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Abstract

Humans vary substantially in their willingness to take risks. In a combined sample of over one 

million individuals, we conducted genome-wide association studies (GWAS) of general risk 

tolerance, adventurousness, and risky behaviors in the driving, drinking, smoking, and sexual 

domains. Across all GWAS we identified hundreds of associated loci, including 99 loci associated 

with general risk tolerance. We report evidence of substantial shared genetic influences across risk 

tolerance and the risky behaviors: 46 of the 99 general risk tolerance loci contain a lead SNP for at 

least one of our other GWAS, and general risk tolerance is genetically correlated ( rg  ~ 0.25 to 

0.50) with a range of risky behaviors. Bioinformatics analyses imply that genes near general-risk-

tolerance-associated SNPs are highly expressed in brain tissues and point to a role for 

glutamatergic and GABAergic neurotransmission. We found no evidence of enrichment for genes 

previously hypothesized to relate to risk tolerance.

INTRODUCTION:

Choices in important domains of life, including health, fertility, finance, employment, and 

social relationships, rarely have consequences that can be anticipated perfectly. The degree 

of variability in possible outcomes is called risk. Risk tolerance—defined as the willingness 

to take risks, typically to obtain some reward—varies substantially across humans and has 

been actively studied in the behavioral and social sciences. An individual’s risk tolerance 

may vary across domains, but survey-based measures of general risk tolerance (e.g., “Would 

you describe yourself as someone who takes risks?”) have been found to be good all-around 

predictors of risky behaviors such as portfolio allocation, occupational choice, smoking, 

drinking alcohol, and starting one’s own business1–3.

Twin studies have established that various measures of risk tolerance are moderately 

heritable (h2~30%, although estimates in the literature vary3–5). Discovery of specific 

genetic variants associated with general risk tolerance could provide insights into underlying 

biological pathways; advance our understanding of how genetic influences are amplified and 

dampened by environmental factors; enable the construction of polygenic scores (indexes of 
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many genetic variants) that can be used as overall measures of genetic influences on 

individuals; and help distinguish genetic variation associated with general versus domain-

specific risk tolerance.

Although risk tolerance has been one of the most studied phenotypes in social science 

genetics, most claims of positive findings have been based on small-sample candidate gene 

studies (Supplementary Table 1), whose limitations are now appreciated6. To date, only two 

loci associated with risk tolerance have been identified in genome-wide association studies 

(GWAS)7,8.

Here, we report results from large-scale GWAS of self-reported general risk tolerance (our 

primary phenotype) and six supplementary phenotypes: “adventurousness” (defined as the 

self-reported tendency to be adventurous vs. cautious); four risky behaviors: “automobile 

speeding propensity” (the tendency to drive faster than the speed limit), “drinks per week” 

(the average number of alcoholic drinks consumed per week), “ever smoker” (whether one 

has ever been a smoker), and “number of sexual partners” (the lifetime number of sexual 

partners); and the first principal component (PC) of these four risky behaviors, which we 

interpret as capturing the general tendency to take risks across domains. All seven 

phenotypes are coded such that higher phenotype values are associated with higher risk 

tolerance or risk taking. Table 1 lists, for each GWAS, the datasets we analyzed and the 

GWAS sample sizes.

RESULTS:

Association analyses

All seven GWAS were performed in European-ancestry subjects; included controls for the 

top 10 (or more) principal components of the genetic relatedness matrix and for sex and 

birth year (Supplementary Table 2); and followed procedures described in a pre-specified 

analysis plan (see URLs) and in the Supplementary Note.

In the discovery phase of our GWAS of general risk tolerance (n = 939,908), we conducted a 

GWAS using the UK Biobank (UKB, n = 431,126) and then performed a sample-size-

weighted meta-analysis of those results with GWAS results from a sample of research 

participants from 23andMe (n = 508,782). The UKB measure of general risk tolerance is 

based on the question: “Would you describe yourself as someone who takes risks? Yes / 

No.” The 23andMe measure is based on a question about overall comfort taking risks, with 

five response options ranging from “very comfortable” to “very uncomfortable.” The genetic 

correlation9 between the UKB and 23andMe cohorts (rg = 0.77, SE = 0.02) is smaller than 

one but high enough to justify our approach of pooling the two cohorts (see Section 2 in the 

Supplementary Note of ref.10 for a theoretical demonstration of the merits of pooling cohorts 

despite moderate heterogeneity of phenotype measures).

The Q-Q plot (Supplementary Fig. 1a) from the discovery GWAS exhibits substantial 

inflation (λGC = 1.41). According to the estimated intercept from a linkage disequilibrium 

(LD) Score regression11, only a small share of this inflation (~5%) in test statistics is due to 

confounding biases such as cryptic relatedness and population stratification. To account for 
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these biases, we inflated GWAS standard errors by the square root of the LD Score 

regression intercept12.

We identified 124 approximately independent SNPs (pairwise r2 < 0.1) that attained 

genome-wide significance (P < 5×10–8). These 124 “lead SNPs” are listed in Supplementary 

Table 3 and shown in Fig. 1a. All have coefficients of determination (R2’s) below 0.02%, 

and the SNP with the largest per-allele effect is estimated to increase general risk tolerance 

by ~0.026 standard deviations in our discovery sample (Supplementary Fig. 2). To test if the 

lead SNPs’ effect sizes are heterogeneous across the 23andMe and UKB cohorts, we 

generated an omnibus test statistic by summing Cochran’s Q statistics across all lead SNPs; 

consistent with our genetic correlation estimate of less than unity between the two cohorts, 

we rejected the null hypothesis of homogeneity (P = 4.32×10–5; Supplementary Note). To 

define genomic loci around the lead SNPs, we took the physical regions containing all SNPs 

in LD (pairwise r2 > 0.6) with the lead SNPs and merged loci within 250 kb of each other; 

the 124 lead SNPs are located in 99 such loci (Supplementary Table 3). We supplemented 

those analyses with a conditional and joint multiple-SNP (COJO) analysis13, which 

identified 91 genome-wide significant “conditional associations” (Supplementary Table 3).

In the replication phase of our GWAS of general risk tolerance (combined n = 35,445), we 

meta-analyzed summary statistics from ten smaller cohorts. Additional details on cohort-

level phenotype measures are provided in Supplementary Table 4. The cohorts’ survey 

questions differ in terms of their exact wording and number of response categories, but all 

questions ask subjects about their overall or general attitudes toward risk. The genetic 

correlation9 between the discovery and replication GWAS is 0.83 (SE = 0.13). 123 of the 

124 lead SNPs were available or well proxied by an available SNP in the replication GWAS 

results. Out of these 123 SNPs, 94 have a concordant sign (P = 1.7×10–9) and 23 are 

significant at the 5% level in one-tailed t tests (P = 4.5×10–8) (Supplementary Fig. 3). This 

empirical replication record closely matches theoretical projections that take into account 

sampling variation and the winner’s curse (Supplementary Note).

In the UKB we tested and confirmed that a much higher fraction of males (34%) than 

females (19%) described themselves as risk tolerant on the general risk tolerance measure (t-
test P < 1 × 10−100; Supplementary Fig. 4), consistent with much prior research14,15. We 

used bivariate LD Score regression12 to calculate the genetic correlation between GWAS 

performed separately in the sample of females and in the sample of males in the UKB. Our 

estimate (rg = 0.822, SE = 0.033) is high enough to justify our approach of pooling males 

and females in our other analyses to maximize statistical power10. Nonetheless, our estimate 

is significantly smaller than unity, suggesting that the autosomal genetic factors contributing 

to general risk tolerance, while largely similar across sexes, are not identical.

Our six supplementary GWAS—of adventurousness, the four risky behaviors, and their 

principal component (n = 315,894 to 557,923; Supplementary Tables 4–5)—were conducted 

using methods comparable to those in the primary GWAS, except that they had no 

replication phases and most involved a single large cohort. Supplementary Fig. 1 shows Q-Q 

plots and Supplementary Fig. 5 shows Manhattan plots.
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Table 1 provides a summary overview of the seven GWAS. We identified a total of 864 “lead 

associations”: the sum total of the 124 general-risk-tolerance lead SNPs together with the 

740 lead SNPs from the six supplementary GWAS. (These 864 lead associations were 

obtained by considering each of our seven phenotypes separately and using the standard 

genome-wide significance P value threshold of 5×10–8. If we instead consider the seven 

GWAS jointly and use a Bonferroni-corrected P value threshold of 7.1×10−9 (= 5×10−8/7), 

we obtain 566 lead associations across the seven GWAS.) Since we did not have the data to 

conduct replication analyses of the lead associations from the supplementary GWAS, we 

calculated the “maxFDR”16, a theoretical upper bound on the false discovery rate (FDR), for 

each GWAS. The maxFDR estimates were low across all GWAS (the highest estimate was 

1.22×10−3, for automobile speeding propensity), thus providing reassurance about the 

robustness of the lead associations.

Applying our locus definition, we identified a total of 703 “locus associations”: the sum total 

of the 99 general-risk-tolerance loci together with the 604 loci from the supplementary 

GWAS (Supplementary Note). Pooling the loci corresponding to the 703 locus associations, 

and merging loci within 250 kb from each other, yields 444 distinct loci. COJO analyses13 

identified a sum total of 655 conditional associations across all seven GWAS. (If we instead 

consider the seven GWAS jointly and use a Bonferroni-corrected P value threshold of 

7.1×10−9 (= 5×10−8/7), we obtain 464 locus associations and 505 conditional associations 

across the seven GWAS.) We verified that the results of the COJO analyses are consistent 

with those from multiple regressions using individual-level genotype-dosage data from the 

UKB (Supplementary Note). Supplementary Tables 3 and 6–7 report the lead SNPs, the 

genomic loci, and the results of the COJO analyses. Table 1 also shows the SNP 

heritabilities17 of the seven phenotypes, calculated from the GWAS results; the SNP 

heritabilities range from ~0.05 (for general risk tolerance) to ~0.16 (for the first PC of the 

four risky behaviors).

We note that 212 of the 864 lead associations are located within long-range LD regions18 or 

candidate inversions (i.e., genomic regions that are highly prone to inversion 

polymorphisms; Supplementary Note). Of these, only 109 are also conditional associations, 

and 46 are in loci that contain no conditional associations, thus indicating that many lead 

associations in the long-range LD regions or candidate inversions may tag causal variants 

that are also tagged by other lead associations. We discuss some of these regions in the next 

section.

Genetic overlap

There is substantial overlap across the results of our GWAS. For example, 46 of the 99 

general-risk-tolerance loci contain a lead SNP of at least one of the other GWAS, and 72 of 

the 124 general-risk-tolerance lead SNPs are in weak LD (pairwise r2 > 0.1) with a lead SNP 

of at least one of the other GWAS (including 45 for adventurousness and 49 for at least one 

of the four risky behaviors or their first PC). To empirically assess if this overlap could be 

attributed to chance, we conducted resampling exercises under the null hypothesis that the 

lead SNPs of our supplementary GWAS are distributed independently of the general-risk-
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tolerance loci and lead SNPs. We strongly rejected this null hypothesis (P < 0.0001; 

Supplementary Note).

Several long-range LD regions, candidate inversions, and LD blocks19 stand out for being 

associated both with general risk tolerance and with all or most of the supplementary 

phenotypes. We tested whether the signs of the lead SNPs located in these regions tend to be 

concordant across our primary and supplementary GWAS. We strongly rejected the null 

hypothesis of no concordance (P < 3×10–30; Supplementary Note), suggesting that these 

regions represent shared genetic influences, rather than colocalization of causal SNPs. Fig. 

1b and Supplementary Fig. 6 show local Manhattan plots for some of these long-range LD 

regions and candidate inversions. The long-range LD region18 on chromosome 3 (~83.4 to 

86.9 Mb) contains lead SNPs from all seven GWAS as well as the most significant lead SNP 

from the general-risk-tolerance GWAS, rs993137 (P = 2.14×10–40), which is located in the 

gene CADM2. Another long-range LD region, on chromosome 6 (~25.3 to 33.4 Mb), covers 

the HLA-complex and contains lead SNPs from all GWAS except drinks per week. Three 

candidate inversions on chromosomes 7 (~124.6 to 132.7 Mb), 8 (~7.89 to 11.8 Mb), and 18 

(~49.1 to 55.5 Mb) contain lead SNPs from six, five, and all seven of our GWAS, 

respectively. Finally, four other LD blocks19 that do not overlap known long-range LD or 

candidate inversion regions each contain lead SNPs from five of our GWAS (including 

general risk tolerance). While many of the lead SNPs in these regions are not conditional 

associations, the above results regarding the numbers of GWAS with lead SNPs in these 

regions also hold if we only consider the conditional associations instead of the lead SNPs in 

those regions. The two long-range LD regions and the three candidate inversions have 

previously been found to be associated with numerous phenotypes, including many cognitive 

and neuropsychiatric phenotypes20.

To investigate genetic overlap at the genome-wide level, we estimated genetic correlations 

with self-reported general risk tolerance using bivariate LD Score regression9. (For this and 

all subsequent analyses involving general risk tolerance, we used the summary statistics 

from the combined meta-analysis of our discovery and replication GWAS.) The estimated 

genetic correlations with our six supplementary phenotypes are all positive, larger than 

~0.25, and highly significant (P < 2.3×10–30; Fig. 2), indicating that SNPs associated with 

higher general risk tolerance also tend to be associated with riskier behavior. The largest 

estimated genetic correlations are with adventurousness (rg = 0.83, SE = 0.01), number of 

sexual partners (0.52, SE = 0.02), automobile speeding propensity (0.45, SE = 0.02), and the 

first PC of the four risky behaviors (0.50, SE = 0.02).

Our estimates of the genetic correlations between general risk tolerance and the 

supplementary risky behaviors are substantially higher than the corresponding phenotypic 

correlations (Supplementary Tables 8 and 9). Although measurement error partly accounts 

for the low phenotypic correlations, the genetic correlations remain considerably higher even 

after adjustment of the phenotypic correlations for measurement error. The comparatively 

large genetic correlations support the view that a general factor of risk tolerance partly 

accounts for cross-domain correlation in risky behavior21,22 and imply that this factor is 
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genetically influenced. The lower phenotypic correlations suggest that environmental factors 

are more important contributors to domain-specific risky behavior23,24.

To increase the precision of our estimates of the SNPs’ effects on general risk tolerance, we 

leveraged the high degree of genetic overlap across our phenotypes by conducting Multi-

Trait Analysis of GWAS (MTAG)16. We used as inputs the summary statistics of our GWAS 

of general risk tolerance, of our first five supplementary GWAS (i.e., not including the first 

PC of the four risky behaviors), and of a previously published GWAS on lifetime cannabis 

use25 (Supplementary Note). MTAG increased the number of general-risk-tolerance lead 

SNPs from 124 to 312 (Supplementary Fig. 7 and Supplementary Table 10).

We also estimated genetic correlations between general risk tolerance and 28 additional 

phenotypes (Fig. 2 and in Supplementary Table 9). These included phenotypes for which we 

could obtain summary statistics from previous GWAS, as well as five phenotypes for which 

we conducted new GWAS. The estimated genetic correlations for the personality traits 

extraversion (rg = 0.51, SE = 0.03), neuroticism (–0.42, SE = 0.04), and openness to 

experience (0.33, SE = 0.03) are significantly distinguishable from zero after Bonferroni 

correction and are substantially larger in magnitude than previously reported phenotypic 

correlations26, pointing to shared genetic influences among general risk tolerance and these 

traits. After Bonferroni correction, we also found significant positive genetic correlations 

with the neuropsychiatric phenotypes ADHD, bipolar disorder, and schizophrenia. Viewed 

in light of the genetic correlations we found with some supplementary phenotypes and 

additional risky behaviors classified as externalizing (e.g., substance use, elevated sexual 

behavior, and fast driving), these results suggest the hypothesis that the overlap with the 

neuropsychiatric phenotypes is driven by their externalizing component27.

Polygenic prediction

We constructed polygenic scores of general risk tolerance to gauge their potential usefulness 

in empirical research (Supplementary Note). We used the Add Health, HRS, NTR, STR, 

UKB-siblings, and Zurich cohorts as validation cohorts (Supplementary Table 5 provides an 

overview of these cohorts; the UKB-siblings cohort comprised individuals with at least one 

full sibling in the UKB). For each validation cohort, we constructed the score using 

summary statistics from a meta-analysis of our discovery and replication GWAS that 

excluded the cohort (for the UKB-siblings cohort, we reran our UKB GWAS after excluding 

individuals from that cohort). Our measure of predictive power is the incremental R2 (or 

pseudo-R2) from adding the score to a regression of the phenotype on controls for sex, birth 

year, and the top ten principal components of the genetic relatedness matrix.

Our preferred score was constructed with LDpred28. Our largest validation cohort (n ~ 

35,000) is the UKB-siblings cohort. In that validation cohort, the score’s predictive power is 

1.6% for general risk tolerance, 1.0% for the first PC of the four risky behaviors, 0.8% for 

number of sexual partners, 0.6% for automobile speeding propensity, and ~0.15% for drinks 

per week and ever smoker. Across our validation cohorts, in which other phenotypes are 

measured, the score is also predictive of several personality phenotypes and a suite of real-

world measures of risky behaviors in the health, financial, career, and other domains 
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(Supplementary Figs. 8–9 and Supplementary Tables 11–14). The incremental R2 we 

observe for general risk tolerance is consistent with our theoretical prediction, given the 

GWAS sample sizes, the SNP heritability of general risk tolerance (Table 1), and the 

imperfect genetic correlations across the GWAS and validation cohorts29,30 (Supplementary 

Note).

Biological annotation

To gain insights into the biological mechanisms through which genetic variation influences 

general risk tolerance, we conducted a number of bioinformatics analyses using the results 

of the combined meta-analysis of our discovery and replication GWAS of general risk 

tolerance.

First, we systematically reviewed the literature that aimed to link risk tolerance to biological 

pathways (Supplementary Note). Our review covered studies based on candidate genes (i.e., 

specific genetic variants used as proxies for biological pathways), pharmacological 

manipulations, biochemical assays, genetic manipulations in rodents, as well as other 

research designs. Our review identified 132 articles that matched our search criteria 

(Supplementary Table 1). This previous work has focused on five main biological pathways: 

the steroid hormone cortisol, the monoamines dopamine and serotonin, and the steroid sex 

hormones estrogen and testosterone. Using a MAGMA31 competitive gene-set analysis, we 

found no evidence that SNPs within genes associated with these five pathways tend to be 

more associated with general risk tolerance than SNPs in other genes (Supplementary Table 

15). Furthermore, none of the other bioinformatics analyses we report below point to these 

pathways.

We also examined the 15 most commonly tested autosomal genes within the dopamine and 

serotonin pathways, which were the focus of most of the 34 candidate-gene studies 

identified by our literature review. We verified that the SNPs available in our GWAS results 

tag most of the genetic variants typically used to test the 15 genes. Across one SNP-based 

test and two gene-based tests, we found no evidence of non-negligible associations between 

those genes and general risk tolerance (Fig. 1c and Supplementary Table 16). (We note, 

however, that some brain regions identified in analyses we report below are areas where 

dopamine and serotonin play important roles.)

Second, we performed a MAGMA31 gene analysis to test each of ~18,000 protein-coding 

genes for association with general risk tolerance (Supplementary Note). After Bonferroni 

correction, 285 genes were significant (Supplementary Fig. 10 and Supplementary Table 

17). To gain insight into the functions and expression patterns of these 285 genes, we looked 

them up in the Gene Network32 co-expression database.

Third, to identify relevant biological pathways and identify tissues in which genes near 

general-risk-tolerance-associated SNPs are expressed, we applied the software tool 

DEPICT33 to the SNPs with P values less than 10–5 in our GWAS of general risk tolerance 

(Supplementary Note).
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Both the Gene Network and the DEPICT analyses separately point to a role for glutamate 

and GABA neurotransmitters, which are the main excitatory and inhibitory 

neurotransmitters in the brain, respectively34 (Fig. 3a and Supplementary Tables 18 and 19). 

To our knowledge, with the exception of a recent study35 prioritizing a much larger number 

of genes and pathways, no published large-scale GWAS of cognition, personality, or 

neuropsychiatric phenotypes has pointed to clear roles both for glutamate and GABA 

(although glutamatergic neurotransmission has been implicated in recent GWAS of 

schizophrenia36 and major depression37). Our results suggest that the balance between 

excitatory and inhibitory neurotransmission may contribute to variation in general risk 

tolerance across individuals.

The Gene Network and the DEPICT tissue enrichment analyses also both separately point to 

enrichment of the prefrontal cortex and the basal ganglia (Fig. 3b and Supplementary Tables 

18, 20, and 21). The cortical and subcortical regions highlighted by DEPICT include some 

of the major components of the cortical-basal ganglia circuit, which is known as the reward 

system in human and non-human primates and is critically involved in learning, motivation, 

and decision-making, notably under risk and uncertainty38,39. We caution, however, that our 

results do not point exclusively to the reward system.

Lastly, we used stratified LD Score regression40 to test for the enrichment of SNPs 

associated with histone marks in 10 tissue or cell types (Supplementary Note). Central 

nervous system tissues are the most enriched, accounting for 44% (SE = 3%) of the 

heritability while comprising only 15% of the SNPs (Supplementary Fig. 11a and 

Supplementary Table 22). Immune/hematopoietic tissues are also significantly enriched. 

While a role for the immune system in modulating risk tolerance is plausible given prior 

evidence of its involvement in several neuropsychiatric disorders36,37, future work is needed 

to confirm this result and to uncover specific pathways that might be involved.

DISCUSSION:

Our results provide insights into biological mechanisms that influence general risk tolerance. 

Our bioinformatics analyses point to the role of gene expression in brain regions that have 

been identified by neuroscientific studies on decision-making, notably the prefrontal cortex, 

basal ganglia, and midbrain, thereby providing convergent evidence with that from 

neuroscience38,39. Yet our analyses failed to find evidence for the main biological pathways 

that had been previously hypothesized to influence risk tolerance. Instead, our analyses 

implicate genes involved in glutamatergic and GABAergic neurotransmission, which were 

heretofore not generally believed to play a noteworthy role in risk tolerance.

Although our focus has been on the genetics of general risk tolerance and risky behaviors, 

environmental and demographic factors account for a substantial share of these phenotypes’ 

variation. We observe sizeable effects of sex and age on general risk tolerance in the UKB 

data (Supplementary Fig. 4), and life experiences have been shown to affect both measured 

risk tolerance and risky behaviors (e.g., refs.41,42). The GWAS results we have generated 

will allow researchers to construct and use polygenic scores of general risk tolerance to 

measure how environmental, demographic, and genetic factors interact with one another.
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For the behavioral sciences, our results bear on an ongoing debate about the extent to which 

risk tolerance is a “domain-general” as opposed to a “domain-specific” trait. Low 

phenotypic correlations in risk tolerance across decision-making domains have been 

interpreted as supporting the domain-specific view23,24. Across the risky behaviors we study, 

we found that the genetic correlations were considerably higher than the phenotypic 

correlations (even after the latter are corrected for measurement error) and that many lead 

SNPs are shared across our phenotypes. These observations suggest that the low phenotypic 

correlations across domains are due to environmental factors that dilute the effects of a 

genetically-influenced domain-general factor of risk tolerance.
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ONLINE METHODS:

This article is accompanied by a Supplementary Note with further details. Further 

information on experimental design is also available in the Life Sciences Reporting 

Summary linked to this article.

Phenotype definitions, GWAS, quality control, and meta-analysis

For our discovery GWAS of general risk tolerance (n = 939,908), we performed a sample-

size-weighted meta-analysis of results from the UK Biobank (UKB, n = 431,126) and a 

sample of research participants from 23andMe (n = 508,782). For our replication GWAS of 

general risk tolerance (n = 35,445), we performed a sample-size-weighted meta-analysis of 

results from ten smaller cohorts from seven studies: Army STARRS, BASE-II, NFBC 1966, 

RSIII, STR, UKHLS, and VIKING. The exact measures for the general risk tolerance 

phenotype vary across cohorts in wording and number of response categories, but all 

measures are similar and ask about one’s tendency, preparedness, or willingness to take risks 

in general (Supplementary Table 4).

For our GWAS of adventurousness, we analyzed data from a sample of research participants 

from 23andMe (n = 557,923). We analyzed responses to the question: “If forced to choose, 

would you consider yourself to be more cautious or more adventurous?”, with possible 

responses ranging from “[1] Very cautious” to “[5] Very adventurous.” For our GWAS of 

three of the four risky behaviors—automobile speeding propensity (n = 404,291), drinks per 

week (n = 414,343), and number of sexual partners (n = 370,711)—and for the first principal 

component (PC) of the four risky behaviors (n = 315,894), we analyzed UKB data. For the 

remaining risky behavior, ever smoker (n = 518,633), we meta-analyzed GWAS results from 

the UKB and from the TAG Consortium44. Our automobile speeding propensity phenotype 

is based on responses to the question: “How often do you drive faster than the speed limit on 

the motorway?”, with possible responses ranging from “[1] Never/rarely” to “[4] Most of the 

time.” We dropped individuals who answered “[5] Do not drive on the motorway,” and then 

we normalized the categorical variable for males and females separately. Our drinks per 
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week phenotype was constructed based on responses to a series of questions about drinking 

habits and is defined as the number of alcoholic drinks consumed per week. Our ever-

smoker phenotype in the UKB is a dummy variable that equals one if a respondent reported 

being a current or previous smoker and zero if the respondent reported never smoking or 

only smoking once or twice; our ever smoker phenotype from the TAG Consortium is the 

Consortium’s “smoking initiation” phenotype (which TAG also refers to as “ever versus 

never regular smoker”)44. Our number of sexual partners phenotype is based on responses to 

the question: “About how many sexual partners have you had in your lifetime?”; 

respondents who reported more than 99 lifetime sexual partners were asked to confirm their 

responses. We assigned a value of zero to participants who reported having never had sex, 

and we again normalized this measure separately for males and females. Our first PC 

phenotype is the first PC obtained from a principal component analysis (PCA) in the UKB 

of the four risky behaviors (Supplementary Table 23). All seven phenotypes were coded 

such that higher phenotype values are associated with higher risk tolerance or risk taking. 

Table 1 lists, for each GWAS, the datasets we analyzed and the GWAS sample size. The 

Supplementary Note and Supplementary Tables 4 and 5 provide additional details on the 

cohorts and phenotype definitions.

All GWAS were performed at the cohort level in European-ancestry subjects according to a 

pre-specified and publicly archived analysis plan (see URLs). All GWAS included controls 

for the top 10 (or more) principal components of the genetic relatedness matrix and for sex 

and birth year. Genotyping was performed using a range of commercially available 

genotyping arrays. We applied extensive quality-control (QC) procedures to the cohort-level 

summary statistics, including but not limited to the EasyQC protocol developed by the 

GIANT consortium45. We used Haplotype Reference Consortium v1.1 (HRC) data to 

construct our main reference panel, which we used for quality control of the GWAS 

summary statistics and to determine the independence of significant loci. For the 23andMe 

and UKB cohorts, only SNPs with minor allele frequency (MAF) greater than 0.001 were 

analyzed. All meta-analyses were restricted to SNPs with a sample size greater than half of 

the maximum sample size across all the SNPs in the GWAS. In total, 9,284,738 SNPs were 

analyzed in the discovery GWAS of general risk tolerance; 9,339,358 SNPs were analyzed 

in the GWAS of adventurousness; and ~11,515,000 SNPS were analyzed in the GWAS of 

the four risky behaviors and their first PC. To adjust standard errors for the possible effects 

of population stratification, we inflated them by the square root of the estimated intercept 

from an LD Score regression12 (for the replication GWAS of general risk tolerance, which 

meta-analyzed different cohorts, we inflated them at the meta-analysis level). Additional 

details are provided in the Supplementary Note and Supplementary Tables 2 and 24–26.

To identify approximately independent lead SNPs, we applied to the GWAS results a 

clumping algorithm. Our clumping algorithm begins by selecting the SNP with the lowest P 
value as the lead SNP in the first clump, and includes in the first clump all SNPs that have r2 

greater than 0.1 with the lead SNP and that have GWAS P value less than 1×10–4. Next, the 

SNP with the second-lowest P value outside the first clump becomes the lead SNP of the 

second clump, and the second clump is created analogously but using only the SNPs outside 

of the first clump. This process continues until every genome-wide significant SNP (i.e., 

every SNP with a GWAS P value less than 5×10–8) is either designated as a lead SNPs or is 
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clumped to another lead SNP. We also defined non-overlapping, continuous genomic loci 

around the lead SNPs using Ripke et al.’s46 locus definition, and we performed conditional 

and joint multiple-SNP analyses (COJO)13. Ripke et al. defined a locus as “the physical 

region containing all SNPs correlated at r2 > 0.6 with [one of the lead] SNPs”, and merged 

associated loci within 250 kb of each other. To define the set of distinct loci that contain all 

the loci corresponding to the locus associations from across the seven GWAS, we pooled the 

loci corresponding to the locus associations and merged loci within 250 kb from each other. 

For the COJO analyses, for each of the seven main GWAS we restricted the analysis to the 

set of SNPs that (1) pass all GWAS quality control filters, and (2) are located within the loci 

of the phenotype (which includes all of the lead SNPs).

Supplementary Tables 3, 6, 7, and 27 report the lead SNPs, the loci, the results of the COJO 

analyses, and the results of a lookup of the lead SNPs in the NHGRI-EBI GWAS Catalog 

database20 for our seven main GWAS; Supplementary Fig. 12 shows the GWAS estimates of 

general-risk-tolerance lead SNPs in the 23andMe and UKB cohorts and in the replication 

GWAS, and Supplementary Data 1 shows LocusZoom plots for all the loci identified in the 

seven GWAS.

Testing for population stratification

To assess the extent to which population stratification may bias our GWAS estimates, we 

conducted three tests. First, we estimated LD Score intercepts using the summary statistics 

of the discovery and replication GWAS of general risk tolerance and of the GWAS of our 

four main risky behaviors and their first PC12. Second, following Okbay et al. (2016)10, we 

conducted sign tests that compare the signs of the estimates from our discovery GWAS of 

general risk tolerance (but excluding all full siblings from the UKB cohort) to the signs of 

the estimates from within-family (WF) GWAS of general risk tolerance. If our discovery 

GWAS estimates were entirely driven by stratification, then the signs of the WF estimates—

which are immune to stratification—should be independent of the signs of the discovery 

GWAS estimates, in which case we would expect a sign concordance of roughly 50%. A 

higher degree of sign concordance would suggest that at least some of the signal from the 

GWAS comes from true genetic effects. Across four sign tests, we strongly reject the null 

hypothesis of 50% sign concordance for all of the sign tests (P < 5 × 10−10 in all four tests), 

implying that at least some of the signal from the GWAS comes from true genetic effects. 

Our third test of population stratification, the “within-family regression test,” compares both 

the signs and magnitudes of the discovery and WF GWAS of general risk tolerance. The 

Supplementary Note, Supplementary Tables 28, 29, and Supplementary Fig. 13 provide 

further details on the three tests and report their results. All three tests imply no more than 

low levels of population stratification.

Replication of the general-risk-tolerance lead SNPs and maxFDR calculation

To assess the credibility of the lead SNPs from our discovery GWAS of general risk 

tolerance, we compared those results to the estimates from our replication GWAS of general 

risk tolerance. (We did not attempt replication of the results of our six supplementary GWAS 

in independent data, because we did not have access to such data for these phenotypes.) We 

first filtered out SNPs with sample size less than one-half the maximum sample size in the 
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replication GWAS. After applying this filter, 122 of the 124 lead SNPs were directly 

available in the replication GWAS summary statistics, and one of the two remaining lead 

SNPs was well proxied by a SNP in high LD (r2 > 0.8) with it. For the resulting 123 SNPs, 

we conducted a (one-sided) binomial sign test to assess whether the directions (i.e., the 

signs) of the effects of the lead SNPs are more concordant across the discovery and the 

replication GWAS than expected by chance. We also conducted a (one-sided) binomial test 

to assess whether a larger fraction of the lead SNPs are significant at the 5% level in one-

sided tests in the replication GWAS than expected by chance. We then followed the 

procedure outlined in Okbay et al. (2016)47 and conducted a Bayesian analysis to obtain 

estimates of the posterior distributions of the 123 SNPs’ true effect sizes (the βj ‘s), given 

their GWAS estimates. We used the SNPs’ estimated posterior distributions to estimate their 

expected replication record in the two binomial tests, and compared their actual and 

expected replication records.

To calculate the “maxFDR,” an upper bound on the false discovery rate (FDR) for a GWAS, 

we used the MTAG software16 and followed the methodology described in section 1.4.3 of 

Turley et al.’s Supplementary Information16. The maxFDR is defined as the maximum 

theoretical FDR over a range of possible fractions of null SNPs (πnull).

The Supplementary Note and Supplementary Fig. 3 provide additional details.

Estimation of genome-wide SNP heritability

We used the Heritability Estimator from Summary Statistics (HESS)48 method to estimate 

the genome-wide SNP heritability of our seven main phenotypes. For the results reported in 

Table 1, we used the summary statistics from the GWAS listed in the table for all 1000 

Genomes phase 3 SNPs with MAF greater than 0.05. We did not apply GC prior to 

estimating heritability with HESS. The Supplementary Note, Supplementary Table 30, and 

Supplementary Fig. 14 provide additional details, and also report estimates of the SNP 

heritability of our seven main phenotypes estimated with the GCTA49, LD Score 

regression12, and HESS methods, using only summary statistics from the UKB GWAS for 

comparability across phenotypes and methods (except for adventurousness, which is not 

available in the UKB and for which we used the 23andMe summary statistics).

Genetic correlations

We used bivariate LD Score regression9 to estimate genetic correlations between general risk 

tolerance and various phenotypes. We used the scores computed by Finucane et al.50, which 

are based on genotypic data from the European-ancestry samples in the 1000 Genomes 

Project and only HapMap3 SNPs. As is common in the literature, we restricted our analyses 

to SNPs with MAF > 0.01. We used the summary statistics of the meta-analysis combining 

our discovery and replication GWAS of general risk tolerance to estimate genetic 

correlations with general risk tolerance, and we used the summary statistics of our GWAS of 

adventurousness, our four main risky behaviors, and their first PC to estimate genetic 

correlations with those phenotypes. For most other phenotypes, we used published GWAS 

results. We obtained the summary statistics from the GWAS of lifetime cannabis use25 and 

of ADHD51 from the International Cannabis Consortium and the Psychiatric Genomics 
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Consortium, respectively. We conducted our own GWAS using the first release of the UKB 

data for five phenotypes: age first had sexual intercourse (n = 98,956), teenage conception 

among females (n = 40,077), use of sun protection (n = 111,560), household income (n = 

97,059), and Townsend deprivation index score (n = 112,192). The sex-specific GWAS of 

general risk tolerance used to estimate the genetic correlation between males and females 

were conducted in the full release of UKB data, separately for males and females, following 

the same methodology and QC protocol as for our other GWAS in the full release of UKB 

data. The Supplementary Note and Supplementary Tables 9, 31 provide additional details. 

Also, the Supplementary Note, Supplementary Table 32, and Supplementary Fig. 15 report 

the results of proxy-phenotype analyses in which we examined whether the general-risk-

tolerance lead SNPs tend to also be associated with related phenotypes.

Multi-trait analysis of GWAS (MTAG)

We used Multi-Trait Analysis of GWAS (MTAG)16 to increase the precision of our estimates 

of the SNPs’ effects on general risk tolerance. We used as inputs the summary statistics of 

the meta-analysis combining our discovery and replication GWAS of general risk tolerance; 

the summary statistics of our GWAS of adventurousness, automobile speeding propensity, 

drinks per week, ever smoker, and number of sexual partners; and the summary statistics of a 

previously published GWAS on lifetime cannabis use52. Because SNPs that have no effect 

on one phenotype but a sizeable effect on another can bias MTAG results, we excluded from 

this analysis SNPs in the proximity of several genes implicated in biological processes that 

are likely to be specific only to one of the phenotypes. Specifically, we excluded all SNPs 

located within 1Mb of the genes CHRNA5 and CHRNB3 (nicotinic receptors), CNR1 and 

CNR2 (cannabinoid receptors), and ADH1B (Alcohol Dehydrogenase). We imposed a MAF 

filter of 0.01 and a sample size filter that selected, for each GWAS, the SNPs with sample 

sizes larger than two-thirds of the ninth decile of the GWAS’s sample size. MTAG limited 

the analysis to the 5,869,552 SNPs analyzed in all GWAS (and that satisfied these filters). To 

identify approximately independent lead SNPs for general risk tolerance, we applied the 

clumping algorithm described above. The Supplementary Note, Supplementary Table 10, 

and Supplementary Fig. 7 provide further details.

Polygenic prediction

We assessed the predictive power of polygenic scores of general risk tolerance in six 

different validation cohorts: Add Health, HRS, NTR, STR, UKB-siblings, and Zurich. (The 

UKB-siblings cohort comprised all individuals with at least one full sibling in the UKB.) We 

constructed three polygenic scores. Our first two polygenic scores were constructed with the 

LDpred28 method, which accounts for the linkage disequilibrium (LD) between SNPs. The 

first used the summary statistics from the meta-analysis of the discovery and replication 

GWAS of general risk tolerance, while the second used the MTAG summary statistics. (The 

LDpred method relies on a Gaussian mixture weight that corresponds to the assumed 

fraction of SNPs that are causal. For each of our first two polygenic scores, we first 

generated LDpred scores for each of the following mixture weights: 1, 0.3, 0.1, 0.03, 0.01, 

0.003, 0.001, 0.0003, and 0.000153. The LDpred-score results we present in this paper for 

our first two polygenic scores are for the scores based on a Gaussian mixture weight of 0.3 

(our “preferred score”), which consistently performed well across cohorts and phenotypes.) 
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Our third polygenic score was constructed with the classical method, which simply weights 

SNPs by their GWAS effect size54,55, using the summary statistics from the meta-analysis of 

the discovery and replication GWAS of general risk tolerance.

We used the subset of all the SNPs (i.e., we did not impose a P value threshold) in the 

HapMap consortium phase 3 release56 with an imputation quality of more than 0.7 to 

generate all three scores. For every validation cohort that was also included in the discovery 

or replication GWAS or in the MTAG analysis, we reran the GWAS and MTAG analyses 

without the validation cohort to generate the summary statistics we used to construct the 

scores. Due to data access limitations, the 23andMe cohort could not be included in the 

meta-analysis whose summary statistics we used to construct the polygenic scores in the 

NTR, STR, and Zurich cohorts. The second polygenic score (using the MTAG summary 

statistics) was only constructed for the Add Health, HRS, and UKB-siblings cohorts.

Our measure of a score’s predictive power for a predicted phenotype is the incremental R2 

(or incremental pseudo-R2) from adding the score to a regression of the phenotype on 

controls for sex, birth year, birth-year squared, birth-year cubed, as well as the interactions 

between sex and the three birth-year variables, and the first ten principal components of the 

genetic relatedness matrix. We used the bootstrap method with 1,000 iterations to estimate 

95% percentile confidence intervals for the incremental R2 estimates. For continuous 

phenotypes, we estimated ordinary least squares (OLS) regressions; for binary phenotypes 

(e.g., ever smoker), we estimated probit models; and for censored phenotypes (e.g., equity 

share, which is nonnegative), we estimated tobit models. For binary and censored 

phenotypes, we used McFadden’s pseudo-R2 to calculate the incremental pseudo-R2.

The Supplementary Note provides additional details, including a description of how the 

predicted phenotypes were constructed. Results are presented in Supplementary Figs. 8–9 

and Supplementary Tables 11–14.

Biological annotation: testing hypotheses about specific genes and gene sets

We conducted a comprehensive review of the literature on biological pathways that have 

been hypothesized to influence risk tolerance. The 132 articles identified by review are 

compiled in Supplementary Table 1. The Supplementary Note and Supplementary Tables 15, 

16, and 33–34 provide further details and report the results of the various analyses we 

conducted to assess whether the pathways and genes that have previously been hypothesized 

to relate to risk tolerance do indeed show evidence of association with risk tolerance.

Biological annotation: additional bioinformatics analyses

We conducted a series of additional bioinformatics analyses using the results of the 

combined meta-analysis of our discovery and replication GWAS of general risk tolerance. 

We conducted a gene analysis with MAGMA31 to test each of 18,224 genes for association 

with general risk tolerance in a hypothesis-free manner (the 18,224 genes are the set of all 

genes containing at least one SNP in our combined meta-analysis results). We used our main 

reference panel to estimate LD. Bonferroni correction was applied to account for multiple 

testing, counting each gene as an independent test. We then used the Gene Network32 co-

expression database to gain insight into the functions of the significant MAGMA genes.
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We also used DEPICT33 (release 194) to prioritize tissues, gene sets, and genes that are 

implicated by our GWAS results. Only SNPs with GWAS P values less than 10–5 were used 

as input, and DEPICT-defined loci were defined by clumping these SNPs (see the 

Supplementary Note for the clumping parameters used for this analysis). Locus boundaries 

were then defined using a LD r2 threshold of 0.5, and overlapping loci were merged, 

yielding 464 autosomal loci comprising 1,060 genes.

To partition the SNP-based heritability of general risk tolerance, we used stratified LD Score 

regression50, following the procedure described by Finucane et al.50. We estimated stratified 

LD Score regressions both for the functional genomic regions of the “baseline model” and 

for the tissue-level annotations provided by Finucane et al. To correct for multiple 

hypothesis testing, we applied a Bonferroni correction for 52 two-sided tests in the baseline 

model (i.e., for 52 annotations) and for 10 two-sided tests in the tissue type models (i.e., for 

10 tissue types).

The Supplementary Note, Supplementary Tables 17–22 and 35–39, and Supplementary Figs. 

10–11 and 16 provide further details and report the results of these and other bioinformatics 

analyses, including a transcriptome-wide analysis with Summary-based Mendelian 

Randomization (SMR)57, and an ascertainment of whether the lead SNPs and their LD 

partners (SNPs with an r2 > 0.6 with a lead SNP and no more than 250 kb from it) are 

protein-altering variants or are associated with cis-gene expression in distinct human tissues, 

among other analyses. The Supplementary Note also highlights the most important results of 

the bioinformatics analyses and summarizes the conclusions we derive from them.

DATA AVAILABILITY STATEMENT:

GWAS summary statistics can be downloaded from www.thessgac.org/data. SNP-level 

summary statistics from analyses based entirely or in part on 23andMe data can only be 

reported for up to 10,000 SNPs. For general risk tolerance, we provide association results for 

all SNPs that passed quality-control filters in a GWAS meta-analysis of general risk 

tolerance that excludes the research participants from 23andMe; we also provide association 

results from the complete GWAS (which includes data from 23andMe) for all lead SNPs 

identified in our discovery GWAS and MTAG analysis of general risk tolerance, and for the 

next 4,000 most significant SNPs in the discovery GWAS. For adventurousness, we provide 

association results from the complete GWAS (which includes only data from 23andMe) for 

all lead SNPs and for the next 4,000 most significant SNPs. For automobile speeding 

propensity, drinks per week, ever smoker, number of sexual partners, and the first PC of the 

four risky behaviors, we provide association results from the complete GWAS for all SNPs 

that passed quality-control filters. Contact information for the cohorts included in this paper 

can be found in the Supplementary Note.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1 |. Manhattan plots.
In all panels, the x-axis is chromosomal position; the y-axis is the GWAS P value on a 

−log10 scale (based on a two-tailed z-test); each lead SNP is marked by a red “×”; each 

conditional association is marked by a red “o”; and each SNP that is both a lead SNP and a 

conditional association is marked by a red “⊗”. a, Manhattan plots for the discovery GWAS 

of general risk tolerance (n = 939,908). b, Local Manhattan plots of a long-range LD region 

on chromosome 3 and a candidate inversion on chromosome 18 that contain lead SNPs for 

all seven of our GWAS. The gray background marks the locations of long-range LD or 

candidate inversion regions. c, Local Manhattan plots of the areas around the 15 most 

commonly tested candidate genes in the prior literature on the genetics of risk tolerance. 

Each local plot shows all SNPs within 500 kb of the gene’s borders that are in weak LD (r2 

> 0.1) with a SNP in the gene. The 15 plots are concatenated and shown together in the 

panel, divided by the black vertical lines. The 15 genes are not particularly strongly 
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associated with general risk tolerance or the risky behaviors, as can be seen by comparing 

the results within each row across panels b and c (the three rows correspond to the GWAS of 

general risk tolerance, adventurousness (n = 557,923), and the first PC of the four risky 

behaviors (n = 315,894)).
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Figure 2 |. Genetic correlations with general risk tolerance.
The genetic correlations were estimated using bivariate LD Score (LDSC) regression9. Error 

bars show 95% confidence intervals. For the supplementary phenotypes and the additional 

risky behaviors, green bars represent significant estimates with the expected signs, where 

higher risk tolerance is associated with riskier behavior. For the other phenotypes, blue bars 

represent significant estimates. Light green and light blue bars represent genetic correlations 

that are statistically significant at the 5% level, and dark green and dark blue bars represent 

correlations that are statistically significant after Bonferroni correction for 35 tests (the total 

number of phenotypes tested). Grey bars represent correlations that are not statistically 

significant at the 5% level. The two dotted vertical lines indicate genetic correlations of −0.5 

and 0.5, respectively. All significance tests are two-sided.
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Figure 3 |. Results from selected biological analyses.
a, DEPICT gene-set enrichment diagram. We identified 93 reconstituted gene sets that are 

significantly enriched (FDR < 0.01) for genes overlapping DEPICT-defined loci associated 

with general risk tolerance; using the Affinity Propagation method43, these were grouped 

into the 13 clusters displayed in the graph. Each cluster was named after its exemplary gene 

set, as chosen by the Affinity Propagation tool, and each cluster’s color represents the 

permutation P value of its most significant gene set. The “synapse part” cluster includes the 

gene set “glutamate receptor activity,” and several members of the “GABAA receptor 

activation” cluster are defined by gamma-aminobutyric acid signaling. Overlap between the 

named representatives of two clusters is represented by an edge. Edge width represents the 

Pearson correlation ρ between the two respective vectors of gene membership scores (ρ < 

0.3, no edge; 0.3 ≤ ρ < 0.5, thin edge; 0.5 ≤ ρ < 0.7, intermediate edge; ρ ≥ 0.7, thick edge). 

b, Results of DEPICT tissue enrichment analysis using GTEx data. The panel shows 

whether the genes overlapping DEPICT-defined loci associated with general risk tolerance 

are significantly overexpressed (relative to genes in random sets of loci matched by gene 

density) in various tissues. Tissues are grouped by organ or tissue type. The orange bars 

correspond to tissues with significant overexpression (FDR < 0.01). The y-axis is the 

significance on a −log10 scale. See Supplementary Note for additional details.
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Table 1 |

GWAS results

GWAS Cohorts analyzed n
Mean 
χ2

LD Score 
intercept (SE)

# lead 
SNPs # loci # cond. 

assoc. SNP h2 (SE)

General risk tolerance 
(disc. GWAS) UKB; 23andMe 939,908 1.85 1.04 (0.01) 124 99 91 0.046 

(0.001)

General risk tolerance 
(repl. GWAS) 10 indep. cohorts 35,445 1.03 1.00 (0.07) 0 0 0 --

General risk tolerance 
(disc. + repl.)

UKB; 23andMe; 
10 indep. cohorts 975,353 1.87 1.04 (0.01) 132 107 97 0.045 

(0.001)

Adventurousness 23andMe 557,923 1.98 1.05 (0.01) 167 137 126 0.098 
(0.002)

Automobile speeding 
propensity UKB 404,291 1.53 1.03 (0.01) 42 36 33 0.079 

(0.003)

Drinks per week UKB 414,343 1.61 1.03 (0.01) 85 62 61 0.085 
(0.003)

Ever smoker
UKB; TAG 
Consortium44 518,633 1.97 1.05 (0.01) 223 183 172 0.109 

(0.003)

Number of sexual partners UKB 370,711 1.77 1.04 (0.01) 117 97 88 0.128 
(0.003)

First PC of the four risky 
behaviors UKB 315,894 1.77 1.05 (0.01) 106 89 84 0.156 

(0.004)

The table provides an overview of the GWAS of our primary and supplementary phenotypes. Replication analysis of the lead SNPs’ association 

results in independent cohorts was only conducted for the discovery GWAS of general risk tolerance. “n”: GWAS sample size; “Mean χ2”: mean 
GWAS chi-squared statistics across HapMap3 SNPs with minor allele frequency (MAF) greater than 0.01; “LD Score intercept”: estimate of the 

intercept from a LD Score regression11 using HapMap3 SNPs with MAF greater than 0.01; “# lead SNPs”: number of approximately independent 

(pairwise r2 < 0.1) lead SNPs; “# loci”: number of associated loci; “# cond. assoc.”: number of conditional associations in the COJO analysis13; 

“SNP h2”: SNP heritability estimated with the Heritability Estimator from Summary Statistics (HESS) method17 using 1000 Genomes phase 3 
SNPs with MAF greater than 0.05; “disc.”: discovery; “repl.”: replication; “indep.”: independent.
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