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SUMMARY

The plant immune system perceives a diversity of carbohydrate ligands from plant and microbial cell walls

through the extracellular ectodomains (ECDs) of pattern recognition receptors (PRRs), which activate

pattern-triggered immunity (PTI). Among these ligands are oligosaccharides derived from mixed-linked b-
1,3/b-1,4-glucans (MLGs; e.g. b-1,4-D-(Glc)2-b-1,3-D-Glc, MLG43) and cellulose (e.g. b-1,4-D-(Glc)3, CEL3). The

mechanisms behind carbohydrate perception in plants are poorly characterized except for fungal chitin

oligosaccharides (e.g. b-1,4-D-(GlcNAc)6, CHI6), which involve several receptor kinase proteins (RKs) with

LysM-ECDs. Here, we describe the isolation and characterization of Arabidopsis thaliana mutants impaired

in glycan perception (igp) that are defective in PTI activation mediated by MLG43 and CEL3, but not by

CHI6. igp1–igp4 are altered in three RKs – AT1G56145 (IGP1), AT1G56130 (IGP2/IGP3) and AT1G56140 (IGP4)

– with leucine-rich-repeat (LRR) and malectin (MAL) domains in their ECDs. igp1 harbors point mutation

E906K and igp2 and igp3 harbor point mutation G773E in their kinase domains, whereas igp4 is a T-DNA

insertional loss-of-function mutant. Notably, isothermal titration calorimetry (ITC) assays with purified ECD-

RKs of IGP1 and IGP3 showed that IGP1 binds with high affinity to CEL3 (with dissociation constant

KD = 1.19 � 0.03 lM) and cellopentaose (KD = 1.40 � 0.01 lM), but not to MLG43, supporting its function as

a plant PRR for cellulose-derived oligosaccharides. Our data suggest that these LRR-MAL RKs are compo-

nents of a recognition mechanism for both cellulose- and MLG-derived oligosaccharide perception and

downstream PTI activation in Arabidopsis.

Keywords: Arabidopsis thaliana, cellulose, mixed-linked glucans (MLGs), immunity, oligosaccharides, pat-

tern recognition receptors (PRRs), leucine-reach repeat/Malectin receptor kinase (LRR-MAL RK).

INTRODUCTION

Plants have evolved a complex immune system that com-

prises several defense layers and mechanisms for the

recognition of pathogens and pests that cooperatively

interact to restrict plant infection. One of these layers,

known as pattern-triggered immunity (PTI), is based on the

recognition of damage- and microbe-associated molecular

patterns (DAMPs and MAMPs) derived from plants or

microorganisms, respectively, by plasma membrane-

resident pattern recognition receptors (PRRs) (Ngou

et al., 2022). Upon DAMP/MAMP recognition by ectodo-

mains (ECDs) of PRRs, additional proteins are recruited to

form ligand–PRR complexes, triggering the activation of

PRR cytoplasmic protein kinase domains (KDs) that initiate

phosphorylation and signaling cascades (Boutrot &
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Zipfel, 2017; Ngou et al., 2022). Early PTI responses include

increases in the cytoplasmic concentration of the second

messenger, Ca2+, the production of reactive oxygen spe-

cies (ROS) by NADPH oxidases (e.g. respiratory burst oxi-

dase homolog protein D, RBOHD), the phosphorylation of

mitogen-activated protein kinases (MAPKs) and Ca2+-

dependent protein kinases (CPKs), and transcriptional

reprogramming that ultimately restrict the colonization of

the plant by pathogens or pests (Bigeard et al., 2015; Bou-

trot & Zipfel, 2017). DAMPs or MAMPs are molecules with

different biochemical composition, such as peptides, car-

bohydrates (oligosaccharides) or fatty acids, among other

molecules (Bigeard et al., 2015; Boutrot & Zipfel, 2017;

Ngou et al., 2022).

Many PRR/peptidic DAMP/MAMP pairs triggering PTI

responses have been elucidated, like AtPep1 DAMP and

bacterial flg22 MAMP peptides, which are directly bound

by Arabidopsis PEPR1/2 and FLS2 PRRs, respectively

(Bigeard et al., 2015; Boutrot & Zipfel, 2017; Tang &

Wang, 2017). These PRRs require members of the

SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK)

family, like BAK1, for active complex formation and down-

stream PTI activation (Bigeard et al., 2015; Boutrot & Zipfel,

2017; Tang & Wang, 2017). FLS2 and PEPR1/2 are receptor

kinase (RK) proteins with an ECD harboring leucine-rich

repeats (LRRs), a transmembrane domain (TM) and a cyto-

plasmic serine/threonine KD. Plant PRRs with LRR-ECDs

comprise about 50% of RKs (Bellande et al., 2017; del

Hierro et al., 2021). The Arabidopsis thaliana genome has

more than 600 genes encoding members of RKs, receptor-

like proteins (RLPs, with ECD and TM but lacking the KD)

and receptor proteins (RPs, with ECD but lacking TM),

which in some cases are clustered in the same plant geno-

mic region, illustrating their recent evolutionary divergence

(del Hierro et al., 2021; Franck et al., 2018; Ngou et al.,

2022).

In contrast to the extended knowledge of peptidic

DAMP and MAMP perception, our understanding of plant

immunity activation by carbohydrate-based DAMPs and

MAMPs is scarce. However, carbohydrates are highly

abundant molecules in plant and microbial extracellular

layers, such as cell walls, and several of them are known

to be perceived by the plant immune system and to trig-

ger PTI: oligosaccharides from chitin, e.g. chitohexaose

(b-1,4-D-N-acetylglucosamine)6 (CHI6), and b-1,3-glucan of

fungal/oomycete cell walls, peptidoglycan from bacterial

walls, and oligosaccharides derived from plant cell wall

polymers, such as cellulose (b-1,4-glucan), mixed-linked

glucans (MLGs; b-1,4/b-1,3-glucans), xyloglucan, mannan,

xylan and homogalacturonan/pectins (oligogalacturonides

or OGs), and from other glycans, such as fructans (Aziz

et al., 2007; Claverie et al., 2018; Denoux et al., 2008;

Gust et al., 2007; Kaku et al., 2006; Klarzynski et al., 2000;

M�elida et al., 2018; M�elida et al., 2020; Versluys

et al., 2022; Voxeur et al., 2019; Wanke et al., 2020; Zang

et al., 2019). Remarkably, about 50% of RK/RLP/RP from

plant genomes have ECDs that are predicted to bind

carbohydrate-based ligands and are grouped in different

families: lysin motif (LysM), lectins (G-, L- and C-lectins),

crinkly-like (CR4L), wall-associated kinases (WAKs),

cysteine-rich kinases (CRK/DUF26) and families with mal-

ectin (MAL) or malectin-like domains (MLDs) in their

ECDs (LRR-MAL, MLD-LRRs and Catharanthus roseus

receptor-like kinases 1-like, CrRLK1Ls) (Bacete et al., 2018;

Bellande et al., 2017; del Hierro et al., 2021). Therefore,

oligosaccharide–PRR pairs are expected to play a role

in immune activation by carbohydrates in plants

(Cosgrove, 2022; Wan et al., 2021).

Cellulose, a linear polymer of b-1,4-glucosyl residues,
is present in all plants, most algae, some protists and

microbial (bacteria and oomycete) extracellular matrixes or

walls, being the most abundant biomolecule on earth

(Burton & Fincher, 2009; Kloareg et al., 2021; Morgan et al.,

2013). MLGs, consisting of unbranched and unsubstituted

chains of b-1,4-glucosyl residues interspersed by b-1,3-
linkages, are widely distributed as matrix polysaccharides

in the cell walls of plants from the Poaceae family (cereals),

but have also been reported in Equisetum spp. and other

vascular plants (Fry et al., 2008; Sørensen et al., 2008),

bryophytes and algae (Popper & Fry, 2003; Salme�an et al.,

2017), bacteria (P�erez-Mendoza et al., 2015), and fungi and

oomycetes (Fontaine et al., 2000; Pettolino et al., 2009;

Rebaque et al., 2021). MLG-derived oligosaccharides, e.g.

MLG43 (b-1,4-D-(Glc)2-b-1,3-D-Glc), MLG443 (b-1,4-D-(Glc)3-

b-1,3-D-Glc) and MLG34 (b-1,3-D-Glc-b-1,4-D-Glc2), are per-

ceived with different degrees of specificity by the immune

system of several plant species, e.g. Arabidopsis, Cap-

sicum annuum (pepper), Hordeum vulgare (barley), Oryza

sativa (rice), and Solanum lycopersicum (tomato), with

MLG43-mediated PTI responses being the best character-

ized (Barghahn et al., 2021; Rebaque et al., 2021; Yang, Liu,

et al., 2021a; Yang, Liu, et al., 2021b). Similarly, cellulose-

derived oligosaccharides, e.g. b-1,4-D-(Glc)2 to b-1,4-D-
(Glc)6 (cellobiose to cellohexaose or CEL2–CEL6), trigger

PTI responses in Arabidopsis, rice and other plant species

(Klarzynski et al., 2000; Locci et al., 2019; Rebaque

et al., 2021; Souza et al., 2017; Yang, Liu, et al., 2021a;

Yang, Liu, et al., 2021b). MLG- and CEL-derived oligosac-

charides are self-alert signals (DAMPs) of plant coloniza-

tion by pathogens, as they can be released from plant cell

walls by the activity of microbial endoglucanases, such as

cellulases, secreted during plant colonization (G�amez-

Arjona et al., 2022; Yang, Liu, et al., 2021b). MLGs can also

be perceived as MAMPs by plant species that do not con-

tain them in their cell walls (Barghahn et al., 2021; Rebaque

et al., 2021).

The mechanisms of oligosaccharide perception by

the mammal immune system through carbohydrate

� 2022 The Authors.
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recognition domains are well documented (Bacete

et al., 2018; Cummings et al., 2022; Taylor et al., 2022). In

contrast, our understanding of the structural basis of

oligosaccharide perception by plant PRRs is limited and

mainly restricted to PRRs of the LysM family, e.g. CHITIN

ELICITOR RECEPTOR KINASE 1 (CERK1) and LysM motif

receptor kinases 4 and 5 (LYK4 and LYK5). Such proteins

harbor promiscuous ECDs involved in the activation of

PTI mediated by structural diverse ligands, such as CHI6–
CHI8, b-1,3-glucan (laminarihexaose, LAM6) and MLGs

(MLG43, MLG34 and MLG443) (Cao et al., 2014; Desaki

et al., 2018; Liu et al., 2012; M�elida et al., 2018; Miya

et al., 2007; Rebaque et al., 2021; Wanke et al., 2020; Will-

mann et al., 2011; Yang, Liu, et al., 2021b). Immune

responses triggered by CHI6, LAM6 and MLG43 are par-

tially impaired in cerk1 single and lyk4 lyk5 double

mutants (Cao et al., 2014; Liu et al., 2012; M�elida

et al., 2018; Rebaque et al., 2021; Shimizu et al., 2010;

Yang et al., 2022). However, a direct binding of LAM6

and MLG43 to the A. thaliana CERK1 ECD was discarded

based on in silico structural molecular dynamics simula-

tions and isothermal titration calorimetry (ITC) binding

assays (del Hierro et al., 2021). These data suggest that

CERK1, LYK4 and LYK5 might function as protein part-

ners in the LAM6 perception system. Notably, rice

OsCERK1 seems to be the PPR binding MLG43 and

MLG443, whereas OsCeBIP, the rice chitin PRR, is

required for the perception of these ligands, but not for

their direct binding (Yang, Liu, et al., 2021b). In addition

to LysM-PRRs, Arabidopsis WAK receptors (e.g. WAK1

and WAK2) are PRRs required for the perception of OGs,

and the CrRLK1L member FERONIA (FER), with two

malectin-like domains in its ECD, binds homogalacturo-

nans (Brutus et al., 2010; Tang et al., 2022). Recently, two

LRR-RKs have been implicated in PTI activation triggered

by CEL-derived oligosaccharides in Arabidopsis (Zarattini

et al., 2021), and the CELLO-OLIGOMER RECEPTOR

KINASE 1 (CORK1, an LRR-MAL RK) has been described

to be required for CEL3 perception and PTI activation in

Arabidopsis (Tseng et al., 2022). However, the structural

bases of CEL-derived oligosaccharide recognition by

these putative PRRs have not yet been elucidated.

We designed genetic screenings in Arabidopsis to

identify mutants impaired in glycan (e.g. MLGs) perception

(igp). We selected several mutants (igp1–igp9) that are

impaired in the perception of both MLG43 and CEL3, but

not CHI6. Here we show that IGP1, IGP2/IGP3 and IGP4

encode three RK members (AT1G56145/CORK1,

AT1G56130 and AT1G56140, respectively) with LRR-MAL in

their ECDs. We also demonstrate that the ECD of IGP1, pre-

viously described as CORK1 (Tseng et al., 2022), binds

directly to CEL3 and CEL5 with high affinity, further sup-

porting its function as a plant PRR involved in the percep-

tion of cellulose-derived oligosaccharides. These results

expand our knowledge of the mechanisms of immune acti-

vation by oligosaccharides in plants.

RESULTS

Identification and isolation of Arabidopsis igp1–igp9

mutants

We generated an ethyl methanesulfonate (EMS) mutage-

nized population of the A. thaliana aequorin-based Ca2+

sensor line Col-0AEQ (Knight et al., 1991; M�elida et al., 2018;

Ranf et al., 2011) to perform a genetic screening aiming to

isolate mutants impaired in glycan perception (igp; Fig-

ure S1). First, we performed a genetic screening to identify

igp mutants impaired in MLG perception, and we selected

for the screening MLG43 trisaccharide as its PTI-mediated

responses in Arabidopsis are the best characterized (Bar-

ghahn et al., 2021; Rebaque et al., 2021; Yang, Liu,

et al., 2021a; Yang, Liu, et al., 2021b). Eight-day-old seed-

lings (about 6400 individuals) of 13 M2 EMS-mutagenized

Col-0AEQ families were grown in microtiter plates together

with the Col-0AEQ control line, treated with 100 lM MLG43,

and changes of cytoplasmic Ca2+ concentration were then

determined in a luminometer (Figure S1). Several mutants

(igp1AEQ–igp9AEQ) that showed a weaker Ca2+ burst than

that of Col-0AEQ plants were selected for further genetic

characterization (backcrosses and allelism tests; Figures 1a

and S2; Table S1). To assess the specificity of MLG43 per-

ception impairment in igp mutants we also treated igp

lines with CHI6 (50 lM) and found that it triggered similar

Ca2+ bursts in the igp mutants as those observed in Col-

0AEQ plants, whereas cerk1AEQ plants were fully impaired

in CHI6 perception, as previously reported (Figures 1b and

S2; M�elida et al., 2018; Rebaque et al., 2021). These data

suggest that the mechanism of perception of CHI6 and

MLG43 in Arabidopsis might not be identical, in contrast to

what has been described in rice (Yang et al., 2022). No

mutations were found in the Aequorin gene sequence in

igp1AEQ–igp3AEQ (Online data set), and no differences were

observed in endogenous Ca2+ levels between the igp1AEQ–
igp3AEQ and Col-0AEQ seedlings, based on Ca2+ discharge

analyses (Figure S1). These data support that the lower

Ca2+ bursts observed in MLG43-treated igp1AEQ–igp3AEQ

seedlings were the result of the defective perception of

MLG43.

igp1AEQ, igp2AEQ and igp3AEQ mutants harbor reces-

sive mutations (chi-square test, 0.7 > P > 0.5,

0.5 > P > 0.3 and 0.8 > P > 0.7, respectively; Table S2),

and igp2AEQ and igp3AEQ were allelic (chi-square test,

P > 0.95; Figure S1; Table S1). Genomic DNA from F2
progeny of igp1AEQ, igp2AEQ and igp3AEQ backcrosses

with Col-0AEQ was sequenced and assembled to identify

putative mutations (frequency higher than 0.99 in align-

ments; Table S2). We found that igp1AEQ has a point

mutation in the AT1G56145 gene, encoding an RK with

� 2022 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,
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an LRR-MAL ECD, which resulted in E906K amino acid

change in its KD (Figure 2a). On the other hand, igp2AEQ

and igp3AEQ share the same point mutation in the

AT1G56130 gene, encoding an additional LRR-MAL RK,

which resulted in G773E amino acid change in its KD

(Figure 2a). Notably, these two LRR-MAL RKs are in a

genomic cluster with two additional genes, AT1G56120

and AT1G56140, which encode two additional LRR-MAL

RKs (Yang, Wang, et al., 2021). These RKs are members

of a specific group of LRR-MAL proteins that comprise at

least 13 genes in the A. thaliana genome, with

AT1G56120, AT1G56130, AT1G56140 and AT1G56145

genes constituting a specific clade of the family (Fig-

ure S3; del Hierro et al., 2021). This family has a few

characterized members, such as RFK1 (AT1G29720), that

promote compatible pollen grain hydration and pollen

tube growth (Lee & Goring, 2021), the recently described

IGP1/CORK1 protein (Tseng, et al., 2022), and the so-

called BRASSINOSTEROID (BR) KINASE (BSK) 3-

INTERACTING RLK (BSR) members, which are not well

characterized (Yang, Wang, et al., 2021).

Using reverse transcription quantitative real-time

polymerase chain reaction (RT-qPCR), we determined that

the expression of AT1G56140, but not that of AT1G56120,

AT1G56130 and AT1G56145, was upregulated upon treat-

ment of seedlings with MLG43, CHI6 and other glucans

(e.g. CEL3; Figure S3). We then selected T-DNA insertional

mutants of AT1G56120 and AT1G56140 genes and tested

their perception of MLG43 and CHI6 by determining the

upregulation of PTI marker genes WRKY53 and CYP81F2

using RT-qPCR (M�elida et al., 2018, Rebaque et al., 2021;

Figure S3). The expression of these genes was compro-

mised in the at1g56140 knockout mutant, whereas the

expression in the at1g56120 mutant was very similar to

that of Col-0 (Figure S3). Both mutants displayed a similar

upregulation of WRKY53 and CYP81F2 expression to that

of wild-type plants upon CHI6 treatment (Figure S3). To

further validate the phenotype of the at1g56140 mutant,

Figure 1. Identification of Arabidopsis thaliana mutants impaired in glycan perception (igp).

Ca2+ burst upon application of (a) 100 lM MLG43 and (b) 50 lM CHI6 was measured as relative luminescence units (RLUs) over time in Col-0AEQ and igpAEQ

mutants. The cerk1-2AEQ line, impaired in CHI6 perception, was included for comparison. Data represent the mean � standard error (n = 4 in Col-0AEQ and cerk1-

2AEQ; n = 8 in igpAEQ). Data are from one of the four experiments performed that gave similar results.

� 2022 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,
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we crossed this line with Col-0AEQ and the homozygous

at1g56140AEQ line generated was tested for Ca2+ burst

upon MLG43 and CHI6 treatment. at1g56140AEQ was

impaired in MLG43 but not CHI6 perception, like igp1AEQ–
igp3AEQ, and this defective response was not caused by

any alteration in the endogenous levels of Ca2+, as

revealed by Ca2+ discharge experiments. Accordingly, the

at1g56140 mutant was named igp4 and selected for further

analyses to determine the contribution of AT1G56140/IGP4

RK in the regulation of PTI responses mediated by MLG-

and CEL-derived oligosaccharides (Figure 2b). We assessed

the impact of the igp1–igp4 mutations on plant develop-

mental phenotypes and no significant differences were

observed in the rosette and silique size and morphology of

igp1AEQ and igp4AEQ plants in comparison with Col-0AEQ or

cerk1-2AEQ, whereas igp2AEQ/igp3AEQ plants have rosettes

and siliques slightly smaller than those of Col-0 plants or

cerk1-2AEQ (Figure S4). As the last two mutants are allelic,

we stuck to igp3AEQ to characterize its function across this

article. Accordingly, we will refer to IGP3 and IGP3, when

discussing the gene and the encoded protein, respectively,

affected in this mutant.

LRR-MAL RKs are also required for the perception of addi-

tional cellulose- and MLG-derived oligosaccharides

To assess the specificity of MAMPs and DAMPs that activate

the Ca2+ response through these LRR-MAL RKs, we mea-

sured the Ca2+ bursts in igp1AEQ, igp3AEQ, igp4AEQ and Col-

0AEQ seedlings after treatment with different DAMPs, i.e.

carbohydrate ligands such as CEL3 and OGs (DP10–DP12)
and the peptide AtPep1, and the MAMP flg22. Remarkably,

the three igpAEQ lines were almost fully impaired in CEL3-

mediated Ca2+ burst activation, suggesting that these RKs

are also required for the perception of cellulose-derived

oligosaccharides (Figure 3a,b). In contrast, the Ca2+

responses induced by flg22, OGs and AtPep1 treatments in

the mutants were similar to those observed in Col-0AEQ (Fig-

ure 3c–e). The response of igp5AEQ–igp9AEQ mutants to

CEL3 was also impaired (Figure S5), further supporting the

hypothesis that the mechanisms of perception of MLG43

and CEL3 in Arabidopsis share some components. As addi-

tional cellulose- and MLG-derived oligosaccharides, such as

cellobiose (CEL2), cellotetraose (CEL4), cellopentaose

(CEL5) and MLG34, trigger PTI in Arabidopsis (Locci

Figure 2. Identification of mutations in igp1–igp4 mutants.

(a) Representation of IGP1, IGP2/3 and IGP4 domains: leucine-rich repeat (LRR; blue), malectin (MAL; green), phosphorylase kinase (orange) and phophotrans-

ferase (yellow) of kinase domain (KD; white), N- and C-terminal domains (black lines) and transmembrane domain (TM; gray). Red arrows indicate the position

of the mutations in the coding regions of igp1AEQ, igp2AEQ and igp3AEQ, and the red triangle indicates the insertion of the T-DNA sequence in igp4 (Online data

set). (b) Ca2+ burst measured as relative luminescence units (RLUs) over time in Col-0AEQ, igp1AEQ, igp3AEQ and igp4/at1g56140AEQ seedlings upon treatment

with 100 lM MLG43. Data represent the mean � standard error (n = 4 in Col-0AEQ and n = 8 in igpAEQ). Total Ca2+ was discharged by the addition of 1 mM CaCl2
to the wells and these values were used for the calculation of the total Ca2+ % induced by MLG43 treatment (graph at top right). This is one of three experiments

performed that gave similar results.

� 2022 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,
The Plant Journal, (2023), 113, 833–850
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et al., 2019; Rebaque et al., 2021; Souza et al., 2017), we also

determined the Ca2+ burst activated by these glycans in

igpAEQ mutants and Col-0AEQ. The three mutants showed

reduced Ca2+ influxes in comparison with Col-0AEQ upon

treatment with MLG34, CEL4 and CEL5 (Figure 4b,d,e), indi-

cating that the three LRR-MAL RKs are required for the per-

ception of these cellulose- and MLG-derived

oligosaccharides. By contrast, the Ca2+ influxes triggered by

CEL2 were, under our experimental conditions, very low,

even in Col-0AEQ (Figure 4f), suggesting that this disaccha-

ride has low immunogenic activity in Arabidopsis, and that

CEL3 is the cellulose-derived oligosaccharide with the low-

est degree of poyimerization (DP) perceived through the

sensing mechanism involving these RKs (Figure 4c).

Figure 3. Cytoplasmic calcium burst triggered by CEL3 is impaired in igpAEQ mutants.

Ca2+ burst measured as relative luminescence units (RLUs) over time in Col-0AEQ, igp1AEQ, igp3AEQ and igp4AEQ seedlings after treatment with: (a) 10 lM CEL3;

(b) 100 lM MLG43; (c) 0.5 mg mL�1 OGs; (d) 1 lM flg22; and (e) 1 lM AtPep1. Data represent the mean � standard error (n = 4 in Col-0AEQ and n = 8 in igpAEQ).

Data are from one of three experiments performed that gave similar results.

� 2022 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,

The Plant Journal, (2023), 113, 833–850
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To further validate whether the mechanism of percep-

tion of cellulose- and MLG-derived oligosaccharides in Ara-

bidopsis share some PRRs and signaling components, we

performed cross-elicitation experiments by treating 8-day-

old Col-0AEQ seedlings, first with MLG43 or CEL3, and a few

minutes later with either CEL3 or MLG43. In Col-0AEQ seed-

lings first treated with MLG43, Ca2+ influxes were not

observed upon the second application of CEL3

(MLG43 + CEL3), similarly to what was observed after treat-

ments with CEL3 + CEL3 and MLG43 + MLG43 (Figure S6),

indicating that the mechanisms of perception of MLG43 and

CEL3 share molecular components in Arabidopsis.

To confirm the role of this group of LRR-MAL recep-

tors as potential RKs for cellulose- and MLG-derived

oligosaccharide perception and PTI activation, we first

monitored ROS production in igp1AEQ, igp3AEQ, igp4, Col-0

and rbohD lines, impaired in DAMP/MAMP-triggered ROS

production (Morales et al., 2016), upon treatment with

MLG43, CEL3 and CHI6. The ROS burst was partially

impaired in the igp mutants compared with the Col-0

plants after treatment with MLG43, and was significantly

reduced, even to a higher extent, after CEL3 treatment (Fig-

ure 5a,b). In both cases, the reduction in ROS was not as

noticeable as in rbohD. Notably, the ROS burst in igp

mutants upon treatment with CHI6 and flg22 was not

altered in comparison with Col-0 plants (Figure S7), as

observed for the Ca2+ burst (Figure 3). Next, we tested the

phosphorylation of MAP kinases by Western blot. MPK3

and MPK6 phosphorylation triggered by MLG43 and CEL3

was reduced in igp1AEQ, igp3AEQ and igp4 plants, com-

pared with Col-0 plants, whereas it responded similarly to

Col-0 in response to CHI6 (Figure 5c). MPK4/11 phosphory-

lation was almost undetectable in either CEL3-treated or

MLG43-treated plants, as reported previously (Rebaque

et al., 2021). Last, we performed RT-qPCR analysis to study

the expression of two PTI-marker genes upregulated by

CHI6 and MLG43 (WRKY53 and CYP81F2; M�elida

et al., 2018, Rebaque et al., 2021). The upregulation of

WRKY53 and CYP81F2 in response to MLG43 and CEL3

was partially impaired in igp1AEQ, igp3AEQ and igp4 seed-

lings, compared with Col-0 plants, whereas it was similar

in response to CHI6 (Figure 5d,e). Together, these data

support the role of the three LRR-MAL RKs in the percep-

tion of cellulose-derived oligosaccharides and, to a lesser

extent, in the perception of MLG-derived oligosaccharides.

As previous works reported that MLG perception in

Arabidopsis and rice involved LysM-PRRs (e.g. CERK1,

LYK4 and LYK5 in Arabidopsis; Rebaque et al., 2021, Yang,

Liu, et al., 2021a), we determined ROS production, MPK3/

MPK6 phosphorylation and PTI marker upregulation upon

treatment with MLG43 or CEL3 in seedlings of Col-0, cerk1-

2 and the cerk1-2 lyk4 lyk5 triple mutant, which was gener-

ated in this work (Figure S8). cerk1-2 and cerk1-2 lyk4 lyk5

plants displayed similar ROS kinetics and bursts to those

of Col-0 after CEL3 treatment, and only a minor diminution

upon MLG43 treatment in comparison to Col-0, whereas

this PTI response was greatly impaired after CHI6 treat-

ment (Figure S8). Moreover, a slight reduction of the phos-

phorylation of MPK3/MPK6 in these mutants, compared

with Col-0, was observed upon MLG43 and CEL3 treat-

ment, although it was weaker than that observed with CHI6

(Figure S8). Also, the MLG43-mediated upregulation of

WRKY53 and CYP81F2 was only partially affected in cerk1-

2 and cerk1-2 lyk4 lyk5 plants, whereas it was not altered

upon CEL3 treatment (Figure S8). These data indicate that

MLG43 perception may involve CERK1, LYK4 and LYK5

LysM RKs, as described previously for MLGs in Arabidop-

sis and rice (Rebaque et al., 2021; Yang, Liu, et al., 2021b),

whereas these RKs have almost no contribution to CEL3

perception.

Model structures of IGP1, IGP3 and IPG4 proteins point to

their function as RKs

Malectin (MAL) domains like those present in the ECDs

of the LRR-MAL RK family have been previously

described in animals to bind short glycans, based on the

NMR structure of MAL from Xenopus laevis in complexes

with maltose and nigerose (Schallus et al., 2010). The

MAL domain and MLD are present in at least three fami-

lies of plant RKs (LRR-MAL, MLD-LRRs and CrRLK1Ls;

Yang, Wang, et al., 2021), and the ECDs of several

CrRLK1L members, e.g. ANXUR1 (ANX1), ANX2 and FER-

ONIA (FER), have been crystallized, but no oligosaccha-

ride ligands were identified in ITC binding experiments

(Moussu et al., 2018; Xiao et al., 2019). Phylogenetic anal-

yses of MAL domains of A. thaliana LRR-MAL RK mem-

bers (represented by IGP1/CORK1 and AT1G56145)

revealed that the MAL domain is highly conserved in cru-

ciferous and other dicot species (Figure S9; Yang, Wang,

et al., 2021). On the other hand, the MAL domain of

IGP1/CORK1, IGP3 and IGP4 are evolutionarily divergent

from ANX1 and ANX2 and Xenopus sp. MLD domains

(Figure S9; Yang, Wang, et al., 2021).

The model structures of IGP1/CORK1, IGP3 and IGP4

in the AlphaFold database display a spatial arrangement of

all domains that does not properly describe the expected

organization of these LRR-MAL RKs (Figure S10). There-

fore, to explore the impact of igp1 and igp2/igp3 point

mutations in the KD of these RKs, we first obtained models

with the correct domain organization, as described in the

Experimental procedures. These models provide a com-

plete picture of the proteins to be used as initial geome-

tries for further computational studies (Figure S11). We

then used TM-ALIGN (Zhang & Skolnick, 2005) to evaluate the

structural similarity of MAL domains from IGP1/CORK1,

IGP3 and IGP4 with several entries in the Protein Data Bank

(PDB, https://www.rcsb.org) with MAL and MLD domains

(five plant RKs from CrRLK1Ls and nine human and

� 2022 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,
The Plant Journal, (2023), 113, 833–850
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bacteria proteins), including the NMR structures of malec-

tin from Xenopus laevis in complex with maltose (Schallus

et al., 2010), an apo form and a complex with nigerose

(Schallus et al., 2008), and the crystal structure of tandem

MLDs from the ANX1/ANX2 ECDs (Moussu et al., 2018). In

all cases, TM scores between 0.623 and 0.710 were found,

thus indicating highly similar folds of IGP MAL domains to

animal malectin and to plant MLD structures.

Similar structural comparison analyses were per-

formed for the KDs of IGP1/CORK1, IGP3 and IGP4, with

some kinase crystals, like MPK6 from Arabidopsis (5CI6,

Wang et al., 2016; 6DTL, Putarjunan et al., 2019). The struc-

tural alignment data showed that the IGP1/CORK1 KD is

noticeably different from that of the two other RKs because

of the extra loop seen in the intracellular part of its com-

plete structure (indicated by an arrow in Figure S11), which

is not predictable from IGP protein sequence alignments.

Notwithstanding, the conformation of side chains of cat-

alytic residues was found to be identical in wild-type and

mutant structures, a result worth emphasizing as the muta-

tion positions are near the catalytic site in both IGP1/

CORK1 and IGP3 (Figure S11). Next, we tested in silico the

possible structural impact of the single mutations of E906K

in IGP1/CORK1 and G773E in IGP2/IGP3 KDs by generating

new model structures of the KD of wild-type and mutants

with AlphaFold 2. We found that the backbones remained

unaltered, and that E906K in IGP1 and G773E in IGP2/IGP3

had the effect of increasing the surface patch associated

with the mutated position (Figure S11). However, the major

effect of these single mutations was found in the surface

electrostatic potential (Figure S11). The region around

E906 in wild-type IGP1/CORK1 shows a weakly negative

electrostatic character, whereas in the igp1 mutant the

E906 negative charge of IGP1/CORK1 is substituted for a

K906 positive charge, which gives rise to a strongly posi-

tive electrostatic potential in a large area around position

906 (Figure S11). The equivalent region around G773 in

wild-type IGP2/IGP3 displays a weakly positive electrostatic

character, which becomes strongly negative upon the

G773E mutation (Figure S11). It is noted that these electro-

static effects extend over a surface region far larger than

that expected from the small, exposed surface areas of

residues 906 and 773 (Figure S11). These changes in the

KD domains of IGP1/CORK1 and IGP2/IGP3 LRR-MAL RKs

might explain their loss of functionality. Additional muta-

tions in the KD of IGP1/CORK1 have been proven recently

to impair its kinase activity in phosphorylation experiments

performed in vitro with CORK1 recombinant proteins (wild-

type and mutant versions) expressed in Escherichia coli

(Tseng, et al., 2022).

The ECD of IGP1/CORK1 directly binds cellulose-derived

oligosaccharides CEL3 and CEL5

Based on the initial structural models of MAL domains in

the three LRR-MAL RKs and their similarities with the MAL

domain from Xenopus sp. that binds short glycans (Fig-

ure S11; Schallus et al., 2010), we tested whether ECDs of

these LRR-MAL RKs could be glycan receptors for

cellulose- and MLG-derived oligosaccharides. We

expressed the ECDs of IGP1/CORK1, IGP3 and IGP4 in

insect cells and purified them by affinity chromatography.

As the ECD of IGP3 turned out to form aggregates, this

ECD was not suitable for further purification steps and was

not available for binding experiments (Figure S12). Then,

ITC experiments (Sandoval & Santiago, 2020) were carried

out to test the binding of MLG43 and CEL3 to IGP1/CORK1

and IGP4 ECDs. The ITC results proved the existence of

direct interactions between CEL3 and the ECD of IGP1/

CORK1 (KD = 1.19 � 0.03 lM; Figure 6a), but not with the

ECD of IGP4 (Figure S12). However, the results obtained

with ITC clearly indicated that these ECDs did not bind, at

least directly, to MLG43 (Figures 6a,b and S12). Similar

binding experiments were performed with CEL5 and the

ECD of IGP1/CORK1 to determine the specificity of recep-

tor–ligand recognition, and direct binding was also

detected with similar high affinity (KD = 1.40 � 0.01 lM; Fig-
ure 6a). The binding reactions measured for CEL3 and

CEL5 were exothermic, with a single binding site (n = 1)

and very similar values of DH, indicating that extra sugar

subunits in the CEL5 oligomer do not improve the detected

binding. These data support the role of the ectodomain of

IGP1/CORK1 as a receptor for cellulose-derived oligosac-

charides and suggest that IGP4 RK might function as an RK

required for the sensing complex for cellulose- and MLG-

derived oligosaccharides.

DISCUSSION

Plant immunity is activated by a diverse set of ligands

(DAMPs and MAMPs) with different biochemical composi-

tion and structure. These DAMPs and MAMPs are specifi-

cally perceived by diverse sets of ECDs from plant PRRs,

triggering the formation of a ligand–PRR complex that

involves additional proteins that contribute to the function-

ality of the recognition complex (Bigeard et al., 2015;

Boutrot & Zipfel, 2017; Ngou et al., 2022). Some of the best-

characterized DAMPs and MAMPs are oligoglycans from

Figure 4. Calcium burst in response to MLG34- and cellulose-derived oligosaccharides is impaired in igp mutants.

Ca2+ burst measured as relative luminescence units (RLUs) over time in 8-day-old Col-0AEQ, igp1AEQ, igp3AEQ and igp4AEQ seedlings after treatment with: (a)

100 lM MLG43; (b) 100 lM MLG34; (c) 10 lM CEL3; (d) 10 lM CEL4; (e) 10 lM CEL5; and (f) 10 lM CEL2. Data represent the mean � standard error (n = 3 in the case

of Col-0 AEQ and n = 12 in the case of igpAEQ). The x-axis scale in (c) has been shortened for a better comparison of the enhanced response of seedlings to CEL3.

Data are from one of three experiments performed that gave similar results.

� 2022 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,
The Plant Journal, (2023), 113, 833–850
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Figure 5. Activation of pattern-triggered immunity (PTI) hallmarks by MLG43, CEL3 and CHI6 in igpAEQ.

(a, b) Reactive oxygen species (ROS) production was monitored as H2O2 production over a period of 50 min by luminol assays and measured as relative lumi-

nescence units (RLUs) in the indicated genotypes; 100 lM MLG43 (a) and 10 lM CEL3 (b) were added 5 min after the transfer to the luminometer of the plate with

seedling and luminol reagents. Data represent mean � standard error (n = 8). Comparison with Col-0 assessed by Student’s t-test (n = 24) at the time of the Col-

0 peak shows statistically significant differences for igp1AEQ and igp3AEQ (P < 0.01) and igp4AEQ (P < 0.001) in response to MLG43. Likewise, all three mutants

show statistical differences at P < 0.001, compared with Col-0, in response to CEL3. rbohD plants impaired in ROS production showed statistically significant dif-

ferences (P < 0.001) with both treatments. These results are from one representative experiment out of three performed that gave similar results. The inset in (b)

has been included in the graph to allow an easy comparison of the RLU data for igp1AEQ and Col-0. (c) Mitogen-activated protein kinase (MAPK) phosphorylation

was analyzed in seedlings of Col-0, igp1AEQ, igp3AEQ and igp4AEQ treated with 100 lM MLG43, 10 lM CEL3, 50 lM CHI6 or water (mock). Western blotting using

anti-pTEpY antibody (anti-p42/44) for phosphorylated MAPK moieties was performed with samples harvested at 10 and 20 min. Mock samples (Mo) correspond-

ing to a 10-min treatment with water were included as basal expression controls. Black arrows indicate the positions of phosphorylated MPK6 (top), MPK3 (mid-

dle) and MPK4/11 (bottom). Anti-MPK3 was used as a total protein control to show the loading of each gel. These results are from one representative

experiment out of two performed that gave similar results. (d, e) RT-qPCR analysis in the indicated genotypes. Expression levels of CYP81F2 (d) and WRKY53 (e)

genes, relative to the housekeeping gene UBC21 (AT5G25769) 30 min after mock treatment (M) or the application of the oligosaccharides (T) are shown. Data

represent mean � standard error of three technical replicates out of three independent biological replicates (n = 3). Statistically significant differences between

MLG43-, CEL3- or CHI6-treated igpAEQ versus treated Col-0 according to Student’s t-test (*P < 0.05, **0.01 < P > 0.001, ***P < 0.001).

� 2022 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,

The Plant Journal, (2023), 113, 833–850
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fungal chitin (e.g. CHI6) or plant pectins (e.g. OGs), which

are perceived by LysM-PRRs and WAK1/2/FER1-PRRs,

respectively (Brutus et al., 2010; Miya et al., 2007; Tang

et al., 2022). Several glycan ligands derived from cell walls

or extracellular matrixes from plants or microorganisms

that trigger immune responses in plants have recently been

described (Aziz et al., 2007; Barghahn et al., 2021; Claverie

et al., 2018; Denoux et al., 2008; Gust et al., 2007; Kaku

et al., 2006; Klarzynski et al., 2000; M�elida et al., 2018; M�elida

et al., 2020; Rebaque et al., 2021; Versluys et al., 2022;

Voxeur et al., 2019; Wanke et al., 2020; Yang, Liu,

et al., 2021a; Yang, Liu, et al., 2021b; Zang et al., 2019).

Among them are oligosaccharides derived from b-glucans
of plant cell walls, like MLGs (e.g. MLG43, MLG34 and

MLG443), or cellulose (e.g. CEL2, CEL3, CEL4, CEL5 and

CEL6). Here, we describe a group of Arabidopsis thaliana

RKs – IGP1, IGP3 and IGP4 – with LRR-MAL domains in their

ECDs that are required to trigger immune responses medi-

ated by oligosaccharides derived from cellulose (e.g. CEL3–
CEL5) and MLGs (e.g. MLG43 and MLG34) (Figures 1 and 2).

Figure 6. The IGP1/CORK1 ectodomain (ECD) directly binds CEL3- and CEL5-derived oligosaccharides.

(a) Isothermal titration calorimetry (ITC) experiments of ECD-IGP1/CORK1 versus CEL3, MLG43 and CEL5. (b) ITC summary of ECD-IGP1 and ECD-IGP4 versus

CEL3, MLG43 and CEL5. The binding affinities of ECD-IGP1/CORK1 are reported as KD (dissociation constant, in micromoles), DP indicates measured power dif-

ferential between the reference and sample cells to maintain a zero temperature between the cells inside the ITC device, N indicates the reaction stoichiometry

(N = 1 for a 1:1 interaction) and DH indicates the enthalpy variation. Values indicated in the table are means � SDs of independent experiments (n = 2). n.d., no

binding detected.

� 2022 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,
The Plant Journal, (2023), 113, 833–850
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We demonstrate by ITC binding experiments that the IGP1/

CORK1 RK is a PRR for cellulose-derived oligosaccharides,

further supporting its recently proposed function by Tseng

et al. (2022) that identified CORK1/IGP1 in a similar genetic

screening to the one performed here. We demonstrate the

direct interaction of IGP1/CORK1-ECD with CEL3 and with

CEL5 with high affinity (KD = 1.19 � 0.03 lM and

KD = 1.40 � 0.01 lM, respectively), and the absence of bind-

ing with MLG43, at least under the in vitro conditions of ITC

tested (Figures 6 and S12). Our data suggest that the IGP1/

CORK1 RK might be a true PRR receptor for CEL3–CEL5
oligosaccharides, and that IGP3 and IGP4 RKs might func-

tion in Arabidopsis as components of the PRR complex

involved in the perception of these oligosaccharides or the

signaling complex activating downstream PTI responses

(Figure 5). A recent article reports that two LRR RKs, SIF2

(AT1G51850) and SIF4 (AT1G51820), are also required for

the immune responses triggered by cellulose-derived

oligosaccharides and could also be part of the PRR complex

involved in their perception (Zarattini et al., 2021). Also, a

poly(A)-specific ribonuclease (AtPARN, AT1G55870) was

found to be required for the regulation of the immune

responses triggered by CEL3 in Arabidopsis, probably

through a mechanism of degradation of the polyA tail from

specific mRNAs (Johnson et al., 2018). However, this

AtPARN regulatory mechanism of CEL3-mediated

responses acts downstream of CEL3 perception by PRRs at

the cell surface described here.

Our results point to the LRR-MAL RK family as a set of

plant proteins involved in the perception of carbohydrate-

based DAMPs and MAMPs, as previously suggested (del

Hierro et al., 2021). So far, the plant RKs described to be

involved in glycan perception belong to the LysM, WAK

and CrRLK1 RK families (Bellande et al., 2017; Brutus

et al., 2010; Cao et al., 2014; del Hierro et al., 2021; Liu

et al., 2012; Liu et al., 2016; Tang et al., 2022; Wong

et al., 2020). The function of most of these proteins in

oligosaccharide perception and PTI activation was discov-

ered through the isolation and characterization of Ara-

bidopsis mutants (e.g. cerk1, lyk4, lyk5, wak1, wak2 and

fer1). In general, such mutants share redundant functions

with additional RKs, and therefore individually they are

either unaffected or only partially impaired in PTI

responses triggered by specific DAMPs and MAMPs.

Accordingly, higher-order RK mutants that overcome

redundancy must be analyzed to observe PTI-deficient phe-

notypes (Brutus et al., 2010; Cao et al., 2014; D€unser

et al., 2019; Guo et al., 2018; Liu et al., 2012; Liu

et al., 2016; Miya et al., 2007). Similarly, our genetic screen-

ing led to the identification of nine mutants impaired in

glycan perception (igp1–igp9), among them IGP1/CORK1,

IGP2/IGP3 and IGP4 have been isolated as mutants

impaired in MLG43 recognition, and later proven to also

be defective in the perception of cellulose-derived

oligosaccharides (CEL3–CEL5; Figures 3 and 4). These

results suggest that the mechanisms of perception of CEL-

and MLG-derived oligosaccharides overlap in Arabidopsis,

and this is supported by CEL3/MLG43 cross-elicitation

experiments (Figure S6). However, despite the similarities

between the mechanisms of perception of MLG- and CEL-

derived oligosaccharides, some differences might exist

among them. For example, we found that LysM RKs (i.e.

CERK1, LYK4 and LYK5) have a partial contribution in the

perception of MLG43 (Figure S8), as described previously

(Rebaque et al., 2021). In contrast, their role in CEL3 per-

ception is residual as only minor differences in PTI activa-

tion were observed in cerk1-2 and cerk1-2 lyk4 lyk5 triple

mutants in comparison with Col-0 plants treated with CEL3

(Figure S8). The partial requirement of LysM RKs for MLG

perception in Arabidopsis is in line with the described

function of rice LysM RK members in the perception of

MLG-derived oligosaccharides and immune activation.

OsCERK1 has been suggested to be the PRR receptor of

MLG-derived oligosaccharides based on microscale ther-

mophoresis analysis performed with the ECD produced in

baculovirus, whereas OsCeBiP, the rice receptor for chitin-

derived oligosaccharides, has been proposed to be the

MLG co-receptor of CERK1, based on the lack of binding of

its ECD to these MLG ligands (Yang, Liu, et al., 2021b). The

KD values of ECD–OsCERK1 for MLG43 are in the range of

1–2 lM, similar to that found for IGP1/CORK1 binding to

CEL3/CEL5 in this work (Figure 6), and to that of ECD–
OsCeBiP for CHI6 (Yang, Liu, et al., 2021b). Of note, the

perception of CHI6 is neither altered in igp1-igp4 nor

altered in igp5-igp9 mutants (Figures 1 and S2), further

indicating that Arabidopsis IGP1–IGP9 proteins are not

required for CHI6 perception. These data point to separate

mechanisms for the perception of CHI6 and the CEL3- and

MLG43-derived oligosaccharides in Arabidopsis, but also

to some differences in the mechanism of perception of

CEL3 (independent of CERK1, LYK4 and LYK5, and with

IGP1/CORK1 as a true PRR) and MLG43 (requiring CERK1,

LYK4 and LYK5, with the true PRR yet to be determined).

The role of LysM RKs in the mechanisms of perception of

several glycans and in plant–microbe interactions is an

emerging issue (Yang, Wang, et al., 2021). The mecha-

nisms of PTI activation mediated by IGP1, IGP3 and IGP4

LRR-MAL RKs described here also differ from that of pectin

and OG perception involving FER1 and WAK1–WAK2 (Bru-

tus et al., 2010; D€unser et al., 2019; Tang et al., 2022),

respectively, and that of other MAMPs and DAMPs (e.g.

flg22 and AtPEP1), because the Ca2+ burst in igp1AEQ–ig-
p4AEQ upon treatment with these elicitors was similar to

that of Col-0AEQ plants (Figure 3c–e). All these data support

the specific function of IGP1/CORK1, IGP3 and IGP4 RKs in

MLG- and CEL-derived oligosaccharide recognition.

The crystallized structures of ECDs of CERK1- and

chitin-derived oligosaccharides revealed the structural

� 2022 The Authors.
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basis of this recognition (Liu et al., 2012; Yang, Liu,

et al., 2021b). Other plant ECD-RKs like ANX1, ANX2 and

FER1, which harbor two tandem MLDs, have been also

purified and crystallized, but their putative glycoligand(s)

has not been identified (Moussu et al., 2018). Notably, the

MLDs of ANX1, ANX2 and FER1 seem to show some differ-

ences compared with those MAL domains present in the

ECDs of the three IGP RKs identified in this work, which

also contain an N-terminal LRR domain (Figure S11; (Yang

et al., 2021)). We have generated de novo structural mod-

els for the three LRR-MAL RKs, and these models suggest

that IGP1/CORK1, IGP3 and IGP4 have similar structures, in

line with their putative recent evolutionary divergence

(Figure S3), although IGP1/CORK1 has an extra loop in its

KD (Figure S11). Remarkably, MAL domains of these RKs

are structurally very similar to that of the MAL protein of

Xenopus sp., which is involved in oligosaccharide binding,

and to that of plant ANX1/ANX2 from the CrRLK1 family

(Figure S11). In recent reports by Tseng et al. (2022), two

Phe residues conserved in all A. thaliana MAL domains,

but not in MAL from Xenopus sp. (Schallus et al., 2010) are

noted as essential for CEL3 perception and PTI activation,

but this hypothesis has not been validated through binding

experiments. Therefore, we hypothesize that the LRR

domain of ECDs in IGP1/CORK1 might be essential for the

formation of the structural pocket involved in the observed

CEL3 and CEL5 binding. Obtaining crystallized structures

of CEL3/ECD-IGP1 will contribute to decipher the structural

bases of CEL3–CEL5 recognition by LRR-MAL ECD.

We show here that igp1 and igp2/igp3 mutants have

point mutations in their KDs that may impact their func-

tionality (Figure 2). E906K in IGP1/CORK1 and G773E in

IGP3 do not seem to impair the catalytic sites of these RKs,

which are predicted to be almost identical to that of wild-

type KDs (Figure S11). However, such mutations are pre-

dicted to increase the surface patch, resulting in drastic

changes on the surface electrostatic potential of the resi-

dues around the mutated positions (Figure S11). As kinase

activity can be altered by mutations at distant residues

from the active site (McClendon et al., 2014), we can

hypothesize that E906K and G773E mutations might either

affect the catalytic activity of the KDs or interfere with the

interaction of the RK KDs with other RKs, like true PRR for

MLG43 perception, co-receptors proteins of IGP1/CORK1

PRR (e.g. IGP2/3 and IGP4) or additional protein partners.

The exogenous application of glycans enhanced dis-

ease resistance of different plant species to diverse patho-

gens, acknowledging the relevance of these carbohydrate-

based ligands released during plant–microbe interaction in

the regulation of plant disease resistance (M�elida

et al., 2018; Rebaque et al., 2021). This oligosaccharide-

mediated priming effect on PTI and disease resistance has

driven the development of sustainable crop protection solu-

tions based on combinations of active glycans (DAMPs and

MAMPs; Chaliha et al., 2020, Lemke et al., 2022). The discov-

ery of counterpart receptors for these active glycans in

crops would accelerate the selection of the corresponding

genes in breeding programs to enhance crop disease resis-

tance. Notably, the IGP1/CORK1, IGP3 and IGP4 genes are in

a cluster in the A. thaliana genome, indicating recent dupli-

cation events (Yang, Wang, et al., 2021). These genes form

part of a family of at least 13 members that has not been

characterized in detail previously, except for RFK1, a protein

involved in pollen tube growth (Lee & Goring, 2021). This

clade of LRR-MAL RKs seems to be conserved and diversi-

fied in dicots (Fig. S10) and in some monocots, like rice.

However, the few relatives RKs found in grasses are struc-

turally dissimilar and phylogenetically distant (Yang, Wang,

et al., 2021).

The MLG- and cellulose-derived oligosaccharides can

also be released upon alteration of plant cell wall integrity

triggered by other stresses (e.g. salt or drought) or across

plant development (e.g. during cell wall remodeling;

Bacete et al., 2022, Gigli-Bisceglia et al., 2022). During

these processes plant endogenous enzymes can hydrolase

cell wall polysaccharides, as described recently for a Zea

mays (maize) GH17 licheninase that releases MLG43-

derived and other oligosaccharides (Kraemer et al., 2021).

The characterization of the role of glycan-mediated

responses in these additional processes must be deter-

mined to understand their interaction with PTI/disease

resistance responses and their impact on plant fitness.

Also, the regulation of the homeostasis of cell wall-derived

oligosaccharides needs to be analyzed in depth. For exam-

ple, several plant berberine-bridge enzymes control CEL–
oligosaccharide homeostasis by oxidating the anomeric

carbon of CEL3–CEL6 oligosaccharides, thus reducing both

their activity as DAMPs and their preferred use as a carbon

source by fungi (Benedetti et al., 2018). In summary, our

results contribute to further understanding the mecha-

nisms of perception of oligosaccharides by the plant

immune system and to expand the set of families of PRRs

and the ECD structures involved in ligand recognition and

immune activation in plants.

EXPERIMANTAL PROCEDURES

Biological material and growth conditions

The A. thaliana lines used in this study, all in the Columbia-0 (Col-0)
background, were Col-0AEQ, carrying the calcium reporter aequorin
protein (Knight et al., 1991; Ranf et al., 2011), cerk1-2AEQ (Ranf
et al., 2011), rbohD (Morales et al., 2016) and igpAEQ, isolated in this
work. The cerk1-2 lyk4 lyk5 triple mutant was generated by crossing
cerk1-2 and the lyk4 lyk5 double mutant (Rebaque et al., 2021) and
selecting the triple mutants with the oligonucleotides described
(Table S3). The at1g56140 (igp4) and the at1g56120 T-DNA mutants
were obtained from NASC (SALK_005808 and SALK_043782,
respectively). Plants used for cytoplasmatic Ca2+ measurements and
ROS were grown in 96-well plates (with one seedling per well), and

� 2022 The Authors.
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for MAPK phosphorylation and gene expression analyses plants
were grown in 24-well plates (with approx. 10 seedlings per well).
Seedlings were grown under long-day conditions (14 hours of light)
at 19–22°C in half-strength liquid MS medium. Plants were also
grown in a soil–vermiculite (3:1) mixture under a short-day pho-
toperiod (10 h of light/14 h of dark, 21–20°C) or a long-day photope-
riod (14 h of light/10 h of dark, 19–22°C).

Carbohydrates used in the experiments

MLG43 (b-1,4-D-(Glc)2-b-1,3-D-Glc; #O-BGTRIB), MLG34 (b-1,3-D-
(Glc)2-b-1,4-D-Glc; #O-BGTRIA), hexaacetyl-chitohexaose (CHI6; b-
1,4-D-(GlcNAc)6; #O-CHI6), CEL3 (b-1,4-D-(Glc)3; O-CTR), CEL4 (b-
1,4-D-(Glc)4; #O-CTE), CEL5 (b-1,4-D-(Glc)5; #O-CPE) were pur-
chased from Megazyme (https://www.megazyme.com). CEL2 (cel-
lobiose, b-1,4-D-(Glc)2; C7252) came from Sigma-Aldrich (https://
www.sigmaaldrich.com). OGs (galacturonan oligosaccharides
mixture DP10/DP15; GalAa1–4(GalAa1–4)8�13GalA; GAT114) were
from ELICITYL (https://www.elicityl-oligotech.com). Peptides flg22
and AtPEP1 were from EZBiolab (http://www.ezbiolab.com) and
Abyntek (https://www.abyntek.com), respectively.

Genetic screening to identify igp mutants

Col-0AEQ seeds were mutagenized with 0.3% EMS for 17 h. Seeds
were sown in soil–vermiculite (3:1) to obtain next-generation
seeds (e.g. M1 and M2) (Ranf et al., 2012). M2 seedlings were
grown in vitro for 8 days, and cytoplasmic Ca2+ influxes were eval-
uated using a Varioskan Lux Reader luminometer (ThermoFisher
Scientific, https://www.thermofisher.com) upon treatment with
100 lM MLG43, as described (Rebaque et al., 2021). Seedlings with
low response to MLG43 were transferred to soil (230 putative
mutants out of 6400 total seedlings screened), self-crossed and
then the Ca2+ burst was tested in F1 seedlings to confirm the
impaired response to MLG43. Validated igp mutants (igp1AEQ–ig-
p3AEQ and igp5AEQ–igp9AEQ, described here, and igp10AEQ–ig-
p20AEQ, not described here) were selected for further
characterization and backcrossed with Col-0AEQ. Total Ca2+ dis-
charge was performed by treating seedlings with 1 M CaCl2 and
then the Ca2+ burst was measured in the luminometer.

Mapping by whole-genome sequencing and SNP analysis

Tissue from 50 individuals of F2 igp
AEQ 9 Col-0AEQ segregating plants

with impaired response to MLG43 and from control line Col-0AEQ

was harvested and pooled for whole-genome sequencing of gDNA
to identify single-nucleotide polymorphisms (SNPs) associated with
phenotypes in igpAEQ. Sequencing (150-bp paired-end reads) was
performed on an Illumina platform (https://www.illumina.com) to
reach a coverage of 30 million reads (Andrews, 2010), which were
aligned with BWA-MEM 0.7.17 (Macrogen, https://dna.macrogen.com)
against the A. thaliana TAIR10 genome release (Li, 2013). BAM files
were obtained with SAMTOOLS 1.15.1 (http://www.htslib.org). The vari-
ant caller 16GT DOCKER IMAGE was employed to obtain VCF files (Dane-
cek et al., 2021; Luo et al., 2017). From these VCF files, chromosome,
position, reference, alternate and allelic depth (AD) fields were
extracted with BCFTOOLS 1.15.1, and SNPs were subtracted from the
resulting files. Frequency was calculated from AD fields as follows:
[AD-alternate allele/(AD-alternate allele + AD-reference allele)]. SNPs
with frequency values higher than 0.99 were selected for further anal-
yses (Online data set; Table S2).

Determination of PTI responses

Reactive oxygen species (ROS; H2O2) production was determined
in 10-day-old seedlings after treatment with MAMPs and DAMPs

using the luminol assay, as described by Rebaque et al. (2021).
MAPK activation was determined in 12-day-old seedlings grown
on half-strength liquid MS medium and treated with water (mock)
or different oligosaccharides for 0, 10 and 20 mins. Then seedlings
were harvested and Western blotting was performed as described
previously, with a few modifications (Rebaque et al., 2021). Gene
expression analysis was carried out in 12-day-old seedlings grown
on half-strength liquid MS medium, and treated with oligosaccha-
rides (i.e. 100 lM MLG43, 10 lM CEL3 or 50 lM CHI6) or water
(mock) for 30 min. Then total RNA extraction and RT-qPCR analy-
ses were performed as described by Rebaque et al. (2021). Gene
expression and normalization to mock samples were determined
using PFAFFL (Pfaffl, 2001). The oligonucleotides used for PCR are
described in Table S3.

Phylogenetic analysis

The evolutionary history of IGP proteins was inferred using the
minimum evolution (ME) method (Rzhetsky & Nei, 1992). The
bootstrap consensus tree inferred from 1000 replicates is taken to
represent the evolutionary history of the taxa analyzed (Felsen-
stein, 1985). Branches corresponding to partitions reproduced in
less than 50% bootstrap replicates are collapsed. The percentage
of replicate trees in which the associated taxa clustered together
in the bootstrap test (1000 replicates) are shown next to the
branches (Felsenstein, 1985). The evolutionary distances were
computed using the p-distance method (Nei & Kumar, 2000). The
ME tree was searched using the close-neighbor-interchange (CNI)
algorithm (Nei & Kumar, 2000) at a search level of 1. The
neighbor-joining algorithm (Saitou & Nei, 1987) was used to gen-
erate the initial tree. The analysis involved 25 amino acid
sequences. All ambiguous positions were removed for each
sequence pair and a total of 709 positions were present in the final
data set. Evolutionary analyses were conducted in MEGA 6 (Tamura
et al., 2013).

Structure analyses in silico

Model structures of IGP1/CORK1/AT1G56145, IGP3/AT1G56130
and IGP4/AT1G56140 were downloaded from the AlphaFold Pro-
tein Structure Database (Tunyasuvunakool & Adler, 2021). They
present six identifiable domains: N-terminal containing a signal
peptide annotated in PFAM (Mistry et al., 2021), LRR, MAL, TM, KD
and the C-terminal tail. The plDDT metric over most of LRR, MAL
and KDs is ≥90% (Figure S10) (Jumper et al., 2021). To achieve the
proper extracellular/TM/intracellular domain separation, and tak-
ing the IGP4 model as the benchmark, we proceeded as follows:
(i) torsions were applied to backbone dihedral angles in the seg-
ment following MAL (magenta box in Figure S10) with CHIMERA 1.15
(Pettersen et al., 2004); (ii) energy minimization of the extended
segment joining the MAL and TM domains was performed with
CHIMERA 1.15, keeping all the remaining structure fixed; (iii) the
resulting structure was inserted in a pre-equilibrated model of a
bilayer composed of 256 phosphatidylcholine (POPC) lipids with a
pore of radius 8 �A, downloaded from the CHARMM-GUI archive
(Jo et al., 2007), and the protein-bilayer system was parametrized
using the CHARMM 3.6 force field (Huang et al., 2017) with CHARMM-
GUI (Jo et al., 2008); (iv) the protein bilayer system was solvated
with a 16-�A margins solvation box and NaCl 0.150 M salt ions with
VMD 1.9.3 (Humphrey et al., 1996), and the whole structure was
optimized with 10 000 conjugated gradient minimization steps
using NAMD 2.14 (Phillips & Hardy, 2020). The optimized final struc-
ture of IGP4 was then used as the input for modeling the corre-
sponding structures of IGP1/CORK1 and IGP3 with SWISS-MODEL

(Waterhouse et al., 2018) in ‘user template mode’. The structural
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comparisons of MAL and KD were analyzed with the TM-Align
web server (Zhang & Skolnick, 2005) The structural analysis of
mutants IGP1-E906K and IGP3-G773E, and their corresponding
wild-type KDs, was addressed by modeling them separately with
AlphaFold 2 (Jumper et al., 2021) using ColabFold (Mirdita &
Sch€utze, 2022). Poisson–Boltzmann (PB) electrostatic potentials
(EPs) were computed with the Adaptive Poisson Boltzmann Sol-
ver, APBS 3.0.0 (Jurrus et al., 2018) through its plug-in in PYMOL 2.5.1
(Schr€odinger, 2020), solving the nonlinear PB equation in sequen-
tial focusing multigrid mode at 3D grids of 1613 = 4 173 281 points
(approx. 0.5-�A step size), with T = 298 K, ionic concentration of
0.150 M (NaCl), and dielectric constants of 4.00 for proteins and
78.54 for water. The PB EP was then mapped onto molecular sur-
faces computed and rendered with PYMOL 2.5.1 (Schr€odinger, 2020).

Protein expression and purification from insect cells

Codon-optimized synthetic genes corresponding to the ectodo-
mains of AT1G56145 (residues 25–630), AT1G56140 (residues 29–
636) and AT1G56130 (residues 30–636) from Invitrogen GeneArt
were cloned into a modified pFastBac donor vector (Geneva Bio-
tech, https://geneva-biotech.com) harboring the Drosophila BiP
(Smakowska-Luzan et al., 2018) or the 30K Bombyx mori (Soejima
et al., 2013) secretion signal peptides, and with a TEV (tobacco
etch virus protease) cleavable C-terminal StrepII-9xHis tag. Bac-
ulovirus vectors were generated in DH10MultiBac E. coli cells
(Geneva Biotech). Briefly, virus amplification was carried out in
Spodoptera frugiperda Sf9 cells (Geneart, Thermo Fisher Scien-
tific) and was used to infect Trichoplusia ni Tnao38 cells (Hashi-
moto et al., 2012) for protein expression. The cells were grown for
1 day at 28°C and for 2 days at 22°C with gentle shaking. The
secreted proteins were subjected to tandem affinity purification,
using Ni2+ (HisTrap excel, equilibrated in 25 mM KPi, pH 7.8, and
500 mM NaCl; GE Healthcare, https://www.gehealthcare.com) and
Strep columns (Strep-Tactin Superflow high-capacity; IBA, https://
www.iba.de) equilibrated in (25 mM Tris, pH 8.0, 250 mM NaCl,
1 mM EDTA. Affinity tags were removed using His-tagged TEV pro-
tease in a 1:50 ratio at 4°C overnight. Separation of cleavage tags
and aggregated proteins was performed using size-exclusion
chromatography on a Superdex 200 Increase 10/300 GL column
(GE Healthcare) equilibrated in 20 mM citric acid, pH 5.0, 150 mM

NaCl. Proteins were analyzed for purity and structural integrity by
SDS-PAGE.

Analytical size-exclusion (SEC) chromatography

Analytical size-exclusion experiments were performed on a Super-
dex 200 Increase 10/300 GL column (GE Healthcare) equilibrated in
20 mM citric acid, pH 5.0, 150 mM NaCl. A 400-lg portion of protein
(aprox. 6 lM) was injected using a loop of 1 mL, and the sample
was eluted with a flow of 0.5 mL min�1. UV absorbance at 280 nm
was used to monitor the elution of proteins. The peak fractions
were analyzed by SDS-PAGE followed by Coomassie blue stain-
ing.

Isothermal titration calorimetry (ITC)

Experiments were performed at 25°C using a MicroCal PEAQ-ITC
(Malvern Instruments, https://www.malvernpanalytical.com) with
a 200-lL standard cell and a 40-lL titration syringe. Briefly, for
ITC experiments in MicroCal PEAQ-ITC, proteins were gel-filtrated
into the ITC buffer (20 mM sodium citrate, pH 5.0, 150 mm NaCl).
A 3-lL sample of potential ligand (CEL3, CEL5 or MLG43) was
injected at a concentration range between 135 and 400 lM into
the ITC cell containing ECDs of AT1G56145 or AT1G56140 protein

at 9 lM. A total of 13 injections were performed at 150-s intervals
with a 500-rpm stirring speed. Dilution heat was corrected using
the thermograph of the titration of the ligand into the cell con-
taining only buffer as a control. Experiments were performed in
duplicate or triplicate, unless otherwise specified, and data were
analyzed using the MICROCAL PEAQ-ITC analysis software provided by
the manufacturer. All ITC runs used for data analysis have an N
ranging from 0.98 to 1.05. The N values were fitted to 1 in the
analysis.
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