidate gene studies testing these SNPs for association 
with behavioral phenotypes were severely underpowered to detect their very small effects. 

11.2.4 Competitive gene-set analysis with MAGMA: Testing genes under selection 
among Europeans 

A number of theorists have posited that attitudes toward risk have been under evolutionary 
pressure180–182. In particular, if decisions involving risk have to be made frequently and if decision 
mistakes have a severe impact on fitness, theoretical models suggest that selective pressure will 
favor risk attitudes that maximize fitness in a given environment181. Consequently, changes in the 
environment can induce selective pressure for different levels of risk tolerance. It is obvious that 
the environment in which people live and make choices has changed dramatically over the past 
few millennia, with many fitness-related risk factors declining in importance, and new ones arising 
(e.g. due to urbanization, technological progress, and increasing populations). Hence, it is 
conceivable that general risk tolerance has been under selective pressure in our recent evolutionary 
past. 

To test if risk tolerance was subject to recent selective pressure among people of European descent, 
we constructed a gene-set based on 17 genes that were highlighted as having been under recent 
selective pressure among Europeans by the 1000 Genomes phase 3 analyses190 (see 
Supplementary Table 34). We performed a competitive gene-set analysis with MAGMA and 
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with the summary statistics from the meta-analysis of our discovery and replication GWAS of 
general risk tolerance, to test whether the genes in this gene-set are more strongly associated with 
general risk tolerance than other genes.  
The gene-set based on the genes that have been highlighted as having been under recent selective 
pressure among Europeans showed no association with general risk tolerance (P value = 0.90, 
Supplementary Table 34). Thus, this test provides no evidence suggesting that risk tolerance has 
been subject to recent selective pressure. However, this absence of evidence is not evidence of 
absence: our test may have failed to detect evolutionary pressure for several reasons, including 
limited statistical power. Further, we only tested if a set of genes that have been highlighted as 
having been under evolutionary pressure is associated with general risk tolerance; future research 
could also test whether genes that are associated with risk tolerance have been under evolutionary 
pressure. 

11.3 Discussion 

In summary, we find no evidence of enrichment for the main pathways and genes that had 
previously been hypothesized to relate to risk tolerance. We also note that none of the 
bioinformatics analyses we report in Supplementary Note section 12 point to these pathways or 
genes either (we note, however, that some brain regions identified in analyses we report below are 
areas where dopamine and serotonin play important roles.) By contrast, some those bioinformatics 
analysis point to a role for the glutamate and GABA neurotransmitters.  

Our null replication results are consistent with the poor replication record that candidate gene 
studies in social-science genomics have typically had15,16,18,20,175–178. Given that the sample size of 
our GWAS is several orders of magnitudes larger than any previous candidate gene study on risk 
tolerance, our results put a credible, tight upper bound on the effect sizes of the genes that were 
tested and allow us to rule out the possibility that these genes have particularly large effect sizes 
compared to typical genetic variants.  

However, our results do not imply that the main biological pathways we identified in our literature 
review are irrelevant for risk tolerance, as variations further downstream in these pathways (e.g. 
damaged glands, pharmacological interventions) may have much stronger effects on risk tolerance 
than the genes that were tested.  
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12 Biological annotation: other bioinformatics analyses 

This section reports biological annotation of our GWAS results. Throughout, we focus on our 
primary phenotype, self-reported general risk tolerance, because it has by far the largest GWAS 
sample size and because the other main phenotypes analyzed in this paper are genetically 
correlated with it. The goal of these analyses is to gain biological insight (1) into the genome-wide 
biological correlates of the general-risk-tolerance phenotype (with a suite of bioinformatic 
analyses that use GWAS summary statistics for large sets of SNPs across the genome), and (2) 
about the lead SNPs from our discovery GWAS of general risk tolerance (by looking up the 
functional status of the lead SNPs and SNPs in LD with them). For all analyses in this section, we 
use the summary statistics from the meta-analysis of the discovery and replication GWAS of 
general risk tolerance. 

In Supplementary Note section 12.1, we use partitioned LD Score regression94 to test for 
polygenic enrichment in specific genomic regions, such as gene transcription start sites, 
evolutionarily conserved regions, and sections of the genome epigenetically modified in certain 
tissues.  

In Supplementary Note section 12.2, we use MAGMA179 to conduct hypothesis-free analyses to 
identify specific genes that are associated with general risk tolerance. We also use a co-expression 
database to gain insight into the functions of the significant MAGMA genes. 
In Supplementary Note section 12.3, we perform transcriptome-wide analysis with Summary-
based Mendelian Randomization (SMR), which leverages genome-wide data to discover genes 
whose expression significantly associates with general risk tolerance. In addition, the “HEIDI” test 
feature of SMR is able to discard expression quantitative trait loci (eQTL) associations that are 
caused merely by linkage, thereby discarding genes that are spuriously associated with general risk 
tolerance. 
In Supplementary Note section 12.4, we use DEPICT191 to prioritize tissues, gene sets, and genes 
that are implicated by our GWAS results. Like MAGMA, DEPICT is a gene-based tool. However, 
in contrast to MAGMA, DEPICT uses reconstituted gene sets that are based on co-expression 
patterns to prioritize genes, gene sets, and pathways.   
In Supplementary Note section 12.5, to follow up on the results from other biological annotation 
analyses, we conduct an ex post MAGMA gene set analysis179 to test for enrichment of GABA and 
glutamate pathways in general risk tolerance. 

In Supplementary Note section 12.6, we report a number of analyses that annotate our general-
risk-tolerance lead SNPs, to gain insights into the biological systems they may affect. First, we 
check whether our lead SNPs (and SNPs in LD them) contain protein-altering variants (i.e., genetic 
variants which result in a structural difference in the protein structure encoded by a gene, 
collectively known as ‘nonsynonymous’ variants). Second, we look up the lead SNPs (and SNPs 
in LD them) in an expression quantitative trait loci (eQTL) database that contains associations 
between genetic variants and gene expression levels.  

Finally, in Supplementary Note section 12.7, we highlight the most important results of these 
analyses and summarize the conclusions we derive from them.   
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12.1 Functional partitioning of heritability with stratified LD Score regression 

12.1.1 Background and methods 

In this section, we discuss the results of our stratified LD Score regression analyses94. (In addition 
to ref.94, the Supplementary Note of Okbay et al.18 also contains a detailed description of the 
methodology.) With these analyses, we break down (“partition”) the SNP-based heritability of 
general risk tolerance across SNPs with various functional genomic annotations. We used the 
GWAS summary statistics from the meta-analysis of the discovery and replication GWAS of 
general risk tolerance (after applying genomic control using the intercept of the LD Score 
regression, as usual) for these analyses. 
Stratified LD Score regression is based on the relationship 

(12) H `I" = 8 �lℓ q, [ + 8» + 1,
U

lò*

 

where `I" = 85I" is the GWAS chi-square statistic for SNP j, N is the GWAS sample size, c 
indexes the functional categories (which do not have to be disjoint), ℓ q, [  is the stratified LD 
Score of SNP j with respect to functional category [, �l is the average contribution to heritability 
of a SNP due to its membership in category [, and a is a term that measures the contribution of 
confounding biases such as cryptic relatedness and population stratification. 

Finucane et al.94 present derivations of this equation and show how estimates of �l that result from 
estimating the implied regression can be used to obtain estimates of the heritability ascribable to 
the various functional categories. Enrichment is then defined as the fraction of the total heritability 
captured by the functional annotation category divided by the fraction of SNPs in that category.  

To partition the SNP-based heritability of risk tolerance using the results of our GWAS meta-
analysis, we followed the procedure described by Finucane et al.94 and applied in two recent papers 
by Okbay et al.16,18. That is, we used the stratified LD scores calculated from the European-
ancestry samples in the 1000 Genomes Project (1000G) (accessed on March 14, 2016), but in the 
regressions themselves included only the chi-square statistics of the ~1 million HapMap3 SNPs 
with minor allele frequency (MAF) > 0.05. This decision was motivated by the facts that HapMap3 
SNPs are a comprehensive set of common genetic markers that can be imputed with high accuracy 
across different groups and genotyping platforms90,166; that the LD scores of SNPs with low MAFs 
can introduce too much statistical noise when used in the analysis; and that the per-SNP heritability 
may substantially differ for common and rare SNPs. 

We performed two distinct analyses. We first estimated the stratified LD Score regression for the 
functional genomic regions of the “baseline” model. The functional categories in the baseline 
model consist of one category containing all SNPs, 24 categories corresponding to 24 main 
functional annotations of interest (which include, for example, evolutionarily conserved regions in 
mammals and regions epigenetically regulated to be accessible to gene transcription), categories 
corresponding to 500 bp windows around regions belonging to each of these 24 annotations (to 
correct for spurious associations driven by variants located near the physical borders of the 
functional genomic regions), and categories corresponding to 100-bp windows around ChIP-seq 
peaks (regions that are DNase hypersensitive, also known as “open chromatin,” or associated with 
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the histone marks H3K4me1, H3K4me3, H3K9ac, or H3K27ac). The full baseline model contains 
53 predictors (including the predictor for the category containing all SNPs).   

Second, to gain tissue-level resolution, we used the tissue-level annotations provided by Finucane 
et al. These consist of 220 cell-type-specific annotations for four histone marks that are 
subsequently grouped into 10 broad tissue type annotations (Adrenal/Pancreas, Central Nervous 
System, Cardiovascular, Connective/Bone, Gastrointestinal, Immune/Hematopoietic, Kidney, 
Liver, Skeletal Muscle, and Other). Histone marks are posttranslational modifications of histones 
that alter their interaction with the DNA wound around them. For example, the acetylation of lysine 
(an amino acid present in the histone protein) may facilitate gene expression by reducing the 
electrical attraction between DNA and the histone, making the DNA strand more receptive for 
transcription (and thus, gene expression). While certain histone marks are associated with 
increased DNA transcription, other histone marks’ effects on DNA transcription depend on the 
combination of the chemical form and the location of the modification. For instance, mono-
methylation of histone H3K9 (denoted H3K9me1) is associated with activation of gene expression, 
while tri-methylation of H3K9 (denoted H3K9me3) is associated with repression of gene 
expression192. The association between SNPs and histone modifications differs per tissue and 
developmental stage, and has been mapped extensively by the RoadMap Epigenomics project193. 
For instance, SNPs important for eye function are likely to be “tightly bound” to histone proteins 
in the liver, where they do not need to be expressed, but “loosely” bound to histones in the eye, 
where their expression is crucial. Here, we used LDSC partitioning of heritability to test if risk 
tolerance SNPs are enriched in (or near) tissue-specific histone marks, which would suggest that 
those tissues might be of biological importance for general risk tolerance. 

The functional annotation categories we used here are associated with the histone marks 
H3K4me1, H3K4me3, H3K9ac and H3K27ac, which are all known to increase transcription 
rate194. However, we note that the probability of any gene being transcribed and thus expressed 
further depends on the presence of other epigenetic modifications, such as epigenetic modifications 
of the DNA sequence itself (for example, methylation of CpG-islands). This means that the four 
histone modifications we study here do not deterministically increase gene expression rates, but 
rather do so in a probabilistic manner.  
We added each of the 10 tissue annotations to the baseline model (resulting in 10 separate 
regressions, each with 54 predictors), and assessed the magnitude and statistical significance of 
the observed enrichment. To benchmark these tissue-level results, we compared them to the 
corresponding estimates we obtained using the summary statistics of the most recent GWAS of 
height105 (http://www.broadinstitute.org/collaboration/giant/index.php).  

To correct for multiple hypothesis testing, we applied a Bonferroni correction for 52 two-sided 
tests in the baseline model (i.e., for 52 annotationskkk), and for 10 two-sided tests in the tissue type 
models (i.e., for 10 tissue types).  

12.1.2 Results: The “baseline” model  

The results for the baseline model are shown in Supplementary Table 35. The baseline 
annotations “Conserved” and “H3K9ac peaks” are the most enriched, with enrichment estimates 
that remain significant after Bonferroni correction for 52 tests. The “Conserved” category shows 

                                                             
kkk The baseline model has 53 predictors, but we do not adjust for the predictor for the category containing all SNPs. 
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the strongest enrichment (~15.8-fold) and accounts for 41% (SE = 5.0%) of the heritability of 
general risk tolerance; the “H3K9ac peaks” category shows a 5.5-fold enrichment and accounts 
for 21% (SE = 3.7%) of the heritability of general risk tolerance. 

12.1.3 Results: Tissue types 

The results of the tissue-level analyses are reported in Supplementary Fig. 11a, and 
Supplementary Table 22. For general risk tolerance, the enrichment of Central Nervous System 
is strongest (~2.94-fold, P = 5.90 × 10–20), followed by Adrenal/Pancreas (~2.47-fold, P = 1.41 × 
10–7). The enrichment estimates for Immune/Hematopoietic, Cardiovascular, Liver, and Skeletal 
Muscle are also significant, and also survive Bonferroni correction. Our estimates imply that SNPs 
bearing the Central Nervous System and Adrenal/Pancreas annotations account for 43.8% (SE = 
2.8%) and 23.1% (SE = 2.5%) of the heritability of general risk tolerance, respectively; the 
corresponding figure for Immune/Hematopoietic is 37.6% (SE = 3.6%). These estimates are all 
highly significant and survive Bonferroni correction for ten tests.  
However, the enrichment statistics are potentially misleading because of possible confounding. 
For example, many SNPs bear multiple annotations. It is thus of interest to examine the �l 
estimates of each tissue (i.e., the coefficients from the stratified LD Score regression). The �l for 
a given tissue type and phenotype corresponds to the effect of a one-unit increase in a SNP’s 
stratified tissue-specific LD score on the expected square of the SNP’s GWAS estimate from the 
phenotype’s GWAS (where the SNP genotype has been standardized), after controlling for the 
annotations from the baseline model. It is also an estimate of the expected increase in the 
phenotypic variance accounted for by a SNP due to the SNP’s being in the given tissue category, 
controlling for the annotations from the baseline model. SNPs that bear a tissue annotation with a 
large and positive �l will tend to account for a larger share of a phenotype’s heritability.  

Supplementary Fig. 11a shows, for general risk tolerance and height, the ratio of the �l estimates 
over the LD Score estimates of phenotypic heritabilitylll,mmm. For each phenotype, we normalized 
the �l’s and their standard errors by the LD Score heritabilitynnn to increase comparability across 
phenotypes. Here, only Central Nervous System (z = 8.81, P = 6.04 × 10–19) and 
Immune/Hematopoietic (z = 3.19, P = 1.42 × 10–3) have positive coefficients surviving Bonferroni 
correction (note that these analyses excluded SNPs in the MHC region on chromosome 6). We 
also verified that the coefficient for Immune/Hematopoietic remained positive and highly 
significant (z = 4.71, P = 2.47 × 10–6) even after controlling for Central Nervous System (in 
addition to the baseline annotations) in the LD Score partitioned regression. Thus, the positive 
coefficient for Immune/Hematopoietic is not due to possible overlap between the 
Immune/Hematopoietic and Central Nervous System annotations.  

In these respects, general risk tolerance differs notably from a physical trait such as height, for 
which Connective/Bone has the largest positive z-score (z = 6.08, P = 1.20 × 10–9) and Central 

                                                             
lll Based on the LD score framework, ℎ∏πîU,W" = Oll �l,W, where y denotes the phenotype and Mc is the number of 
SNPs with annotation c among the SNPs used to calculate the LD scores. Thus, normalizing the �l’s by ℎ∏πîU,W"  is 
equivalent to normalizing the �l’s by a weighted sum of the �l’s, where the weights are given by the number of SNPs 
with the different annotations. 
mmm The confidence intervals were obtained with the delta method, assuming zero covariance between the �l’s and 
the phenotypes’ LD score heritabilities. 
nnn Each phenotype’s LD score heritability was obtained from the phenotype’s LD score regression 53.  
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Nervous System is the only tissue-level annotation with a negative coefficient94,ooo. Finally, we 
note that the coefficients for Cardiovascular, Gastrointestinal, Liver, and Skeletal Muscle (which 
were significantly enriched) have negative �l coefficients for general risk tolerance. This means 
that the GWAS signal is actually negatively enriched for histone marks in these tissues, after taking 
the baseline annotations into account. 

12.1.4 Discussion  

The results of our baseline annotation model are similar to those reported by Finucane et al.94 for 
a set of nine phenotypes and to those reported by Okbay et al.16,18 for educational attainment, 
subjective well-being, depressive symptoms, and neuroticism. That is, evolutionary conserved 
regions (i.e. conserved in mammals195) bear the most significant enrichment, followed by 
annotations relating to modification of gene expression. This is in line with a large body of 
literature that suggests that complex traits are likely to mainly be affected by genetic variants 
involved in the modification of gene expression, rather than by direct coding variants196. In 
particular, the significant enrichment of “H3K9ac histone marks” points to the involvement of 
active gene promoters in general risk tolerance197. 

The evolutionarily conserved category denotes regions of the genome that have been conserved in 
mammals throughout evolution. The evolutionary conservation of a genomic region can be studied 
through assessment of the “mutation rate” of such a region. That is, some regions of the genome 
accumulate base-pair substitutions more slowly than predicted by a model of selective 
neutrality195, which implies that mutations in such regions tend to have deleterious effects that 
decrease evolutionary fitness, and are therefore subject to natural selection. 

As for the tissue enrichments, we obtained significant �l estimates for Central Nervous System 
and Immune/Hematopoietic cell types. As explained above, this implies that risk-tolerance 
associated SNPs that are in or near histone marks in these tissues contribute relatively more to the 
per-SNP heritability of risk tolerance than most other SNPs. Because risk tolerance is a 
psychological trait, central nervous system enrichment is not surprising. More interesting is the 
current lack of significance of the �l estimates for Adrenal/Pancreas. This suggests the highly 
significant enrichment estimate for Adrenal/Pancreas is due to overlap with SNPs bearing other 
annotations rather than to the partial effect of bearing the Adrenal/Pancreas annotation, and may 
possibly question the role for the stress-response system in risk tolerance198–200. We note, however, 
that the lack of significance of the �l estimates for Adrenal/Pancreas could also be due to lack of 
statistical power or to imprecisions or imperfections in the SNP annotations. The stress-response 
system is driven by the hormones cortisol and (nor)epinephrine (also known by the name 
(nor)adrenaline), which are all produced in the adrenals.  
To the best of our knowledge, we are the first to find significant LDSC tissue enrichment of the 
immune system in a psychological or neuropsychiatric trait (although enrichment of specific 
immune pathways and/or immune tissue enhancer regions has been implicated in 
schizophrenia58,201, bipolar disorder202 and major depression203). We note that involvement of the 
immune system is not corroborated by our other analyses (aside from the large number of genes 

                                                             
ooo We caution that a detailed quantitative comparison of the results for the height and the general-risk-tolerance 
GWAS might be misleading, because the sample size of the height GWAS is smaller than that of the risk-tolerance 
GWAS, and because the heritability of height is substantially higher than the heritability of general risk tolerance. 
Nonetheless, our results suggest that different tissue types tend to be relatively more enriched for the two phenotypes. 
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significant in the MHC region across out MAGMA, SMR and lookup analyses), and it is unclear 
how to interpret this finding.  

12.2 Identifying genes associated with general risk tolerance with MAGMA 

To identify genes that are significantly associated with general risk tolerance, we conducted a gene 
analysis with MAGMA179 (defined in Supplementary Note section 11.2) for each of ~18,000 
genes, in a hypothesis-free manner. We then used the Gene Network204 co-expression database to 
gain insight into the functions of the significant MAGMA genes. 

12.2.1 Gene analysis with MAGMA: Testing ~18,000 protein-coding genes  

The gene-based analysis was performed with MAGMA179 using the summary statistics from our 
meta-analysis of the discovery and replication GWAS of general risk tolerance (after applying 
genomic control using the intercept of the LD Score regression). 
All the SNPs from these summary statistics were annotated to genes based on NCBI 37.3.13 gene 
definitions. Only SNPs located between the transcription start and stop sites of a gene were 
annotated to that gene. A per-gene test statistic is calculated as the mean of the GWAS –log10(P) 
values for all the SNPs between the transcription start and stop sites of a gene; MAGMA then 
calculates a P value for the resulting gene test statistic, using a procedure that takes into account 
the non-independence of the SNPs within the gene due to LD205. We used our main reference panel 
(described in Supplementary Note section 2.4) as reference data to estimate LD. Bonferroni 
correction was applied to account for multiple testing, counting each gene as an independent test. 
The SNP-to-gene annotation yielded 18,224 protein-coding genes containing at least one SNP 
present in the current GWAS. After Bonferroni correction for 18,224 tests, 285 genes showed a 
significant association with general risk tolerance (Supplementary Table 17). We will henceforth 
refer to these as the “MAGMA genes.” The top ten MAGMA genes are: CADM2 (chr. 3: 85 Mb, 
P = 1.08 × 10–50; all the P values reported in this paragraph are Bonferroni-corrected P values), 
MSRA (chr. 8: 9 Mb, P = 1.61 × 10–28), XKR6 (chr. 8: 10 Mb, P = 3.54 × 10–23), FOXP2 (chr.7: 
113 Mb, P = 9.94 × 10–19), MFHAS1 (chr. 8: 8 Mb, P = 2.76 × 10–18), RP1L1 (chr. 8: 10 Mb, P = 
2.04 × 10–15), FOXP1 (chr. 3: 71 Mb, P = 2.23 × 10–13), RBFOX1 (chr. 16: 5 Mb, P = 1.99 × 10–

12), ARNTL (chr. 11: 13 Mb, P = 2.27 × 10–11), and ERI1 (chr. 8: 9 Mb, P = 7.49 × 10–11).  

The results show that several long-range LD or inversion regions of the genome contain a 
disproportionate number of MAGMA genes (which is not surprising, since MAGMA does not 
correct for LD between genes in its gene-based test). For instance, the Human Leukocyte Antigen 
(HLA) region (and its surrounding area) carries a relatively large number of significant genes: 
there are 29 significant genes in the chr.6: 25-32 Mb region, of which 11 are zinc finger genes, six 
are histone protein genes, and three are olfactory function genes (none of the HLA-genes 
themselves are significant, however). The large candidate inversion region on chromosome 8 
(chr.8: 8 to 12 Mb, previously associated with neuroticism and depressive symptoms18) and its 
surrounding area carry 21 significant genes, 13 of which are among the top 30 most significant 
MAGMA genes, and of which MSRA is the most significant by far (Bonferroni-corrected P = 1.61 
× 10–28). A long-range LD region on chromosome five (chr.5: 135-138 Mb) contains 10 significant 
genes, of which ETF1 is the most significant by far (Bonferroni-corrected P = 7.46 × 10–7). Finally, 
we note that several of these genes (MSRA, ERI1, XKR6, and ETF1) were also significant in the 
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SMR analyses, although only in the analysis of blood cis-eQTLs, and not in the analysis with 
GTEx data on cis-eQTLs from brain regions (lack of replication with the brain eQTL data may be 
because these data are based on relatively small samples and statistical power was consequently 
limited). 

12.2.2 Using co-expression to predict gene function  

We used a co-expression database called Gene Network204 (accessed 6 September 2017) to gain 
further insight into the functions of the MAGMA genes. The advantage of Gene Network lies in 
its ability to assign functions to a gene, even if that gene has not been annotated with a function in 
an actual empirical experiment (as described below). This is an important advantage because many 
human genes have not yet been studied in depth and hence have poorly understood functions. 
Therefore, looking up only the genes with empirically established functions in databases is in most 
cases not fully informative. 

The gene functions used by Gene Network are derived from expert-curated sets of genes known 
as “gene sets” or “pathways.” The experts involved in the curation of such gene sets continuously 
review the empirical literature of a gene, and assign a gene its functions based on empirical results 
from laboratory experiments. Gene Network then assigns genes “membership” to these expert-
curated gene sets by establishing “guilt-by-association” based on their co-expression with genes 
that are known members of such gene sets. A total of 14,461 functionally defined gene sets served 
as input, taken from standard databases such as Gene Ontology206 (GO), Reactome207,208, and 
Kyoto Encyclopedia of Genes and Genomes209 (KEGG). These co-expression patterns also serve 
as input for DEPICT191 (Supplementary Note section 12.4). All members of the functionally 
defined gene sets or pathways share a particular biological function, which can range from very 
specific and bottom-up functions (e.g., “clathrin binding”) to more coarsely defined and top-down 
functions (e.g., “hormone activity”). The biological function can also refer to the cellular site where 
the gene performs its function (e.g., “neuromuscular junction”).  
We briefly describe the Gene Network method here, noting that in-depth documentation of the 
method can be found in Fehrmann et al.204 and Pers et al.191. The Supplementary Information of 
Okbay et al.18 also contains a detailed description. Gene Network uses information from a total of 
77,840 publicly available human, mouse, and rat Affymetrix microarrays from the Gene 
Expression Omnibus. These microarrays measure expression levels of at least 19,997 human genes 
(or, in the case of mouse and rat experiments, their mouse- or rat-orthologs). Gene co-expression 
levels were measured in Pearson correlation coefficients. The resulting correlation matrix was 
broken down into principal components (PCs), which gave rise to a total of 2,206 reliable 
“transcriptional components” (TCs). 

Each PC (i.e. transcriptional component) captures a shared pattern of gene expression across 
experiments, implying shared biology of the genes that load highly on the PC. The PCs can capture 
subtle patterns of co-expression that potentially reflect shared biological pathways among genes, 
which would typically be overshadowed by strong global transcriptomic effects, and thus missed 
in a straightforward correlation analysis.  
Subsequently, the authors of this method tested whether the pattern of co-expression captured by 
the PC significantly differentiated members of the gene set from all other genes, by testing the 
difference between the mean PC loading of the gene set versus the mean loading of all genes not 
in the gene set, using a Welch t-test for unequal variances. Each row of the resultant 
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14,461	×	2,206 matrix of t-statistics (each element corresponding to a gene set and PC) was then 
correlated with the PC loadings of the individual genes, to test whether the expression patterns of 
each gene and gene set were correlated. Finally, the thresholds for declaring a correlation between 
a gene’s PC loadings and a gene set’s t-statistics as statistically significant were chosen to satisfy 
False Discovery Rate (FDR) < 0.05. Thus, each gene’s membership to each gene set was tested, 
allowing significant associations to be queried from the Gene Network database. 
From this database, we first recorded for each MAGMA gene all statistically significant results 
(i.e., all gene sets that are significantly correlated with the genes’ PC loadings), derived from gene 
sets and pathways from the Gene Ontology206 (http://amigo.geneontology.org/amigo) domains 

Biological Process, Cellular Compartment, and Molecular Function. We also recorded the results 
listed under the Reactome207 (http://www.reactome.org/) pathways and under the Kyoto 
Encyclopedia of Genes and Genomes209 (KEGG, http://www.genome.jp/kegg/) pathways. In each 
case, we report (in Supplementary Table 18) the five most frequently occurring gene sets across 
the MAGMA genes. 
Gene Network also reports organs, tissues, and cell types in which the gene under investigation is 
significantly and specifically expressed (compared to other tissues). For each MAGMA gene, we 
recorded all these organs, tissues and cell types where the area under the receiver operating 
characteristic curve (AUC), with respect to the discriminating power of measured gene expression, 
exceeded 0.80 according to Gene Network. Gene Network derived this AUC from the difference 
between the samples of the focal tissue and all other tissues in the distribution of the queried gene’s 
expression level. These differences were determined by text-mining the descriptions provided by 
experimenters who uploaded the expression data to the Gene Expression Omnibus (GEO). Note 
that the tissue/cell type labels taken from the Medical Subject Headings (MeSH) database can refer 
to different levels of a hierarchy and are therefore not necessarily mutually exclusive. 
We note that the method has three potential inherent drawbacks. First, only genes with reliable 
gene expression data (i.e., which have survived quality control) are included in the database. 
Therefore, the co-expression matrix might exclude genes that may be important but that have not 
yielded reliable expression data. For instance, FTO (a gene implicated in obesity) is a notable gene 
not included in the database.  
Second, the method does not assign functions to genes that have unique patterns of gene expression 
but that may well play a role in known biological processes.  
The third potential drawback of our querying method is that some of the significant MAGMA 
genes may only capture signal from other, nearby MAGMA genes, and not have any independent 
causal effects of their own.  In this analysis, we conduct the search for each of the MAGMA genes 
and sum their predicted gene functions as if they were independent. This potential dependence 
among genes must, however, be taken into account when interpreting the predicted gene function 
counts. 
For each of the three Gene Ontology (GO) domains, the Reactome pathways, the KEGG pathways, 
and the significant organs, tissues, and cell types, Supplementary Table 18 lists the five most 
frequently occurring predicted gene functions, cellular components, and cell-type/tissues for the 
266 MAGMA genes that were present in the Gene Network database. The most frequently 
occurring terms overwhelmingly point to neural function and anatomy. To a lesser degree, 
functions related to gene expression are also highlighted.  
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The top five tissues are all brain tissues: prefrontal cortex, which is predicted for 88 genes, frontal 
lobe (81 genes), visual cortex (81 genes), parietal lobe (80 genes), and putamen (which is part of 
the basal ganglia; 80 genes). The most interesting of these tissues is likely the prefrontal cortex, 
which is crucial for inhibition of emotion and planning of behavior210, and is one of the last brain 
regions to mature during pubertal development211. 
The top terms for GO biological process and GO molecular function are “glutamate signaling 
pathway” (12 genes) and “glutamate receptor activity” (15 genes), respectively, while the top 
occurring terms for GO cellular component refer to dendritic (22 genes) and synaptic (22 genes) 
cell components. GO biological process also infers several functions related to modification of 
gene expression, namely “chromatin modification and organization” (11 genes) and “histone 
modification” (9 genes). The top terms for Reactome are “neuronal system” (20 genes), with the 
remainder of top terms referring to synaptic and neurotransmitter functions. Four out of five terms 
for KEGG are neural, with “calcium signaling pathway” (20 genes) as the top term. The only non-
neural annotation for KEGG is “spliceosome” (18 genes). 

12.3 Identifying genes associated with general risk tolerance with SMR 

12.3.1 Background 

The rationale for the Summary-based Mendelian Randomization (SMR) test212, which is one of 
several methods that test for an association between gene expression and trait variation (e.g., 
refs.212–214), is that GWAS associations for complex traits and common diseases are enriched in 
non-coding regulatory regions of the genome (e.g., ref.58), suggesting that many causal variants 
influence trait variation through regulation of gene expression. There is also evidence that causal 
variants often do not target the gene closest to the association signal (e.g., ref.215).  
SMR differs from our eQTL lookups of top GWAS SNPs (Supplementary Note section 12.6.3) 
in several important ways. First, it differs in its starting point: instead of testing all top GWAS 
SNPs for association with a probe, it tests all gene expression probes with a significant SNP 
association (i.e., all significant cis-eQTLs in a certain tissue dataset) for association with the 
phenotype. To this end, it uses SNPs as instrumental variables for gene expression levels to 
estimate the association between gene expression levels and the phenotype (as described in further 
detail below).  

In this sense, SMR is more powerful than the eQTL lookups, where the number of tests is informed 
by the stringent GWAS P value threshold (as only genome-wide significant SNPs are put forward 
for eQTL testing). In SMR, the number of tests is informed by the number of significant eQTLs, 
which runs in the thousands. In this way, SMR can in principle uncover many more gene-
phenotype associations than the eQTL lookups. 
In addition, the “HEIDI” test feature of SMR is able to discard eQTL associations that are caused 
by mere linkage, thereby discarding genes that are “spuriously” associated with the phenotype (as 
described in further detail below). This feature distinguishes SMR from other transcriptome-wide 
analysis methods, and from the eQTL lookups, which may uncover genes that are merely 
associated with the phenotype due to linkage. We still perform the eQTL lookups, however, as 
they can give us some insight into the functional annotation of our GWAS top hits.  
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12.3.2 Methods 

Summary statistic-based Mendelian Randomization (SMR)212 is a method for estimating the effect 
of an exposure (x), such as gene expression, on a phenotype of interest (y), using summary-level 
data on estimated SNP effects (z, the instrumental variable) from large-scale GWAS and eQTL 
studies. In a Mendelian Randomization (MR) framework, the effect of x on y (bxy) is:  

‰ÂW = ‰ÊW/5ÊÂ, 

where ‰ÊW is the estimated SNP effect from a GWAS for trait y and 5ÊÂ is the estimated SNP effect 
on the expression level of gene x from an independent eQTL study.  

The sampling variance of ‰ÂW is given by: 
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where [ºΩ(5ÊÂ, ‰ÊW) is assumed to be zero if 5ÊÂ and ‰ÊW are estimated in independent cohorts. If 
5ÊÂ and ‰ÊW are used in place of 5ÊÂ and ‰ÊW (which are unknown), then the SMR test statistic, 
which is approximately `", takes the form:  

ÁîÕË = ‰ÂW" /Ω»,(‰ÂW) ≈
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]ÊW" + ]ÊÂ"
, 

where ]ÊW and ]ÊÂ are the estimated z statistics from the GWAS and eQTL studies, respectively.  

A significant SMR test result could be due to causality (i.e., if the effect of z on y is via x), 
pleiotropy (i.e., if z has pleiotropic effects on x and y) or linkage (i.e., if z1 affects x and z2 affects 
y, and z1 and z2 are in linkage disequilibrium). Like all MR methods, SMR is unable to distinguish 
between causality and pleiotropy on the basis of a single genetic instrumental variable (i.e., the top 
cis-eQTL as opposed to multiple cis and trans-eQTLs), and so we do not distinguish between 
pleiotropy and causality in our analyses. 
On the other hand, it is possible, under some assumptions, to distinguish pleiotropy (or causality) 
from linkage using the HEIDI (Heterogeneity In Dependent Instruments) test developed by Zhu et 
al.212. The rationale for the HEIDI test is that if the same causal variant has a pleiotropic effect on 
gene expression and the trait, then the estimate of bxy should be identical for any SNP in LD with 
the causal variant. Therefore, a test for linkage is equivalent to testing for heterogeneity in the 
estimates of bxy for the top cis-eQTL and any other significant SNPs in the cis-eQTL region. If 
there are m such variants (excluding the top cis-eQTL), and if we define …4 = ‰ÂW(4) − ‰ÂW(i≥m) 
and È = …*, …", . . . …Í , then the HEIDI test against the null hypothesis d = 0 takes the form: 

Á∫ªgπg = ]Î(4)"
Í

4
, 

where ]Î(4) equals …4/ Ω»,(…4). SNPs with r2 > 0.9 with the top cis-eQTL are excluded from the 
set of m SNPs in the HEIDI test, because statistical power to distinguish between linkage and 
pleiotropy is limited if the causal variants have close to perfect LD. The test also excludes SNPs 
with eQTL P values > 1.6 x 10-3, due to the need to remove weak instrumental variables.  
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For a complete description of the SMR and HEIDI tests, see Zhu et al.212. 

12.3.3 Data 

SMR requires summary statistics from large-scale GWAS and eQTL studies and genotype data 
from an ancestry-matched reference sample for estimating linkage disequilibrium. We used 
estimates of SNP effects (bzy) from the meta-analysis of our discovery and replication GWAS of 
general risk tolerance, and we used summary data on cis-eQTLs (bzx) from the eQTLgen 
Consortium's meta-analysis of 14,115 whole blood and peripheral blood samples (in prep.). We 
excluded probes in the MHC (26.1 to 33.8Mb on chromosome 6 based on hg19) due to the 
complexity of linkage disequilibrium in this genomic region, and we excluded SNPs with MAF < 
0.01 and INFO score < 0.3. Analyses were restricted to probes with at least one cis-eQTL (defined 
as +/-1Mb from the middle of the probe) with P < 5 × 10–8, because Mendelian randomization 
assumes that the instrumental variable has a strong effect on the exposure. After filtering we had 
access to summary data on 12,751 probes and 10,209,777 (1000 Genomes imputed) SNPs. We 
used Bonferroni correction to account for multiple testing, resulting in a genome-wide significance 
threshold for the SMR test of P < 3.9 × 10–6 (= 0.05/12,751).  
We based our primary analyses on eQTLs identified in blood (in the eQTLgen data) because the 
available sample size is at least an order of magnitude larger than for any other human tissue, and 
so this strategy maximizes statistical power for genes with shared genetic control of regulation 
across tissues. However, genetic control of regulation of some genes is tissue-specific, and so for 
each of the 21 probes passing both the SMR and HEIDI tests in the eQTLgen analysis, we also 
performed SMR analyses using estimates of SNP effects on gene expression in the human brain. 
We used summary eQTL data from the Genotype Tissue Expression Consortium (GTEx) for 11 
brain regions (anterior cingulate cortex, caudate basal ganglia, cerebellar hemisphere, cerebellum, 
cortex, frontal cortex, hippocampus, hypothalamus, nucleus accumbens basal ganglia, pituitary, 
putamen basal ganglia) with sample size exceeding 70 (GTEx release v6p). We mapped Illumina 
expression probes in eQTLgen to GTEx transcripts using Ensembl gene IDs. We applied a relaxed 
eQTL P value threshold for inclusion of transcripts in the analysis of brain eQTLs (P < 2.5 × 10–

3), due to the small number of transcripts tested per tissue, and we used a correspondingly lower 
significance threshold for the SMR test (P < 2.16 × 10–4, based on correction for testing of 21 
probes in each of 11 brain regions). 

We used our main reference panel (Supplementary Note section 2.4) for LD estimation. All 
analyses used hg19 coordinates.  

12.3.4 Results and discussion 

We used SMR to test for association between gene expression in blood and general risk tolerance 
using summary data from our GWAS meta-analysis and blood cis-eQTLs from the eQTLgen 
consortium. We identified 42 genes (tagged by 46 probes) at experiment-wide significance (P < 
3.9 × 10-6), of which 19 (tagged by 21 probes) passed the HEIDI test, indicating we could not 
reject the null hypothesis of a single causal variant with pleiotropic effects on both risk tolerance 
and gene expression in blood (Supplementary Table 36). Thirteen of the 19 significant genes 
(68%) were in reported genome-wide significant loci for general risk tolerance, whereas the 
remaining six (CTNNA1, SIL1, ZCCHC7, HNRNPK, HINFP, LYZ) were “novel” discoveries, 
insomuch as no reported general-risk-tolerance GWAS locus was located within 0.5Mb. These 
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latter discoveries point to genetic loci that are likely to be identified with genome-wide 
significance in larger GWAS of general risk tolerance. Several genes passing the SMR and HEIDI 
tests, including the top ranked gene MSRA (PSMR = 1.8 × 10–13, PHEIDI = 8.8 × 10–2), ERI1 (PSMR = 
1.1 × 10-7, PHEIDI = 8.5 × 10–2) and XKR6 (PSMR = 4.3 × 10–10, PHEIDI = 0.59), were also significantly 
associated with general risk tolerance in the MAGMA analysis (Supplementary Note section 
12.2).  

For each of the 21 probes passing both the SMR and HEIDI tests in the eQTLgen blood analysis, 
we repeated the SMR analysis for general risk tolerance using summary data on cis-eQTLs from 
the 11 GTEx v6p brain regions (Supplementary Table 36). Three genes passed both the SMR 
and HEIDI tests in one or more brain regions: CTNNA1 (chromosome 5, 138.11Mb) was 
significant in caudate basal ganglia, cerebellum and cerebellar hemisphere; CENPV (chromosome 
17, 16.25Mb) was significant in putamen basal ganglia, nucleus accumbens basal ganglia, caudate 
basal ganglia, anterior cingulate cortex (BA24), hippocampus and hypothalamus; and ZSWIM7 
(chromosome 17, 15.89Mb) was significant in cerebellum, cerebellar hemisphere, cortex, anterior 
cingulate cortex (BA24) and frontal cortex (BA9). These brain regions overlap with those 
identified by the DEPICT tissue prioritization analysis (see Supplementary Note section 12.4). 
For CTNNA1 and CENPV (Supplementary Fig. 16), the risk-tolerance increasing allele was 
associated with decreased gene expression in blood and each of the respective brain regions. For 
ZSWIM7, the risk-tolerance increasing allele was associated with increased gene expression in 
blood, cerebellum and cerebellar hemisphere, but the results were inconsistent for cortex, anterior 
cingulate cortex and frontal cortex (i.e., the risk-tolerance increasing allele was associated with 
decreased expression). These findings suggest that CTNNA1 and CENPV are putatively functional 
genes for risk-taking behavior but that more investigation is required to confirm the association 
with ZSWIM7. 

According to the GTEx portal website, CENPV is highly expressed in many tissues, but especially 
in the brain’s cerebellum, while CTNNA1 is not particularly strongly expressed in brain tissue 
(compared to the other tissues). The function of CENPV has not been studied frequently, but two 
studies have discovered functions in cell division216 and migration217. CTNNA1, on the other hand, 
has been studied widely for its role in tumor suppression (e.g. ref.218), and mutations in this gene 
are known to lead to retinal pigment dystrophy, causing macular disease219. Both CTNNA1 and 
CENPV were significantly associated in the MAGMA gene based test, but neither were prioritized 
by DEPICT at FDR > 0.20. Therefore, the putative roles CENPV and CTNNA1 may play in general 
risk tolerance remain unclear. 

12.4 Prioritization of tissues, gene sets, and genes using DEPICT  

12.4.1 Background and methods 

DEPICT (Data-driven Expression Prioritized Integration for Complex Traits) is a computational 
tool that uses a set of GWAS summary statistics as input and allows enrichment analysis of tissues 
and gene sets and prioritization of genes in the associated loci (see ref.191  for details).  
For this work, we used DEPICT release 194ppp. DEPICT was run using the summary statistics of 
the meta-analysis of the discovery and replication GWAS of general risk tolerance (after applying 
                                                             
ppp DEPICT release 194 handles GWAS data imputed with 1000 Genomes Project reference data and was downloaded 
in February 2016 from: 
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genomic control using the intercept of the LD Score regression). Only SNPs with GWAS P values 
less than 10-5 were used as input, and DEPICT-defined loci were defined by clumping these SNPs 
(PLINK clumping parameters: --clump-p1 1e-5 --clump-r2 0.1 --clump-kb 500, using 1000 
Genomes Project pilot phase data as reference). Locus boundaries were then defined using a LD 
r2 threshold of 0.5, and overlapping loci were merged, yielding 464 autosomal loci comprising 
1,060 genes. DEPICT was run using default settings: 500 permutations for bias adjustment; 50 
replications for false discovery rate estimation; normalized expression data from 77,840 
Affymetrix microarrays for gene set reconstitution; 10,968 reconstituted gene sets for gene set 
enrichment analysis; and testing 209 tissue/cell types assembled from Medical Subject Headings 
(MeSH) annotations from 37,427 Affymetrix U133 Plus 2.0 Array samples for enrichment in 
tissue/cell type expression191,204. Furthermore, gene expression data from 37 RNA-sequenced 
tissues from the Genotype-Tissue Expression (GTEx) Consortium76 were used for tissue 
enrichment analysis.  

12.4.2 Results: Prioritized tissues, gene sets, and genes 

We begin by reporting the results of the DEPICT tissue enrichment analysis, which we conducted 
using GTEx RNA-sequencing gene expression data as well as using microarray data from 209 
tissues191,204. The DEPICT tissue enrichment analysis identifies tissues in which genes near 
general-risk-tolerance-associated SNPs are significantly overexpressed relative to genes in random 
sets of loci matched by gene density.  
Using GTEx RNA-sequencing gene expression data, we identified eight significantly enriched 
tissues (FDR < 0.01), which all represent different areas of the brain (Fig. 3b and Supplementary 
Table 20). The top three prioritized tissues were cortical brain regions, namely “Frontal Cortex 
(BA9),” “Anterior Cingulate Cortex (BA24)” and “Cortex.” The cortical regions BA24 and BA9 
are respectively located in the ventral anterior cingulate area and in the dorsolateral and medial 
prefrontal cortex220,221. These two regions had initially been respectively associated with memory 
and emotion processing, though more recent work stresses their role in executive functions such 
as “executive control of behavior,” “inferential reasoning,” and “learning and decision making”222–

226. The DEPICT tissue prioritization analysis with the GTEx data also points to subcortical 
regions, including notably the nucleus accumbens, caudate, and putamen, which form the basal 
ganglia227, as well as the amygdala. The basal ganglia and amygdala are known for their respective 
role in motor control (and its impairment in Parkinson’s disease), and in the processing of negative 
emotions, such as fear. However, recent evidence also supports a role for the basal ganglia and the 
amygdala in reward processing and decision-making228–231. 
Using microarray data from 209 tissues, we replicated the brain enrichment and identified overall 
19 significantly enriched tissues (FDR < 0.01) which are all part of the central nervous system 
(CNS) (Supplementary Fig. 11b and Supplementary Table 21).  Note that we also observed an 
enrichment for the retina, which is part of the CNS but in DEPICT is categorized as “Sense 
Organs.” This analysis additionally showed expression in deeper brain structures, such as the 
rhombencephalon and metencephalon. The metencephalon, also known as the midbrain, is the 
major location of dopamine neurons232 ; we note, however, that this exact location, known as 
substantia nigra, was not prioritized by DEPICT in the analysis of GTEx tissues (FDR > 0.20). 
Moreover, the results seem to have little specificity toward the reward and decision-making 

                                                             
https://data.broadinstitute.org/mpg/depict/depict_download/bundles/DEPICT_v1_rel194.tar.gz.  
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system, as they also show expression in other CNS regions with diverse functions (e.g., the visual 
cortex). 

Next, we report the results of the DEPICT gene set enrichment and gene prioritization analyses. 
DEPICT “reconstituted gene sets” are predefined gene sets taken from several bioinformatic 
databases (including Gene Ontology, Reactome, and Kyoto Encyclopedia of Genes and Genomes) 
that have been reconstituted using co-expression data to represent the weight of evidence of a given 
gene belonging to the gene set—as opposed to the all-or-nothing representation for the predefined 
gene sets (see Pers et al., 2015191, for details). Each gene’s membership score with respect to a 
given reconstituted gene set is simply the z-statistic of the correlation between the gene’s vector 
of transcriptional components (TC) loadings and the binary gene set’s t-statistics with respect to 
the TCs—the same z-statistics used for testing the statistical significance of the Gene Network 
predictions. We identified 93 reconstituted gene sets that are significantly enriched (FDR < 0.01) 
for genes found among the general-risk-tolerance-associated loci (Supplementary Table 19). We 
used the Affinity Propagation tool233 to cluster related reconstituted gene sets into a network 
diagram (Fig. 3a)qqq. The most strongly enriched gene sets highlight pathways related to the CNS. 
These include gene sets for regulation of neuronal projections (most notably synaptic and dendritic 
development) and synaptic transmission. Several of the most significant pathways relate to 
synaptic transmission activity, in particular GABA and glutamate neurotransmitter signaling. We 
were able to prioritize at least one gene at 106 of 464 loci defined by DEPICT (23% of the loci) at 
FDR < 0.01. In total DEPICT prioritized 122 genes (Supplementary Table 37) across those 106 
loci. 
The most significantly enriched reconstituted gene set is “dendrite development.” The presence of 
dendrites distinguishes neurons from all other cell types; these unique structures bestow the ability 
to receive signals of high spatiotemporal resolution. We mention just one aspect of dendrite 
development implicated by our results: the coordination or mutual influence required to juxtapose 
the axonic and dendritic sides of the developing synapse. In certain hippocampal pyramidal 
neurons, recognition molecules of the NGL/NTNG family produce a compartmentalization of the 
dendritic tree by ensuring the innervation of distinct portions of the tree by axons from 
correspondingly distinct sources. NTGN1 and NTNG2 encode ligands for receptors encoded by 
LRRC4C (also called NGL1) and LRRC4 (also called NGL2) respectively (NTGN1 is not 
prioritized by DEPICT, but NTNG2 and LRRC4 are prioritized at FDR < 0.01 and LRRC4C is 
prioritized at FDR < 0.05). LRRC4C and LRRC4 are members of the leucine-rich repeat family, 
whose overarching function may be the exploitation of both family size and alternative splicing to 
create unique molecular fingerprints enabling precision wiring between neurons234,235. Incoming 
axons bearing NTGN1 and NTNG2 respectively somehow find their corresponding receptors 
(LRRC4C, LRRC4) and thereby innervate non-overlapping compartments on distal and proximal 
dendrites236. These leucine-rich repeats are synaptic cell adhesion molecules (CAMs, such as those 
encoded by CADM2) that transmit signals to the dendritic interior upon trans-synaptic binding, 
and thus their compartmental distribution may bestow varying information-processing properties 
along the length of a dendritic tree. 

Our results implicate a number of different neurotransmitter receptors embedded in the membrane 
of the mature dendrite. Glutamate is the most abundantly employed excitatory neurotransmitter in 
the brain. When glutamate released from the axon of a transmitting presynaptic neuron binds to a 

                                                             
qqq The script to produce the network diagram can be downloaded from https://github.com/perslab/DEPICT. 
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fast-acting AMPA-type glutamate receptor embedded in the dendrite of the receiving postsynaptic 
neuron, the channel coupled to the receptor momentarily opens by a lock-and-key mechanism and 
permits a massive influx of Na+ ions. This is the primary mechanism leading to rapid 
depolarization of the receiving neuron, which can lead in turn to the neuron firing its own signal 
along its axon. Our DEPICT-prioritized genes include GRIA1, which encodes the most common 
subunit appearing in the AMPA-type glutamate receptor. 

Two genes encoding subunits of NMDA-type glutamate receptors are among our DEPICT-
prioritized genes (GRIN2A, GRIN2B). NMDA-type glutamate receptors act like coincidence 
detectors: they only open when glutamate has landed on the receptor and the postsynaptic 
membrane potential has been sufficiently depolarized by the opening of other excitatory channels 
to remove the Mg2+ block. The emerging picture is of a receptor whose task is not to respond 
immediately to any given input impinging on the dendrite but rather to admit an agent of change 
into the dendrite in response to a temporal coincidence of synapse-specific input and membrane 
depolarization.  

So far, we have been discussing excitatory neurotransmission—that is, a signal from one neuron 
to the next that pushes the receiving neuron closer to its own firing threshold. Now we turn to 
inhibitory neurotransmission, which has the effect of pushing the receiving neuron further away 
from its firing threshold. The most important source of inhibition in the cortex is mediated by 
receptors for the neurotransmitter GABA. They produce inhibition in many cases by generating 
hyperpolarizing changes in membrane potential that counteract the depolarizing changes caused 
by Na+ influx through opened glutamate receptors. GABAA receptors mediate the effects of 
alcohol intoxication and drugs such as benzodiazepines and barbiturates, which have anxiolytic 
effects. 
A GABAergic neuron typically establishes outgoing connections only with neurons in its local 
vicinity. A glutamatergic pyramidal neuron, in contrast, often sends its axon to neurons that are 
far away (e.g., the opposite hemisphere). When this local connectivity of GABAergic neurons is 
emphasized, they are called interneurons. Because it is not possible to construct an information-
processing device from only inhibitory neurons, we can reasonably say that they play some 
supporting or modulatory role. 
GABAA receptor subunits are grouped into subfamilies known respectively as α, β, γ, δ, ε, θ, φ, 
and ρ237, the first three of which are represented in our DEPICT-prioritized genes (GABRA2, 
GABRA4, GABRB1, GABRG3). A complete receptor is composed of five subunits; the 
combinatorial number of possible pentamers is quite impressive, even if we put aside alternative 
splicing. Some subunits of GABAA receptors contain regulatory sites for phosphorylation and 
domains that interact with proteins such as the product of GPHN involved in receptor trafficking 
and localization at synapses238. 

The importance of both excitatory and inhibitory neurotransmission is affirmed by the significant 
enrichment of gene sets such as “glutamate receptor activity,” “abnormal miniature excitatory 
postsynaptic currents,” and “GABAA receptor activity.” Note that the cluster named after the latter 
gene set contains the second-most significant gene set in the entire analysis (Fig. 3a).  

Four out of the top five prioritized genes encode proteins with transcriptional regulatory activity, 
some known to play a role in brain development. The strongest prioritized gene, FOXG1, encodes 
a transcription factor known to cause the congenital variant of Rett-syndrome239, a severe 
neurodevelopmental disease. The second strongest prioritized gene, ASH1L, encodes a histone 
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lysine N-methyltransferase involved in chromatin modification and has been implicated in autism 
and neurodevelopmental disorders240. The third strongest prioritized gene, FAM190A (alias 
CCSER1), is a relatively unknown gene with no previous reported associations to brain-related 
phenotypes. The fourth and fifth strongest prioritized genes, FOXO6 and NEUROD, both encode 
transcription factors and have been implicated in Alzheimer’s Disease and regulation of memory 
consolidation, respectively241,242. 

12.5 Competitive gene-set analysis with MAGMA: Testing gene sets related to 
GABA and glutamate neurotransmitters 

12.5.1 Background 

Since both the DEPICT pathway analysis and the Gene Network analysis of MAGMA genes both 
pointed to glutamate and GABA neurotransmitters, we decided to also perform an ex post 
MAGMA competitive gene-set analysis of relevant glutamate and GABA gene sets. This allowed 
us to directly compare the enrichment of these gene sets to that of the gene sets associated with 
dopamine, serotonin, testosterone, estrogen, and cortisol, which we also tested in a MAGMA gene 
set analysis described, as described in Supplementary Note section 11.2.  

Similar to what we did in Supplementary Note section 11.2, we looked up all relevant glutamate 
and GABA gene sets in MSigDB v6.1rrr and merged the resulting sets into one glutamate and one 
GABA superset. In addition, we tested the GABA and glutamate gene sets which were significant 
(FDR < 0.05) in DEPICT (see Supplementary Note section 12.4), although we updated the genes 
in those sets according to the gene sets in MSigDB v6.1. 
Thus, in total, we conducted a MAGMA gene set analysis to test four glutamate and GABA gene 
sets (Panel B in Supplementary Table 33): 

1) All GABA sets significant in DEPICT (FDR < 0.05, six gene sets) or with more than 10 
counts in the Gene Network analysis of MAGMA genes (one gene set), containing 68 
unique genes 

2) All glutamate sets significant in DEPICT (FDR < 0.05, 12 gene sets) or with more than 10 
counts in the Gene Network analysis of MAGMA genes (zero gene sets), containing 159 
unique genes 

3) All relevant GABA sets in MSigDB v6.1 (13 gene sets), containing 134 unique genes 

4) All relevant glutamate sets in MSigDB v6.1 (27 gene sets), containing 276 unique genes 
We tested all four sets together, and MAGMA computed the family-wise error correction 
accordingly. 

12.5.2 Results and discussion 

None of the four gene sets were significant (lower Bonferroni-corrected P = 0.299, Panel B in 
Supplementary Table 15). We are unsure why this might be the case but, as we further discuss 
this in Supplementary Note section 12.7.4, our MAGMA competitive gene-set analysis of the 

                                                             
rrr See http://software.broadinstitute.org/cancer/software/gsea/wiki/index.php/MSigDB_v6.1_Release_Notes for 
details on this release 
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four glutamate and GABA gene sets has some likely limitations. First, the statistical power of a 
MAGMA gene set analysis fails to increase substantially with increasing sample sizes186. Second, 
important effects of single SNPs in a gene set may be overshadowed by the high average P values 
of other SNPs in the gene or gene set. Third, it might be that only specific glutamate and/or GABA 
genes or pathways might be relevant for general risk tolerance, and that our merging of those 
pathways into major glutamate and GABA sets decreased our statistical power for discovery of 
relevant effects. (In the MAGMA gene-based analysis, only 12 of the 354 unique GABA/glutamate 
genes included in the four gene sets tested here were significant at Bonferroni-corrected P < 0.05.)  

12.6 Lookup of protein-altering variants and cis-eQTLs 

In this section, we conducted several analyses that annotate the 132 lead SNPs from the meta-
analysis of the discovery and replication GWAS of general risk tolerance, to gain insights about 
the biological systems they may affect. (For consistency with the rest of the bioannotation 
analyses, we performed these analyses with the 132 lead SNPs of the meta-analysis combining the 
discovery and replication GWAS of general risk tolerance, and not with the 124 lead SNPs from 
the discovery GWAS.sss)  
Specifically, we examined the overlap between these lead SNPs and various SNPs and genes that 
have been identified or annotated in previous GWAS and functional genomic databases. First, we 
checked whether our lead SNPs (and SNPs in LD with them) contain protein-altering variants. 
Second, we looked up the lead SNPs (and SNPs in LD with them) in an expression quantitative 
trait loci (eQTL) database.  

12.6.1 SNPs in LD with lead SNPs 

Since the genome is characterized by widespread linkage disequilibrium (LD), it is important to 
examine the overlap with SNPs that are in LD with our lead SNPs (as opposed to only considering 
our lead SNPs). Moreover, some data sources do not contain some of our lead SNPs but contain 
SNPs in strong LD with them, and a lead SNP does not actually have to be the causal SNP in the 
region: it may just be the most often genotyped or most accurately imputed SNP (i.e., the SNP 
measured with the least measurement error and therefore yielding a lower P value); it may tag an 
unmeasured causal SNP in the LD block; or it may simply be the most significant SNP in the block 
due to sampling variation. For these reasons, it is crucial to also consider the LD partners of the 
                                                             
sss Because the lead SNPs of the discovery GWAS are not a perfect subset of the lead SNPs of the meta-analysis of 
the discovery and replication GWAS, we investigated the overlap of the identified lead SNPs. The discovery GWAS 
identified 124 lead SNPs, and the meta-analysis of the discovery and replication GWAS identified 132 lead SNPs; 97 
of these are lead SNPs in both. We investigated if the non-overlapping lead SNPs of each GWAS are in weak LD with 
a lead SNP of the other (defined here as r2 > 0.1). The discovery GWAS identified seven lead SNPs that are not in 
weak LD with a lead SNP in the meta-analysis of the discovery and replication GWAS, and the meta-analysis of the 
discovery and replication GWAS identified 15 lead SNPs that are that are not in weak LD with a lead SNP of the 
discovery GWAS. (The list of these seven and 15 SNPs is available upon request.) These seven and 15 lead SNPs are 
all highly significant (P < 5E–7) in the other GWAS. In conclusion, approximately 117 lead SNPs overlap across the 
two GWAS, and the 15 additionally identified lead SNPs in the meta-analysis of the discovery and replication GWAS 
are all highly significant in the discovery GWAS. The slightly larger number of lead SNPs in the meta-analysis of the 
discovery and replication GWAS was to be expected because of the increased statistical power due to the inclusion of 
the replication GWAS.  
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lead SNP. We obtained a list of SNPs in strong LD with our lead SNPs using the PLINK –r2 
command in our main reference panel (described in Supplementary Note section 2.4). Here we 
used an LD cutoff of r2 > 0.6 and a distance cutoff of 250kb from the lead SNP. We refer to these 
SNPs as the “LD partners” of our lead SNPs. In total, the clumping procedure designated 132 “lead 
SNPs,” which tagged a total of 8,199 LD partners.  

12.6.2 LD with protein-altering variants 

Using the Haploreg v4.1 database243  (download date 18 May 2016, 
http://www.broadinstitute.org/mammals/haploreg/haploreg.php), we ascertained the protein-
altering status of our lead SNPs and their LD partners. More precisely, we ascertained whether our 
lead SNPs and their LD partners are annotated as “missense,” “nonsense,” “splice site 
donor/acceptor,” or “frameshift” in the 1000 Genomes Phase 3 European population. The 
Haploreg database uses annotations from dbSNP73 to determine functional status. We examined 
these annotations because protein-altering variants have a higher a priori probability of being 
causally relevant: they can result in stronger phenotypic differences between individuals compared 
to non-protein-altering variants. Most of the genome is non-coding, which underlines the 
importance of the detection of protein-altering variants. 

The results can be found in Supplementary Table 38. We found that there were eight protein-
altering SNPs among the lead SNPs’ LD partners, including two of the lead SNPs themselves. All 
protein-altering variants were relatively common (with 0.11 < MAF < 0.50) missense variants 
(meaning that they result in an amino acid change). The two missense lead SNPs are in genes 
WSCD2 (on chromosome 12) and NF1 (on chromosome 17). Little is known about WSCD2, but it 
is highly expressed in the brain and has predicted functions in long term memory and calcium 
signaling, according to Gene Network204. NF1 is involved in the genetic disorder 
“neurofibromatosis,” which is characterized by widespread fibromatous tumor formation and 
cognitive disability244. Other missense variants in LD with our lead SNPs were found in FREM1 
and BHLHE22. FREM1 encodes a protein that may play a role in craniofacial and renal 
development, while BHLHE22 is thought to be involved in the differentiation of sensory neurons. 
The remaining four missense variants in LD with our lead SNPs were in the HLA-region, of which 
three were in the olfactory receptor gene OR2J2, and one in histone gene HIST1H1T.  

12.6.3 eQTL lookup  

The publicly available results from the Genotype-tissue expression project (GTEx, 
www.gtexportal.org, version v6p)76 allow us to look up significant associations between our lead 
SNP and their LD partners and cis-gene expression in distinct human tissues. The GTEx team 
obtained postmortem samples from human donors and used RNA sequencing to measure RNA 
levels in distinct tissues from those samples. The GTEx team also genotyped the donors with SNP 
microarrays. The lookup of the risk-tolerance lead SNPs and their LD partners was performed on 
the publicly accessible summary statistics (downloaded 13 December 2016, version v6p) of the 
significant gene-cis-SNP pairs from GTEx. We only considered the set of significant cis-eQTLs 
(i.e., gene-cis-SNP pairs), where the cis-window is defined as a 1MB window around the gene’s 
transcription start site. In addition, when a gene transcript was a significant eQTL for more than 
one of our query SNPs, we only report the eQTL statistics (i.e., effect size, P value) for the SNP 
in highest LD with the lead SNP (which might be the lead SNP itself). That way, we only report 
each significant eQTL gene once in each tissue (even though the gene may have appeared several 
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times for the tissue, for several lead SNPs and LD partners). In cases where more than one lead 
SNP was an eQTL for the same gene, we report the eQTL for only one of them. 

To identify statistically significant cis-eQTLs, the GTEx consortium computes a gene-specific 
nominal P value threshold for each gene, with a permutation method as described in more detail 
in ref.245. The eQTLs we report here are all statistically significant, in the sense that the nominal P 
value of the slope of the regression of the gene’s expression value on the SNP was smaller than 
the gene-specific nominal P value threshold. This regression also included several technical 
covariates, such as the top principal components of the genetic relatedness matrix.ttt 

We only recorded findings for the following pre-selected tissues, which we suspected could be of 
biological relevance for risk tolerance: (1) all 11 brain tissuesuuu available in the GTEx data; (2) 
tibial nerve tissue; (3) thyroid tissue; (4) gonadal (i.e. testis and ovary) tissue; and (5) adrenal gland 
tissue. In addition, we queried (6) the “whole blood” tissue for eQTLs, as this tissue had the highest 
sample size. Since expression profiles in whole blood and the brain are moderately correlated, we 
might uncover potentially interesting eQTLs by using information from whole blood246,247. 

The donor samples sizes for the brain tissues range from n = 72 to 103, and sample sizes for the 
other five tissues range from n = 126 to 338. We included tibial nerve tissue (a peripheral nerve 
located in the lower leg) because the eQTL results for this tissue are based on a relatively large 
sample size (compared to the brain tissues) of n = 256. Since central and peripheral nervous tissues 
are anatomically similar, their expression profiles are likely to be comparable. Thyroid tissue is 
included because thyroid hormone is essential for healthy brain development, and might be 
associated with mood and cognition248,249. Testis and ovary tissue are included, as these organs 
produce sex hormones (e.g., testosterone, estrogen) that might be involved in risk tolerance, as 
detailed in our literature review (Supplementary Note section 11.1). Adrenal tissue is included 
because the adrenals produce hormones associated with the general stress response (i.e., 
(nor)epinephrine and cortisol), which might be related to risk tolerance, as detailed in our literature 
review (Supplementary Note section 11.1). Note that the presence of eQTLs in these tissues does 
not imply statistical enrichment of the GWAS signal in these tissues; it merely shows that our lead 
SNPs are associated with gene expression in these tissues (which might simply be a result of 
pleiotropy, and which thus might not be of causal relevance to general risk tolerance). 
Supplementary Table 39 reports the results. We find eQTL overlaps in every tissue (including 
all individual brain tissues) we queried. In total, we find 188 unique gene transcripts for 59 
different lead SNPs. 82 of these gene transcripts only had Ensembl gene IDs and no gene symbols 
(i.e. letter symbol gene names such as “HLA” which is an abbreviation of Human Leukocyte 
Antigen, according to the HUGO gene nomenclature committee), most likely because they do not 
have named gene products (i.e., proteins). Out of the 188 unique gene transcripts, 47 lie in or near 
the human MHC (i.e., Major Histocompatibility Complex, also known as Human Leukocyte 
Antigen (HLA)) region (~chr. 6: 26-32 Mb), of which five are HLA-genes.  
Finally, we note that there was one eQTL for a GABA gene (GABRG1, or GABAA receptor 
gamma1 subunit), in which the general-risk-tolerance-increasing allele decreased expression of 

                                                             
ttt For additional details, see http://www.gtexportal.org/home/documentationPage#staticTextAnalysisMethods and 
ref.245. 
uuu These include pituitary tissue (which GTEx Portal does not list among brain tissues). 
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GABRG1 in tibial nerve tissue. We found no eQTLs for glutamate genes in any of the queried 
tissues. 

12.7 Summary of main findings from the biological annotation analyses 

The overall goal of the analyses described in this section was to gain insight into the biology of 
general risk tolerance. We employed two general approaches. First, we leveraged data at the 
genome-wide level to prioritize potentially relevant tissues and genomic annotations (using LDSC 
partitioning of heritability) and genes (using MAGMA gene-based analysis, SMR transcriptome-
wide analysis, and DEPICT gene prioritization analyses). Second, we focused on the loci around 
the general-risk-tolerance lead SNPs (in the lookups of protein-altering variants and GTEx eQTLs) 
to gain insight into the biological functions of our lead SNPs. Here, we summarize the results of 
those analyses.  

12.7.1 Enrichment of SNPs annotated to the central nervous system 

First, we tested enrichment of the GWAS signal in 10 different tissues/cell-types using LDSC 
partitioning of heritability. After controlling for tissue overlap and correcting for multiple testing, 
we found significant positive involvement for the central nervous system and the immune system. 
Involvement of the central nervous system was expected (since general risk tolerance is a 
behavioral trait), but enrichment of immune cell types might be surprising. To the best of our 
knowledge, immune enrichment in LDSC partitioning analyses has not previously been reported 
for a behavioral or psychiatric trait, although we note again that enrichment of specific immune 
pathways and/or immune tissue enhancer regions has been implicated in schizophrenia58,201, 
bipolar disorder202 and major depression203).  

We note that enrichment of immune tissues or function did not come forward in any of the other 
analyses. Further research is therefore needed to corroborate a role for immune processes in 
general risk tolerance. Finally, we note that several additional tissues, such as liver and 
adrenal/pancreatic tissues, showed statistically significant enrichment, but that our estimates of 
their partial effects on enrichment (i.e., their �l coefficients) were not significant, thereby 
suggesting that their enrichment may have been primarily driven by other overlapping annotations. 
We therefore cannot claim a role for the adrenal system in general risk tolerance. However, this 
non-finding might be a result of the combination of adrenal with pancreas tissue, and the possible 
non-specificity of histone marks to these particular tissues. More fine-grained analyses are 
therefore needed to corroborate or refute a role for the adrenal system in modulating risk tolerance. 

12.7.2 Enrichment of SNPs near genes that are highly expressed in the frontal and 
prefrontal cortex 

While the LDSC partitioning results pointed to the central nervous system (which technically 
includes the brain, brainstem and spinal cord), results from the other analyses allowed us to gain 
deeper insight into which particular brain regions might be of relevance to general risk tolerance. 
Although the overlap between the genes prioritized by DEPICT and the significant MAGMA 
genes was not very high (only 71 out of 285 genes of the MAGMA genes were among the 215 
genes prioritized at FDR < 0.05 by the DEPICT gene prioritization analysis), both the Gene 
Network functional analysis of the MAGMA genes and the DEPICT tissue enrichment analysis 
with the GTEx tissue-specific gene-expression data separately point to enrichment of the frontal 
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cortex, and in particular the prefrontal cortex. The frontal cortex is a large and functionally and 
anatomically complex brain area; it is the largest neocortical region in humans and primates, and 
receives and integrates neuronal input from both cortical and subcortical regions210. The posterior 
dorsal area of the frontal cortex contains the motor cortex, which is responsible for planning and 
directing bodily movement; damage to this area can result in perturbed motor function or paralysis. 
The prefrontal cortex (the most anterior part of the brain), on the other hand, is involved in 
planning, directing, and inhibiting emotion, behavior and cognition (broadly known as “executive 
function”). Damage to the prefrontal cortex has been well-documented due to the widespread 
practice of prefrontal lobotomy (a relatively simple surgical procedure) in 20th century America 
and with textbook patient cases of accidental lesion such as Phineas Gage. Damage to the 
prefrontal cortex can result in severe impairment marked by behavioral disinhibition and emotional 
deregulation, cognitive disability, impaired decision making, a tendency to display context-
inappropriate behavior, and inability to plan future action210. The frontal cortex is also one of the 
last brain areas to mature during development (with full maturation reached around age 25)211, 
which has been postulated to underlie the social and behavioral disinhibition and increased display 
of risk-taking behaviors that characterizes puberty and adolescence250–252.  

At a finer resolution, the DEPICT tissue enrichment analyses with the GTEx tissue-specific gene-
expression data show that genes near general-risk-tolerance-associated SNPs are highly expressed 
in the prefrontal cortex (BA24 and B9) and the basal ganglia (nucleus accumbens, caudate, 
putamen), compared to other organs and tissues. The DEPICT tissue enrichment analysis using 
the microarray data confirmed these CNS regions’ enrichment, and additionally showed 
expression in deeper brain structures like the midbrain, among other tissues. The Gene Network 
tissue enrichment analyses also point to enrichment of the prefrontal cortex, and of the putamen, 
which is part of the basal ganglia. Finally, two of the three genes that passed both the SMR and 
HEIDI tests, CTNNA1 and CENPV, were significant in parts of the basal ganglia (CTNNA1 was 
significant in the caudate and CENPV was significant in the putamen, nucleus accumbens, and 
caudate).  

12.7.3 A possible convergence with results from the neuroscientific literature 

Interestingly, the prefrontal cortex, the basal ganglia and the midbrain are the major components 
of the cortical-basal ganglia circuit, which includes and connects the reward system, the motor 
system, and the cognitive and behavioral control systems. This whole network of brain regions has 
been shown to be critically involved in learning, motivation, behavioral control, and decision-
making, notably under risk and uncertainty, in both humans and non-human primates232,253. 
Decision making under risk requires several cognitive processes (e.g. such as reward processing, 
fear, or higher executive control) underpinned by different neural systems which are coherently 
connected and integrated in current models of the cortical-basal ganglia circuit. In this complex 
circuit, the processing of reward and decision-making is presumed to be largely underpinned by 
dopamine229,254. Dopaminergic neurons are mostly located in the midbrain (substantia nigra and 
ventral tegmental area) where they project to the basal ganglia and the prefrontal cortex, and appear 
to encode signals about past and future rewards, used to guide behavior229,254.  

There is therefore a remarkable concordance between the enriched CNS regions highlighted by the 
DEPICT analyses and the circuit in charge of reward processing, behavioral control, and decision-
making defined by decades of behavioral and physiological studies in human and non-human 
primates232. It is however difficult to claim that this circuit is specifically tagged by the DEPICT 
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tissue enrichment analysis with the GTEx data, given that the GTEx data only cover a fraction of 
all brain regions, mostly restricted to brain regions overlapping with the cortical-basal ganglia 
circuit. Although these results, in line with a large body of neuroscientific studies, suggest a role 
of the cortical-basal ganglia circuit in the risk-tolerance phenotype, their inferential value should 
therefore be considered with caution.  

12.7.4 A likely role for glutamate and GABA neurotransmitters in the modulation of 
risk tolerance 

In addition to neuroanatomy, much speculation has revolved around the role of specific hormones 
and neurotransmitter systems in modulating general risk tolerance. Our review of the literature 
attempting to link risk tolerance to biological pathways (Supplementary Note section 11) 
identified five main biological pathways that have been tested by this literature: the steroid 
hormone cortisol, the monoamines dopamine and serotonin, and the steroid sex hormones estrogen 
and testosterone. Consistent with the lack of enrichment reported in Supplementary Note section 
11 for genes associated with these five pathways, neither the Gene Network analysis of the 
MAGMA genes nor the DEPICT gene set prioritization analysis point to these pathways. (As 
mentioned above, however, we note that our results are consistent with a role of the cortical-basal 
ganglia circuit in modulating risk tolerance, and that dopamine is presumed to play an important 
role in that circuit.) 

On the other hand, both the Gene Network functional analysis of the MAGMA genes and the 
DEPICT gene set prioritization analysis point to a role for glutamate and GABA neurotransmitters, 
which are the main excitatory and inhibitory neurotransmitters in the brain, respectively255. They 
are colloquially referred to as the “workhorses” of the brain, as they are the brain’s principal 
neurotransmitters. At the time of writing, no other published large-scale GWAS of cognition, 
personality, or psychiatric phenotypes has pointed to clear roles for both glutamate and GABA, 
although we note that glutamate neurotransmission has been implicated in recent GWAS of 
schizophrenia—by recent analyses of common SNPs58 and rare and de novo mutations256,257—and 
of major depression203. That our results, unlike those of other well-powered GWAS, point to both 
of these neurotransmitters suggests that the relative balance between excitatory and inhibitory 
neurotransmission may be a relatively strong contributor to variation in risk tolerance across 
individuals. 

We note that GABA-glutamate balance may be implicated in epilepsy, which we do not consider 
a cognitive, personality, or psychiatric trait. A certain class of GABAergic drugs (anticonvulsants) 
are used in the treatment of epilepsy, and GABA-glutamate balance has been postulated to underlie 
epilepsy pathophysiology258. In the largest epilepsy GWAS conducted to date259, two highlighted 
genes involved in GABA regulation (GABRA2 and PCDH7, which contain or are near SNPs that 
reached suggestive or genome-wide significance in the epilepsy GWAS) were also highly 
significant in our MAGMA gene-based analysis (Supplementary Note section 2712.2.1 and 
Supplementary Table 37). However, in our GWAS Catalog lookup, we found no overlaps 
between our general-risk-tolerance lead SNPs, and SNPs in LD with them, and any epilepsy lead 
locivvv.  

                                                             
vvv We did find one overlap for one epilepsy SNP and an LD partner for one of the number of sexual partners lead 
SNPs (Supplementary Table 2727). 



 145 

We note that none of the four glutamate and GABA gene sets we tested in an ex post MAGMA 
competitive gene-set analysis were significant (Supplementary Note section 12.5). We are unsure 
why this might be the case, but we note that this analysis had some likely limitations. First, its 
statistical power barely increases with increasing sample sizes186. Second, a MAGMA competitive 
gene-set analysis might not be the optimal approach for discovery of subtle but phenotypically 
important genetic effects driven by regulatory regions, as this analysis effectively calculates a 
weighted average of GWAS –log10(P) values across each gene in the gene set (where the average 
is weighted to correct for LD between SNPs). Hence, important regulatory effects of single SNPs 
may be overshadowed by the high average P values of other SNPs in the gene sets. A third possible 
explanation is that only specific glutamate and/or GABA genes or pathways might be relevant in 
general risk tolerance, and that our merging of those pathways into major glutamate and GABA 
supersets decreased our statistical power for discovery of relevant effects. (In the MAGMA gene-
based analysis, only 12 of the 354 unique GABA/glutamate genes included in the four gene sets 
tested here were significant at Bonferroni-corrected P < 0.05.) Hence, the lack of significance of 
the four glutamate and GABA gene sets we tested in the ex post MAGMA competitive gene-set 
analysis does not nullify the evidence from our Gene Network and the DEPICT analyses that 
glutamatergic and GABAergic neurotransmission contributes to variation in risk tolerance across 
individuals. 

12.7.5 A possible link between the immune system and risk tolerance 

We now briefly discuss the LDSC immune tissue enrichment. We noted that, to the best of our 
knowledge, general risk tolerance is the first behavioral trait to show immune tissue enrichment in 
LDSC partitioned analysis according to tissue type, and that this enrichment was independent of 
SNPs in the MHC region. We also noted that none of our other analyses show immune 
enrichment—the Andersson260 “FANTOM5” enhancers (which are indicative of immune 
activity94) were not a significant genomic annotation in the LDSC partitioned analyses according 
to genomic annotation, and the DEPICT and Gene Network analyses of MAGMA genes also did 
not show immune pathways (although it is noteworthy that these bioannotation analyses excluded 
the MHC region). However, we do find GWAS hits in the MHC region, and several genes in this 
region came up in the MAGMA and GTEx lookup analyses. That is, 29 of the 285 genes significant 
in MAGMA and 47 of the 188 GTEx eQTL lookups were in (or around the borders of) the MHC 
region (while SMR excluded SNPs in the MHC region). While a role for the immune system in 
neuropsychiatric traits and related behavior is feasible given previous enrichment of immune 
pathways for psychiatric traits58,202,203,257, we are unsure how to interpret a role for the immune 
system in general risk tolerance, given that our results do not unequivocally point in this direction. 
Researchers have previously theorized a role for a “behavioral immune system”261,262 in human 
behavior. This is seen to be complementary to the “real” immune system—that is, humans are said 
to employ risk averse behaviors to minimize their risk of infectious disease. An extension of this 
theory could be that individuals who are genetically prone to “weaker” immune systems might be 
more risk averse than others, but this is extremely speculative. Before accepting such conclusions, 
we encourage future bioannotation work to uncover which specific immune pathways might be 
involved in general risk tolerance. 
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12.7.6 The CADM2 gene and risk tolerance 

Finally, we briefly discuss the top locus from our discovery GWAS of general risk tolerance. The 
top lead SNP that marks this locus is located in the intronic region of CADM2, and is our most 
significant general-risk-tolerance lead SNP by far, with a P value that is fifteen orders of magnitude 
smaller than the second lead SNP’s P value (P = 2.1×10–40 vs. P = 7.6×10–25). The CADM2 locus 
was previously identified by a study using the relatively small sample size of the first release of 
UK Biobank data66, and all of our six supplementary GWAS phenotypes identified lead SNPs 
within or near CADM2 (Supplementary Note section 3). CADM2 was by far the most significant 
MAGMA gene and was also prioritized by DEPICT at FDR < 0.01. However, we do note that only 
CADM2’s antisense RNA partner CADM2-AS1 was a significant cis-eQTL gene in our GTEx 
lookup tissues, while CADM2 failed the HEIDI-test for heterogeneity in the SMR analysis. This 
suggests that CADM2 may not be the causal gene in the locus, or that its effect on general risk 
tolerance is not mediated by CADM2 expression. However, we do stress that the brain eQTL and 
SMR analyses are strongly underpowered due to the relatively small samples sizes for brain 
tissues, and we can thus not properly study CADM2 expression in relevant brain tissues. 
According to GTEx, CADM2 is overexpressed in the brain, and in particular in the frontal cortex. 
CADM2 is a large gene (spanning more than 1 Mb) located in a long-range LD region, and has 
been associated with a myriad of behavioral phenotypes in previous GWAS (Supplementary Note 
section 3). CADM2 encodes a member of the synaptic cell adhesion molecule family. Molecules 
in this family have been found to be crucial for synapse formation74 and plasticity75, and have been 
associated with autism263 and impaired social behavior264. However, CADM2 itself has mainly 
been studied for its potential role in tumor progression265; its specific role in the brain is unclear. 
We therefore propose CADM2 as an interesting candidate gene for future follow up work.  
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13.2 Cohort-level contributions 
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Supplementary Figure 1 

Supplementary Figure 1 | Quantile-quantile plots. The panels display Q-Q plots for (a) the 
discovery GWAS (n = 939,908) and (b) the replication GWAS (n = 35,445) of general risk 
tolerance, and for the GWAS of (c) adventurousness (n = 557,923), (d) automobile speeding 
propensity (n = 404,291), (e) drinks per week (n = 414,343), (f) ever smoker (n = 518,633), (g) 
number of sexual partners (n = 370,711), and (h) the first PC of the four risky behaviors (n = 
315,894), before adjustment of the standard errors. The y-axis is the observed GWAS P value on 
a −log10 scale (based on a two-tailed z-test). The gray shaded areas in the Q-Q plots represent the 
95% confidence intervals under the null hypothesis. Though we report STU , we used the square 
root of the estimated LD Score intercept to adjust the standard errors of the coefficient estimates 
in the GWAS, as described in Supplementary Note section 2.7. 
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Supplementary Figure 2 

Supplementary Figure 2 | Distribution of effect sizes of the 124 general-risk-tolerance lead SNPs, compared with various 
phenotypes. a, Estimated effect sizes (in standard deviations (SD) of general risk tolerance per risk-tolerance-increasing allele) and 
95% confidence intervals from the discovery GWAS of general risk tolerance (n = 939,908), with the SNPs ranked by their general-
risk-tolerance effect sizes. b, variance explained (R2), with the SNPs ranked by their general-risk-tolerance variance explained (R2). The 
effect sizes are benchmarked against the 124 top associations previously reported for height (n = 253,263) and for body mass index 
(BMI; n = 322,135); against the 74 top associations previously reported for educational attainment (EduYears; n = 293,723); and against 
the 48 top associations previously reported for waist-to-hip ratio adjusted for BMI (WHR; n = 210,023). The effect sizes for height, 
BMI, and WHR are based on the GIANT consortium’s publicly available results for pooled analyses restricted to European-ancestry 
individuals (https://www.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium); the effect sizes for EduYears are from 
Okbay et al.1. 
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Supplementary Figure 3 

Supplementary Figure 3 | Replication of lead SNPs from the discovery GWAS of general risk 
tolerance in the replication GWAS. Panels a and b show the estimated effect sizes (denoted by 
“×”, and expressed in standard deviations (SD) of general risk tolerance per risk-tolerance 
reference allele) for 122 general-risk-tolerance lead SNPs and one proxy-lead SNP, in the 
discovery GWAS (n = 939,908) and replication GWAS (n = 35,445) of general risk tolerance. 
(Two lead SNPs were not included in the replication GWAS, and a proxy-lead SNP could only be 
found for one of them.) The error bars are 95% confidence intervals. The reference allele is the 
allele associated with higher values of general risk tolerance in the discovery GWAS. SNPs are 
listed from left to right in descending order of their R2 in the discovery GWAS, with the 62 SNPs 
with the largest R2’s in the top panel and the remaining 61 SNPs in the bottom panel. Of the 123 
lead or proxy-lead SNPs, 94 have the anticipated sign in the replication sample and 23 replicate at 
the 0.05 significance level (on one-sided tests). See Supplementary Note section 5 for additional 
details. 
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Supplementary Figure 4 

Supplementary Figure 4 | Mean phenotypic general risk tolerance as a function of age, for 
males and females in the UKB cohort. The whiskers represent 95% confidence intervals. 
Individuals aged 69 or older have been grouped together (“69+”), as there were few individuals 
aged 70 or more.  
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Supplementary Figure 5 

Supplementary Figure 5 | Manhattan plots for the six supplementary GWAS. Manhattan plots 
for the GWAS of (a) adventurousness (n = 557,923), (b) automobile speeding propensity (n = 
404,291), (c) drinks per week (n = 414,343), (d) ever smoker (n = 518,633), (e) number of sexual 
partners (n = 370,711), and (f) the first PC of the risky behaviors (n = 315,894). The x-axis is 
chromosomal position, and the y-axis is the GWAS P value on a −log10 scale (based on a two-
tailed z-test). The upper dashed line marks the threshold for genome-wide significance (P = 
5×10−8); the lower line marks the threshold for nominal significance (P = 10−5). Each 
approximately independent genome-wide significant association (“lead SNP”) is marked by a red 
“×”.  
* The Manhattan plot for number of sexual partners shows 118 lead SNPs; as described in 
Supplementary Note section 3.4.5, we exclude one of these SNPs from our final lead-SNP count.  
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Supplementary Figure 6 
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Supplementary Figure 6 | Local Manhattan plots for selected long-range LD regions and 
candidate inversions. The rows correspond to (a) the discovery GWAS of general risk tolerance 
(n = 939,908) and the GWAS of (b) adventurousness (n = 557,923), (c) automobile speeding 
propensity (n = 404,291), (d) drinks per week (n = 414,343), (e) ever smoker (n = 518,633), (g) 
number of sexual partners (n = 370,711), and (g) the first PC of the risky behaviors (n = 315,894). 
The x-axis is chromosomal position; the y-axis is the GWAS P value on a −log10 scale (based on 
a two-tailed z-test); the horizontal dashed line marks genome-wide significance (P = 5×10−8); each 
lead SNP is marked by a red “×”; and each lead SNP that is also a conditional association is marked 
by a red “Ä”. a and c, Plots for two long-range LD regions and three candidate inversions that 
contain lead SNPs for all or most of our seven GWAS. The gray background marks each region 
or inversion; the gray vertical lines mark the boundaries between approximately independent LD 
blocks2; and the striped areas denote LD blocks with lead SNPs from all or most of the GWAS. b, 
Plots of the SNPs in LD (r2 > 0.1) with the 15 most commonly tested candidate genes in the prior 
literature on the genetics of risk tolerance and within 500 kb of the genes’ borders. The plots for 
the 15 genes are concatenated and divided by the black vertical lines. 
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Supplementary Figure 7 

Supplementary Figure 7 | Results from the MTAG analysis of general risk tolerance. a, 
Quantile-quantile plots for the MTAG analysis of general risk tolerance (see Supplementary Note 
section 9 for details) and for the discovery GWAS of general risk tolerance (n = 939,908). The 
gray shaded area represents the 95% confidence interval under the null hypothesis. b, Manhattan 
plots for the MTAG analysis of general risk tolerance (top panel) and for the discovery GWAS of 
general risk tolerance (bottom panel). The x-axis is chromosomal position, and the y-axis is the 
GWAS P value on a −log10 scale (based on a two-tailed z-test). The long-dashed line marks the 
threshold for genome-wide significance (P = 5×10−8); the short-dashed line marks the threshold 
for nominal significance (P = 10−5). Each approximately independent genome-wide significant 
association (“lead SNP”) is marked by a red “×”.  
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Supplementary Figure 8 

Supplementary Figure 8 | Prediction of measures of risk tolerance and of personality traits 
with polygenic scores of general risk tolerance. Incremental R2 is defined as the increase in R2 
from adding the score to a regression of the predicted phenotype on controls for sex, age, and the 
top ten principal components of the genetic relatedness matrix. The error bars represent 95% 
confidence intervals calculated with the bootstrap percentile method, with 1,000 bootstrap 
samples. The scores were constructed using LDpred with our preferred Gaussian mixture weight 
of 0.3. The validation cohorts are the Add Health, HRS, NTR, STR, UKB-siblings, and Zurich 
cohorts. For the Add Health and HRS cohorts, scores were constructed using summary statistics 
from the meta-analysis of the discovery and replication GWAS (n = 975,353) and using summary 
statistics from the MTAG analysis of general risk tolerance; for the UKB-siblings cohort, scores 
were constructed in the same way but excluding individuals with at least one full sibling in the 
UKB from the meta-analysis (n = 937,353); for the other validation cohorts, scores were 
constructed using summary statistics from meta-analyses that exclude the 23andMe cohort (due to 
data access limitations) (n = 466,571 for the NTR and Zurich cohorts; for the STR cohort the meta-
analysis also excluded the STR cohort, n = 458,558). Results are displayed for the prediction of 
(a) general risk tolerance and height (as a negative control test), (b) alternative risk tolerance 
phenotypes, (c) selected personality traits and ADHD. See Supplementary Note section 10 for 
details. 
 
 

  



 
 

185 

a 

 
b 

 
c 

 
d 

 
Supplementary Figure 9 

Supplementary Figure 9 | Prediction of risky behaviors with polygenic scores of general risk 
tolerance. Incremental R2 is defined as the increase in R2 from adding the score to a regression of 
the risky behavior on controls for sex, age, and the top ten principal components of the genetic 
relatedness matrix. The error bars represent 95% confidence intervals calculated with the bootstrap 
percentile method, with 1,000 bootstrap samples. The scores were constructed using LDpred with 
our preferred Gaussian mixture weight of 0.3. Panels a to d display the results for the Add Health, 
HRS, STR and UKB-siblings cohorts, respectively. For the Add Health and HRS cohorts, scores 
were constructed using summary statistics from the meta-analysis of the discovery and replication 
GWAS (n = 975,353) and from the MTAG analysis of general risk tolerance; for the UKB-siblings 
cohort, scores were constructed in the same way but excluding individuals with at least one full 
sibling in the UKB from the meta-analysis (n = 937,353); for the STR cohort, scores were 
constructed only using summary statistics from a meta-analysis that excludes the 23andMe cohort 
(due to data access limitations) and the STR cohort (n = 458,558). See Supplementary Note 
section 10 for additional details. 
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Supplementary Figure 10 

Supplementary Figure 10 | Manhattan plot of the MAGMA gene analysis of general risk 
tolerance. The x-axis is chromosomal position, and the y-axis is the MAGMA P value of each 
gene on a −log10 scale. The dashed line marks the Bonferroni-corrected significance threshold (the 
adjustment is for 18,070 tests, for 18,070 genes; ! = 	0.05/18,070 ≈ 2.77×10/0). Each of the 
285 significant genes are marked by a red “�”. The summary statistics from the meta-analysis of 
the discovery and replication GWAS of general risk tolerance (n = 975,353) were used for this 
analysis. See Supplementary Note section 12 for additional details. 
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Supplementary Figure 11 

Supplementary Figure 11 | Additional results from selected biological analyses. a, Functional 
partitioning of the heritability of general risk tolerance with stratified LD Score regression. The 
panel shows the expected increase in the phenotypic variance accounted for by a SNP due to the 
SNP’s being in a given category (12), divided by the LD Score heritability of the phenotype (ℎ4). 
Each estimate of 12  comes from a separate stratified LD Score regression, controlling for the 52 
functional annotation categories in the baseline model. Error bars represent 95% CIs (not adjusted 
for multiple testing). To benchmark the estimates, we compare them to those obtained from a 
recent study of height3. b, Results of a DEPICT tissue enrichment analysis using microarray-based 
gene expression data from Fehrmann et al.4 and Pers et al.5. The panel shows whether the genes 
overlapping DEPICT-defined loci associated with general risk tolerance are significantly 
overexpressed (relative to genes in random sets of loci matched by gene density) in various tissues. 
Tissues are grouped by physiological system. The orange bars correspond to tissues with 
significant overexpression (FDR < 0.01). The y-axis depicts P values on a −log10 scale. The 
summary statistics from the meta-analysis of the discovery and replication GWAS of general risk 
tolerance (n = 975,353) were used for these analyses. See Supplementary Note section 12 for 
additional details. 
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Supplementary Figure 12 

Supplementary Figure 12 | Estimates of the effect sizes of the 124 general risk tolerance lead 
SNPs in the 23andMe (n = 508,782) and UKB (n = 431,126) cohorts and in the replication 
GWAS (n = 35,445). Panels a to d show the estimated effect sizes (denoted by “×”, and expressed 
in standard deviations (SD) of general risk tolerance per risk-tolerance reference allele) for the 124 
general-risk-tolerance lead SNPs. The error bars are 95% confidence intervals. The reference allele 
is the allele associated with higher values of general risk tolerance in the discovery GWAS. (Note 
that the signs of all the coefficients from the discovery GWAS are concordant with the signs of 
the coefficients in the UKB and 23andMe cohorts.) SNPs are listed from left to right in descending 
order of their R2 from the discovery GWAS. See Supplementary Note section 3.3 and 
Supplementary Table 3 for additional details.  
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Supplementary Figure 13 

Supplementary Figure 13 | LD Score regression plots. The plots are based on the summary 
statistics from (a) the discovery (n = 939,908) and (b) the replication GWAS (n = 35,445) of 
general risk tolerance, and from the GWAS of (c) adventurousness (n = 557,923), (d) automobile 
speeding propensity (n = 404,291), (e) drinks per week (n = 414,343), (f) ever smoker (n = 
518,633), (g) number of sexual partners (n = 370,711), and (h) the first PC of the four risky 
behaviors (n = 315,894), before adjustment of the standard errors with the square root of the 
estimated LD Score regression intercept. Each point represents an LD score bin. The x and y 
coordinates of the point are the mean LD score and the mean χ2 statistic of SNPs in that bin. The 
facts that the intercepts are close to one and that the χ2 statistics increase linearly with the LD 
scores for all GWAS suggest that, for all GWAS, the bulk of the inflation in the χ2 statistics is due 
to true polygenic signal and not to population stratification. 
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Supplementary Figure 14 

Supplementary Figure 14 | Estimates of the SNP heritability of general risk tolerance and 
the six supplementary phenotypes. SNP heritability was estimated with the GCTA, LD Score 
regression, and Heritability Estimator from Summary Statistics (HESS) methods. The error bars 
are 95% confidence intervals. GCTA heritability was estimated using a random draw of 30,000 
individuals from the UKB GWAS sample, from which we excluded cryptically related individuals, 
and using all genotyped SNPs with MAF > 0.01 (GCTA SNP heritability was not estimated for 
adventurousness because this phenotype is not available in the UKB and we did not have access 
to the individual-level data from 23andMe). For the LD Score and HESS methods, for all 
phenotypes except adventurousness we used summary statistics from only the UKB GWAS for 
general risk tolerance (n = 431,126), automobile speeding propensity (n = 404,291), drinks per 
week (n = 414,343), ever smoker (n = 444,598), number of sexual partners (n = 370,711), and the 
first PC of the four risky behaviors (n = 315,894); for adventurousness (n = 557,923), we used the 
23andMe summary statistics. LD Score heritability was estimated using HapMap3 SNPs with 
MAF > 0.01. HESS heritability was estimated using 1000 Genomes phase 3 SNPs with MAF > 
0.05. See Supplementary Note section 6 and Supplementary Table 30 for additional details.  
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Supplementary Figure 15 

Supplementary Figure 15 | Quantile-quantile plots for the general-risk-tolerance lead SNPs 
in previous GWAS of other phenotypes. SNPs with effects in the predicted or concordant 
direction in the published GWAS are blue, and SNPs with effects in the other direction are red. 
SNPs outside the grey area pass Bonferroni-corrected significance thresholds that correct for the 
total number of SNPs we tested for each published GWAS, and are labelled with their rs numbers. 
Observed and expected P values (based on two-tailed z-tests) are on a −log10 scale. For each 
published GWAS, the enrichment P value corresponds to the Mann-Whitney test of joint 
enrichment, and the percentage of SNPs with predicted or concordant signs is shown along with 
stars denoting the P value of the sign test: * P < 0.10, ** P < 0.05 and *** P < 0.01. See 
Supplementary Note section 8 for additional details. 
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Supplementary Figure 16 

Supplementary Figure 16 | SMR results for general risk tolerance for the genes (a) CTNNA1, 
(b) CENPV and (c) ZSWIM7. In each panel, the top plot shows P values for SNPs from the 
GWAS (grey dots) and the SMR test (blue and red diamonds) and the red and blue horizontal 
dashed lines show the significance threshold for the SMR test in eQTLgen (PSMR-eQTLgen = 3.9 × 
10–6) and GTEx (PSMR-GTEx = 2.2 × 10–4), respectively. The bottom plots show, in red, eQTL P 
values of SNPs from the eQTLgen study (blood) and, in blue, various GTEx brain regions (PBG: 
putamen basal ganglia; NABG, nucleus accumbens basal ganglia; CBG, caudate basal ganglia; 
ACC, anterior cingulate cortex (BA24); HIPP, hippocampus; HYPO, hypothalamus; CRB, 
cerebellum; CRBH, cerebellar hemisphere; COR, cortex; FCOR, frontal cortex (BA9)). The 
summary statistics from the meta-analysis of the discovery and replication GWAS of general risk 
tolerance (n = 975,353) were used for these analyses. See Supplementary Note section 12 for 
additional details. 
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